1
|
Yang J, Li Z, Deng X, Li M, Li B, Thuku RC, Chen Q, Sun X, Lu Q, Fang M. Kallikrein inhibitor derived from immunoglobulin heavy chain junction region possesses anti-thromboinflammation potential. Pharmacol Res 2024; 209:107460. [PMID: 39393436 DOI: 10.1016/j.phrs.2024.107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Influenza vaccination is associated with a reduced incidence of cardiovascular events, cardiovascular death, and all-cause mortality. However, the functional role of the associated immunoglobulin remains unclear. This study identified a specific influenza-related immunoglobulin heavy chain junction region sequence (Ser-Leu-Gly-Ala-Ser-Asp, SD6) that inhibited plasma kallikrein (PKa) activity to resist thromboinflammatory responses and stroke injury. PKa is considered an attractive therapeutic target for alleviating the complications of thrombophilia-induced inflammation. In vitro, SD6 prolonged plasma recalcification and activated partial thromboplastin time, with no effects on bleeding risk-related prothrombin time, indicating selective inhibition of the intrinsic coagulation pathway. Correspondingly, at doses ranging from 0.25 to 4 mg/kg, SD6 attenuated arterial and cortical venous thrombosis in FeCl3-induced and photochemically induced mice, without impacting hemorrhage risk, and further mitigated cerebral inflammatory injury in a mouse model of transient middle cerebral artery occlusion ischemic stroke. These findings suggest that SD6 may serve as a potential therapeutic agent for the treatment of thromboinflammatory conditions.
Collapse
Affiliation(s)
- Juan Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, P. R. China
| | - Ziyu Li
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, P. R. China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyi Deng
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, P. R. China
| | - Mengru Li
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, P. R. China
| | - Bin Li
- Yan'an Hospital of Kunming Medical University, No. 245 Renmin East Road, Kunming, Yunnan 650051, China
| | - Rebecca Caroline Thuku
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, P. R. China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Chen
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiang Sun
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Qiumin Lu
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, P. R. China
| | - Mingqian Fang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, P. R. China.
| |
Collapse
|
2
|
Cha LN, Yang J, Gao JA, Lu X, Chang XL, Thuku RC, Liu Q, Lu QM, Li DS, Lai R, Fang MQ. Bat-derived oligopeptide LE6 inhibits the contact-kinin pathway and harbors anti-thromboinflammation and stroke potential. Zool Res 2024; 45:1001-1012. [PMID: 39147715 PMCID: PMC11491786 DOI: 10.24272/j.issn.2095-8137.2023.372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/30/2024] [Indexed: 08/17/2024] Open
Abstract
Thrombosis and inflammation are primary contributors to the onset and progression of ischemic stroke. The contact-kinin pathway, initiated by plasma kallikrein (PK) and activated factor XII (FXIIa), functions bidirectionally with the coagulation and inflammation cascades, providing a novel target for therapeutic drug development in ischemic stroke. In this study, we identified a bat-derived oligopeptide from Myotis myotis (Borkhausen, 1797), designated LE6 (Leu-Ser-Glu-Glu-Pro-Glu, 702 Da), with considerable potential in stroke therapy due to its effects on the contact kinin pathway. Notably, LE6 demonstrated significant inhibitory effects on PK and FXIIa, with inhibition constants of 43.97 μmol/L and 6.37 μmol/L, respectively. In vitro analyses revealed that LE6 prolonged plasma recalcification time and activated partial thromboplastin time. In murine models, LE6 effectively inhibited carrageenan-induced mouse tail thrombosis, FeCl 3-induced carotid artery thrombosis, and photochemically induced intracerebral thrombosis. Furthermore, LE6 significantly decreased inflammation and stroke injury in transient middle cerebral artery occlusion models. Notably, the low toxicity, hemolytic activity, and bleeding risk of LE6, along with its synthetic simplicity, underscore its clinical applicability. In conclusion, as an inhibitor of FXIIa and PK, LE6 offers potential therapeutic benefits in stroke treatment by mitigating inflammation and preventing thrombus formation.
Collapse
Affiliation(s)
- Li-Na Cha
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Juan Yang
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jin-Ai Gao
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Xin Lu
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Xiao-Long Chang
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Rebecca Caroline Thuku
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Qi Liu
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Qiu-Min Lu
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Dong-Sheng Li
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ren Lai
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China. E-mail:
| | - Ming-Qian Fang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China. E-mail:
| |
Collapse
|
3
|
Sexton D, Faucette R, Rivera-Hernandez M, Kenniston JA, Papaioannou N, Cosic J, Kopacz K, Salmon G, Beauchemin C, Juethner S, Yeung D. A novel assay of excess plasma kallikrein-kinin system activation in hereditary angioedema. FRONTIERS IN ALLERGY 2024; 5:1436855. [PMID: 39391687 PMCID: PMC11464748 DOI: 10.3389/falgy.2024.1436855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Background Cleaved high-molecular-weight kininogen (HKa) is a disease state biomarker of kallikrein-kinin system (KKS) activation in patients with hereditary angioedema due to C1 inhibitor deficiency (HAE-C1INH), the endogenous inhibitor of plasma kallikrein (PKa). Objective Develop an HKa-specific enzyme-linked immunosorbent assay (ELISA) to monitor KKS activation in the plasma of HAE-C1INH patients. Methods A novel HKa-specific antibody was discovered by antibody phage display and used as a capture reagent to develop an HKa-specific ELISA. Results Specific HKa detection following KKS activation was observed in plasma from healthy controls but not in prekallikrein-, high-molecular-weight kininogen-, or coagulation factor XII (FXII)-deficient plasma. HKa levels in plasma collected from HAE-C1INH patients in a disease quiescent state were higher than in plasma from healthy controls and increased further in HAE-C1INH plasma collected during an angioedema attack. The specificity of the assay for PKa-mediated HKa generation in minimally diluted plasma activated with exogenous FXIIa was demonstrated using a specific monoclonal antibody inhibitor (lanadelumab, IC50 = 0.044 µM). Conclusions An ELISA was developed for the specific and quantitative detection of HKa in human plasma to support HAE-C1INH drug development. Improved quantification of the HKa biomarker may facilitate further pathophysiologic insight into HAE-C1INH and other diseases mediated by a dysregulated KKS and may enable the design of highly potent inhibitors targeting this pathway.
Collapse
Affiliation(s)
- Dan Sexton
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | - Ryan Faucette
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | | | - Jon A. Kenniston
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | | | - Janja Cosic
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | - Kris Kopacz
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | - Gary Salmon
- Charles River Laboratories, Harlow, United Kingdom
| | | | - Salomé Juethner
- Takeda Pharmaceuticals USA, Inc., Lexington, MA, United States
| | - Dave Yeung
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| |
Collapse
|
4
|
Hou M, Wu J, Li J, Zhang M, Yin H, Chen J, Jin Z, Dong R. Immunothrombosis: A bibliometric analysis from 2003 to 2023. Medicine (Baltimore) 2024; 103:e39566. [PMID: 39287275 PMCID: PMC11404911 DOI: 10.1097/md.0000000000039566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Immunothrombosis is a physiological process that constitutes an intravascular innate immune response. Abnormal immunothrombosis can lead to thrombotic disorders. With the outbreak of COVID-19, there is increasing attention to the mechanisms of immunothrombosis and its critical role in thrombotic events, and a growing number of relevant research papers are emerging. This article employs bibliometrics to discuss the current status, hotspots, and trends in research of this field. METHODS Research papers relevant to immunothrombosis published from January 1, 2003, to May 29, 2023, were collected from the Web of Science Core Collection database. VOSviewer and the R package "Bibliometrix" were employed to analyze publication metrics, including the number of publications, authors, countries, institutions, journals, and keywords. The analysis generated visual results, and trends in research topics and hotspots were examined. RESULTS A total of 495 target papers were identified, originating from 58 countries and involving 3287 authors from 1011 research institutions. Eighty high-frequency keywords were classified into 5 clusters. The current key research topics in the field of immunothrombosis include platelets, inflammation, neutrophil extracellular traps, Von Willebrand factor, and the complement system. Research hotspots focus on the mechanisms and manifestations of immunothrombosis in COVID-19, as well as the discovery of novel treatment strategies targeting immunothrombosis in cardiovascular and cerebrovascular diseases. CONCLUSION Bibliometric analysis summarizes the main achievements and development trends in research on immunothrombosis, offering readers a comprehensive understanding of the field and guiding future research directions.
Collapse
Affiliation(s)
- Mengyu Hou
- Department of Research Ward, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Haupeltshofer S, Mencl S, Szepanowski RD, Hansmann C, Casas AI, Abberger H, Hansen W, Blusch A, Deuschl C, Forsting M, Hermann DM, Langhauser F, Kleinschnitz C. Delayed plasma kallikrein inhibition fosters post-stroke recovery by reducing thrombo-inflammation. J Neuroinflammation 2024; 21:155. [PMID: 38872149 PMCID: PMC11177352 DOI: 10.1186/s12974-024-03149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Activation of the kallikrein-kinin system promotes vascular leakage, inflammation, and neurodegeneration in ischemic stroke. Inhibition of plasma kallikrein (PK) - a key component of the KKS - in the acute phase of ischemic stroke has been reported to reduce thrombosis, inflammation, and damage to the blood-brain barrier. However, the role of PK during the recovery phase after cerebral ischemia is unknown. To this end, we evaluated the effect of subacute PK inhibition starting from day 3 on the recovery process after transient middle artery occlusion (tMCAO). Our study demonstrated a protective effect of PK inhibition by reducing infarct volume and improving functional outcome at day 7 after tMCAO. In addition, we observed reduced thrombus formation in cerebral microvessels, fewer infiltrated immune cells, and an improvement in blood-brain barrier integrity. This protective effect was facilitated by promoting tight junction reintegration, reducing detrimental matrix metalloproteinases, and upregulating regenerative angiogenic markers. Our findings suggest that PK inhibition in the subacute phase might be a promising approach to accelerate the post-stroke recovery process.
Collapse
Affiliation(s)
- Steffen Haupeltshofer
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany.
| | - Stine Mencl
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Rebecca D Szepanowski
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Christina Hansmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Ana I Casas
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
- Department of Pharmacology & Personalized Medicine, MeHNS, Faculty of Health, Medicine & Life Science, Maastricht University, Maastricht, The Netherlands
| | - Hanna Abberger
- Institute of Medical Microbiology, University Hospital Essen, Virchowstr. 179, D-45147, Essen, Germany
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, Virchowstr. 179, D-45147, Essen, Germany
| | - Alina Blusch
- Department of Neurology, Center for Huntington's Disease NRW, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr. 56, D-44791, Bochum, Germany
| | - Cornelius Deuschl
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
- Chair of Vascular Neurology, Dementia and Ageing, Department of Neurology, Medical Research Centre, University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Friederike Langhauser
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
| |
Collapse
|
6
|
Duan M, Xu Y, Li Y, Feng H, Chen Y. Targeting brain-peripheral immune responses for secondary brain injury after ischemic and hemorrhagic stroke. J Neuroinflammation 2024; 21:102. [PMID: 38637850 PMCID: PMC11025216 DOI: 10.1186/s12974-024-03101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
The notion that the central nervous system is an immunologically immune-exempt organ has changed over the past two decades, with increasing evidence of strong links and interactions between the central nervous system and the peripheral immune system, both in the healthy state and after ischemic and hemorrhagic stroke. Although primary injury after stroke is certainly important, the limited therapeutic efficacy, poor neurological prognosis and high mortality have led researchers to realize that secondary injury and damage may also play important roles in influencing long-term neurological prognosis and mortality and that the neuroinflammatory process in secondary injury is one of the most important influences on disease progression. Here, we summarize the interactions of the central nervous system with the peripheral immune system after ischemic and hemorrhagic stroke, in particular, how the central nervous system activates and recruits peripheral immune components, and we review recent advances in corresponding therapeutic approaches and clinical studies, emphasizing the importance of the role of the peripheral immune system in ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Mingxu Duan
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ya Xu
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanshu Li
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yujie Chen
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
7
|
Ceulemans A, Spronk HMH, Ten Cate H, van Zwam WH, van Oostenbrugge RJ, Nagy M. Current and potentially novel antithrombotic treatment in acute ischemic stroke. Thromb Res 2024; 236:74-84. [PMID: 38402645 DOI: 10.1016/j.thromres.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Acute ischemic stroke (AIS) is the most common type of stroke and requires immediate reperfusion. Current acute reperfusion therapies comprise the administration of intravenous thrombolysis and/or endovascular thrombectomy. Although these acute reperfusion therapies are increasingly successful, optimized secondary antithrombotic treatment remains warranted, specifically to reduce the risk of major bleeding complications. In the development of AIS, coagulation and platelet activation play crucial roles by driving occlusive clot formation. Recent studies implicated that the intrinsic route of coagulation plays a more prominent role in this development, however, this is not fully understood yet. Next to the acute treatments, antithrombotic therapy, consisting of anticoagulants and/or antiplatelet therapy, is successfully used for primary and secondary prevention of AIS but at the cost of increased bleeding complications. Therefore, better understanding the interplay between the different pathways involved in the pathophysiology of AIS might provide new insights that could lead to novel treatment strategies. This narrative review focuses on the processes of platelet activation and coagulation in AIS, and the most common antithrombotic agents in primary and secondary prevention of AIS. Furthermore, we provide an overview of promising novel antithrombotic agents that could be used to improve in both acute treatment and stroke prevention.
Collapse
Affiliation(s)
- Angelique Ceulemans
- Department of Neurology, Maastricht University Medical Center+, Maastricht, the Netherlands; School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Henri M H Spronk
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Biochemistry, Maastricht University Medical Center+, Maastricht, the Netherlands; Thrombosis Expertise Center, Heart & Vascular Center, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Hugo Ten Cate
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, the Netherlands; Department of internal medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Thrombosis Expertise Center, Heart & Vascular Center, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Wim H van Zwam
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Robert J van Oostenbrugge
- Department of Neurology, Maastricht University Medical Center+, Maastricht, the Netherlands; School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Magdolna Nagy
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Biochemistry, Maastricht University Medical Center+, Maastricht, the Netherlands; Thrombosis Expertise Center, Heart & Vascular Center, Maastricht University Medical Center+, Maastricht, the Netherlands.
| |
Collapse
|
8
|
Hagemann N, Qi Y, Mohamud Yusuf A, Li A, Squire A, Tertel T, Giebel B, Ludewig P, Spangenberg P, Chen J, Mosig A, Gunzer M, Hermann DM. Microvascular Network Remodeling in the Ischemic Mouse Brain Defined by Light Sheet Microscopy. Arterioscler Thromb Vasc Biol 2024; 44:915-929. [PMID: 38357819 DOI: 10.1161/atvbaha.123.320339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Until now, the analysis of microvascular networks in the reperfused ischemic brain has been limited due to tissue transparency challenges. METHODS Using light sheet microscopy, we assessed microvascular network remodeling in the striatum from 3 hours to 56 days post-ischemia in 2 mouse models of transient middle cerebral artery occlusion lasting 20 or 40 minutes, resulting in mild ischemic brain injury or brain infarction, respectively. We also examined the effect of a clinically applicable S1P (sphingosine-1-phosphate) analog, FTY720 (fingolimod), on microvascular network remodeling. RESULTS Over 56 days, we observed progressive microvascular degeneration in the reperfused striatum, that is, the lesion core, which was followed by robust angiogenesis after mild ischemic injury induced by 20-minute middle cerebral artery occlusion. However, more severe ischemic injury elicited by 40-minute middle cerebral artery occlusion resulted in incomplete microvascular remodeling. In both cases, microvascular networks did not return to their preischemic state but displayed a chronically altered pattern characterized by higher branching point density, shorter branches, higher unconnected branch density, and lower tortuosity, indicating enhanced network connectivity. FTY720 effectively increased microvascular length density, branching point density, and volume density in both models, indicating an angiogenic effect of this drug. CONCLUSIONS Utilizing light sheet microscopy together with automated image analysis, we characterized microvascular remodeling in the ischemic lesion core in unprecedented detail. This technology will significantly advance our understanding of microvascular restorative processes and pave the way for novel treatment developments in the stroke field.
Collapse
Affiliation(s)
- Nina Hagemann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Germany (N.H., Y.Q., A.M.Y., A.L., D.M.H.)
| | - Yachao Qi
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Germany (N.H., Y.Q., A.M.Y., A.L., D.M.H.)
| | - Ayan Mohamud Yusuf
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Germany (N.H., Y.Q., A.M.Y., A.L., D.M.H.)
| | - AnRan Li
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Germany (N.H., Y.Q., A.M.Y., A.L., D.M.H.)
| | - Anthony Squire
- Institute for Experimental Immunology and Imaging and Imaging Center Essen, University Hospital Essen, University of Duisburg-Essen, Germany (A.S., P.S., M.G.)
| | - Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Germany (T.T., B.G.)
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Germany (T.T., B.G.)
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (P.L.)
| | - Philippa Spangenberg
- Institute for Experimental Immunology and Imaging and Imaging Center Essen, University Hospital Essen, University of Duisburg-Essen, Germany (A.S., P.S., M.G.)
| | - Jianxu Chen
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany (J.C., M.G.)
| | - Axel Mosig
- Bioinformatics Group, Faculty for Biology and Biotechnology and Center for Protein Diagnostics, Ruhr-University Bochum, Germany (A.M.)
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging and Imaging Center Essen, University Hospital Essen, University of Duisburg-Essen, Germany (A.S., P.S., M.G.)
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany (J.C., M.G.)
| | - Dirk M Hermann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Germany (N.H., Y.Q., A.M.Y., A.L., D.M.H.)
| |
Collapse
|
9
|
Yin D, Wang C, Qi Y, Wang YC, Hagemann N, Mohamud Yusuf A, Dzyubenko E, Kaltwasser B, Tertel T, Giebel B, Gunzer M, Popa-Wagner A, Doeppner TR, Hermann DM. Neural precursor cell delivery induces acute post-ischemic cerebroprotection, but fails to promote long-term stroke recovery in hyperlipidemic mice due to mechanisms that include pro-inflammatory responses associated with brain hemorrhages. J Neuroinflammation 2023; 20:210. [PMID: 37715288 PMCID: PMC10504699 DOI: 10.1186/s12974-023-02894-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND The intravenous delivery of adult neural precursor cells (NPC) has shown promising results in enabling cerebroprotection, brain tissue remodeling, and neurological recovery in young, healthy stroke mice. However, the translation of cell-based therapies to clinical settings has encountered challenges. It remained unclear if adult NPCs could induce brain tissue remodeling and recovery in mice with hyperlipidemia, a prevalent vascular risk factor in stroke patients. METHODS Male mice on a normal (regular) diet or on cholesterol-rich Western diet were exposed to 30 min intraluminal middle cerebral artery occlusion (MCAO). Vehicle or 106 NPCs were intravenously administered immediately after reperfusion, at 3 day and 7 day post-MCAO. Neurological recovery was evaluated using the Clark score, Rotarod and tight rope tests over up to 56 days. Histochemistry and light sheet microscopy were used to examine ischemic injury and brain tissue remodeling. Immunological responses in peripheral blood and brain were analyzed through flow cytometry. RESULTS NPC administration reduced infarct volume, blood-brain barrier permeability and the brain infiltration of neutrophils, monocytes, T cells and NK cells in the acute stroke phase in both normolipidemic and hyperlipidemic mice, but increased brain hemorrhage formation and neutrophil, monocyte and CD4+ and CD8+ T cell counts and activation in the blood of hyperlipidemic mice. While neurological deficits in hyperlipidemic mice were reduced by NPCs at 3 day post-MCAO, NPCs did not improve neurological deficits at later timepoints. Besides, NPCs did not influence microglia/macrophage abundance and activation (assessed by morphology analysis), astroglial scar formation, microvascular length or branching point density (evaluated using light sheet microscopy), long-term neuronal survival or brain atrophy in hyperlipidemic mice. CONCLUSIONS Intravenously administered NPCs did not have persistent effects on post-ischemic neurological recovery and brain remodeling in hyperlipidemic mice. These findings highlight the necessity of rigorous investigations in vascular risk factor models to fully assess the long-term restorative effects of cell-based therapies. Without comprehensive studies in such models, the clinical potential of cell-based therapies cannot be definitely determined.
Collapse
Affiliation(s)
- Dongpei Yin
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Chen Wang
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Yachao Qi
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Ya-Chao Wang
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
- Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Nina Hagemann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Ayan Mohamud Yusuf
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Egor Dzyubenko
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Britta Kaltwasser
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging and Imaging Center Essen (IMCES), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Leibniz-Institut für Analytische Wissenschaften –ISAS– e.V., Dortmund, Germany
| | - Aurel Popa-Wagner
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
- Center of Experimental and Clinical Medicine, University of Medicine and Pharmacy, Craiova, Romania
| | - Thorsten R. Doeppner
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
- Department of Neurology, Justus-Liebig University Gießen, Giessen, Germany
| | - Dirk M. Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
10
|
Wang Y, Jia Y, Xu Q, Yang P, Sun L, Liu Y, Chang X, He Y, Shi M, Guo D, Zhang Y, Zhu Z. Association Between Prekallikrein and Stroke: A Mendelian Randomization Study. J Am Heart Assoc 2023; 12:e030525. [PMID: 37581399 PMCID: PMC10492928 DOI: 10.1161/jaha.123.030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 08/16/2023]
Abstract
Background High plasma prekallikrein was reported to be associated with increased risks of stroke, but the causality for these associations remains unclear. We aimed to investigate the associations of genetically predicted plasma prekallikrein concentrations with all-cause stroke, ischemic stroke, 3 ischemic stroke subtypes, and intracerebral hemorrhage (ICH) using a 2-sample Mendelian randomization approach. Methods and Results Seven independent prekallikrein-related single-nucleotide polymorphisms were identified as genetic instruments for prekallikrein based on a genome-wide association study with 1000 European individuals. The summary statistics for all-cause stroke, ischemic stroke, and ischemic stroke subtypes were obtained from the Multiancestry Genome-wide Association Study of Stroke Consortium with 40 585 cases and 406 111 controls of European ancestry. The summary statistics for ICH were obtained from the ISGC (International Stroke Genetics Consortium) with 1545 ICH cases and 1481 controls of European ancestry. In the main analysis, the inverse-variance weighted method was applied to estimate the associations of plasma prekallikrein concentrations with all-cause stroke, ischemic stroke, ischemic stroke subtypes, and ICH. Genetically predicted high plasma prekallikrein levels were significantly associated with elevated risks of all-cause stroke (odds ratio [OR] per SD increase, 1.04 [95% CI, 1.02-1.06]; P=5.44×10-5), ischemic stroke (OR per SD increase, 1.05 [95% CI, 1.03-1.07]; P=1.42×10-5), cardioembolic stroke (OR per SD increase, 1.08 [95% CI, 1.03-1.12]; P=3.75×10-4), and small vessel stroke (OR per SD increase, 1.11 [95% CI, 1.06-1.17]; P=3.02×10-5). However, no significant associations were observed for genetically predicted prekallikrein concentrations with large artery stroke and ICH. Conclusions This Mendelian randomization study found that genetically predicted high plasma prekallikrein concentrations were associated with increased risks of all-cause stroke, ischemic stroke, cardioembolic stroke, and small vessel stroke, indicating that prekallikrein might have a critical role in the development of stroke.
Collapse
Affiliation(s)
- Yinan Wang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Yiming Jia
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Qingyun Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Pinni Yang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Lulu Sun
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Yi Liu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Xinyue Chang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Yu He
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Daoxia Guo
- School of NursingSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSuzhou Medical College of Soochow UniversitySuzhouChina
| |
Collapse
|
11
|
Wang C, Chen M, Lu X, Yang S, Yang M, Fang Y, Lai R, Duan Z. Isolation and Characterization of Poeciguamerin, a Peptide with Dual Analgesic and Anti-Thrombotic Activity from the Poecilobdella manillensis Leech. Int J Mol Sci 2023; 24:11097. [PMID: 37446275 DOI: 10.3390/ijms241311097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
When Poecilobdella manillensis attacks its prey, the prey bleeds profusely but feels little pain. We and other research teams have identified several anticoagulant molecules in the saliva of P. manillensis, but the substance that produces the paralyzing effect in P. manillensis is not known. In this study, we successfully isolated, purified, and identified a serine protease inhibitor containing an antistasin-like domain from the salivary secretions of P. manillensis. This peptide (named poeciguamerin) significantly inhibited elastase activity and slightly inhibited FXIIa and kallikrein activity, but had no effect on FXa, trypsin, or thrombin activity. Furthermore, poeciguamerin exhibited analgesic activity in the foot-licking and tail-withdrawal mouse models and anticoagulant activity in the FeCl3-induced carotid artery thrombosis mouse model. In this study, poeciguamerin was found to be a promising elastase inhibitor with potent analgesic and antithrombotic activity for the inhibition of pain and thrombosis after surgery or in inflammatory conditions.
Collapse
Affiliation(s)
- Chaoming Wang
- Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengrou Chen
- Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Lu
- Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Sciences, Tianjin University, Tianjin 300000, China
| | - Shuo Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqun Fang
- Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ren Lai
- Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center/National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Zilei Duan
- Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
12
|
David C, Ruck T, Rolfes L, Mencl S, Kraft P, Schuhmann MK, Schroeter CB, Jansen R, Langhauser F, Mausberg AK, Fender AC, Meuth SG, Kleinschnitz C. Impact of NKG2D Signaling on Natural Killer and T-Cell Function in Cerebral Ischemia. J Am Heart Assoc 2023:e029529. [PMID: 37301761 DOI: 10.1161/jaha.122.029529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/04/2023] [Indexed: 06/12/2023]
Abstract
Background Typically defined as a thromboinflammatory disease, ischemic stroke features early and delayed inflammatory responses, which determine the extent of ischemia-related brain damage. T and natural killer cells have been implicated in neuronal cytotoxicity and inflammation, but the precise mechanisms of immune cell-mediated stroke progression remain poorly understood. The activating immunoreceptor NKG2D is expressed on both natural killer and T cells and may be critically involved. Methods and Results An anti-NKG2D blocking antibody alleviated stroke outcome in terms of infarct volume and functional deficits, coinciding with reduced immune cell infiltration into the brain and improved survival in the animal model of cerebral ischemia. Using transgenic knockout models devoid of certain immune cell types and immunodeficient mice supplemented with different immune cell subsets, we dissected the functional contribution of NKG2D signaling by different NKG2D-expressing cells in stroke pathophysiology. The observed effect of NKG2D signaling in stroke progression was shown to be predominantly mediated by natural killer and CD8+ T cells. Transfer of T cells with monovariant T-cell receptors into immunodeficient mice with and without pharmacological blockade of NKG2D revealed activation of CD8+ T cells irrespective of antigen specificity. Detection of the NKG2D receptor and its ligands in brain samples of patients with stroke strengthens the relevance of preclinical observations in human disease. Conclusions Our findings provide a mechanistic insight into NKG2D-dependent natural killer- and T-cell-mediated effects in stroke pathophysiology.
Collapse
Affiliation(s)
- Christina David
- Department of Neurology With Center for Translational Neuro- and Behavioral Sciences (C-TNBS) University Hospital Essen, University Duisburg-Essen Essen Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty Heinrich-Heine-University Düsseldorf Germany
| | - Leoni Rolfes
- Department of Neurology, Medical Faculty Heinrich-Heine-University Düsseldorf Germany
| | - Stine Mencl
- Department of Neurology With Center for Translational Neuro- and Behavioral Sciences (C-TNBS) University Hospital Essen, University Duisburg-Essen Essen Germany
| | - Peter Kraft
- Department of Neurology Hospital Main-Spessart Lohr am Main Germany
- Department of Neurology University Hospital Würzburg Würzburg Germany
| | | | - Christina B Schroeter
- Department of Neurology, Medical Faculty Heinrich-Heine-University Düsseldorf Germany
| | - Robin Jansen
- Department of Neurology, Medical Faculty Heinrich-Heine-University Düsseldorf Germany
| | - Friederike Langhauser
- Department of Neurology With Center for Translational Neuro- and Behavioral Sciences (C-TNBS) University Hospital Essen, University Duisburg-Essen Essen Germany
| | - Anne K Mausberg
- Department of Neurology With Center for Translational Neuro- and Behavioral Sciences (C-TNBS) University Hospital Essen, University Duisburg-Essen Essen Germany
| | - Anke C Fender
- Department of Pharmacology University Hospital Essen, University of Duisburg-Essen Essen Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty Heinrich-Heine-University Düsseldorf Germany
| | - Christoph Kleinschnitz
- Department of Neurology With Center for Translational Neuro- and Behavioral Sciences (C-TNBS) University Hospital Essen, University Duisburg-Essen Essen Germany
| |
Collapse
|
13
|
Szepanowski RD, Haupeltshofer S, Vonhof SE, Frank B, Kleinschnitz C, Casas AI. Thromboinflammatory challenges in stroke pathophysiology. Semin Immunopathol 2023:10.1007/s00281-023-00994-4. [PMID: 37273022 DOI: 10.1007/s00281-023-00994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
Despite years of encouraging translational research, ischemic stroke still remains as one of the highest unmet medical needs nowadays, causing a tremendous burden to health care systems worldwide. Following an ischemic insult, a complex signaling pathway emerges leading to highly interconnected thrombotic as well as neuroinflammatory signatures, the so-called thromboinflammatory cascade. Here, we thoroughly review the cell-specific and time-dependent role of different immune cell types, i.e., neutrophils, macrophages, T and B cells, as key thromboinflammatory mediators modulating the neuroinflammatory response upon stroke. Similarly, the relevance of platelets and their tight crosstalk with a variety of immune cells highlights the relevance of this cell-cell interaction during microvascular dysfunction, neovascularization, and cellular adhesion. Ultimately, we provide an up-to-date overview of therapeutic approaches mechanistically targeting thromboinflammation currently under clinical translation, especially focusing on phase I to III clinical trials.
Collapse
Affiliation(s)
- R D Szepanowski
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - S Haupeltshofer
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - S E Vonhof
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - B Frank
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - C Kleinschnitz
- Department of Neurology, University Hospital Essen, Essen, Germany.
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany.
| | - A I Casas
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
- Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
14
|
Endothelial caveolin-1 regulates cerebral thrombo-inflammation in acute ischemia/reperfusion injury. EBioMedicine 2022; 84:104275. [PMID: 36152520 PMCID: PMC9508414 DOI: 10.1016/j.ebiom.2022.104275] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Thrombo-inflammation is an important checkpoint that orchestrates infarct development in ischemic stroke. However, the underlying mechanism remains largely unknown. Here, we explored the role of endothelial Caveolin-1 (Cav-1) in cerebral thrombo-inflammation. METHODS The correlation between serum Cav-1 level and clinical outcome was analyzed in acute ischemic stroke patients with successful recanalization. Genetic manipulations by endothelial-specific adeno-associated virus (AAV) and siRNA were applied to investigate the effects of Cav-1 in thrombo-inflammation in a transient middle cerebral artery occlusion (tMCAO) model. Thrombo-inflammation was analyzed by microthrombosis formation, myeloid cell infiltration, and endothelial expression of adhesion molecules as well as inflammatory factors. FINDINGS Reduced circulating Cav-1, with the potential to predict microembolic signals, was more frequently detected in recanalized stroke patients without early neurological improvement. At 24 h after tMCAO, serum Cav-1 was consistently reduced in mice. Endothelial Cav-1 was decreased in the peri-infarct region. Cav-1-/- endothelium, with prominent barrier disruption, displayed extensive microthrombosis, accompanied by increased myeloid cell inflammatory infiltration after tMCAO. Specific enhanced expression of endothelial Cav-1 by AAV-Tie1-Cav-1 remarkably reduced infarct volume, attenuated vascular hyper-permeability and alleviated thrombo-inflammation in both wild-type and Cav-1-/- tMCAO mice. Transcriptome analysis after tMCAO further designated Rxrg as the most significantly changed molecule resulting from the knockdown of Cav-1. Supplementation of RXR-γ siRNA reversed AAV-Tie1-Cav-1-induced amelioration of thrombo-inflammation without affecting endothelial tight junction. INTERPRETATION Endothelial Cav-1/RXR-γ may regulate infarct volume and neurological impairment, possibly through selectively controlling thrombo-inflammation coupling, in cerebral ischemia/reperfusion. FUNDING This work was supported by National Natural Science Foundation of China.
Collapse
|
15
|
Themistoklis KM, Papasilekas TI, Melanis KS, Boviatsis KA, Korfias SI, Vekrellis K, Sakas DE. The transient intraluminal filament Middle Cerebral Artery Occlusion stroke model in rats. A step by step guide and technical considerations. World Neurosurg 2022; 168:43-50. [PMID: 36115569 DOI: 10.1016/j.wneu.2022.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Stroke is a leading cause of disability and mortality worldwide. Related research, although already providing significant insights on the underlying pathophysiology and potential treatment strategies, is far from conclusive. In this respect, stroke models are proving of extreme significance for laboratories around the world. The scope of this article is to present in detail the most popular to date focal stroke model, the tifMCAO model in rats. This model mimics reliably stroke in humans and also approximates endovascular thrombectomy. METHODS The tifMCAO model was performed on Wistar rats with a weight of 300-400 gr. The surgical technique is described in a step-wise manner, while pictures and/or HD video accompany each step. Complete arteriotomy of the ECA stump is introduced during the procedure. RESULTS We performed the tifMCAO in 65 rats (male and female) involved in various experimental protocols. Although that initial mortality was 48%, practice reduced this number to10%. The mean procedural time was 53 min (range, 38 - 85 min). Stroke was confirmed in 87.5% of the cases. CONCLUSIONS The tifMCAO stroke model in rats is the most commonly utilized experimental model of focal ischemia because of its clinical relevance. We revisited the procedure and divided it, for instructional purposes, in 15 consecutive distinct steps.
Collapse
Affiliation(s)
- Konstantinos M Themistoklis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Department of Neurosurgery, "Korgialenio, Benakio, HRC" General Hospital of Athens, Athens, Greece.
| | - Themistoklis I Papasilekas
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Department of Neurosurgery, "Korgialenio, Benakio, HRC" General Hospital of Athens, Athens, Greece
| | - Konstantinos S Melanis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Department of Neurology, "Evaggelismos" General Hospital of Athens, Athens, Greece
| | | | - Stefanos I Korfias
- Department of Neurosurgery, University of Athens, "Evaggelismos" General Hospital of Athens, Athens, Greece
| | - Konstaninos Vekrellis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Damianos E Sakas
- Department of Neurosurgery, University of Athens, "Evaggelismos" General Hospital of Athens, Athens, Greece
| |
Collapse
|
16
|
Liu X, Xiao G, Wang Y, Shang T, Li Z, Wang H, Pu L, He S, Shao R, Orgah JO, Zhu Y. Qishen Yiqi Dropping Pill facilitates post-stroke recovery of motion and memory loss by modulating ICAM-1-mediated neuroinflammation. Biomed Pharmacother 2022; 153:113325. [DOI: 10.1016/j.biopha.2022.113325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022] Open
|
17
|
Casas AI, Hassan AA, Manz Q, Wiwie C, Kleikers P, Egea J, López MG, List M, Baumbach J, Schmidt HHHW. Un-biased housekeeping gene panel selection for high-validity gene expression analysis. Sci Rep 2022; 12:12324. [PMID: 35853974 PMCID: PMC9296577 DOI: 10.1038/s41598-022-15989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
Differential gene expression normalised to a single housekeeping (HK) is used to identify disease mechanisms and therapeutic targets. HK gene selection is often arbitrary, potentially introducing systematic error and discordant results. Here we examine these risks in a disease model of brain hypoxia. We first identified the eight most frequently used HK genes through a systematic review. However, we observe that in both ex-vivo and in vivo, their expression levels varied considerably between conditions. When applying these genes to normalise expression levels of the validated stroke target gene, inducible Nox4, we obtained opposing results. As an alternative tool for unbiased HK gene selection, software tools exist but are limited to individual datasets lacking genome-wide search capability and user-friendly interfaces. We, therefore, developed the HouseKeepR algorithm to rapidly analyse multiple gene expression datasets in a disease-specific manner and rank HK gene candidates according to stability in an unbiased manner. Using a panel of de novo top-ranked HK genes for brain hypoxia, but not single genes, Nox4 induction was consistently reproduced. Thus, differential gene expression analysis is best normalised against a HK gene panel selected in an unbiased manner. HouseKeepR is the first user-friendly, bias-free, and broadly applicable tool to automatically propose suitable HK genes in a tissue- and disease-dependent manner.
Collapse
Affiliation(s)
- Ana I Casas
- Department of Neurology and Center for Translational Neuro- and Behavioural Sciences (C-TNBS), University Clinics Essen, Essen, Germany. .,Department of Pharmacology & Personalised Medicine, MeHNS, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
| | - Ahmed A Hassan
- Department of Pharmacology & Personalised Medicine, MeHNS, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Quirin Manz
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| | - Christian Wiwie
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Pamela Kleikers
- Department of Pharmacology & Personalised Medicine, MeHNS, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Departamento de Farmacología, Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuela G López
- Departamento de Farmacología, Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Jan Baumbach
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| | - Harald H H W Schmidt
- Department of Pharmacology & Personalised Medicine, MeHNS, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
18
|
Boltze J, Perez-Pinzon MA. Focused Update on Stroke Neuroimmunology: Current Progress in Preclinical and Clinical Research and Recent Mechanistic Insight. Stroke 2022; 53:1432-1437. [PMID: 35467998 DOI: 10.1161/strokeaha.122.039005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Local and systemic inflammation contribute significantly to stroke risk factors as well as determining stroke impact and outcome. Previously being considered as an immuno-privileged domain, the central nervous system is now recognized for multiple and complex interactions with the immune system in health and disease. The sterile inflammatory response emerging after ischemic stroke is a major pathophysiological hallmark and considered to be a promising therapeutic target. Even (mal)adaptive immune responses following stroke, potentially contributing to long-term impact and outcome, are increasingly discussed. However, the complex interaction between the central nervous and the immune system are only partially understood, placing neuroimmunological investigations at the forefront of preclinical and clinical research. This Focused Update summarizes current knowledge in stroke neuroimmunology across all relevant disciplines and discusses major advances as well as recent mechanistic insights. Specifically, neuroimmunological processes and neuroinflammation following ischemic are discussed in the context of blood-brain barrier dysfunction, microglia activation, thromboinflammation, and sex differences in poststroke neuroimmunological responses. The Focused Update further highlights advances in neuroimaging and experimental treatments to visualize and counter neuroinflammatory consequences of ischemic stroke.
Collapse
Affiliation(s)
- Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom (J.B.)
| | - Miguel A Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, FL (M.A.P.-P.)
| |
Collapse
|
19
|
Zhang Z, Shen C, Fang M, Han Y, Long C, Liu W, Yang M, Liu M, Zhang D, Cao Q, Chen X, Fang Y, Lu Q, Hou Z, Li Y, Liu Z, Lei X, Ni H, Lai R. Novel contact-kinin inhibitor sylvestin targets thromboinflammation and ameliorates ischemic stroke. Cell Mol Life Sci 2022; 79:240. [PMID: 35416530 PMCID: PMC11071929 DOI: 10.1007/s00018-022-04257-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022]
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. Increasing evidence indicates that ischemic stroke is a thromboinflammatory disease in which the contact-kinin pathway has a central role by activating pro-coagulant and pro-inflammatory processes. The blocking of distinct members of the contact-kinin pathway is a promising strategy to control ischemic stroke. Here, a plasma kallikrein and active FXII (FXIIa) inhibitor (sylvestin, contained 43 amino acids, with a molecular weight of 4790.4 Da) was first identified from forest leeches (Haemadipsa sylvestris). Testing revealed that sylvestin prolonged activated partial thromboplastin time without affecting prothrombin time. Thromboelastography and clot retraction assays further showed that it extended clotting time in whole blood and inhibited clot retraction in platelet-rich plasma. In addition, sylvestin prevented thrombosis in vivo in FeCl3-induced arterial and carrageenan-induced tail thrombosis models. The potential role of sylvestin in ischemic stroke was evaluated by transient and permanent middle cerebral artery occlusion models. Sylvestin administration profoundly protected mice from ischemic stroke by counteracting intracerebral thrombosis and inflammation. Importantly, sylvestin showed no signs of bleeding tendency. The present study identifies sylvestin is a promising contact-kinin pathway inhibitor that can proffer profound protection from ischemic stroke without increased risk of bleeding.
Collapse
Affiliation(s)
- Zhiye Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
| | - Chuanbin Shen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Senior Scientist of Canadian Blood Services Centre for Innovation, Platform Director for Hematology, Cancer and Immunological Diseases, St. Michael's Hospital, Room 421, LKSKI - Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada
| | - Mingqian Fang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yajun Han
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
| | - Chengbo Long
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Weihui Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
| | - Min Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Ming Liu
- Department of Molecular and Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Dengdeng Zhang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qiqi Cao
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xue Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yaqun Fang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
| | - Qiumin Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
| | - Zongliu Hou
- Central Laboratory of Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Yaxiong Li
- Department of Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Zhenze Liu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Senior Scientist of Canadian Blood Services Centre for Innovation, Platform Director for Hematology, Cancer and Immunological Diseases, St. Michael's Hospital, Room 421, LKSKI - Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada
| | - Xi Lei
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Senior Scientist of Canadian Blood Services Centre for Innovation, Platform Director for Hematology, Cancer and Immunological Diseases, St. Michael's Hospital, Room 421, LKSKI - Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Senior Scientist of Canadian Blood Services Centre for Innovation, Platform Director for Hematology, Cancer and Immunological Diseases, St. Michael's Hospital, Room 421, LKSKI - Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada.
- Canadian Blood Services Centre for Innovation, Toronto, ON, M5G 2M1, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, M5S 1A1, Canada.
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China.
- Sino-African Joint Research Center, Chinese Academy of Science, Wuhan, 430074, Hubei, China.
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, 201203, China.
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
20
|
De Meyer SF, Langhauser F, Haupeltshofer S, Kleinschnitz C, Casas AI. Thromboinflammation in Brain Ischemia: Recent Updates and Future Perspectives. Stroke 2022; 53:1487-1499. [PMID: 35360931 DOI: 10.1161/strokeaha.122.038733] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite decades of promising preclinical validation and clinical translation, ischemic stroke still remains as one of the leading causes of death and disability worldwide. Within its complex pathophysiological signatures, thrombosis and inflammation, that is, thromboinflammation, are highly interconnected processes leading to cerebral vessel occlusion, inflammatory responses, and severe neuronal damage following the ischemic event. Hence, we here review the most recent updates on thromboinflammatory-dependent mediators relevant after stroke focusing on recent discoveries on platelet modulation, a potential regulation of the innate and adaptive immune system in thromboinflammation, utterly providing a thorough up-to-date overview of all therapeutic approaches currently undergoing clinical trial.
Collapse
Affiliation(s)
- Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Belgium (S.F.D.M.)
| | - Friederike Langhauser
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Germany (F.L., S.H., C.K., A.I.C.)
| | - Steffen Haupeltshofer
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Germany (F.L., S.H., C.K., A.I.C.)
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Germany (F.L., S.H., C.K., A.I.C.)
| | - Ana I Casas
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Germany (F.L., S.H., C.K., A.I.C.).,Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine, and Life Sciences, Maastricht University, the Netherlands (A.I.C.)
| |
Collapse
|
21
|
Abstract
Blood coagulation is essential to maintain the integrity of a closed circulatory system (hemostasis), but also contributes to thromboembolic occlusion of vessels (thrombosis). Thrombosis may cause deep vein thrombosis, pulmonary embolism, myocardial infarction, peripheral artery disease, and ischemic stroke, collectively the most common causes of death and disability in the developed world. Treatment for the prevention of thromboembolic diseases using anticoagulants such as heparin, coumarins, thrombin inhibitors, or antiplatelet drugs increase the risk of bleeding and are associated with an increase in potentially life-threatening hemorrhage, partially offsetting the benefits of reduced coagulation. Thus, drug development aiming at novel targets is needed to provide efficient and safe anticoagulation. Within the last decade, experimental and preclinical data have shown that some coagulation mechanisms principally differ in thrombosis and hemostasis. The plasma contact system protein factors XII and XI, high-molecular-weight kininogen, and plasma kallikrein specifically contribute to thrombosis, however, have minor, if any, role in hemostatic coagulation mechanisms. Inherited deficiency in contact system proteins is not associated with increased bleeding in humans and animal models. Therefore, targeting contact system proteins provides the exciting opportunity to interfere specifically with thromboembolic diseases without increasing the bleeding risk. Recent studies that investigated pharmacologic inhibition of contact system proteins have shown that this approach provides efficient and safe thrombo-protection that in contrast to classical anticoagulants is not associated with increased bleeding risk. This review summarizes therapeutic and conceptual developments for selective interference with pathological thrombus formation, while sparing physiologic hemostasis, that enables safe anticoagulation treatment.
Collapse
Affiliation(s)
- Reiner K Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Piotr Kuta
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.,Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
22
|
Yao X, Song Y, Wang Z, Bai S, Yu H, Wang Y, Guan Y. Proteinase-activated receptor-1 antagonist attenuates brain injury via regulation of FGL2 and TLR4 after intracerebral hemorrhage in mice. Neuroscience 2022; 490:193-205. [PMID: 35182700 DOI: 10.1016/j.neuroscience.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022]
Abstract
Proteinase-activated receptor-1 (PAR1) antagonist plays a protective effect in brain injury. We investigated the potential function and mechanisms of PAR1 antagonist in ICH-induced brain injury. Results showed that PAR1 antagonist protected against neurobehavior deficits, brain edema and BBB integrity in ICH mice via activating JNK/ERK/p38 MAPK signaling pathway at 24h after ICH. In addition, ICH resulted in the increase of FGL2 and TLR4 expression over time, and phosphorylated JNK, ERK and p38 MAPK expression. Suppression of FGL2 and TLR4 alleviated brain injury and decreased the expression of p-JNK, p-ERK, p-p38 MAPK and p-IKKα at 24 h after ICH; while overexpression of them showed the opposite result. Moreover, the protective effect of PAR1 antagonist on ICH-induced brain injury was blocked by FGL2 or TLR4 overexpression, and the levels of p-JNK, p-ERK and p-p38 MAPK were inhibited. Furthermore, PAR1 antagonist combined with TLR4 antagonist markedly alleviated brain injury after ICH at 72h. Overall, PAR1 antagonist protected against short-term brain injury, and the effect of PAR1 antagonist on ICH-induced brain injury was mediated by FGL2 or TLR4.
Collapse
Affiliation(s)
- Xiaoying Yao
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yaying Song
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ze Wang
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuwei Bai
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Haojun Yu
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yishu Wang
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yangtai Guan
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
23
|
Garcia-Bonilla L, Iadecola C, Anrather J. Inflammation and Immune Response. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Mossanen Parsi M, Duval C, Ariëns RAS. Vascular Dementia and Crosstalk Between the Complement and Coagulation Systems. Front Cardiovasc Med 2021; 8:803169. [PMID: 35004913 PMCID: PMC8733168 DOI: 10.3389/fcvm.2021.803169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/12/2023] Open
Abstract
Vascular Dementia (VaD) is a neurocognitive disorder caused by reduced blood flow to the brain tissue, resulting in infarction, and is the second most common type of dementia. The complement and coagulation systems are evolutionary host defence mechanisms activated by acute tissue injury to induce inflammation, clot formation and lysis; recent studies have revealed that these systems are closely interlinked. Overactivation of these systems has been recognised to play a key role in the pathogenesis of neurological disorders such as Alzheimer's disease and multiple sclerosis, however their role in VaD has not yet been extensively reviewed. This review aims to bridge the gap in knowledge by collating current understanding of VaD to enable identification of complement and coagulation components involved in the pathogenesis of this disorder that may have their effects amplified or supressed by crosstalk. Exploration of these mechanisms may unveil novel therapeutic targets or biomarkers that would improve current treatment strategies for VaD.
Collapse
Affiliation(s)
| | | | - Robert A. S. Ariëns
- Discovery and Translational Science Department, School of Medicine, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
25
|
Jaffa AA, Jaffa MA, Moussa M, Ahmed IA, Karam M, Aldeen KS, Al Sayegh R, El-Achkar GA, Nasrallah L, Yehya Y, Habib A, Ziyadeh FN, Eid AH, Kobeissy FH, Jaffa AA. Modulation of Neuro-Inflammatory Signals in Microglia by Plasma Prekallikrein and Neuronal Cell Debris. Front Pharmacol 2021; 12:743059. [PMID: 34867349 PMCID: PMC8636058 DOI: 10.3389/fphar.2021.743059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Microglia, the resident phagocytes of the central nervous system and one of the key modulators of the innate immune system, have been shown to play a major role in brain insults. Upon activation in response to neuroinflammation, microglia promote the release of inflammatory mediators as well as promote phagocytosis. Plasma prekallikrein (PKall) has been recently implicated as a mediator of neuroinflammation; nevertheless, its role in mediating microglial activation has not been investigated yet. In the current study, we evaluate the mechanisms through which PKall contributes to microglial activation and release of inflammatory cytokines assessing PKall-related receptors and their dynamics. Murine N9-microglial cells were exposed to PKall (2.5 ng/ml), lipopolysaccharide (100 ng/ml), bradykinin (BK, 0.1 μM), and neuronal cell debris (16.5 μg protein/ml). Gene expression of bradykinin 2 receptor (B2KR), protease-activated receptor 2 (PAR-2), along with cytokines and fibrotic mediators were studied. Bioinformatic analysis was conducted to correlate altered protein changes with microglial activation. To assess receptor dynamics, HOE-140 (1 μM) and GB-83 (2 μM) were used to antagonize the B2KR and PAR-2 receptors, respectively. Also, the role of autophagy in modulating microglial response was evaluated. Data from our work indicate that PKall, LPS, BK, and neuronal cell debris resulted in the activation of microglia and enhanced expression/secretion of inflammatory mediators. Elevated increase in inflammatory mediators was attenuated in the presence of HOE-140 and GB-83, implicating the engagement of these receptors in the activation process coupled with an increase in the expression of B2KR and PAR-2. Finally, the inhibition of autophagy significantly enhanced the release of the cytokine IL-6 which were validated via bioinformatics analysis demonstrating the role of PKall in systematic and brain inflammatory processes. Taken together, we demonstrated that PKall can modulate microglial activation via the engagement of PAR-2 and B2KR where PKall acts as a neuromodulator of inflammatory processes.
Collapse
Affiliation(s)
- Aneese A Jaffa
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Miran A Jaffa
- Epidemiology and Population Health Department, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Mayssam Moussa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ibrahim A Ahmed
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mia Karam
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Kawthar Sharaf Aldeen
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rola Al Sayegh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,INSERM-UMR1149, Centre de Recherche sur l'Inflammation, and Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Universite de Paris, Paris, France
| | - Ghewa A El-Achkar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Leila Nasrallah
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yara Yehya
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Aida Habib
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,INSERM-UMR1149, Centre de Recherche sur l'Inflammation, and Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Universite de Paris, Paris, France
| | - Fuad N Ziyadeh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Firas H Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ayad A Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
26
|
Crosstalk between the renin-angiotensin, complement and kallikrein-kinin systems in inflammation. Nat Rev Immunol 2021; 22:411-428. [PMID: 34759348 PMCID: PMC8579187 DOI: 10.1038/s41577-021-00634-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/28/2022]
Abstract
During severe inflammatory and infectious diseases, various mediators modulate the equilibrium of vascular tone, inflammation, coagulation and thrombosis. This Review describes the interactive roles of the renin–angiotensin system, the complement system, and the closely linked kallikrein–kinin and contact systems in cell biological functions such as vascular tone and leakage, inflammation, chemotaxis, thrombosis and cell proliferation. Specific attention is given to the role of these systems in systemic inflammation in the vasculature and tissues during hereditary angioedema, cardiovascular and renal glomerular disease, vasculitides and COVID-19. Moreover, we discuss the therapeutic implications of these complex interactions, given that modulation of one system may affect the other systems, with beneficial or deleterious consequences. The renin–angiotensin, complement and kallikrein–kinin systems comprise a multitude of mediators that modulate physiological responses during inflammatory and infectious diseases. This Review investigates the complex interactions between these systems and how these are dysregulated in various conditions, including cardiovascular diseases and COVID-19, as well as their therapeutic implications.
Collapse
|
27
|
de Oliveira NA, Cardoso SC, Barbosa DA, da Fonseca CD. Acute kidney injury caused by venomous animals: inflammatory mechanisms. J Venom Anim Toxins Incl Trop Dis 2021; 27:20200189. [PMID: 34512738 PMCID: PMC8394371 DOI: 10.1590/1678-9199-jvatitd-2020-0189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/15/2021] [Indexed: 01/06/2023] Open
Abstract
Either bites or stings of venomous animals comprise relevant public health problems in tropical countries. Acute kidney injury (AKI) induced by animal toxins is related to worse prognostic and outcomes. Being one the most important pathways to induce AKI following envenoming due to animal toxins, inflammation is an essential biological response that eliminates pathogenic bacteria and repairs tissue after injury. However, direct nephrotoxicity (i.e. apoptotic and necrotic mechanisms of toxins), pigmenturia (i.e. rhabdomyolysis and hemolysis), anaphylactic reactions, and coagulopathies could contribute to the renal injury. All these mechanisms are closely integrated, but inflammation is a distinct process. Hence, it is important to improve our understanding on inflammation mechanisms of these syndromes to provide a promising outlook to reduce morbidity and mortality. This literature review highlights the main scientific evidence of acute kidney injury induced by bites or stings from venomous animals and their inflammatory mechanisms. It included observational, cross-sectional, case-control and cohort human studies available up to December 2019. Descriptors were used according to Medical Subject Headings (MeSH), namely: “Acute kidney injury” or “Venom” and “Inflammation” on Medline/Pubmed and Google Scholar; “Kidney disease” or “Acute kidney injury” on Lilacs and SciELO. The present review evidenced that, among the described forms of renal inflammation, it can occur either directly or indirectly on renal cells by means of intravascular, systemic and endothelial hemolysis, activation of inflammatory pathway, as well as direct action of venom cytotoxic components on kidney structures.
Collapse
Affiliation(s)
- Naila Albertina de Oliveira
- Department of Nursing, Institute of Health Sciences, Paulista University (Unip), Jundiaí, SP, Brazil.,Graduate Program in Nursing, School of Nursing, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | | | - Dulce Aparecida Barbosa
- Department of Clinical and Surgical Nursing, School of Nursing, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Cassiane Dezoti da Fonseca
- Department of Clinical and Surgical Nursing, School of Nursing, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| |
Collapse
|
28
|
Plasma Kallikrein Contributes to Intracerebral Hemorrhage and Hypertension in Stroke-Prone Spontaneously Hypertensive Rats. Transl Stroke Res 2021; 13:287-299. [PMID: 34241810 DOI: 10.1007/s12975-021-00929-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Plasma kallikrein (PKa) has been implicated in contributing to hemorrhage following thrombolytic therapy; however, its role in spontaneous intracerebral hemorrhage is currently not available. This report investigates the role of PKa on hemorrhage and hypertension in stroke-prone spontaneously hypertensive rats (SHRSP). SHRSP were fed with a high salt-containing stroke-prone diet to increase blood pressure and induce intracerebral hemorrhage. The roles of PKa on blood pressure, hemorrhage, and survival in SHRSP were examined in rats receiving a PKa inhibitor or plasma prekallikrein antisense oligonucleotide (PK ASO) compared with rats receiving control ASO. Effects on PKa on the proteolytic cleavage of atrial natriuretic peptide (ANP) were analyzed by tandem mass spectrometry. We show that SHRSP on high-salt diet displayed increased levels of PKa activity compared with control rats. Cleaved kininogen was increased in plasma during stroke compared to SHRSP without stroke. Systemic administration of a PKa inhibitor or PK ASO to SHRSP reduced hemorrhage and blood pressure, and improved neurological function and survival compared with SHRSP receiving control ASO. Since PKa inhibition was associated with reduced blood pressure in hypertensive rats, we investigated the effects of PKa on the cleavage of ANP. Incubation of PKa with ANP resulted in the generation fragment ANP5-28, which displayed reduced effects on blood pressure lowering compared with full length ANP. PKa contributes to increased blood pressure in SHRSP, which is associated with hemorrhage and reduced survival. PKa-mediated cleavage of ANP reduces its blood pressure lowering effects and thereby may contribute to hypertension-induced intracerebral hemorrhage.
Collapse
|
29
|
Gao Y, Liu Y, Yang X, Zhang T, Hou Y, Wang P, Liu Y, Yuan L, Zhang H, Wu C, Yang J. Pseudoginsenoside-F11 ameliorates thromboembolic stroke injury in rats by reducing thromboinflammation. Neurochem Int 2021; 149:105108. [PMID: 34175350 DOI: 10.1016/j.neuint.2021.105108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/30/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Pseudoginsenoside-F11 (PF11), an ocotillol-type ginsenoside, has been reported to exert neuroprotective effects on ischemic stroke induced by permanent and transient middle cerebral artery occlusion in experimental animals. The aim of the present study was to investigate the effect of PF11 on thromboembolic stroke in rats and its possible mechanisms on thromboinflammation. PF11 (4, 12, 36 mg/kg) was injected intravenously (i.v.) once a day for 3 consecutive days to male Wistar rats followed by embolic middle cerebral artery occlusion (eMCAO). The results showed that PF11 significantly reduced the cerebral infarction volume, brain edema and neurological deficits induced by eMCAO. Meanwhile, the thromboinflammation in the ischemic hemisphere was observed at 24 h after eMCAO, as indicated by the increased number of microvascular thrombus and inflammatory response. Moreover, eMCAO resulted in the up-regulation of platelet glycoprotein Ibα (GPIbα) and VI (GPVI), as well as the activation of contact-kinin pathway. Notably, PF11 significantly reversed all these changes. Furthermore, PF11 prevented the eMCAO-induced loss of tight junction proteins and up-regulation of matrix metalloproteinase-9 (MMP-9), thus leading to the alleviation of blood-brain barrier (BBB) damage. In conclusion, the present study revealed that thromboinflammation was induced in the ischemic hemisphere of rats after eMCAO and PF11 exerted marked protective effects against thromboembolic stroke by attenuating thromboinflammation and preventing BBB damage. This research further identifies the potential therapeutic role of PF11 for ischemic stroke.
Collapse
Affiliation(s)
- Yongfeng Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Institute of Pharmacology, Shandong First Medical University, Shandong Academy of Medical Science, Tan'an, PR China
| | - Yueyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Xue Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Tianyu Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Ying Hou
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Pengwei Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Yinglu Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Linlin Yuan
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China.
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China.
| |
Collapse
|
30
|
Platelets as drivers of ischemia/reperfusion injury after stroke. Blood Adv 2021; 5:1576-1584. [PMID: 33687431 DOI: 10.1182/bloodadvances.2020002888] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is a leading cause of morbidity and mortality worldwide and, despite reperfusion either via thrombolysis or thrombectomy, stroke patients often suffer from lifelong disabilities. These persistent neurological deficits may be improved by treating the ischemia/reperfusion (I/R) injury that occurs following ischemic stroke. There are currently no approved therapies to treat I/R injury, and thus it is imperative to find new targets to decrease the burden of ischemic stroke and related diseases. Platelets, cell fragments from megakaryocytes, are primarily known for their role in hemostasis. More recently, investigators have studied the nonhemostatic role of platelets in inflammatory pathologies, such as I/R injury after ischemic stroke. In this review, we seek to provide an overview of how I/R can lead to platelet activation and how activated platelets, in turn, can exacerbate I/R injury after stroke. We will also discuss potential mechanisms by which platelets may ameliorate I/R injury.
Collapse
|
31
|
Fleischer M, Köhrmann M, Dolff S, Szepanowski F, Schmidt K, Herbstreit F, Güngör C, Stolte B, Steiner KM, Stadtler C, Riße J, Fiedler M, Meyer zu Hörste G, Mausberg AK, Kill C, Forsting M, Sure U, Dittmer U, Witzke O, Brenner T, Kleinschnitz C, Stettner M. Observational cohort study of neurological involvement among patients with SARS-CoV-2 infection. Ther Adv Neurol Disord 2021; 14:1756286421993701. [PMID: 33737955 PMCID: PMC7934032 DOI: 10.1177/1756286421993701] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A growing number of reports suggest that infection with SARS-CoV-2 often leads to neurological involvement; however, data on the incidence and severity are limited to mainly case reports and retrospective studies. METHODS This prospective, cross-sectional study of 102 SARS-CoV-2 PCR positive patients investigated the frequency, type, severity and risk factors as well as underlying pathophysiological mechanisms of neurological involvement (NIV) in COVID-19 patients. RESULTS Across the cohort, 59.8% of patients had NIV. Unspecific NIV was suffered by 24.5%, mainly general weakness and cognitive decline or delirium. Mild NIV was found in 9.8%; most commonly, impaired taste or smell. Severe NIV was present in 23.5%; half of these suffered cerebral ischaemia. Incidence of NIV increased with respiratory symptoms of COVID-19. Mortality was higher with increasing NIV severity. Notably, 83.3% with severe NIV had a pre-existing neurological co-morbidity. All cerebrospinal fluid (CSF) samples were negative for SARS-CoV-2 RNA, and SARS-CoV-2 antibody quotient did not suggest intrathecal antibody synthesis. Of the patients with severe NIV, 50% had blood-brain barrier (BBB) disruption and showed a trend of elevated interleukin levels in CSF. Antibodies against neuronal and glial epitopes were detected in 35% of the patients tested. CONCLUSION Cerebrovascular events were the most frequent severe NIV and severe NIV was associated with high mortality. Incidence of NIV increased with respiratory symptoms and NIV and pre-existing neurological morbidities were independent risk factors for fatality. Inflammatory involvement due to BBB disruption and cytokine release drives NIV, rather than direct viral invasion. These findings might help physicians define a further patient group requiring particular attention during the pandemic.
Collapse
Affiliation(s)
- Michael Fleischer
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Martin Köhrmann
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, University Duisburg-Essen, Germany
| | - Fabian Szepanowski
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Karsten Schmidt
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Frank Herbstreit
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Cansu Güngör
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Benjamin Stolte
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Katharina Marie Steiner
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Christine Stadtler
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Joachim Riße
- Department of Emergency Medicine, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Melanie Fiedler
- Institutes for Virology, University Medicine Essen, Essen, Germany
| | - Gerd Meyer zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Anne-K. Mausberg
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Clemens Kill
- Department of Emergency Medicine, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Michael Forsting
- Institute for Diagnostic and Interventional Radiology, University Medicine Essen, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery and Center for Translational and Behavioral Neurosciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Germany
| | - Ulf Dittmer
- Institutes for Virology, University Medicine Essen, Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, University Duisburg-Essen, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Mark Stettner
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), University Medicine Essen, Hufelandstraße 55, Essen, 45147, Germany
| |
Collapse
|
32
|
Platelets and lymphocytes drive progressive penumbral tissue loss during middle cerebral artery occlusion in mice. J Neuroinflammation 2021; 18:46. [PMID: 33602266 PMCID: PMC7890632 DOI: 10.1186/s12974-021-02095-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/02/2021] [Indexed: 11/24/2022] Open
Abstract
Background In acute ischemic stroke, cessation of blood flow causes immediate tissue necrosis within the center of the ischemic brain region accompanied by functional failure in the surrounding brain tissue designated the penumbra. The penumbra can be salvaged by timely thrombolysis/thrombectomy, the only available acute stroke treatment to date, but is progressively destroyed by the expansion of infarction. The underlying mechanisms of progressive infarction are not fully understood. Methods To address mechanisms, mice underwent filament occlusion of the middle cerebral artery (MCAO) for up to 4 h. Infarct development was compared between mice treated with antigen-binding fragments (Fab) against the platelet surface molecules GPIb (p0p/B Fab) or rat immunoglobulin G (IgG) Fab as control treatment. Moreover, Rag1−/− mice lacking T-cells underwent the same procedures. Infarct volumes as well as the local inflammatory response were determined during vessel occlusion. Results We show that blocking of the platelet adhesion receptor, glycoprotein (GP) Ibα in mice, delays cerebral infarct progression already during occlusion and thus before recanalization/reperfusion. This therapeutic effect was accompanied by decreased T-cell infiltration, particularly at the infarct border zone, which during occlusion is supplied by collateral blood flow. Accordingly, mice lacking T-cells were likewise protected from infarct progression under occlusion. Conclusions Progressive brain infarction can be delayed by blocking detrimental lymphocyte/platelet responses already during occlusion paving the way for ultra-early treatment strategies in hyper-acute stroke before recanalization. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02095-1.
Collapse
|
33
|
Zhang H, Li M, Xu T. Therapeutic effect of Chinese herbal medicines for post-stroke depression: A meta-analysis of randomized controlled trials. Medicine (Baltimore) 2021; 100:e24173. [PMID: 33429802 PMCID: PMC7793446 DOI: 10.1097/md.0000000000024173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 12/10/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Whether the addition of Chinese herbal medicine (CHM) in routine western medicines for post-stroke depression yields additional therapeutic effects still remains to be controversial. This study aimed to assess the efficacy and safety of combination of CHM with routine western medicines versus routine western medicines alone in patients with post-stroke depression (PSD). METHODS Electronic databases such as PubMed, EmBase, Cochrane library, and China National Knowledge Infrastructure were systematically searched from inception till October 2019. Studies designed as randomized controlled trials (RCTs) and that investigated the therapeutic effects of CHM plus routine western medicines (CHM group) versus routine western medicines alone (control group) in PSD patients were eligible. The relative risk (RR) and weighted mean difference (WMD) with 95% confidence interval (CI) were used to assess the categories and continuous data using random-effects model. Software STATA was applied to perform statistical analysis (Version 10.0; StataCorp, TX,). RESULTS A total of 18 RCTs involving a total of 1,367 PSD patients were selected for final analysis. The effective rate in CHM group was significantly higher than that in control group (RR: 1.18; 95%CI: 1.12-1.24; P < .001). Moreover, patients in CHM group showed association with lower Hamilton Depression Rating Scale (WMD: -3.17; 95%CI: -4.12 to -2.22; P < .001) and Scandinavian Stroke Scale (WMD: -3.84; 95%CI: -5.73 to -1.96; P < .001) than those in control group. Furthermore, patients in CHM were associated with high level of Barthel Index than those in control group (WMD: 11.06; 95%CI: 4.01 to 18.10; P = .002). Finally, patients in CHM group had lower risk of gastrointestinal (RR: 0.49; 95%CI: 0.31-0.77; P = .002) and neurological (RR: 0.50; 95%CI: 0.33-0.75; P = .001) adverse events than those in control group. CONCLUSIONS The study findings revealed that addition of CHM to routine therapies could improve the therapeutic effects and reduce gastrointestinal or neurological adverse events.
Collapse
|
34
|
Mohamud Yusuf A, Hagemann N, Schulten S, Rausch O, Wagner K, Hussner T, Qi Y, Totzeck M, Kleinschnitz C, Squire A, Gunzer M, Hermann DM. Light Sheet Microscopy Using FITC-Albumin Followed by Immunohistochemistry of the Same Rehydrated Brains Reveals Ischemic Brain Injury and Early Microvascular Remodeling. Front Cell Neurosci 2021; 14:625513. [PMID: 33469420 PMCID: PMC7813928 DOI: 10.3389/fncel.2020.625513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Until recently, the visualization of cerebral microvessels was hampered by the fact that only short segments of vessels could be evaluated in brain sections by histochemistry. These limitations have been overcome by light sheet microscopy, which allows the 3D analysis of microvasculature in cleared brains. A major limitation of light sheet microscopy is that antibodies do not sufficiently penetrate cleared brains. We herein describe a technique of reverse clearing and rehydration, which after microvascular network analysis allows brain sectioning and immunohistochemistry employing a broad set of antibodies. Performing light sheet microscopy on brains of mice exposed to intraluminal middle cerebral artery occlusion (MCAO), we show that in the early phase of microvascular remodeling branching point density was markedly reduced, more strongly than microvascular length. Brain infarcts in light sheet microscopy were sharply demarcated by their autofluorescence signal, closely corresponding to brain infarcts revealed by Nissl staining. Neuronal survival, leukocyte infiltration, and astrocytic reactivity could be evaluated by immunohistochemistry in rehydrated brains, as shown in direct comparisons with non-cleared brains. Immunohistochemistry revealed microthrombi in ischemic microvessels that were likely responsible for the marked branching point loss. The balance between microvascular thrombosis and remodeling warrants further studies at later time-points after stroke.
Collapse
Affiliation(s)
- Ayan Mohamud Yusuf
- Department of Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nina Hagemann
- Department of Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sarah Schulten
- Department of Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Olessja Rausch
- Department of Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kristina Wagner
- Department of Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tanja Hussner
- Department of Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Yachao Qi
- Department of Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Matthias Totzeck
- Department of Cardiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anthony Squire
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Leibniz Institute for Analytical Sciences ISAS e.V., Dortmund, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
35
|
Gao L, Shi H, Sherchan P, Tang H, Peng L, Xie S, Liu R, Hu X, Tang J, Xia Y, Zhang JH. Inhibition of lysophosphatidic acid receptor 1 attenuates neuroinflammation via PGE2/EP2/NOX2 signalling and improves the outcome of intracerebral haemorrhage in mice. Brain Behav Immun 2021; 91:615-626. [PMID: 33035633 DOI: 10.1016/j.bbi.2020.09.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/01/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Lysophosphatidic acid receptor 1 (LPA1) plays a critical role in proinflammatory processes in the central nervous system by modulating microglia activation. The aim of this study was to explore the anti-inflammatory effects and neurological function improvement of LPA1 inhibition after intracerebral haemorrhage (ICH) in mice and to determine whether prostaglandin E2 (PGE2), E-type prostaglandin receptor 2 (EP2), and NADPH oxidase 2 (NOX2) signalling are involved in LPA1-mediated neuroinflammation. ICH was induced in CD1 mice by autologous whole blood injection. AM966, a selective LPA1 antagonist, was administered by oral gavage 1 h and 12 h after ICH. The LPA1 endogenous ligand, LPA was administered to verify the effect of LPA1 activation. To elucidate potential inflammatory mechanisms of LPA1, the selective EP2 activator butaprost was administered by intracerebroventricular injection with either AM966 or LPA1 CRISPR knockout (KO). Water content of the brain, neurobehavior, immunofluorescence staining, and western blot were performed. After ICH, EP2 was expressed in microglia whereas LPA1 was expressed in microglia, neurons, and astrocytes, which peaked after 24 h. AM966 inhibition of LPA1 improved neurologic function, reduced brain oedema, and suppressed perihematomal inflammatory cells after ICH. LPA administration aggravated neurological deficits after ICH. AM966 treatment and LPA1 CRISPR KO both decreased the expressions of PGE2, EP2, NOX2, NF-κB, TNF-α, IL-6, and IL-1β expressions after ICH, which was reversed by butaprost. This study demonstrated that inhibition of LPA1 attenuated neuroinflammation caused by ICH via PGE2/EP2/NOX2 signalling pathway in mice, which consequently improved neurobehavioral functions and alleviated brain oedema. LPA1 may be a promising therapeutic target to attenuate ICH-induced secondary brain injury.
Collapse
Affiliation(s)
- Ling Gao
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China; Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hui Shi
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurosurgery, Affiliated Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hong Tang
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China; Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Li Peng
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China; Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Shucai Xie
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China; Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Rui Liu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Xiao Hu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Ying Xia
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurosurgery and Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| |
Collapse
|
36
|
Lipopolysaccharide-induced sepsis-like state compromises post-ischemic neurological recovery, brain tissue survival and remodeling via mechanisms involving microvascular thrombosis and brain T cell infiltration. Brain Behav Immun 2021; 91:627-638. [PMID: 33122024 DOI: 10.1016/j.bbi.2020.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/04/2020] [Accepted: 10/13/2020] [Indexed: 02/03/2023] Open
Abstract
Sepsis predisposes for poor stroke outcome. This association suggests that sepsis disturbs post-ischemic tissue survival and brain remodeling. To elucidate this link, we herein exposed mice to 30 min intraluminal middle cerebral artery occlusion (MCAO) and induced a sepsis-like state at 72 h post-ischemia by intraperitoneal delivery of Escherichia coli lipopolysaccharide (LPS; three doses of 0.1 or 1 mg/kg, separated by 6 h), a major component of the bacterium's outer membrane. Neurological recovery, ischemic injury, brain remodeling and immune responses were evaluated over up to 56 days post-sepsis (dps) by behavioral tests, immunohistochemistry and flow cytometry. Delivery of 1 mg/kg but not 0.1 mg/kg LPS reduced rectal temperature over 48 h by up to 3.4 ± 3.1 °C, increased general and focal neurological deficits in the Clark score over 72 h and increased motor-coordination deficits in the tight rope test over up to 21 days. Notably, 1 mg/kg, but not 0.1 mg/kg LPS increased intercellular adhesion molecule-1 abundance on ischemic microvessels, increased microvascular thrombosis and increased patrolling monocyte and T cell infiltrates in ischemic brain tissue at 3 dps. Infarct volume was increased by 1 mg/kg, but not 0.1 mg/kg LPS at 3 dps (that is, 6 days post-MCAO), as was brain atrophy at 28 and 56 dps. Microglial activation in ischemic brain tissue, evaluated by morphology analysis of Iba-1 immunostainings, was transiently increased by 0.1 and 1 mg/kg LPS at 3 dps. Our data provide evidence that neurological recovery and brain remodeling are profoundly compromised in the ischemic brain post-sepsis as a consequence of cerebral thromboinflammation.
Collapse
|
37
|
Hermann DM, Kleinschnitz C. Thrombomodulin, a Master Switch Controlling Poststroke Microvascular Remodeling and Angiogenesis. Arterioscler Thromb Vasc Biol 2020; 40:2818-2820. [PMID: 33232207 DOI: 10.1161/atvbaha.120.315425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Germany
| |
Collapse
|
38
|
Tang X, Fang M, Cheng R, Zhang Z, Wang Y, Shen C, Han Y, Lu Q, Du Y, Liu Y, Sun Z, Zhu L, Mwangi J, Xue M, Long C, Lai R. Iron-Deficiency and Estrogen Are Associated With Ischemic Stroke by Up-Regulating Transferrin to Induce Hypercoagulability. Circ Res 2020; 127:651-663. [PMID: 32450779 DOI: 10.1161/circresaha.119.316453] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
RATIONALE Epidemiological studies have identified an associate between iron deficiency (ID) and the use of oral contraceptives (CC) and ischemic stroke (IS). To date, however, the underlying mechanism remains poorly understood. Both ID and CC have been demonstrated to upregulate the level and iron-binding ability of Tf (transferrin), with our recent study showing that this upregulation can induce hypercoagulability by potentiating FXIIa/thrombin and blocking antithrombin-coagulation proteases interactions. OBJECTIVE To investigate whether Tf mediates IS associated with ID or CC and the underlying mechanisms. METHODS AND RESULTS Tf levels were assayed in the plasma of IS patients with a history of ID anemia, ID anemia patients, venous thromboembolism patients using CC, and ID mice, and in the cerebrospinal fluid of some IS patients. Effects of ID and estrogen administration on Tf expression and coagulability and the underlying mechanisms were studied in vivo and in vitro. High levels of Tf and Tf-thrombin/FXIIa complexes were found in patients and ID mice. Both ID and estrogen upregulated Tf through hypoxia and estrogen response elements located in the Tf gene enhancer and promoter regions, respectively. In addition, ID, administration of exogenous Tf or estrogen, and Tf overexpression promoted platelet-based thrombin generation and hypercoagulability and thus aggravated IS. In contrast, anti-Tf antibodies, Tf knockdown, and peptide inhibitors of Tf-thrombin/FXIIa interaction exerted anti-IS effects in vivo. CONCLUSIONS Our findings revealed that certain factors (ie, ID and CC) upregulating Tf are risk factors of thromboembolic diseases decipher a previously unrecognized mechanistic association among ID, CC, and IS and provide a novel strategy for the development of anti-IS medicine by interfering with Tf-thrombin/FXIIa interactions.
Collapse
Affiliation(s)
- Xiaopeng Tang
- From the Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, China (X.T., M.F., R.C., Z.Z., C.S., Y.H., Q.L., J.M., M.X., C.L., R.L.)
| | - Mingqian Fang
- From the Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, China (X.T., M.F., R.C., Z.Z., C.S., Y.H., Q.L., J.M., M.X., C.L., R.L.).,Kunming College of Life Science, University of Chinese Academy of Sciences, Yunnan, China (M.F., R.C., J.M.)
| | - Ruomei Cheng
- From the Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, China (X.T., M.F., R.C., Z.Z., C.S., Y.H., Q.L., J.M., M.X., C.L., R.L.).,Kunming College of Life Science, University of Chinese Academy of Sciences, Yunnan, China (M.F., R.C., J.M.)
| | - Zhiye Zhang
- From the Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, China (X.T., M.F., R.C., Z.Z., C.S., Y.H., Q.L., J.M., M.X., C.L., R.L.).,Key Laboratory of Cardiovascular Disease of Yunnan Province, Kunming, Yunnan, China (Z.Z., Q.L.)
| | - Yuming Wang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Kunming Medical University, Yunnan, China (Y.W.)
| | - Chuanbin Shen
- From the Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, China (X.T., M.F., R.C., Z.Z., C.S., Y.H., Q.L., J.M., M.X., C.L., R.L.)
| | - Yajun Han
- From the Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, China (X.T., M.F., R.C., Z.Z., C.S., Y.H., Q.L., J.M., M.X., C.L., R.L.)
| | - Qiumin Lu
- From the Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, China (X.T., M.F., R.C., Z.Z., C.S., Y.H., Q.L., J.M., M.X., C.L., R.L.).,Key Laboratory of Cardiovascular Disease of Yunnan Province, Kunming, Yunnan, China (Z.Z., Q.L.)
| | - Yingrong Du
- Department of Cardiology (Y.D.), the Third People's Hospital of Kunming, Yunnan, China
| | - Yingying Liu
- Department of Clinical Laboratory (Y.L.), the Third People's Hospital of Kunming, Yunnan, China
| | - Zhaohui Sun
- Department of Clinical Laboratory, Guangzhou General Hospital of Guangzhou Military Command, Guangdong, China (Z.S.)
| | - Liping Zhu
- Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Yunnan, China (L.Z.)
| | - James Mwangi
- From the Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, China (X.T., M.F., R.C., Z.Z., C.S., Y.H., Q.L., J.M., M.X., C.L., R.L.).,Kunming College of Life Science, University of Chinese Academy of Sciences, Yunnan, China (M.F., R.C., J.M.)
| | - Min Xue
- From the Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, China (X.T., M.F., R.C., Z.Z., C.S., Y.H., Q.L., J.M., M.X., C.L., R.L.)
| | - Chengbo Long
- From the Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, China (X.T., M.F., R.C., Z.Z., C.S., Y.H., Q.L., J.M., M.X., C.L., R.L.)
| | - Ren Lai
- From the Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, China (X.T., M.F., R.C., Z.Z., C.S., Y.H., Q.L., J.M., M.X., C.L., R.L.).,Institute for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China (R.L.).,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases (R.L.), Kunming Institute of Zoology, Chinese Academy of Sciences, Yunnan, China.,Sino-African Joint Research Center (R.L.), Kunming Institute of Zoology, Chinese Academy of Sciences, Yunnan, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China (R.L.)
| |
Collapse
|
39
|
Ghali GZ, Ghali MGZ. Nafamostat mesylate attenuates the pathophysiologic sequelae of neurovascular ischemia. Neural Regen Res 2020; 15:2217-2234. [PMID: 32594033 PMCID: PMC7749469 DOI: 10.4103/1673-5374.284981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nafamostat mesylate, an apparent soi-disant panacea of sorts, is widely used to anticoagulate patients undergoing hemodialysis or cardiopulmonary bypass, mitigate the inflammatory response in patients diagnosed with acute pancreatitis, and reverse the coagulopathy of patients experiencing the commonly preterminal disseminated intravascular coagulation in the Far East. The serine protease inhibitor nafamostat mesylate exhibits significant neuroprotective effects in the setting of neurovascular ischemia. Nafamostat mesylate generates neuroprotective effects by attenuating the enzymatic activity of serine proteases, neuroinflammatory signaling cascades, and the endoplasmic reticulum stress responses, downregulating excitotoxic transient receptor membrane channel subfamily 7 cationic currents, modulating the activity of intracellular signal transduction pathways, and supporting neuronal survival (brain-derived neurotrophic factor/TrkB/ERK1/2/CREB, nuclear factor kappa B. The effects collectively reduce neuronal necrosis and apoptosis and prevent ischemia mediated disruption of blood-brain barrier microarchitecture. Investigational clinical applications of these compounds may mitigate ischemic reperfusion injury in patients undergoing cardiac, hepatic, renal, or intestinal transplant, preventing allograft rejection, and treating solid organ malignancies. Neuroprotective effects mediated by nafamostat mesylate support the wise conduct of randomized prospective controlled trials in Western countries to evaluate the clinical utility of this compound.
Collapse
Affiliation(s)
- George Zaki Ghali
- United States Environmental Protection Agency, Arlington, VA; Department of Toxicology, Purdue University, West Lafayette, IN, USA
| | - Michael George Zaki Ghali
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
40
|
Kozina N, Mihaljević Z, Lončar MB, Mihalj M, Mišir M, Radmilović MD, Justić H, Gajović S, Šešelja K, Bazina I, Horvatić A, Matić A, Bijelić N, Rođak E, Jukić I, Drenjančević I. Impact of High Salt Diet on Cerebral Vascular Function and Stroke in Tff3-/-/C57BL/6N Knockout and WT (C57BL/6N) Control Mice. Int J Mol Sci 2019; 20:ijms20205188. [PMID: 31635131 PMCID: PMC6829871 DOI: 10.3390/ijms20205188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/20/2019] [Accepted: 10/05/2019] [Indexed: 11/29/2022] Open
Abstract
High salt (HS) dietary intake leads to impaired vascular endothelium-dependent responses to various physiological stimuli, some of which are mediated by arachidonic acid (AA) metabolites. Transgenic Tff3−/− gene knockout mice (Tff3−/−/C57BL/6N) have changes in lipid metabolism which may affect vascular function and outcomes of stroke. We aimed to study the effects of one week of HS diet (4% NaCl) on vascular function and stroke induced by transient occlusion of middle cerebral artery in Tff3−/− and wild type (WT/C57BL/6N) mice. Flow-induced dilation (FID) of carotid artery was reduced in WT-HS mice, but not affected in Tff3−/−-HS mice. Nitric oxide (NO) mediated FID. NO production was decreased with HS diet. On the contrary, acetylcholine-induced dilation was significantly decreased in Tff3−/− mice on both diets and WT-HS mice. HS intake and Tff3 gene depletion affected the structural components of the vessels. Proteomic analysis revealed a significant effect of Tff3 gene deficiency on HS diet-induced changes in neuronal structural proteins and acute innate immune response proteins’ expression and Tff3 depletion, but HS diet did not increase the stroke volume, which is related to proteome modification and upregulation of genes involved mainly in cellular antioxidative defense. In conclusion, Tff3 depletion seems to partially impair vascular function and worsen the outcomes of stroke, which is moderately affected by HS diet.
Collapse
Affiliation(s)
- Nataša Kozina
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Zrinka Mihaljević
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Mirela Baus Lončar
- Ruđer Bošković Institute, Department of Molecular Medicine; Bijenička 54, HR-10000 Zagreb, Croatia.
| | - Martina Mihalj
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
- Clinical Hospital Center Osijek, Dept of Dermatology and Venerology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Mihael Mišir
- Clinical Hospital Center Osijek, Neurology Clinic, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Marina Dobrivojević Radmilović
- University of Zagreb, School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia, Šalata 12, HR-10000 Zagreb, Croatia.
| | - Helena Justić
- University of Zagreb, School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia, Šalata 12, HR-10000 Zagreb, Croatia.
| | - Srećko Gajović
- University of Zagreb, School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia, Šalata 12, HR-10000 Zagreb, Croatia.
| | - Kate Šešelja
- Ruđer Bošković Institute, Department of Molecular Medicine; Bijenička 54, HR-10000 Zagreb, Croatia.
| | - Iva Bazina
- Ruđer Bošković Institute, Department of Molecular Medicine; Bijenička 54, HR-10000 Zagreb, Croatia.
| | - Anita Horvatić
- Proteomics laboratory, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55 HR-10000 Zagreb, Croatia.
| | - Anita Matić
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Nikola Bijelić
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Histology and Embriology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Edi Rođak
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Histology and Embriology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Ivana Jukić
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Ines Drenjančević
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| |
Collapse
|
41
|
Shi K, Tian DC, Li ZG, Ducruet AF, Lawton MT, Shi FD. Global brain inflammation in stroke. Lancet Neurol 2019; 18:1058-1066. [PMID: 31296369 DOI: 10.1016/s1474-4422(19)30078-x] [Citation(s) in RCA: 494] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 01/21/2023]
Abstract
Stroke, including acute ischaemic stroke and intracerebral haemorrhage, results in neuronal cell death and the release of factors such as damage-associated molecular patterns (DAMPs) that elicit localised inflammation in the injured brain region. Such focal brain inflammation aggravates secondary brain injury by exacerbating blood-brain barrier damage, microvascular failure, brain oedema, oxidative stress, and by directly inducing neuronal cell death. In addition to inflammation localised to the injured brain region, a growing body of evidence suggests that inflammatory responses after a stroke occur and persist throughout the entire brain. Global brain inflammation might continuously shape the evolving pathology after a stroke and affect the patients' long-term neurological outcome. Future efforts towards understanding the mechanisms governing the emergence of so-called global brain inflammation would facilitate modulation of this inflammation as a potential therapeutic strategy for stroke.
Collapse
Affiliation(s)
- Kaibin Shi
- Tianjin Medical University General Hospital, Tianjin, China; Department of Neurology, and Department of Neurosurgery, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - De-Cai Tian
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tianjin Medical University General Hospital, Tianjin, China
| | - Zhi-Guo Li
- Tianjin Medical University General Hospital, Tianjin, China
| | - Andrew F Ducruet
- Department of Neurology, and Department of Neurosurgery, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Michael T Lawton
- Department of Neurology, and Department of Neurosurgery, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Fu-Dong Shi
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
42
|
Stoll G, Nieswandt B. Thrombo-inflammation in acute ischaemic stroke — implications for treatment. Nat Rev Neurol 2019; 15:473-481. [DOI: 10.1038/s41582-019-0221-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2019] [Indexed: 01/17/2023]
|
43
|
Zhang XY, Li YX, Liu DL, Zhang BY, Chen DM. The effectiveness of acupuncture therapy in patients with post-stroke depression: An updated meta-analysis of randomized controlled trials. Medicine (Baltimore) 2019; 98:e15894. [PMID: 31145349 PMCID: PMC6708961 DOI: 10.1097/md.0000000000015894] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/13/2019] [Accepted: 05/02/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND To assess the effectiveness of acupuncture in patients with post-stroke depression (PSD). METHODS The Cochrane Library, CINAHL, EMBASE, PubMed, SCOPUS, Web of Science, and 4 Chinese databases were electronically searched for articles published between January 1, 2010 and May 31, 2018. Randomized controlled trials (RCTs) investigating the effects of acupuncture on PSD were included. The quality of all included trials was assessed according to guidelines published by the Cochrane Collaboration. RESULTS Seven trials compared the effectiveness of acupuncture therapy with that of control in alleviating the symptoms of PSD. Pooled analysis demonstrated that patients in the acupuncture intervention group experienced a significantly higher treatment effect than controls (RR 1.16 [95% CI 1.08-1.24]; P < .0001), with low study heterogeneity (I = 4%). Based on intervention methods, further analysis revealed a statistically significant difference in effectiveness between the acupuncture alone and medicine groups (RR 1.25 [95% CI 1.11 1.41]; Z = 3.78; P = .0002). There was no statistically significant difference in efficacy between the acupuncture combined with medicine and medicine groups (RR 1.07 [95% CI 0.98-1.17]; P = .11). CONCLUSIONS This meta-analysis provides evidence supporting the viewpoint that acupuncture is an effective and safe treatment for PSD. Subgroup analyses further revealed that acupuncture alone resulted in better outcomes than drug therapy in improving depressive symptoms. Further high-quality RCTs are needed to systematically evaluate the effectiveness of acupuncture for PSD and develop standardized acupuncture protocols.
Collapse
Affiliation(s)
| | | | | | | | - Dong-Ming Chen
- The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
44
|
Luo HY, Rahman M, Bobrovskaya L, Zhou XF. The Level of proBDNF in Blood Lymphocytes Is Correlated with that in the Brain of Rats with Photothrombotic Ischemic Stroke. Neurotox Res 2019; 36:49-57. [PMID: 30919307 DOI: 10.1007/s12640-019-00022-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 02/01/2023]
Abstract
Stroke is accompanied by severe inflammation in the brain. The role of mature brain-derived neurotrophic factor (mBDNF) in ischemic stroke has received intensive attention, but the function of its precursor proBDNF is less understood. Recent studies showed that mBDNF and proBDNF in the ischemic brain are upregulated, but the significance of mBDNF and proBDNF in the lymphocytes in ischemic stroke is not known. Here, we propose that the expression levels of mBDNF and proBDNF in lymphocytes correlate with those in the brain after ischemic stroke and therefore can be surrogate markers for the ischemic brain. Using a photothrombotic model in rats and ELISA assay technique, we found that proBDNF and mBDNF in peripheral lymphocytes were upregulated but produced differential time courses after ischemia. The levels of mBDNF and proBDNF in lymphocytes at early stages of stroke (1 day), showed a strong positive correlation with those in the brain. The levels of p75, sortilin, were also increased in a time-dependent manner after ischemic stroke; however, the levels of p-TrkB in the ischemic brain at 6 h, 1 and 3 days were significantly reduced in the brain. The present study suggests that the levels of proBDNF and mBDNF in the blood lymphocytes in acute ischemic stroke reflect those in the brain at early stages.
Collapse
Affiliation(s)
- Hai-Yun Luo
- Department of Pharmacology, College of Basic Medicine, Kunming Medical University, Kunming, China. .,School of Pharmacy and Medical Sciences, Division of Health Sciences, Faculty of Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| | - Mehreen Rahman
- School of Pharmacy and Medical Sciences, Division of Health Sciences, Faculty of Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences, Division of Health Sciences, Faculty of Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Division of Health Sciences, Faculty of Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| |
Collapse
|
45
|
Berger M, de Moraes JA, Beys-da-Silva WO, Santi L, Terraciano PB, Driemeier D, Cirne-Lima EO, Passos EP, Vieira MAR, Barja-Fidalgo TC, Guimarães JA. Renal and vascular effects of kallikrein inhibition in a model of Lonomia obliqua venom-induced acute kidney injury. PLoS Negl Trop Dis 2019; 13:e0007197. [PMID: 30763408 PMCID: PMC6392336 DOI: 10.1371/journal.pntd.0007197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 02/27/2019] [Accepted: 10/30/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Lonomia obliqua venom is nephrotoxic and acute kidney injury (AKI) is the main cause of death among envenomed victims. Mechanism underlying L. obliqua-induced AKI involves renal hypoperfusion, inflammation, tubular necrosis and loss of glomerular filtration and tubular reabsorption capacities. In the present study, we aimed to investigate the contribution of kallikrein to the hemodynamic instability, inflammation and consequent renal and vascular impairment. METHODOLOGY/PRINCIPAL FINDINGS Addition of L. obliqua venom to purified prekallikrein and human plasma in vitro or to vascular smooth muscle cells (VSMC) in culture, was able to generate kallikrein in a dose-dependent manner. Injected in rats, the venom induced AKI and increased kallikrein levels in plasma and kidney. Kallikrein inhibition by aprotinin prevented glomerular injury and the decrease in glomerular filtration rate, restoring fluid and electrolyte homeostasis. The mechanism underlying these effects was associated to lowering renal inflammation, with decrease in pro-inflammatory cytokines and matrix metalloproteinase expression, reduced tubular degeneration, and protection against oxidative stress. Supporting the key role of kallikrein, we demonstrated that aprotinin inhibited effects directly associated with vascular injury, such as the generation of intracellular reactive oxygen species (ROS) and migration of VSMC induced by L. obliqua venom or by diluted plasma obtained from envenomed rats. In addition, kallikrein inhibition also ameliorated venom-induced blood incoagulability and decreased kidney tissue factor expression. CONCLUSIONS/SIGNIFICANCE These data indicated that kallikrein and consequently kinin release have a key role in kidney injury and vascular remodeling. Thus, blocking kallikrein may be a therapeutic alternative to control the progression of venom-induced AKI and vascular disturbances.
Collapse
Affiliation(s)
- Markus Berger
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- * E-mail:
| | - João Alfredo de Moraes
- Laboratório de Biologia REDOX, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Cellular and Molecular Pharmacology, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Walter Orlando Beys-da-Silva
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Lucélia Santi
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Paula Barros Terraciano
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - David Driemeier
- Departamento de Patologia Clínica Veterinária, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Elizabeth Obino Cirne-Lima
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Eduardo Pandolfi Passos
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Maria Aparecida Ribeiro Vieira
- Laboratório de Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Thereza Christina Barja-Fidalgo
- Laboratory of Cellular and Molecular Pharmacology, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Jorge Almeida Guimarães
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular de Molecular (PPGBCM), Centro de Biotecnologia (Cbiot-UFRGS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
46
|
Ma Z, Dong Q, Lyu B, Wang J, Quan Y, Gong S. The expression of bradykinin and its receptors in spinal cord ischemia-reperfusion injury rat model. Life Sci 2019; 218:340-345. [DOI: 10.1016/j.lfs.2018.12.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/11/2018] [Accepted: 12/19/2018] [Indexed: 11/15/2022]
|
47
|
Plasma kallikrein modulates immune cell trafficking during neuroinflammation via PAR2 and bradykinin release. Proc Natl Acad Sci U S A 2018; 116:271-276. [PMID: 30559188 DOI: 10.1073/pnas.1810020116] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Blood-brain barrier (BBB) disruption and transendothelial trafficking of immune cells into the central nervous system (CNS) are pathophysiological hallmarks of neuroinflammatory disorders like multiple sclerosis (MS). Recent evidence suggests that the kallikrein-kinin and coagulation system might participate in this process. Here, we identify plasma kallikrein (KK) as a specific direct modulator of BBB integrity. Levels of plasma prekallikrein (PK), the precursor of KK, were markedly enhanced in active CNS lesions of MS patients. Deficiency or pharmacologic blockade of PK renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by a remarkable reduction of BBB disruption and CNS inflammation. In vitro analysis revealed that KK modulates endothelial cell function in a protease-activated receptor-2-dependent manner, leading to an up-regulation of the cellular adhesion molecules Intercellular Adhesion Molecule 1 and Vascular Cell Adhesion Molecule 1, thereby amplifying leukocyte trafficking. Our study demonstrates that PK is an important direct regulator of BBB integrity as a result of its protease function. Therefore, KK inhibition can decrease BBB damage and cell invasion during neuroinflammation and may offer a strategy for the treatment of MS.
Collapse
|
48
|
Tang X, Chen M, Duan Z, Mwangi J, Li P, Lai R. Isolation and Characterization of Poecistasin, an Anti-Thrombotic Antistasin-Type Serine Protease Inhibitor from Leech Poecilobdella manillensis. Toxins (Basel) 2018; 10:toxins10110429. [PMID: 30373118 PMCID: PMC6265900 DOI: 10.3390/toxins10110429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/13/2018] [Accepted: 10/24/2018] [Indexed: 11/16/2022] Open
Abstract
Antistasin, first identified as a potent inhibitor of the blood coagulation factor Xa, is a novel family of serine protease inhibitors. In this study, we purified a novel antistasin-type inhibitor from leech Poecilobdella manillensis called poecistasin. Amino acid sequencing of this 48-amino-acid protein revealed that poecistasin was an antistasin-type inhibitor known to consist of only one domain. Poecistasin inhibited factor XIIa, kallikrein, trypsin, and elastase, but had no inhibitory effect on factor Xa and thrombin. Poecistasin showed anticoagulant activities. It prolonged the activated partial thromboplastin time and inhibited FeCl₃-induced carotid artery thrombus formation, implying its potent function in helping Poecilobdella manillensis to take a blood meal from the host by inhibiting coagulation. Poecistasin also suppressed ischemic stroke symptoms in transient middle cerebral artery occlusion mice model. Our results suggest that poecistasin from the leech Poecilobdella manillensis plays a crucial role in blood-sucking and may be an excellent candidate for the development of clinical anti-thrombosis and anti-ischemic stroke medicines.
Collapse
Affiliation(s)
- Xiaopeng Tang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China.
| | - Mengrou Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Zilei Duan
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China.
| | - James Mwangi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China.
| | - Pengpeng Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China.
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
49
|
Zhang H, Lin S, Chen X, Gu L, Zhu X, Zhang Y, Reyes K, Wang B, Jin K. The effect of age, sex and strains on the performance and outcome in animal models of stroke. Neurochem Int 2018; 127:2-11. [PMID: 30291954 DOI: 10.1016/j.neuint.2018.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022]
Abstract
Stroke is one of the leading causes of death worldwide, and the majority of cerebral stroke is caused by occlusion of cerebral circulation, which eventually leads to brain infarction. Although stroke occurs mainly in the aged population, most animal models for experimental stroke in vivo almost universally rely on young-adult rodents for the evaluation of neuropathological, neurological, or behavioral outcomes after stroke due to their greater availability, lower cost, and fewer health problems. However, it is well established that aged animals differ from young animals in terms of physiology, neurochemistry, and behavior. Stroke-induced changes are more pronounced with advancing age. Therefore, the overlooked role of age in animal models of stroke could have an impact on data quality and hinder the translation of rodent models to humans. In addition to aging, other factors also influence functional performance after ischemic stroke. In this article, we summarize the differences between young and aged animals, the impact of age, sex and animal strains on performance and outcome in animal models of stroke and emphasize age as a key factor in preclinical stroke studies.
Collapse
Affiliation(s)
- Hongxia Zhang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Siyang Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xudong Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lei Gu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaohong Zhu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yinuo Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Kassandra Reyes
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Brian Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
50
|
Yamamoto-Imoto H, Zamolodchikov D, Chen ZL, Bourne SL, Rizvi S, Singh P, Norris EH, Weis-Garcia F, Strickland S. A novel detection method of cleaved plasma high-molecular-weight kininogen reveals its correlation with Alzheimer's pathology and cognitive impairment. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2018; 10:480-489. [PMID: 30310850 PMCID: PMC6178129 DOI: 10.1016/j.dadm.2018.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction Accumulation of β-amyloid is a pathological hallmark of Alzheimer's disease (AD). β-Amyloid activates the plasma contact system leading to kallikrein-mediated cleavage of intact high-molecular-weight kininogen (HKi) to cleaved high-molecular-weight kininogen (HKc). Increased HKi cleavage is observed in plasma of AD patients and mouse models by Western blot. For potential diagnostic purposes, a more quantitative method that can measure HKc levels in plasma with high sensitivity and specificity is needed. Methods HKi/c, HKi, and HKc monoclonal antibodies were screened from hybridomas using direct ELISA with a fluorescent substrate. Results We generated monoclonal antibodies recognizing HKi or HKc specifically and developed sandwich ELISAs that can quantitatively detect HKi and HKc levels in human. These new assays show that decreased HKi and increased HKc levels in AD plasma correlate with dementia and neuritic plaque scores. Discussion High levels of plasma HKc could be used as an innovative biomarker for AD. Assay discriminates between intact and cleaved high molecular weight kininogen (HKi vs. HKc). New enzyme-linked immunosorbent assay (ELISA) detects more HKc in Alzheimer's disease plasma. Plasma HKc correlates with dementia and neuritic plaque scores in Alzheimer's disease. Plasma HKc levels could be used as an innovative biomarker for Alzheimer's disease.
Collapse
Affiliation(s)
- Hitomi Yamamoto-Imoto
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA.,Research fellow of Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Daria Zamolodchikov
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - Zu-Lin Chen
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - S Lloyd Bourne
- Antibody and Bioresource Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Syeda Rizvi
- Antibody and Bioresource Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pradeep Singh
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - Erin H Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - Frances Weis-Garcia
- Antibody and Bioresource Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| |
Collapse
|