1
|
Xiao Y, Xu K, Zhao P, Ji L, Hua C, Jia X, Wu X, Diao L, Zhong W, Lyu G, Xing M. Microgels sense wounds' temperature, pH and glucose. Biomaterials 2025; 314:122813. [PMID: 39270627 DOI: 10.1016/j.biomaterials.2024.122813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Wound healing concerns almost all bed-side related diseases. With our increasing comprehension of healing nature, the physical and chemical natures behind the wound microenvironment have been decoupled. Wound care demands timely screening and prompt diagnosis of wound complications such as infection and inflammation. Biosensor by the way of exhaustive collection, delivery, and analysis of data, becomes indispensable to arrive at an ideal healing upshot and controlling complications by capturing in-situ wound status. Electrochemical based sensors carry some potential unstable performance subjected to the electrical circuitry and power access and contamination. The colorimetric sensors are free from those concerns. We report that microsensors designed from O/W/O of capillary fluids can continuously monitor wound temperature, pH and glucose concentration. We combined three different types of microgels to encapsulate liquid crystals of cholesterol, nontoxic fuel litmus and two glucose-sensitizing enzymes. A smartphone applet was then developed to convert wound healing images to RGB of digitalizing data. The microgel dressing effectively demonstrates the local temperature change, pH and glucose levels of the wound in high resolution where a microgel is a 'pixel'. They are highly responsive, reversible and accurate. Monitoring multiple physicochemical and physiological indicators provides tremendous potential with insight into healing processing.
Collapse
Affiliation(s)
- Yuqin Xiao
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China; Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Kaige Xu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Peng Zhao
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Leilei Ji
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China; Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Chao Hua
- Medical School of Nantong University, Nantong, 226019, China
| | - Xiaoli Jia
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China; Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Xiaozhuo Wu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Ling Diao
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Wen Zhong
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Guozhong Lyu
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China; Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China; Medical School of Nantong University, Nantong, 226019, China; National Research Center for Emergency Medicine, Beijing, China.
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada.
| |
Collapse
|
2
|
Watson M, Yusufu D, O'Rourke C, Mills A. Early wound infection monitoring via headspace O 2 micro-respirometry. Biosens Bioelectron 2025; 267:116751. [PMID: 39243447 DOI: 10.1016/j.bios.2024.116751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
A luminescence based, inexpensive, 3D printed O2 indicator is incorporated into a commercial, clear, occlusive wound dressing, which allows the %O2 in the headspace above a simulated wound to be monitored. Two wound models are used to evaluate this micro-respirometry-based system for monitoring wound infection namely, a simple 'agar plug' model and a wounded porcine skin model. Inoculation of either wound model with E. coli, E. cloacae, or A. baumannii, produces the typical 'S'-shaped, τ vs incubation time, t, profiles, associated with micro-respirometry, due to the decrease in %O2 in the headspace above the wound. A threshold value for the lifetime, τTT, of 21.1 μs, is identified at which the bacterial load is equal to the critical colonization threshold, CCT, ca. 106 colony forming units, CFU/mL, above which infection is highly likely. The agar plug wound model/O2 indicator combination is used to identify when the CCT is reached for a wide range of inoculant concentrations, spanning the range 108-101 CFU/mL, for all three microbial species. The O2 indicator is also successfully evaluated using a porcine skin wound model inoculated with E. coli. The results of this work are compared to other reported, usually invasive, smart wound monitoring systems. The possible use of this new, non-invasive smart-wound dressing technology, both at the point of care and at home, are discussed briefly.
Collapse
Affiliation(s)
- Michaella Watson
- School of Chemistry and Chemical Engineering, Queens University Belfast, Stranmillis Road, Belfast, BT9 5AG, UK
| | - Dilidaer Yusufu
- School of Chemistry and Chemical Engineering, Queens University Belfast, Stranmillis Road, Belfast, BT9 5AG, UK
| | - Christopher O'Rourke
- School of Chemistry and Chemical Engineering, Queens University Belfast, Stranmillis Road, Belfast, BT9 5AG, UK
| | - Andrew Mills
- School of Chemistry and Chemical Engineering, Queens University Belfast, Stranmillis Road, Belfast, BT9 5AG, UK.
| |
Collapse
|
3
|
Yang X, Che T, Tian S, Zhang Y, Zheng Y, Zhang Y, Zhang X, Wu Z. A Living Microecological Hydrogel with Microbiota Remodeling and Immune Reinstatement for Diabetic Wound Healing. Adv Healthc Mater 2024; 13:e2400856. [PMID: 38744431 DOI: 10.1002/adhm.202400856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Dysregulated skin microbiota and compromised immune responses are the major etiological factors for non-healing diabetic wounds. Current antibacterial strategies fail to orchestrate immune responses and indiscriminately eradicate bacteria at the wound site, exacerbating the imbalance of microbiota. Drawing inspiration from the beneficial impacts that probiotics possess on microbiota, a living microecological hydrogel containing Lactobacillus plantarum and fructooligosaccharide (LP/FOS@Gel) is formulated to remodel dysregulated skin microbiota and reinstate compromised immune responses, cultivating a conducive environment for optimal wound healing. LP/FOS@Gel acts as an "evocator," skillfully integrating the skin microecology, promoting the proliferation of Lactobacillus, Ralstonia, Muribaculum, Bacillus, and Allobaculum, while eradicating colonized pathogenic bacteria. Concurrently, LP/FOS@Gel continuously generates lactic acid to elicit a reparative macrophage response and impede the activation of the nuclear factor kappa-B pathway, effectively alleviating inflammation. As an intelligent microecological system, LP/FOS@Gel reinstates the skin's sovereignty during the healing process and effectively orchestrates the harmonious dialogue between the host immune system and microorganisms, thereby fostering the healing of diabetic infectious wounds. These remarkable attributes render LP/FOS@Gel highly advantageous for pragmatic clinical applications.
Collapse
Affiliation(s)
- Xiaopeng Yang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Tingting Che
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Shasha Tian
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yuanyuan Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yin Zheng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong, 250012, China
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong, 250012, China
| |
Collapse
|
4
|
Jin S, Mia R, Newton MAA, Cheng H, Gao W, Zheng Y, Dai Z, Zhu J. Nanofiber-reinforced self-healing polysaccharide-based hydrogel dressings for pH discoloration monitoring and treatment of infected wounds. Carbohydr Polym 2024; 339:122209. [PMID: 38823899 DOI: 10.1016/j.carbpol.2024.122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
The escalating global health concern arises from chronic wounds induced by bacterial infections, posing a significant threat to individuals. Consequently, an imperative exist for the development of hydrogel dressings to facilitate prompt wound monitoring and efficacious wound management. To this end, pH-sensitive bromothymol blue (BTB) and pH-responsive drug tetracycline hydrochloride (TH) were introduced into the polysaccharide-based hydrogel to realize the integration of wound monitoring and controlled treatment. Polysaccharide-based hydrogels were formed via a Schiff base reaction by cross-linking carboxymethyl chitosan (CMCS) on an oxidized sodium alginate (OSA) skeleton. BTB was used as a pH indicator to monitor wound infection through visual color changes visually. TH could be dynamically released through the pH response of the Schiff base bond to provide effective treatment and long-term antibacterial activity for chronically infected wounds. In addition, introducing polylactic acid nanofibers (PLA) enhanced the mechanical properties of hydrogels. The multifunctional hydrogel has excellent mechanical, self-healing, injectable, antibacterial properties and biocompatibility. Furthermore, the multifaceted hydrogel dressing under consideration exhibits noteworthy capabilities in fostering the healing process of chronically infected wounds. Consequently, the research contributes novel perspectives towards the advancement of intelligent and expeditious bacterial infection monitoring and dynamic treatment platforms.
Collapse
Affiliation(s)
- Shanshan Jin
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Rajib Mia
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Md All Amin Newton
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Hongju Cheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Weihong Gao
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yuansheng Zheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zijian Dai
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| | - Jie Zhu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
5
|
Duan X, Li L, Peng Z, Wang M, Liu Y, Hsieh DJ, Chang KC. Ultralow Power, Cleft Size-Adjustable and pH-Sensitive Hyaluronic Acid (HA) Biodevices for Acid-Sensing Ion Channels Emulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405207. [PMID: 39180450 DOI: 10.1002/smll.202405207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/28/2024] [Indexed: 08/26/2024]
Abstract
The burgeoning implantable biodevices have unlocked new frontiers in healthcare, promising personalized monitoring strategies tailored to specific needs. Herein, hyaluronic acid (HA) is harnessed to create fully biocompatible, acidity-sensitivity and cleft-adjustable neuromorphic devices. These HA-biodevices exhibit remarkable sensitivity to pH variations, effectively mimicking biological acid-sensing ion channels (ASICs) through protonation reactions between electronegative atoms and hydrogen ions, even at ultralow driving voltage (5 mV). They can monitor joint cartilage acidity by tracking changes in proton concentration and successfully diagnose the onset of arthritis. Furthermore, by adjusting the synaptic device's cleft distance, which determines responsiveness, power efficiency and plasticity, HA-based neuromorphic devices can be tailored to meet the unique demands of various implantation sites, providing both high-sensitivity and low-heat dissipation, thus broadening their application scopes. Moreover, the HA-biodevices maintain stable performance across various bending degrees, up to a curvature radius of 7.5 mm, with flexibility and deformation resilience enabling installation on joints of varying curvatures. The combination of all-biocompatibility, high sensitivity, low heat dissipation, ultralow low power (2 pW), and extraordinary deformation tolerance paves the way for the development of versatile, multipurpose medical monitoring devices with immense potential in the field of healthcare.
Collapse
Affiliation(s)
- Xinqing Duan
- Peking University Shenzhen Graduate School, Shenzhen City, 518000, China
| | - Lei Li
- Peking University Shenzhen Graduate School, Shenzhen City, 518000, China
| | - Zehui Peng
- Peking University Shenzhen Graduate School, Shenzhen City, 518000, China
| | - Mingqiang Wang
- Peking University Shenzhen Graduate School, Shenzhen City, 518000, China
| | - Yanxin Liu
- Peking University Shenzhen Graduate School, Shenzhen City, 518000, China
| | - Dar-Jen Hsieh
- R&D Center, ACRO Biomedical Co., Kaohsiung City, 82151, Taiwan
| | - Kuan-Chang Chang
- Peking University Shenzhen Graduate School, Shenzhen City, 518000, China
| |
Collapse
|
6
|
Liu R, Xi P, Yang N, Cheng B. Multifunctional Janus Membrane for Diabetic Wound Healing and Intelligent Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41927-41938. [PMID: 39090773 DOI: 10.1021/acsami.4c09353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The complex microenvironment of diabetic wounds often hinders the healing process, ultimately leading to the formation of diabetic foot ulcers and even death. Dual monitoring and treatment of wounds can significantly reduce the incidence of such cases. Herein, a multifunctional Janus membrane (3D chitosan sponge-ZE/polycaprolactone nanofibers-ZP) was developed by incorporating the zinc metal-organic framework, europium metal-organic framework, and phenol red into nanofibers for diabetic wound monitoring and treatment. The directional water transport capacity of the resulting Janus membrane allows for unidirectional and irreversible drainage of wound exudate, and the multifunctional Janus membrane creates up to a 99% antibacterial environment, both of which can treat wounds. Moreover, the pH (5-8) and H2O2 (0.00-0.80 μM) levels of the wound can be monitored using the color-changing property of phenol red and the fluorescence characteristic of Eu-MOF on the obtained membrane, respectively. The healing stages of the wound can also be monitored by analyzing the RGB values of the targeted membrane images. This design can more accurately reflect the wound state and treat the wound to reduce bacterial infection and accelerate wound healing, which has been demonstrated in in vivo experiments. The results provide an important basis for early intervention in diabetic patients.
Collapse
Affiliation(s)
- Ru Liu
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Peng Xi
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
- State Key Laboratory of Separation Membranes & Membrane Process, Tiangong University, Tianjin 300387, PR China
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, Tiangong University, Tianjin 300387, PR China
| | - Ning Yang
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
- State Key Laboratory of Separation Membranes & Membrane Process, Tiangong University, Tianjin 300387, PR China
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes & Membrane Process, Tiangong University, Tianjin 300387, PR China
- School of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457, PR China
| |
Collapse
|
7
|
Pu S, Zhang J, Shi C, Hou X, Li K, Feng J, Wu L. A multifunctional chitosan based porous membrane for pH-responsive antibacterial activity and promotion of infected wound healing. J Mater Chem B 2024; 12:7191-7202. [PMID: 38932741 DOI: 10.1039/d3tb03067a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Unsatisfactory mechanical and antibacterial properties restricted the solo use of chitosan (CS) as a wound dressing. In this work, a novel CS/hydroxyapatite/ZIF-8 (CS/HAp/ZIF-8, CHZ-10) porous membrane was facilely constructed by in situ loading of ZIF-8 on CS/HAp. The advantages of the three compositions were rationally integrated, and the multifunctionality and practicality of this CS-based dressing were improved. HAp not only improved the mechanical strength and stability of CS, but also promoted cell proliferation and accelerated hemostasis with its released Ca2+. Meanwhile, ZIF-8 enhanced the antibacterial activity of CS by releasing antibacterial Zn2+ in a pH-responsive and sustainable manner, avoiding the bio-accumulation toxicity of heavy metals. Compared with CS/HAp and conventionally used gauze, CHZ-10 exhibited superior coagulation and hemolytic ability, as well as outstanding antibacterial activity against E. coli and S. aureus. Besides, both in vivo observation and histological evaluation demonstrated that CHZ-10 could not only effectively inhibit bacterial infection and reduce inflammation of the wound, but also promote its re-epithelialization, granulation, tissue formation and collagen fibre growth, leading to effectively enhanced wound-healing. This work provides a new method for the easy construction of multifunctional antibacterial dressings based on CS, showing promise for application in clinical wound care.
Collapse
Affiliation(s)
- Shan Pu
- Analytical & Testing Center, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Jiale Zhang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Chaoting Shi
- Analytical & Testing Center, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu 610064, Sichuan, China.
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Ka Li
- West China School of Nursing, Sichuan University/Department of Biliary, West China Hospital, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Jinhua Feng
- West China School of Nursing, Sichuan University/Department of Biliary, West China Hospital, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Lan Wu
- Analytical & Testing Center, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
8
|
Guo L, Zhang X, Zhao DM, Chen S, Zhang WX, Yu YL, Wang JH. Portable Photoacoustic Analytical System Combined with Wearable Hydrogel Patch for pH Monitoring in Chronic Wounds. Anal Chem 2024; 96:11595-11602. [PMID: 38950152 DOI: 10.1021/acs.analchem.4c02472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Timely diagnosis, monitoring, and management of chronic wounds play crucial roles in improving patients' quality of life, but clinical evaluation of chronic wounds is still ambiguous and relies heavily on the experience of clinician, resulting in increased social and financial burden and delay of optimal treatment. During the different stages of the healing process, specific and dynamic changes of pH values in the wound exudate can be used as biomarkers to reflect the wound status. Herein, a pH-responsive agent with well-behaved photoacoustic (PA) properties, nitrazine yellow (NY), was incorporated in poly(vinyl alcohol)/sucrose (PVA/Suc) hydrogel to construct a wearable pH-sensing patch (PVA/Suc/NY hydrogel) for monitoring of pH values during chronic wound healing. According to Rosencwaig-Gersho theory and the combination of 3D printing technology, the PA chamber volume and chopping frequency were systematically optimized to improve the sensitivity of the PA analytical system. The prepared PVA/Suc/NY hydrogel patch had excellent mechanical properties and flexibility and could maintain conformal contact with skin. Moreover, combined with the miniaturized PA analytical device, it had the potential to detect pH values (5.0-9.0) free from the color interference of blood and therapeutic drugs, which provides a valuable strategy for wound pH value monitoring by PA quantitation. This strategy of combining the wearable hydrogel patch with portable PA analysis offers broad new prospects for the treatment and management of chronic wounds due to its features of simple operation, time savings, and anti-interference.
Collapse
Affiliation(s)
- Lan Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Xiao Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Dong-Mei Zhao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Wen-Xin Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
9
|
Mota FAR, Passos MLC, Santos JLM, Saraiva MLMFS. Comparative analysis of electrochemical and optical sensors for detection of chronic wounds biomarkers: A review. Biosens Bioelectron 2024; 251:116095. [PMID: 38382268 DOI: 10.1016/j.bios.2024.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
Chronic wounds (CW) present a significant healthcare challenge due to their prolonged healing time and associated complications. To effectively treat these wounds and prevent further deterioration, monitoring their healing progress is crucial. Traditional wound assessment methods relying on visual inspection and subjective evaluation are prone to inter-observer variability. Biomarkers play a critical role in objectively evaluating wound status and predicting healing outcomes, providing quantitative measures of wound healing progress, inflammation, infection, and tissue regeneration. Recent attention has been devoted to identifying and validating CW biomarkers. Various studies have investigated potential biomarkers, including growth factors, cytokines, proteases, and extracellular matrix components, shedding light on the complex molecular and cellular processes within CW. This knowledge enables a more targeted and personalized approach to wound management. Accurate and sensitive techniques are necessary for detecting CW biomarkers. Thus, this review compares and discusses the use of electrochemical and optical sensors for biomarker determination. The advantages and disadvantages of these sensors are highlighted. Differences in detection capabilities and characteristics such as non-invasiveness, portability, high sensitivity, specificity, simplicity, cost-effectiveness, compatibility with point-of-care applications, and real-time monitoring of wound biomarkers will be pointed out and compared. In summary, this work provides an overview of CW, explores the emerging field of CW biomarkers, and discusses methods for detecting these biomarkers, with a specific focus on optical and electrochemical sensors. The potential of further research and development in this field for advancing wound care and improving patient outcomes will also be noted.
Collapse
Affiliation(s)
- Fátima A R Mota
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - Marieta L C Passos
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - João L M Santos
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| |
Collapse
|
10
|
Wang J, Zhang H, Hu H, Hu S, Ma L. An enzyme-responsive hydrogel of ferrocene-grafted carboxymethyl chitosan as a soft electrochemical sensor for MMP-9 detection. Int J Biol Macromol 2024; 268:131582. [PMID: 38631589 DOI: 10.1016/j.ijbiomac.2024.131582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Matrix metalloproteinase 9 (MMP-9) plays an important role in wound healing. However, overexpression of MMP-9 leads to the degradation of the newly formed extracellular matrix, which delays wound healing, ultimately leading to chronic wounds. Therefore, timely monitoring of the MMP-9 activity using simple, cost-effective methods is important to prevent the formation of chronic wounds. In this work, ferrocene-modified MMP-9 cleavage peptide (Fc-MG) modified carboxymethyl chitosan hydrogels were prepared as electrochemical biosensors. In the presence of MMP-9, the peptide chain is sheared, and the electrochemically active ferrocene segment is released. Therefore, analyzing the electrochemical activity of hydrogels using differential pulse voltammetry (DPV) can be used to determine MMP-9 activity. The results showed that the DPV peaks were correlated with the MMP-9 concentration in phosphate-buffered saline (PBS, pH 7.4) and Dulbecco's modified Eagle's medium (DMEM). Specifically, the corresponding coefficient of determination (R2) were 0.918 and 0.993. The limit of detections were 73.08 ng/mL and 131.71 ng/mL, respectively. Compared with the enzyme-linked immunosorbent assay, the hydrogel biosensor determined the concentration of MMP-9 in solution with simpler steps. This study demonstrates a novel strategy based on Fc-MG-modified hydrogels to monitor MMP-9 activity in cell secretion samples and shows the potential application in chronic wounds.
Collapse
Affiliation(s)
- Jinze Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haiqi Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongtao Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sentao Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
11
|
Li Y, Wang T, Zhang J, Sukhorukov GB, Zhang L, Xue Y, Shang L. Smart Bactericidal Capsules Based on Cationic Luminescent Nanoclusters for Controllable Treatment of Drug-Resistant Bacterial Infection. Adv Healthc Mater 2024; 13:e2303686. [PMID: 38262003 DOI: 10.1002/adhm.202303686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Effective treatment of drug-resistant bacteria infected wound has been a longstanding challenge for healthcare systems. In particular, the development of novel strategies for controllable delivery and smart release of antimicrobial agents is greatly demanded. Herein, the design of biodegradable microcapsules carrying bactericidal gold nanoclusters (AuNCs) as an attractive platform for the effective treatment of drug-resistant bacteria infective wounds is reported. AuNC capsules are fabricated via the well-controlled layer-by-layer strategy, which possess intrinsic near-infrared fluorescence and good biocompatibility. Importantly, these AuNC capsules exhibit strong, specific antibacterial activity toward both S. aureus and methicillin-resistant S. aureus (MRSA). Further mechanistic studies by fluorescence confocal imaging and inductively coupled plasma mass spectrometry reveal that these AuNC capsules will be degraded in the S. aureus environment rather than E. coli, which then controllably release the loaded cationic AuNCs to exert antibacterial effect. Consequently, these AuNC capsules show remarkable therapeutic effect for the MRSA infected wound on a mouse model, and intrinsic fluorescence property of AuNC capsules enables in situ visualization of wound dressings. This study suggests the great potential of microcapsule-based platform as smart carriers of bactericidal agents for the effective treatment of drug-resistant bacterial infection as well as other therapeutic purposes.
Collapse
Affiliation(s)
- Yixiao Li
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an, 710072, P. R. China
| | - Tianyi Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an, 710072, P. R. China
| | - Jiaxin Zhang
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- Skolkovo Institute of Science and Technology, Bolshoi pr.30, Moscow, 143025, Russia
| | - Lianbing Zhang
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an, 710072, P. R. China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an, 710072, P. R. China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an, 710072, P. R. China
| |
Collapse
|
12
|
Wu J, Xue W, Yun Z, Liu Q, Sun X. Biomedical applications of stimuli-responsive "smart" interpenetrating polymer network hydrogels. Mater Today Bio 2024; 25:100998. [PMID: 38390342 PMCID: PMC10882133 DOI: 10.1016/j.mtbio.2024.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
In recent years, owing to the ongoing advancements in polymer materials, hydrogels have found increasing applications in the biomedical domain, notably in the realm of stimuli-responsive "smart" hydrogels. Nonetheless, conventional single-network stimuli-responsive "smart" hydrogels frequently exhibit deficiencies, including low mechanical strength, limited biocompatibility, and extended response times. In response, researchers have addressed these challenges by introducing a second network to create stimuli-responsive "smart" Interpenetrating Polymer Network (IPN) hydrogels. The mechanical strength of the material can be significantly improved due to the topological entanglement and physical interactions within the interpenetrating structure. Simultaneously, combining different network structures enhances the biocompatibility and stimulus responsiveness of the gel, endowing it with unique properties such as cell adhesion, conductivity, hemostasis/antioxidation, and color-changing capabilities. This article primarily aims to elucidate the stimulus-inducing factors in stimuli-responsive "smart" IPN hydrogels, the impact of the gels on cell behaviors and their biomedical application range. Additionally, we also offer an in-depth exposition of their categorization, mechanisms, performance characteristics, and related aspects. This review furnishes a comprehensive assessment and outlook for the advancement of stimuli-responsive "smart" IPN hydrogels within the biomedical arena. We believe that, as the biomedical field increasingly demands novel materials featuring improved mechanical properties, robust biocompatibility, and heightened stimulus responsiveness, stimuli-responsive "smart" IPN hydrogels will hold substantial promise for wide-ranging applications in this domain.
Collapse
Affiliation(s)
- Jiuping Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wu Xue
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zhihe Yun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Qinyi Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xinzhi Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
13
|
Chen Y, Yang X, Li K, Feng J, Liu X, Li Y, Yang K, Li J, Ge S. Phenolic Ligand-Metal Charge Transfer Induced Copper Nanozyme with Reactive Oxygen Species-Scavenging Ability for Chronic Wound Healing. ACS NANO 2024; 18:7024-7036. [PMID: 38394383 DOI: 10.1021/acsnano.3c10376] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Chronic wounds frequently arise as a complication in diabetic patients, and their management remains a significant clinical hurdle due to their nonhealing nature featured by heightened oxidative stress and impaired healing cells at the wound site. Herein, we present a 2D copper antioxidant nanozyme induced by phenolic ligand-metal charge transfer (LMCT) to eliminate reactive oxygen species (ROS) and facilitate the healing of chronic diabetic wounds. We found that polyphenol ligands coordinated on the Cu3(PO4)2 nanosheets led to a strong charge transfer at the interface and regulated the valence states of Cu. The obtained Cu nanozyme exhibited efficient scavenging ability toward different oxidative species and protected human cells from oxidative damage. The nanozyme enhanced the healing of diabetic wounds by promoting re-epithelialization, collagen deposition, angiogenesis, and immunoregulation. This work demonstrates the LMCT-induced ROS scavenging ability on a nanointerface, providing an alternative strategy of constructing metal-based nanozymes for the treatment of diabetic wounds as well as other diseases.
Collapse
Affiliation(s)
- Yi Chen
- Department of Peirodontology and Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Xiaoru Yang
- Department of Peirodontology and Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Kai Li
- Department of Peirodontology and Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Junkun Feng
- Department of Peirodontology and Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Xiaoyi Liu
- Department of Peirodontology and Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Yixuan Li
- Department of Peirodontology and Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Keyi Yang
- Department of Peirodontology and Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Jianhua Li
- Department of Peirodontology and Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Shaohua Ge
- Department of Peirodontology and Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| |
Collapse
|
14
|
Kong J, Ma S, Chu R, Liu J, Yu H, Mao M, Ge X, Sun Y, Wang Y. Photothermal and Photocatalytic Glycol Chitosan and Polydopamine-Grafted Oxygen Vacancy Bismuth Oxyiodide (BiO 1-x I) Nanoparticles for the Diagnosis and Targeted Therapy of Diabetic Wounds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307695. [PMID: 38150667 DOI: 10.1002/adma.202307695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Treatment of diabetic wounds is a significant clinical challenge due to the massive infections caused by bacteria. In this study, multifunctional glycol chitosan and polydopamine-coated BiO1-x I (GPBO) nanoparticles (NPs) with near-infrared (NIR) photothermal and photocatalytic abilities are prepared. When infection occurs, the local microenvironment becomes acidic, and the pH-switchable GPBO can target the bacteria of the wound site. The NIR-assisted GPBO treatment exhibits anti-bacterial effects with fast response, high efficiency, and long duration to Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. GPBO achieves excellent photothermal imaging and CT imaging of the mouse subcutaneous abscess model. With the assistance of NIR irradiation, the GPBO promotes the healing of the diabetic wound model with the effects of anti-bacteria, anti-inflammation, the M2 polarization promotion of macrophages, and angiogenesis. This is the first-time report of nano-sized BiO1-x I. The synthesis and selected application for the imaging and targeted therapy of diabetic wounds are presented. This study offers an example of the NP-assisted precise diagnosis and therapy of bacterial infection diseases.
Collapse
Affiliation(s)
- Jianglong Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Sihan Ma
- College of Energy, Xiamen University, Xiamen City, Fujian Province, 361002, P. R. China
- Fujian Research Center for Nuclear Engineering, Xiamen City, Fujian Province, 361102, P. R. China
| | - Runxuan Chu
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, 201203, P. R. China
| | - Jiawen Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Hongrui Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Meiru Mao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiaohan Ge
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yuting Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yi Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, P. R. China
| |
Collapse
|
15
|
Wan L, Xu N, Wu X, Liu M, Liu Y, Zhao J, Zhang T, Zhao J, Zhou Y, Xie Q, Hu Y, Jiang X, Tang C, Quan Y, Shafique S, Tian Y, Zhang X, Zhang Y, Zhou K, Cao J, Jian J, Wang Y. Enhanced heterogeneous interface to construct intelligent conductive hydrogel gas sensor for individualized treatment of infected wounds. Int J Biol Macromol 2024; 258:128520. [PMID: 38040150 DOI: 10.1016/j.ijbiomac.2023.128520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
In this study, we developed an enhanced heterogeneous interface intelligent conductive hydrogel NH3 sensor for individualized treatment of infected wounds. The sensor achieved monitoring, self-diagnosis, and adaptive gear adjustment functions. The PPY@PDA/PANI(3/6) sensor had a minimum NH3 detection concentration of 50 ppb and a response value of 2.94 %. It also had a theoretical detection limit of 49 ppt for infected wound gas. The sensor exhibited a fast response time of 23.2 s and a recovery time of 42.9 s. Tobramycin (TOB) was encapsulated in a self-healing QCS/OD hydrogel formed by quaternized chitosan (QCS) and oxidized dextran (OD), followed by the addition of polydopamine-coated polypyrrole nanowires (PPY@PDA) and polyaniline (PANI) to prepare electrically conductive drug-loaded PPY@PDA/PANI hydrogels. The drug-loaded PPY@PDA/PANI hydrogel was combined with a PANI/PVDF membrane to form an enhanced heterogeneous interfacial PPY@PDA/PANI/PVDF-based sensor, which could adaptively learn the individual wound ammonia response and adjust the speed of drug release from the PPY@PDA/PANI hydrogel with electrical stimulation. Drug release and animal studies demonstrated the efficacy of the PPY@PDA/PANI hydrogel in inhibiting infection and accelerating wound healing. In conclusion, the gas-sensitive conductive hydrogel sensing system is expected to enable intelligent drug delivery and provide personalized treatment for complex wound management.
Collapse
Affiliation(s)
- Linguo Wan
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Nanjian Xu
- Department of Spine Surgery, Ningbo Sixth Hospital, Ningbo, Zhejiang 315040, China.
| | - Xiaodong Wu
- Department of Anesthesiology, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Mujie Liu
- Medical College, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Yong Liu
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jinglong Zhao
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Ting Zhang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Jingwei Zhao
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Yu Zhou
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qingqing Xie
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yiwei Hu
- Medical College, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Xiaoqing Jiang
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chen Tang
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yuping Quan
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Shareen Shafique
- Department of Microelectronic Science and Engineering, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo 315211, China
| | - Ye Tian
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xin Zhang
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yuejun Zhang
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Kun Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Jiangbei Cao
- Department of Anesthesiology, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Jiawen Jian
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Yuheng Wang
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
16
|
Giovannini G, Sharma K, Boesel LF, Rossi RM. Lab-on-a-Fiber Wearable Multi-Sensor for Monitoring Wound Healing. Adv Healthc Mater 2024; 13:e2302603. [PMID: 37988685 DOI: 10.1002/adhm.202302603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Chronic wounds are regarded as a silent epidemic, affecting 1-2% of the population and representing 2-4% of healthcare expenses. The current methods used to assess the wound healing process are based on the visual evaluation of physical parameters. This work aims to design a wearable non-invasive device capable of evaluating three parameters simultaneously: the pH and the levels of glucose and matrix metalloproteinase (MMP) present in the wound exudate. The device is composed of three independent polymer optical fibers functionalized with fluorescent-based sensing chemistries specific to the targeted analytes. Each fiber is characterized in terms of detection sensitivity and selectivity confirming their suitability for monitoring the targeted parameters in ranges relevant to the wound environment. The selectivity and robustness of the multi-sensing device are confirmed with analyses using complex solutions with different pH levels (5, 6, and 7), different concentrations of glucose (1.25, 2.5, and 5 mm), and MMP (1.25, 2.5, and 5 µg mL-1 ). Given the simple set-up, the affordability of the materials used and the possibility of detecting additional parameters relevant to wound healing, such multi-sensing fiber-based devices could pave the way for novel non-invasive wearable tools enabling the assessment of wound healing from the molecular perspective.
Collapse
Affiliation(s)
- Giorgia Giovannini
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St.Gallen, CH-9014, Switzerland
| | - Khushdeep Sharma
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St.Gallen, CH-9014, Switzerland
| | - Luciano F Boesel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St.Gallen, CH-9014, Switzerland
| | - René M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St.Gallen, CH-9014, Switzerland
| |
Collapse
|
17
|
Xiang T, Guo Q, Jia L, Yin T, Huang W, Zhang X, Zhou S. Multifunctional Hydrogels for the Healing of Diabetic Wounds. Adv Healthc Mater 2024; 13:e2301885. [PMID: 37702116 DOI: 10.1002/adhm.202301885] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/10/2023] [Indexed: 09/14/2023]
Abstract
The healing of diabetic wounds is hindered by various factors, including bacterial infection, macrophage dysfunction, excess proinflammatory cytokines, high levels of reactive oxygen species, and sustained hypoxia. These factors collectively impede cellular behaviors and the healing process. Consequently, this review presents intelligent hydrogels equipped with multifunctional capacities, which enable them to dynamically respond to the microenvironment and accelerate wound healing in various ways, including stimuli -responsiveness, injectable self-healing, shape -memory, and conductive and real-time monitoring properties. The relationship between the multiple functions and wound healing is also discussed. Based on the microenvironment of diabetic wounds, antibacterial, anti-inflammatory, immunomodulatory, antioxidant, and pro-angiogenic strategies are combined with multifunctional hydrogels. The application of multifunctional hydrogels in the repair of diabetic wounds is systematically discussed, aiming to provide guidelines for fabricating hydrogels for diabetic wound healing and exploring the role of intelligent hydrogels in the therapeutic processes.
Collapse
Affiliation(s)
- Tao Xiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Qianru Guo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Lianghao Jia
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Tianyu Yin
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Wei Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xinyu Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
18
|
Yang P, Li Z, Fang B, Liu L. Self-healing hydrogels based on biological macromolecules in wound healing: A review. Int J Biol Macromol 2023; 253:127612. [PMID: 37871725 DOI: 10.1016/j.ijbiomac.2023.127612] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
The complete healing of skin wounds has been a challenge in clinical treatment. Self-healing hydrogels are special hydrogels formed by distinctive physicochemically reversible bonds, and they are considered promising biomaterials in the biomedical field owing to their inherently good drug-carrying capacity as well as self-healing and repair abilities. Moreover, natural polymeric materials have received considerable attention in skin tissue engineering owing to their low cytotoxicity, low immunogenicity, and excellent biodegradation rates. In this paper, we review recent advances in the design of self-healing hydrogels based on natural polymers for skin-wound healing applications. First, we outline a variety of natural polymers that can be used to construct self-healing hydrogel systems and highlight the advantages and disadvantages of different natural polymers. We then describe the principle of self-healing hydrogels in terms of two different crosslinking mechanisms-physical and chemical-and dissect their performance characteristics based on the practical needs of skin-trauma applications. Next, we outline the biological mechanisms involved in the healing of skin wounds and describe the current application strategies for self-healing hydrogels based on these mechanisms. Finally, we analyze and summarize the challenges and prospects of natural-material-based self-healing hydrogels for skin applications.
Collapse
Affiliation(s)
- Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhen Li
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
19
|
Liu X, Han X, Shang Y, Wang L, Shen J, Yuan J. Hydrogen sulfide releasing poly(γ-glutamic acid) biocomposite hydrogel with monitoring, antioxidant, and antibacterial properties for diabetic wound healing. Int J Biol Macromol 2023; 253:127053. [PMID: 37774813 DOI: 10.1016/j.ijbiomac.2023.127053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Adverse factors such as high levels of glucose, oxidative stress, inflammation, and bacterial infection impede diabetic wound healing and even worsen wounds. Owing to its outstanding anti-inflammatory and antioxidant properties as well as the potential to promote cell migration and proliferation, hydrogen sulfide(H2S) gas therapy is promising for chronic diabetic wound recovery. In this work, a multifunctional poly(γ-glutamic acid)(PGA) hydrogel encapsulated with keratin-based H2S donor(KTC), ciprofloxacin(Cip), and anthocyanins(Ant) was developed. The resultant hydrogel was capable of releasing H2S, thereby promoting cell proliferation and enhancing anti-inflammation and antioxidant activity. The release of antibiotic Cip was accelerated under a diabetic wound microenvironment, thereby enhancing the antibacterial activity of the hydrogel. The encapsulated Ant could serve as a pH monitor, sensitively indicating wound pH conditions in situ and indirectly reflecting wound infection. In vivo results in diabetic wound healing suggested that PGA/Ant/KTC/Cip hydrogel reduced inflammation and promoted angiogenesis and collagen deposition, thereby accelerating wound healing.
Collapse
Affiliation(s)
- Xu Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiao Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yushuang Shang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
20
|
Li S, Zhang Y, Jin H, Gao H, Liu S, Shi W, Sun W, Liu Y, Zhang H. Biomimetic dual-nanozymes with catalytic cascade reactions against diabetic wound infection. J Colloid Interface Sci 2023; 651:319-333. [PMID: 37544221 DOI: 10.1016/j.jcis.2023.07.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
Diabetes-related chronic wounds characterized by hyperglycemia and weak alkaline milieu provide numerous advantages for bacteria growth and biofilm formation, setting a myriad of stumbling blocks for wound healing. Therefore, reshaping the spatially and temporally pathological wound microenvironment against bacterial infection is critical to rescue stalled healing progress in diabetes-related chronic wounds. Herein, we demonstrate on the room-temperature construction of a glucose oxidase (GOx)-mimicking and peroxidase (POD)-mimicking dual-nanozymes catalytic cascade system upon the partial reduction of Fe3+ to Fe2+ and the deposition of Au nanoparticles, simultaneously. The as-prepared dual-nanozymes catalytic cascade system possesses the capabilities of reshaping the pathological microenvironments of diabetic wound via glucose consumption and acidification, leading to amplified catalytic cascade activities for sterilization. On the one hand, the GOx-mimicking enzymatic activity of the catalytic cascade system can not only deplete glucose and acidize wound milieu to inhibit bacteria growth, but also utilize the weak alkaline milieu of diabetic wound to provide sufficient H2O2 and a favorable pH for subsequent OH generation. On the other hand, the POD-mimicking enzymatic activity of the catalytic cascade system can continuously produce OH for sterilization under the weak acidic milieu in the presence of abundant H2O2. Benefiting from the simply and mild preparation process and the excellent dual-nanozymes catalytic cascade activities under the deliberate evolved milieus of diabetes-related chronic wounds, our catalytic cascade system exhibits the promising healing effect and clinical translation potential against diabetic wound infection.
Collapse
Affiliation(s)
- Siyuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yidi Zhang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Hao Jin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Hang Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Shuwei Liu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Wanrui Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Wei Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, PR China; Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
21
|
Jin S, Newton MAA, Cheng H, Zhang Q, Gao W, Zheng Y, Lu Z, Dai Z, Zhu J. Progress of Hydrogel Dressings with Wound Monitoring and Treatment Functions. Gels 2023; 9:694. [PMID: 37754375 PMCID: PMC10528853 DOI: 10.3390/gels9090694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Hydrogels are widely used in wound dressings due to their moisturizing properties and biocompatibility. However, traditional hydrogel dressings cannot monitor wounds and provide accurate treatment. Recent advancements focus on hydrogel dressings with integrated monitoring and treatment functions, using sensors or intelligent materials to detect changes in the wound microenvironment. These dressings enable responsive treatment to promote wound healing. They can carry out responsive dynamic treatment in time to effectively promote wound healing. However, there is still a lack of comprehensive reviews of hydrogel wound dressings that incorporate both wound micro-environment monitoring and treatment functions. Therefore, this review categorizes hydrogel dressings according to wound types and examines their current status, progress, challenges, and future trends. It discusses various wound types, including infected wounds, burns, and diabetic and pressure ulcers, and explores the wound healing process. The review presents hydrogel dressings that monitor wound conditions and provide tailored treatment, such as pH-sensitive, temperature-sensitive, glucose-sensitive, pressure-sensitive, and nano-composite hydrogel dressings. Challenges include developing dressings that meet the standards of excellent biocompatibility, improving monitoring accuracy and sensitivity, and overcoming obstacles to production and commercialization. Furthermore, it provides the current status, progress, challenges, and future trends in this field, aiming to give a clear view of its past, present, and future.
Collapse
Affiliation(s)
- Shanshan Jin
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Md All Amin Newton
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Hongju Cheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Qinchen Zhang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Weihong Gao
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Yuansheng Zheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Zan Lu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Zijian Dai
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jie Zhu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| |
Collapse
|
22
|
Durmaz E, Sertkaya S, Yilmaz H, Olgun C, Ozcelik O, Tozluoglu A, Candan Z. Lignocellulosic Bionanomaterials for Biosensor Applications. MICROMACHINES 2023; 14:1450. [PMID: 37512761 PMCID: PMC10384395 DOI: 10.3390/mi14071450] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
The rapid population growth, increasing global energy demand, climate change, and excessive use of fossil fuels have adversely affected environmental management and sustainability. Furthermore, the requirements for a safer ecology and environment have necessitated the use of renewable materials, thereby solving the problem of sustainability of resources. In this perspective, lignocellulosic biomass is an attractive natural resource because of its abundance, renewability, recyclability, and low cost. The ever-increasing developments in nanotechnology have opened up new vistas in sensor fabrication such as biosensor design for electronics, communication, automobile, optical products, packaging, textile, biomedical, and tissue engineering. Due to their outstanding properties such as biodegradability, biocompatibility, non-toxicity, improved electrical and thermal conductivity, high physical and mechanical properties, high surface area and catalytic activity, lignocellulosic bionanomaterials including nanocellulose and nanolignin emerge as very promising raw materials to be used in the development of high-impact biosensors. In this article, the use of lignocellulosic bionanomaterials in biosensor applications is reviewed and major challenges and opportunities are identified.
Collapse
Affiliation(s)
- Ekrem Durmaz
- Department of Forest Industrial Engineering, Kastamonu University, 37200 Kastamonu, Turkey
| | - Selva Sertkaya
- Department of Forest Industrial Engineering, Duzce University, 81620 Duzce, Turkey
| | - Hande Yilmaz
- Department of Forest Industrial Engineering, Duzce University, 81620 Duzce, Turkey
| | - Cagri Olgun
- Department of Forest Industrial Engineering, Kastamonu University, 37200 Kastamonu, Turkey
| | - Orhan Ozcelik
- Department of Aerospace Engineering, Ankara Yildirim Beyazit University, 06010 Ankara, Turkey
| | - Ayhan Tozluoglu
- Department of Forest Industrial Engineering, Duzce University, 81620 Duzce, Turkey
- Biomaterials and Nanotechnology Research Group & BioNanoTeam, 34473 Istanbul, Turkey
| | - Zeki Candan
- Biomaterials and Nanotechnology Research Group & BioNanoTeam, 34473 Istanbul, Turkey
- Department of Forest Industrial Engineering, Istanbul University Cerrahpasa, 34473 Istanbul, Turkey
| |
Collapse
|
23
|
Zhao C, Li Y, Zhao J, Li H, Xu J, Gao Z, Ding C, Song YY. A "Test-to-Treat" Pad for Real-Time Visual Monitoring of Bacterial Infection and On-Site Performing Smart Therapy Strategies. ACS NANO 2023. [PMID: 37399243 DOI: 10.1021/acsnano.3c01158] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Skin infections are major threats to human health, causing ∼500 incidences per 10 000 person-year. In patients with diabetes mellitus, particularly, skin infections are often accompanied by a slow healing process, amputation, and even death. Timely diagnosis of skin infection strains and on-site therapy are vital in human health and safety. Herein, a double-layered "test-to-treat" pad is developed for the visual monitoring and selective treatment of drug-sensitive (DS)/drug-resistant (DR) bacterial infections. The inner layer (using carrageenan hydrogel as a scaffold) is loaded with bacteria indicators and an acid-responsive drug (Fe-carbenicillin frameworks) for infection detection and DS bacteria inactivation. The outer layer is a mechanoluminescence material (ML, CaZnOS:Mn2+) and visible-light responsive photocatalyst (Pt@TiO2) incorporated elastic polydimethylsiloxane (PDMS). On the basis of the colorimetric sensing result (yellow for DS-bacterial infection and red for DR-bacterial infection), a suitable antibacterial strategy is guided and then performed. Two available bactericidal routes provided by double pad layers reflect the advantage. The controllable and effective killing of DR bacteria is realized by in situ generated reactive oxygen species (ROSs) from the combination of Pt@TiO2 and ML under mechanical force, avoiding physical light sources and alleviating off-target side effects of ROS in biomedical therapy. As a proof-of-concept, the "test-to-treat" pad is applied as a wearable wound dressing for sensing and selectively dealing with DS/DR bacterial infections in vitro and in vivo. This multifunctional design effectively reduces antibiotic abuse and accelerates wound healing, providing an innovative and promising Band-Aid strategy in point-of-care diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | - Hailong Li
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, P. R. China
| | | | | | | | | |
Collapse
|
24
|
Jiang Y, Trotsyuk AA, Niu S, Henn D, Chen K, Shih CC, Larson MR, Mermin-Bunnell AM, Mittal S, Lai JC, Saberi A, Beard E, Jing S, Zhong D, Steele SR, Sun K, Jain T, Zhao E, Neimeth CR, Viana WG, Tang J, Sivaraj D, Padmanabhan J, Rodrigues M, Perrault DP, Chattopadhyay A, Maan ZN, Leeolou MC, Bonham CA, Kwon SH, Kussie HC, Fischer KS, Gurusankar G, Liang K, Zhang K, Nag R, Snyder MP, Januszyk M, Gurtner GC, Bao Z. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat Biotechnol 2023; 41:652-662. [PMID: 36424488 DOI: 10.1038/s41587-022-01528-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 09/23/2022] [Indexed: 11/26/2022]
Abstract
'Smart' bandages based on multimodal wearable devices could enable real-time physiological monitoring and active intervention to promote healing of chronic wounds. However, there has been limited development in incorporation of both sensors and stimulators for the current smart bandage technologies. Additionally, while adhesive electrodes are essential for robust signal transduction, detachment of existing adhesive dressings can lead to secondary damage to delicate wound tissues without switchable adhesion. Here we overcome these issues by developing a flexible bioelectronic system consisting of wirelessly powered, closed-loop sensing and stimulation circuits with skin-interfacing hydrogel electrodes capable of on-demand adhesion and detachment. In mice, we demonstrate that our wound care system can continuously monitor skin impedance and temperature and deliver electrical stimulation in response to the wound environment. Across preclinical wound models, the treatment group healed ~25% more rapidly and with ~50% enhancement in dermal remodeling compared with control. Further, we observed activation of proregenerative genes in monocyte and macrophage cell populations, which may enhance tissue regeneration, neovascularization and dermal recovery.
Collapse
Affiliation(s)
- Yuanwen Jiang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Artem A Trotsyuk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Simiao Niu
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Dominic Henn
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kellen Chen
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Chien-Chung Shih
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Madelyn R Larson
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alana M Mermin-Bunnell
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Smiti Mittal
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jian-Cheng Lai
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Aref Saberi
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Ethan Beard
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Serena Jing
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Donglai Zhong
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Sydney R Steele
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kefan Sun
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Tanish Jain
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Eric Zhao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Christopher R Neimeth
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Willian G Viana
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jing Tang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Dharshan Sivaraj
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jagannath Padmanabhan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Melanie Rodrigues
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - David P Perrault
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Arhana Chattopadhyay
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Zeshaan N Maan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Melissa C Leeolou
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Clark A Bonham
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sun Hyung Kwon
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hudson C Kussie
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Katharina S Fischer
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
| | | | - Kui Liang
- BOE Technology Center, BOE Technology Group Co., Ltd, Beijing, China
| | - Kailiang Zhang
- BOE Technology Center, BOE Technology Group Co., Ltd, Beijing, China
| | - Ronjon Nag
- Stanford Distinguished Careers Institute, Stanford University, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Januszyk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Geoffrey C Gurtner
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA.
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
25
|
Zheng XT, Zhong Y, Chu HE, Yu Y, Zhang Y, Chin JS, Becker DL, Su X, Loh XJ. Carbon Dot-Doped Hydrogel Sensor Array for Multiplexed Colorimetric Detection of Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17675-17687. [PMID: 37001053 DOI: 10.1021/acsami.3c01185] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Effective wound care and treatment require a quick and comprehensive assessment of healing status. Here, we develop a carbon dot-doped hydrogel sensor array in polydimethylsiloxane (PDMS) for simultaneous colorimetric detections of five wound biomarkers and/or wound condition indicators (pH, glucose, urea, uric acid, and total protein), leading to the holistic assessment of inflammation and infection. A biogenic carbon dot synthesized using an amino acid and a polymer precursor is doped in an agarose hydrogel matrix for constructing enzymatic sensors (glucose, urea, and uric acid) and dye-based sensors (pH and total protein). The encapsulated enzymes in such a matrix exhibit improved enzyme kinetics and stability compared to those in pure hydrogels. Such a matrix also provides stable colorimetric responses for all five sensors. The sensor array exhibits high accuracy (recovery rates of 91.5-113.1%) and clinically relevant detection ranges for all five wound markers. The sensor array is established for simulated wound fluids and validated with rat wound fluids from perturbed wound models. Distinct color patterns are obtained that can clearly distinguish healing vs nonhealing wounds visually and quantitatively. This hydrogel sensor array shows great potential for on-site wound sensing due to its long-term stability, lightweight, and flexibility.
Collapse
Affiliation(s)
- Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yingying Zhong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Huan Enn Chu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Republic of Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Republic of Singapore
| | - Jiah Shin Chin
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Republic of Singapore
| | - David Lawrence Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Republic of Singapore
| | - Xiaodi Su
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
26
|
Hu F, Gao Q, Liu J, Chen W, Zheng C, Bai Q, Sun N, Zhang W, Zhang Y, Lu T. Smart microneedle patches for wound healing and management. J Mater Chem B 2023; 11:2830-2851. [PMID: 36916631 DOI: 10.1039/d2tb02596e] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The number of patients with non-healing wounds is generally increasing globally, placing a huge social and economic burden on every country. The complexity of the wound-healing process remains a major health challenge despite the numerous studies that have been reported on conventional wound dressings. Therefore, a therapeutic system that combines diagnostic and therapeutic modalities is essential to monitor wound-related biomarkers and facilitate wound healing in real time. Microneedles, as a multifunctional platform, are promising for transdermal diagnostics and drug delivery. Their advantages are mainly reflected in painless transdermal drug delivery, good biocompatibility, and ease of self-administration. In this work, we review recent advances in the use of microneedle patches for wound healing and monitoring. The paper first provides a brief overview of the skin structure and the wound healing process, and then discusses the current state of research and prospects for the development of wound-related biomarkers and their real-time monitoring based on microneedle sensors. It summarizes the current state of research based on the unique design of microneedle patches, including biomimetic, conductive, and environmentally responsive, to achieve wound healing. It further summarizes the prospects for the application of different microneedle-based drug delivery modalities and drug delivery substances for wound healing, due to their superior transdermal drug delivery advantages. It concludes with challenges and expectations for the use of smart microneedle patches for wound healing and management.
Collapse
Affiliation(s)
- Fangfang Hu
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Qian Gao
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Jinxi Liu
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Wenting Chen
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Caiyun Zheng
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Que Bai
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Na Sun
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Wenhui Zhang
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Yanni Zhang
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Tingli Lu
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| |
Collapse
|
27
|
A Systematic Review on the Advanced Techniques of Wearable Point-of-Care Devices and Their Futuristic Applications. Diagnostics (Basel) 2023; 13:diagnostics13050916. [PMID: 36900059 PMCID: PMC10001196 DOI: 10.3390/diagnostics13050916] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Personalized point-of-care testing (POCT) devices, such as wearable sensors, enable quick access to health monitoring without the use of complex instruments. Wearable sensors are gaining popularity owing to their ability to offer regular and continuous monitoring of physiological data by dynamic, non-invasive assessments of biomarkers in biofluids such as tear, sweat, interstitial fluid and saliva. Current advancements have concentrated on the development of optical and electrochemical wearable sensors as well as advances in non-invasive measurements of biomarkers such as metabolites, hormones and microbes. For enhanced wearability and ease of operation, microfluidic sampling, multiple sensing, and portable systems have been incorporated with materials that are flexible. Although wearable sensors show promise and improved dependability, they still require more knowledge about interaction between the target sample concentrations in blood and non-invasive biofluids. In this review, we have described the importance of wearable sensors for POCT, their design and types of these devices. Following which, we emphasize on the current breakthroughs in the application of wearable sensors in the realm of wearable integrated POCT devices. Lastly, we discuss the present obstacles and forthcoming potentials including the use of Internet of Things (IoT) for offering self-healthcare using wearable POCT.
Collapse
|
28
|
Construction of chitosan-based supramolecular biofilm material for wound dressing based on natural deep eutectic solvents. Int J Biol Macromol 2023; 236:123768. [PMID: 36812964 DOI: 10.1016/j.ijbiomac.2023.123768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/20/2022] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
Bacterial infection is still one of the main problems observed in the clinical process of wound healing, so the development of new multifunctional biocompatible materials is an urgent clinical need. A kind of supramolecular biofilm crosslinked by hydrogen bond between natural deep eutectic solvent and chitosan was studied and successfully prepared to reduce bacterial infection. Its killing rates of Staphylococcus aureus and Escherichia coli can reach 98.86 % ± 1.90 % and 99.69 % ± 0.53 %, and it can be degraded in both soil and water, showing excellent biocompatibility and biodegradability. In addition, the supramolecular biofilm material also has the UV barrier property, which can effectively avoid the secondary injury of UV to the wound. Interestingly, the cross-linking effect of hydrogen bond makes the biofilm have a more compact structure and rough surface, and gives the biofilm strong tensile properties. Overall, owing to these unique advantages, NADES-CS supramolecular biofilm has great potential for medical applications, laying the foundation for the realization of sustainable polysaccharide materials.
Collapse
|
29
|
3D Printing of pH Indicator Auxetic Hydrogel Skin Wound Dressing. Molecules 2023; 28:molecules28031339. [PMID: 36771005 PMCID: PMC9920873 DOI: 10.3390/molecules28031339] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
The benefits of enclosing pH sensors into wound dressings include treatment monitoring of wounded skin and early detection of developing chronic conditions, especially for diabetic patients. A 3D printed re-entrant auxetic hydrogel wound dressing, doped with pH indicator phenol red dye, was developed and characterized. The re-entrant auxetic design allows wound dressing adhesion to complex body parts, such as joints on arms and legs. Tensile tests revealed a yield strength of 140 kPa and Young's modulus of 78 MPa. In addition, the 3D-printed hydrogel has a swelling capacity of up to 14%, limited weight loss to 3% in six days, and porosity of near 1.2%. A reasonable pH response resembling human skin pH (4-10) was obtained and characterized. The integration of color-changing pH indicators allows patients to monitor the wound's healing process using a smartphone. In addition to the above, the mechanical properties and their dependence on post-processing were studied. The results show that the resin composition and the use of post-treatments significantly affect the quality and durability of the wound dressings. Finally, a poly (acrylic acid) (PAA) and water-based adhesive was developed and used to demonstrate the performance of the auxetic wound dressing when attached to moving body joints.
Collapse
|
30
|
Barman SR, Chan SW, Kao FC, Ho HY, Khan I, Pal A, Huang CC, Lin ZH. A self-powered multifunctional dressing for active infection prevention and accelerated wound healing. SCIENCE ADVANCES 2023; 9:eadc8758. [PMID: 36696504 PMCID: PMC9876552 DOI: 10.1126/sciadv.adc8758] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Interruption of the wound healing process due to pathogenic infection remains a major health care challenge. The existing methods for wound management require power sources that hinder their utilization outside of clinical settings. Here, a next generation of wearable self-powered wound dressing is developed, which can be activated by diverse stimuli from the patient's body and provide on-demand treatment for both normal and infected wounds. The highly tunable dressing is composed of thermocatalytic bismuth telluride nanoplates (Bi2Te3 NPs) functionalized onto carbon fiber fabric electrodes and triggered by the surrounding temperature difference to controllably generate hydrogen peroxide to effectively inhibit bacterial growth at the wound site. The integrated electrodes are connected to a wearable triboelectric nanogenerator (TENG) to provide electrical stimulation for accelerated wound closure by enhancing cellular proliferation, migration, and angiogenesis. The reported self-powered dressing holds great potential in facilitating personalized and user-friendly wound care with improved healing outcomes.
Collapse
Affiliation(s)
- Snigdha Roy Barman
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shuen-Wen Chan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Fu-Cheng Kao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsuan-Yu Ho
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Imran Khan
- Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Arnab Pal
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Zong-Hong Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
31
|
Du Y, Du W, Lin D, Ai M, Li S, Zhang L. Recent Progress on Hydrogel-Based Piezoelectric Devices for Biomedical Applications. MICROMACHINES 2023; 14:167. [PMID: 36677228 PMCID: PMC9862259 DOI: 10.3390/mi14010167] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Flexible electronics have great potential in the application of wearable and implantable devices. Through suitable chemical alteration, hydrogels, which are three-dimensional polymeric networks, demonstrate amazing stretchability and flexibility. Hydrogel-based electronics have been widely used in wearable sensing devices because of their biomimetic structure, biocompatibility, and stimuli-responsive electrical properties. Recently, hydrogel-based piezoelectric devices have attracted intensive attention because of the combination of their unique piezoelectric performance and conductive hydrogel configuration. This mini review is to give a summary of this exciting topic with a new insight into the design and strategy of hydrogel-based piezoelectric devices. We first briefly review the representative synthesis methods and strategies of hydrogels. Subsequently, this review provides several promising biomedical applications, such as bio-signal sensing, energy harvesting, wound healing, and ultrasonic stimulation. In the end, we also provide a personal perspective on the future strategies and address the remaining challenges on hydrogel-based piezoelectric electronics.
Collapse
Affiliation(s)
- Yuxuan Du
- Department of Materials Science, University of Southern California, Los Angeles, CA 90018, USA
| | - Wenya Du
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dabin Lin
- Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test, School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710032, China
| | - Minghao Ai
- College of Engineering and Computer Science, Syracuse University, Syracuse, NY 13202, USA
| | - Songhang Li
- Department of Physics and Astronomy, Franklin & Marshall College, Lancaster, PA 17604, USA
| | - Lin Zhang
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
32
|
Ran P, Xia T, Zheng H, Lei F, Zhang Z, Wei J, Li X. Light-triggered theranostic hydrogels for real-time imaging and on-demand photodynamic therapy of skin abscesses. Acta Biomater 2023; 155:292-303. [PMID: 36435439 DOI: 10.1016/j.actbio.2022.11.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/25/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
The management of wound infection remains the major challenges in real-time diagnosis, effective bacterial elimination and rapid wound healing. Herein, we developed injectable theranostic hydrogels to achieve long-term visual imaging of infected wounds and possible infection recurrence and to launch an on-demand bactericidal effect without using any antibiotics. Antimicrobial peptide ε-polylysine (ePL)-derived hydrogels were prepared through the copolymerization of methacrylated ePL (mPL) and the conjugates with tetrakis(4-carboxyphenyl) porphyrin (mPL-TCPP) and phenol red (mPL-Pr). Light illumination of mPL-TCPP produces reactive oxidative species (ROS) to initiate free radical crosslinking into PL@Pr-TCPP hydrogels without using any additional photoinitiators and concurrently exhibits antibacterial photodynamic therapy (PDT). PL@Pr-TCPP hydrogels experience quick color changes from yellow to orange and finally to red when pH values change from 5.0 to 9.0. The actual pH and related bacterial levels in the wounds could be read from G/B signal ratios of hydrogel colors captured by a smart phone. The conjugation of phenol red and TCPP into hydrogels affords a robust bacterial infection diagnosis and persistent bactericidal effect after cycled light illumination. The bacterial capture by ePL hydrogels strengthens PDT effect through alleviating the short lifetime and action distance of ROS. On a Staphylococcus aureus-infected abscess model, light illumination of the pregel solutions achieves in situ formation of hydrogel dressings. The synergistic bactericidal performance significantly relieves inflammatory status, accelerates collagen deposition, and promotes neovascularization, leading to full recovery of the infected wounds with regeneration of skin accessories. PL@Pr-TCPP hydrogels on the wound bed show color changes upon the recurrence of bacterial infection, which could also be totally eliminated after light illumination. Therefore, this study demonstrates a feasible strategy to develop theranostic hydrogel dressings for life-cycle diagnosis and on-demand treatment of wound infections. STATEMENT OF SIGNIFICANCE: Over 30% of skin and soft tissue infections become chronic even after appropriate antibacterial treatment, and recurrent infections are commonly reported after initial infection. Challenges remain in the development of theranostic wound dressings having the capability of point-of-care diagnosis, life-cycle monitoring and on-demand elimination of bacterial infection. Herein, light-triggered gelation is used to develop theranostic hydrogels for reversible naked-eye diagnosis and on-demand photodynamic therapy of wound infections. Light illumination plays a "one-stone-two-birds" role, i.e., photodynamically produced reactive oxidative species enable bactericidal effect without using any antibiotics, and the generated free radicals initiate crosslinking of hydrogels without using any additional photoinitiators. Bacterial infection-activated color changes of hydrogels could be captured with a smart phone for on-site and persistent monitoring of bacterial infection and wound healing process.
Collapse
Affiliation(s)
- Pan Ran
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Tian Xia
- Department of Pathology, Western Theater Command Air Force Hospital, Chengdu 610021, PR China
| | - Huan Zheng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Fangmei Lei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Zhanlin Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Junwu Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
33
|
Zhu J, Zhou H, Gerhard EM, Zhang S, Parra Rodríguez FI, Pan T, Yang H, Lin Y, Yang J, Cheng H. Smart bioadhesives for wound healing and closure. Bioact Mater 2023; 19:360-375. [PMID: 35574051 PMCID: PMC9062426 DOI: 10.1016/j.bioactmat.2022.04.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 12/12/2022] Open
Abstract
The high demand for rapid wound healing has spurred the development of multifunctional and smart bioadhesives with strong bioadhesion, antibacterial effect, real-time sensing, wireless communication, and on-demand treatment capabilities. Bioadhesives with bio-inspired structures and chemicals have shown unprecedented adhesion strengths, as well as tunable optical, electrical, and bio-dissolvable properties. Accelerated wound healing has been achieved via directly released antibacterial and growth factors, material or drug-induced host immune responses, and delivery of curative cells. Most recently, the integration of biosensing and treatment modules with wireless units in a closed-loop system yielded smart bioadhesives, allowing real-time sensing of the physiological conditions (e.g., pH, temperature, uric acid, glucose, and cytokine) with iterative feedback for drastically enhanced, stage-specific wound healing by triggering drug delivery and treatment to avoid infection or prolonged inflammation. Despite rapid advances in the burgeoning field, challenges still exist in the design and fabrication of integrated systems, particularly for chronic wounds, presenting significant opportunities for the future development of next-generation smart materials and systems.
Collapse
Affiliation(s)
- Jia Zhu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Honglei Zhou
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Institute of Flexible Electronics Technology of THU, Zhejiang, Jiaxing, 314000, China
| | - Ethan Michael Gerhard
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Senhao Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215011, PR China
| | - Flor Itzel Parra Rodríguez
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Taisong Pan
- School of Materials and Energy, State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Hongbo Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215011, PR China
| | - Yuan Lin
- School of Materials and Energy, State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Jian Yang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
34
|
Jin F, Liao S, Li W, Jiang C, Wei Q, Xia X, Wang Q. Amphiphilic sodium alginate-polylysine hydrogel with high antibacterial efficiency in a wide pH range. Carbohydr Polym 2023; 299:120195. [PMID: 36876766 DOI: 10.1016/j.carbpol.2022.120195] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Bacterial infection is a major pathological factor leading to persistent wounds. With the aging of population, wound infection has gradually become a global health-issue. The wound site environment is complicated, and the pH changes dynamically during healing. Therefore, there is an urgent need for new antibacterial materials that can adapt to a wide pH range. To achieve this goal, we developed a thymol-oligomeric tannic acid/amphiphilic sodium alginate-polylysine hydrogel film, which exhibited excellent antibacterial efficacy in the pH range from 4 to 9, achieving the highest achievable 99.993 % (4.2 log units) and 99.62 % (2.4 log units) against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, respectively. The hydrogel films exhibited excellent cytocompatibility, suggesting that the materials are promising as a novel wound healing material without the concern of biosafety.
Collapse
Affiliation(s)
- Fangyu Jin
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Shiqin Liao
- Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, PR China
| | - Wei Li
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Chenyu Jiang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Xin Xia
- College of Textile and Clothing, Xinjiang University, Urumqi 830046, PR China
| | - Qingqing Wang
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, PR China.
| |
Collapse
|
35
|
Tsegay F, Elsherif M, Alam F, Butt H. Smart 3D Printed Auxetic Hydrogel Skin Wound Dressings. ACS APPLIED BIO MATERIALS 2022; 5:5545-5553. [PMID: 36441920 DOI: 10.1021/acsabm.2c00388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Wound healing is a huge challenge worldwide causing enormous financial burden on healthcare systems. Although conventional wound dressings, such as hydrogels, bandages, and foams, facilitate wound healing, they lack the ability to monitor the wound healing process. Here, hydrogel wound dressings in the form of auxetic structures were developed by a digital light processing (DLP) printer. Paper-based colorimetric sensors were incorporated with the 3D printed auxetic hydrogel skin wound patches for monitoring the wound status through detecting pH levels and glucose concentrations. The paper-based sensors are profoundly cost-effective and were found to be capable of monitoring the wound's conditions. The developed wound dressings may assist in preventing escalation of the acute wounds into chronic stages in diabetics.
Collapse
Affiliation(s)
- Filmon Tsegay
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi127788, UAE
| | - Mohamed Elsherif
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi127788, UAE
| | - Fahad Alam
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi127788, UAE
| | - Haider Butt
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi127788, UAE
| |
Collapse
|
36
|
Zhang S, Ge G, Qin Y, Li W, Dong J, Mei J, Ma R, Zhang X, Bai J, Zhu C, Zhang W, Geng D. Recent advances in responsive hydrogels for diabetic wound healing. Mater Today Bio 2022; 18:100508. [PMID: 36504542 PMCID: PMC9729074 DOI: 10.1016/j.mtbio.2022.100508] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Poor wound healing after diabetes mellitus remains a challenging problem, and its pathophysiological mechanisms have not yet been fully elucidated. Persistent bleeding, disturbed regulation of inflammation, blocked cell proliferation, susceptible infection and impaired tissue remodeling are the main features of diabetic wound healing. Conventional wound dressings, including gauze, films and bandages, have a limited function. They generally act as physical barriers and absorbers of exudates, which fail to meet the requirements of the whol diabetic wound healing process. Wounds in diabetic patients typically heal slowly and are susceptible to infection due to hyperglycemia within the wound bed. Once bacterial cells develop into biofilms, diabetic wounds will exhibit robust drug resistance. Recently, the application of stimuli-responsive hydrogels, also known as "smart hydrogels", for diabetic wound healing has attracted particular attention. The basic feature of this system is its capacities to change mechanical properties, swelling ability, hydrophilicity, permeability of biologically active molecules, etc., in response to various stimuli, including temperature, potential of hydrogen (pH), protease and other biological factors. Smart hydrogels can improve therapeutic efficacy and limit total toxicity according to the characteristics of diabetic wounds. In this review, we summarized the mechanism and application of stimuli-responsive hydrogels for diabetic wound healing. It is hoped that this work will provide some inspiration and suggestions for research in this field.
Collapse
Affiliation(s)
- Siming Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Gaoran Ge
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Yi Qin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Wenhao Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Jiale Dong
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Jiawei Mei
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Ruixiang Ma
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Xianzuo Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China,Corresponding author.
| | - Weiwei Zhang
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China,Corresponding author.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China,Corresponding author.
| |
Collapse
|
37
|
Montazerian H, Davoodi E, Baidya A, Badv M, Haghniaz R, Dalili A, Milani AS, Hoorfar M, Annabi N, Khademhosseini A, Weiss PS. Bio-macromolecular design roadmap towards tough bioadhesives. Chem Soc Rev 2022; 51:9127-9173. [PMID: 36269075 PMCID: PMC9810209 DOI: 10.1039/d2cs00618a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Emerging sutureless wound-closure techniques have led to paradigm shifts in wound management. State-of-the-art biomaterials offer biocompatible and biodegradable platforms enabling high cohesion (toughness) and adhesion for rapid bleeding control as well as robust attachment of implantable devices. Tough bioadhesion stems from the synergistic contributions of cohesive and adhesive interactions. This Review provides a biomacromolecular design roadmap for the development of tough adhesive surgical sealants. We discuss a library of materials and methods to introduce toughness and adhesion to biomaterials. Intrinsically tough and elastic polymers are leveraged primarily by introducing strong but dynamic inter- and intramolecular interactions either through polymer chain design or using crosslink regulating additives. In addition, many efforts have been made to promote underwater adhesion via covalent/noncovalent bonds, or through micro/macro-interlock mechanisms at the tissue interfaces. The materials settings and functional additives for this purpose and the related characterization methods are reviewed. Measurements and reporting needs for fair comparisons of different materials and their properties are discussed. Finally, future directions and further research opportunities for developing tough bioadhesive surgical sealants are highlighted.
Collapse
Affiliation(s)
- Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Elham Davoodi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
- Multi-Scale Additive Manufacturing Lab, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Maryam Badv
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Arash Dalili
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Abbas S Milani
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
- School of Engineering and Computer Science, University of Victoria, Victoria, British Columbia V8P 3E6, Canada
| | - Nasim Annabi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
38
|
Ibrahim NFA, Sabani N, Johari S, Manaf AA, Wahab AA, Zakaria Z, Noor AM. A Comprehensive Review of the Recent Developments in Wearable Sweat-Sensing Devices. SENSORS (BASEL, SWITZERLAND) 2022; 22:7670. [PMID: 36236769 PMCID: PMC9573257 DOI: 10.3390/s22197670] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Sweat analysis offers non-invasive real-time on-body measurement for wearable sensors. However, there are still gaps in current developed sweat-sensing devices (SSDs) regarding the concerns of mixing fresh and old sweat and real-time measurement, which are the requirements to ensure accurate the measurement of wearable devices. This review paper discusses these limitations by aiding model designs, features, performance, and the device operation for exploring the SSDs used in different sweat collection tools, focusing on continuous and non-continuous flow sweat analysis. In addition, the paper also comprehensively presents various sweat biomarkers that have been explored by earlier works in order to broaden the use of non-invasive sweat samples in healthcare and related applications. This work also discusses the target analyte's response mechanism for different sweat compositions, categories of sweat collection devices, and recent advances in SSDs regarding optimal design, functionality, and performance.
Collapse
Affiliation(s)
- Nur Fatin Adini Ibrahim
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Norhayati Sabani
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Shazlina Johari
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Centre, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Asnida Abdul Wahab
- Department of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Zulkarnay Zakaria
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Sports Engineering Research Center, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Anas Mohd Noor
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| |
Collapse
|
39
|
Chen C, Wang Y, Zhang H, Zhang H, Dong W, Sun W, Zhao Y. Responsive and self-healing structural color supramolecular hydrogel patch for diabetic wound treatment. Bioact Mater 2022; 15:194-202. [PMID: 35386338 PMCID: PMC8940762 DOI: 10.1016/j.bioactmat.2021.11.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/11/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
The treatment of diabetic wounds remains a great challenge for medical community. Here, we present a novel structural color supramolecular hydrogel patch for diabetic wound treatment. This hydrogel patch was created by using N-acryloyl glycinamide (NAGA) and 1-vinyl-1,2,4-triazole (VTZ) mixed supramolecular hydrogel as the inverse opal scaffold, and temperature responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogel loaded with vascular endothelial cell growth factor (VEGF) as a filler. Supramolecular hydrogel renders hydrogel patch with superior mechanical properties, in which NAGA and VTZ also provide self-healing and antibacterial properties, respectively. Besides, as the existence of PNIPAM, the hydrogel patch was endowed with thermal-responsiveness property, which could release actives in response to temperature stimulus. Given these excellent performances, we have demonstrated that the supramolecular hydrogel patch could significantly enhance the wound healing process in diabetes rats by downregulating the expression of inflammatory factors, promoting collagen deposition and angiogenesis. Attractively, due to responsive optical property of inverse opal scaffold, the hydrogel patch could display color-sensing behavior that was suitable for the wound monitoring and management as well as guidance of clinical treatment. These distinctive features indicate that the presented hydrogel patches have huge potential values in biomedical fields.
Collapse
Affiliation(s)
- Canwen Chen
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Han Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
40
|
Yang G, Zhang Z, Liu K, Ji X, Fatehi P, Chen J. A cellulose nanofibril-reinforced hydrogel with robust mechanical, self-healing, pH-responsive and antibacterial characteristics for wound dressing applications. J Nanobiotechnology 2022; 20:312. [PMID: 35794620 PMCID: PMC9258071 DOI: 10.1186/s12951-022-01523-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Background Bacterial infection in wounds has become a major threat to human life and health. With the growth use of synthetic antibiotics and the elevated evolution of drug resistant bacteria in human body cells requires the development of novel wound curing strategies. Herein, a novel pH-responsive hydrogel (RPC/PB) was fabricated using poly(vinyl alcohol)-borax (PB) and natural antibiotic resveratrol grafted cellulose nanofibrils (RPC) for bacterial-infected wound management. Results In this hydrogel matrix, RPC conjugate was interpenetrated in the PB network to form a semi-interpenetrating network that exhibited robust mechanical properties (fracture strength of 149.6 kPa), high self-healing efficiency (> 90%), and excellent adhesion performance (tissue shear stress of 54.2 kPa). Interestingly, the induced RPC/PB hydrogel showed pH-responsive drug release behavior, the cumulative release amount of resveratrol in pH 5.4 was 2.33 times than that of pH 7.4, which was adapted well to the acidic wound microenvironment. Additionally, this RPC/PB hydrogel exhibited excellent biocompatibility and antioxidant effect. Moreover, in vitro and in vivo results revealed that such RPC/PB hydrogel had excellent antibacterial, skin tissue regeneration and wound closure capabilities. Conclusion Therefore, the generated RPC/PB hydrogel could be an excellent wound dressing for bacteria-infected wound healing. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01523-5.
Collapse
|
41
|
Developing Wound Moisture Sensors: Opportunities and Challenges for Laser-Induced Graphene-Based Materials. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6060176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent advances in polymer composites have led to new, multifunctional wound dressings that can greatly improve healing processes, but assessing the moisture status of the underlying wound site still requires frequent visual inspection. Moisture is a key mediator in tissue regeneration and it has long been recognised that there is an opportunity for smart systems to provide quantitative information such that dressing selection can be optimised and nursing time prioritised. Composite technologies have a rich history in the development of moisture/humidity sensors but the challenges presented within the clinical context have been considerable. This review aims to train a spotlight on existing barriers and highlight how laser-induced graphene could lead to emerging material design strategies that could allow clinically acceptable systems to emerge.
Collapse
|
42
|
Weigelt MA, Lev-Tov HA, Tomic-Canic M, Lee WD, Williams R, Strasfeld D, Kirsner RS, Herman IM. Advanced Wound Diagnostics: Toward Transforming Wound Care into Precision Medicine. Adv Wound Care (New Rochelle) 2022; 11:330-359. [PMID: 34128387 PMCID: PMC8982127 DOI: 10.1089/wound.2020.1319] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/29/2021] [Indexed: 11/01/2022] Open
Abstract
Significance: Nonhealing wounds are an ever-growing global pandemic, with mortality rates and management costs exceeding many common cancers. Although our understanding of the molecular and cellular factors driving wound healing continues to grow, standards for diagnosing and evaluating wounds remain largely subjective and experiential, whereas therapeutic strategies fail to consistently achieve closure and clinicians are challenged to deliver individualized care protocols. There is a need to apply precision medicine practices to wound care by developing evidence-based approaches, which are predictive, prescriptive, and personalized. Recent Advances: Recent developments in "advanced" wound diagnostics, namely biomarkers (proteases, acute phase reactants, volatile emissions, and more) and imaging systems (ultrasound, autofluorescence, spectral imaging, and optical coherence tomography), have begun to revolutionize our understanding of the molecular wound landscape and usher in a modern age of therapeutic strategies. Herein, biomarkers and imaging systems with the greatest evidence to support their potential clinical utility are reviewed. Critical Issues: Although many potential biomarkers have been identified and several imaging systems have been or are being developed, more high-quality randomized controlled trials are necessary to elucidate the currently questionable role that these tools are playing in altering healing dynamics or predicting wound closure within the clinical setting. Future Directions: The literature supports the need for the development of effective point-of-care wound assessment tools, such as a platform diagnostic array that is capable of measuring multiple biomarkers at once. These, along with advances in telemedicine, synthetic biology, and "smart" wearables, will pave the way for the transformation of wound care into a precision medicine. Clinical Trial Registration number: NCT03148977.
Collapse
Affiliation(s)
- Maximillian A. Weigelt
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Hadar A. Lev-Tov
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marjana Tomic-Canic
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - W. David Lee
- Precision Healing, Inc., Newton, Massachusetts, USA
| | | | | | - Robert S. Kirsner
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ira M. Herman
- Precision Healing, Inc., Newton, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Tang Y, Zhong L, Wang W, He Y, Han T, Xu L, Mo X, Liu Z, Ma Y, Bao Y, Gan S, Niu L. Recent Advances in Wearable Potentiometric pH Sensors. MEMBRANES 2022; 12:504. [PMID: 35629830 PMCID: PMC9147059 DOI: 10.3390/membranes12050504] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 01/15/2023]
Abstract
Wearable sensors reflect the real-time physiological information and health status of individuals by continuously monitoring biochemical markers in biological fluids, including sweat, tears and saliva, and are a key technology to realize portable personalized medicine. Flexible electrochemical pH sensors can play a significant role in health since the pH level affects most biochemical reactions in the human body. pH indicators can be used for the diagnosis and treatment of diseases as well as the monitoring of biological processes. The performances and applications of wearable pH sensors depend significantly on the properties of the pH-sensitive materials used. At present, existing pH-sensitive materials are mainly based on polyaniline (PANI), hydrogen ionophores (HIs) and metal oxides (MOx). In this review, we will discuss the recent progress in wearable pH sensors based on these sensitive materials. Finally, a viewpoint for state-of-the-art wearable pH sensors and a discussion of their existing challenges are presented.
Collapse
Affiliation(s)
- Yitian Tang
- School of Civil Engineering, c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.T.); (W.W.); (Y.H.); (T.H.); (L.X.); (X.M.); (Z.L.); (Y.M.); (Y.B.); (S.G.)
| | - Lijie Zhong
- School of Civil Engineering, c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.T.); (W.W.); (Y.H.); (T.H.); (L.X.); (X.M.); (Z.L.); (Y.M.); (Y.B.); (S.G.)
| | - Wei Wang
- School of Civil Engineering, c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.T.); (W.W.); (Y.H.); (T.H.); (L.X.); (X.M.); (Z.L.); (Y.M.); (Y.B.); (S.G.)
| | - Ying He
- School of Civil Engineering, c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.T.); (W.W.); (Y.H.); (T.H.); (L.X.); (X.M.); (Z.L.); (Y.M.); (Y.B.); (S.G.)
| | - Tingting Han
- School of Civil Engineering, c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.T.); (W.W.); (Y.H.); (T.H.); (L.X.); (X.M.); (Z.L.); (Y.M.); (Y.B.); (S.G.)
| | - Longbin Xu
- School of Civil Engineering, c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.T.); (W.W.); (Y.H.); (T.H.); (L.X.); (X.M.); (Z.L.); (Y.M.); (Y.B.); (S.G.)
| | - Xiaocheng Mo
- School of Civil Engineering, c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.T.); (W.W.); (Y.H.); (T.H.); (L.X.); (X.M.); (Z.L.); (Y.M.); (Y.B.); (S.G.)
| | - Zhenbang Liu
- School of Civil Engineering, c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.T.); (W.W.); (Y.H.); (T.H.); (L.X.); (X.M.); (Z.L.); (Y.M.); (Y.B.); (S.G.)
- School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yingming Ma
- School of Civil Engineering, c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.T.); (W.W.); (Y.H.); (T.H.); (L.X.); (X.M.); (Z.L.); (Y.M.); (Y.B.); (S.G.)
| | - Yu Bao
- School of Civil Engineering, c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.T.); (W.W.); (Y.H.); (T.H.); (L.X.); (X.M.); (Z.L.); (Y.M.); (Y.B.); (S.G.)
| | - Shiyu Gan
- School of Civil Engineering, c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.T.); (W.W.); (Y.H.); (T.H.); (L.X.); (X.M.); (Z.L.); (Y.M.); (Y.B.); (S.G.)
| | - Li Niu
- School of Civil Engineering, c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.T.); (W.W.); (Y.H.); (T.H.); (L.X.); (X.M.); (Z.L.); (Y.M.); (Y.B.); (S.G.)
| |
Collapse
|
44
|
Dong R, Li Y, Chen M, Xiao P, Wu Y, Zhou K, Zhao Z, Tang BZ. In Situ Electrospinning of Aggregation-Induced Emission Nanofibrous Dressing for Wound Healing. SMALL METHODS 2022; 6:e2101247. [PMID: 35218160 DOI: 10.1002/smtd.202101247] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Rapid wound dressing and effective antibacterial therapy that meet the extreme requirements of emergency situations are urgently needed for treating skin wounds. Here, an in situ deposited and personalized nanofibrous dressing is reported which can be directly electrospun on skin wounds by a handheld electrospinning device and perfectly fits different wounds of various sizes. Moreover, an aggregation-induced emission luminogen with photodynamic therapy effect is loaded in the nanofibrous dressings which endows the dressing's long-term antibacterial activity during the wound healing process. The in situ electrospun nanofibers show excellent antimicrobial activity against Staphylococcus aureus (S. aureus) and methicillin-resistant Staphylococcus aureus. In vivo studies demonstrate that these antibacterial nanofibrous dressings can effectively reduce inflammation and significantly accelerate wound healing. Such an in situ produced antibacterial dressing is promising as a total solution for treating emergencies, including patient-specific clinical wounds and military injuries.
Collapse
Affiliation(s)
- Ruihua Dong
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Ying Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Mian Chen
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Peihong Xiao
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yifan Wu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Kun Zhou
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zheng Zhao
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
- HKUST Shenzhen Research Institute, Nanshan, Shenzhen, 518057, China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
- HKUST Shenzhen Research Institute, Nanshan, Shenzhen, 518057, China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
45
|
Wang C, Sani ES, Gao W. Wearable Bioelectronics for Chronic Wound Management. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2111022. [PMID: 36186921 PMCID: PMC9518812 DOI: 10.1002/adfm.202111022] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 05/05/2023]
Abstract
Chronic wounds are a major healthcare issue and can adversely affect the lives of millions of patients around the world. The current wound management strategies have limited clinical efficacy due to labor-intensive lab analysis requirements, need for clinicians' experiences, long-term and frequent interventions, limiting therapeutic efficiency and applicability. The growing field of flexible bioelectronics enables a great potential for personalized wound care owing to its advantages such as wearability, low-cost, and rapid and simple application. Herein, recent advances in the development of wearable bioelectronics for monitoring and management of chronic wounds are comprehensively reviewed. First, the design principles and the key features of bioelectronics that can adapt to the unique wound milieu features are introduced. Next, the current state of wound biosensors and on-demand therapeutic systems are summarized and highlighted. Furthermore, we discuss the design criteria of the integrated closed loop devices. Finally, the future perspectives and challenges in wearable bioelectronics for wound care are discussed.
Collapse
Affiliation(s)
- Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ehsan Shirzaei Sani
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
46
|
Xiong J, Yang ZR, Lv N, Du K, Suo H, Du S, Tao J, Jiang H, Zhu J. Self-adhesive Hyaluronic Acid/Antimicrobial Peptide Composite Hydrogel with Antioxidant Capability and Photothermal Activity for Infected Wound Healing. Macromol Rapid Commun 2022; 43:e2200176. [PMID: 35451187 DOI: 10.1002/marc.202200176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/13/2022] [Indexed: 11/06/2022]
Abstract
Bacterial infection can delay wound healing, causing wounds to deteriorate and even threatening the patient's life. Recently, although many composite hydrogels as wound dressing have been developed, it is still highly desired to construct photothermal hydrogels with antimicrobial and antioxidant properties to accelerate the infected wound healing. In this work, we develop a hyaluronic acid (HA)-based composite hydrogel consisting of a dopamine-substituted antimicrobial peptide (DAP) and Iron (III) ions, which exhibits photothermal-assisted promotion and acceleration of healing process of bacteria-infected wounds. DAP, serving as both antimicrobial agent and ROS-scavenger, forms Schiff's base bonds with aldehyde hyaluronic acid (AHA) and iron-catechol coordination bonds to reinforce the composite hydrogel. The presence of Fe3+ can also promote covalent polymerization of dopamine, which endows the hydrogel with photothermal capacity. The in vitro and in vivo experiments prove that the composite hydrogel can effectively accelerate the infected wound healing process, including antibacterial, accelerated collagen deposition and re-epithelization. This study suggests that the multifunctional composite hydrogel possesses remarkable potential for bacteria-infected wound healing by combining inherent antimicrobial activity, antioxidant capability and photothermal effect. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jingyi Xiong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Zhuo-Ran Yang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Niannian Lv
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Kehan Du
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Huinan Suo
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan, 430022, China
| | - Shuo Du
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan, 430022, China
| | - Hao Jiang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
47
|
Mallick S, Nag M, Lahiri D, Pandit S, Sarkar T, Pati S, Nirmal NP, Edinur HA, Kari ZA, Ahmad Mohd Zain MR, Ray RR. Engineered Nanotechnology: An Effective Therapeutic Platform for the Chronic Cutaneous Wound. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:778. [PMID: 35269266 PMCID: PMC8911807 DOI: 10.3390/nano12050778] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 12/27/2022]
Abstract
The healing of chronic wound infections, especially cutaneous wounds, involves a complex cascade of events demanding mutual interaction between immunity and other natural host processes. Wound infections are caused by the consortia of microbial species that keep on proliferating and produce various types of virulence factors that cause the development of chronic infections. The mono- or polymicrobial nature of surface wound infections is best characterized by its ability to form biofilm that renders antimicrobial resistance to commonly administered drugs due to poor biofilm matrix permeability. With an increasing incidence of chronic wound biofilm infections, there is an urgent need for non-conventional antimicrobial approaches, such as developing nanomaterials that have intrinsic antimicrobial-antibiofilm properties modulating the biochemical or biophysical parameters in the wound microenvironment in order to cause disruption and removal of biofilms, such as designing nanomaterials as efficient drug-delivery vehicles carrying antibiotics, bioactive compounds, growth factor antioxidants or stem cells reaching the infection sites and having a distinct mechanism of action in comparison to antibiotics-functionalized nanoparticles (NPs) for better incursion through the biofilm matrix. NPs are thought to act by modulating the microbial colonization and biofilm formation in wounds due to their differential particle size, shape, surface charge and composition through alterations in bacterial cell membrane composition, as well as their conductivity, loss of respiratory activity, generation of reactive oxygen species (ROS), nitrosation of cysteines of proteins, lipid peroxidation, DNA unwinding and modulation of metabolic pathways. For the treatment of chronic wounds, extensive research is ongoing to explore a variety of nanoplatforms, including metallic and nonmetallic NPs, nanofibers and self-accumulating nanocarriers. As the use of the magnetic nanoparticle (MNP)-entrenched pre-designed hydrogel sheet (MPS) is found to enhance wound healing, the bio-nanocomposites consisting of bacterial cellulose and magnetic nanoparticles (magnetite) are now successfully used for the healing of chronic wounds. With the objective of precise targeting, some kinds of "intelligent" nanoparticles are constructed to react according to the required environment, which are later incorporated in the dressings, so that the wound can be treated with nano-impregnated dressing material in situ. For the effective healing of skin wounds, high-expressing, transiently modified stem cells, controlled by nano 3D architectures, have been developed to encourage angiogenesis and tissue regeneration. In order to overcome the challenge of time and dose constraints during drug administration, the approach of combinatorial nano therapy is adopted, whereby AI will help to exploit the full potential of nanomedicine to treat chronic wounds.
Collapse
Affiliation(s)
- Suhasini Mallick
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia 741249, India;
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata 700156, India; (M.N.); (D.L.)
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata 700156, India; (M.N.); (D.L.)
| | - Soumya Pandit
- Department of Life Sciences, Sharda University, Noida 201310, India;
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda 732102, India;
| | - Siddhartha Pati
- NatNov Bioscience Private Limited, Balasore 756001, India;
- Skills Innovation & Academic Network (SIAN) Institute, Association for Biodiversity Conservation & Research (ABC), Balasore 756001, India
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand;
| | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Zulhisyam Abdul Kari
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli 17600, Malaysia
| | | | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia 741249, India;
| |
Collapse
|
48
|
Sun X, Zhang Y, Ma C, Yuan Q, Wang X, Wan H, Wang P. A Review of Recent Advances in Flexible Wearable Sensors for Wound Detection Based on Optical and Electrical Sensing. BIOSENSORS 2021; 12:10. [PMID: 35049637 PMCID: PMC8773881 DOI: 10.3390/bios12010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 05/27/2023]
Abstract
Chronic wounds that are difficult to heal can cause persistent physical pain and significant medical costs for millions of patients each year. However, traditional wound care methods based on passive bandages cannot accurately assess the wound and may cause secondary damage during frequent replacement. With advances in materials science and smart sensing technology, flexible wearable sensors for wound condition assessment have been developed that can accurately detect physiological markers in wounds and provide the necessary information for treatment decisions. The sensors can implement the sensing of biochemical markers and physical parameters that can reflect the infection and healing process of the wound, as well as transmit vital physiological information to the mobile device through optical or electrical signals. Most reviews focused on the applicability of flexible composites in the wound environment or drug delivery devices. This paper summarizes typical biochemical markers and physical parameters in wounds and their physiological significance, reviews recent advances in flexible wearable sensors for wound detection based on optical and electrical sensing principles in the last 5 years, and discusses the challenges faced and future development. This paper provides a comprehensive overview for researchers in the development of flexible wearable sensors for wound detection.
Collapse
Affiliation(s)
- Xianyou Sun
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (X.S.); (Y.Z.); (C.M.); (Q.Y.); (X.W.)
| | - Yanchi Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (X.S.); (Y.Z.); (C.M.); (Q.Y.); (X.W.)
| | - Chiyu Ma
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (X.S.); (Y.Z.); (C.M.); (Q.Y.); (X.W.)
| | - Qunchen Yuan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (X.S.); (Y.Z.); (C.M.); (Q.Y.); (X.W.)
| | - Xinyi Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (X.S.); (Y.Z.); (C.M.); (Q.Y.); (X.W.)
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (X.S.); (Y.Z.); (C.M.); (Q.Y.); (X.W.)
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (X.S.); (Y.Z.); (C.M.); (Q.Y.); (X.W.)
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
49
|
Yusufu D, Magee E, Gilmore B, Mills A. Non-invasive, 3D printed, colourimetric, early wound-infection indicator. Chem Commun (Camb) 2021; 58:439-442. [PMID: 34901973 DOI: 10.1039/d1cc06147j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple, non-invasive, colour-based carbon dioxide (CO2) indicator is described. The indicator provides an indirect response to the rapid, aerobic microbial colonisation of an underlying wound when used in conjunction with an occlusive (i.e. sealed) dressing. The indicator has potential as an early warning indicator of infection in chronic wounds.
Collapse
Affiliation(s)
- Dilidaer Yusufu
- School of Chemistry and Chemical Engineering, Queens University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK.
| | - Erin Magee
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Brendan Gilmore
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Andrew Mills
- School of Chemistry and Chemical Engineering, Queens University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK.
| |
Collapse
|
50
|
Hosseini Jafari B, Zlobina K, Marquez G, Jafari M, Selberg J, Jia M, Rolandi M, Gomez M. A feedback control architecture for bioelectronic devices with applications to wound healing. J R Soc Interface 2021; 18:20210497. [PMID: 34847791 DOI: 10.1098/rsif.2021.0497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bioelectronic devices can provide an interface for feedback control of biological processes in real-time based on sensor information tracking biological response. The main control challenges are guaranteeing system convergence in the presence of saturating inputs into the bioelectronic device and complexities from indirect control of biological systems. In this paper, we first derive a saturated-based robust sliding mode control design for a partially unknown nonlinear system with disturbance. Next, we develop a data informed model of a bioelectronic device for in silico simulations. Our controller is then applied to the model to demonstrate controlled pH of a target area. A modular control architecture is chosen to interface the bioelectronic device and controller with a bistable phenomenological model of wound healing to demonstrate closed-loop biological treatment. External pH is regulated by the bioelectronic device to accelerate wound healing, while avoiding chronic inflammation. Our novel control algorithm for bioelectronic devices is robust and requires minimum information about the device for broad applicability. The control architecture makes it adaptable to any biological system and can be used to enhance automation in bioengineering to improve treatments and patient outcomes.
Collapse
Affiliation(s)
- Bashir Hosseini Jafari
- Applied Mathematics, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Ksenia Zlobina
- Applied Mathematics, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Giovanny Marquez
- Applied Mathematics, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Mohammad Jafari
- Department of Earth and Space Sciences, Columbus State University, Columbus, GA 31907, USA
| | - John Selberg
- Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Manping Jia
- Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Marco Rolandi
- Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Marcella Gomez
- Applied Mathematics, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|