1
|
Zhou Y, Sun G, Li C, Bai X. Grb2 Expression in Acute Spinal Cord Injury After Methylprednisolone Intrathecal Injection in Rats. Int J Spine Surg 2023; 17:678-683. [PMID: 37884335 PMCID: PMC10623675 DOI: 10.14444/8527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
OBJECTIVE This study aims to investigate the effect of methylprednisolone (MP) intrathecal injection on a rat model of acute spinal cord injury (ASCI). METHODS Allen's frame was used to establish a rat model of ASCI. MP and normal saline were intrathecally injected to Sprague-Dawley rats at 0, 3, 6, 8, 12, and 24 hours after ASCI, and injured spinal cord tissues were sterilely extracted after 24 hours of treatment. Isobaric tags for relative and absolute quantitation (iTRAQ) were coupled with 2-dimensional liquid chromatography tandem mass spectrometry to separate and identify differentially expressed proteins. RESULTS The expression of growth factor receptor-bound protein 2 (Grb2) was downregulated in the MP groups at 0 hours (iTRAQ ratio = 0.996), 3 hours (iTRAQ ratio = 0.737), 8 hours (iTRAQ ratio = 0.763), and 24 hours (iTRAQ ratio = 0.908) after injury compared with that in the control groups. No significant difference in Grb2 expression was observed between the control groups at 6 and 12 hours after ASCI. CONCLUSIONS Standardized MP intrathecal injection after ASCI treatment reduces Grb2 activation in a rat ASCI model. Further studies should determine whether or not the same effect can be observed in human ASCIs.
Collapse
Affiliation(s)
- Yijun Zhou
- The First People's Hospital of Changde, Changde Hospital Affiliated to Xiangya Medical College of Central South University, Hunan, People's Republic of China
| | - Guanwen Sun
- The First People's Hospital of Changde, Changde Hospital Affiliated to Xiangya Medical College of Central South University, Hunan, People's Republic of China
| | - Changhong Li
- The First People's Hospital of Changde, Changde Hospital Affiliated to Xiangya Medical College of Central South University, Hunan, People's Republic of China
| | - Xiaoan Bai
- The First People's Hospital of Changde, Changde Hospital Affiliated to Xiangya Medical College of Central South University, Hunan, People's Republic of China
| |
Collapse
|
2
|
Smith PA. Neuropathic pain; what we know and what we should do about it. FRONTIERS IN PAIN RESEARCH 2023; 4:1220034. [PMID: 37810432 PMCID: PMC10559888 DOI: 10.3389/fpain.2023.1220034] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain can result from injury to, or disease of the nervous system. It is notoriously difficult to treat. Peripheral nerve injury promotes Schwann cell activation and invasion of immunocompetent cells into the site of injury, spinal cord and higher sensory structures such as thalamus and cingulate and sensory cortices. Various cytokines, chemokines, growth factors, monoamines and neuropeptides effect two-way signalling between neurons, glia and immune cells. This promotes sustained hyperexcitability and spontaneous activity in primary afferents that is crucial for onset and persistence of pain as well as misprocessing of sensory information in the spinal cord and supraspinal structures. Much of the current understanding of pain aetiology and identification of drug targets derives from studies of the consequences of peripheral nerve injury in rodent models. Although a vast amount of information has been forthcoming, the translation of this information into the clinical arena has been minimal. Few, if any, major therapeutic approaches have appeared since the mid 1990's. This may reflect failure to recognise differences in pain processing in males vs. females, differences in cellular responses to different types of injury and differences in pain processing in humans vs. animals. Basic science and clinical approaches which seek to bridge this knowledge gap include better assessment of pain in animal models, use of pain models which better emulate human disease, and stratification of human pain phenotypes according to quantitative assessment of signs and symptoms of disease. This can lead to more personalized and effective treatments for individual patients. Significance statement: There is an urgent need to find new treatments for neuropathic pain. Although classical animal models have revealed essential features of pain aetiology such as peripheral and central sensitization and some of the molecular and cellular mechanisms involved, they do not adequately model the multiplicity of disease states or injuries that may bring forth neuropathic pain in the clinic. This review seeks to integrate information from the multiplicity of disciplines that seek to understand neuropathic pain; including immunology, cell biology, electrophysiology and biophysics, anatomy, cell biology, neurology, molecular biology, pharmacology and behavioral science. Beyond this, it underlines ongoing refinements in basic science and clinical practice that will engender improved approaches to pain management.
Collapse
Affiliation(s)
- Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Balbi M, Bonanno G, Bonifacino T, Milanese M. The Physio-Pathological Role of Group I Metabotropic Glutamate Receptors Expressed by Microglia in Health and Disease with a Focus on Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:5240. [PMID: 36982315 PMCID: PMC10048889 DOI: 10.3390/ijms24065240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Microglia cells are the resident immune cells of the central nervous system. They act as the first-line immune guardians of nervous tissue and central drivers of neuroinflammation. Any homeostatic alteration that can compromise neuron and tissue integrity could activate microglia. Once activated, microglia exhibit highly diverse phenotypes and functions related to either beneficial or harmful consequences. Microglia activation is associated with the release of protective or deleterious cytokines, chemokines, and growth factors that can in turn determine defensive or pathological outcomes. This scenario is complicated by the pathology-related specific phenotypes that microglia can assume, thus leading to the so-called disease-associated microglia phenotypes. Microglia express several receptors that regulate the balance between pro- and anti-inflammatory features, sometimes exerting opposite actions on microglial functions according to specific conditions. In this context, group I metabotropic glutamate receptors (mGluRs) are molecular structures that may contribute to the modulation of the reactive phenotype of microglia cells, and this is worthy of exploration. Here, we summarize the role of group I mGluRs in shaping microglia cells' phenotype in specific physio-pathological conditions, including some neurodegenerative disorders. A significant section of the review is specifically focused on amyotrophic lateral sclerosis (ALS) since it represents an entirely unexplored topic of research in the field.
Collapse
Affiliation(s)
- Matilde Balbi
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Marco Milanese
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
4
|
Shaughness MC, Pierron N, Smith AN, Byrnes KR. The Integrin Pathway Partially Mediates Stretch-Induced Deficits in Primary Rat Microglia. Mol Neurobiol 2023; 60:3396-3412. [PMID: 36856961 DOI: 10.1007/s12035-023-03291-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
Stretch-injured microglia display significantly altered morphology, function and inflammatory-associated gene expression when cultured on a synthetic fibronectin substrate. However, the mechanism by which stretch induces these changes is unknown. Integrins, such as α5β1, mediate microglial attachment to fibronectin via the RGD binding peptide; following integrin ligation the integrin-associated signaling enzyme, focal adhesion kinase (FAK), autophosphorylates tyrosine residue 397 and mediates multiple downstream cellular processes. We therefore hypothesize that blocking the RGD binding/integrin pathway with a commercially available RGD peptide will mimic the stretch-induced morphological alterations and functional deficits in microglia. Further, we hypothesize that upregulation of stretch-inhibited downstream integrin signaling will reverse these effects. Using primary rat microglia, we tested the effects of RGD binding peptide and a FAK activator on cellular function and structure and response to stretch-injury. Similar to injured cells, RGD peptide administration significantly decreases media nitric oxide (NO) levels and iNOS expression and induced morphological alterations and migratory deficits. While stretch-injury and RGD peptide administration decreased phosphorylation of the tyrosine 397 residue on FAK, 20 nM of ZINC 40099027, an activator specific to the tyrosine 397 residue, rescued the stretch-induced decrease in FAK phosphorylation and ameliorated the injury-induced decrease in media NO levels, iNOS expression and inflammatory associated gene expression. Additionally, treatment alleviated morphological changes observed after stretch-injury and restored normal migratory behavior to control levels. Taken together, these data suggest that the integrin/FAK pathway partially mediates the stretch-injured phenotype in microglia, and may serve as a pathway to modulate microglial responses.
Collapse
Affiliation(s)
- Michael C Shaughness
- Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD, 20814, USA.,Operational and Undersea Medicine Directorate (OUMD), En Route & Critical Care Department (ECD), Naval Medical Research Center (NMRC), Silver Spring, MD, USA
| | - Nathan Pierron
- F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Austin N Smith
- Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD, 20814, USA
| | - Kimberly R Byrnes
- Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD, 20814, USA. .,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
5
|
Freyermuth-Trujillo X, Segura-Uribe JJ, Salgado-Ceballos H, Orozco-Barrios CE, Coyoy-Salgado A. Inflammation: A Target for Treatment in Spinal Cord Injury. Cells 2022; 11:2692. [PMID: 36078099 PMCID: PMC9454769 DOI: 10.3390/cells11172692] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is a significant cause of disability, and treatment alternatives that generate beneficial outcomes and have no side effects are urgently needed. SCI may be treatable if intervention is initiated promptly. Therefore, several treatment proposals are currently being evaluated. Inflammation is part of a complex physiological response to injury or harmful stimuli induced by mechanical, chemical, or immunological agents. Neuroinflammation is one of the principal secondary changes following SCI and plays a crucial role in modulating the pathological progression of acute and chronic SCI. This review describes the main inflammatory events occurring after SCI and discusses recently proposed potential treatments and therapeutic agents that regulate inflammation after insult in animal models.
Collapse
Affiliation(s)
- Ximena Freyermuth-Trujillo
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico
| | - Julia J. Segura-Uribe
- Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City CP 06720, Mexico
| | - Hermelinda Salgado-Ceballos
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico
| | - Carlos E. Orozco-Barrios
- CONACyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico
| | - Angélica Coyoy-Salgado
- CONACyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico
| |
Collapse
|
6
|
Jaiswal S, Brabazon F, von Leden R, Acs D, Collier S, Allison N, Dardzinski B, Byrnes KR. Spinal cord injury chronically depresses glucose uptake in the rodent model. Neurosci Lett 2021; 771:136416. [PMID: 34954116 DOI: 10.1016/j.neulet.2021.136416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022]
Abstract
The pathophysiology following spinal cord injury (SCI) progresses from its lesion epicenter resulting in cellular and systemic changes acutely, sub-acutely and chronically. The symptoms of the SCI depend upon the severity of the injury and its location in the spinal cord. However, there is lack of studies that have longitudinally assessed acute through chronic in vivo changes following SCI. In this combinatorial study we fill this gap by evaluating acute to chronic effects of moderate SCI in rats. We have used fluorodeoxyglucose (FDG) imaging with positron emission tomography (PET) as a marker to assess glucose metabolism, motor function, and immunohistochemistry to examine changes following moderate SCI. Our results demonstrate decreased FDG uptake at the injury site chronically at days 28 and 90 post injury compared to baseline. This alteration in glucose uptake was not restricted to the lesion site, showing depressed FDG uptake in non-injured areas (cervical spinal cord and cerebellum). The alteration in glucose uptake was correlated with reductions in neuronal cell viability and increases in glial cell activation at 90 days at the lesion site, as well as chronic impairments in motor function. These data demonstrate the chronic effects of SCI on glucose metabolism both within the lesion and distally within the spinal cord and brain.
Collapse
Affiliation(s)
- Shalini Jaiswal
- Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, USA; Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD, USA
| | - Fiona Brabazon
- Neuroscience Program, Uniformed Services University, Bethesda, MD, USA
| | - Ramona von Leden
- Neuroscience Program, Uniformed Services University, Bethesda, MD, USA
| | - Deanna Acs
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Sean Collier
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Nathanael Allison
- Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD, USA
| | - Bernard Dardzinski
- Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD, USA
| | - Kimberly R Byrnes
- Neuroscience Program, Uniformed Services University, Bethesda, MD, USA; Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, USA.
| |
Collapse
|
7
|
Qian X, Wu YH, Che YY, Zhao W, Shu LF, Zhu J, Wang YH, Chen T. IP 3R-mediated activation of BK channels contributes to mGluR5-induced protection against spinal cord ischemia-reperfusion injury. Neurochem Int 2021; 150:105191. [PMID: 34547325 DOI: 10.1016/j.neuint.2021.105191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/26/2023]
Abstract
Spinal cord ischemia-reperfusion injury (SCIRI) can cause dramatic neuron loss and lead to paraplegia in patients. In this research, the role of mGluR5, a member of the metabotropic glutamate receptors (mGluRs) family, was investigated both in vitro and in vivo to explore a possible method to treat this complication. In vitro experiment, after activating mGluR5 via pretreating cells with (RS)-2-Chloro-5-hydroxyphenylglycine (CHPG) and 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB), excitotoxicity induced by glutamate (Glu) was attenuated in primary spinal cord neurons, evidenced by higher neuron viability, decreased lactate dehydrogenase (LDH) release and less detected TUNEL-positive cells. According to Western Blot (WB) results, Glu treatment resulted in a high level of large-conductance Ca2+- and voltage-activated K+ (BK) channels, with activation relying on the mGluR5-IP3R (inositol triphosphate) pathway. In vivo part, a rat model of SCIRI was built to further investigate the role of mGluR5. After pretreating them with CHPG and CDPPB, the rats showed markedly lower spinal water content, attenuated motor neuron injury in the spinal cord of L4 segments, and better neurological function. This effect could be partially reversed by paxilline, a blocker of BK channels. In addition, activating BK channels alone using specific openers: NS1619 or NS11021 can protect spinal cord neurons from injury induced by either SCIRI or Glu. In conclusion, in this research, we proved that mGluR5 exerts a protective role in SCIRI, and this effect partially works via IP3R-mediated activation of BK channels.
Collapse
Affiliation(s)
- Xiao Qian
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Yong-Hui Wu
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Yuan-Yuan Che
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Wei Zhao
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Long-Fei Shu
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Jie Zhu
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China; Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Yu-Hai Wang
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China.
| | - Tao Chen
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China; Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China.
| |
Collapse
|
8
|
Bhat SA, Henry RJ, Blanchard AC, Stoica BA, Loane DJ, Faden AI. Enhanced Akt/GSK-3β/CREB signaling mediates the anti-inflammatory actions of mGluR5 positive allosteric modulators in microglia and following traumatic brain injury in male mice. J Neurochem 2020; 156:225-248. [PMID: 31926033 DOI: 10.1111/jnc.14954] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/16/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
Abstract
We have previously shown that treatment with a mGluR5 positive allosteric modulator (PAM) is neuroprotective after experimental traumatic brain injury (TBI), limiting post-traumatic neuroinflammation by reducing pro-inflammatory microglial activation and promoting anti-inflammatory and neuroprotective responses. However, the specific molecular mechanisms governing this anti-inflammatory shift in microglia remain unknown. Here we show that the mGluR5 PAM, VU0360172 (VuPAM), regulates microglial inflammatory responses through activation of Akt, resulting in the inhibition of GSK-3β. GSK-3β regulates the phosphorylation of CREB, thereby controlling the expression of inflammation-related genes and microglial plasticity. The anti-inflammatory action of VuPAM in microglia is reversed by inhibiting Akt/GSK-3β/CREB signaling. Using a well-characterized TBI model and CX3CR1gfp/+ mice to visualize microglia in vivo, we demonstrate that VuPAM enhances Akt/GSK-3β/CREB signaling in the injured cortex, as well as anti-inflammatory microglial markers. Furthermore, in situ analysis revealed that GFP + microglia in the cortex of VuPAM-treated TBI mice co-express pCREB and the anti-inflammatory microglial phenotype marker YM1. Taken together, our data show that VuPAM decreases pro-inflammatory microglial activation by modulating Akt/GSK-3β/CREB signaling. These findings serve to clarify the potential neuroprotective mechanisms of mGluR5 PAM treatment after TBI, and suggest novel therapeutic targets for post-traumatic neuroinflammation. Cover Image for this issue: https://doi.org/10.1111/jnc.15048.
Collapse
Affiliation(s)
- Shahnawaz A Bhat
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca J Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alexa C Blanchard
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.,School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Bellozi PMQ, Gomes GF, da Silva MCM, Lima IVDA, Batista CRÁ, Carneiro Junior WDO, Dória JG, Vieira ÉLM, Vieira RP, de Freitas RP, Ferreira CN, Candelario-Jalil E, Wyss-Coray T, Ribeiro FM, de Oliveira ACP. A positive allosteric modulator of mGluR5 promotes neuroprotective effects in mouse models of Alzheimer's disease. Neuropharmacology 2019; 160:107785. [PMID: 31541651 DOI: 10.1016/j.neuropharm.2019.107785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 12/26/2022]
Abstract
Alzheimer's Disease (AD) is the most prevalent neurodegenerative disorder. Despite advances in the understanding of its pathophysiology, none of the available therapies prevents disease progression. Excess glutamate plays an important role in excitotoxicity by activating ionotropic receptors. However, the mechanisms modulating neuronal cell survival/death via metabotropic glutamate receptors (mGluRs) are not completely understood. Recent data indicates that CDPPB, a positive allosteric modulator of mGluR5, has neuroprotective effects. Thus, this work aimed to investigate CDPPB treatment effects on amyloid-β (Aβ) induced pathological alterations in vitro and in vivo and in a transgenic mouse model of AD (T41 mice). Aβ induced cell death in primary cultures of hippocampal neurons, which was prevented by CDPPB. Male C57BL/6 mice underwent stereotaxic surgery for unilateral intra-hippocampal Aβ injection, which induced memory deficits, neurodegeneration, neuronal viability reduction and decrease of doublecortin-positive cells, a marker of immature neurons and neuronal proliferation. Treatment with CDPPB for 8 days reversed neurodegeneration and doublecortin-positive cells loss and recovered memory function. Fourteen months old T41 mice presented cognitive deficits, neuronal viability reduction, gliosis and Aβ accumulation. Treatment with CDPPB for 28 days increased neuronal viability (32.2% increase in NeuN+ cells) and reduced gliosis in CA1 region (Iba-1+ area by 31.3% and GFAP+ area by 37.5%) in transgenic animals, without inducing hepatotoxicity. However, it did not reverse cognitive deficit. Despite a four-week treatment did not prevent memory loss in aged transgenic mice, CDPPB is protective against Aβ stimulus. Therefore, this drug represents a potential candidate for further investigations as AD treatment.
Collapse
Affiliation(s)
| | - Giovanni Freitas Gomes
- Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | | | | | | | - Juliana Guimarães Dória
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Rafael Pinto Vieira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Claudia Natália Ferreira
- Clinical Pathology Sector of COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fabíola Mara Ribeiro
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | |
Collapse
|
10
|
Wang XJ, Shu GF, Xu XL, Peng CH, Lu CY, Cheng XY, Luo XC, Li J, Qi J, Kang XQ, Jin FY, Chen MJ, Ying XY, You J, Du YZ, Ji JS. Combinational protective therapy for spinal cord injury medicated by sialic acid-driven and polyethylene glycol based micelles. Biomaterials 2019; 217:119326. [PMID: 31288173 DOI: 10.1016/j.biomaterials.2019.119326] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/27/2022]
Abstract
Spinal cord injury (SCI) leads to immediate disruption of neuronal membranes and loss of neurons, followed by extensive secondary injury process. Treatment of SCI still remains a tremendous challenge clinically. Minocycline could target comprehensive secondary injury via anti-inflammatory, anti-oxidant and anti-apoptotic mechanisms. Polyethylene glycol (PEG), a known sealing agent, is able to seal the damaged cell membranes and reduce calcium influx, thereby exerting neuroprotective capacity. Here, an E-selectin-targeting sialic acid - polyethylene glycol - poly (lactic-co-glycolic acid) (SAPP) copolymer was designed for delivering hydrophobic minocycline to achieve combinational therapy of SCI. The obtained SAPP copolymer could self-assemble into micelles with critical micelle concentration being of 13.40 μg/mL, and effectively encapsulate hydrophobic minocycline. The prepared drug-loaded micelles (SAPPM) displayed sustained drug release over 72 h, which could stop microglia activation and exhibited excellent neuroprotective capacity in vitro. The SAPP micelles were efficiently accumulated in the lesion site of SCI rats via the specific binding between sialic acid and E-selectin. Due to the targeting distribution and combinational effect between PEG and minocycline, SAPPM could obviously reduce the area of lesion cavity, and realize more survival of axons and myelin sheaths from the injury, thus distinctly improving hindlimb functional recovery of SCI rats and conferring superior therapeutic effect in coparison with other groups. Our work presented an effective and safe strategy for SCI targeting therapy. Besides, neuroprotective capacity of PEG deserves further investigation on other central nervous system diseases.
Collapse
Affiliation(s)
- Xiao-Juan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Gao-Feng Shu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, PR China
| | - Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Chen-Han Peng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Chen-Ying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, PR China
| | - Xing-Yao Cheng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, PR China
| | - Xiang-Chao Luo
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, PR China
| | - Jie Li
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, PR China
| | - Jing Qi
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Xu-Qi Kang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Fei-Yang Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Min-Jiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, PR China
| | - Xiao-Ying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Jian You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| | - Jian-Song Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, PR China.
| |
Collapse
|
11
|
Ren H, Chen X, Tian M, Zhou J, Ouyang H, Zhang Z. Regulation of Inflammatory Cytokines for Spinal Cord Injury Repair Through Local Delivery of Therapeutic Agents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800529. [PMID: 30479916 PMCID: PMC6247077 DOI: 10.1002/advs.201800529] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/06/2018] [Indexed: 05/29/2023]
Abstract
The balance of inflammation is critical to the repair of spinal cord injury (SCI), which is one of the most devastating traumas in human beings. Inflammatory cytokines, the direct mediators of local inflammation, have differential influences on the repair of the injured spinal cord. Some inflammatory cytokines are demonstrated beneficial to spinal cord repair in SCI models, while some detrimental. Various animal researches have revealed that local delivery of therapeutic agents efficiently regulates inflammatory cytokines and promotes repair from SCI. Quite a few clinical studies have also shown the promotion of repair from SCI through regulation of inflammatory cytokines. However, local delivery of a single agent affects only a part of the inflammatory cytokines that need to be regulated. Meanwhile, different individuals have differential profiles of inflammatory cytokines. Therefore, future studies may aim to develop personalized strategies of locally delivered therapeutic agent cocktails for effective and precise regulation of inflammation, and substantial functional recovery from SCI.
Collapse
Affiliation(s)
- Hao Ren
- The Third Affiliated Hospital of Guangzhou Medical UniversityNo. 63 Duobao RoadGuangzhou510150P. R. China
| | - Xuri Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineSchool of Basic Medical ScienceZhejiang UniversityNo. 866 Yuhangtang RoadHangzhou310058P. R. China
| | - Mengya Tian
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineSchool of Basic Medical ScienceZhejiang UniversityNo. 866 Yuhangtang RoadHangzhou310058P. R. China
| | - Jing Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineSchool of Basic Medical ScienceZhejiang UniversityNo. 866 Yuhangtang RoadHangzhou310058P. R. China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineSchool of Basic Medical ScienceZhejiang UniversityNo. 866 Yuhangtang RoadHangzhou310058P. R. China
| | - Zhiyong Zhang
- Translational Research Center for Regenerative Medicine and 3D Printing TechnologiesGuangzhou Medical UniversityNo. 63 Duobao RoadGuangzhou510150P. R. China
| |
Collapse
|
12
|
Spinal RNF20-Mediated Histone H2B Monoubiquitylation Regulates mGluR5 Transcription for Neuropathic Allodynia. J Neurosci 2018; 38:9160-9174. [PMID: 30201771 DOI: 10.1523/jneurosci.1069-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
To date, histone H2B monoubiquitination (H2Bub), a mark associated with transcriptional elongation and ongoing transcription, has not been linked to the development or maintenance of neuropathic pain states. Here, using male Sprague Dawley rats, we demonstrated spinal nerve ligation (SNL) induced behavioral allodynia and provoked ring finger protein 20 (RNF20)-dependent H2Bub in dorsal horn. Moreover, SNL provoked RNF20-mediated H2Bub phosphorylated RNA polymerase II (RNAPII) in the promoter fragments of mGluR5, thereby enhancing mGluR5 transcription/expression in the dorsal horn. Conversely, focal knockdown of spinal RNF20 expression reversed not only SNL-induced allodynia but also RNF20/H2Bub/RNAPII phosphorylation-associated spinal mGluR5 transcription/expression. Notably, TNF-α injection into naive rats and specific neutralizing antibody injection into SNL-induced allodynia rats revealed that TNF-α-associated allodynia involves the RNF20/H2Bub/RNAPII transcriptional axis to upregulate mGluR5 expression in the dorsal horn. Collectively, our findings indicated TNF-α induces RNF20-drived H2B monoubiquitination, which facilitates phosphorylated RNAPII-dependent mGluR5 transcription in the dorsal horn for the development of neuropathic allodynia.SIGNIFICANCE STATEMENT Histone H2B monoubiquitination (H2Bub), an epigenetic post-translational modification, positively correlated with gene expression. Here, TNF-α participated in neuropathic pain development by enhancing RNF20-mediated H2Bub, which facilitates phosphorylated RNAPII-dependent mGluR5 transcription in dorsal horn. Our finding potentially identified neuropathic allodynia pathophysiological processes underpinning abnormal nociception processing and opens a new avenue for the development of novel analgesics.
Collapse
|
13
|
Huang YY, Zhang Q, Zhang JN, Zhang YN, Gu L, Yang HM, Xia N, Wang XM, Zhang H. Triptolide up-regulates metabotropic glutamate receptor 5 to inhibit microglia activation in the lipopolysaccharide-induced model of Parkinson's disease. Brain Behav Immun 2018; 71:93-107. [PMID: 29649522 DOI: 10.1016/j.bbi.2018.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/27/2018] [Accepted: 04/07/2018] [Indexed: 12/11/2022] Open
Abstract
Metabotropic glutamate receptor (mGlu)5 regulates microglia activation, which contributes to inflammation. However, the role of mGlu5 in neuroinflammation associated with Parkinson's disease (PD) remains unclear. Triptolide (T10) exerts potent immunosuppressive and anti-inflammatory effects and protects neurons by inhibiting microglia activation. In this study, we investigated the role of mGlu5 in the anti-inflammatory effect of T10 in a lipopolysaccharide (LPS)-induced PD model. In cultured BV2 cells and primary microglia, blocking mGlu5 activity or knocking down its expression abolished T10-inhibited release of proinflammatory cytokines induced by LPS. Moreover, T10 up-regulated mGlu5 expression decreased by LPS through enhancing mRNA expression and protein stability. T10 also reversed the reduction in mGlu5 membrane localization and modulated receptor-mediated mitogen-activated protein kinase activity induced by LPS. Pharmacological inhibition of signaling molecules increased nitric oxide level and inducible nitric oxide synthase (iNOS), tumor necrosis factor-α, and interleukin (IL)-1β and -6 transcript levels that were downregulated by treatment with T10. Consistent with these in vitro findings, blocking mGlu5 attenuated the anti-inflammatory effects of T10 in an LPS-induced PD model and blocked the decreases in the number and morphology of ionized calcium binding adaptor molecule 1-positive microglia and LPS-induced iNOS protein expression caused by T10 treatment. Besides, mGlu5 mediated the effect of T10 on microglia-induced astrocyte activation in vitro and in vivo. The findings provide evidence for a novel mechanism by which mGlu5 regulates T10-inhibited microglia activation via modulating protein expression of the receptor and its intracellular signaling. The study might contribute to the biological effects of Chinese herbs as an approach for protecting against neurotoxicity in PD.
Collapse
Affiliation(s)
- Yi-Ying Huang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Qian Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Jian-Nan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Ya-Nan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Li Gu
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Hui-Min Yang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Ning Xia
- Burke Medical Research Institute, Weill Cornell Medicine, White Plains, NY, 10605, USA
| | - Xiao-Min Wang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
14
|
Fazio F, Ulivieri M, Volpi C, Gargaro M, Fallarino F. Targeting metabotropic glutamate receptors for the treatment of neuroinflammation. Curr Opin Pharmacol 2018; 38:16-23. [PMID: 29471184 DOI: 10.1016/j.coph.2018.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/31/2018] [Indexed: 12/15/2022]
Abstract
A large body of evidence suggests that neuroinflammation lies at the core of nearly all CNS disorders, including psychiatric disorders. Invading and local immune cells orchestrate the series of events that lead to either tissue repair or damage in response to neuroinflammation. Both lymphocytes and microglia express metabotropic glutamate (mGlu) receptors, which respond to glutamate or other endogenous activators (e.g. some kynurenine metabolites of tryptophan metabolism) influencing immune phenotype and the balance between pro-inflammatory and anti-inflammatory cytokines. Here, we offer an up-to-date on the role of individual mGlu receptor subtypes in the regulation of innate and adaptive immune response, highlighting the relevance of this information in the development of subtype-selective mGlu receptor ligands for treatment of CNS disorders.
Collapse
Affiliation(s)
| | - Martina Ulivieri
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Claudia Volpi
- Department of Experimental Medicine, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy
| |
Collapse
|
15
|
Ye X, Yu L, Zuo D, Zhang L, Zu J, Hu J, Tang J, Bao L, Cui C, Zhang R, Jin G, Zan K, Zhang Z, Yang X, Shi H, Zhang Z, Xiao Q, Liu Y, Xiang J, Zhang X, Cui G. Activated mGluR5 protects BV2 cells against OGD/R induced cytotoxicity by modulating BDNF-TrkB pathway. Neurosci Lett 2017. [PMID: 28642149 DOI: 10.1016/j.neulet.2017.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Activated Metabotropic glutamate receptors 5(mGluR5) exhibits protective effects against ischemic brain damage, but the underlying mechanisms are not clearly known. Brain-derived neurotrophic factor (BDNF), as a valuable member of neurotrophic factor family, exerts its protection by combining with its high-affinity receptor tyrosine protein kinase B (TrkB). To investigate the role of activated mGluR5 against oxygen-glucose deprivation (OGD)/reoxygenation (R)-mediated cytotoxicity, the cell viability, apoptosis, the release of inflammatory cytokines and accumulation of reactive oxygen species (ROS) were evaluated in BV2 cells (Microglia cell line) with or without OGD/R exposure. Our data show that CHPG (the selective mGluR5 agonist) pretreatment, as an mGluR5 agonist, protected BV2 cells against OGD/R-induced cytotoxicity, apoptosis, the release of inflammatory cytokines, and the accumulation of ROS. However, these effects were significantly reversed by the mGluR5 antagonist MPEP pretreatment. Our data also show that the expressions of BDNF and TrkB were significantly decreased in BV2 cells with OGD/R exposure. CHPG pretreatment significantly enhanced the expressions of BDNF and TrkB in BV2 cells with OGD/R exposure. However, the increased expressions were significantly abrogated by MPEP pretreatment. In addition, inhibition of BDNF/TrKB pathway by K252a also attenuated the protective effects of activated mGluR5 against OGD/R-induced cytotoxicity, apoptosis and the release of inflammatory cytokines. Morever, pretreatment with exogenous BDNF protected BV2 cells against OGD/R induced apoptosis and release of inflammatory cytokines. These data suggested that BDNF/TrKB pathway may be involved in regulating activated mGluR5' protective effects against OGD/R induced cytotoxicity in BV2 cells.
Collapse
Affiliation(s)
- Xinchun Ye
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Lu Yu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Dandan Zuo
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Liang Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Jie Zu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Jinxia Hu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Jiao Tang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Lei Bao
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Chengcheng Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Ruixue Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Guoliang Jin
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Kun Zan
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Zuohui Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Xinxin Yang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Hongjuan Shi
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Zunsheng Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Qihua Xiao
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Yonghai Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Jie Xiang
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Xueling Zhang
- Department of Neurology, Suqian People's Hospital, Suqian, Jiangsu Province, 223800, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China.
| |
Collapse
|
16
|
Recruitment of Polysynaptic Connections Underlies Functional Recovery of a Neural Circuit after Lesion. eNeuro 2016; 3:eN-NWR-0056-16. [PMID: 27570828 PMCID: PMC4999536 DOI: 10.1523/eneuro.0056-16.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 11/21/2022] Open
Abstract
The recruitment of additional neurons to neural circuits often occurs in accordance with changing functional demands. Here we found that synaptic recruitment plays a key role in functional recovery after neural injury. Disconnection of a brain commissure in the nudibranch mollusc, Tritonia diomedea, impairs swimming behavior by eliminating particular synapses in the central pattern generator (CPG) underlying the rhythmic swim motor pattern. However, the CPG functionally recovers within a day after the lesion. The strength of a spared inhibitory synapse within the CPG from Cerebral Neuron 2 (C2) to Ventral Swim Interneuron B (VSI) determines the level of impairment caused by the lesion, which varies among individuals. In addition to this direct synaptic connection, there are polysynaptic connections from C2 and Dorsal Swim Interneurons to VSI that provide indirect excitatory drive but play only minor roles under normal conditions. After disconnecting the pedal commissure (Pedal Nerve 6), the recruitment of polysynaptic excitation became a major source of the excitatory drive to VSI. Moreover, the amount of polysynaptic recruitment, which changed over time, differed among individuals and correlated with the degree of recovery of the swim motor pattern. Thus, functional recovery was mediated by an increase in the magnitude of polysynaptic excitatory drive, compensating for the loss of direct excitation. Since the degree of susceptibility to injury corresponds to existing individual variation in the C2 to VSI synapse, the recovery relied upon the extent to which the network reorganized to incorporate additional synapses.
Collapse
|
17
|
von Leden RE, Selwyn RG, Jaiswal S, Wilson CM, Khayrullina G, Byrnes KR. (18)F-FDG-PET imaging of rat spinal cord demonstrates altered glucose uptake acutely after contusion injury. Neurosci Lett 2016; 621:126-132. [PMID: 27084688 DOI: 10.1016/j.neulet.2016.04.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/25/2016] [Accepted: 04/11/2016] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) results in an acute reduction in neuronal and glial cell viability, disruption in axonal tract integrity, and prolonged increases in glial activity and inflammation, all of which can influence regional metabolism and glucose utilization. To date, the understanding of glucose uptake and utilization in the injured spinal cord is limited. Positron emission tomography (PET)-based measurements of glucose uptake may therefore serve as a novel biomarker for SCI. This study aimed to determine the acute and sub-acute glucose uptake pattern after SCI to determine its potential as a novel non-invasive tool for injury assessment and to begin to understand the glucose uptake pattern following acute SCI. Briefly, adult male Sprague-Dawley rats were subjected to moderate contusion SCI, confirmed by locomotor function and histology. PET imaging with [(18)F] Fluorodeoxyglucose (FDG) was performed prior to injury and at 6 and 24h and 15days post-injury (dpi). FDG-PET imaging revealed significantly depressed glucose uptake at 6h post-injury at the lesion epicenter that returned to sham/naïve levels at 24h and 15 dpi after moderate injury. FDG uptake at 15 dpi was likely influenced by a combination of elevated glial presence and reduced neuronal viability. These results show that moderate SCI results in acute depression in glucose uptake followed by an increase in glucose uptake that may be related to neuroinflammation. This acute and sub-acute uptake, which is dependent on cellular responses, may represent a therapeutic target.
Collapse
Affiliation(s)
- Ramona E von Leden
- Neuroscience Program, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States.
| | - Reed G Selwyn
- Department of Radiology, University of New Mexico, Albuquerque, NM 87131, United States; Department of Radiology and Radiological Sciences, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States.
| | - Shalini Jaiswal
- Translational Imaging Core, Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, Bethesda, MD 20814, United States.
| | - Colin M Wilson
- Translational Imaging Core, Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, Bethesda, MD 20814, United States.
| | - Guzal Khayrullina
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States.
| | - Kimberly R Byrnes
- Neuroscience Program, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States; Department of Anatomy, Physiology, and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States.
| |
Collapse
|
18
|
Combined behavioral studies and in vivo imaging of inflammatory response and expression of mGlu5 receptors in schnurri-2 knockout mice. Neurosci Lett 2015; 609:159-64. [DOI: 10.1016/j.neulet.2015.10.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/21/2015] [Accepted: 10/12/2015] [Indexed: 01/23/2023]
|
19
|
Loane DJ, Kumar A. Microglia in the TBI brain: The good, the bad, and the dysregulated. Exp Neurol 2015; 275 Pt 3:316-327. [PMID: 26342753 DOI: 10.1016/j.expneurol.2015.08.018] [Citation(s) in RCA: 493] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/05/2015] [Accepted: 08/25/2015] [Indexed: 01/24/2023]
Abstract
As the major cellular component of the innate immune system in the central nervous system (CNS) and the first line of defense whenever injury or disease occurs, microglia play a critical role in neuroinflammation following a traumatic brain injury (TBI). In the injured brain microglia can produce neuroprotective factors, clear cellular debris and orchestrate neurorestorative processes that are beneficial for neurological recovery after TBI. However, microglia can also become dysregulated and can produce high levels of pro-inflammatory and cytotoxic mediators that hinder CNS repair and contribute to neuronal dysfunction and cell death. The dual role of microglial activation in promoting beneficial and detrimental effects on neurons may be accounted for by their polarization state and functional responses after injury. In this review article we discuss emerging research on microglial activation phenotypes in the context of acute brain injury, and the potential role of microglia in phenotype-specific neurorestorative processes such as neurogenesis, angiogenesis, oligodendrogenesis and regeneration. We also describe some of the known molecular mechanisms that regulate phenotype switching, and highlight new therapeutic approaches that alter microglial activation state balance to enhance long-term functional recovery after TBI. An improved understanding of the regulatory mechanisms that control microglial phenotypic shifts may advance our knowledge of post-injury recovery and repair, and provide opportunities for the development of novel therapeutic strategies for TBI.
Collapse
Affiliation(s)
- David J Loane
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, United States; Shock, Trauma, and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, United States.
| | - Alok Kumar
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, United States; Shock, Trauma, and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
20
|
Activation of mGluR5 Attenuates Microglial Activation and Neuronal Apoptosis in Early Brain Injury After Experimental Subarachnoid Hemorrhage in Rats. Neurochem Res 2015; 40:1121-32. [DOI: 10.1007/s11064-015-1572-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 12/23/2022]
|
21
|
Abstract
Microglia are considered the brain's resident immune cell involved in immune defense, immunocompetence, and phagocytosis. They maintain tissue homeostasis within the brain and spinal cord under normal condition and serves as its initial host defense system. However, when the central nervous system (CNS) faces injury, microglia respond through signaling molecules expressed or released by neighboring cells. Microglial responses are dual in nature. They induce a nonspecific immune response that may exacerbate CNS injury, especially in the acute stages, but are also essential to CNS recovery and repair. The full range of microglial mechanisms have yet to be clarified, but there is accumulating knowledge about microglial activation in acute CNS injury. Microglial responses require hours to days to fully develop, and may present a therapeutic target for intervention with a much longer window of opportunity compare to other neurological treatments. The challenge will be to find ways to selectively suppress the deleterious effects of microglial activation without compromising its beneficial functions. This review aims to provide an overview of the recent progress relating on the deleterious and beneficial effect of microglia in the setting of acute CNS injury and the potential therapeutic intervention against microglial activation to CNS injury.
Collapse
Affiliation(s)
- Masahito Kawabori
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, 94121, USA
| | | |
Collapse
|
22
|
Chantong B, Kratschmar DV, Lister A, Odermatt A. Inhibition of metabotropic glutamate receptor 5 induces cellular stress through pertussis toxin-sensitive Gi-proteins in murine BV-2 microglia cells. J Neuroinflammation 2014; 11:190. [PMID: 25407356 PMCID: PMC4240888 DOI: 10.1186/s12974-014-0190-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/30/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Activation of metabotropic glutamate receptor 5 (mGluR5) by (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) was shown to suppress microglia activation and decrease the release of associated pro-inflammatory mediators. In contrast, the consequences of mGluR5 inhibition are less well understood. Here, we used BV-2 cells, retaining key characteristics of primary mouse microglia, to examine whether mGluR5 inhibition by 2-methyl-6-(phenylethynyl)-pyridine (MPEP) enhances cellular stress and production of inflammatory mediators. METHODS BV-2 cells were treated with MPEP, followed by determination of cellular stress using fluorescent dyes and high-content imaging. The expression of inflammatory mediators, endoplasmic reticulum (ER)-stress markers and phosphorylated AMPKα was analyzed by quantitative PCR, ELISA and Western blotting. Additionally, phospholipase C (PLC) activity, cellular ATP content and changes in intracellular free Ca(2+) ([Ca(2+)]i) were measured using luminescence and fluorescence assays. RESULTS Treatment of BV-2 microglia with 100 μM MPEP increased intracellular reactive oxygen species (ROS), mitochondrial superoxide, mitochondrial mass as well as inducible nitric oxide synthase (iNOS) and IL-6 expression. Furthermore, MPEP reduced cellular ATP and induced AMPKα phosphorylation and the expression of the ER-stress markers CHOP, GRP78 and GRP96. The MPEP-dependent effects were preceded by a rapid concentration-dependent elevation of [Ca(2+)]i, following Ca(2+) release from the ER, mainly via inositol triphosphate-induced receptors (IP3R). The MPEP-induced ER-stress could be blocked by pretreatment with the chemical chaperone 4-phenylbutyrate and the Ca(2+) chelator BAPTA-AM. Pretreatment with the AMPK agonist AICAR partially abolished, whilst the inhibitor compound C potentiated, the MPEP-dependent ER-stress. Importantly, the PLC inhibitor U-73122 and the Gi-protein inhibitor pertussis toxin (PTX) blocked the MPEP-induced increase in [Ca(2+)]i. Moreover, pretreatment of microglia with AICAR, BAPTA-AM, U-73122 and PTX prevented the MPEP-induced generation of oxidative stress and inflammatory mediators, further supporting a role for Gi-protein-mediated activation of PLC. CONCLUSIONS The results emphasize the potential pathophysiological role of mGluR5 antagonism in mediating oxidative stress, ER-stress and inflammation through a Ca(2+)-dependent pathway in microglia. The induction of cellular stress and inflammatory mediators involves PTX-sensitive Gi-proteins and subsequent activation of PLC, IP3R and Ca(2+) release from the ER.
Collapse
Affiliation(s)
- Boonrat Chantong
- Current address: Department of Preclinical Science and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Phutthamonthon, Nakhonpathom, Thailand.
| | - Denise V Kratschmar
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Adam Lister
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| |
Collapse
|
23
|
Loane DJ, Stoica BA, Tchantchou F, Kumar A, Barrett JP, Akintola T, Xue F, Conn PJ, Faden AI. Novel mGluR5 positive allosteric modulator improves functional recovery, attenuates neurodegeneration, and alters microglial polarization after experimental traumatic brain injury. Neurotherapeutics 2014; 11:857-69. [PMID: 25096154 PMCID: PMC4391388 DOI: 10.1007/s13311-014-0298-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Traumatic brain injury (TBI) causes microglial activation and related neurotoxicity that contributes to chronic neurodegeneration and loss of neurological function. Selective activation of metabotropic glutamate receptor 5 (mGluR5) by the orthosteric agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), is neuroprotective in experimental models of TBI, and has potent anti-inflammatory effects in vitro. However, the therapeutic potential of CHPG is limited due to its relatively weak potency and brain permeability. Highly potent, selective and brain penetrant mGluR5 positive allosteric modulators (PAMs) have been developed and show promise as therapeutic agents. We evaluated the therapeutic potential of a novel mGluR5 PAM, VU0360172, after controlled cortical impact (CCI) in mice. Vehicle, VU0360172, or VU0360172 plus mGluR5 antagonist (MTEP), were administered systemically to CCI mice at 3 h post-injury; lesion volume, hippocampal neurodegeneration, microglial activation, and functional recovery were assessed through 28 days post-injury. Anti-inflammatory effects of VU0360172 were also examined in vitro using BV2 and primary microglia. VU0360172 treatment significantly reduced the lesion, attenuated hippocampal neurodegeneration, and improved motor function recovery after CCI. Effects were mediated by mGluR5 as co-administration of MTEP blocked the protective effects of VU0360172. VU0360172 significantly reduced CD68 and NOX2 expression in activated microglia in the cortex at 28 days post-injury, and also suppressed pro-inflammatory signaling pathways in BV2 and primary microglia. In addition, VU0360172 treatment shifted the balance between M1/M2 microglial activation states towards an M2 pro-repair phenotype. This study demonstrates that VU0360172 confers neuroprotection after experimental TBI, and suggests that mGluR5 PAMs may be promising therapeutic agents for head injury.
Collapse
Affiliation(s)
- David J. Loane
- />Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Health Sciences Facility II (HSFII), #S247, 20 Penn Street, Baltimore, MD 21201 USA
| | - Bogdan A. Stoica
- />Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Health Sciences Facility II (HSFII), #S247, 20 Penn Street, Baltimore, MD 21201 USA
| | - Flaubert Tchantchou
- />Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Health Sciences Facility II (HSFII), #S247, 20 Penn Street, Baltimore, MD 21201 USA
| | - Alok Kumar
- />Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Health Sciences Facility II (HSFII), #S247, 20 Penn Street, Baltimore, MD 21201 USA
| | - James P. Barrett
- />Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Health Sciences Facility II (HSFII), #S247, 20 Penn Street, Baltimore, MD 21201 USA
| | - Titilola Akintola
- />Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Health Sciences Facility II (HSFII), #S247, 20 Penn Street, Baltimore, MD 21201 USA
| | - Fengtian Xue
- />Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD USA
| | - P. Jeffrey Conn
- />Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN USA
| | - Alan I. Faden
- />Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Health Sciences Facility II (HSFII), #S247, 20 Penn Street, Baltimore, MD 21201 USA
| |
Collapse
|
24
|
Souza LC, Wilhelm EA, Bortolatto CF, Nogueira CW, Boeira SP, Jesse CR. Involvement of mGlu5 receptor in 3-nitropropionic acid-induced oxidative stress in rat striatum. Neurol Res 2014; 36:833-40. [PMID: 24588139 DOI: 10.1179/1743132814y.0000000334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES The excitotoxin 3-nitropropionic acid (3-NP) induces a suitable experimental model of Huntington's disease (HD). This compound induces neurodegeneration via glutamatergic activation and oxidative stress, suggesting that the metabotropic glutamate receptor blockage and free radical scavenging are potential therapeutic targets in HD. In this study, we evaluated the role of 3-[(2-methyl-1,3-thiazol-4-yl) ethynyl]-pyridine (MTEP), a selective mGlu5 receptor antagonist, in a 3-NP model of HD. METHODS We administered 3-NP (20 mg/kg, intraperitoneal) to rats for 4 days. MTEP at doses of 2·5 and 5 mg/kg was administered 30 min before 3-NP. Behavioral tests and biochemical experiments were performed to assess the effects of 3-NP and the ability of MTEP to ameliorate these changes. RESULTS 3-NP administration induced body weight loss, decreased locomotor activity, and inhibition of succinate dehydrogenase and Na(+)-K(+) adenosine triphosphate (ATP)ase activities in rat striatum. We also observed increases in reactive species (RS) levels and glutathione reductase activity, decreased non-protein thiol levels, and an inhibition of glutathione peroxidase activity in the striatum of rats treated with 3-NP. Notably, all of these effects were attenuated by MTEP treatment. DISCUSSION Our results demonstrate the neuroprotective effect of MTEP and reinforce the involvement of mGluR5 in 3-NP-induced oxidative stress in rat striatum.
Collapse
|
25
|
The potential role of heat shock proteins in acute spinal cord injury. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 23:1480-90. [DOI: 10.1007/s00586-014-3214-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/26/2013] [Accepted: 01/08/2014] [Indexed: 12/19/2022]
|
26
|
Arsenault D, Zhu A, Gong C, Kil KE, Kura S, Choi JK, Brownell AL. Hypo-anxious phenotype of adolescent offspring prenatally exposed to LPS is associated with reduced mGluR5 expression in hippocampus. ACTA ACUST UNITED AC 2014; 3:202-211. [PMID: 25419490 DOI: 10.4236/ojmp.2014.33022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many studies have reported long-term modulation of metabotropic glutamate receptor 5 (mGluR5) by inflammatory processes and a pharmacological modulation of mGluR5 is known to regulate anxiety level. However, it is not known if non-pharmacological modulation of mGluR5 by inflammation impaired the unconditional level of anxiety. In this study, we investigated this relation in LPS prenatal immune challenge (120μg/kg, 3x i.p. injection in late gestation), a developmental model of neuroinflammation in which some studies have reported hypo-anxious phenotype. Using positron emission tomographic imaging (PET) approaches, we have demonstrated a decrease in the binding potential of [18F]fluoro-5-(2-pyridinylethynyl)benzonitrile ([18F]FPEB, a radioligand for mGluR5) in hippocampus of adolescent offspring prenatally exposed to LPS, without significant change in the binding of [11C]peripheral benzodiazepine receptor 28 ([11C]PBR28), an inflammatory marker. In addition, dark-light box emergence test revealed a lower level of anxiety in LPS-exposed offspring and this behavioural phenotype was associated with the binding potential of [18F]FPEB in hippocampus. These results confirm that neuroinflammation during developmental phase modulates the physiology of mGluR5 and this alteration can be associated with behavioural phenotype related to anxiety. In addition, this study supports a hypotheses that mGluR5 could be used as a diagnostic target in anxiety.
Collapse
Affiliation(s)
- Dany Arsenault
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, Massachusetts 02129, USA
| | - Aijun Zhu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, Massachusetts 02129, USA
| | - Chunyu Gong
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, Massachusetts 02129, USA
| | - Kun-Eek Kil
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, Massachusetts 02129, USA
| | - Sreekanth Kura
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, Massachusetts 02129, USA
| | - Ji-Kyung Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, Massachusetts 02129, USA
| | - Anna-Liisa Brownell
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
27
|
Stirling DP, Cummins K, Mishra M, Teo W, Yong VW, Stys P. Toll-like receptor 2-mediated alternative activation of microglia is protective after spinal cord injury. Brain 2013; 137:707-23. [DOI: 10.1093/brain/awt341] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
28
|
Woodrow L, Sheppard P, Gardiner P. Transcriptional changes in rat α-motoneurons resulting from increased physical activity. Neuroscience 2013; 255:45-54. [DOI: 10.1016/j.neuroscience.2013.09.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 11/26/2022]
|
29
|
Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci 2013; 15:43-53. [PMID: 24281245 DOI: 10.1038/nrn3617] [Citation(s) in RCA: 388] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The CNS is endowed with an elaborated response repertoire termed 'neuroinflammation', which enables it to cope with pathogens, toxins, traumata and degeneration. On the basis of recent publications, we deduce that orchestrated actions of immune cells, vascular cells and neurons that constitute neuroinflammation are not only provoked by pathological conditions but can also be induced by increased neuronal activity. We suggest that the technical term 'neurogenic neuroinflammation' should be used for inflammatory reactions in the CNS in response to neuronal activity. We believe that neurogenic neuro-inflammation maintains homeostasis to enable the CNS to cope with enhanced metabolic demands and increases the computational power and plasticity of CNS neuronal networks. However, neurogenic neuroinflammation may also become maladaptive and aggravate the outcomes of pain, stress and epilepsy.
Collapse
|
30
|
Eisenkraft A, Falk A, Finkelstein A. The role of glutamate and the immune system in organophosphate-induced CNS damage. Neurotox Res 2013; 24:265-79. [PMID: 23532600 DOI: 10.1007/s12640-013-9388-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/10/2013] [Accepted: 03/15/2013] [Indexed: 12/12/2022]
Abstract
Organophosphate (OP) poisoning is associated with long-lasting neurological damage, which is attributed mainly to the excessive levels of glutamate caused by the intoxication. Glutamate toxicity, however, is not specific to OP poisoning, and is linked to propagation of damage in both acute and chronic neurodegenerative conditions in the central nervous system (CNS). In addition to acute excitotoxic effects of glutamate, there is now a growing amount of evidence of its intricate immunomodulatory effects in the brain, involving both the innate and the adaptive immune systems. Moreover, it was demonstrated that immunomodulatory treatments, aimed at regulating the interaction between the resident immune cells of the brain (microglia) and the peripheral immune system, can support buffering of excessive levels of glutamate and restoration of the homeostasis. In this review, we will discuss the role of glutamate as an excitotoxic agent in the acute phase of OP poisoning, and the possible functions it may have as both a neuroprotectant and an immunomodulator in the sub-acute and chronic phases of OP poisoning. In addition, we will describe the novel immune-based neuroprotective strategies aimed at counteracting the long-term neurodegenerative effects of glutamate in the CNS.
Collapse
|
31
|
Abstract
Astrogliosis following spinal cord injury (SCI) involves an early hypertrophic response that serves to repair damaged blood-brain barrier and a subsequent hyperplastic response that results in a dense scar that impedes axon regeneration. The mechanisms regulating these two phases of astrogliosis are beginning to be elucidated. In this study, we found that microRNA-21 (miR-21) increases in a time-dependent manner following SCI in mouse. Astrocytes adjacent to the lesion area express high levels of miR-21 whereas astrocytes in uninjured spinal cord express low levels of miR-21. To study the role of miR-21 in astrocytes after SCI, transgenic mice were generated that conditionally overexpress either the primary miR-21 transcript in astrocytes or a miRNA sponge designed to inhibit miR-21 function. Overexpression of miR-21 in astrocytes attenuated the hypertrophic response to SCI. Conversely, expression of the miR-21 sponge augmented the hypertrophic phenotype, even in chronic stages of SCI recovery when astrocytes have normally become smaller in size with fine processes. Inhibition of miR-21 function in astrocytes also resulted in increased axon density within the lesion site. These findings demonstrate a novel role for miR-21 in regulating astrocytic hypertrophy and glial scar progression after SCI, and suggest miR-21 as a potential therapeutic target for manipulating gliosis and enhancing functional outcome.
Collapse
|
32
|
Loane DJ, Stoica BA, Byrnes KR, Jeong W, Faden AI. Activation of mGluR5 and inhibition of NADPH oxidase improves functional recovery after traumatic brain injury. J Neurotrauma 2013. [PMID: 23199080 DOI: 10.1089/neu.2012.2589] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract Traumatic brain injury (TBI) induces microglial activation, which can contribute to secondary tissue loss. Activation of mGluR5 reduces microglial activation and inhibits microglial-mediated neurodegeneration in vitro, and is neuroprotective in experimental models of CNS injury. In vitro studies also suggest that the beneficial effects of mGluR5 activation involve nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibition in activated microglia. We hypothesized that activation of mGluR5 by the selective agonist CHPG after TBI in mice is neuroprotective and that its therapeutic actions are mediated by NADPH oxidase inhibition. Vehicle, CHPG, or CHPG plus the mGluR5 antagonist (MPEP), were administered centrally, 30 minutes post-TBI, and functional recovery and lesion volume was assessed. CHPG significantly attenuated post-traumatic sensorimotor and cognitive deficits, and reduced lesion volumes; these effects were blocked by MPEP, thereby indicating neuroprotection involved selective activation of mGluR5. CHPG treatment also reduced NFκB activity and nitrite production in lipopolysaccharide-stimulated microglia and the protective effects of CHPG treatment were abrogated in NADPH oxidase deficient microglial cultures (gp91(phox-/-)). To address whether the neuroprotective effects of CHPG are mediated via the inhibition of NADPH oxidase, we administered the NADPH oxidase inhibitor apocynin with or without CHPG treatment after TBI. Both apocynin or CHPG treatment alone improved sensorimotor deficits and reduced lesion volumes when compared with vehicle-treated mice; however, the combined CHPG + apocynin treatment was not superior to CHPG alone. These data suggest that the neuroprotective effects of activating mGluR5 receptors after TBI are mediated, in part, via the inhibition of NADPH oxidase.
Collapse
Affiliation(s)
- David J Loane
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
33
|
Wang JW, Wang HD, Cong ZX, Zhang XS, Zhou XM, Zhang DD. Activation of metabotropic glutamate receptor 5 reduces the secondary brain injury after traumatic brain injury in rats. Biochem Biophys Res Commun 2012; 430:1016-21. [PMID: 23261470 DOI: 10.1016/j.bbrc.2012.12.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/10/2012] [Indexed: 12/23/2022]
Abstract
A wealth of evidence has shown that microglia-associated neuro-inflammation is involved in the secondary brain injury contributed to the poor outcome after traumatic brain injury (TBI). In vitro studies were reported that activation of metabotropic glutamate receptor 5 (mGluR5) could inhibit the microglia-associated inflammation in response to lipopolysaccharide and our previous study indicated that mGluR5 was expressed in activated microglia following TBI. However, there is little known about whether mGluR5 activation can provide neuro-protection and reduce microglia-associated neuro-inflammation in rats after TBI. The goal of the present study was to investigate the effects of mGluR5 activation with selective agonist CHPG, on cerebral edema, neuronal degeneration, microglia activation and the releasing of pro-inflammatory cytokines, in a rat model of TBI. Rats were randomly distributed into various subgroups undergoing the sham surgery or TBI procedures, and 250 nmol of CHPG or equal volume vehicle was given through intracerebroventricular injection at 30 min post-TBI. All rats were sacrificed at 24 h after TBI for the further measurements. Our data indicated that post-TBI treatment with CHPG could significantly reduce the secondary brain injury characterized by the cerebral edema and neuronal degeneration, lead to the inhibition of microglia activation and decrease the expression of pro-inflammatory cytokines in both mRNA transcription and protein synthesis. These results provide the substantial evidence that activation of mGluR5 reduces the secondary brain injury after TBI, in part, through modulating microglia-associated neuro-inflammation.
Collapse
Affiliation(s)
- Jia-Wei Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | | | | | | | | | | |
Collapse
|
34
|
Zhao Z, Loane DJ, Murray MG, Stoica BA, Faden AI. Comparing the predictive value of multiple cognitive, affective, and motor tasks after rodent traumatic brain injury. J Neurotrauma 2012; 29:2475-89. [PMID: 22924665 DOI: 10.1089/neu.2012.2511] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Controlled cortical impact injury (CCI) is a widely-used, clinically-relevant model of traumatic brain injury (TBI). Although functional outcomes have been used for years in this model, little work has been done to compare the predictive value of various cognitive and sensorimotor assessment tests, singly or in combination. Such information would be particularly useful for assessing mechanisms of injury or therapeutic interventions. Following isoflurane anesthesia, C57BL/6 mice were subjected to sham, mild (5.0 m/sec), moderate (6.0 m/sec), or severe (7.5 m/sec) CCI. A battery of behavioral tests were evaluated and compared, including the standard Morris water maze (sMWM), reversal Morris water maze (rMWM), novel object recognition (NOR), passive avoidance (PA), tail-suspension (TS), beam walk (BW), and open-field locomotor activity. The BW task, performed at post-injury days (PID) 0, 1, 3, 7, 14, 21, and 28, showed good discrimination as a function of injury severity. The sMWM and rMWM tests (PID 14-23), as well as NOR (PID 24 and 25), effectively discriminated spatial and novel object learning and memory across injury severity levels. Notably, the rMWM showed the greatest separation between mild and moderate/severe injury. PA (PID 27 and 28) and TS (PID 24) also reflected differences across injury levels, but to a lesser degree. We also compared individual functional measures with histological outcomes such as lesion volume and neuronal cell loss across anatomical regions. In addition, we created a novel composite behavioral score index from individual complementary behavioral scores, and it provided superior discrimination across injury severities compared to individual tests. In summary, this study demonstrates the feasibility of using a larger number of complementary functional outcome behavioral tests than those traditionally employed to follow post-traumatic recovery after TBI, and suggests that the composite score may be a helpful tool for screening new neuroprotective agents or for addressing injury mechanisms.
Collapse
Affiliation(s)
- Zaorui Zhao
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | |
Collapse
|
35
|
Byrnes KR, Loane DJ, Stoica BA, Zhang J, Faden AI. Delayed mGluR5 activation limits neuroinflammation and neurodegeneration after traumatic brain injury. J Neuroinflammation 2012; 9:43. [PMID: 22373400 PMCID: PMC3308916 DOI: 10.1186/1742-2094-9-43] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/28/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Traumatic brain injury initiates biochemical processes that lead to secondary neurodegeneration. Imaging studies suggest that tissue loss may continue for months or years after traumatic brain injury in association with chronic microglial activation. Recently we found that metabotropic glutamate receptor 5 (mGluR5) activation by (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) decreases microglial activation and release of associated pro-inflammatory factors in vitro, which is mediated in part through inhibition of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Here we examined whether delayed CHPG administration reduces chronic neuroinflammation and associated neurodegeneration after experimental traumatic brain injury in mice. METHODS One month after controlled cortical impact traumatic brain injury, C57Bl/6 mice were randomly assigned to treatment with single dose intracerebroventricular CHPG, vehicle or CHPG plus a selective mGluR5 antagonist, 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine. Lesion volume, white matter tract integrity and neurological recovery were assessed over the following three months. RESULTS Traumatic brain injury resulted in mGluR5 expression in reactive microglia of the cortex and hippocampus at one month post-injury. Delayed CHPG treatment reduced expression of reactive microglia expressing NADPH oxidase subunits; decreased hippocampal neuronal loss; limited lesion progression, as measured by repeated T2-weighted magnetic resonance imaging (at one, two and three months) and white matter loss, as measured by high field ex vivo diffusion tensor imaging at four months; and significantly improved motor and cognitive recovery in comparison to the other treatment groups. CONCLUSION Markedly delayed, single dose treatment with CHPG significantly improves functional recovery and limits lesion progression after experimental traumatic brain injury, likely in part through actions at mGluR5 receptors that modulate neuroinflammation.
Collapse
Affiliation(s)
- Kimberly R Byrnes
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | | | | | | | | |
Collapse
|
36
|
Loane DJ, Stoica BA, Faden AI. Metabotropic glutamate receptor-mediated signaling in neuroglia. ACTA ACUST UNITED AC 2012; 1:136-150. [PMID: 22662309 DOI: 10.1002/wmts.30] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are G-protein-coupled receptors, which include eight subtypes that have been classified into three groups (I-III) based upon sequence homology, signal transduction mechanism and pharmacological profile. Although most studied with regard to neuronal function and modulation, mGlu receptors are also expressed by neuroglia-including astrocytes, microglia and oligodendrocytes. Activation of mGlu receptors on neuroglia under both physiologic and pathophysiologic conditions mediates numerous actions that are essential for intrinsic glial cell function, as well as for glial-neuronal interactions. Astrocyte mGlu receptors play important physiological roles in regulating neurotransmission and maintaining neuronal homeostasis. However, mGlu receptors on astrocytes and microglia also serve to modulate cell death and neurological function in a variety of pathophysiological conditions such as acute and chronic neurodegenerative disorders. The latter effects are complex and bi-directional, depending on which mGlu receptor sub-types are activated.
Collapse
Affiliation(s)
- David J Loane
- Department of Anesthesiology & Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, Baltimore, MD
| | | | | |
Collapse
|
37
|
Stammers A, Liu J, Kwon B. Expression of inflammatory cytokines following acute spinal cord injury in a rodent model. J Neurosci Res 2011; 90:782-90. [DOI: 10.1002/jnr.22820] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Xu X, Zhang J, Chen X, Liu J, Lu H, Yang P, Xiao X, Zhao L, Jiao Q, Zhao B, Zheng P, Liu Y. The increased expression of metabotropic glutamate receptor 5 in subventricular zone neural progenitor cells and enhanced neurogenesis in a rat model of intracerebral hemorrhage. Neuroscience 2011; 202:474-83. [PMID: 22198019 DOI: 10.1016/j.neuroscience.2011.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 11/23/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
Abstract
The metabotropic glutamate receptor 5 (mGluR5) is closely relative to the proliferation, survival, and differentiation of neural progenitor cells (NPCs). This study primarily examined the mGluR5 expression of NPCs in subventricular zone (SVZ) and the effects of mGluR5 on neurogenesis to intracerebral hemorrhage (ICH) rat. The experiment was designated as the following: (1) The ICH model was established by collagenase infusion into the right striatum of the rats, and the brain tissue was collected to assess the expression of mGluR5 in SVZ NPCs. (2) The rat brains were sampled for immunostaining of doublecortin (DCX) and 5-bromo-2'-deoxyuridine (BrdU) to examine the effects of the (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG) on neurogenesis. (3) Behavioral testing was carried out to evaluate the effects of CHPG on neurofunctional recovery. The results of Western blot analysis showed that mGluR5 levels in the ipsilateral SVZ increased as early as at 3 days after ICH, peaked at 14 days. The change of mGluR5 mRNA level in the ipsilateral SVZ was generally similar to the pattern of Western blot analysis. The immunostaining also demonstrated that some nestin-positive cells were co-expressed with mGluR5. The injection of CHPG into ipsilateral ventricle increased DCX levels both in the ipsilateral striatum (STR) and the peri-lesion area of the striatum (PLA). Meanwhile, a significant difference in behavioral score was presented at 28 days after ICH between the CHPG-treated rats and the vehicle-treated or the non-treated rats. Our results demonstrated for the first time that the increased expression of mGluR5 in SVZ NPCs occurred in ICH rat. The CHPG promoted the neurogenesis and improved neurofunctional symptom induced by ICH. These results suggested that the increased expression of mGluR5 on NPCs in SVZ may play an important role in neurogenesis in ICH rat.
Collapse
Affiliation(s)
- X Xu
- Institute of Neurobiology, Environment and Genes Related to Diseases, Key Laboratory of Education Ministry, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Byrnes KR, Washington PM, Knoblach SM, Hoffman E, Faden AI. Delayed inflammatory mRNA and protein expression after spinal cord injury. J Neuroinflammation 2011; 8:130. [PMID: 21975064 PMCID: PMC3198932 DOI: 10.1186/1742-2094-8-130] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 10/05/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) induces secondary tissue damage that is associated with inflammation. We have previously demonstrated that inflammation-related gene expression after SCI occurs in two waves - an initial cluster that is acutely and transiently up-regulated within 24 hours, and a more delayed cluster that peaks between 72 hours and 7 days. Here we extend the microarray analysis of these gene clusters up to 6 months post-SCI. METHODS Adult male rats were subjected to mild, moderate or severe spinal cord contusion injury at T9 using a well-characterized weight-drop model. Tissue from the lesion epicenter was obtained 4 hours, 24 hours, 7 days, 28 days, 3 months or 6 months post-injury and processed for microarray analysis and protein expression. RESULTS Anchor gene analysis using C1qB revealed a cluster of genes that showed elevated expression through 6 months post-injury, including galectin-3, p22PHOX, gp91PHOX, CD53 and progranulin. The expression of these genes occurred primarily in microglia/macrophage cells and was confirmed at the protein level using both immunohistochemistry and western blotting. As p22PHOX and gp91PHOX are components of the NADPH oxidase enzyme, enzymatic activity and its role in SCI were assessed and NADPH oxidase activity was found to be significantly up-regulated through 6 months post-injury. Further, treating rats with the nonspecific, irreversible NADPH oxidase inhibitor diphenylene iodinium (DPI) reduced both lesion volume and expression of chronic gene cluster proteins one month after trauma. CONCLUSIONS These data demonstrate that inflammation-related genes are chronically up-regulated after SCI and may contribute to further tissue loss.
Collapse
Affiliation(s)
- Kimberly R Byrnes
- Department of Neuroscience, Georgetown University Medical Center, NW, Washington, DC (20057), USA.
| | | | | | | | | |
Collapse
|
40
|
Masilamoni GJ, Bogenpohl JW, Alagille D, Delevich K, Tamagnan G, Votaw JR, Wichmann T, Smith Y. Metabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys. Brain 2011; 134:2057-73. [PMID: 21705423 PMCID: PMC3122374 DOI: 10.1093/brain/awr137] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/12/2011] [Accepted: 04/24/2011] [Indexed: 12/13/2022] Open
Abstract
Degeneration of the dopaminergic nigrostriatal system and of noradrenergic neurons in the locus coeruleus are important pathological features of Parkinson's disease. There is an urgent need to develop therapies that slow down the progression of neurodegeneration in Parkinson's disease. In the present study, we tested whether the highly specific metabotropic glutamate receptor 5 antagonist, 3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine, reduces dopaminergic and noradrenergic neuronal loss in monkeys rendered parkinsonian by chronic treatment with low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Weekly intramuscular 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine injections (0.2-0.5 mg/kg body weight), in combination with daily administration of 3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine or vehicle, were performed until the development of parkinsonian motor symptoms in either of the two experimental groups (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine versus 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/vehicle). After 21 weeks of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment, all 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/vehicle-treated animals displayed parkinsonian symptoms, whereas none of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine-treated monkeys were significantly affected. These behavioural observations were consistent with in vivo positron emission tomography dopamine transporter imaging data, and with post-mortem stereological counts of midbrain dopaminergic neurons, as well as striatal intensity measurements of dopamine transporter and tyrosine hydroxylase immunoreactivity, which were all significantly higher in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine-treated animals than in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/vehicle-treated monkeys. The 3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine treatment also had a significant effect on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced loss of norepinephrine neurons in the locus coeruleus and adjoining A5 and A7 noradrenaline cell groups. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/vehicle-treated animals, almost 40% loss of tyrosine hydroxylase-positive norepinephrine neurons was found in locus coeruleus/A5/A7 noradrenaline cell groups, whereas the extent of neuronal loss was lower than 15% of control values in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine-treated monkeys. Our data demonstrate that chronic treatment with the metabotropic glutamate receptor 5 antagonist, 3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine, significantly reduces 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity towards dopaminergic and noradrenergic cell groups in non-human primates. This suggests that the use of metabotropic glutamate receptor 5 antagonists may be a useful strategy to reduce degeneration of catecholaminergic neurons in Parkinson's disease.
Collapse
Affiliation(s)
- Gunasingh J Masilamoni
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA 30329, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Some lumbar sympathetic neurons develop a glutamatergic phenotype after peripheral axotomy with a note on VGLUT₂-positive perineuronal baskets. Exp Neurol 2011; 230:258-72. [PMID: 21596036 DOI: 10.1016/j.expneurol.2011.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 04/27/2011] [Accepted: 05/01/2011] [Indexed: 01/01/2023]
Abstract
Glutamate is the main excitatory neurotransmitter in the nervous system, including in primary afferent neurons. However, to date a glutamatergic phenotype of autonomic neurons has not been described. Therefore, we explored the expression of vesicular glutamate transporter (VGLUT) types 1, 2 and 3 in lumbar sympathetic chain (LSC) and major pelvic ganglion (MPG) of naïve BALB/C mice, as well as after pelvic nerve axotomy (PNA), using immunohistochemistry and in situ hybridization. Colocalization with activating transcription factor-3 (ATF-3), tyrosine hydroxylase (TH), vesicular acetylcholine transporter (VAChT) and calcitonin gene-related peptide was also examined. Sham-PNA, sciatic nerve axotomy (SNA) or naïve mice were included. In naïve mice, VGLUT(2)-like immunoreactivity (LI) was only detected in fibers and varicosities in LSC and MPG; no ATF-3-immunoreactive (IR) neurons were visible. In contrast, PNA induced upregulation of VGLUT(2) protein and transcript, as well as of ATF-3-LI in subpopulations of LSC neurons. Interestingly, VGLUT(2)-IR LSC neurons coexpressed ATF-3, and often lacked the noradrenergic marker TH. SNA only increased VGLUT(2) protein and transcript in scattered LSC neurons. Neither PNA nor SNA upregulated VGLUT(2) in MPG neurons. We also found perineuronal baskets immunoreactive either for VGLUT(2) or the acetylcholinergic marker VAChT in non-PNA MPGs, usually around TH-IR neurons. VGLUT(1)-LI was restricted to some varicosities in MPGs, was absent in LSCs, and remained largely unaffected by PNA or SNA. This was confirmed by the lack of expression of VGLUT(1) or VGLUT(3) mRNAs in LSCs, even after PNA or SNA. Taken together, axotomy of visceral and non-visceral nerves results in a glutamatergic phenotype of some LSC neurons. In addition, we show previously non-described MPG perineuronal glutamatergic baskets.
Collapse
|
42
|
Pajoohesh-Ganji A, Byrnes KR. Novel neuroinflammatory targets in the chronically injured spinal cord. Neurotherapeutics 2011; 8:195-205. [PMID: 21394541 PMCID: PMC3101830 DOI: 10.1007/s13311-011-0036-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Injury to the spinal cord is known to result in inflammation. To date, the preponderance of research has focused on the acute neuroinflammatory response, which begins immediately and is believed to terminate within hours to (at most) days after the injury. However, recent studies have demonstrated that postinjury inflammation is not restricted to the first few hours or days after injury, but can last for months to years after a spinal cord injury (SCI). These chronic studies have revealed that increased numbers of inflammatory cells, such as microglia and macrophages, and inflammatory factors, including cytokines, chemokines, and enzyme products are found at markedly delayed times after injury. Here we review experimental work on a selection of the novel inflammatory factors observed chronically after SCI, including the nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) oxidase enzyme and galectin-3. We will discuss the role of these proteins in inflammation with regard to both detrimental and beneficial effects of neuroinflammation after injury. Finally, the potential of these proteins to serve as therapeutic targets will be considered, and a novel therapeutic approach (i.e., the agonist for metabotropic glutamate receptor 5 [mGluR5], [RS]-2-Chloro-5-hydroxyphenylglycine [CHPG]) will be discussed. This review will demonstrate the expression and activity profiles, roles in potentiation of injury, and therapy studies of these inflammatory factors suggest that not only are these chronically expressed factors viable targets for SCI treatment, but that the therapeutic window is broader than has previously been thought.
Collapse
Affiliation(s)
- Ahdeah Pajoohesh-Ganji
- Department of Anatomy and Regenerative Biology, The George Washington University, 2300 Eye Street N.W., Washington, District of Columbia 20037 USA
| | - Kimberly R. Byrnes
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Room B2048, 4301 Jones Bridge Road, Bethesda, Maryland 20814 USA
| |
Collapse
|
43
|
Byrnes KR, Fricke ST, Faden AI. Neuropathological differences between rats and mice after spinal cord injury. J Magn Reson Imaging 2011; 32:836-46. [PMID: 20882614 DOI: 10.1002/jmri.22323] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To investigate the utility of noninvasive magnetic resonance imaging (MRI) protocols to demonstrate pathological differences between rats and mice after spinal cord injury (SCI). Rats and mice are commonly used to model SCI; however, histology and immunohistochemistry have shown differences in neuropathology between the two species, including cavity formation and scar/inflammatory responses. MATERIALS AND METHODS Moderate contusion SCI was performed on adult male rats and mice. At 28 days postinjury, animals underwent T1-weighted (T1W), with or without gadolinium contrast, or T2-weighted (T2W) magnetic resonance imaging (MRI), to be compared with histology at the same timepoint. RESULTS In both species, all MRI methods demonstrated changes in spinal cord anatomy. Immunohistochemistry indicated that T2W accurately reflected areas of inflammation and glial scar formation in rats and mice. Quantitation of lesion volume by histology and functional performance correlated best with T2W measurements in both species. Gadolinium contrast accurately reflected the blood-spinal cord-barrier permeability in both species, which appeared greater in rats than in mice. CONCLUSION These data demonstrate that MRI, with either a T1W or T2W protocol, can effectively distinguish pathological differences between rats and mice.
Collapse
Affiliation(s)
- Kimberly R Byrnes
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | | | | |
Collapse
|
44
|
Drouin-Ouellet J, Brownell AL, Saint-Pierre M, Fasano C, Emond V, Trudeau LE, Lévesque D, Cicchetti F. Neuroinflammation is associated with changes in glial mGluR5 expression and the development of neonatal excitotoxic lesions. Glia 2011; 59:188-99. [PMID: 21125661 PMCID: PMC3983848 DOI: 10.1002/glia.21086] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It has been hypothesized that neuroinflammation triggered during brain development can alter brain functions later in life. We investigated the contribution of inflammation to the alteration of normal brain circuitries in the context of neuroexcitotoxicity following neonatal ventral hippocampal lesions in rats with ibotenic acid, an NMDA glutamate receptor agonist. Excitotoxic ibotenic acid lesions led to a significant and persistent astrogliosis and microglial activation, associated with the production of inflammatory mediators. This response was accompanied by a significant increase in metabotropic glutamate receptor type 5 (mGluR5) expression within two distinct neuroinflammatory cell types; astrocytes and microglia. The participation of inflammation to the neurotoxin-induced lesion was further supported by the prevention of hippocampal neuronal loss, glial mGluR5 expression and some of the behavioral perturbations associated to the excitotoxic lesion by concurrent anti-inflammatory treatment with minocycline. These results indicate that neuroinflammation significantly contributes to long-lasting excitotoxic effects of the neurotoxin and to some behavioral phenotypes associated with this model. Thus, the control of the inflammatory response may prevent the deleterious effects of excitotoxic processes that are triggered during brain development, limiting the risk to develop some of the behavioral manifestations related to these processes in adulthood.
Collapse
Affiliation(s)
- Janelle Drouin-Ouellet
- Centre de Recherche du CHUL (CHUQ), Axe Neurosciences, RC-9800, 2705 Boulevard Laurier, Québec, Qc, Cananda, G1V 4G2
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Domin H, Zięba B, Gołembiowska K, Kowalska M, Dziubina A, Śmiałowska M. Neuroprotective potential of mGluR5 antagonist MTEP: effects on kainate-induced excitotoxicity in the rat hippocampus. Pharmacol Rep 2010; 62:1051-61. [DOI: 10.1016/s1734-1140(10)70367-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/19/2010] [Indexed: 11/16/2022]
|
46
|
Abstract
Microglial activation is an early response to brain ischemia and many other stressors. Microglia continuously monitor and respond to changes in brain homeostasis and to specific signaling molecules expressed or released by neighboring cells. These signaling molecules, including ATP, glutamate, cytokines, prostaglandins, zinc, reactive oxygen species, and HSP60, may induce microglial proliferation and migration to the sites of injury. They also induce a nonspecific innate immune response that may exacerbate acute ischemic injury. This innate immune response includes release of reactive oxygen species, cytokines, and proteases. Microglial activation requires hours to days to fully develop, and thus presents a target for therapeutic intervention with a much longer window of opportunity than acute neuroprotection. Effective agents are now available for blocking both microglial receptor activation and the microglia effector responses that drive the inflammatory response after stroke. Effective agents are also available for targeting the signal transduction mechanisms linking these events. However, the innate immune response can have beneficial as well deleterious effects on outcome after stoke, and a challenge will be to find ways to selectively suppress the deleterious effects of microglial activation after stroke without compromising neurovascular repair and remodeling.
Collapse
Affiliation(s)
- Midori A. Yenari
- Department of Neurology, University of California San Francisco and San Francisco Veterans Affairs Medical Center, 94121 San Francisco, California
| | - Tiina M. Kauppinen
- Department of Neurology, University of California San Francisco and San Francisco Veterans Affairs Medical Center, 94121 San Francisco, California
| | - Raymond A. Swanson
- Department of Neurology, University of California San Francisco and San Francisco Veterans Affairs Medical Center, 94121 San Francisco, California
| |
Collapse
|
47
|
Choi DC, Lee JY, Moon YJ, Kim SW, Oh TH, Yune TY. Acupuncture-mediated inhibition of inflammation facilitates significant functional recovery after spinal cord injury. Neurobiol Dis 2010; 39:272-82. [PMID: 20382225 DOI: 10.1016/j.nbd.2010.04.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/31/2010] [Accepted: 04/02/2010] [Indexed: 01/31/2023] Open
Abstract
Here, we first demonstrated the neuroprotective effect of acupuncture after SCI. Acupuncture applied at two specific acupoints, Shuigou (GV26) and Yanglingquan (GB34) significantly alleviated apoptotic cell death of neurons and oligodendrocytes, thereby leading to improved functional recovery after SCI. Acupuncture also inhibited caspase-3 activation and reduced the size of lesion cavity and extent of loss of axons. We also found that the activation of both p38 mitogen-activated protein kinase and resident microglia after injury are significantly attenuated by acupuncture. In addition, acupuncture significantly reduced the expression or activation of pro-nerve growth factor, proinflammatory factors such as tumor necrosis factor-alpha, interleukin-1beta, interleukin-6, nitric oxide synthase, cycloxygenase-2, and matrix metalloprotease-9 after SCI. Thus, our results suggest that the neuroprotection by acupuncture may be partly mediated via inhibition of inflammation and microglial activation after SCI and acupuncture can be used as a potential therapeutic tool for treating acute spinal injury in human.
Collapse
Affiliation(s)
- Doo C Choi
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
48
|
Loane DJ, Stoica BA, Pajoohesh-Ganji A, Byrnes KR, Faden AI. Activation of metabotropic glutamate receptor 5 modulates microglial reactivity and neurotoxicity by inhibiting NADPH oxidase. J Biol Chem 2009; 284:15629-39. [PMID: 19364772 DOI: 10.1074/jbc.m806139200] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microglial-related factors have been implicated in the signaling cascades that contribute to neuronal cell death in various neurodegenerative disorders. Thus, strategies that reduce microglial activation and associated neurotoxicity may have therapeutic benefit. Group II and III metabotropic glutamate receptors (mGluRs) are expressed in microglia and can modulate microglial activity in primary cell cultures. We demonstrate that the group I receptor member mGluR5 is highly expressed in primary microglial cultures and the BV2 microglial cell line. Activation of mGluR5 using the selective agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) significantly attenuates microglial activation in response to lipopolysaccharide and interferon-gamma, as indicated by a reduction in the expression of inducible nitric-oxide synthase, production of nitric oxide and tumor necrosis factor-alpha, and intracellular generation of reactive oxygen species. In addition, microglial-induced neurotoxicity is also markedly reduced by CHPG treatment. The anti-inflammatory effects of CHPG are mediated by the mGluR5 receptor, because either a selective mGluR5 antagonist or small interference RNA knockdown attenuated the actions of this drug. CHPG blocked the lipopolysaccharide-induced increase in expression and enzymatic activity of NADPH oxidase. Moreover, the protective effects of CHPG were significantly reduced when the NADPH oxidase subunits p22(phox) or gp91(phox) were knocked down by small interference RNA. These data suggest that mGluR5 represents a novel target for modulating microglial-dependent neuroinflammation, and may have therapeutic relevance for neurological disorders that exhibit microglial-mediated neurodegeneration.
Collapse
Affiliation(s)
- David J Loane
- Department of Neuroscience, Georgetown University Medical Center, Washington, D C 20057, USA.
| | | | | | | | | |
Collapse
|