1
|
Stoeckel MA, Feng K, Yang CY, Liu X, Li Q, Liu T, Jeong SY, Woo HY, Yao Y, Fahlman M, Marks TJ, Sharma S, Motta A, Guo X, Fabiano S, Facchetti A. On-Demand Catalysed n-Doping of Organic Semiconductors. Angew Chem Int Ed Engl 2024; 63:e202407273. [PMID: 38770935 DOI: 10.1002/anie.202407273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
A new approach to control the n-doping reaction of organic semiconductors is reported using surface-functionalized gold nanoparticles (f-AuNPs) with alkylthiols acting as the catalyst only upon mild thermal activation. To demonstrate the versatility of this methodology, the reaction of the n-type dopant precursor N-DMBI-H with several molecular and polymeric semiconductors at different temperatures with/without f-AuNPs, vis-à-vis the unfunctionalized catalyst AuNPs, was investigated by spectroscopic, morphological, charge transport, and kinetic measurements as well as, computationally, the thermodynamic of catalyst activation. The combined experimental and theoretical data demonstrate that while f-AuNPs is inactive at room temperature both in solution and in the solid state, catalyst activation occurs rapidly at mild temperatures (~70 °C) and the doping reaction completes in few seconds affording large electrical conductivities (~10-140 S cm-1). The implementation of this methodology enables the use of semiconductor+dopant+catalyst solutions and will broaden the use of the corresponding n-doped films in opto-electronic devices such as thin-film transistors, electrochemical transistors, solar cells, and thermoelectrics well as guide the design of new catalysts.
Collapse
Affiliation(s)
- Marc-Antoine Stoeckel
- Wallenberg Initiative Materials Science for Sustainability, ITN, Linköping University, SE-60174, Norrköping, Sweden
- n-ink AB, Bredgatan 33, SE-60221, Norrköping, Sweden
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Chi-Yuan Yang
- n-ink AB, Bredgatan 33, SE-60221, Norrköping, Sweden
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Xianjie Liu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Qifan Li
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Tiefeng Liu
- Wallenberg Initiative Materials Science for Sustainability, ITN, Linköping University, SE-60174, Norrköping, Sweden
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Sang Young Jeong
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Yao Yao
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Mats Fahlman
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Sakshi Sharma
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Alessandro Motta
- Dipartimento di Chimica, Università di Roma "La Sapienza", p.le A. Moro 5, Rome, I-00185, Italy
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Simone Fabiano
- Wallenberg Initiative Materials Science for Sustainability, ITN, Linköping University, SE-60174, Norrköping, Sweden
- n-ink AB, Bredgatan 33, SE-60221, Norrköping, Sweden
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Antonio Facchetti
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| |
Collapse
|
2
|
Zhang L, Kuang Y, Ye G, Liu J. Tailoring the Density of State of n-Type Conjugated Polymers through Solvent Engineering for Organic Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39693-39700. [PMID: 39038079 DOI: 10.1021/acsami.4c04917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Conjugated polymers with ethylene glycol-type side chains are commonly used as channel materials in organic electrochemical transistors (OECTs). To improve the performance of these materials, new chemical structures are often created through synthetic routines. Herein, we demonstrate that the OECT performance of these polymers can also be improved by changing their density-of-state (DOS) profile through solvent engineering. Depending on the solvent polarity, it solvates the backbone and side chains of the conjugated polymer differently, leading to differences in molecule orientation, π-stacking paracrystallinity, and film defects, such as grain boundaries and pinholes. This then results in a change in the DOS profile of the polymer. A more intense and narrow-width DOS distribution is usually observed in organic films with an "edge on" orientation and fewer film defects, while films with a "face on" orientation and apparent defects show a broadened DOS profile. The OECT devices that use the polymer film with a more intense and narrow-width DOS profile exhibit a better-normalized transconductance and figure-of-merit μC* than those with a broadened DOS profile (0.74 to 4.29 S cm-1 and 3.5 to 14.3 F cm-1 V-1 s-1). This study provides useful insights into how the DOS profile affects the mixed ionic-electronic conduction performance and presents a new avenue for improving n-type OECT materials.
Collapse
Affiliation(s)
- Linlong Zhang
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yazhuo Kuang
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Gang Ye
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
3
|
Xiong M, Deng XY, Tian SY, Liu KK, Fang YH, Wang JR, Wang Y, Liu G, Chen J, Villalva DR, Baran D, Gu X, Lei T. Counterion docking: a general approach to reducing energetic disorder in doped polymeric semiconductors. Nat Commun 2024; 15:4972. [PMID: 38862491 PMCID: PMC11166965 DOI: 10.1038/s41467-024-49208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Molecular doping plays an important role in controlling the carrier concentration of organic semiconductors. However, the introduction of dopant counterions often results in increased energetic disorder and traps due to the molecular packing disruption and Coulomb potential wells. To date, no general strategy has been proposed to reduce the counterion-induced structural and energetic disorder. Here, we demonstrate the critical role of non-covalent interactions (NCIs) between counterions and polymers. Employing a computer-aided approach, we identified the optimal counterions and discovered that NCIs determine their docking positions, which significantly affect the counterion-induced energetic disorder. With the optimal counterions, we successfully reduced the energetic disorder to levels even lower than that of the undoped polymer. As a result, we achieved a high n-doped electrical conductivity of over 200 S cm-1 and an eight-fold increase in the thermoelectric power factor. We found that the NCIs have substantial effects on doping efficiency, polymer backbone planarity, and Coulomb potential landscape. Our work not only provides a general strategy for identifying the most suitable counterions but also deepens our understanding of the counterion effects on doped polymeric semiconductors.
Collapse
Affiliation(s)
- Miao Xiong
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xin-Yu Deng
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Shuang-Yan Tian
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Kai-Kai Liu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yu-Hui Fang
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Juan-Rong Wang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yunfei Wang
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Guangchao Liu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jupeng Chen
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Diego Rosas Villalva
- Materials Science and Engineering Program (MSE), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Derya Baran
- Materials Science and Engineering Program (MSE), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiaodan Gu
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Ting Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Yao ZF, Wu HT, Zhuang FD, Zhang PF, Li QY, Wang JY, Pei J. Achieving Ideal and Environmentally Stable n-Type Charge Transport in Polymer Field-Effect Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306010. [PMID: 37884476 DOI: 10.1002/smll.202306010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/15/2023] [Indexed: 10/28/2023]
Abstract
Realizing ideal charge transport in field-effect transistors (FETs) of conjugated polymers is crucial for evaluating device performance, such as carrier mobility and practical applications of conjugated polymers. However, the current FETs using conjugated polymers as the active layers generally show certain non-ideal transport characteristics and poor stability. Here, ideal charge transport of n-type polymer FETs is achieved on flexible polyimide substrates by using an organic-inorganic hybrid double-layer dielectric. Deposited conjugated polymer films show highly ordered structures and low disorder, which are supported by grazing-incidence wide-angle X-ray scattering, near-edge X-ray absorption fine structure, and molecular dynamics simulations. Furthermore, the organic-inorganic hybrid double-layer dielectric provides low interfacial defects, leading to excellent charge transport in FETs with high electron mobility (1.49 ± 0.46 cm2 V-1 s-1) and ideal reliability factors (102 ± 7%). Fabricated polymer FETs show a self-encapsulation effect, resulting in high stability of the FET charge transport. The polymer FETs still work with high mobility above 1 cm2 V-1 s-1 after storage in air for more than 300 days. Compared with state-of-the-art conjugated polymer FETs, this work simultaneously achieves ideal charge transport and environmental stability in n-type polymer FETs, facilitating rapid device optimization of high-performance polymer electronics.
Collapse
Affiliation(s)
- Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hao-Tian Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Fang-Dong Zhuang
- Ningbo Boya Poly Advanced Materials Co. Ltd., Ningbo, 315042, China
| | - Peng-Fei Zhang
- Ningbo Boya Poly Advanced Materials Co. Ltd., Ningbo, 315042, China
| | - Qi-Yi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Tu L, Wang J, Wu Z, Li J, Yang W, Liu B, Wu S, Xia X, Wang Y, Woo HY, Shi Y. Cyano-Functionalized Pyrazine: A Structurally Simple and Easily Accessible Electron-Deficient Building Block for n-Type Organic Thermoelectric Polymers. Angew Chem Int Ed Engl 2024; 63:e202319658. [PMID: 38265195 DOI: 10.1002/anie.202319658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 01/25/2024]
Abstract
Developing low-cost and high-performance n-type polymer semiconductors is essential to accelerate the application of organic thermoelectrics (OTEs). To achieve this objective, it is critical to design strong electron-deficient building blocks with simple structure and easy synthesis, which are essential for the development of n-type polymer semiconductors. Herein, we synthesized two cyano-functionalized highly electron-deficient building blocks, namely 3,6-dibromopyrazine-2-carbonitrile (CNPz) and 3,6-Dibromopyrazine-2,5-dicarbonitrile (DCNPz), which feature simple structures and facile synthesis. CNPz and DCNPz can be obtained via only one-step reaction and three-step reactions from cheap raw materials, respectively. Based on CNPz and DCNPz, two acceptor-acceptor (A-A) polymers, P(DPP-CNPz) and P(DPP-DCNPz) are successfully developed, featuring deep-positioned lowest unoccupied molecular orbital (LUMO) energy levels, which are beneficial to n-type organic thin-film transistors (OTFTs) and OTEs performance. An optimal unipolar electron mobility of 0.85 and 1.85 cm2 V-1 s-1 is obtained for P(DPP-CNPz) and P(DPP-DCNPz), respectively. When doped with N-DMBI, P(DPP-CNPz) and P(DPP-DCNPz) show high n-type electrical conductivities/power factors of 25.3 S cm-1 /41.4 μW m-1 K-2 , and 33.9 S cm-1 /30.4 μW m-1 K-2 , respectively. Hence, the cyano-functionalized pyrazine CNPz and DCNPz represent a new class of structurally simple, low-cost and readily accessible electron-deficient building block for constructing n-type polymer semiconductors.
Collapse
Affiliation(s)
- Lijun Tu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui, 241002, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Ziang Wu
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Korea
| | - Jianfeng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Wanli Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Bin Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Siqi Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui, 241002, China
| | - Xiaomin Xia
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui, 241002, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Korea
| | - Yongqiang Shi
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui, 241002, China
| |
Collapse
|
6
|
Li Y, Wu W, Wang Y, Huang E, Jeong SY, Woo HY, Guo X, Feng K. Multi-Selenophene Incorporated Thiazole Imide-Based n-Type Polymers for High-Performance Organic Thermoelectrics. Angew Chem Int Ed Engl 2024; 63:e202316214. [PMID: 37996990 DOI: 10.1002/anie.202316214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
Developing polymers with high electrical conductivity (σ) after n-doping is a great challenge for the advance of the field of organic thermoelectrics (OTEs). Herein, we report a series of thiazole imide-based n-type polymers by gradually increasing selenophene content in polymeric backbone. Thanks to the strong intramolecular noncovalent N⋅⋅⋅S interaction and enhanced intermolecular Se⋅⋅⋅Se interaction, with the increase of selenophene content, the polymers show gradually lowered LUMOs, more planar backbone, and improved film crystallinity versus the selenophene-free analogue. Consequently, polymer PDTzSI-Se with the highest selenophene content achieves a champion σ of 164.0 S cm-1 and a power factor of 49.0 μW m-1 K-2 in the series when applied in OTEs after n-doping. The σ value is the highest one for n-type donor-acceptor OTE materials reported to date. Our work indicates that selenophene substitution is a powerful strategy for developing high-performance n-type OTE materials and selenophene incorporated thiazole imides offer an excellent platform in enabling n-type polymers with high backbone coplanarity, deep-lying LUMO and enhanced mobility/conductivity.
Collapse
Affiliation(s)
- Yongchun Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Wenchang Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Enmin Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Seoul, 136-713, South Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 136-713, South Korea
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
7
|
Li M, Yang W, Cheng R, Liu X, Zhang Z, Tian X, Shi Y. Dipyridyl-Fused Quinoxalineimide (DPQI): A Strong Electron-Withdrawing Building Block for n-Type Polymer Semiconductors. Chem Asian J 2023:e202301009. [PMID: 38116900 DOI: 10.1002/asia.202301009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Exploration of new electron-withdrawing building blocks plays a key role in the development of n-type organic semiconductors. Herein, a strong electron-withdrawing building block, dipyridyl-fused quinoxalineimide (DPQI), was successfully designed and synthesized. Single-crystal structure reveals that DPQI molecule possesses a completely planar backbone, which is beneficial for charge transport. For comparison, dibenzo-fused quinoxalineimide (DBQI) was also synthesized. The frontier molecular orbital (FMO) energy levels downshift with the incorporation of nitrogen atoms onto the π-conjugated backbone of quinoxalineimide. Two acceptor-acceptor (or all-acceptor) polymers P(BTI-DBQI) and P(BTI-DPQI) based on DBQI and DPQI were synthesized, respectively. Two polymers exhibit deep lowest-unoccupied molecular orbital (LUMO) levels (~-3.5 eV). Additionally, P(BTI-DPQI) exhibits unipolar n-type charge transport with μe of 1.4×10-4 cm2 V-1 s-1 in the organic field-effect transistors (OFET), which render them highly attractive for developing n-type semiconductors device. This work demonstrates that DPQI is a promising building block for constructing n-type polymer semiconductors.
Collapse
Affiliation(s)
- Mingwei Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Wanli Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Rong Cheng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Xuantong Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Zihan Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Xiaowen Tian
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Yongqiang Shi
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| |
Collapse
|
8
|
Ren S, Ding Y, Zhang W, Wang Z, Wang S, Yi Z. Rational Design of Novel Conjugated Terpolymers Based on Diketopyrrolopyrrole and Their Applications to Organic Thin-Film Transistors. Polymers (Basel) 2023; 15:3803. [PMID: 37765656 PMCID: PMC10535888 DOI: 10.3390/polym15183803] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Organic polymer semiconductor materials, due to their good chemical modifiability, can be easily tuned by rational molecular structure design to modulate their material properties, which, in turn, affects the device performance. Here, we designed and synthesized a series of materials based on terpolymer structures and applied them to organic thin-film transistor (OTFT) device applications. The four polymers, obtained by polymerization of three monomers relying on the Stille coupling reaction, shared comparable molecular weights, with the main structural difference being the ratio of the thiazole component to the fluorinated thiophene (Tz/FS). The conjugated polymers exhibited similar energy levels and thermal stability; however, their photochemical and crystalline properties were distinctly different, leading to significantly varied mobility behavior. Materials with a Tz/FS ratio of 50:50 showed the highest electron mobility, up to 0.69 cm2 V-1 s-1. Our investigation reveals the fundamental relationship between the structure and properties of materials and provides a basis for the design of semiconductor materials with higher carrier mobility.
Collapse
Affiliation(s)
- Shiwei Ren
- Zhuhai-Fudan Innovation Research Institute, Hengqin 519000, China
| | - Yubing Ding
- Zhuhai-Fudan Innovation Research Institute, Hengqin 519000, China
| | - Wenqing Zhang
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhuoer Wang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Sichun Wang
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai 200438, China
| | - Zhengran Yi
- Zhuhai-Fudan Innovation Research Institute, Hengqin 519000, China
| |
Collapse
|
9
|
Li J, Chen Z, Wang J, Young Jeong S, Yang K, Feng K, Yang J, Liu B, Woo HY, Guo X. Semiconducting Polymers Based on Simple Electron-Deficient Cyanated trans-1,3-Butadienes for Organic Field-Effect Transistors. Angew Chem Int Ed Engl 2023; 62:e202307647. [PMID: 37525009 DOI: 10.1002/anie.202307647] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Developing high-performance but low-cost n-type polymers remains a significant challenge in the commercialization of organic field-effect transistors (OFETs). To achieve this objective, it is essential to design the key electron-deficient units with simple structures and facile preparation processes, which can facilitate the production of low-cost n-type polymers. Herein, by sequentially introducing fluorine and cyano functionalities onto trans-1,3-butadiene, we developed a series of structurally simple but highly electron-deficient building blocks, namely 1,4-dicyano-butadiene (CNDE), 3-fluoro-1,4-dicyano-butadiene (CNFDE), and 2,3-difluoro-1,4-dicyano-butadiene (CNDFDE), featuring a highly coplanar backbone and deep-positioned lowest unoccupied molecular orbital (LUMO) energy levels (-3.03-4.33 eV), which render them highly attractive for developing n-type semiconducting polymers. Notably, all these electron-deficient units can be easily accessed by a two-step high-yield synthetic procedure from low-cost raw materials, thus rendering them highly promising candidates for commercial applications. Upon polymerization with diketopyrrolopyrrole (DPP), three copolymers were developed that demonstrated unipolar n-type transport characteristics in OFETs with the highest electron mobility of >1 cm2 V-1 s-1 . Hence, CNDE, CNFDE, and CNDFDE represent a class of novel, simple, and efficient electron-deficient units for constructing low-cost n-type polymers, thereby providing valuable insight for OFET applications.
Collapse
Affiliation(s)
- Jianfeng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
| | - Zhicai Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
- Department State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science and Engineering, Hainan University, 570228, Haikou, Hainan, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
| | - Sang Young Jeong
- Research Institute for Natural Sciences, Department of Chemistry, Korea University, 02841, Seoul, South Korea
| | - Kun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
| | - Jie Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
| | - Bin Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
| | - Han Young Woo
- Research Institute for Natural Sciences, Department of Chemistry, Korea University, 02841, Seoul, South Korea
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
- Songshan Lake Materials Laboratory, 523808, Dongguan, Guangdong, China
| |
Collapse
|
10
|
Khan MU, Shafiq F, Al Abbad SS, Yaqoob J, Hussain R, Alsunaidi ZHA, Mustafa G, Hussain S. Designing Electron-Deficient Diketone Unit Based Non-Fused Ring Acceptors with Amplified Optoelectronic Features for Highly Efficient Organic Solar Cells: A DFT Study. Molecules 2023; 28:molecules28083625. [PMID: 37110860 PMCID: PMC10145092 DOI: 10.3390/molecules28083625] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Organic solar cells (OSCs) made of electron-acceptor and electron-donor materials have significantly developed in the last decade, demonstrating their enormous potential in cutting-edge optoelectronic applications. Consequently, we designed seven novel non-fused ring electron acceptors (NFREAs) (BTIC-U1 to BTIC-U7) using synthesized electron-deficient diketone units and reported end-capped acceptors, a viable route for augmented optoelectronic properties. The DFT and TDDFT approaches were used to measure the power conversion efficiency (PCE), open circuit voltage (Voc), reorganization energies (λh, λe), fill factor (FF), light harvesting efficiency (LHE) and to evaluate the potential usage of proposed compounds in solar cell applications. The findings confirmed that the photovoltaic, photophysical, and electronic properties of the designed molecules BTIC-U1 to BTIC-U7 are superior to those of reference BTIC-R. The TDM analysis demonstrates a smooth flow of charge from the core to the acceptor groups. Charge transfer analysis of the BTIC-U1:PTB7-Th blend revealed orbital superposition and successful charge transfer from HOMO (PTB7-Th) to LUMO (BTIC-U1). The BTIC-U5 and BTIC-U7 outperformed the reference BTIC-R and other developed molecules in terms of PCE (23.29% and 21.18%), FF (0.901 and 0.894), normalized Voc (48.674 and 44.597), and Voc (1.261 eV and 1.155 eV). The proposed compounds enclose high electron and hole transfer mobilities, making them the ideal candidate for use with PTB7-Th film. As a result, future SM-OSC design should prioritize using these constructed molecules, which exhibit excellent optoelectronic properties, as superior scaffolds.
Collapse
Affiliation(s)
| | - Faiza Shafiq
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sanaa S Al Abbad
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Junaid Yaqoob
- Department of Chemistry, University of Okara, Okara 56300, Pakistan
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara 56300, Pakistan
| | - Zainab H A Alsunaidi
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Ghulam Mustafa
- Department of Chemistry, University of Okara, Okara 56300, Pakistan
| | - Shabbir Hussain
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| |
Collapse
|
11
|
Zhang Y, Wang Y, Gao C, Ni Z, Zhang X, Hu W, Dong H. Recent advances in n-type and ambipolar organic semiconductors and their multi-functional applications. Chem Soc Rev 2023; 52:1331-1381. [PMID: 36723084 DOI: 10.1039/d2cs00720g] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Organic semiconductors have received broad attention and research interest due to their unique integration of semiconducting properties with structural tunability, intrinsic flexibiltiy and low cost. In order to meet the requirements of organic electronic devices and their integrated circuits, p-type, n-type and ambipolar organic semiconductors are all necessary. However, due to the limitation in both material synthesis and device fabrication, the development of n-type and ambipolar materials is quite behind that of p-type materials. Recent development in synthetic methods of organic semiconductors greatly enriches the range of n-type and ambipolar materials. Moreover, the newly developed materials with multiple functions also put forward multi-functional device applications, including some emerging research areas. In this review, we give a timely summary on these impressive advances in n-type and ambipolar organic semiconductors with a special focus on their synthesis methods and advanced materials with enhanced properties of charge carrier mobility, integration of high mobility and strong emission and thermoelectric properties. Finally, multi-functional device applications are further demonstrated as an example of these developed n-type and ambipolar materials.
Collapse
Affiliation(s)
- Yihan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongshuai Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhenjie Ni
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaotao Zhang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.,Department of Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.,Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Qu D, Li L, Qin Y, Liu Y, Li G, Qi T, Liu Y. Synthesis and Derivatization of an Isomerized Bithiophene Imide (iBTI) Acceptor with a Controllably Twisted Backbone. Org Lett 2023; 25:938-943. [PMID: 36739543 DOI: 10.1021/acs.orglett.2c04262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A heptagonal isomerized bithiophene imide (iBTI) acceptor has been effectively synthesized on a gram scale. Its series of β-, α',β-, α,α'-, α,α',β-, and α,α',β,β'-substituted derivatives can be obtained by controlling brominated sites. Single-crystal analyses indicate that the torsion angle of the imide backbone depends on the number and rigidity of β-substituted groups. Furthermore, the helical chirality of tetrasubstituted and [7]helicene-like derivatives based on iBTI shows great promise for the construction of chiral semiconductor materials.
Collapse
Affiliation(s)
- Dunshuai Qu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Linkuo Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yuanyuan Qin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China.,Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yanwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Guoping Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Qi
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
13
|
Cao X, Li H, Hu J, Tian H, Han Y, Meng B, Liu J, Wang L. An Amorphous n-Type Conjugated Polymer with an Ultra-Rigid Planar Backbone. Angew Chem Int Ed Engl 2023; 62:e202212979. [PMID: 36345132 DOI: 10.1002/anie.202212979] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 11/10/2022]
Abstract
High charge carrier mobility polymer semiconductors are always semi-crystalline. Amorphous conjugated polymers represent another kind of polymer semiconductors with different charge transporting mechanism. Here we report the first near-amorphous n-type conjugated polymer with decent electron mobility, which features a remarkably rigid, straight and planar polymer backbone. The molecular design strategy is to copolymerize two fused-ring building blocks which are both electron-accepting, centrosymmetrical and planar. The polymer is the alternating copolymer of double B←N bridged bipyridine (BNBP) unit and benzobisthiazole (BBTz) unit. It shows a decent electron mobility of 0.34 cm2 V-1 s-1 in organic field-effect transistors. The excellent electron transporting property of the polymer is possibly due to the ultrahigh backbone stiffness, small π-π stacking distance, and high molecular weight.
Collapse
Affiliation(s)
- Xu Cao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongxiang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Junli Hu
- Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, 130024, P. R. China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Bin Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
14
|
The marriage of dual-acceptor strategy and C-H activation polymerization: naphthalene diimide-based n-type polymers with adjustable molar mass and decent performance. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Shi Y, Li J, Sun H, Li Y, Wang Y, Wu Z, Jeong SY, Woo HY, Fabiano S, Guo X. Thiazole Imide-Based All-Acceptor Homopolymer with Branched Ethylene Glycol Side Chains for Organic Thermoelectrics. Angew Chem Int Ed Engl 2022; 61:e202214192. [PMID: 36282628 DOI: 10.1002/anie.202214192] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 11/22/2022]
Abstract
n-Type semiconducting polymers with high thermoelectric performance remain challenging due to the scarcity of molecular design strategy, limiting their applications in organic thermoelectric (OTE) devices. Herein, we provide a new approach to enhance the OTE performance of n-doped polymers by introducing acceptor-acceptor (A-A) type backbone bearing branched ethylene glycol (EG) side chains. When doped with 4-(2,3-dihydro-1,3-dimethyl-1H-benzimidazol-2-yl)-N,N-dimethylbenzenamine (N-DMBI), the A-A homopolymer PDTzTI-TEG exhibits n-type electrical conductivity (σ) up to 34 S cm-1 and power factor value of 15.7 μW m-1 K-2 . The OTE performance of PDTzTI-TEG is far greater than that of homopolymer PBTI-TEG (σ=0.27 S cm-1 ), indicating that introducing electron-deficient thiazole units in the backbone further improves the n-doping efficiency. These results demonstrate that developing A-A type polymers with EG side chains is an effective strategy to enhance n-type OTE performance.
Collapse
Affiliation(s)
- Yongqiang Shi
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Jianfeng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Hengda Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.,Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Yongchun Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Ziang Wu
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Sang Young Jeong
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| |
Collapse
|
16
|
Wang X, Wang Z, Li M, Tu L, Wang K, Xiao D, Guo Q, Zhou M, Wei X, Shi Y, Zhou E. A New Dibenzoquinoxalineimide-Based Wide-Bandgap Polymer Donor for Polymer Solar Cells. Polymers (Basel) 2022; 14:3590. [PMID: 36080665 PMCID: PMC9460915 DOI: 10.3390/polym14173590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
The molecular design of a wide-bandgap polymer donor is critical to achieve high-performance organic photovoltaic devices. Herein, a new dibenzo-fused quinoxalineimide (BPQI) is successfully synthesized as an electron-deficient building block to construct donor-acceptor (D-A)-type polymers, namely P(BPQI-BDT) and P(BPQI-BDTT), using benzodithiophene and its derivative, which bears different side chains, as the copolymerization units. These two polymers are used as a donor, and the narrow bandgap (2,20-((2Z,20Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo [3,4-e]thieno[2,″30':4',50]thieno[20,30:4,5]pyrrolo[3,2g]thieno[20,30:4,5]thieno[3,2-b]indole-2,10 diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) Y6 is used as an acceptor to fabricate bulk heterojunction polymer solar cell devices. Y6, as a non-fullerene receptor (NFA), has excellent electrochemical and optical properties, as well as a high efficiency of over 18%. The device, based on P(BPQI-BDTT):Y6, showed power conversion efficiencies (PCEs) of 6.31% with a JSC of 17.09 mA cm-2, an open-circuit voltage (VOC) of 0.82 V, and an FF of 44.78%. This study demonstrates that dibenzo-fused quinoxalineimide is a promising building block for developing wide-bandgap polymer donors.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zongtao Wang
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Mingwei Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijun Tu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Ke Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Dengping Xiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qiang Guo
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Ming Zhou
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Xianwen Wei
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yongqiang Shi
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Erjun Zhou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
17
|
Imide‐Functionalized Fluorenone and Its Cyanated Derivative Based n‐Type Polymers: Synthesis, Structure–Property Correlations, and Thin‐Film Transistor Performance. Angew Chem Int Ed Engl 2022; 61:e202205315. [DOI: 10.1002/anie.202205315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 11/07/2022]
|
18
|
Zhang Q, Huang J, Wang K, Huang W. Recent Structural Engineering of Polymer Semiconductors Incorporating Hydrogen Bonds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110639. [PMID: 35261083 DOI: 10.1002/adma.202110639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Highly planar, extended π-electron organic conjugated polymers have been increasingly attractive for achieving high-mobility organic semiconductors. In addition to the conventional strategy to construct rigid backbone by covalent bonds, hydrogen bond has been employed extensively to increase the planarity and rigidity of polymer via intramolecular noncovalent interactions. This review provides a general summary of high-mobility semiconducting polymers incorporating hydrogen bonds in field-effect transistors over recent years. The structural engineering of the hydrogen bond-containing building blocks and the discussion of theoretical simulation, microstructural characterization, and device performance are covered. Additionally, the effects of the introduction of hydrogen bond on self-healing, stretchability, chemical sensitivity, and mechanical properties are also discussed. The review aims to help and inspire design of new high-mobility conjugated polymers with superiority of mechanical flexibility by incorporation of hydrogen bond for the application in flexible electronics.
Collapse
Affiliation(s)
- Qi Zhang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Jianyao Huang
- CAS key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Kai Wang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Wei Huang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| |
Collapse
|
19
|
Chen Z, Li J, Wang J, Yang K, Zhang J, Wang Y, Feng K, Li B, Wei Z, Guo X. Imide‐Functionalized Fluorenone and Its Cyanated Derivative Based n‐Type Polymers: Synthesis, Structure‐Property Correlations, and Thin‐Film Transistor Performance. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhicai Chen
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Jianfeng Li
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Junwei Wang
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Kun Yang
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Jianqi Zhang
- National Center for Nanoscience and Technology Cas Key Laborotary of Nanosystem and Hierarcheical Frabration CHINA
| | - Yimei Wang
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Kui Feng
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Bolin Li
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Zhixiang Wei
- National Center for Nanoscience and Technology Cas Key Laborotary of Nanosystem and Hierarcheical Frabration CHINA
| | - Xugang Guo
- Southern University of Science and Technology Materials Science and Engineering No 1088, Xueyuan Rd. Xili, Nanshan 518055 Shenzhen CHINA
| |
Collapse
|
20
|
Zhang C, Tan WL, Liu Z, He Q, Li Y, Ma J, Chesman ASR, Han Y, McNeill CR, Heeney M, Fei Z. High-Performance Unipolar n-Type Conjugated Polymers Enabled by Highly Electron-Deficient Building Blocks Containing F and CN Groups. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chan Zhang
- Institute of Molecular Plus, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Wen Liang Tan
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Zhongwei Liu
- Institute of Molecular Plus, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Qiao He
- Department of Chemistry and Centre for Plastic Electronics, White City Campus, Imperial College London, London W120BZ, U.K
| | - Yanru Li
- Institute of Molecular Plus, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Jianeng Ma
- Institute of Molecular Plus, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | | | - Yang Han
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Christopher R. McNeill
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Martin Heeney
- Department of Chemistry and Centre for Plastic Electronics, White City Campus, Imperial College London, London W120BZ, U.K
| | - Zhuping Fei
- Institute of Molecular Plus, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
21
|
Chen J, Yang J, Guo Y, Liu Y. Acceptor Modulation Strategies for Improving the Electron Transport in High-Performance Organic Field-Effect Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104325. [PMID: 34605074 DOI: 10.1002/adma.202104325] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/04/2021] [Indexed: 06/13/2023]
Abstract
High-performance ambipolar and electronic type semiconducting polymers are essential for fabricating various organic optoelectronic devices and complementary circuits. This review summarizes the strategies of improving the electron transport of semiconducting polymers via acceptor modulation strategies, which include the use of single, dual, triple, multiple, and all acceptors as well as the fusion of multiple identical acceptors to obtain new heterocyclic acceptors. To further improve the electron transport of semiconducting polymers, the introduction of strong electron-withdrawing groups can enhance the electron-withdrawing ability of donors and acceptors, thereby facilitating electron injection and suppressing hole accumulation. In addition, the relationships between the molecular structure, frontier molecular orbital energy levels, thin film morphology, microstructure, processing conditions, and device performances are also comprehensively discussed. Finally, the challenges encountered in this research area are proposed and the future outlook is presented.
Collapse
Affiliation(s)
- Jinyang Chen
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jie Yang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
22
|
Ma S, Zhang H, Feng K, Guo X. Polymer Acceptors for High-Performance All-Polymer Solar Cells. Chemistry 2022; 28:e202200222. [PMID: 35266214 DOI: 10.1002/chem.202200222] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 11/11/2022]
Abstract
All-polymer solar cells (all-PSCs) have attracted considerable attention owing to their pronounced advantages of excellent mechanical flexibility/stretchability and greatly enhanced device stability as compared to other types of organic solar cells (OSCs). Thanks to the extensive research efforts dedicated to the development of polymer acceptors, all-PSCs have achieved remarkable improvement of photovoltaic performance, recently. This review summarizes the recent progress of polymer acceptors based on the key electron-deficient building blocks, which include bithiophene imide (BTI) derivatives, boron-nitrogen coordination bond (B←N)-incorporated (hetero)arenes, cyano-functionalized (hetero)arenes, and fused-ring electron acceptors (FREAs). In addition, single-component-based all-PSCs are also briefly discussed. The structure-property correlations of polymer acceptors are elaborated in detail. Finally, we offer our insights into the development of new electron-deficient building blocks with further optimized properties and the polymers built from them for efficient all-PSCs.
Collapse
Affiliation(s)
- Suxiang Ma
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Hao Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China.,Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
23
|
Zhang Y, Zhang C, Su Y, Dong W, Li Y, Liu Z, Yao X, Han Y, Fei Z. Chlorinated conjugated polymer based on chlorine‐ and cyano‐substituted (
E
)‐1,2‐di(thiophen‐2‐yl)ethane for ambipolar and n‐type Organic thin‐film transistors. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yulong Zhang
- Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| | - Chan Zhang
- Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| | - Yunran Su
- Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| | - Weijia Dong
- School of Materials Science and Engineering Tianjin University Tianjin 300072 China
| | - Yanru Li
- Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| | - Zhongwei Liu
- Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| | - Xiang Yao
- Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| | - Yang Han
- School of Materials Science and Engineering Tianjin University Tianjin 300072 China
| | - Zhuping Fei
- Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| |
Collapse
|
24
|
Shi Y, Ma R, Wang X, Liu T, Li Y, Fu S, Yang K, Wang Y, Yu C, Jiao L, Wei X, Fang J, Xue D, Yan H. Influence of Fluorine Substitution on the Photovoltaic Performance of Wide Band Gap Polymer Donors for Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5740-5749. [PMID: 35040622 DOI: 10.1021/acsami.1c23196] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The design and development of wide band gap (WBG) polymer donors are critical for achieving high power conversion efficiencies (PCEs) in polymer solar cells. In this work, four WBG polymer donors, Q4, Q5, Q6, and Q7, with different numbers and positions of fluorine substitution (n = 0, 2, 2, and 4, respectively) were prepared, and the effect of fluorination on their photovoltaic performance was systematically investigated. When blended with a small-molecule electron acceptor MeIC, the devices based on Q4, Q5, Q6, and Q7 showed PCEs of 10.34, 11.06, 5.26, and 0.48%, respectively. When coupled with a low band gap polymer acceptor PYIT to fabricate all-polymer solar cells (all-PSCs), while the other three polymers (Q5-Q7) exhibited much lower PCEs in the range of 0.12-6.71%, the Q4 polymer-based all-PSCs showed the highest PCE of 15.06%, comparable to that of the devices fabricated with the star polymer donor PM6 (PCE = 15.00%). Detailed physicochemical and morphological studies revealed that an over-substitution of F in Q7 results in undesired low-lying HOMO levels and phase separation with the acceptors, thus resulting in its inferior PCEs. Moreover, the less F-substitution and controlling of the positions of F-substitution position in Q4 and Q5 can improve the HOMO energy level matching as well as morphologies between these two polymers with the acceptors, which in turn gives rise to higher performances. Clearly, our results indicate that Q4 is a promising donor candidate for high-performance all-PSCs, and the fine-tuning of both the number and positions of F-substitution in the polymer backbone is essential in developing high-performance WBG polymer donors.
Collapse
Affiliation(s)
- Yongqiang Shi
- School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui 241002, China
| | - Ruijie Ma
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Xin Wang
- School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui 241002, China
| | - Tao Liu
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Yongchun Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Sheng Fu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Kun Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Yang Wang
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
| | - Changjiang Yu
- School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui 241002, China
| | - Lijuan Jiao
- School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui 241002, China
| | - Xianwen Wei
- School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui 241002, China
| | - Junfeng Fang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Physics and Materials Science, Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Dongfeng Xue
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - He Yan
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| |
Collapse
|
25
|
Shanwu L, Chenyujie Z, Yinhao L, Yaru Z, Hanming T, Zongrui W, Yonggang Z. Research Progress in n-type Organic Semiconducting Materials Based on Amides or Imides. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22080380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Transition metal-catalysed molecular n-doping of organic semiconductors. Nature 2021; 599:67-73. [PMID: 34732866 DOI: 10.1038/s41586-021-03942-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/24/2021] [Indexed: 11/08/2022]
Abstract
Chemical doping is a key process for investigating charge transport in organic semiconductors and improving certain (opto)electronic devices1-9. N(electron)-doping is fundamentally more challenging than p(hole)-doping and typically achieves a very low doping efficiency (η) of less than 10%1,10. An efficient molecular n-dopant should simultaneously exhibit a high reducing power and air stability for broad applicability1,5,6,9,11, which is very challenging. Here we show a general concept of catalysed n-doping of organic semiconductors using air-stable precursor-type molecular dopants. Incorporation of a transition metal (for example, Pt, Au, Pd) as vapour-deposited nanoparticles or solution-processable organometallic complexes (for example, Pd2(dba)3) catalyses the reaction, as assessed by experimental and theoretical evidence, enabling greatly increased η in a much shorter doping time and high electrical conductivities (above 100 S cm-1; ref. 12). This methodology has technological implications for realizing improved semiconductor devices and offers a broad exploration space of ternary systems comprising catalysts, molecular dopants and semiconductors, thus opening new opportunities in n-doping research and applications12, 13.
Collapse
|
27
|
Zhao Y, Liu Y, Liu X, Kang X, Yu L, Dai S, Sun M. Aminonaphthalimide-Based Molecular Cathode Interlayers for As-Cast Organic Solar Cells. CHEMSUSCHEM 2021; 14:4783-4792. [PMID: 34463047 DOI: 10.1002/cssc.202101383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/27/2021] [Indexed: 06/13/2023]
Abstract
A series of imide-based small molecules, namely NA, NAA, and NEA with simple structures, were designed and synthesized by introducing different amine side-chains into the benzene unit of imide, which were used as cathode interfacial materials in organic solar cells (OSCs). The amine side-chain substitution positions were systematically investigated with these small-molecule imides. Compared with NA without amide chains-NAA, and NEA, with 3-dimethylaminopropylamine and ethylenediamine chains, respectively-show bathochromic shifts in absorption, decreased band gaps, and higher highest occupied molecular orbital (HOMO) energy levels. A power conversion efficiency (PCE) of 15.04 % was obtained with the NEA-based as-cast OSCs with a high open-circuit voltage and fill factor for PM6 : Y6 blend and the maximum PCE of 15.80 % was reached for as-cast PM6 : Y6 : IT-M ternary OSCs. NEA exhibits better conductivity, higher electron mobility, and stronger the capability of lower work function of cathode among three molecules, affording OSCs with better photovoltaic performance. Additionally, these three molecules show excellent thermal stability both in solution and in films at 150 °C. The results indicate that imide-based small molecules are promising cathode interfacial materials for commercial OSCs.
Collapse
Affiliation(s)
- Yong Zhao
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Yang Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Xiaojie Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Xiao Kang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Liangmin Yu
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266100, P. R. China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
| | - Shuixing Dai
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Mingliang Sun
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266100, P. R. China
| |
Collapse
|
28
|
Su H, Yan S, Zhao C, Peng P, Jin L, Li S, Pang S. One‐Step Fabrication of High‐Performance Energetic Metal‐Organic Framework [Cu(atrz)
3
[NO
3
]
2
]
n
Films and its Tunable Crystal Structure. PROPELLANTS EXPLOSIVES PYROTECHNICS 2021. [DOI: 10.1002/prep.202100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hui Su
- School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 PR China
- State Key Laboratory of Explosion Science and Technology Beijing Institute of Technology Beijing 100081 PR China
- The System Design Institute of Mechanical-Electrical Engineering Beijing 100854 PR China
| | - Shi Yan
- State Key Laboratory of Explosion Science and Technology Beijing Institute of Technology Beijing 100081 PR China
| | - Chaofeng Zhao
- School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 PR China
| | - Panpan Peng
- School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 PR China
| | - Liang Jin
- DongGuan Polytechnic, Songshan Lake High-tech Industrial Development Zone Guangdong 523808 PR China
| | - Shenghua Li
- School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 PR China
| | - Siping Pang
- School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 PR China
| |
Collapse
|
29
|
Feng K, Guo H, Sun H, Guo X. n-Type Organic and Polymeric Semiconductors Based on Bithiophene Imide Derivatives. Acc Chem Res 2021; 54:3804-3817. [PMID: 34617720 DOI: 10.1021/acs.accounts.1c00381] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ConspectusIn the last three decades, p-type (hole-transporting) organic and polymeric semiconductors have achieved great success in terms of materials diversity and device performance, while the development of n-type (electron-transporting) analogues greatly lags behind, which is limited by the scarcity of highly electron-deficient building blocks with compact geometry and good solubility. However, such n-type semiconductors are essential due to the existence of the p-n junction and a complementary metal oxide semiconductor (CMOS)-like circuit in organic electronic devices. Among various electron-deficient building blocks, imide-functionalized arenes, such as naphthalene diimide (NDI) and perylene diimide (PDI), have been proven to be the most promising ones for developing n-type organic and polymeric semiconductors. Nevertheless, phenyl-based NDI and PDI lead to sizable steric hindrance with neighboring (hetero)arenes and a high degree of backbone distortion in the resultant semiconductors, which greatly limits their microstructural ordering and charge transport. To attenuate the steric hindrance associated with NDI and PDI, a novel imide-functionalized heteroarene, bithiophene imide (BTI), was designed; however, the BTI-based semiconductors suffer from high-lying frontier molecular orbital (FMO) energy levels as a result of their electron-rich thiophene framework and monoimide group, which is detrimental to n-type performance.In this Account, we review a series of BTI derivatives developed via various strategies, including ring fusion, thiazole substitution, fluorination, cyanation, and chalcogen substitution, and elaborate the synthesis routes designed to overcome the synthesis challenges due to their high electron deficiency. After structural optimization, these BTI derivatives can not only retain the advantages of good solubility, a planar backbone, and small steric hindrance inherited from BTI but also have greatly suppressed FMO levels. These novel building blocks enable the construction of a great number of n-type organic and polymeric semiconductors, particularly acceptor-acceptor (or all-acceptor)-type polymers, with remarkable performance in various devices, including electron mobility (μe) of 3.71 cm2 V-1 s-1 in organic thin-film transistors (OTFTs), a power conversion efficiency (PCE) of 15.2% in all-polymer solar cells (all-PSCs), a PCE of 20.8% in inverted perovskite solar cells (PVSCs), electrical conductivity (σ) of 0.34 S cm-1 and a power factor (PF) of 1.52 μW m-1 K-2 in self-doped diradicals, and σ of 23.3 S cm-1 and a PF of ∼10 μW m-1 K-2 in molecularly n-doped polymers, all of which are among the best values in each type of device. The structure-property-device performance correlations of these n-type semiconductors are elucidated. The design strategy and synthesis of these novel BTI derivatives provide important information for developing highly electron-deficient building blocks with optimized physicochemical properties. Finally, we offer our insights into the further development of BTI derivatives and semiconductors built from them.
Collapse
Affiliation(s)
- Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Han Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Huiliang Sun
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| |
Collapse
|
30
|
Dong C, Deng S, Meng B, Liu J, Wang L. A Distannylated Monomer of a Strong Electron-Accepting Organoboron Building Block: Enabling Acceptor-Acceptor-Type Conjugated Polymers for n-Type Thermoelectric Applications. Angew Chem Int Ed Engl 2021; 60:16184-16190. [PMID: 33956396 DOI: 10.1002/anie.202105127] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Indexed: 01/20/2023]
Abstract
Acceptor-acceptor (A-A) copolymerization is an effective strategy to develop high-performance n-type conjugated polymers. However, the development of A-A type conjugated polymers is challenging due to the synthetic difficulty. Herein, a distannylated monomer of strong electron-deficient double B←N bridged bipyridine (BNBP) unit is readily synthesized and used to develop A-A type conjugated polymers by Stille polycondensation. The resulting polymers show ultralow LUMO energy levels of -4.4 eV, which is among the lowest value reported for organoboron polymers. After n-doping, the resulting polymers exhibit electric conductivity of 7.8 S cm-1 and power factor of 24.8 μW m-1 K-2 . This performance is among the best for n-type polymer thermoelectric materials. These results demonstrate the great potential of A-A type organoboron polymers for high-performance n-type thermoelectrics.
Collapse
Affiliation(s)
- Changshuai Dong
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Sihui Deng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Bin Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
31
|
Dong C, Deng S, Meng B, Liu J, Wang L. A Distannylated Monomer of a Strong Electron‐Accepting Organoboron Building Block: Enabling Acceptor–Acceptor‐Type Conjugated Polymers for n‐Type Thermoelectric Applications. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Changshuai Dong
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Sihui Deng
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Bin Meng
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
32
|
Griggs S, Marks A, Bristow H, McCulloch I. n-Type organic semiconducting polymers: stability limitations, design considerations and applications. JOURNAL OF MATERIALS CHEMISTRY. C 2021; 9:8099-8128. [PMID: 34277009 PMCID: PMC8264852 DOI: 10.1039/d1tc02048j] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/10/2021] [Indexed: 04/14/2023]
Abstract
This review outlines the design strategies which aim to develop high performing n-type materials in the fields of organic thin film transistors (OTFT), organic electrochemical transistors (OECT) and organic thermoelectrics (OTE). Figures of merit for each application and the limitations in obtaining these are set out, and the challenges with achieving consistent and comparable measurements are addressed. We present a thorough discussion of the limitations of n-type materials, particularly their ambient operational instability, and suggest synthetic methods to overcome these. This instability originates from the oxidation of the negative polaron of the organic semiconductor (OSC) by water and oxygen, the potentials of which commonly fall within the electrochemical window of n-type OSCs, and consequently require a LUMO level deeper than ∼-4 eV for a material with ambient stability. Recent high performing n-type materials are detailed for each application and their design principles are discussed to explain how synthetic modifications can enhance performance. This can be achieved through a number of strategies, including utilising an electron deficient acceptor-acceptor backbone repeat unit motif, introducing electron-withdrawing groups or heteroatoms, rigidification and planarisation of the polymer backbone and through increasing the conjugation length. By studying the fundamental synthetic design principles which have been employed to date, this review highlights a path to the development of promising polymers for n-type OSC applications in the future.
Collapse
Affiliation(s)
- Sophie Griggs
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
| | - Adam Marks
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
| | - Helen Bristow
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
| | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
33
|
Zhou Y, Zhang W, Yu G. Recent structural evolution of lactam- and imide-functionalized polymers applied in organic field-effect transistors and organic solar cells. Chem Sci 2021; 12:6844-6878. [PMID: 34123315 PMCID: PMC8153080 DOI: 10.1039/d1sc01711j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/21/2021] [Indexed: 11/21/2022] Open
Abstract
Organic semiconductor materials, especially donor-acceptor (D-A) polymers, have been increasingly applied in organic optoelectronic devices, such as organic field-effect transistors (OFETs) and organic solar cells (OSCs). Plenty of high-performance OFETs and OSCs have been achieved based on varieties of structurally modified D-A polymers. As the basic building block of D-A polymers, acceptor moieties have drawn much attention. Among the numerous types, lactam- and imide-functionalized electron-deficient building blocks have been widely investigated. In this review, the structural evolution of lactam- or imide-containing acceptors (for instance, diketopyrrolopyrrole, isoindigo, naphthalene diimide, and perylene diimide) is covered and their representative polymers applied in OFETs and OSCs are also discussed, with a focus on the effect of varied structurally modified acceptor moieties on the physicochemical and photoelectrical properties of polymers. Additionally, this review discusses the current issues that need to be settled down and the further development of new types of acceptors. It is hoped that this review could help design new electron-deficient building blocks, find a more valid method to modify already reported acceptor units, and achieve high-performance semiconductor materials eventually.
Collapse
Affiliation(s)
- Yankai Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
34
|
Zhou Y, Zhang S, Zhang W, Huang J, Wei C, Wang L, Yu G. Synthesis, characterization, and their field-effect properties of azaisoindigo-based conjugated polymers with versatile alkoxycarbonyl substituents. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
35
|
Liu J, Ye G, Potgieser HGO, Koopmans M, Sami S, Nugraha MI, Villalva DR, Sun H, Dong J, Yang X, Qiu X, Yao C, Portale G, Fabiano S, Anthopoulos TD, Baran D, Havenith RWA, Chiechi RC, Koster LJA. Amphipathic Side Chain of a Conjugated Polymer Optimizes Dopant Location toward Efficient N-Type Organic Thermoelectrics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006694. [PMID: 33306230 PMCID: PMC11468643 DOI: 10.1002/adma.202006694] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/25/2020] [Indexed: 06/12/2023]
Abstract
There is no molecular strategy for selectively increasing the Seebeck coefficient without reducing the electrical conductivity for organic thermoelectrics. Here, it is reported that the use of amphipathic side chains in an n-type donor-acceptor copolymer can selectively increase the Seebeck coefficient and thus increase the power factor by a factor of ≈5. The amphipathic side chain contains an alkyl chain segment as a spacer between the polymer backbone and an ethylene glycol type chain segment. The use of this alkyl spacer does not only reduce the energetic disorder in the conjugated polymer film but can also properly control the dopant sites away from the backbone, which minimizes the adverse influence of counterions. As confirmed by kinetic Monte Carlo simulations with the host-dopant distance as the only variable, a reduced Coulombic interaction resulting from a larger host-dopant distance contributes to a higher Seebeck coefficient for a given electrical conductivity. Finally, an optimized power factor of 18 µW m-1 K-2 is achieved in the doped polymer film. This work provides a facile molecular strategy for selectively improving the Seebeck coefficient and opens up a new route for optimizing the dopant location toward realizing better n-type polymeric thermoelectrics.
Collapse
Affiliation(s)
- Jian Liu
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4GroningenNL‐9747 AGthe Netherlands
| | - Gang Ye
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4GroningenNL‐9747 AGthe Netherlands
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 4GroningenNL‐9747 AGThe Netherlands
| | - Hinderikus G. O. Potgieser
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4GroningenNL‐9747 AGthe Netherlands
| | - Marten Koopmans
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4GroningenNL‐9747 AGthe Netherlands
| | - Selim Sami
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4GroningenNL‐9747 AGthe Netherlands
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 4GroningenNL‐9747 AGThe Netherlands
| | - Mohamad Insan Nugraha
- King Abdullah University of Science and Technology (KAUST)Physical Science and Engineering Division (PSE)KAUST Solar Center (KSC)Thuwal23955‐6900Saudi Arabia
| | - Diego Rosas Villalva
- King Abdullah University of Science and Technology (KAUST)Physical Science and Engineering Division (PSE)KAUST Solar Center (KSC)Thuwal23955‐6900Saudi Arabia
| | - Hengda Sun
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköpingSE‐601 74Sweden
| | - Jingjin Dong
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4GroningenNL‐9747 AGthe Netherlands
| | - Xuwen Yang
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4GroningenNL‐9747 AGthe Netherlands
| | - Xinkai Qiu
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4GroningenNL‐9747 AGthe Netherlands
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 4GroningenNL‐9747 AGThe Netherlands
| | - Chen Yao
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 4GroningenNL‐9747 AGThe Netherlands
| | - Giuseppe Portale
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4GroningenNL‐9747 AGthe Netherlands
| | - Simone Fabiano
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköpingSE‐601 74Sweden
| | - Thomas D. Anthopoulos
- King Abdullah University of Science and Technology (KAUST)Physical Science and Engineering Division (PSE)KAUST Solar Center (KSC)Thuwal23955‐6900Saudi Arabia
| | - Derya Baran
- King Abdullah University of Science and Technology (KAUST)Physical Science and Engineering Division (PSE)KAUST Solar Center (KSC)Thuwal23955‐6900Saudi Arabia
| | - Remco W. A. Havenith
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4GroningenNL‐9747 AGthe Netherlands
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 4GroningenNL‐9747 AGThe Netherlands
- Department of Inorganic and Physical ChemistryGhent UniversityKrijgslaan 281‐(S3)GhentB‐9000Belgium
| | - Ryan C. Chiechi
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4GroningenNL‐9747 AGthe Netherlands
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 4GroningenNL‐9747 AGThe Netherlands
| | - L. Jan Anton Koster
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4GroningenNL‐9747 AGthe Netherlands
| |
Collapse
|
36
|
Comí M, Ocheje MU, Attar S, Mu AU, Philips BK, Kalin AJ, Kakosimos KE, Fang L, Rondeau-Gagné S, Al-Hashimi M. Synthesis and Photocyclization of Conjugated Diselenophene Pyrrole-2,5-dione Based Monomers for Optoelectronics. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marc Comí
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Education City, Doha, Qatar
| | - Michael U. Ocheje
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, N9B3P4, Canada
| | - Salahuddin Attar
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Education City, Doha, Qatar
| | - Anthony U. Mu
- Department of Chemistry, Texas A&M University, College Station, Texas United States
| | - Bailey K. Philips
- Department of Chemistry, Texas A&M University, College Station, Texas United States
| | - Alexander J. Kalin
- Department of Chemistry, Texas A&M University, College Station, Texas United States
| | - Konstantinos E. Kakosimos
- Department of Chemical Engineering, Texas A&M University at Qatar, PO Box 23874, Education City, Doha, Qatar
| | - Lei Fang
- Department of Chemistry, Texas A&M University, College Station, Texas United States
| | - Simon Rondeau-Gagné
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, N9B3P4, Canada
| | - Mohammed Al-Hashimi
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Education City, Doha, Qatar
| |
Collapse
|
37
|
Liao M, Duan J, Peng P, Zhang J, Zhou M. Progress in the synthesis of imide-based N-type polymer semiconductor materials. RSC Adv 2020; 10:41764-41779. [PMID: 35516572 PMCID: PMC9057848 DOI: 10.1039/d0ra04972g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/17/2020] [Indexed: 11/26/2022] Open
Abstract
Based on the development situation and challenge of organic photovoltaics (OPVs) and organic field-effect transistors (OFETs), it is necessary to develop N-type polymer building blocks with specific structures and performance. After decades of development, some excellent polymer receptor building blocks have been developed to construct N-type organic semiconductors, which have been applied in OFETs and OPVs. In this paper, four kinds of imide (bisthiophene imide BTI, bisthiazolimide BTz, naphthalimide NDI, and perylene imide PDI)-based N-type polymer semiconductor materials are introduced, and their applications in OFETs and OPVs are analyzed, too. The molecular structure design and the performance of corresponding materials are summarized to provide further guidance and reference for the design and development of high performance N-type polymer semiconductors.
Collapse
Affiliation(s)
- Mao Liao
- School of New Energy and Material, Southwest Petroleum University No. 8 Xindu Avenue, Xindu District Chengdu Sichuan 610500 People's Republic of China +8613880947076
| | - Jieming Duan
- School of New Energy and Material, Southwest Petroleum University No. 8 Xindu Avenue, Xindu District Chengdu Sichuan 610500 People's Republic of China +8613880947076
- CNBM (Chengdu) Optoelectronic Materials Co., Ltd. No. 558, 2nd Airport Road, Shuangliu District Chengdu Sichuan 610207 People's Republic of China
| | - Peng'ao Peng
- School of New Energy and Material, Southwest Petroleum University No. 8 Xindu Avenue, Xindu District Chengdu Sichuan 610500 People's Republic of China +8613880947076
| | - Jingfeng Zhang
- School of New Energy and Material, Southwest Petroleum University No. 8 Xindu Avenue, Xindu District Chengdu Sichuan 610500 People's Republic of China +8613880947076
| | - Ming Zhou
- School of New Energy and Material, Southwest Petroleum University No. 8 Xindu Avenue, Xindu District Chengdu Sichuan 610500 People's Republic of China +8613880947076
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University No. 8 Xindu Avenue, Xindu District Chengdu Sichuan 610500 People's Republic of China
| |
Collapse
|
38
|
Recent development of n-type thermoelectric materials based on conjugated polymers. NANO MATERIALS SCIENCE 2020. [DOI: 10.1016/j.nanoms.2020.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Guo X, Facchetti A. The journey of conducting polymers from discovery to application. NATURE MATERIALS 2020; 19:922-928. [PMID: 32820293 DOI: 10.1038/s41563-020-0778-5] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China.
| | - Antonio Facchetti
- Flexterra Corporation, Skokie, IL, USA.
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
40
|
Sun C, Wang YX, Sun M, Zou Y, Zhang C, Cheng S, Hu W. Facile and cost-effective liver cancer diagnosis by water-gated organic field-effect transistors. Biosens Bioelectron 2020; 164:112251. [DOI: 10.1016/j.bios.2020.112251] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/03/2020] [Accepted: 04/26/2020] [Indexed: 02/07/2023]
|
41
|
Isoindigo (IID)‐Based Semiconductor with F⋯S Interaction Locked Conformation for High‐Performance Ambipolar Bottom‐Gate Top‐Contact Field‐Effect Transistors. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Shi Y, Guo H, Huang J, Zhang X, Wu Z, Yang K, Zhang Y, Feng K, Woo HY, Ortiz RP, Zhou M, Guo X. Distannylated Bithiophene Imide: Enabling High‐Performance n‐Type Polymer Semiconductors with an Acceptor–Acceptor Backbone. Angew Chem Int Ed Engl 2020; 59:14449-14457. [DOI: 10.1002/anie.202002292] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/18/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Yongqiang Shi
- School of New Energy and Materials and State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Engineering Southwest Petroleum University Chengdu Sichuan 610500 China
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Han Guo
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Jiachen Huang
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Xianhe Zhang
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Ziang Wu
- Department of Chemistry College of Science Korea University 145 Anam-ro Seongbuk-gu Seoul 136-713 Republic of Korea
| | - Kun Yang
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Yujie Zhang
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Kui Feng
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Han Young Woo
- Department of Chemistry College of Science Korea University 145 Anam-ro Seongbuk-gu Seoul 136-713 Republic of Korea
| | - Rocio Ponce Ortiz
- Department of Physical Chemistry University of Málaga Campus de Teatinos s/n Málaga 29071 Spain
| | - Ming Zhou
- School of New Energy and Materials and State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Engineering Southwest Petroleum University Chengdu Sichuan 610500 China
| | - Xugang Guo
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| |
Collapse
|
43
|
Shi Y, Guo H, Huang J, Zhang X, Wu Z, Yang K, Zhang Y, Feng K, Woo HY, Ortiz RP, Zhou M, Guo X. Distannylated Bithiophene Imide: Enabling High‐Performance n‐Type Polymer Semiconductors with an Acceptor–Acceptor Backbone. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002292] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yongqiang Shi
- School of New Energy and Materials and State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Engineering Southwest Petroleum University Chengdu Sichuan 610500 China
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Han Guo
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Jiachen Huang
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Xianhe Zhang
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Ziang Wu
- Department of Chemistry College of Science Korea University 145 Anam-ro Seongbuk-gu Seoul 136-713 Republic of Korea
| | - Kun Yang
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Yujie Zhang
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Kui Feng
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Han Young Woo
- Department of Chemistry College of Science Korea University 145 Anam-ro Seongbuk-gu Seoul 136-713 Republic of Korea
| | - Rocio Ponce Ortiz
- Department of Physical Chemistry University of Málaga Campus de Teatinos s/n Málaga 29071 Spain
| | - Ming Zhou
- School of New Energy and Materials and State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Engineering Southwest Petroleum University Chengdu Sichuan 610500 China
| | - Xugang Guo
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| |
Collapse
|
44
|
Sun H, Guo X, Facchetti A. High-Performance n-Type Polymer Semiconductors: Applications, Recent Development, and Challenges. Chem 2020. [DOI: 10.1016/j.chempr.2020.05.012] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
New thiophene-based poly(azomethine)s bearing tetraphenylsilane moieties along their backbone. Optical, electronic, thermal properties and theoretical calculations. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Ye X, Tian B, Guo Y, Fan F, Cai A. A novel dry-blending method to reduce the coefficient of thermal expansion of polymer templates for OTFT electrodes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:671-677. [PMID: 32395396 PMCID: PMC7188987 DOI: 10.3762/bjnano.11.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Among the patterning technologies for organic thin-film transistors (OTFTs), the fabrication of OTFT electrodes using polymer templates has attracted much attention. However, deviations in the electrode alignment occur because the coefficient of thermal expansion (CTE) of the polymer template is much higher than the CTE of the dielectric layer. Here, a novel dry-blending method is described in which SiO2 nanoparticles are filled into a grooved silicon template, followed by permeation of polydimethylsiloxane (PDMS) into the SiO2 nanoparticle gaps. The SiO2 nanoparticles in the groove are extracted by curing and peeling off PDMS to prepare a PDMS/SiO2 composite template with a nanoparticle content of 83.8 wt %. The composite template has a CTE of 96 ppm/°C, which is a reduction by 69.23% compared with the original PDMS template. Finally, we achieved the alignment of OTFT electrodes using the composite template.
Collapse
Affiliation(s)
- Xiangdong Ye
- School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
- Shaanxi Key Laboratory of Nano Materials and Technology, Xi’an 710055, China
| | - Bo Tian
- School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
- Shaanxi Key Laboratory of Nano Materials and Technology, Xi’an 710055, China
| | - Yuxuan Guo
- School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
- Shaanxi Key Laboratory of Nano Materials and Technology, Xi’an 710055, China
| | - Fan Fan
- School of Automation, Xi'an University of Posts and Telecommunications, Xi’an 710121, China
| | - Anjiang Cai
- School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
- Shaanxi Key Laboratory of Nano Materials and Technology, Xi’an 710055, China
| |
Collapse
|
47
|
Huang K, Huang G, Wang X, Lu H, Zhang G, Qiu L. Air-Stable and High-Performance Unipolar n-Type Conjugated Semiconducting Polymers Prepared by a "Strong Acceptor-Weak Donor" Strategy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17790-17798. [PMID: 32212621 DOI: 10.1021/acsami.0c02322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Unipolar n-type conjugated polymer materials with long-term stable electron transport upon direct exposure to the air atmosphere are very challenging to prepare. In this study, three unipolar n-type donor-acceptor (D-A) conjugated polymer semiconductors (abbreviated as PNVB, PBABDFV, and PBAIDV) were successfully developed through a "strong acceptor-weak donor" strategy. The weak electron donation of the donor units in all three polymers successfully lowered the molecular energy levels by the acceptor units that strongly attracted electrons. Cyclic voltammetry demonstrated that all three polymers had low highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels near -6.0 and -4.0 eV, respectively. These results were consistent with the density functional theory calculations. The as-prepared polymers were then used to manufacture organic field-effect transistor (OFET) devices in bottom-gate/top-contact (BG/TC) configuration without any packaging protection. As expected, all devices exhibited unipolar electron transport properties. PBABDFV-based devices showed excellent field-effect performance and air stability, beneficial for straight-line molecular chain and closest π-π stacking distance to prevent water vapor and oxygen from diffusion into the active layer. This led to a maximum electron mobility (μe,max) of 0.79 cm2 V-1 s-1 under air conditions. In addition, 0.50 cm2 V-1 s-1 was still maintained after 27 days of storage in ambient environment. The near-ideal transfer curve of the PBABDFV-based OFET device in BG/TC configuration under vacuum was obtained with average mobility reliability factor (rave) reaching 88%.
Collapse
Affiliation(s)
- Kaiqiang Huang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Gang Huang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Xiaohong Wang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Hongbo Lu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Guobing Zhang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
48
|
Teshima Y, Saito M, Mikie T, Komeyama K, Yoshida H, Osaka I. Dithiazolylthienothiophene Bisimide-Based π-Conjugated Polymers: Improved Synthesis and Application to Organic Photovoltaics as P-Type Semiconductor. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yoshikazu Teshima
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Masahiko Saito
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Tsubasa Mikie
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Kimihiro Komeyama
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Hiroto Yoshida
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Itaru Osaka
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
49
|
Liu J, Jiang L, Shi J, Li C, Shi Y, Tan J, Li H, Jiang H, Hu Y, Liu X, Yu J, Wei Z, Jiang L, Hu W. Relieving the Photosensitivity of Organic Field-Effect Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906122. [PMID: 31782561 DOI: 10.1002/adma.201906122] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/14/2019] [Indexed: 05/27/2023]
Abstract
It is generally believed that the photoresponse behavior of organic field-effect transistors (OFETs) reflects the intrinsic property of organic semiconductors. However, this photoresponse hinders the application of OFETs in transparent displays as driven circuits due to the current instability resulting from the threshold voltage shift under light illumination. It is necessary to relieve the photosensitivity of OFETs to keep the devices stable. 2,6-diphenyl anthracene thin-film and single-crystal OFETs are fabricated on different substrates, and it is found that the degree of molecular order in the conducting channels and the defects at the dielectric/semiconductor interface play important roles in determining the phototransistor performance. When highly ordered single-crystal OFETs are fabricated on polymeric substrates with low defects, the photosensitivity (P) decreases by more than 105 times and the threshold voltage shift (ΔVT ) is almost eliminated compared with the corresponding thin-film OFETs. This phenomenon is further verified by using another three organic semiconductors for similar characterizations. The decreased P and ΔVT of OFETs ensure a good current stability for OFETs to drive organic light-emitting diodes efficiently, which is essential to the application of OFETs in flexible and transparent displays.
Collapse
Affiliation(s)
- Jie Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Longfeng Jiang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jia Shi
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Chunlei Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanjun Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiahui Tan
- Guangzhou China Ray Optoelectronic Materials Co., Ltd., Guangzhou, 510663, China
| | - Haiyang Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Jiang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yuanyuan Hu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Xinfeng Liu
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Junsheng Yu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
50
|
Xue C, Tang Y, Liu S, Feng H, Li S, Xia D. Achieving efficient polymer solar cells based on benzodithiophene–thiazole-containing wide band gap polymer donors by changing the linkage patterns of two thiazoles. NEW J CHEM 2020. [DOI: 10.1039/d0nj02483j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two conjugated polymers with different combinations of two thiazoles were synthesized to study their photovoltaic performances.
Collapse
Affiliation(s)
- Changguo Xue
- School of Material Science and Engineering
- Anhui University of Science and Technology
- Anhui
- China
| | - Yu Tang
- School of Material Science and Engineering
- Anhui University of Science and Technology
- Anhui
- China
| | - Shihui Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - He Feng
- School of Material Science and Engineering
- Anhui University of Science and Technology
- Anhui
- China
| | - Shiqin Li
- School of Material Science and Engineering
- Anhui University of Science and Technology
- Anhui
- China
| | - Debin Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| |
Collapse
|