1
|
Zhou H, Gelernter J. Human genetics and epigenetics of alcohol use disorder. J Clin Invest 2024; 134:e172885. [PMID: 39145449 PMCID: PMC11324314 DOI: 10.1172/jci172885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Alcohol use disorder (AUD) is a prominent contributor to global morbidity and mortality. Its complex etiology involves genetics, epigenetics, and environmental factors. We review progress in understanding the genetics and epigenetics of AUD, summarizing the key findings. Advancements in technology over the decades have elevated research from early candidate gene studies to present-day genome-wide scans, unveiling numerous genetic and epigenetic risk factors for AUD. The latest GWAS on more than one million participants identified more than 100 genetic variants, and the largest epigenome-wide association studies (EWAS) in blood and brain samples have revealed tissue-specific epigenetic changes. Downstream analyses revealed enriched pathways, genetic correlations with other traits, transcriptome-wide association in brain tissues, and drug-gene interactions for AUD. We also discuss limitations and future directions, including increasing the power of GWAS and EWAS studies as well as expanding the diversity of populations included in these analyses. Larger samples, novel technologies, and analytic approaches are essential; these include whole-genome sequencing, multiomics, single-cell sequencing, spatial transcriptomics, deep-learning prediction of variant function, and integrated methods for disease risk prediction.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Biomedical Informatics and Data Science
- Center for Brain and Mind Health
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Genetics, and
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Maddern XJ, Ursich LT, Bailey G, Pearl A, Anversa RG, Lawrence AJ, Walker LC. Sex Differences in Alcohol Use: Is It All About Hormones? Endocrinology 2024; 165:bqae088. [PMID: 39018449 DOI: 10.1210/endocr/bqae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024]
Abstract
Risky alcohol use and alcohol use disorders (AUD) are a rising problem in women, yet a major disparity in our understanding of what drives alcohol consumption in women remains. Historically biomedical research has focused on male subjects; however, recent increases in reporting of females, have highlighted major differences between the sexes. Here we review the current literature of the effect of gonadal steroid hormones (estrogens, androgens, and progestins), neurosteriods, and neurobiological factors on alcohol use in clinical and preclinical studies of both sexes. Further, we briefly discuss how fundamental sex differences in genetics, metabolism, neuroimmune, and stress responses may influence sex differences in alcohol intake. Comparing the sexes could aid in the discovery of novel therapeutics to treat AUD, and implementation of current treatment options in women.
Collapse
Affiliation(s)
- Xavier J Maddern
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Lauren T Ursich
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Grace Bailey
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Amy Pearl
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
| | - Roberta G Anversa
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
3
|
Özkan-Kotiloğlu S, Kaya-Akyüzlü D, Güven E, Doğan Ö, Ağtaş-Ertan E, Özgür-İlhan İ. A case control study investigating the methylation levels of GHRL and GHSR genes in alcohol use disorder. Mol Biol Rep 2024; 51:663. [PMID: 38771494 DOI: 10.1007/s11033-024-09585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Alcohol use disorder (AUD) is a relapsing disease described as excessive use of alcohol. Evidence of the role of DNA methylation in addiction is accumulating. Ghrelin is an important peptide known as appetite hormone and its role in addictive behavior has been identified. Here we aimed to determine the methylation levels of two crucial genes (GHRL and GHSR) in ghrelin signaling and further investigate the association between methylation ratios and plasma ghrelin levels. METHODS Individuals diagnosed with (n = 71) and without (n = 82) AUD were recruited in this study. DNA methylation levels were measured through methylation-sensitive high-resolution melting (MS-HRM). Acylated ghrelin levels were detected by ELISA. The GHRL rs696217 polymorphism was analyzed by the standard PCR-RFLP method. RESULTS GHRL was significantly hypermethylated (P < 0.0022) in AUD between 25 and 50% methylation than in control subjects but no significant changes of GHSR methylation were observed. Moreover, GHRL showed significant positive correlation of methylation ratio between 25 and 50% with age. A significant positive correlation between GHSR methylation and ghrelin levels in the AUD group was determined (P = 0.037). The level of GHRL methylation and the ghrelin levels showed a significant association in the control subjects (P = 0.042). CONCLUSION GHSR and GHRL methylation levels did not change significantly between control and AUD groups. However, GHRL and GHSR methylations seemed to have associations with plasma ghrelin levels in two groups. This is the first study investigating the DNA methylation of GHRL and GHSR genes in AUD.
Collapse
Affiliation(s)
- Selin Özkan-Kotiloğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Kırşehir Ahi Evran University, Kırşehir, Türkiye.
| | | | - Emine Güven
- Department of Biomedical Engineering, Faculty of Engineering, Düzce University, Düzce, Türkiye
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, USA
| | - Özlem Doğan
- Department of Medical Biochemistry, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Ece Ağtaş-Ertan
- Department of Mental Health and Diseases, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - İnci Özgür-İlhan
- Department of Mental Health and Diseases, Faculty of Medicine, Ankara University, Ankara, Türkiye
| |
Collapse
|
4
|
Bečeheli I, Horvatiček M, Perić M, Nikolić B, Holuka C, Klasić M, Ivanišević M, Starčević M, Desoye G, Hranilović D, Turner JD, Štefulj J. Methylation of serotonin regulating genes in cord blood cells: association with maternal metabolic parameters and correlation with methylation in peripheral blood cells during childhood and adolescence. Clin Epigenetics 2024; 16:4. [PMID: 38172913 PMCID: PMC10765867 DOI: 10.1186/s13148-023-01610-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Serotonin (5-hydroxytryptamine, 5-HT) signaling is involved in neurodevelopment, mood regulation, energy metabolism, and other physiological processes. DNA methylation plays a significant role in modulating the expression of genes responsible for maintaining 5-HT balance, such as 5-HT transporter (SLC6A4), monoamine oxidase A (MAOA), and 5-HT receptor type 2A (HTR2A). Maternal metabolic health can influence long-term outcomes in offspring, with DNA methylation mediating these effects. We investigated associations between maternal metabolic parameters-pre-pregnancy body mass index (pBMI), gestational weight gain (GWG), and glucose tolerance status (GTS), i.e., gestational diabetes mellitus (GDM) versus normal glucose tolerance (NGT)-and cord blood methylation of SLC6A4, MAOA, and HTR2A in participants from our PlaNS birth cohort. CpG sites (15, 9, and 2 in each gene, respectively) were selected based on literature and in silico data. Methylation levels were quantified by bisulfite pyrosequencing. We also examined the stability of methylation patterns in these genes in circulating blood cells from birth to adolescence using longitudinal DNA methylation data from the ARIES database. RESULTS None of the 203 PlaNS mothers included in this study had preexisting diabetes, 99 were diagnosed with GDM, and 104 had NGT; all neonates were born at full term by planned Cesarean section. Methylation at most CpG sites differed between male and female newborns. SLC6A4 methylation correlated inversely with maternal pBMI and GWG, while methylation at HTR2A site -1665 correlated positively with GWG. None of the maternal metabolic parameters statistically associated with MAOA methylation. DNA methylation data in cord blood and peripheral blood at ages 7 and 15 years were available for 808 participants from the ARIES database; 4 CpG sites (2 in SLC6A4 and 2 in HTR2A) overlapped between the PlaNS and ARIES cohorts. A positive correlation between methylation levels in cord blood and peripheral blood at 7 and 15 years of age was observed for both SLC6A4 and HTR2A CpG sites. CONCLUSIONS Methylation of 5-HT regulating genes in cord blood cells is influenced by neonatal sex, with maternal metabolism playing an additional role. Inter-individual variations present in circulating blood cells at birth are still pronounced in childhood and adolescence.
Collapse
Affiliation(s)
- Ivona Bečeheli
- Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Marina Horvatiček
- Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Maja Perić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Barbara Nikolić
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Cyrielle Holuka
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-sur-Alzette, Luxembourg
- Faculty of Science, University of Luxembourg, 4365, Belval, Luxembourg
| | - Marija Klasić
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Marina Ivanišević
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, 10000, Zagreb, Croatia
| | - Mirta Starčević
- Department of Neonatology, University Hospital Centre Zagreb, 10000, Zagreb, Croatia
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036, Graz, Austria
| | - Dubravka Hranilović
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Jonathan D Turner
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-sur-Alzette, Luxembourg
| | - Jasminka Štefulj
- Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia.
- University Department of Psychology, Catholic University of Croatia, 10000, Zagreb, Croatia.
| |
Collapse
|
5
|
Fanfarillo F, Ferraguti G, Lucarelli M, Fuso A, Ceccanti M, Terracina S, Micangeli G, Tarani L, Fiore M. The Impact of Alcohol-Induced Epigenetic Modifications in the Treatment of Alcohol use Disorders. Curr Med Chem 2024; 31:5837-5855. [PMID: 37828672 DOI: 10.2174/0109298673256937231004093143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/07/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Alcohol use disorders are responsible for 5.9% of all death annually and 5.1% of the global disease burden. It has been suggested that alcohol abuse can modify gene expression through epigenetic processes, namely DNA and histone methylation, histone acetylation, and microRNA expression. The alcohol influence on epigenetic mechanisms leads to molecular adaptation of a wide number of brain circuits, including the hypothalamus-hypophysis-adrenal axis, the prefrontal cortex, the mesolimbic-dopamine pathways and the endogenous opioid pathways. Epigenetic regulation represents an important level of alcohol-induced molecular adaptation in the brain. It has been demonstrated that acute and chronic alcohol exposure can induce opposite modifications in epigenetic mechanisms: acute alcohol exposure increases histone acetylation, decreases histone methylation and inhibits DNA methyltransferase activity, while chronic alcohol exposure induces hypermethylation of DNA. Some studies investigated the chromatin status during the withdrawal period and the craving period and showed that craving was associated with low methylation status, while the withdrawal period was associated with elevated activity of histone deacetylase and decreased histone acetylation. Given the effects exerted by ethanol consumption on epigenetic mechanisms, chromatin structure modifiers, such as histone deacetylase inhibitors and DNA methyltransferase inhibitors, might represent a new potential strategy to treat alcohol use disorder. Further investigations on molecular modifications induced by ethanol might be helpful to develop new therapies for alcoholism and drug addiction targeting epigenetic processes.
Collapse
Affiliation(s)
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell'Alcolismo e le sue Complicanze, Sapienza University of Rome, Rome, Italy
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Ginevra Micangeli
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| |
Collapse
|
6
|
Koijam AS, Singh KD, Nameirakpam BS, Haobam R, Rajashekar Y. Drug addiction and treatment: An epigenetic perspective. Biomed Pharmacother 2024; 170:115951. [PMID: 38043446 DOI: 10.1016/j.biopha.2023.115951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023] Open
Abstract
Drug addiction is a complex disease affected by numerous genetic and environmental factors. Brain regions in reward pathway, neuronal adaptations, genetic and epigenetic interactions causing transcriptional enhancement or repression of multiple genes induce different addiction phenotypes for varying duration. Addictive drug use causes epigenetic alterations and similarly epigenetic changes induced by environment can promote addiction. Epigenetic mechanisms include DNA methylation and post-translational modifications like methylation, acetylation, phosphorylation, ubiquitylation, sumoylation, dopaminylation and crotonylation of histones, and ADP-ribosylation. Non-coding RNAs also induce epigenetic changes. This review discusses these above areas and stresses the need for exploring epidrugs as a treatment alternative and adjunct, considering the limited success of current addiction treatment strategies. Epigenome editing complexes have lately been effective in eukaryotic systems. Targeted DNA cleavage techniques such as CRISPR-Cas9 system, CRISPR-dCas9 complexes, transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases (ZFNs) have been exploited as targeted DNA recognition or anchoring platforms, fused with epigenetic writer or eraser proteins and delivered by transfection or transduction methods. Efficacy of epidrugs is seen in various neuropsychiatric conditions and initial results in addiction treatment involving model organisms are remarkable. Epidrugs present a promising alternative treatment for addiction.
Collapse
Affiliation(s)
- Arunkumar Singh Koijam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Kabrambam Dasanta Singh
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Bunindro Singh Nameirakpam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal 795003, Manipur, India
| | - Yallappa Rajashekar
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India.
| |
Collapse
|
7
|
Ozsvar J, Gissler M, Lavebratt C, Nilsson IAK. Exposures during pregnancy and at birth are associated with the risk of offspring eating disorders. Int J Eat Disord 2023; 56:2232-2249. [PMID: 37646613 DOI: 10.1002/eat.24053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Eating disorders (ED) are severe psychiatric disorders, commonly debuting early. Aberrances in the intrauterine environment and at birth have been associated with risk of ED. Here, we explore if, and at what effect size, a variety of such exposures associate with offspring ED, that is, anorexia nervosa (AN), bulimia nervosa (BN), and eating disorder not otherwise specified (EDNOS). METHODS This population-based cohort study, conducted from September 2021 to August 2023, used Finnish national registries of all live births in 1996-2014 (N = 1,097,753). Cox proportional hazards modeling was used to compare ED risk in exposed versus unexposed offspring, adjusting for potential confounders and performing sex-stratified analyses. RESULTS A total of 6614 offspring were diagnosed with an ED; 3668 AN, 666 BN, and 4248 EDNOS. Lower risk of offspring AN was seen with young mothers, continued smoking, and instrumental delivery, while higher risk was seen with older mothers, inflammatory disorders, prematurity, small for gestational age, and low Apgar. Offspring risk of BN was higher with continued smoking and prematurity, while lower with postmature birth. Offspring risk of EDNOS was lower with instrumental delivery, higher for older mothers, polycystic ovary syndrome, insulin-treated pregestational diabetes, antibacterial treatment, prematurity, and small for gestational age. Sex-specific associations were found. CONCLUSIONS Several prenatal and at birth exposures are associated with offspring ED; however, we cannot exclude confounding by maternal BMI. Nevertheless, several exposures selectively associate with risk of either AN, BN, or EDNOS, and some are sex-specific, emphasizing the importance of subtype- and sex-stratified analyses of ED. PUBLIC SIGNIFICANCE We define environmental factors involved in the development of different ED, of importance as preventive measure, but also in order to aid in defining the molecular pathways involved and thus in the longer perspective contribute to the development of pharmacological treatment of ED.
Collapse
Affiliation(s)
- Judit Ozsvar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mika Gissler
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Knowledge Brokers, Finnish Institute for Health and Welfare, Helsinki, Finland
- Research Centre for Child Psychiatry, University of Turku, Turku, Finland
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ida A K Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Centre for Eating Disorders Innovation, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Santos-Toscano R, Arevalo MA, Garcia-Segura LM, Grassi D, Lagunas N. Interaction of gonadal hormones, dopaminergic system, and epigenetic regulation in the generation of sex differences in substance use disorders: A systematic review. Front Neuroendocrinol 2023; 71:101085. [PMID: 37543184 DOI: 10.1016/j.yfrne.2023.101085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Substance use disorder (SUD) is a chronic condition characterized by pathological drug-taking and seeking behaviors. Remarkably different between males and females, suggesting that drug addiction is a sexually differentiated disorder. The neurobiological bases of sex differences in SUD include sex-specific reward system activation, influenced by interactions between gonadal hormone level changes, dopaminergic reward circuits, and epigenetic modifications of key reward system genes. This systematic review, adhering to PICOS and PRISMA-P 2015 guidelines, highlights the sex-dependent roles of estrogens, progesterone, and testosterone in SUD. In particular, estradiol elevates and progesterone reduces dopaminergic activity in SUD females, whilst testosterone and progesterone augment SUD behavior in males. Finally, SUD is associated with a sex-specific increase in the rate of opioid and monoaminergic gene methylation. The study reveals the need for detailed research on gonadal hormone levels, dopaminergic or reward system activity, and epigenetic landscapes in both sexes for efficient SUD therapy development.
Collapse
Affiliation(s)
- Raquel Santos-Toscano
- School of Medicine, University of Central Lancashire, 135A Adelphi St, Preston PR1 7BH, United Kingdom
| | - Maria Angeles Arevalo
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis Miguel Garcia-Segura
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniela Grassi
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, 28029 Madrid, Spain.
| | - Natalia Lagunas
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, Ciudad Universitaria, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
9
|
Broyles D, Philibert R. Precision epigenetics provides a scalable pathway for improving coronary heart disease care globally. Epigenomics 2023; 15:805-818. [PMID: 37702023 DOI: 10.2217/epi-2023-0233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Coronary heart disease (CHD) is the world's leading cause of death. Up to 90% of all CHD deaths are preventable, but effective prevention of this mortality requires more scalable, precise methods for assessing CHD status and monitoring treatment response. Unfortunately, current diagnostic methods have barriers to implementation, particularly in rural areas and lower-income countries. This gap may be bridged by highly scalable advances in DNA methylation testing methods and artificial intelligence. Herein, we review prior studies of CHD related to methylation alone and in combination with other biovariables. We compare these new methods with established methods for diagnosing CHD. Finally, we outline pathways through which methylation-based testing methods may allow the democratization of improved methods for assessing CHD globally.
Collapse
Affiliation(s)
- Damon Broyles
- Mercy Technology Services, St. Louis, MO 63127, USA
- Mercy Precision Medicine, Chesterfield, MO 63017, USA
| | - Robert Philibert
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA
- Cardio Diagnostics Inc, Chicago, IL 60642, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
10
|
Moura Alves Seixas G, de Souza Freitas R, Ferreira Fratelli C, de Souza Silva CM, Ramos de Lima L, Morato Stival M, Schwerz Funghetto S, Rodrigues da Silva IC. MAOA uVNTR Polymorphism Influence on Older Adults Diagnosed with Diabetes Mellitus/Systemic Arterial Hypertension. J Aging Res 2023; 2023:8538027. [PMID: 37533936 PMCID: PMC10393510 DOI: 10.1155/2023/8538027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 03/29/2023] [Accepted: 06/17/2023] [Indexed: 08/04/2023] Open
Abstract
Background Monoamine oxidase (MAO) is involved in several biological processes associated with well-being and mental health, and alterations in its function might directly impact various mental disorders. Some mental disorders concomitantly occur in individuals with clinical characteristics, such as substance abuse and diabetes. Objective To analyze the functional MAOA uVNTR polymorphism genotype frequency in an older adult population with diabetes mellitus/arterial hypertension and associate this frequency with clinical characteristics impacting daily life. Methodology. Older adults diagnosed with diabetes mellitus, systemic arterial hypertension, or both (DM/SAH) were selected and had their MAOA gene genotyped for uVNTR polymorphism. The revised Beck Depression Inventory (BDI) and a questionnaire were also applied to determine their mental health and clinical characteristics. Results The allelic variants detected among the participants were the 2R, 3R, 4R, and 3R/4R heterozygous genotypes. Genotypes solely containing the 3R allele had patients who marked yes for smoking and alcoholism, and only those with the 3R genotypes (female 3R/3R homozygote or male 3R∗ hemizygote) were significant. Although not statistically significant, only 3R and 3R/4R genotypes presented cases of severe depression per the revised BDI interpretations. Conclusion The MAOA uVNTR polymorphism's low-activity 3R allele presence in an older adult population diagnosed with DM/SAH may represent a risk for developing substance use (alcohol and smoking) dependence.
Collapse
Affiliation(s)
- Gabriel Moura Alves Seixas
- Graduate Program in Health Sciences and Technologies, Faculty of Ceilândia, University of Brasilia, Federal District, Brasília, Brazil
| | - Renata de Souza Freitas
- University Center of Brasília (UniCEUB), Brasília, Brazil
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
| | - Caroline Ferreira Fratelli
- Graduate Program in Health Sciences and Technologies, Faculty of Ceilândia, University of Brasilia, Federal District, Brasília, Brazil
| | | | | | - Marina Morato Stival
- Faculty of Ceilândia, University of Brasilia, Federal District, Brasília, Brazil
| | | | | |
Collapse
|
11
|
Goud TJ. Epigenetic and Long-Term Effects of Nicotine on Biology, Behavior, and Health. Pharmacol Res 2023; 192:106741. [PMID: 37149116 DOI: 10.1016/j.phrs.2023.106741] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 05/08/2023]
Abstract
Tobacco and nicotine use are associated with disease susceptibility and progression. Health challenges associated with nicotine and smoking include developmental delays, addiction, mental health and behavioral changes, lung disease, cardiovascular disease, endocrine disorders, diabetes, immune system changes, and cancer. Increasing evidence suggests that nicotine-associated epigenetic changes may mediate or moderate the development and progression of a myriad of negative health outcomes. In addition, nicotine exposure may confer increased lifelong susceptibility to disease and mental health challenges through alteration of epigenetic signaling. This review examines the relationship between nicotine exposure (and smoking), epigenetic changes, and maladaptive outcomes that include developmental disorders, addiction, mental health challenges, pulmonary disease, cardiovascular disease, endocrine disorders, diabetes, immune system changes, and cancer. Overall, findings support the contention that nicotine (or smoking) associated altered epigenetic signaling is a contributing factor to disease and health challenges.
Collapse
Affiliation(s)
- Thomas J Goud
- Department of Biobehavioral Health, The Pennsylvania State University, Penn State University, University Park, PA, USA.
| |
Collapse
|
12
|
Handschuh PA, Murgaš M, Vraka C, Nics L, Hartmann AM, Winkler-Pjrek E, Baldinger-Melich P, Wadsak W, Winkler D, Hacker M, Rujescu D, Domschke K, Lanzenberger R, Spies M. Effect of MAOA DNA Methylation on Human in Vivo Protein Expression Measured by [11C]harmine Positron Emission Tomography. Int J Neuropsychopharmacol 2023; 26:116-124. [PMID: 36573644 PMCID: PMC9926052 DOI: 10.1093/ijnp/pyac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Epigenetic modifications like DNA methylation are understood as an intermediary between environmental factors and neurobiology. Cerebral monoamine oxidase A (MAO-A) levels are altered in depression, as are DNA methylation levels within the MAOA gene, particularly in the promoter/exon I/intron I region. An effect of MAOA methylation on peripheral protein expression was shown, but the extent to which methylation affects brain MAO-A levels is not fully understood. METHODS Here, the influence of MAOA promoter/exon I/intron I region DNA methylation on global MAO-A distribution volume (VT), an index of MAO-A density, was assessed via [11C]harmine positron emission tomography in 22 patients (14 females) suffering from seasonal affective disorder and 30 healthy controls (17 females). RESULTS No significant influence of MAOA DNA methylation on global MAO-A VT was found, despite correction for health status, sex, season, and MAOA variable number of tandem repeat genotype. However, season affected average methylation in women, with higher levels in spring and summer (Puncorr = .03). We thus did not find evidence for an effect of MAOA DNA methylation on brain MAO-A VT. CONCLUSIONS In contrast to a previous study demonstrating an effect of methylation of a MAOA promoter region located further 5' on brain MAO-A, MAOA methylation of the region assessed here appears to affect brain protein levels to a limited extent at most. The observed effect of season on methylation levels is in accordance with extensive evidence for seasonal effects within the serotonergic system. CLINICALTRIALS.GOV IDENTIFIER NCT02582398 (https://clinicaltrials.gov/ct2/show/NCT02582398).
Collapse
Affiliation(s)
- Patricia A Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Annette M Hartmann
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Edda Winkler-Pjrek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Pia Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Dietmar Winkler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Germany
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| |
Collapse
|
13
|
The regulatory role of AP-2β in monoaminergic neurotransmitter systems: insights on its signalling pathway, linked disorders and theragnostic potential. Cell Biosci 2022; 12:151. [PMID: 36076256 PMCID: PMC9461128 DOI: 10.1186/s13578-022-00891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractMonoaminergic neurotransmitter systems play a central role in neuronal function and behaviour. Dysregulation of these systems gives rise to neuropsychiatric and neurodegenerative disorders with high prevalence and societal burden, collectively termed monoamine neurotransmitter disorders (MNDs). Despite extensive research, the transcriptional regulation of monoaminergic neurotransmitter systems is not fully explored. Interestingly, certain drugs that act on these systems have been shown to modulate central levels of the transcription factor AP-2 beta (AP-2β, gene: TFAP2Β). AP-2β regulates multiple key genes within these systems and thereby its levels correlate with monoamine neurotransmitters measures; yet, its signalling pathways are not well understood. Moreover, although dysregulation of TFAP2Β has been associated with MNDs, the underlying mechanisms for these associations remain elusive. In this context, this review addresses AP-2β, considering its basic structural aspects, regulation and signalling pathways in the controlling of monoaminergic neurotransmitter systems, and possible mechanisms underpinning associated MNDS. It also underscores the significance of AP-2β as a potential diagnostic biomarker and its potential and limitations as a therapeutic target for specific MNDs as well as possible pharmaceutical interventions for targeting it. In essence, this review emphasizes the role of AP-2β as a key regulator of the monoaminergic neurotransmitter systems and its importance for understanding the pathogenesis and improving the management of MNDs.
Collapse
|
14
|
Omarmeli V, Sharafshah A, Albonaim A, Keshavarz P. A study on methylation of two CpG islands of MAOA gene promoter among opium-addicted males undergoing methadone treatment. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:841-850. [PMID: 35759647 DOI: 10.1080/15257770.2022.2085291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
The association between methylation of MAOA gene promoter and alcohol and nicotine dependence has been demonstrated in women but not in men yet. Antisocial personality disorder (ASPD) and substance use disorders (SUD) are two types of disorders that could highly be influenced by methylation-induced changes in MAOA function. The aim of the current study is to investigate the effect of opioid addiction on methylation of MAOA gene promoter in males. DNA was extracted from the whole blood of all samples (29 opium-addicted individuals undergoing methadone treatment and 28 healthy people) according to the extraction protocol, followed by treating these samples with bisulfite kits. The investigated region including two CpG islands in the promoter region of MAOA gene contained 35 CpG dinucleotides investigated through Sanger sequencing method. The frequency of methylation at two CpG islands of MAOA gene promoter regions was equal to zero among addicted individuals undergoing methadone treatment and healthy peoples. Then, comparing methylation levels among the study group is not applicable. In conclusion, there was no association between opium addiction and methylation of the MAOA promoter regions in opium-addicted male undergoing methadone treatment.
Collapse
Affiliation(s)
- Vahid Omarmeli
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Sharafshah
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Albonaim
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvaneh Keshavarz
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
15
|
Nazari S, Pourmand SM, Makki SM, Brand S, Vousooghi N. Potential biomarkers of addiction identified by real-time PCR in human peripheral blood lymphocytes: a narrative review. Biomark Med 2022; 16:739-758. [PMID: 35658670 DOI: 10.2217/bmm-2021-0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Addiction-related neurobiological factors could be considered as potential biomarkers. The concentration of peripheral biomarkers in tissues like blood lymphocytes may mirror their brain levels. This review is focused on the mRNA expression of potential addiction biomarkers in human peripheral blood lymphocytes (PBLs). PubMed, EMBASE, Web of Science, Scopus and Google Scholar were searched using the keywords 'addiction', 'biomarker', 'peripheral blood lymphocyte', 'gene expression' and 'real-time PCR'. The results showed the alterations in the regulation of genes such as dopamine receptors, opioid receptors, NMDA receptors, cannabinoid receptors, α-synuclein, DYN, MAO-A, FosB and orexin-A as PBLs biomarkers in addiction stages. Such variations could also be found during abstinence and relapse. PBLs biomarkers may help in drug development and have clinical implications.
Collapse
Affiliation(s)
- Shahrzad Nazari
- Department of Neuroscience & Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Seyed Mahmoud Pourmand
- Addiction Department, School of Behavioral Sciences & Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, 1445613111, Iran
| | - Seyed Mohammad Makki
- Department of Psychiatry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Serge Brand
- Center for Affective-, Stress- and Sleep Disorders (ZASS), Psychiatric Clinics (UPK), University of Basel, Basel, 4002, Switzerland.,Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, 6714869914, Iran.,Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah, 6714869914, Iran.,Department of Sport, Exercise, and Health, Division of Sport Science and Psychosocial Health, University of Basel, Basel, 4052, Switzerland.,Department of Psychiatry, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417466191, Iran
| | - Nasim Vousooghi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran.,Research Center for Cognitive & Behavioral Sciences, Tehran University of Medical Sciences, Tehran, 13337159140, Iran.,Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, 1336616357, Iran
| |
Collapse
|
16
|
Varela RB, Cararo JH, Tye SJ, Carvalho AF, Valvassori SS, Fries GR, Quevedo J. Contributions of epigenetic inheritance to the predisposition of major psychiatric disorders: theoretical framework, evidence, and implications. Neurosci Biobehav Rev 2022; 135:104579. [DOI: 10.1016/j.neubiorev.2022.104579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/10/2022] [Accepted: 02/11/2022] [Indexed: 02/08/2023]
|
17
|
Veerappa A, Pendyala G, Guda C. A systems omics-based approach to decode substance use disorders and neuroadaptations. Neurosci Biobehav Rev 2021; 130:61-80. [PMID: 34411560 PMCID: PMC8511293 DOI: 10.1016/j.neubiorev.2021.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/23/2021] [Accepted: 08/14/2021] [Indexed: 11/15/2022]
Abstract
Substance use disorders (SUDs) are a group of neuropsychiatric conditions manifesting due to excessive dependence on potential drugs of abuse such as psychostimulants, opioids including prescription opioids, alcohol, inhalants, etc. Experimental studies have generated enormous data in the area of SUDs, but outcomes from such data have remained largely fragmented. In this review, we attempt to coalesce these data points providing an important first step towards our understanding of the etiology of SUDs. We propose and describe a 'core addictome' pathway that behaves central to all SUDs. Besides, we also have made some notable observations paving way for several hypotheses; MECP2 behaves as a master switch during substance use; five distinct gene clusters were identified based on respective substance addiction; a central cluster of genes serves as a hub of the addiction pathway connecting all other substance addiction clusters. In addition to describing these findings, we have emphasized the importance of some candidate genes that are of substantial interest for further investigation and serve as high-value targets for translational efforts.
Collapse
Affiliation(s)
- Avinash Veerappa
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gurudutt Pendyala
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
18
|
Checknita D, Tiihonen J, Hodgins S, Nilsson KW. Associations of age, sex, sexual abuse, and genotype with monoamine oxidase a gene methylation. J Neural Transm (Vienna) 2021; 128:1721-1739. [PMID: 34424394 PMCID: PMC8536631 DOI: 10.1007/s00702-021-02403-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022]
Abstract
Epigenome-wide studies report higher methylation among women than men with decreasing levels with age. Little is known about associations of sex and age with methylation of monoamine oxidase A (MAOA). Methylation of the first exonic and partial first intronic region of MAOA has been shown to strengthen associations of interactions of MAOA-uVNTR genotypes and adversity with aggression and substance misuse. Our study examined associations of sex and age with MAOA first exon and intron methylation levels in 252 women and 157 men aged 14–73 years. Participants included adolescents recruited at a substance misuse clinic, their siblings and parents, and healthy women. Women showed ~ 50% higher levels of exonic, and ~ 15% higher intronic, methylation than men. Methylation levels were similar between younger (M = 22.7 years) and older (M = 46.1 years) participants, and stable across age. Age modified few associations of methylation levels with sex. MAOA genotypes modified few associations of methylation with sex and age. Higher methylation levels among women were not explained by genotype, nor interaction of genotype and sexual abuse. Findings were similar after adjusting for lifetime diagnoses of substance dependence (women = 24.3%; men = 34.2%). Methylation levels were higher among women who experienced sexual abuse than women who did not. Results extend on prior studies by showing that women display higher levels of methylation than men within first intronic/exonic regions of MAOA, which did not decrease with age in either sex. Findings were not conditioned by genotype nor interactions of genotype and trauma, and indicate X-chromosome inactivation.
Collapse
Affiliation(s)
- David Checknita
- Department of Neuroscience, Uppsala University, Uppsala, Sweden. .,Department of Clinical Neuroscience, Karolinska Institutet, Psychiatry Building R5:00 c/o Jari Tiihonen, Karolinska Universitetssjukhuset, 171 76, Stockholm, Sweden. .,Centre for Clinical Research, Västmanland County Council, Uppsala University, Uppsala, Sweden.
| | - Jari Tiihonen
- Department of Clinical Neuroscience, Karolinska Institutet, Psychiatry Building R5:00 c/o Jari Tiihonen, Karolinska Universitetssjukhuset, 171 76, Stockholm, Sweden.,Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden.,Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, Kuopio, Finland
| | - Sheilagh Hodgins
- Department of Clinical Neuroscience, Karolinska Institutet, Psychiatry Building R5:00 c/o Jari Tiihonen, Karolinska Universitetssjukhuset, 171 76, Stockholm, Sweden.,Département de Psychiatrie et Addictologie, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Université de Montréal, Montréal, QC, Canada
| | - Kent W Nilsson
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Centre for Clinical Research, Västmanland County Council, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Genotype-dependent epigenetic regulation of DLGAP2 in alcohol use and dependence. Mol Psychiatry 2021; 26:4367-4382. [PMID: 31745236 DOI: 10.1038/s41380-019-0588-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
Alcohol misuse is a major public health problem originating from genetic and environmental risk factors. Alterations in the brain epigenome may orchestrate changes in gene expression that lead to alcohol misuse and dependence. Through epigenome-wide association analysis of DNA methylation from human brain tissues, we identified a differentially methylated region, DMR-DLGAP2, associated with alcohol dependence. Methylation within DMR-DLGAP2 was found to be genotype-dependent, allele-specific and associated with reward processing in brain. Methylation at the DMR-DLGAP2 regulated expression of DLGAP2 in vitro, and Dlgap2-deficient mice showed reduced alcohol consumption compared with wild-type controls. These results suggest that DLGAP2 may be an interface for genetic and epigenetic factors controlling alcohol use and dependence.
Collapse
|
20
|
Siomek-Gorecka A, Dlugosz A, Czarnecki D. The Molecular Basis of Alcohol Use Disorder (AUD). Genetics, Epigenetics, and Nutrition in AUD: An Amazing Triangle. Int J Mol Sci 2021; 22:ijms22084262. [PMID: 33924016 PMCID: PMC8072802 DOI: 10.3390/ijms22084262] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol use disorder (AUD) is a very common and complex disease, as alcohol is the most widely used addictive drug in the world. This disorder has an enormous impact on public health and social and private life, and it generates a huge number of social costs. Alcohol use stimulates hypothalamic-pituitary-adrenal (HPA) axis responses and is the cause of many physical and social problems (especially liver disease and cancer), accidental injury, and risky sexual behavior. For years, researchers have been trying to identify the genetic basis of alcohol use disorder, the molecular mechanisms responsible for its development, and an effective form of therapy. Genetic and environmental factors are known to contribute to the development of AUD, and the expression of genes is a complicated process that depends on epigenetic modulations. Dietary nutrients, such as vitamins, may serve as one these modulators, as they have a direct impact on epigenomes. In this review, we connect gathered knowledge from three emerging fields-genetics, epigenetics, and nutrition-to form an amazing triangle relating to alcohol use disorder.
Collapse
Affiliation(s)
- Agnieszka Siomek-Gorecka
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-095 Bydgoszcz, Poland
- Correspondence: ; Tel.: +48-52-585-37-48
| | - Anna Dlugosz
- Department of Engineering and Chemical and Food Analytics, Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, 85-326 Bydgoszcz, Poland;
| | - Damian Czarnecki
- Department of Preventive Nursing, Faculty of Health Sciences, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-821 Bydgoszcz, Poland;
| |
Collapse
|
21
|
Oyaci Y, Aytac HM, Pasin O, Cetinay Aydin P, Pehlivan S. Detection of altered methylation of MB-COMT promotor and DRD2 gene in cannabinoid or synthetic cannabinoid use disorder regarding gene variants and clinical parameters. J Addict Dis 2021; 39:526-536. [PMID: 33781176 DOI: 10.1080/10550887.2021.1906618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study aims to investigate the association between cannabinoid use disorder (CUD) or synthetic cannabinoid use disorder (SCUD) and methylation status of MB-COMT (membrane-bound catechol-O-methyltransferase) promotor or DRD2 gene considering gene variants and clinical parameters. Based on the DSM-5 criteria, 218 CUD/SCUD patients' diagnoses were confirmed with a positive urine test, and a control group consisting of 102 participants without substance use disorders was included. Methylation-specific PCR was used to identify the methylation of the MB-COMT promotor and DRD2 gene. DRD2-141C Ins/Del and COMT Val158Met gene variants were evaluated by using PCR-RFLP. When the DRD2 and MB-COMT promoter methylation of CUD/SCUD patients were compared with the control group, there was a significant difference between the MB-COMT promoter methylation status of the two groups. When comparing DRD2 gene methylation due to clinical parameters and DRD2 genotype distribution in patients, the methylation status was significantly different between the groups due to the family history. Again, comparing the MB-COMT promotor methylation due to the COMT Val158Met genotype distribution and clinical parameters in patients, the MB-COMT promoter methylation status was significantly different between the groups due to the presence of alcohol usage. In summary, whereas the MB-COMT promoter methylation may be associated with the CUD/SCUD, the methylation of the DRD2 gene was not related to CUD/SCUD.
Collapse
Affiliation(s)
- Yasemin Oyaci
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hasan Mervan Aytac
- Department of Psychiatry, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Ozge Pasin
- Department of Biostatistics, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Pinar Cetinay Aydin
- Department of Psychiatry, University of Health Sciences, Psychiatry Clinic, Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Sacide Pehlivan
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
22
|
Sherafat Y, Bautista M, Fowler CD. Multidimensional Intersection of Nicotine, Gene Expression, and Behavior. Front Behav Neurosci 2021; 15:649129. [PMID: 33828466 PMCID: PMC8019722 DOI: 10.3389/fnbeh.2021.649129] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
The cholinergic system plays a crucial role in nervous system function with important effects on developmental processes, cognition, attention, motivation, reward, learning, and memory. Nicotine, the reinforcing component of tobacco and e-cigarettes, directly acts on the cholinergic system by targeting nicotinic acetylcholine receptors (nAChRs) in the brain. Activation of nAChRs leads to a multitude of immediate and long-lasting effects in specific cellular populations, thereby affecting the addictive properties of the drug. In addition to the direct actions of nicotine in binding to and opening nAChRs, the subsequent activation of circuits and downstream signaling cascades leads to a wide range of changes in gene expression, which can subsequently alter further behavioral expression. In this review, we provide an overview of the actions of nicotine that lead to changes in gene expression and further highlight evidence supporting how these changes can often be bidirectional, thereby inducing subsequent changes in behaviors associated with further drug intake.
Collapse
Affiliation(s)
- Yasmine Sherafat
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, Unites States
| | - Malia Bautista
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, Unites States
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, Unites States
| |
Collapse
|
23
|
Dugué PA, Wilson R, Lehne B, Jayasekara H, Wang X, Jung CH, Joo JE, Makalic E, Schmidt DF, Baglietto L, Severi G, Gieger C, Ladwig KH, Peters A, Kooner JS, Southey MC, English DR, Waldenberger M, Chambers JC, Giles GG, Milne RL. Alcohol consumption is associated with widespread changes in blood DNA methylation: Analysis of cross-sectional and longitudinal data. Addict Biol 2021; 26:e12855. [PMID: 31789449 DOI: 10.1111/adb.12855] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 09/29/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022]
Abstract
DNA methylation may be one of the mechanisms by which alcohol consumption is associated with the risk of disease. We conducted a large-scale, cross-sectional, genome-wide DNA methylation association study of alcohol consumption and a longitudinal analysis of repeated measurements taken several years apart. Using the Illumina HumanMethylation450 BeadChip, DNA methylation was measured in blood samples from 5606 Melbourne Collaborative Cohort Study (MCCS) participants. For 1088 of them, these measures were repeated using blood samples collected a median of 11 years later. Associations between alcohol intake and blood DNA methylation were assessed using linear mixed-effects regression models. Independent data from the London Life Sciences Prospective Population (LOLIPOP) (N = 4042) and Cooperative Health Research in the Augsburg Region (KORA) (N = 1662) cohorts were used to replicate associations discovered in the MCCS. Cross-sectional analyses identified 1414 CpGs associated with alcohol intake at P < 10-7 , 1243 of which had not been reported previously. Of these novel associations, 1078 were replicated (P < .05) using LOLIPOP and KORA data. Using the MCCS data, we also replicated 403 of 518 previously reported associations. Interaction analyses suggested that associations were stronger for women, non-smokers, and participants genetically predisposed to consume less alcohol. Of the 1414 CpGs, 530 were differentially methylated (P < .05) in former compared with current drinkers. Longitudinal associations between the change in alcohol intake and the change in methylation were observed for 513 of the 1414 cross-sectional associations. Our study indicates that alcohol intake is associated with widespread changes in DNA methylation across the genome. Longitudinal analyses showed that the methylation status of alcohol-associated CpGs may change with alcohol consumption changes in adulthood.
Collapse
Affiliation(s)
- Pierre-Antoine Dugué
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Rory Wilson
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Benjamin Lehne
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Harindra Jayasekara
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Xiaochuan Wang
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Chol-Hee Jung
- Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC, Australia
| | - JiHoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Enes Makalic
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Daniel F Schmidt
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Laura Baglietto
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gianluca Severi
- CESP, INSERM U1018, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Karl-Heinz Ladwig
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Klinik und Poliklinik für Psychosomatische Medizin und Psychotherapie des Klinikums Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Annette Peters
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, Middlesex, UK
- Imperial College Healthcare NHS Trust, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Genetic Epidemiology Laboratory, Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Dallas R English
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - John C Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
- Imperial College Healthcare NHS Trust, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| |
Collapse
|
24
|
Stephenson M, Bollepalli S, Cazaly E, Salvatore JE, Barr P, Rose RJ, Dick D, Kaprio J, Ollikainen M. Associations of Alcohol Consumption With Epigenome-Wide DNA Methylation and Epigenetic Age Acceleration: Individual-Level and Co-twin Comparison Analyses. Alcohol Clin Exp Res 2020; 45:318-328. [PMID: 33277923 DOI: 10.1111/acer.14528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND DNA methylation may play a role in the progression from normative to problematic drinking and underlie adverse health outcomes associated with alcohol misuse. We examined the association between alcohol consumption and DNA methylation patterns using 3 approaches: a conventional epigenome-wide association study (EWAS); a co-twin comparison design, which controls for genetic and environmental influences that twins share; and a regression of age acceleration, defined as a discrepancy between chronological age and DNA methylation age, on alcohol consumption. METHODS Participants came from the Finnish Twin Cohorts (FinnTwin12/FinnTwin16; N = 1,004; 55% female; average age = 23 years). Individuals reported the number of alcoholic beverages consumed in the past week, and epigenome-wide DNA methylation was assessed in whole blood using the Infinium HumanMethylation450 BeadChip. RESULTS In the EWAS, alcohol consumption was significantly related to methylation at 24 CpG sites. When evaluating whether differences between twin siblings (185 monozygotic pairs) in alcohol consumption predicted differences in DNA methylation, co-twin comparisons replicated 4 CpG sites from the EWAS and identified 23 additional sites. However, when we examined qualitative differences in drinking patterns between twins (heavy drinker vs. light drinker/abstainer or moderate drinker vs. abstainer; 44 pairs), methylation patterns did not significantly differ within twin pairs. Finally, individuals who reported higher alcohol consumption also exhibited greater age acceleration, though results were no longer significant after controlling for genetic and environmental influences shared by co-twins. CONCLUSIONS Our analyses offer insight into the associations between epigenetic variation and levels of alcohol consumption in young adulthood.
Collapse
Affiliation(s)
- Mallory Stephenson
- From the, Department of Psychology, (MS, JES, PB, DD), Virginia Commonwealth University, Richmond, Virginia
| | - Sailalitha Bollepalli
- Institute for Molecular Medicine Finland (FIMM), (SB, EC, JK, MO), University of Helsinki, Helsinki, Finland
| | - Emma Cazaly
- Institute for Molecular Medicine Finland (FIMM), (SB, EC, JK, MO), University of Helsinki, Helsinki, Finland
| | - Jessica E Salvatore
- From the, Department of Psychology, (MS, JES, PB, DD), Virginia Commonwealth University, Richmond, Virginia.,Virginia Institute for Psychiatric and Behavioral Genetics, (JES), Virginia Commonwealth University, Richmond, Virginia
| | - Peter Barr
- From the, Department of Psychology, (MS, JES, PB, DD), Virginia Commonwealth University, Richmond, Virginia
| | - Richard J Rose
- Department of Psychological and Brain Sciences, (RJR), Indiana University, Bloomington, Indiana
| | - Danielle Dick
- From the, Department of Psychology, (MS, JES, PB, DD), Virginia Commonwealth University, Richmond, Virginia.,Department of Human and Molecular Genetics, (DD), Virginia Commonwealth University, Richmond, Virginia
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), (SB, EC, JK, MO), University of Helsinki, Helsinki, Finland.,Department of Public Health, (JK, MO), University of Helsinki, Helsinki, Finland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland (FIMM), (SB, EC, JK, MO), University of Helsinki, Helsinki, Finland.,Department of Public Health, (JK, MO), University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Philibert R, Long JD, Mills JA, Beach SRH, Gibbons FX, Gerrard M, Simons R, Pinho PB, Ingle D, Dawes K, Dogan T, Dogan M. A simple, rapid, interpretable, actionable and implementable digital PCR based mortality index. Epigenetics 2020; 16:1135-1149. [PMID: 33138668 DOI: 10.1080/15592294.2020.1841874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mortality assessments are conducted for both civil and commercial purposes. Recent advances in epigenetics have resulted in DNA methylation tools to assess risk and aid in this task. However, widely available array-based algorithms are not readily translatable into clinical tools and do not provide a good foundation for clinical recommendations. Further, recent work shows evidence of heritability and possible racial bias in these indices. Using a publicly available array data set, the Framingham Heart Study (FHS), we develop and test a five-locus mortality-risk algorithm using only previously validated methylation biomarkers that have been shown to be free of racial bias, and that provide specific assessments of smoking, alcohol consumption, diabetes and heart disease. We show that a model using age, sex and methylation measurements at these five loci outperforms the 513 probe Levine index and approximates the predictive power of the 1030 probe GrimAge index. We then show each of the five loci in our algorithm can be assessed using a more powerful, reference-free digital PCR approach, further demonstrating that it is readily clinically translatable. Finally, we show the loci do not reflect ethnically specific variation. We conclude that this algorithm is a simple, yet powerful tool for assessing mortality risk. We further suggest that the output from this or similarly derived algorithms using either array or digital PCR can be used to provide powerful feedback to patients, guide recommendations for additional medical assessments, and help monitor the effect of public health prevention interventions.
Collapse
Affiliation(s)
- Robert Philibert
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA.,Behavioral Diagnostics LLC, Coralville, IA, USA
| | - Jeffrey D Long
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA.,Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - James A Mills
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - S R H Beach
- Center for Family Research, University of Georgia, Athens, GA USA
| | | | - Meg Gerrard
- Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - Ron Simons
- Department of Sociology, University of Georgia, Athens, GA, USA
| | | | - Douglas Ingle
- Association of Home Office Underwriters, Washington, DC, USA
| | - Kelsey Dawes
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Timur Dogan
- Behavioral Diagnostics LLC, Coralville, IA, USA.,Cardio Diagnostics Inc, Coralville, IA, USA
| | - Meeshanthini Dogan
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA.,Behavioral Diagnostics LLC, Coralville, IA, USA.,Cardio Diagnostics Inc, Coralville, IA, USA
| |
Collapse
|
26
|
Witt SH, Frank J, Frischknecht U, Treutlein J, Streit F, Foo JC, Sirignano L, Dukal H, Degenhardt F, Koopmann A, Hoffmann S, Koller G, Pogarell O, Preuss UW, Zill P, Adorjan K, Schulze TG, Nöthen M, Spanagel R, Kiefer F, Rietschel M. Acute alcohol withdrawal and recovery in men lead to profound changes in DNA methylation profiles: a longitudinal clinical study. Addiction 2020; 115:2034-2044. [PMID: 32080920 DOI: 10.1111/add.15020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/24/2019] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Withdrawal is a serious and sometimes life-threatening event in alcohol-dependent individuals. It has been suggested that epigenetic processes may play a role in this context. This study aimed to identify genes and pathways involved in such processes which hint to relevant mechanisms underlying withdrawal. DESIGN Cross-sectional case-control study and longitudinal within-cases study during alcohol withdrawal and after 2 weeks of recovery SETTING: Addiction medicine departments in two university hospitals in southern Germany. PARTICIPANTS/CASES Ninety-nine alcohol-dependent male patients receiving in-patient treatment and suffering from severe withdrawal symptoms during detoxification and 95 age-matched male controls. MEASUREMENTS Epigenome-wide methylation patterns were analyzed in patients during acute alcohol withdrawal and after 2 weeks of recovery, as well as in age-matched controls using Illumina EPIC bead chips. Methylation levels of patients and controls were tested for association with withdrawal status. Tests were adjusted for technical and batch effects, age, smoking and cell type distribution. Single-site analysis, as well as an analysis of differentially methylated regions and gene ontology analysis, were performed. FINDINGS We found pronounced epigenome-wide significant [false discovery rate (FDR) < 0.05] differences between patients during withdrawal and after 2 weeks [2876 cytosine-phosphate-guanine (CpG) sites], as well as between patients and controls (9845 and 6094 CpG sites comparing patients at time-point 1 and patients at time-point 2 versus controls, respectively). Analysis of differentially methylated regions and involved pathways revealed an over-representation of gene ontology terms related to the immune system response. Differences between patients and controls diminished after recovery (> 800 CpG sites less), suggesting a partial reversibility of alcohol- and withdrawal-related methylation. CONCLUSIONS Acute alcohol withdrawal in severely dependent male patients appears to be associated with extensive changes in epigenome-wide methylation patterns. In particular, genes involved in immune system response seem to be affected by this condition.
Collapse
Affiliation(s)
- Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Ulrich Frischknecht
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Jerome C Foo
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Lea Sirignano
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Helene Dukal
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Anne Koopmann
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Sabine Hoffmann
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Gabi Koller
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Oliver Pogarell
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Ulrich W Preuss
- Department of Psychiatry, Psychotherapy, Psychosomatics, Martin-Luther-University (MLU), Halle/Saale, Germany
| | - Peter Zill
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Kristina Adorjan
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany.,Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Markus Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Falk Kiefer
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| |
Collapse
|
27
|
Cigarette smoke exposure has region-specific effects on GDAP1 expression in mouse hippocampus. Psychiatry Res 2020; 289:112979. [PMID: 32438208 DOI: 10.1016/j.psychres.2020.112979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 11/23/2022]
Abstract
Early detection markers for substance use disorders are urgently needed. Recently, an association between the methylation of Ganglioside-induced differentiation-associated protein 1 (GDAP1) and alcohol addiction was found in a US and German population. In this study, we investigate whether GDAP1 expression might be affected by cigarette smoke as well and thus might be a marker of substance addiction in general. 11 adult female C57BL/6 J mice (6 wildtype and 5 lacking the NO-sensitive guanylyl cyclase1 (NO-GC1 KO)) were exposed to cigarette smoke over a period of 5 weeks, their brains immunohistochemically stained and compared to 11 non exposed mice (5 WT and 6 KO). The deletion of NO-GC1 results in a complete loss of synaptic plasticity, therefore, addiction-related alterations might become more obvious. Co-staining of anti-GDAP1 and DAPI revealed protein in the stratum granulare of the hippocampus. Three randomized frames for dentate gyrus (DG) and three for Cornu Ammonis region 1 (CA1) were used to count GDAP1. Cigarette smoke exposure significantly influenced GDAP1 expression depending on the hippocampal region but was not influenced by guanyl cyclase. In conclusion, cigarette smoke exposure alone had an effect on GDAP1 amount in both regions. Therewith, GDAP1might be a biomarker for substance addiction in general.
Collapse
|
28
|
Yang H, Li J, Ji A, Hu L, Zhang X, Liu L, Qing L, Yan M, Nie S. Methylation of the MAOA promoter is associated with schizophrenia. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:864. [PMID: 32793708 DOI: 10.21037/atm-20-4481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Earlier studies have shown that patients with schizophrenia have abnormalities in DNA methylation. Monoamine oxidase A (MAOA) has been extensively studied due to its biological role in neurological function. However, the relationship between the DNA methylation of the MAOA gene and schizophrenia is unclear. This study aims to elucidate the relationship between the methylation of the MAOA gene promoter and schizophrenia. Methods There were 151 individuals with schizophrenia (104 males and 47 females), which were diagnosed according to DSM-V, the DNA of peripheral blood of all samples was extracted and chemically modified with bisulfite. The promoter region of MAOA gene was sequenced by Methylation Target Technical Method (MethylTargetTM), and 247 controls (204 males and 43 females) included in the study. MAOA gene promoter methylation was compared between the case and control groups. Meanwhile, we measured DNA methylation in two regions of MAOA (MAOA-2 and MAOA-3). Results In the male schizophrenia group (BM) and the male control group (DM), MAOA-2 and MAOA-3 methylation were positively associated with schizophrenia. In the female schizophrenia group (BF) and the female control group (DF), MAOA-2 methylation was associated with schizophrenia. Conclusions Although the role of gene methylation in the development of schizophrenia is still unclear, our findings suggest that DNA methylation of MAOA may contribute to the onset of schizophrenia.
Collapse
Affiliation(s)
- Hao Yang
- Kunming Medical University, Kunming, China.,Department of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Jiajue Li
- Kunming Medical University, Kunming, China.,Department of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Aicen Ji
- Kunming Medical University, Kunming, China.,Department of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Liping Hu
- Department of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Xiufeng Zhang
- Department of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Linlin Liu
- Department of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Lili Qing
- Kunming Medical University, Kunming, China.,Department of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Ming Yan
- Kunming Medical University, Kunming, China.,Department of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Shengjie Nie
- Department of Forensic Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
29
|
Kõks G, Prans E, Ho XD, Duy BH, Tran HD, Ngo NB, Hoang LN, Tran HM, Bubb VJ, Quinn JP, Kõks S. Genetic interaction between two VNTRs in the MAOA gene is associated with the nicotine dependence. Exp Biol Med (Maywood) 2020; 245:733-739. [PMID: 32241179 DOI: 10.1177/1535370220916888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
IMPACT STATEMENT The present study combined the analysis of two transcriptional regulators, uVNTR and dVNTR, in the MAOA gene that is an enzyme responsible for the monoamine degradation and identified genetic interaction between these VNTRs in association with the nicotine dependence. The main impact is that when analyzing different populations in the genetic studies, the functionally meaningful variants should be combined rather than addressing individual elements separately (a mini polygenic risk score for a particular gene/locus). This combination is very rarely analyzed and therefore the study sets an example. Another impact is that we analyzed the genetic variability in the Asian population and therefore our data present a piece of information from underrepresented populations.
Collapse
Affiliation(s)
| | - Ele Prans
- Department of Pathophysiology, University of Tartu, Tartu 50411, Estonia
| | - Xuan D Ho
- Hue University of Medicine and Pharmacy, Hue University, Hue City 530000, Vietnam
| | - Binh H Duy
- Hue University of Medicine and Pharmacy, Hue University, Hue City 530000, Vietnam
| | - Ha Dt Tran
- Public Health Faculty, Danang University of Medical Technology and Pharmacy, Da Nang City 550000, Vietnam
| | - Ngoc Bt Ngo
- Public Health Faculty, Danang University of Medical Technology and Pharmacy, Da Nang City 550000, Vietnam
| | - Linh Nn Hoang
- Public Health Faculty, Danang University of Medical Technology and Pharmacy, Da Nang City 550000, Vietnam
| | - Hue Mt Tran
- Public Health Faculty, Danang University of Medical Technology and Pharmacy, Da Nang City 550000, Vietnam
| | - Vivien J Bubb
- Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L693BX, UK
| | - John P Quinn
- Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L693BX, UK
| | - Sulev Kõks
- Murdoch University, Murdoch, WA 6150, Australia
- The Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| |
Collapse
|
30
|
Freudenheim JL, Shields PG, Song MA, Smiraglia D. DNA Methylation and Smoking: Implications for Understanding Effects of Electronic Cigarettes. CURR EPIDEMIOL REP 2019. [DOI: 10.1007/s40471-019-00191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Ziegler C, Domschke K. Epigenetic signature of MAOA and MAOB genes in mental disorders. J Neural Transm (Vienna) 2018; 125:1581-1588. [DOI: 10.1007/s00702-018-1929-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/12/2018] [Indexed: 12/17/2022]
|
32
|
Abstract
OBJECTIVE Smoking dependence is the main cause for tobacco-related illnesses. The addiction-causing substance in tobacco, nicotine, acts through the dopamine pathway in the brain, causing several pleasurable experiences through cigarette smoking. Thus, both genetic and epigenetic factors related to dopamine metabolism may play an important role in influencing an individual's smoking behavior. MATERIALS AND METHODS We studied the 1460 C/T variation and the variable number tandem repeat polymorphism in the MAOA gene and A/G variation in intron 13 in the MAOB gene together with four DNA methylation sites in both of these genes in relation to several smoking-related phenotypes in a study population of 1230 Whites of Russian origin. RESULTS The genotypes studied were found to be associated with smoking status in women; the MAOB G variant allele was more prevalent in female smokers than nonsmokers [odds ratio (OR): 2.16, 95% confidence interval (CI): 1.08-4.33], whereas a reverse relation was observed for the MAOA 1460 T-variant allele (OR: 0.44, 95% CI: 0.21-0.91) and variable number tandem repeat low-activity alleles (OR: 0.49, 95% CI: 0.24-0.98). Moreover, the mean methylation values of the CpG sites studied in the MAOA gene were related to smoking behavior in women. Similarly, several methylation patterns in the MAOB gene were associated with a smoking history, with each CpG site showing a remarkable sex dependence. CONCLUSION Smoking behavior seems to be related to the genetic and epigenetic profile of MAO genes, with considerable individual and sex-related differences.
Collapse
|
33
|
Mahna D, Puri S, Sharma S. DNA methylation signatures: Biomarkers of drug and alcohol abuse. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 777:19-28. [DOI: 10.1016/j.mrrev.2018.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/22/2018] [Accepted: 06/18/2018] [Indexed: 01/08/2023]
|
34
|
Fite PJ, Brown S, Hossain W, Manzardo A, Butler MG, Bortolato M. Tobacco and cannabis use in college students are predicted by sex-dimorphic interactions between MAOA genotype and child abuse. CNS Neurosci Ther 2018; 25:101-111. [PMID: 29952131 DOI: 10.1111/cns.13002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/06/2018] [Accepted: 06/08/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Postsecondary students in Western countries exhibit a high prevalence of cannabis and tobacco use disorders. The etiology of these problems is contributed by several psychosocial factors, including childhood adversity and trauma; however, the mechanisms whereby these environmental determinants predispose to the use of these substances remain elusive, due to our poor knowledge of genetic and biological moderators. Converging evidence points to the monoamine oxidase A (MAOA) gene as a moderator of the effects of lifetime stress on the initiation of substance use. AIMS Building on these premises, in this study, we analyzed whether MAOA upstream variable number tandem repeat (uVNTR) alleles interact with child maltreatment history to predict for lifetime cannabis and tobacco consumption. MATERIALS AND METHODS Five hundred college students (age: 18-25 years) from a large Midwestern University were surveyed for their child maltreatment history (encompassing emotional, physical, and sexual abuse, as well as emotional and physical neglect) and lifetime consumption of cannabis and tobacco. Saliva samples were obtained to determine the MAOA uVNTR genotype of each participant. RESULTS In female students, lifetime tobacco and cannabis use was predicted by the interaction of physical and emotional abuse with high-activity MAOA allelic variants; conversely, in males, the interaction of low-activity MAOA alleles and physical abuse was associated with lifetime use of tobacco, but not cannabis. DISCUSSION These findings collectively suggest that the vulnerability to smoke tobacco and cannabis is predicted by sex-dimorphic interactions of MAOA gene with childhood abuse. CONCLUSION These biosocial underpinnings of tobacco and cannabis use may prove important in the development of novel personalized preventive strategies for substance use disorders in adolescents.
Collapse
Affiliation(s)
- Paula J Fite
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.,Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA
| | - Shaquanna Brown
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.,Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA
| | - Waheeda Hossain
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.,Departments of Psychiatry, Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ann Manzardo
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.,Departments of Psychiatry, Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Merlin G Butler
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.,Departments of Psychiatry, Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Marco Bortolato
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.,Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA.,Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
35
|
Barker ED, Walton E, Cecil CAM. Annual Research Review: DNA methylation as a mediator in the association between risk exposure and child and adolescent psychopathology. J Child Psychol Psychiatry 2018; 59:303-322. [PMID: 28736860 DOI: 10.1111/jcpp.12782] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND DNA methylation (DNAm) is a potential mechanism for propagating the effects of environmental exposures on child and adolescent mental health. In recent years, this field has experienced steady growth. METHODS We provide a strategic review of the current child and adolescent literature to evaluate evidence for a mediating role of DNAm in the link between environmental risks and psychopathological outcomes, with a focus on internalising and externalising difficulties. RESULTS Based on the studies presented, we conclude that there is preliminary evidence to support that (a) environmental factors, such as diet, neurotoxic exposures and stress, influence offspring DNAm, and that (b) variability in DNAm, in turn, is associated with child and adolescent psychopathology. Overall, very few studies have examined DNAm in relation to both exposures and outcomes, and almost all analyses have been correlational in nature. CONCLUSIONS DNAm holds potential as a biomarker indexing both environmental risk exposure and vulnerability for child psychopathology. However, the extent to which it may represent a causal mediator is not clear. In future, collection of prospective risk exposure, DNAm and outcomes - as well as functional characterisation of epigenetic findings - will assist in determining the role of DNAm in the link between risk exposure and psychopathology.
Collapse
Affiliation(s)
- Edward D Barker
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Esther Walton
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Charlotte A M Cecil
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
36
|
Checknita D, Ekström TJ, Comasco E, Nilsson KW, Tiihonen J, Hodgins S. Associations of monoamine oxidase A gene first exon methylation with sexual abuse and current depression in women. J Neural Transm (Vienna) 2018; 125:1053-1064. [PMID: 29600412 PMCID: PMC5999185 DOI: 10.1007/s00702-018-1875-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/08/2018] [Indexed: 12/19/2022]
Abstract
Childhood physical abuse (PA) and sexual abuse (SA) interact with monoamine oxidase A (MAOA) gene polymorphism to modify risk for mental disorders. In addition, PA and SA may alter gene activity through epigenetic mechanisms such as DNA methylation, thereby further modifying risk for disorders. We investigated whether methylation in a region spanning the MAOA first exon and part of the first intron was associated with PA and/or SA, MAOA genotype, alcohol dependence, drug dependence, depression disorders, anxiety disorders, and conduct disorder. 114 Swedish women completed standardized diagnostic interviews and questionnaires to report PA and SA, and provided saliva samples for DNA extraction. DNA was genotyped for MAOA-uVNTR polymorphisms, and methylation of a MAOA region of interest (chrX: 43,515,544–43,515,991) was measured. SA, not PA, was associated with hypermethylation of the MAOA first exon relative to no-abuse, and the association was robust to adjustment for psychoactive medication, alcohol and drug dependence, and current substance use. SA and MAOA-uVNTR genotype, but not their interaction, was associated with MAOA methylation. SA associated with all measured mental disorders. Hypermethylation of MAOA first exon mediated the association of SA with current depression, and both methylation levels and SA independently predicted lifetime depression. Much remains to be learned about the independent effects of SA and MAOA-uVNTR genotypes on methylation of the MAOA first exon.
Collapse
Affiliation(s)
- David Checknita
- Department of Neuroscience, Uppsala University, Uppsala, Sweden. .,Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden. .,Karolinska Universitetssjukhuset, Psychiatry Building R5:00 c/o Jari Tiihonen, 171 76, Stockholm, Sweden.
| | - Tomas J Ekström
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Erika Comasco
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Kent W Nilsson
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Centre for Clinical Research, Västmanland County Council, Uppsala University, Västerås, Sweden
| | - Jari Tiihonen
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Sheilagh Hodgins
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Institut Universitaire en Santé Mentale de Montréal, Université de Montréal, Montreal, Canada
| |
Collapse
|
37
|
Manca M, Pessoa V, Lopez AI, Harrison PT, Miyajima F, Sharp H, Pickles A, Hill J, Murgatroyd C, Bubb VJ, Quinn JP. The Regulation of Monoamine Oxidase A Gene Expression by Distinct Variable Number Tandem Repeats. J Mol Neurosci 2018; 64:459-470. [PMID: 29542091 PMCID: PMC5874270 DOI: 10.1007/s12031-018-1044-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/15/2018] [Indexed: 12/19/2022]
Abstract
The monoamine oxidase A (MAOA) uVNTR (upstream variable number tandem repeat) is one of the most often cited examples of a gene by environment interaction (GxE) in relation to behavioral traits. However, MAOA possesses a second VNTR, 500 bp upstream of the uVNTR, which is termed d- or distal VNTR. Furthermore, genomic analysis indicates that there are a minimum of two transcriptional start sites (TSSs) for MAOA, one of which encompasses the uVNTR within the 5' untranslated region of one of the isoforms. Through expression analysis in semi-haploid HAP1 cell lines genetically engineered in order to knockout (KO) either the uVNTR, dVNTR, or both VNTRs, we assessed the effect of the two MAOA VNTRs, either alone or in combination, on gene expression directed from the different TSSs. Complementing our functional analysis, we determined the haplotype variation of these VNTRs in the general population. The expression of the two MAOA isoforms was differentially modulated by the two VNTRs located in the promoter region. The most extensively studied uVNTR, previously considered a positive regulator of the MAOA gene, did not modulate the expression of what it is considered the canonical isoform, while we found that the dVNTR positively regulated this isoform in our model. In contrast, both the uVNTR and the dVNTR were found to act as negative regulators of the second less abundant MAOA isoform. The haplotype analysis for these two VNTRs demonstrated a bias against the presence of one of the potential variants. The uVNTR and dVNTR differentially affect expression of distinct MAOA isoforms, and thus, their combined profiling offers new insights into gene-regulation, GxE interaction, and ultimately MAOA-driven behavior.
Collapse
Affiliation(s)
- Maurizio Manca
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
- Institute of Psychology, Health and Society, University of Liverpool, Liverpool, UK
- Biomarker Research Laboratory, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Veridiana Pessoa
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
- Institute of Psychology, Health and Society, University of Liverpool, Liverpool, UK
| | - Ana Illera Lopez
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
| | - Patrick T Harrison
- Department of Physiology, BioSciences Institute, University College Cork, Cork, Ireland
| | - Fabio Miyajima
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
- Department of Physiology and Pharmacology, Faculty of Medicine, Drug Development and Research Center, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Helen Sharp
- Institute of Psychology, Health and Society, University of Liverpool, Liverpool, UK
| | - Andrew Pickles
- King's College London, MRC Social Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, London, UK
| | - Jonathan Hill
- School for Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Chris Murgatroyd
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Vivien J Bubb
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
| | - John P Quinn
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK.
| |
Collapse
|
38
|
The interaction between monoamine oxidase A ( MAOA) and childhood maltreatment as a predictor of personality pathology in females: Emotional reactivity as a potential mediating mechanism. Dev Psychopathol 2018; 31:361-377. [PMID: 29467046 DOI: 10.1017/s0954579417001900] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Research consistently demonstrates that common polymorphic variation in monoamine oxidase A (MAOA) moderates the influence of childhood maltreatment on later antisocial behavior, with growing evidence that the "risk" allele (high vs. low activity) differs for females. However, little is known about how this Gene × Environment interaction functions to increase risk, or if this risk pathway is specific to antisocial behavior. Using a prospectively assessed, longitudinal sample of females (n = 2,004), we examined whether changes in emotional reactivity (ER) during adolescence mediated associations between this Gene × Environment and antisocial personality disorder in early adulthood. In addition, we assessed whether this putative risk pathway also conferred risk for borderline personality disorder, a related disorder characterized by high ER. While direct associations between early maltreatment and later personality pathology did not vary by genotype, there was a significant difference in the indirect path via ER during adolescence. Consistent with hypotheses, females with high-activity MAOA genotype who experienced early maltreatment had greater increases in ER during adolescence, and higher levels of ER predicted both antisocial personality disorder and borderline personality disorder symptom severity. Taken together, findings suggest that the interaction between MAOA and early maltreatment places women at risk for a broader range of personality pathology via effects on ER.
Collapse
|
39
|
Bendre M, Comasco E, Checknita D, Tiihonen J, Hodgins S, Nilsson KW. Associations Between MAOA-uVNTR Genotype, Maltreatment, MAOA Methylation, and Alcohol Consumption in Young Adult Males. Alcohol Clin Exp Res 2018; 42:508-519. [PMID: 29222910 DOI: 10.1111/acer.13578] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 12/04/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Epigenetic mechanisms are candidate moderators of the effect of maltreatment on brain and behavior. Interactions between maltreatment and the monoamine oxidase A upstream variable number tandem repeat genotype (MAOA-uVNTR) are associated with alcohol-related problems. However, presently it is not known whether DNA methylation moderates this association. The study focused on 53 young adult males and aimed to determine whether MAOA methylation moderated the association of alcohol-related problems with the interaction of MAOA-uVNTR and maltreatment, and whether alcohol consumption moderated the association of MAOA methylation with the interaction of MAOA-uVNTR and maltreatment. METHODS MAOA-uVNTR genotypes with ≤ 3 and > 3 repeats were categorized as short (S) and long (L), respectively. Data on maltreatment were obtained retrospectively, using self-reported questionnaires. DNA methylation of 16 candidate CpGs within part of the MAOA first exon and intron was assessed and grouped based on principal component analyses. Alcohol-related problems were assessed using the Alcohol Use Disorders Identification Test (AUDIT). Alcohol consumption was measured using AUDIT-C. Moderation effects were assessed and probed using the moderated moderation model and Johnson-Neyman's method, respectively. RESULTS Carriers of the S allele, who experienced maltreatment and displayed lower Component 1 (mean of CpGs 13-16 in the first intron) MAOA methylation levels, reported higher AUDIT score in contrast to L-allele carriers. Carriers of the S allele, who reported higher AUDIT-C score and experienced maltreatment, displayed lower Component 3 (mean of CpGs 2-6 in the first exon) MAOA methylation levels than L-allele carriers. CONCLUSIONS Intronic methylation moderated the association of alcohol-related problems with the interaction of MAOA-uVNTR and maltreatment. Alcohol consumption moderated the association of exonic methylation with the interaction of MAOA-uVNTR and maltreatment. These results suggest that epigenetic factors as well as genotype and maltreatment play a role in the development of alcohol misuse among young adult males.
Collapse
Affiliation(s)
- Megha Bendre
- Department of Neuroscienc, Uppsala University, Uppsala, Sweden.,Centre for Clinical Research, Uppsala University, County Hospital, Västerås, Sweden
| | - Erika Comasco
- Department of Neuroscienc, Uppsala University, Uppsala, Sweden
| | - Dave Checknita
- Department of Neuroscienc, Uppsala University, Uppsala, Sweden.,Centre for Clinical Research, Uppsala University, County Hospital, Västerås, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jari Tiihonen
- Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Sheilagh Hodgins
- Institut Universitaire en Santé Mentale de Montréal, Université de Montréal, Montréal, Canada
| | - Kent W Nilsson
- Centre for Clinical Research, Uppsala University, County Hospital, Västerås, Sweden
| |
Collapse
|
40
|
Oreland L, Lagravinese G, Toffoletto S, Nilsson KW, Harro J, Robert Cloninger C, Comasco E. Personality as an intermediate phenotype for genetic dissection of alcohol use disorder. J Neural Transm (Vienna) 2018; 125:107-130. [PMID: 28054193 PMCID: PMC5754455 DOI: 10.1007/s00702-016-1672-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/23/2016] [Indexed: 01/16/2023]
Abstract
Genetic and environmental interactive influences on predisposition to develop alcohol use disorder (AUD) account for the high heterogeneity among AUD patients and make research on the risk and resiliency factors complicated. Several attempts have been made to identify the genetic basis of AUD; however, only few genetic polymorphisms have consistently been associated with AUD. Intermediate phenotypes are expected to be in-between proxies of basic neuronal biological processes and nosological symptoms of AUD. Personality is likely to be a top candidate intermediate phenotype for the dissection of the genetic underpinnings of different subtypes of AUD. To date, 38 studies have investigated personality traits, commonly assessed by the Cloninger's Tridimensional Personality Questionnaire (TPQ) or Temperament and Character Inventory (TCI), in relation to polymorphisms of candidate genes of neurotransmitter systems in alcohol-dependent patients. Particular attention has been given to the functional polymorphism of the serotonin transporter gene (5-HTTLPR), however, leading to contradictory results, whereas results with polymorphisms in other candidate monoaminergic genes (e.g., tryptophan hydroxylase, serotonin receptors, monoamine oxidases, dopamine receptors and transporter) are sparse. Only one genome-wide association study has been performed so far and identified the ABLIM1 gene of relevance for novelty seeking, harm avoidance and reward dependence in alcohol-dependent patients. Studies investigating genetic factors together with personality could help to define more homogenous subgroups of AUD patients and facilitate treatment strategies. This review also urges the scientific community to combine genetic data with psychobiological and environmental data to further dissect the link between personality and AUD.
Collapse
Affiliation(s)
- Lars Oreland
- Department of Neuroscience, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Gianvito Lagravinese
- Department of Neuroscience, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Simone Toffoletto
- Department of Neuroscience, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Kent W Nilsson
- Centre for Clinical Research, Uppsala University, Västmanland County Counci, Västerås, Sweden
| | - Jaanus Harro
- Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
- Psychiatry Clinic, North Estonia Medical Centre, Tallinn, Estonia
| | - C Robert Cloninger
- Department of Psychiatry, School of Medicine, Washington University, St. Louis, MO, USA
| | - Erika Comasco
- Department of Neuroscience, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden.
| |
Collapse
|
41
|
Savarese AM, Lasek AW. Transcriptional Regulators as Targets for Alcohol Pharmacotherapies. Handb Exp Pharmacol 2018; 248:505-533. [PMID: 29594350 PMCID: PMC6242703 DOI: 10.1007/164_2018_101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alcohol use disorder (AUD) is a chronic relapsing brain disease that currently afflicts over 15 million adults in the United States. Despite its prevalence, there are only three FDA-approved medications for AUD treatment, all of which show limited efficacy. Because of their ability to alter expression of a large number of genes, often with great cell-type and brain-region specificity, transcription factors and epigenetic modifiers serve as promising new targets for the development of AUD treatments aimed at the neural circuitry that underlies chronic alcohol abuse. In this chapter, we will discuss transcriptional regulators that can be targeted pharmacologically and have shown some efficacy in attenuating alcohol consumption when targeted. Specifically, the transcription factors cyclic AMP-responsive element binding protein (CREB), peroxisome proliferator-activated receptors (PPARs), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and glucocorticoid receptor (GR), as well as the epigenetic enzymes, the DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), will be discussed.
Collapse
Affiliation(s)
| | - Amy W. Lasek
- Department of Psychiatry, University of Illinois at Chicago,Corresponding author: 1601 West Taylor Street, MC 912, Chicago, IL 60612, Tel: (312) 355-1593,
| |
Collapse
|
42
|
Gescher DM, Kahl KG, Hillemacher T, Frieling H, Kuhn J, Frodl T. Epigenetics in Personality Disorders: Today's Insights. Front Psychiatry 2018; 9:579. [PMID: 30510522 PMCID: PMC6252387 DOI: 10.3389/fpsyt.2018.00579] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022] Open
Abstract
Objective: Epigenetic mechanisms have been described in several mental disorders, such as mood disorders, anxiety disorders and schizophrenia. However, less is known about the influence of epigenetic mechanisms with regard to personality disorders (PD). Therefore, we conducted a literature review on existing original data with regards to epigenetic peculiarities in connection with personality disorders. Methods: Systematic literature review using PRISMA guidelines. Search was performed via NCBI PubMed by keywords and their combinations. Used search terms included "epigenetic," "methylation," "acetylation" plus designations of specified personality traits and disorders according to DSM-IV. Results: Search yielded in total 345 publications, 257 thereof with psychiatric topic, 72 on personality disorder or traits, 43 of which were in humans and epigenetic, 23 thereof were original studies. Lastly, 23 original publications fulfilled the intended search criteria and were included. Those are 13 studies on gene methylation pattern with aggressive, antisocial and impulsive traits, 9 with borderline personality disorder (BPD), and 2 with antisocial personality disorder (ASPD). The results of these studies showed significant associations of PD with methylation aberrances in system-wide genes and suggest evidence for epigenetic processes in the development of personality traits and personality disorders. Environmental factors, of which childhood trauma showed a high impact, interfered with many neurofunctional genes. Methylation alterations in ASPD and BPD repeatedly affected HTR2A, HTR3A, NR3C1, and MAOA genes. Summary: Epigenetic studies in PD seem to be a useful approach to elucidate the interaction of co-working risk factors in the pathogenesis of personality traits and disorders. However, the complexity of pathogenesis leads to divergent results and impedes an explicit interpretation. Differing methylation patterns within the selected PD could indicate subgroups which would benefit from patient-oriented therapeutic adjustments. They might play a major role in the future design and observation of early therapeutic intervention and thus could help to prevent severe dysfunctional conduct or full-blown personality disorder in risk subjects.
Collapse
Affiliation(s)
- Dorothee Maria Gescher
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - Kai G Kahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| | - Thomas Hillemacher
- Department of Psychiatry, Paracelsus Medical University, Nuremberg, Germany
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany.,German Centre for Neurodegenerative Diseases, Magdeburg, Germany
| |
Collapse
|
43
|
Naoi M, Maruyama W, Shamoto-Nagai M. Type A and B monoamine oxidases distinctly modulate signal transduction pathway and gene expression to regulate brain function and survival of neurons. J Neural Transm (Vienna) 2017; 125:1635-1650. [DOI: 10.1007/s00702-017-1832-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/18/2017] [Indexed: 02/01/2023]
|
44
|
Ziegler C, Wolf C, Schiele MA, Feric Bojic E, Kucukalic S, Sabic Dzananovic E, Goci Uka A, Hoxha B, Haxhibeqiri V, Haxhibeqiri S, Kravic N, Muminovic Umihanic M, Cima Franc A, Jaksic N, Babic R, Pavlovic M, Warrings B, Bravo Mehmedbasic A, Rudan D, Aukst-Margetic B, Kucukalic A, Marjanovic D, Babic D, Bozina N, Jakovljevic M, Sinanovic O, Avdibegovic E, Agani F, Dzubur-Kulenovic A, Deckert J, Domschke K. Monoamine Oxidase A Gene Methylation and Its Role in Posttraumatic Stress Disorder: First Evidence from the South Eastern Europe (SEE)-PTSD Study. Int J Neuropsychopharmacol 2017; 21:423-432. [PMID: 29186431 PMCID: PMC5932467 DOI: 10.1093/ijnp/pyx111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/22/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Posttraumatic stress disorder is characterized by an overactive noradrenergic system conferring core posttraumatic stress disorder symptoms such as hyperarousal and reexperiencing. Monoamine oxidase A is one of the key enzymes mediating the turnover of noradrenaline. Here, DNA methylation of the monoamine oxidase A gene exonI/intronI region was investigated for the first time regarding its role in posttraumatic stress disorder risk and severity. METHODS Monoamine oxidase A methylation was analyzed via direct sequencing of sodium bisulfite-treated DNA extracted from blood cells in a total sample of N=652 (441 male) patients with current posttraumatic stress disorder, patients with remitted posttraumatic stress disorder, and healthy probands (comparison group) recruited at 5 centers in Bosnia-Herzegovina, Croatia, and the Republic of Kosovo. Posttraumatic stress disorder severity was measured by means of the Clinician-Administered Posttraumatic Stress Disorder Scale and its respective subscores representing distinct symptom clusters. RESULTS In the male, but not the female sample, patients with current posttraumatic stress disorder displayed hypermethylation of 3 CpGs (CpG3=43656362; CpG12=43656514; CpG13=43656553, GRCh38.p2 Assembly) as compared with remitted Posttraumatic Stress Disorder patients and healthy probands. Symptom severity (Clinician-Administered Posttraumatic Stress Disorder Scale scores) in male patients with current posttraumatic stress disorder significantly correlated with monoamine oxidase A methylation. This applied particularly to symptom clusters related to reexperiencing of trauma (cluster B) and hyperarousal (cluster D). CONCLUSIONS The present findings suggest monoamine oxidase A gene hypermethylation, potentially resulting in enhanced noradrenergic signalling, as a disease status and severity marker of current posttraumatic stress disorder in males. If replicated, monoamine oxidase A hypermethylation might serve as a surrogate marker of a hyperadrenergic subtype of posttraumatic stress disorder guiding personalized treatment decisions on the use of antiadrenergic agents.
Collapse
Affiliation(s)
- Christiane Ziegler
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany,Correspondence: Christiane Ziegler, PhD, Department of Psychiatry, University of Freiburg, Hauptstraße 5, D-79104 Freiburg, Germany ()
| | - Christiane Wolf
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Elma Feric Bojic
- Department of Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
| | - Sabina Kucukalic
- Department of Psychiatry, University Clinical Center, Sarajevo, Bosnia and Herzegovina
| | | | - Aferdita Goci Uka
- Department of Psychiatry, University Clinical Center of Kosovo, Prishtina, Kosovo
| | - Blerina Hoxha
- Department of Psychiatry, University Clinical Center of Kosovo, Prishtina, Kosovo
| | - Valdete Haxhibeqiri
- Department of Medical Biochemistry, University Clinical Center of Kosovo, Prishtina, Kosovo,Institute of Kosovo Forensic Psychiatry, University Clinical Center of Kosovo, Prishtina, Kosovo
| | | | - Nermina Kravic
- Department of Psychiatry, University Clinical Center of Tuzla, Tuzla, Bosnia and Herzegovina
| | | | - Ana Cima Franc
- Department of Psychiatry, University Hospital Center Zagreb, Zagreb, Croatia
| | - Nenad Jaksic
- Department of Psychiatry, University Hospital Center Zagreb, Zagreb, Croatia
| | - Romana Babic
- Department of Psychiatry, University Clinical Center of Mostar, Mostar, Bosnia and Herzegovina
| | - Marko Pavlovic
- Department of Psychiatry, University Clinical Center of Mostar, Mostar, Bosnia and Herzegovina
| | - Bodo Warrings
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | | | - Dusko Rudan
- Department of Psychiatry, University Hospital Center Zagreb, Zagreb, Croatia
| | | | - Abdulah Kucukalic
- Department of Psychiatry, University Clinical Center, Sarajevo, Bosnia and Herzegovina
| | - Damir Marjanovic
- Department of Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina,Institute for Anthropological Researches, Zagreb, Croatia
| | - Dragan Babic
- Department of Psychiatry, University Clinical Center of Mostar, Mostar, Bosnia and Herzegovina
| | - Nada Bozina
- Department of Laboratory Diagnostics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Miro Jakovljevic
- Department of Psychiatry, University Hospital Center Zagreb, Zagreb, Croatia
| | - Osman Sinanovic
- Department of Neurology, University Clinical Center of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Esmina Avdibegovic
- Department of Psychiatry, University Clinical Center of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Ferid Agani
- Faculty of Medicine, University Hasan Prishtina, Prishtina, Kosovo
| | - Alma Dzubur-Kulenovic
- Department of Psychiatry, University Clinical Center, Sarajevo, Bosnia and Herzegovina
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
45
|
Prom-Wormley EC, Ebejer J, Dick DM, Bowers MS. The genetic epidemiology of substance use disorder: A review. Drug Alcohol Depend 2017; 180:241-259. [PMID: 28938182 PMCID: PMC5911369 DOI: 10.1016/j.drugalcdep.2017.06.040] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Substance use disorder (SUD) remains a significant public health issue. A greater understanding of how genes and environment interact to regulate phenotypes comprising SUD will facilitate directed treatments and prevention. METHODS The literature studying the neurobiological correlates of SUD with a focus on the genetic and environmental influences underlying these mechanisms was reviewed. Results from twin/family, human genetic association, gene-environment interaction, epigenetic literature, phenome-wide association studies are summarized for alcohol, nicotine, cannabinoids, cocaine, and opioids. RESULTS There are substantial genetic influences on SUD that are expected to influence multiple neurotransmission pathways, and these influences are particularly important within the dopaminergic system. Genetic influences involved in other aspects of SUD etiology including drug processing and metabolism are also identified. Studies of gene-environment interaction emphasize the importance of environmental context in SUD. Epigenetic studies indicate drug-specific changes in gene expression as well as differences in gene expression related to the use of multiple substances. Further, gene expression is expected to differ by stage of SUD such as substance initiation versus chronic substance use. While a substantial literature has developed for alcohol and nicotine use disorders, there is comparatively less information for other commonly abused substances. CONCLUSIONS A better understanding of genetically-mediated mechanisms involved in the neurobiology of SUD provides increased opportunity to develop behavioral and biologically based treatment and prevention of SUD.
Collapse
Affiliation(s)
- Elizabeth C Prom-Wormley
- Dvision of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, PO Box 980212, Richmond, VA 23298-0212, USA.
| | - Jane Ebejer
- School of Cognitive Behavioural and Social Sciences, University of New England, Armidale, NSW 2350, Australia
| | - Danielle M Dick
- Department of Psychology, Virginia Commonwealth University, PO Box 842509, Richmond, VA 23284-2509, USA
| | - M Scott Bowers
- Faulk Center for Molecular Therapeutics, Biomedical Engeneering, Northwestern University, Evanston, IL 60201, USA
| |
Collapse
|
46
|
Abreu-Villaça Y, Manhães AC, Krahe TE, Filgueiras CC, Ribeiro-Carvalho A. Tobacco and alcohol use during adolescence: Interactive mechanisms in animal models. Biochem Pharmacol 2017; 144:1-17. [DOI: 10.1016/j.bcp.2017.06.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022]
|
47
|
Philibert R, Glatt SJ. Optimizing the chances of success in the search for epigenetic biomarkers: Embracing genetic variation. Am J Med Genet B Neuropsychiatr Genet 2017; 174:589-594. [PMID: 28696057 PMCID: PMC5562041 DOI: 10.1002/ajmg.b.32569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 01/21/2023]
Abstract
The emphasis on clinical translation in biomedical research continues to grow. This focus has been particularly notable in those investigators using epigenetic approaches to decipher the biology of complex behavioral disorders. As a result of these efforts, reproducible findings for several disorders, such as smoking, have been generated, giving rise to hopes that biomarkers for other behavioral illnesses would be forthcoming. Unfortunately, that biomedical cornucopia has not yet materialized. In this editorial, we review progress to date and discuss barriers to generating epigenetic biomarkers for complex behavioral disorders. We highlight the need to incorporate information on genetic variation and develop more powerful bioinformatics tools in order to optimize the likelihood of success. We emphasize that searches should focus on clearly defined, readily distinguishable behavioral constructs and suggest that some well-intentioned methods, such as correction for cellular heterogeneity, may actually impede the identification of clinically relevant biomarkers in peripheral blood. Finally, we describe how the understanding created by the development of these biomarkers may lead to more valid animal models of neuropsychiatric illness. We conclude that the prospects for epigenetic biomarkers for complex disorders are bright, but emphasize that the journey to the clinical implementation of these findings will be a slow, iterative process.
Collapse
Affiliation(s)
- Robert Philibert
- Behavioral Diagnostics, Coralville, Iowa
- Department of Psychiatry, University of Iowa, Iowa City, Iowa
| | - Stephen J Glatt
- Psychiatric Genetic Epidemiology and Neurobiology Laboratory (PsychGENe Lab), Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
48
|
Dogan MV, Beach SR, Philibert RA. Genetically contextual effects of smoking on genome wide DNA methylation. Am J Med Genet B Neuropsychiatr Genet 2017; 174:595-607. [PMID: 28686328 PMCID: PMC5561723 DOI: 10.1002/ajmg.b.32565] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/09/2017] [Indexed: 12/18/2022]
Abstract
Smoking is the leading cause of death in the United States. It exerts its effects by increasing susceptibility to a variety of complex disorders among those who smoke, and if pregnant, to their unborn children. In prior efforts to understand the epigenetic mechanisms through which this increased vulnerability is conveyed, a number of investigators have conducted genome wide methylation analyses. Unfortunately, secondary to methodological limitations, these studies were unable to examine methylation in gene regions with significant amounts of genetic variation. Using genome wide genetic and epigenetic data from the Framingham Heart Study, we re-examined the relationship of smoking status to genome wide methylation status. When only methylation status is considered, smoking was significantly associated with differential methylation in 310 genes that map to a variety of biological process and cellular differentiation pathways. However, when SNP effects on the magnitude of smoking associated methylation changes are also considered, cis and trans-interaction effects were noted at a total of 266 and 4353 genes with no marked enrichment for any biological pathways. Furthermore, the SNP variation participating in the significant interaction effects is enriched for loci previously associated with complex medical illnesses. The enlarged scope of the methylome shown to be affected by smoking may better explicate the mediational pathways linking smoking with a myriad of smoking related complex syndromes. Additionally, these results strongly suggest that combined epigenetic and genetic data analyses may be critical for a more complete understanding of the relationship between environmental variables, such as smoking, and pathophysiological outcomes.
Collapse
Affiliation(s)
- Meeshanthini V. Dogan
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
| | | | - Robert A. Philibert
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
- Behavioral Diagnostics, 2500 Crosspark Road, Coralville, IA, 52241
| |
Collapse
|
49
|
Wagels L, Votinov M, Radke S, Clemens B, Montag C, Jung S, Habel U. Blunted insula activation reflects increased risk and reward seeking as an interaction of testosterone administration and the MAOA polymorphism. Hum Brain Mapp 2017; 38:4574-4593. [PMID: 28603901 DOI: 10.1002/hbm.23685] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/22/2017] [Accepted: 05/31/2017] [Indexed: 12/26/2022] Open
Abstract
Testosterone, a male sex hormone, has been suggested to partly explain mixed findings in males and females when investigating behavioral tendencies associated with the MAOA polymorphism. Prior studies indicated that the MAOA polymorphism represents a vulnerability factor for financial risk-taking and harm avoidance and that testosterone increases human risk-taking. We therefore assumed an interactive influence of the MAOA polymorphism and testosterone application on decision making and corresponding neural correlates in a risk and reward context. Stratified for the MAOA polymorphism (S =short, L =long), 103 healthy males were assigned to a placebo or testosterone group (double blind, randomized) receiving a topical gel containing 50 mg testosterone. During a functional MRI scan, the participants performed a sequential decision making task. Our results indicate that testosterone and the MAOA polymorphism jointly influence sequential decision making. The MAOA-S variant was associated with less automatic harm avoidance as reflected in response times on safe decisions. Moreover, after testosterone administration, MAOA-S carriers were more risk-taking. Overall activity in the anterior cingulate cortex, anterior insula and inferior frontal gyrus increased with growing risk for losses. In the anterior insula, testosterone administration mitigated this effect solely in MAOA-S carriers. This might be a reflection of an improved coping during risk-reward conflicts subsequently modulating risky decision making. While the molecular basis is not well defined so far, our results support the assumption of testosterone as a modulatory factor for previously reported sex differences of behavioral associations with the MAOA-S variant. Hum Brain Mapp 38:4574-4593, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lisa Wagels
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen, Aachen, Germany.,Institute of Neuroscience and Medicine 10, Research Center Jülich, Jülich, Germany.,JARA-Institute Brain Structure Function Relationship, Research Center Jülich and RWTH Aachen, Aachen, Germany
| | - Mikhail Votinov
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen, Aachen, Germany.,Institute of Neuroscience and Medicine 10, Research Center Jülich, Jülich, Germany
| | - Sina Radke
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen, Aachen, Germany.,JARA-Institute Brain Structure Function Relationship, Research Center Jülich and RWTH Aachen, Aachen, Germany
| | - Benjamin Clemens
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen, Aachen, Germany
| | - Christian Montag
- Institue of Psychology and Education, Ulm University, Ulm, Germany.,Key laboratory for NeuroInformation/Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Sonja Jung
- Institue of Psychology and Education, Ulm University, Ulm, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen, Aachen, Germany.,JARA-Institute Brain Structure Function Relationship, Research Center Jülich and RWTH Aachen, Aachen, Germany
| |
Collapse
|
50
|
Naoi M, Maruyama W, Shamoto-Nagai M. Type A monoamine oxidase and serotonin are coordinately involved in depressive disorders: from neurotransmitter imbalance to impaired neurogenesis. J Neural Transm (Vienna) 2017; 125:53-66. [PMID: 28293733 DOI: 10.1007/s00702-017-1709-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/12/2017] [Indexed: 12/30/2022]
Abstract
Type A monoamine oxidase (MAOA) catabolizes monoamine transmitters, serotonin, norepinephrine and dopamine, and plays a major role in the onset, progression and therapy of neuropsychiatric disorders. In depressive disorders, increase in MAOA expression and decrease in brain levels of serotonin and norepinephrine are proposed as the major pathogenic factors. The functional polymorphism of MAOA gene and genes in serotonin signal pathway are associated with depression. This review presents recent advance in studies on the role of MAOA in major depressive disorder and related emotional disorders. MAOA and serotonin regulate the prenatal development and postnatal maintenance of brain architecture and neurocircuit, as shown by MAOA-deficient humans and MAO knockout animal models. Impaired neurogenesis in the mature hippocampus has been proposed as "adult neurogenesis" hypothesis of depression. MAOA modulates the sensitivity to stress in the stages of brain development and maturation, and the interaction of gene-environmental factors in the early stage regulates the onset of depressive behaviors in adulthood. Vice versa environmental factors affect MAOA expression by epigenetic regulation. MAO inhibitors not only restore compromised neurotransmitters, but also protect neurons from cell death in depression through induction of anti-apoptotic Bcl-2 and prosurvival neurotrophic factors, especially brain-derived neurotrophic factor, the deficiency of which is detected in depression. This review discusses novel role of MAOA and serotonin in the pathogenesis and therapy of depressive disorders.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan.
| | - Wakako Maruyama
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| | - Masayo Shamoto-Nagai
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| |
Collapse
|