1
|
Zhang L, Zhou X, Cha S. Comprehensive Analysis of Sex Differences in Amyotrophic Lateral Sclerosis Prognosis and Disease Progression. Ann Neurol 2024; 96:1028. [PMID: 39425598 DOI: 10.1002/ana.27092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/21/2024]
Affiliation(s)
- Liangping Zhang
- Hangzhou Linping District Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Xizhuo Zhou
- Jiangxi University of Traditional Chinese Medicine Affiliated Hospital, Nanchang, China
| | - Shuqiang Cha
- Jiangxi University of Traditional Chinese Medicine Affiliated Hospital, Nanchang, China
| |
Collapse
|
2
|
Proaño B, Cuerda-Ballester M, Daroqui-Pajares N, del Moral-López N, Seguí-Sala F, Martí-Serer L, Calisaya Zambrana CK, Benlloch M, de la Rubia Ortí JE. Clinical and Sociodemographic Factors Related to Amyotrophic Lateral Sclerosis in Spain: A Pilot Study. J Clin Med 2024; 13:5800. [PMID: 39407861 PMCID: PMC11476538 DOI: 10.3390/jcm13195800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/08/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of unknow etiology. Male sex is a well stablished risk factor, but other factors such as early and adult life expositions show contradictory evidence. Aim: to explore the link of clinical, sociodemographic, and occupational factors with ALS patients in Spain and the impact of these factors in functionality. Methods: A cross-sectional study was conducted with ALS patients and healthy controls. Registered variables were smoking, arterial hypertension, diabetes mellitus type 2, previous cancer to reproductive organs or breast, occupational exposure, and early life exposures. Functionality in ALS patients was compared according to each exposure. Results: The ALS group consisted of 59 participants and the control group of 90 participants. ALS patients showed a significant association with previous cancer (p = 0.011), occupational exposure (p < 0.001), and older siblings (p = 0.029). ALS patients presented significant differences in BMI according to hypertension and older-sibling factors. Moreover, respiratory function was affected in patients with previous cancer (p = 0.031). Conclusions: Occupational exposure and previous cancer to reproductive organs or breast could be linked to ALS patients. In addition, hypertension and previous cancer could affect their BMI and respiratory function. Other factors such as longer smoking periods and exposition to older siblings could also characterize ALS patients.
Collapse
Affiliation(s)
- Belén Proaño
- Doctoral Degree School, Health Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - María Cuerda-Ballester
- Departament of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.C.-B.); (N.d.M.-L.); (F.S.-S.); (C.K.C.Z.)
| | - Noelia Daroqui-Pajares
- Departament of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.C.-B.); (N.d.M.-L.); (F.S.-S.); (C.K.C.Z.)
| | - Noemí del Moral-López
- Departament of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.C.-B.); (N.d.M.-L.); (F.S.-S.); (C.K.C.Z.)
- Microbiology Department, General Universitary Hospital of Valencia, 46014 Valencia, Spain
| | - Fiorella Seguí-Sala
- Departament of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.C.-B.); (N.d.M.-L.); (F.S.-S.); (C.K.C.Z.)
| | - Laura Martí-Serer
- Departament of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.C.-B.); (N.d.M.-L.); (F.S.-S.); (C.K.C.Z.)
| | - Carlen Khrisley Calisaya Zambrana
- Departament of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.C.-B.); (N.d.M.-L.); (F.S.-S.); (C.K.C.Z.)
| | - María Benlloch
- Department of Basic Biomedical Sciences, Catholic University of Valencia, 46001 Valencia, Spain; (M.B.); (J.E.d.l.R.O.)
| | - Jose Enrique de la Rubia Ortí
- Department of Basic Biomedical Sciences, Catholic University of Valencia, 46001 Valencia, Spain; (M.B.); (J.E.d.l.R.O.)
| |
Collapse
|
3
|
Chourpiliadis C, Seitz C, Lovik A, Joyce EE, Pan L, Hu Y, Kläppe U, Samuelsson K, Press R, Ingre C, Fang F. Lifestyle and medical conditions in relation to ALS risk and progression-an introduction to the Swedish ALSrisc Study. J Neurol 2024; 271:5447-5459. [PMID: 38878106 PMCID: PMC11319377 DOI: 10.1007/s00415-024-12496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND This study was an introduction to the Swedish ALSrisc Study and explored the association of lifestyle and medical conditions, with risk and progression of amyotrophic lateral sclerosis (ALS). METHODS We included 265 newly diagnosed ALS patients during 2016-2022 in Stockholm and 207 ALS-free siblings and partners of the patients as controls. Information on body mass index (BMI), smoking, and history of head injuries, diabetes mellitus, hypercholesterolemia, and hypertension was obtained through the Euro-MOTOR questionnaire at recruitment. Patients were followed from diagnosis until death, invasive ventilation, or November 30, 2022. RESULTS Higher BMI at recruitment was associated with lower risk for ALS (OR 0.89, 95%CI 0.83-0.95), especially among those diagnosed after 65 years. One unit increase in the average BMI during the 3 decades before diagnosis was associated with a lower risk for ALS (OR 0.94, 95%CI 0.89-0.99). Diabetes was associated with lower risk of ALS (OR 0.38, 95%CI 0.16-0.90), while hypercholesterolemia was associated with higher risk of ALS (OR 2.10, 95%CI 1.13-3.90). Higher BMI at diagnosis was associated with lower risk of death (HR 0.91, 95%CI 0.84-0.98), while the highest level of smoking exposure (in pack-years) (HR 1.90, 95%CI 1.20-3.00), hypercholesterolemia (HR 1.84, 95%CI 1.06-3.19), and hypertension (HR 1.76, 95%CI 1.03-3.01) were associated with higher risk of death, following ALS diagnosis. CONCLUSIONS Higher BMI and diabetes were associated with lower risk of ALS. Higher BMI was associated with lower risk of death, whereas smoking (especially in high pack-years), hypercholesterolemia, and hypertension were associated with higher risk of death after ALS diagnosis.
Collapse
Affiliation(s)
| | - Christina Seitz
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anikó Lovik
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Emily E Joyce
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lu Pan
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yihan Hu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Kläppe
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Kristin Samuelsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Rayomand Press
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Ingre
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Vaage AM, Meyer HE, Landgraff IK, Myrstad M, Holmøy T, Nakken O. Physical Activity, Fitness, and Long-Term Risk of Amyotrophic Lateral Sclerosis: A Prospective Cohort Study. Neurology 2024; 103:e209575. [PMID: 38924713 DOI: 10.1212/wnl.0000000000209575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Observational studies have demonstrated an increased amyotrophic lateral sclerosis (ALS) risk among professional athletes in various sports. For moderately increased levels of physical activity and fitness, the results are diverging. Through a cohort study, we aimed to assess the relationship between indicators of physical activity and fitness (self-reported physical activity and resting heart rate) and long-term ALS risk. METHODS From a large Norwegian cardiovascular health survey (1985-1999), we collected information on self-reported physical activity in leisure time, resting heart rate, and other cardiovascular risk factors. Patients with ALS were identified through health registries covering the whole population. We fitted Cox proportional hazard models to assess the risk of ALS according to levels of self-reported physical activity in 3 categories (1: sedentary; 2: minimum 4 hours per week of walking or cycling; 3: minimum 4 hours per week of recreational sports or hard training), and resting heart rate modeled both on the continuous scale and as quartiles of distribution. RESULTS Out of 373,696 study participants (mean 40.9 [SD 1.1] years at inclusion), 504 (41.2% women) developed ALS during a mean follow-up time of 27.2 (SD 5.0) years. Compared with participants with the lowest level of physical activity, the hazard ratio was 0.71 (95% CI 0.53-0.95) for those with the highest level. There were no clear associations between resting heart rate and ALS in the total sample. In men, the hazard ratio of ALS was 0.71 (95% CI 0.53-0.95) for those reporting moderate levels of physical activity and 0.59 (95% CI 0.42-0.84) for those reporting high levels, compared with those reporting low levels. Men with resting heart rate in the lowest quartile had 32% reduced risk of ALS (hazard ratio 0.68, 95% CI 0.49-0.94) compared with those in the second highest quartile. In women, no association was detected between neither self-reported levels of physical activity nor resting heart rate and ALS risk. DISCUSSION Indicators of high levels of physical activity and fitness are associated with a reduced risk of ALS more than 30 years later in men, but not in women.
Collapse
Affiliation(s)
- Anders M Vaage
- From the Department of Neurology (A.M.V., T.H., O.N.), Akershus University Hospital, Lørenskog; Institute of Clinical Medicine (A.M.V., T.H.), University of Oslo; Department of Physical Health and Ageing (H.E.M.), Norwegian Institute of Public Health, Oslo; Department of Community Medicine and Global Health (H.E.M.), University of Oslo; and Department of Internal Medicine (I.K.L., M.M.), and Department of Medical Research (M.M.), Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
| | - Haakon E Meyer
- From the Department of Neurology (A.M.V., T.H., O.N.), Akershus University Hospital, Lørenskog; Institute of Clinical Medicine (A.M.V., T.H.), University of Oslo; Department of Physical Health and Ageing (H.E.M.), Norwegian Institute of Public Health, Oslo; Department of Community Medicine and Global Health (H.E.M.), University of Oslo; and Department of Internal Medicine (I.K.L., M.M.), and Department of Medical Research (M.M.), Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
| | - Ida K Landgraff
- From the Department of Neurology (A.M.V., T.H., O.N.), Akershus University Hospital, Lørenskog; Institute of Clinical Medicine (A.M.V., T.H.), University of Oslo; Department of Physical Health and Ageing (H.E.M.), Norwegian Institute of Public Health, Oslo; Department of Community Medicine and Global Health (H.E.M.), University of Oslo; and Department of Internal Medicine (I.K.L., M.M.), and Department of Medical Research (M.M.), Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
| | - Marius Myrstad
- From the Department of Neurology (A.M.V., T.H., O.N.), Akershus University Hospital, Lørenskog; Institute of Clinical Medicine (A.M.V., T.H.), University of Oslo; Department of Physical Health and Ageing (H.E.M.), Norwegian Institute of Public Health, Oslo; Department of Community Medicine and Global Health (H.E.M.), University of Oslo; and Department of Internal Medicine (I.K.L., M.M.), and Department of Medical Research (M.M.), Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
| | - Trygve Holmøy
- From the Department of Neurology (A.M.V., T.H., O.N.), Akershus University Hospital, Lørenskog; Institute of Clinical Medicine (A.M.V., T.H.), University of Oslo; Department of Physical Health and Ageing (H.E.M.), Norwegian Institute of Public Health, Oslo; Department of Community Medicine and Global Health (H.E.M.), University of Oslo; and Department of Internal Medicine (I.K.L., M.M.), and Department of Medical Research (M.M.), Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
| | - Ola Nakken
- From the Department of Neurology (A.M.V., T.H., O.N.), Akershus University Hospital, Lørenskog; Institute of Clinical Medicine (A.M.V., T.H.), University of Oslo; Department of Physical Health and Ageing (H.E.M.), Norwegian Institute of Public Health, Oslo; Department of Community Medicine and Global Health (H.E.M.), University of Oslo; and Department of Internal Medicine (I.K.L., M.M.), and Department of Medical Research (M.M.), Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
| |
Collapse
|
5
|
Jing Z, Qi X, Teng J. Dietary factors and risk for amyotrophic lateral sclerosis: A two sample mendelian randomization study. Medicine (Baltimore) 2024; 103:e38473. [PMID: 38905382 PMCID: PMC11191971 DOI: 10.1097/md.0000000000038473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/15/2024] [Indexed: 06/23/2024] Open
Abstract
Correlations between dietary factors and amyotrophic lateral sclerosis (ALS) have been found in previous observational studies. However, no further studies have used Mendelian randomization to further explore the causal relationship between dietary factors and ALS. Clarifying these relationships is a crucial part of developing nutritional recommendations for ALS prevention. The exposure and outcome datasets employed in this study were extracted from the IEU Open GWAS project (https://gwas.mrcieu.ac.uk/). The exposure datasets involved in our Mendelian analyses consisted of meat intake (processed meat intake, poultry intake, beef intake, pork intake, non-oily fish intake, and oily fish intake), staple foods intake (bread intake and cereal intake), vegetable intake (cooked vegetable intake, salad/raw vegetable intake), fruit intake (fresh fruit intake and dried fruit intake), and beverage intake (coffee intake and tea intake). The weighted median, MR-Egger, Inverse Variance Weighted, Simple mode and Weighted mode methods were all utilized. And we applied Inverse Variance Weighted method as the main judgement criterion for Mendelian randomization analysis. Heterogeneity and pleiotropy analyses were conducted to confirm the validity of the outcomes. Genetically predicted that oily fish intake (OR: 0.7648; 95% CI: 0.5905-0.9904; P = .0420), coffee intake (OR: 0.7385; 95% CI: 0.5660-0.9637; P = .0256), and fresh fruit intake (OR: 0.6165; 95% CI: 0.4007-0.9487; P = .0278) were causally associated with a decreased risk of ALS. Negative results (P > .05) were received for all other dietary factors. This study found that oily fish intake, coffee intake and fresh fruit intake reduced the risk of developing ALS. Additionally, other factors were not associated with ALS.
Collapse
Affiliation(s)
- Zhaoyi Jing
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianghua Qi
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Jing Teng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Castelli L, Vasta R, Allen SP, Waller R, Chiò A, Traynor BJ, Kirby J. From use of omics to systems biology: Identifying therapeutic targets for amyotrophic lateral sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:209-268. [PMID: 38802176 DOI: 10.1016/bs.irn.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogeneous progressive neurodegenerative disorder with available treatments such as riluzole and edaravone extending survival by an average of 3-6 months. The lack of highly effective, widely available therapies reflects the complexity of ALS. Omics technologies, including genomics, transcriptomic and proteomics have contributed to the identification of biological pathways dysregulated and targeted by therapeutic strategies in preclinical and clinical trials. Integrating clinical, environmental and neuroimaging information with omics data and applying a systems biology approach can further improve our understanding of the disease with the potential to stratify patients and provide more personalised medicine. This chapter will review the omics technologies that contribute to a systems biology approach and how these components have assisted in identifying therapeutic targets. Current strategies, including the use of genetic screening and biosampling in clinical trials, as well as the future application of additional technological advances, will also be discussed.
Collapse
Affiliation(s)
- Lydia Castelli
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Rosario Vasta
- ALS Expert Center,'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Scott P Allen
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Rachel Waller
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Adriano Chiò
- ALS Expert Center,'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Turin, Turin, Italy
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States; RNA Therapeutics Laboratory, National Center for Advancing Translational Sciences, NIH, Rockville, MD, United States; National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, United States; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology,University College London, London, United Kingdom
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
7
|
Vaage AM, Benth JŠ, Meyer HE, Holmøy T, Nakken O. Premorbid lipid levels and long-term risk of ALS-a population-based cohort study. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:358-366. [PMID: 38117120 DOI: 10.1080/21678421.2023.2295455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE To assess the temporal relationship between premorbid lipid levels and long-term amyotrophic lateral sclerosis (ALS) risk. METHODS From Norwegian cardiovascular health surveys (1974-2003), we collected information on total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), glucose, and other cardiovascular risk factors. ALS incidence and mortality were identified through validated Norwegian health registries. The relation between premorbid lipid levels and ALS risk was assessed by Cox regression models. RESULTS Out of 640,066 study participants (51.5% females), 974 individuals (43.5% females) developed ALS. Mean follow-up time was 23.7 (SD 7.1) years among ALS cases. One mmol/l increase in LDL-C was associated with 6% increase in risk for ALS (hazard ratio 1.06 [95% CI: 1.01-1.09]). Higher levels of TC and TG were also associated with increased ALS risk, but only within the last 6-7 years prior to ALS diagnosis or death. No association between HDL-C and ALS risk was found. Adjusting for body mass index, birth cohort, smoking, and physical activity did not alter the results. CONCLUSIONS Higher levels of LDL-C are associated with increased ALS risk over 40 years later, compatible with a causal relationship. The temporal relationship between TG, TC, and ALS risk suggests that increased levels of these lipid biomarkers represent consequences of ALS.
Collapse
Affiliation(s)
- Anders Myhre Vaage
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jūratė Šaltytė Benth
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Health Services Research Unit, Akershus University Hospital, Lørenskog, Norway
| | - Haakon E Meyer
- Department of Physical Health and Ageing, Norwegian Institute of Public Health, Oslo, Norway, and
- Department of Community Medicine and Global Health, University of Oslo, Oslo, Norway
| | - Trygve Holmøy
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ola Nakken
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
8
|
Nakken O, Vaage AM, Stigum H, Heldal E, Meyer HE, Holmøy T. Tuberculin responses after BCG vaccination predict amyotrophic lateral sclerosis risk. Brain Behav Immun Health 2023; 34:100704. [PMID: 38033614 PMCID: PMC10681879 DOI: 10.1016/j.bbih.2023.100704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Background T cell infiltration around dying motor neurons is a hallmark of amyotrophic lateral sclerosis (ALS). It is not known if this immune response represents a cause or a consequence of the disease. We aimed to establish whether individual variation in regulation of a T cell driven immune response is associated with long-term ALS risk. Methods Tuberculin skin test (TST) following BCG vaccination represents a standardized measure of a secondary T cell driven immune response. During a Norwegian tuberculosis screening program (1963-1975) Norwegian citizens born from 1910 to 1955 underwent TST. In those previously BCG vaccinated (median 7 years prior to TST), we related tuberculin skin tests to later ALS disease identified through validated Norwegian health registers. We fitted Cox proportional hazard models to investigate the association between tuberculin reactivity and ALS risk. Results Among 324,629 participants (52 % women) with median age 22 (IQR 10) years at tuberculosis screening, 496 (50 % women) later developed ALS. Hazard ratio for ALS was 0.74 (95% CI 0.57-0.95) for those who remained TST negative compared to those who mounted a positive TST. The association was strongest when time between BCG immunization and TST was short. The associations observed persisted for more than four decades after TST measurement. Conclusions Negative TST responses after BCG vaccination is associated with decreased long-term risk for ALS development, supporting a primary role for adaptive immunity in ALS development.
Collapse
Affiliation(s)
- Ola Nakken
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Anders Myhre Vaage
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hein Stigum
- Norwegian Institute of Public Health, Oslo, Norway
- Department of Community Medicine and Global Health, University of Oslo, Oslo, Norway
| | - Einar Heldal
- Norwegian Institute of Public Health, Oslo, Norway
| | - Haakon E. Meyer
- Norwegian Institute of Public Health, Oslo, Norway
- Department of Community Medicine and Global Health, University of Oslo, Oslo, Norway
| | - Trygve Holmøy
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Cao W, Cao Z, Tian Y, Zhang L, Wang W, Tang L, Xu C, Fan D. Neutrophils Are Associated with Higher Risk of Incident Amyotrophic Lateral Sclerosis in a BMI- and Age-Dependent Manner. Ann Neurol 2023; 94:942-954. [PMID: 37554051 DOI: 10.1002/ana.26760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVE Peripheral immune markers have been associated with the progression and prognosis of amyotrophic lateral sclerosis (ALS). However, whether dysregulation of peripheral immunity is a risk factor for ALS or a consequence of motor neuron degeneration has not yet been clarified. We aimed to identify longitudinal associations between prediagnostic peripheral immunity and the risk of incident ALS. METHODS A total of 345,000 individuals from the UK Biobank between 2006 and 2010 were included at the baseline. The counts of peripheral immune markers (neutrophils, lymphocytes, monocytes, platelets, and CRP) and its derived metrics (neutrophil-to-lymphocyte ratio [NLR], platelet-to-lymphocyte ratio [PLR], lymphocyte-to-monocyte ratio [LMR], and systemic immune-inflammation index [SII]) were analyzed in relation to the following incident ALS by Cox proportional hazard models. Subgroup and interaction analyses were performed to explore the covariates of these relationships further. RESULTS After adjusting for all covariates, the multivariate analysis showed that high neutrophil counts and their derived metrics (NLR and SII) were associated with an increased risk of ALS incidence (per SD increment hazard ratio [HR] = 1.15, 95% confidence interval [CI] = 1.02-1.29 for neutrophils; HR = 1.15, 95% CI = 1.03-1.28 for NLR; and HR = 1.17, 95% CI = 1.05-1.30 for SII). Subgroup and interaction analyses revealed that body mass index (BMI) and age had specific effects on this association. In participants with BMI ≥ 25 or age < 65 years, higher neutrophil counts, and their metrics increased the risk of incident ALS; however, in participants with BMI < 25 or age ≥ 65 years, neutrophils had no effect on incident ALS. INTERPRETATION Our study provides evidence that increased neutrophil levels and neutrophil-derived metrics (NLR and SII) are associated with an increased risk of developing ALS. ANN NEUROL 2023;94:942-954.
Collapse
Affiliation(s)
- Wen Cao
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Zhi Cao
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yao Tian
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Linjing Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Wenjing Wang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Lu Tang
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
| | - Chenjie Xu
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
| |
Collapse
|
10
|
Mo C, Wang J, Ye Z, Ke H, Liu S, Hatch K, Gao S, Magidson J, Chen C, Mitchell BD, Kochunov P, Hong LE, Ma T, Chen S. Evaluating the causal effect of tobacco smoking on white matter brain aging: a two-sample Mendelian randomization analysis in UK Biobank. Addiction 2023; 118:739-749. [PMID: 36401354 PMCID: PMC10443605 DOI: 10.1111/add.16088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIMS Tobacco smoking is a risk factor for impaired brain function, but its causal effect on white matter brain aging remains unclear. This study aimed to measure the causal effect of tobacco smoking on white matter brain aging. DESIGN Mendelian randomization (MR) analysis using two non-overlapping data sets (with and without neuroimaging data) from UK Biobank (UKB). The group exposed to smoking and control group consisted of current smokers and never smokers, respectively. Our main method was generalized weighted linear regression with other methods also included as sensitivity analysis. SETTING United Kingdom. PARTICIPANTS The study cohort included 23 624 subjects [10 665 males and 12 959 females with a mean age of 54.18 years, 95% confidence interval (CI) = 54.08, 54.28]. MEASUREMENTS Genetic variants were selected as instrumental variables under the MR analysis assumptions: (1) associated with the exposure; (2) influenced outcome only via exposure; and (3) not associated with confounders. The exposure smoking status (current versus never smokers) was measured by questionnaires at the initial visit (2006-10). The other exposure, cigarettes per day (CPD), measured the average number of cigarettes smoked per day for current tobacco users over the life-time. The outcome was the 'brain age gap' (BAG), the difference between predicted brain age and chronological age, computed by training machine learning model on a non-overlapping set of never smokers. FINDINGS The estimated BAG had a mean of 0.10 (95% CI = 0.06, 0.14) years. The MR analysis showed evidence of positive causal effect of smoking behaviors on BAG: the effect of smoking is 0.21 (in years, 95% CI = 6.5 × 10-3 , 0.41; P-value = 0.04), and the effect of CPD is 0.16 year/cigarette (UKB: 95% CI = 0.06, 0.26; P-value = 1.3 × 10-3 ; GSCAN: 95% CI = 0.02, 0.31; P-value = 0.03). The sensitivity analyses showed consistent results. CONCLUSIONS There appears to be a significant causal effect of smoking on the brain age gap, which suggests that smoking prevention can be an effective intervention for accelerated brain aging and the age-related decline in cognitive function.
Collapse
Affiliation(s)
- Chen Mo
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jingtao Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhenyao Ye
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hongjie Ke
- Department of Mathematics, University of Maryland, College Park, MD, USA
| | - Song Liu
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Kathryn Hatch
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Si Gao
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jessica Magidson
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Chixiang Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Braxton D. Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, MD, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Chen X, Zhou L, Cui C, Sun J. Evolving markers in amyotrophic lateral sclerosis. Adv Clin Chem 2023. [DOI: 10.1016/bs.acc.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
12
|
Julian TH, Boddy S, Islam M, Kurz J, Whittaker KJ, Moll T, Harvey C, Zhang S, Snyder MP, McDermott C, Cooper-Knock J, Shaw PJ. A review of Mendelian randomization in amyotrophic lateral sclerosis. Brain 2022; 145:832-842. [PMID: 34791088 PMCID: PMC9050546 DOI: 10.1093/brain/awab420] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/02/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis is a relatively common and rapidly progressive neurodegenerative disease that, in the majority of cases, is thought to be determined by a complex gene-environment interaction. Exponential growth in the number of performed genome-wide association studies combined with the advent of Mendelian randomization is opening significant new opportunities to identify environmental exposures that increase or decrease the risk of amyotrophic lateral sclerosis. Each of these discoveries has the potential to shape new therapeutic interventions. However, to do so, rigorous methodological standards must be applied in the performance of Mendelian randomization. We have reviewed Mendelian randomization studies performed in amyotrophic lateral sclerosis to date. We identified 20 Mendelian randomization studies, including evaluation of physical exercise, adiposity, cognitive performance, immune function, blood lipids, sleep behaviours, educational attainment, alcohol consumption, smoking and type 2 diabetes mellitus. We have evaluated each study using gold standard methodology supported by the Mendelian randomization literature and the STROBE-Mendelian randomization checklist. Where discrepancies exist between Mendelian randomization studies, we suggest the underlying reasons. A number of studies conclude that there is a causal link between blood lipids and risk of amyotrophic lateral sclerosis; replication across different datasets and even different populations adds confidence. For other putative risk factors, such as smoking and immune function, Mendelian randomization studies have provided cause for doubt. We highlight the use of positive control analyses in choosing exposure single nucleotide polymorphisms (SNPs) to make up the Mendelian randomization instrument, use of SNP clumping to avoid false positive results due to SNPs in linkage and the importance of multiple testing correction. We discuss the implications of survival bias for study of late age of onset diseases such as amyotrophic lateral sclerosis and make recommendations to mitigate this potentially important confounder. For Mendelian randomization to be useful to the amyotrophic lateral sclerosis field, high methodological standards must be applied to ensure reproducibility. Mendelian randomization is already an impactful tool, but poor-quality studies will lead to incorrect interpretations by a field that includes non-statisticians, wasted resources and missed opportunities.
Collapse
Affiliation(s)
- Thomas H Julian
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Sarah Boddy
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Mahjabin Islam
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Julian Kurz
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Katherine J Whittaker
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Tobias Moll
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Calum Harvey
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Sai Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher McDermott
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Johnathan Cooper-Knock
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
13
|
Vandebergh M, Degryse N, Dubois B, Goris A. Environmental risk factors in multiple sclerosis: bridging Mendelian randomization and observational studies. J Neurol 2022; 269:4565-4574. [PMID: 35366084 DOI: 10.1007/s00415-022-11072-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is a complex disease with both genetic variants and environmental factors involved in disease susceptibility. The main environmental risk factors associated with MS in observational studies include obesity, vitamin D deficiency, Epstein-Barr virus infection and smoking. As modifying these environmental and lifestyle factors may enable prevention, it is important to pinpoint causal links between these factors and MS. Leveraging genetics through the Mendelian randomization (MR) paradigm is an elegant way to inform prevention strategies in MS. In this review, we summarize MR studies regarding the impact of environmental factors on MS susceptibility, thereby paying attention to quality criteria which will aid readers in interpreting any MR studies. We draw parallels and differences with observational studies and randomized controlled trials and look forward to the challenges that such work presents going forward.
Collapse
Affiliation(s)
- Marijne Vandebergh
- Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 bus 1022, 3000, Leuven, Belgium
| | - Nicolas Degryse
- Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 bus 1022, 3000, Leuven, Belgium
| | - Bénédicte Dubois
- Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 bus 1022, 3000, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - An Goris
- Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 bus 1022, 3000, Leuven, Belgium.
| |
Collapse
|
14
|
Edgar JA, Molyneux RJ, Colegate SM. 1,2-Dehydropyrrolizidine Alkaloids: Their Potential as a Dietary Cause of Sporadic Motor Neuron Diseases. Chem Res Toxicol 2022; 35:340-354. [PMID: 35238548 DOI: 10.1021/acs.chemrestox.1c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sporadic motor neuron diseases (MNDs), such as amyotrophic lateral sclerosis (ALS), can be caused by spontaneous genetic mutations. However, many sporadic cases of ALS and other debilitating neurodegenerative diseases (NDDs) are believed to be caused by environmental factors, subject to considerable debate and requiring intensive research. A common pathology associated with MND development involves progressive mitochondrial dysfunction and oxidative stress in motor neurons and glial cells of the central nervous system (CNS), leading to apoptosis. Consequent degeneration of skeletal and respiratory muscle cells can lead to death from respiratory failure. A significant number of MND cases present with cancers and liver and lung pathology. This Perspective explores the possibility that MNDs could be caused by intermittent, low-level dietary exposure to 1,2-dehydropyrrolizidine alkaloids (1,2-dehydroPAs) that are increasingly recognized as contaminants of many foods consumed throughout the world. Nontoxic, per se, 1,2-dehydroPAs are metabolized, by particular cytochrome P450 (CYP450) isoforms, to 6,7-dihydropyrrolizines that react with nucleophilic groups (-NH, -SH, -OH) on DNA, proteins, and other vital biochemicals, such as glutathione. Many factors, including aging, gender, smoking, and alcohol consumption, influence CYP450 isoform activity in a range of tissues, including glial cells and neurons of the CNS. Activation of 1,2-dehydroPAs in CNS cells can be expected to cause gene mutations and oxidative stress, potentially leading to the development of MNDs and other NDDs. While relatively high dietary exposure to 1,2-dehydroPAs causes hepatic sinusoidal obstruction syndrome, pulmonary venoocclusive disease, neurotoxicity, and diverse cancers, this Perspective suggests that, at current intermittent, low levels of dietary exposure, neurotoxicity could become the primary pathology that develops over time in susceptible individuals, along with a tendency for some of them to also display liver and lung pathology and diverse cancers co-occurring with some MND/NDD cases. Targeted research is recommended to investigate this proposal.
Collapse
Affiliation(s)
- John A Edgar
- CSIRO Agriculture and Food, 11 Julius Avenue, North Ryde, New South Wales 2113, Australia
| | - Russell J Molyneux
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, United States
| | - Steven M Colegate
- Poisonous Plant Research Laboratory, ARS/USDA, 1150 East 1400 North, Logan, Utah 84341, United States
| |
Collapse
|
15
|
Thompson AG, Talbot K, Turner MR. Higher blood high density lipoprotein and apolipoprotein A1 levels are associated with reduced risk of developing amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2022; 93:75-81. [PMID: 34518331 PMCID: PMC8685635 DOI: 10.1136/jnnp-2021-327133] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/08/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Premorbid body mass index, physical activity, diabetes and cardiovascular disease have been associated with an altered risk of developing amyotrophic lateral sclerosis (ALS). There is evidence of shared genetic risk between ALS and lipid metabolism. A very large prospective longitudinal population cohort permits the study of a range of metabolic parameters and the risk of subsequent diagnosis of ALS. METHODS The risk of subsequent ALS diagnosis in those enrolled prospectively to the UK Biobank (n=502 409) was examined in relation to baseline levels of blood high and low density lipoprotein (HDL, LDL), total cholesterol, total cholesterol:HDL ratio, apolipoproteins A1 and B (apoA1, apoB), triglycerides, glycated haemoglobin A1c (HbA1c) and creatinine, plus self-reported exercise and body mass index. RESULTS Controlling for age and sex, higher HDL (HR 0.84, 95% CI 0.73 to 0.96, p=0.010) and apoA1 (HR 0.83, 95% CI 0.72 to 0.94, p=0.005) were associated with a reduced risk of ALS. Higher total cholesterol:HDL was associated with an increased risk of ALS (HR 1.17, 95% CI 1.05 to 1.31, p=0.006). In models incorporating multiple metabolic markers, higher LDL or apoB was associated with an increased risk of ALS, in addition to a lower risk with higher HDL or apoA. Coronary artery disease, cerebrovascular disease and increasing age were also associated with an increased risk of ALS. CONCLUSIONS The association of HDL, apoA1 and LDL levels with risk of ALS contributes to an increasing body of evidence that the premorbid metabolic landscape may play a role in pathogenesis. Understanding the molecular basis for these changes will inform presymptomatic biomarker development and therapeutic targeting.
Collapse
Affiliation(s)
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Vasta R, Chia R, Traynor BJ, Chiò A. Unraveling the complex interplay between genes, environment, and climate in ALS. EBioMedicine 2022; 75:103795. [PMID: 34974309 PMCID: PMC8728044 DOI: 10.1016/j.ebiom.2021.103795] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
Various genetic and environmental risk factors have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). Despite this, the cause of most ALS cases remains obscure. In this review, we describe the current evidence implicating genetic and environmental factors in motor neuron degeneration. While the risk exerted by many environmental factors may appear small, their effect could be magnified by the presence of a genetic predisposition. We postulate that gene-environment interactions account for at least a portion of the unknown etiology in ALS. Climate underlies multiple environmental factors, some of which have been implied in ALS etiology, and the impact of global temperature increase on the gene-environment interactions should be carefully monitored. We describe the main concepts underlying such interactions. Although a lack of large cohorts with detailed genetic and environmental information hampers the search for gene-environment interactions, newer algorithms and machine learning approaches offer an opportunity to break this stalemate. Understanding how genetic and environmental factors interact to cause ALS may ultimately pave the way towards precision medicine becoming an integral part of ALS care.
Collapse
Affiliation(s)
- Rosario Vasta
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, via Cherasco 15, Turin 1026, Italy; Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging (NIH), Bethesda, MD 20892, USA
| | - Ruth Chia
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging (NIH), Bethesda, MD 20892, USA
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging (NIH), Bethesda, MD 20892, USA; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA; National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA; ASO Rapid Development Laboratory, Therapeutics Development Branch, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Adriano Chiò
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, via Cherasco 15, Turin 1026, Italy; Institute of Cognitive Sciences and Technologies, C.N.R., Rome 00185, Italy; Neurology 1, AOU Città della Salute e della Scienza di Torino, Turin, Italy.
| |
Collapse
|
17
|
No association between GSTM1 and GSTT1 deletion polymorphisms and Amyotrophic Lateral Sclerosis: a genetic study in Brazilian patients. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Batty GD, Gale CR. Pre-Morbid Risk Factors for Amyotrophic Lateral Sclerosis: Prospective Cohort Study. Clin Epidemiol 2021; 13:941-947. [PMID: 34675682 PMCID: PMC8505194 DOI: 10.2147/clep.s329521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022] Open
Abstract
AIM In the absence of effective treatments for amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder with high case fatality, there is a clear need to identify its primary risk factors. METHODS UK Biobank is a prospective cohort study in which baseline data were captured between 2006 and 2010 in 502,649 participants aged 37 to 73 years. Follow-up for ALS hospitalisations and death was made via national registries. RESULTS Eleven years of event surveillance gave rise to 301 hospitalisations and 279 deaths due to ALS. After adjustment for selected confounding factors, being older (hazard ratio per 10 year increase; 95% confidence interval: 1.92; 1.58, 2.33) and male (1.37; 1.00, 1.87) were associated with elevated rates of hospitalisation for ALS. Similar effects were apparent when death ascribed to the disorder was the outcome of interest. Of the remaining 23 social, biological, and behavioural risk indices, however, there was only a suggestion that taller people experienced an increased risk of hospitalisation (per SD increase: 1.31; 1.09, 1.59). CONCLUSION In the present, large-scale study, other than well known associations, we did not find convincing evidence of links with ALS for other risk indices.
Collapse
Affiliation(s)
- G David Batty
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Catharine R Gale
- Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| |
Collapse
|
19
|
Sun J, Huang T, Debelius JW, Fang F. Gut microbiome and amyotrophic lateral sclerosis: A systematic review of current evidence. J Intern Med 2021; 290:758-788. [PMID: 34080741 DOI: 10.1111/joim.13336] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), characterized by a loss of motor neurons in the brain and spinal cord, is a relatively rare but currently incurable neurodegenerative disease. The global incidence of ALS is estimated as 1.75 per 100,000 person-years and the global prevalence is estimated as 4.1-8.4 per 100,000 individuals. Contributions from outside the central nervous system to the etiology of ALS have been increasingly recognized. Gut microbiome is one of the most quickly growing fields of research for ALS. In this article, we performed a comprehensive review of the results from existing animal and human studies, to provide an up-to-date summary of the current research on gut microbiome and ALS. In brief, we found relatively consistent results from animal studies, suggesting an altered gut microbiome composition in experimental ALS. Publication bias might however be a concern. Findings from human studies are largely inconclusive. A few animal and human studies demonstrated the usefulness of intervention with microbial-derived metabolites in modulating the disease progression of ALS. We discussed potential methodological concerns in these studies, including study design, statistical power, handling process of biospecimens and sequencing data, as well as statistical methods and interpretation of results. Finally, we made a few proposals for continued microbiome research in ALS, with the aim to provide valid, reproducible, and translatable findings.
Collapse
Affiliation(s)
- Jiangwei Sun
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tingting Huang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Justine W Debelius
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fang Fang
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Park HR, Yang EJ. Oxidative Stress as a Therapeutic Target in Amyotrophic Lateral Sclerosis: Opportunities and Limitations. Diagnostics (Basel) 2021; 11:diagnostics11091546. [PMID: 34573888 PMCID: PMC8465946 DOI: 10.3390/diagnostics11091546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/14/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND) and Lou Gehrig’s disease, is characterized by a loss of the lower motor neurons in the spinal cord and the upper motor neurons in the cerebral cortex. Due to the complex and multifactorial nature of the various risk factors and mechanisms that are related to motor neuronal degeneration, the pathological mechanisms of ALS are not fully understood. Oxidative stress is one of the known causes of ALS pathogenesis. This has been observed in patients as well as in cellular and animal models, and is known to induce mitochondrial dysfunction and the loss of motor neurons. Numerous therapeutic agents have been developed to inhibit oxidative stress and neuroinflammation. In this review, we describe the role of oxidative stress in ALS pathogenesis, and discuss several anti-inflammatory and anti-oxidative agents as potential therapeutics for ALS. Although oxidative stress and antioxidant fields are meaningful approaches to delay disease progression and prolong the survival in ALS, it is necessary to investigate various animal models or humans with different subtypes of sporadic and familial ALS.
Collapse
|
21
|
Wang Y, Li T, Fu L, Yang S, Hu YQ. A Novel Method for Mendelian Randomization Analyses With Pleiotropy and Linkage Disequilibrium in Genetic Variants From Individual Data. Front Genet 2021; 12:634394. [PMID: 34322150 PMCID: PMC8312241 DOI: 10.3389/fgene.2021.634394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/15/2021] [Indexed: 12/28/2022] Open
Abstract
Mendelian randomization makes use of genetic variants as instrumental variables to eliminate the influence induced by unknown confounders on causal estimation in epidemiology studies. However, with the soaring genetic variants identified in genome-wide association studies, the pleiotropy, and linkage disequilibrium in genetic variants are unavoidable and may produce severe bias in causal inference. In this study, by modeling the pleiotropic effect as a normally distributed random effect, we propose a novel mixed-effects regression model-based method PLDMR, pleiotropy and linkage disequilibrium adaptive Mendelian randomization, which takes linkage disequilibrium into account and also corrects for the pleiotropic effect in causal effect estimation and statistical inference. We conduct voluminous simulation studies to evaluate the performance of the proposed and existing methods. Simulation results illustrate the validity and advantage of the novel method, especially in the case of linkage disequilibrium and directional pleiotropic effects, compared with other methods. In addition, by applying this novel method to the data on Atherosclerosis Risk in Communications Study, we conclude that body mass index has a significant causal effect on and thus might be a potential risk factor of systolic blood pressure. The novel method is implemented in R and the corresponding R code is provided for free download.
Collapse
Affiliation(s)
- Yuquan Wang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | - Tingting Li
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | - Liwan Fu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | - Siqian Yang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue-Qing Hu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Chen X, Shen X, Zhang X, Zhan Y, Fang F. Polygenic associations and causal inferences between serum immunoglobulins and amyotrophic lateral sclerosis. Clin Chim Acta 2021; 521:131-136. [PMID: 34245689 DOI: 10.1016/j.cca.2021.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Due to the limitations like reverse causation and residual confounding commonly seen in the observational studies, the relationship between serum immunoglobulins and amyotrophic lateral sclerosis (ALS) remains unclear. METHODS Summary statistics from large-scale genome-wide association studies (GWAS) among European ancestry populations (~15,000 individuals for serum immunoglobulins, and more than 36,000 individuals for ALS) were accessed and used in the discovery and replication phase, respectively. Polygenic risk score analysis was performed to test the polygenic association, and Mendelian randomization analysis was used to infer the causality. RESULTS An inverse polygenic association was discovered between IgA and ALS, as well as between IgM and ALS. Such associations were however not replicated using a larger GWAS of ALS, and no causal association was observed for either IgA-ALS or IgM-ALS. For IgG and ALS, a positive polygenic association was both discovered [odds ratio (OR) = 1.18, 95% confidence interval (CI): 1.12-1.25, P = 5.9x10-7] and replicated (OR = 1.13, 95% CI: 1.06-1.20, P = 0.001). A causal association between IgG and ALS was suggested in the discovery analysis (OR = 1.06, 95 %CI: 1.02-1.10, P = 0.009), but it was not statistically significant in the replication analysis (OR = 1.07, 95 %CI: 0.90-1.24, P = 0.420). CONCLUSION This study suggests a positive polygenic association between serum IgG and ALS.
Collapse
Affiliation(s)
- Xu Chen
- Central Laboratory & Institute of Maternal-Fetal Medicine, Baoan Women's and Children's Hospital-Shenzhen University, Shenzhen, China.
| | - Xiaojun Shen
- Central Laboratory & Institute of Maternal-Fetal Medicine, Baoan Women's and Children's Hospital-Shenzhen University, Shenzhen, China
| | - Xuzhuo Zhang
- Central Laboratory & Institute of Maternal-Fetal Medicine, Baoan Women's and Children's Hospital-Shenzhen University, Shenzhen, China
| | - Yiqiang Zhan
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Julian TH, Glascow N, Barry ADF, Moll T, Harvey C, Klimentidis YC, Newell M, Zhang S, Snyder MP, Cooper-Knock J, Shaw PJ. Physical exercise is a risk factor for amyotrophic lateral sclerosis: Convergent evidence from Mendelian randomisation, transcriptomics and risk genotypes. EBioMedicine 2021; 68:103397. [PMID: 34051439 PMCID: PMC8170114 DOI: 10.1016/j.ebiom.2021.103397] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a universally fatal neurodegenerative disease. ALS is determined by gene-environment interactions and improved understanding of these interactions may lead to effective personalised medicine. The role of physical exercise in the development of ALS is currently controversial. Methods First, we dissected the exercise-ALS relationship in a series of two-sample Mendelian randomisation (MR) experiments. Next we tested for enrichment of ALS genetic risk within exercise-associated transcriptome changes. Finally, we applied a validated physical activity questionnaire in a small cohort of genetically selected ALS patients. Findings We present MR evidence supporting a causal relationship between genetic liability to frequent and strenuous leisure-time exercise and ALS using a liberal instrument (multiplicative random effects IVW, p=0.01). Transcriptomic analysis revealed that genes with altered expression in response to acute exercise are enriched with known ALS risk genes (permutation test, p=0.013) including C9ORF72, and with ALS-associated rare variants of uncertain significance. Questionnaire evidence revealed that age of onset is inversely proportional to historical physical activity for C9ORF72-ALS (Cox proportional hazards model, Wald test p=0.007, likelihood ratio test p=0.01, concordance=74%) but not for non-C9ORF72-ALS. Variability in average physical activity was lower in C9ORF72-ALS compared to both non-C9ORF72-ALS (F-test, p=0.002) and neurologically normal controls (F-test, p=0.049) which is consistent with a homogeneous effect of physical activity in all C9ORF72-ALS patients. Interpretation Our MR approach suggests a positive causal relationship between ALS and physical exercise. Exercise is likely to cause motor neuron injury only in patients with a risk-genotype. Consistent with this we have shown that ALS risk genes are activated in response to exercise. In particular, we propose that G4C2-repeat expansion of C9ORF72 predisposes to exercise-induced ALS. Funding We acknowledge support from the Wellcome Trust (JCK, 216596/Z/19/Z), NIHR (PJS, NF-SI-0617-10077; IS-BRC-1215-20017) and NIH (MPS, CEGS 5P50HG00773504, 1P50HL083800, 1R01HL101388, 1R01-HL122939, S10OD025212, P30DK116074, and UM1HG009442).
Collapse
Affiliation(s)
- Thomas H Julian
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Nicholas Glascow
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - A Dylan Fisher Barry
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Tobias Moll
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Calum Harvey
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Yann C Klimentidis
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA
| | - Michelle Newell
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA
| | - Sai Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK.
| |
Collapse
|
24
|
Westeneng HJ, van Veenhuijzen K, van der Spek RA, Peters S, Visser AE, van Rheenen W, Veldink JH, van den Berg LH. Associations between lifestyle and amyotrophic lateral sclerosis stratified by C9orf72 genotype: a longitudinal, population-based, case-control study. Lancet Neurol 2021; 20:373-384. [PMID: 33894192 DOI: 10.1016/s1474-4422(21)00042-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is considered to be caused by both genetic and environmental factors. The causal cascade is, however, not known. We aimed to assess lifestyle during the presymptomatic phase of ALS, stratified by C9orf72 mutation, and examine evidence supporting causality of lifestyle factors. METHODS This study was a longitudinal, population-based, case-control study that used data from the Prospective ALS study the Netherlands. We included patients with a C9orf72 mutation (C9+ group), patients without a C9orf72 mutation (C9- group), and controls. Patients fulfilled the revised El Escorial criteria and were recruited through neurologists and rehabilitation physicians in the Netherlands as well as the Dutch Neuromuscular Patient Association and ALS Centrum website. 1322 population-based controls, matched for age and sex, were enrolled via the patients' general practitioners. Blood relatives or spouses of patients were not eligible as controls. We studied the relationship between ALS risk and smoking, alcohol, physical activity, body-mass index (BMI), and energy intake by the use of structured questionnaires. Smoking, physical activity, and BMI were longitudinally assessed up to 50 years before onset (defined as the period before onset of muscle weakness or bulbar symptoms for cases, or age at completing the questionnaire for controls). We calculated posterior probabilities (P(θ|x)) for causal effects of smoking, alcohol, and BMI, using Bayesian instrumental variable analyses. FINDINGS Between Jan 1, 2006 and Jan 27, 2016, we included 143 patients in the C9+ group, 1322 patients in the C9- group, and 1322 controls. Compared with controls, cigarette pack-years (C9+ group mean difference from control 3·15, 95% CI 0·36 to 5·93, p=0·027; C9- group 3·20, 2·02 to 4·39, p<0·0001) and daily energy intake at symptom onset (C9+ group 712 kJ, 95% CI 212 to 1213, p=0·0053; C9- group 497, 295 to 700, p<0·0001) were higher in the C9+ and C9- groups, whereas current BMI (C9+ group -2·01 kg/m2, 95% CI -2·73 to -1·29, p<0·0001; C9- group -1·35, -1·64 to -1·06, p<0·0001) and lifetime alcohol consumption (C9+ group -5388 units, 95% CI -9113 to -1663, p=0·0046; C9- group -2185, -3748 to -622, p=0·0062) were lower in the C9+ and C9- groups. Median BMI during the presymptomatic phase for the C9+ group was lower (-0·69 kg/m2, 95% CI -1·24 to -0·13, p=0·015) and physical activity was similar (-348 metabolic equivalent of task [MET], 95% CI -966 to 270, p=0·27) to controls, whereas both the median BMI during the presymptomatic phase (0·27 kg/m2, 95% CI 0·04 to 0·50, p=0·022) and physical activity (585 MET, 291 to 878, p=0·0001) were higher in the C9- group than controls. Longitudinal analyses showed more cigarette pack-years in the C9- (starting 47 years pre-onset) and C9+ (starting 24 years pre-onset) groups, and higher physical activity over time in the C9- group (starting >30 years pre-onset). BMI of the C9+ group increased more slowly and was significantly lower (starting at 36 years pre-onset) than in controls, whereas the BMI of the C9- group was higher than controls (23-49 years pre-onset, becoming lower 10 years pre-onset). Instrumental variable analyses supported causal effects of alcohol consumption (P(θ|x)=0·9347) and smoking (P(θ|x)=0·9859) on ALS in the C9- group. We found evidence supporting a causal effect of increased BMI at younger age (mean 33·8 years, SD 11·7) in the C9- group (P[θ|x]=0·9272), but not at older ages. INTERPRETATION Lifestyle during the presymptomatic phase differs between patients with ALS and controls decades before onset, depends on C9- status, and is probably part of the presymptomatic causal cascade. Identification of modifiable disease-causing lifestyle factors offers opportunities to lower risk of developing neurodegenerative disease. FUNDING Netherlands ALS Foundation.
Collapse
Affiliation(s)
- Henk-Jan Westeneng
- Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Kevin van Veenhuijzen
- Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Rick A van der Spek
- Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Susan Peters
- Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Anne E Visser
- Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Wouter van Rheenen
- Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jan H Veldink
- Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Leonard H van den Berg
- Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
25
|
Melnick M, Gonzales P, LaRocca TJ, Song Y, Wuu J, Benatar M, Oskarsson B, Petrucelli L, Dowell RD, Link CD, Prudencio M. Application of a bioinformatic pipeline to RNA-seq data identifies novel viruslike sequence in human blood. G3-GENES GENOMES GENETICS 2021; 11:6259144. [PMID: 33914880 PMCID: PMC8661426 DOI: 10.1093/g3journal/jkab141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
Numerous reports have suggested that infectious agents could play a role in neurodegenerative diseases, but specific etiological agents have not been convincingly demonstrated. To search for candidate agents in an unbiased fashion, we have developed a bioinformatic pipeline that identifies microbial sequences in mammalian RNA-seq data, including sequences with no significant nucleotide similarity hits in GenBank. Effectiveness of the pipeline was tested using publicly available RNA-seq data and in a reconstruction experiment using synthetic data. We then applied this pipeline to a novel RNA-seq dataset generated from a cohort of 120 samples from amyotrophic lateral sclerosis patients and controls, and identified sequences corresponding to known bacteria and viruses, as well as novel virus-like sequences. The presence of these novel virus-like sequences, which were identified in subsets of both patients and controls, were confirmed by quantitative RT-PCR. We believe this pipeline will be a useful tool for the identification of potential etiological agents in the many RNA-seq datasets currently being generated.
Collapse
Affiliation(s)
- Marko Melnick
- Integrative Physiology, University of Colorado, Boulder, Colorado, 80303, USA
| | - Patrick Gonzales
- Integrative Physiology, University of Colorado, Boulder, Colorado, 80303, USA
| | - Thomas J LaRocca
- Department of Health and Exercise Science, Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Yuping Song
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida, 32224, USA
| | - Joanne Wuu
- Department of Neurology, University of Miami, Miami, Florida, 33136, USA
| | - Michael Benatar
- Department of Neurology, University of Miami, Miami, Florida, 33136, USA
| | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville FL, 32224, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida, 32224, USA.,Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, 32224, USA
| | - Robin D Dowell
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, 80303, USA
| | - Christopher D Link
- Integrative Physiology, University of Colorado, Boulder, Colorado, 80303, USA.,Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, 80303, USA
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida, 32224, USA.,Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, 32224, USA
| |
Collapse
|
26
|
Abstract
Cigarette smoke (CS) has been consistently demonstrated to be an environmental risk factor for amyotrophic lateral sclerosis (ALS), although the molecular pathogenic mechanisms involved are yet to be elucidated. Here, we propose different mechanisms by which CS exposure can cause sporadic ALS pathogenesis. Oxidative stress and neuroinflammation are widely implicated in ALS pathogenesis, with blood–spinal cord barrier disruption also recognised to be involved in the disease process. In addition, immunometabolic, epigenetic and microbiome alterations have been implicated in ALS recently. Identification of the underlying pathophysiological mechanisms that underpin CS-associated ALS will drive future research to be conducted into new targets for treatment.
Collapse
|
27
|
Barros JBDS, Santos KDF, Azevedo RM, de Oliveira RPD, Leobas ACD, Bento DDCP, Santos RDS, Reis AADS. No association of GSTP1 rs1695 polymorphism with amyotrophic lateral sclerosis: A case-control study in the Brazilian population. PLoS One 2021; 16:e0247024. [PMID: 33606765 PMCID: PMC7894827 DOI: 10.1371/journal.pone.0247024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/29/2021] [Indexed: 12/03/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a rare neurodegenerative disease that affects motor neurons and promotes progressive muscle atrophy. It has a multifactorial etiology, where environmental conditions playing a remarkable role through the increase of oxidative stress. Genetic polymorphisms in cell detoxification genes, such as Glutathione S-Transferase Pi 1 (GSTP1) can contribute to excessive oxidative stress, and therefore may be a risk factor to ALS. Thus, this study aimed to investigate the role of the GSTP1 rs1695 polymorphism in ALS susceptibility in different genetic inheritance models and evaluate the association of the genotypes with risk factors, clinical and demographic characteristics of ALS patients from the Brazilian central population. This case-control study was conducted with 101 patients with ALS and 101 healthy controls. GSTP1 rs1695 polymorphism genotyping was performed with Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). The statistical analysis was carried out using the SPSS statistical package and SNPStats software. Analysis of genetic inheritance models was performed by logistic regression, which was used to determine the Odds Ratio. The results of this first study in the Brazilian population demonstrated that there was no risk association between the development of ALS and the GSTP1 rs1695 polymorphism in any genetic inheritance model (codominant, dominant, recessive, overdominant, and logarithmic); and that the polymorphic variants were not associated with the clinical and demographic characteristics of ALS patients. No association of the GSTP1 rs1695 polymorphism and ALS development in the Brazilian central population was found. These findings may be justified by the multifactorial character of the disease.
Collapse
Affiliation(s)
- Jéssica Barletto de Sousa Barros
- Laboratory of Molecular Pathology, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Kamilla de Faria Santos
- Laboratory of Molecular Pathology, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Rômulo Morais Azevedo
- Laboratory of Molecular Pathology, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Rayana Pereira Dantas de Oliveira
- Laboratory of Molecular Pathology, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Ana Carolina Dourado Leobas
- Laboratory of Molecular Pathology, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | | | - Rodrigo da Silva Santos
- Laboratory of Molecular Pathology, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Angela Adamski da Silva Reis
- Laboratory of Molecular Pathology, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| |
Collapse
|
28
|
Serum Creatinine Protects Against Amyotrophic Lateral Sclerosis: a Mendelian Randomization Study. Mol Neurobiol 2021; 58:2910-2915. [PMID: 33555548 DOI: 10.1007/s12035-021-02309-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022]
Abstract
Association between serum creatinine (sCr) and amyotrophic lateral sclerosis (ALS) has been reported in previous observational studies, but results are at risk of confounding bias and reverse causation. Therefore, whether such association is casual remains unclear. Herein, we performed a two-sample Mendelian randomization study to evaluate the causal relationship between sCr and ALS in both European and East Asian populations. Our analysis was conducted using summary statistics from genome-wide association studies with 358,072 individuals for sCr and 80,610 individuals for ALS in European population, and 142,097 individuals for sCr and 4,084 individuals for ALS in East Asian population. The inverse-variance weighted method was used to estimate the casual-effect of sCr on ALS in both populations, and other MR methods were also performed as sensitivity analyses. We found evidence that genetically predicted sCr was inversely associated with risk of ALS (OR, 0.92; 95% CI, 0.85-0.99; P = 0.028) in European population. However, there was no strong evidence for a causal relationship between sCr and ALS in East Asian population (OR, 0.92; 95% CI, 0.84-1.01; P = 0.084). This study provides evidence that sCr protects against ALS in European population but not in East Asian population.
Collapse
|
29
|
Štětkářová I, Ehler E. Diagnostics of Amyotrophic Lateral Sclerosis: Up to Date. Diagnostics (Basel) 2021; 11:231. [PMID: 33546386 PMCID: PMC7913557 DOI: 10.3390/diagnostics11020231] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by gradual loss of upper and lower motor neurons and their pathways, usually without affecting the extraocular and sphincter muscles. The cause of the disease is not yet known. It is a chain of subsequent events, ending in programmed cell death in selective neuronal subpopulations. The prognosis for survival is rather short with a median of 2 to 4 years. Survival may be prolonged based on prompt diagnosis, ALS subtype and proper management with supportive treatment (tracheostomy, gastrostomy, etc.). According to the clinical picture, the typical form of ALS with upper and lower motoneuron involvement and progressive bulbar paralysis with bulbar muscle involvement is observed. The ALS form with progressive muscle atrophy, where only the lower motoneuron is affected, and primary lateral sclerosis with only upper motoneuron damage are rare. Familiar forms of ALS (FALS) associated with specific genes (the most common is C9orf72) have been discovered. FALS is usually associated with dementia (frontotemporal lobar dementia, FTLD), behavioral disorders, cognitive dysfunction and impairment of executive functions. The diagnosis of ALS is determined by excluding other conditions and utilizing clinical examinations, laboratory and genetic tests and nerve conduction/needle electromyography studies (EMG). Needle EMG records abnormal activities at rest and looks for neurogenic patterns during muscle contraction. Motor evoked potentials after transcranial magnetic stimulation remain the test of choice to identify impairment of upper motor neurons. New biochemical, neurophysiological and morphological biomarkers are extensively studied as early diagnostic and prognostic factors and have implications for clinical trials, research and drug development.
Collapse
Affiliation(s)
- Ivana Štětkářová
- Department of Neurology, Third Faculty of Medicine, Charles University and Faculty Hospital Královské Vinohrady, 100 34 Prague, Czech Republic
| | - Edvard Ehler
- Neurological Department, Faculty of Health Studies, Pardubice University and Pardubice Regional Hospital, 530 03 Pardubice, Czech Republic;
| |
Collapse
|
30
|
Opie-Martin S, Wootton RE, Budu-Aggrey A, Shatunov A, Jones AR, Iacoangeli A, Al Khleifat A, Davey-Smith G, Al-Chalabi A. Relationship between smoking and ALS: Mendelian randomisation interrogation of causality. J Neurol Neurosurg Psychiatry 2020; 91:1312-1315. [PMID: 32848012 DOI: 10.1136/jnnp-2020-323316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/29/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Smoking has been widely studied as a susceptibility factor for amyotrophic lateral sclerosis (ALS), but results are conflicting and at risk of confounding bias. We used the results of recently published large genome-wide association studies and Mendelian randomisation methods to reduce confounding to assess the relationship between smoking and ALS. METHODS Two genome-wide association studies investigating lifetime smoking (n=463 003) and ever smoking (n=1 232 091) were identified and used to define instrumental variables for smoking. A genome-wide association study of ALS (20 806 cases; 59 804 controls) was used as the outcome for inverse variance weighted Mendelian randomisation, and four other Mendelian randomisation methods, to test whether smoking is causal for ALS. Analyses were bidirectional to assess reverse causality. RESULTS There was no strong evidence for a causal or reverse causal relationship between smoking and ALS. The results of Mendelian randomisation using the inverse variance weighted method were: lifetime smoking OR 0.94 (95% CI 0.74 to 1.19), p value 0.59; ever smoking OR 1.10 (95% CI 1 to 1.23), p value 0.05. CONCLUSIONS Using multiple methods, large sample sizes and sensitivity analyses, we find no evidence with Mendelian randomisation techniques that smoking causes ALS. Other smoking phenotypes, such as current smoking, may be suitable for future Mendelian randomisation studies.
Collapse
Affiliation(s)
- Sarah Opie-Martin
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - Robyn E Wootton
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK.,School of Psychological Science, University of Bristol, Bristol, UK.,NIHR Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Ashley Budu-Aggrey
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
| | - Aleksey Shatunov
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - Ashley R Jones
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - Alfredo Iacoangeli
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - Ahmad Al Khleifat
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - George Davey-Smith
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King's College London, London, UK .,Department of Neurology, King's College Hospital, London SE5 9RS, United Kingdom
| |
Collapse
|
31
|
Liu Y, Li H, Wang J, Xue Q, Yang X, Kang Y, Li M, Xu J, Li G, Li C, Chang HC, Su KP, Wang F. Association of Cigarette Smoking With Cerebrospinal Fluid Biomarkers of Neurodegeneration, Neuroinflammation, and Oxidation. JAMA Netw Open 2020; 3:e2018777. [PMID: 33006621 PMCID: PMC7532384 DOI: 10.1001/jamanetworkopen.2020.18777] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPORTANCE Cigarette smoking has been associated with risk of neurodegenerative disorders, such as Alzheimer disease. The association between smoking and biomarkers of changes in human cerebrospinal fluid (CSF) is not fully understood. OBJECTIVE To investigate the association of cigarette smoking with CSF biomarkers of neurodegeneration, neuroinflammation, oxidation, and neuroprotection. DESIGN, SETTING, AND PARTICIPANTS In this case-control study of 191 adult men in China, biomarkers in the CSF of participants with and without significant cigarette exposure were examined. Participants who did not smoke and had no history of substance use disorder or dependence were assigned to the nonsmoking group. The active smoking group included participants who consumed at least 10 cigarettes per day for 1 year. Five-milliliter samples of CSF were obtained from routine lumbar puncture conducted before anterior cruciate ligament reconstruction surgery. Data collection took place from September 2014 to January 2016, and analysis took place from January to February 2016. EXPOSURES Cigarette smoking. MAIN OUTCOMES AND MEASURES CSF levels of β-amyloid 42 (Aβ42), which has diagnostic specificity for Alzheimer disease, tumor necrosis factor alpha (TNFα), brain-derived neurotrophic factor (BDNF), total superoxide dismutase (SOD), and nitric oxide synthase (NOS) were measured. Sociodemographic data and history of smoking were obtained. RESULTS Of 191 participants, 87 (45.5%) were included in the active smoking group and 104 (54.4%) in the nonsmoking group. Compared with the active smoking group, the nonsmoking group was younger (mean [SD] age, 34.4 [10.5] years vs 29.6 [9.5] years; P = .01), had more education (mean [SD] duration of education, 11.9 [3.1] years vs 13.2 [2.6] years; P = .001), and had lower body mass index (mean [SD], 25.9 [3.6] vs 24.9 [4.0]; P = .005). Comparing the nonsmoking group with the smoking group, mean (SD) CSF levels of Aβ42 (38.0 [25.9] pg/mL vs 52.8 [16.5] pg/mL; P < .001) and TNFα (23.0 [2.5] pg/mL vs 28.0 [2.0] pg/mL; P < .001) were significantly lower, while BDNF (23.1 [3.9] pg/mL vs 13.8 [2.7] pg/mL; P < .001), total SOD (15.7 [2.6] U/L vs 13.9 [2.4] U/L; P < .001), total NOS (28.3 [7.2] U/L vs 14.7 [5.6] U/L; P < .001), inducible NOS (16.0 [5.4] U/L vs 10.3 [2.7] U/L; P < .001), and constitutive NOS (12.4 [6.9] U/mL vs 4.4 [3.9] U/mL) were higher. In addition, in participants in the smoking group who were aged 40 years or older, total SOD levels were negatively correlated with Aβ42 levels (r = -0.57; P = .02). In those who smoked at least 20 cigarettes per day, TNFα levels were positively correlated with Aβ42 levels (r = 0.51; P = .006). The association of TNFα with Aβ42 production was stronger than that of total SOD with Aβ42 production (z = -4.38; P < .001). CONCLUSIONS AND RELEVANCE This case-control study found that cigarette smoking was associated with at-risk biomarkers for Alzheimer disease, as indicated by higher Aβ42 levels, excessive oxidative stress, neuroinflammation, and impaired neuroprotection found in the CSF of participants in the active smoking group.
Collapse
Affiliation(s)
- Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, China
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hui Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
- Xinjiang Key Laboratory of Neurological Disorder Research, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot, China
| | - Jian Wang
- Department of Psychology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Xue
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | | | - Yimin Kang
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot, China
| | - Mengjie Li
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot, China
- Sleep Medicine Center, Peking University International Hospital, Beijing, China
| | - Jinzhong Xu
- Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Guohua Li
- Xinjiang Key Laboratory of Neurological Disorder Research, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Cunbao Li
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot, China
| | - Hui-Chih Chang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Department of Psychiatry and Mind-Body Interface Laboratory, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Kuan-Pin Su
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- Department of Psychiatry and Mind-Body Interface Laboratory, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Fan Wang
- Xinjiang Key Laboratory of Neurological Disorder Research, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot, China
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China
| |
Collapse
|
32
|
Wannarong T, Ungprasert P. Diabetes mellitus is associated with a lower risk of amyotrophic lateral sclerosis: A systematic review and meta-analysis. Clin Neurol Neurosurg 2020; 199:106248. [PMID: 33031990 DOI: 10.1016/j.clineuro.2020.106248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Previous studies have suggested that diabetes mellitus (DM) could be a protective factor against amyotrophic lateral sclerosis (ALS) although the results are inconsistent. This study aimed to comprehensively investigate this relationship by identifying all available studies and summarizing their results. METHODS A systematic review was conducted in MEDLINE and EMBASE database from inception to January 1st, 2020 to identify cohort studies and case-control studies that investigated the risk of development of ALS among patients with DM versus individuals without DM. Point estimates and standard errors from eligible studies were pooled together using the generic inverse variance method, as described by DerSimonian and Laird. Visualization of the funnel plot was used to assess for the presence of publication bias. RESULTS A total of 1683 articles were identified by the search strategy. After two rounds of review, three cohort studies and eight case-control studies fulfilled the inclusion criteria and were included in the meta-analysis. The risk of developing ALS was significantly lower among patients with DM than individuals without DM with the pooled relative risk of 0.68 (95 % CI, 0.55 - 0.84; I2 81 %). The funnel plot was relatively symmetric and was not suggestive of the presence of publication bias. CONCLUSION A significantly decreased risk of ALS among patients with DM was observed in this meta-analysis.
Collapse
Affiliation(s)
- Thapat Wannarong
- Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, 11100 Euclid Ave, Cleveland, OH 44118, USA
| | - Patompong Ungprasert
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195 USA.
| |
Collapse
|
33
|
Béland LC, Markovinovic A, Jakovac H, De Marchi F, Bilic E, Mazzini L, Kriz J, Munitic I. Immunity in amyotrophic lateral sclerosis: blurred lines between excessive inflammation and inefficient immune responses. Brain Commun 2020; 2:fcaa124. [PMID: 33134918 PMCID: PMC7585698 DOI: 10.1093/braincomms/fcaa124] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Despite wide genetic, environmental and clinical heterogeneity in amyotrophic lateral sclerosis, a rapidly fatal neurodegenerative disease targeting motoneurons, neuroinflammation is a common finding. It is marked by local glial activation, T cell infiltration and systemic immune system activation. The immune system has a prominent role in the pathogenesis of various chronic diseases, hence some of them, including some types of cancer, are successfully targeted by immunotherapeutic approaches. However, various anti-inflammatory or immunosuppressive therapies in amyotrophic lateral sclerosis have failed. This prompted increased scrutiny over the immune-mediated processes underlying amyotrophic lateral sclerosis. Perhaps the biggest conundrum is that amyotrophic lateral sclerosis pathogenesis exhibits features of three otherwise distinct immune dysfunctions-excessive inflammation, autoimmunity and inefficient immune responses. Epidemiological and genome-wide association studies show only minimal overlap between amyotrophic lateral sclerosis and autoimmune diseases, so excessive inflammation is usually thought to be secondary to protein aggregation, mitochondrial damage or other stresses. In contrast, several recently characterized amyotrophic lateral sclerosis-linked mutations, including those in TBK1, OPTN, CYLD and C9orf72, could lead to inefficient immune responses and/or damage pile-up, suggesting that an innate immunodeficiency may also be a trigger and/or modifier of this disease. In such cases, non-selective immunosuppression would further restrict neuroprotective immune responses. Here we discuss multiple layers of immune-mediated neuroprotection and neurotoxicity in amyotrophic lateral sclerosis. Particular focus is placed on individual patient mutations that directly or indirectly affect the immune system, and the mechanisms by which these mutations influence disease progression. The topic of immunity in amyotrophic lateral sclerosis is timely and relevant, because it is one of the few common and potentially malleable denominators in this heterogenous disease. Importantly, amyotrophic lateral sclerosis progression has recently been intricately linked to patient T cell and monocyte profiles, as well as polymorphisms in cytokine and chemokine receptors. For this reason, precise patient stratification based on immunophenotyping will be crucial for efficient therapies.
Collapse
Affiliation(s)
| | - Andrea Markovinovic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- ENCALS Center Zagreb, 10000 Zagreb, Croatia
| | - Hrvoje Jakovac
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia
| | - Fabiola De Marchi
- Department of Neurology, ALS Centre, University of Piemonte Orientale, “Maggiore della Carità” Hospital, 28100 Novara, Italy
| | - Ervina Bilic
- Department of Neurology, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia
- ENCALS Center Zagreb, 10000 Zagreb, Croatia
| | - Letizia Mazzini
- Department of Neurology, ALS Centre, University of Piemonte Orientale, “Maggiore della Carità” Hospital, 28100 Novara, Italy
| | - Jasna Kriz
- CERVO Research Centre, Laval University, Quebec City, Quebec G1J 2G3, Canada
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
34
|
Li C, Yang W, Wei Q, Shang H. Causal Association of Leukocytes Count and Amyotrophic Lateral Sclerosis: a Mendelian Randomization Study. Mol Neurobiol 2020; 57:4622-4627. [DOI: 10.1007/s12035-020-02053-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
|
35
|
Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis. Sci Rep 2020; 10:12184. [PMID: 32699404 PMCID: PMC7376149 DOI: 10.1038/s41598-020-68848-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
We employed Mendelian randomization (MR) to evaluate the causal relationship between leukocyte telomere length (LTL) and amyotrophic lateral sclerosis (ALS) with summary statistics from genome-wide association studies (n = ~ 38,000 for LTL and ~ 81,000 for ALS in the European population; n = ~ 23,000 for LTL and ~ 4,100 for ALS in the Asian population). We further evaluated mediation roles of lipids in the pathway from LTL to ALS. The odds ratio per standard deviation decrease of LTL on ALS was 1.10 (95% CI 0.93–1.31, p = 0.274) in the European population and 0.75 (95% CI 0.53–1.07, p = 0.116) in the Asian population. This null association was also detected between LTL and frontotemporal dementia in the European population. However, we found that an indirect effect of LTL on ALS might be mediated by low density lipoprotein (LDL) or total cholesterol (TC) in the European population. These results were robust against extensive sensitivity analyses. Overall, our MR study did not support the direct causal association between LTL and the ALS risk in neither population, but provided suggestive evidence for the mediation role of LDL or TC on the influence of LTL and ALS in the European population.
Collapse
|
36
|
Vandebergh M, Goris A. Smoking and multiple sclerosis risk: a Mendelian randomization study. J Neurol 2020; 267:3083-3091. [PMID: 32529581 PMCID: PMC7501136 DOI: 10.1007/s00415-020-09980-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 11/02/2022]
Abstract
BACKGROUND Striking changes in the demographic pattern of multiple sclerosis (MS) strongly indicate an influence of modifiable exposures, which lend themselves well to intervention. It is important to pinpoint which of the many environmental, lifestyle, and sociodemographic changes that have occurred over the past decades, such as higher smoking and obesity rates, are responsible. Mendelian randomization (MR) is an elegant tool to overcome limitations inherent to observational studies and leverage human genetics to inform prevention strategies in MS. METHODS We use genetic variants from the largest genome-wide association study for smoking phenotypes (initiation: N = 378, heaviness: N = 55, lifetime smoking: N = 126) and body mass index (BMI, N = 656) and apply these as instrumental variables in a two-sample MR analysis to the most recent meta-analysis for MS. We adjust for the genetic correlation between smoking and BMI in a multivariable MR. RESULTS In univariable and multivariable MR, smoking does not have an effect on MS risk nor explains part of the association between BMI and MS risk. In contrast, in both analyses each standard deviation increase in BMI, corresponding to roughly 5 kg/m2 units, confers a 30% increase in MS risk. CONCLUSION Despite observational studies repeatedly reporting an association between smoking and increased risk for MS, MR analyses on smoking phenotypes and MS risk could not confirm a causal relationship. This is in contrast with BMI, where observational studies and MR agree on a causal contribution. The reasons for the discrepancy between observational studies and our MR study concerning smoking and MS require further investigation.
Collapse
Affiliation(s)
- Marijne Vandebergh
- Department of Neurosciences, Laboratory for Neuroimmunology, KU Leuven, Herestraat 49 bus 1022, 3000, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - An Goris
- Department of Neurosciences, Laboratory for Neuroimmunology, KU Leuven, Herestraat 49 bus 1022, 3000, Leuven, Belgium. .,Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
37
|
Abstract
The cause of amyotrophic lateral sclerosis (ALS) remains unknown for most of the patients with the disease. Epidemiologic studies can help describe disease burden and examine its potential risk factors, providing thereby evidence base for future mechanistic studies. With this review, we aimed to provide a summary of epidemiologic studies published during the past 18 months, which studied the incidence and risk factors for ALS.
Collapse
|
38
|
Yu X, Wang T, Chen Y, Shen Z, Gao Y, Xiao L, Zheng J, Zeng P. Alcohol Drinking and Amyotrophic Lateral Sclerosis: An Instrumental Variable Causal Inference. Ann Neurol 2020; 88:195-198. [DOI: 10.1002/ana.25721] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Xinghao Yu
- Department of Epidemiology and Biostatistics, School of Public Health Xuzhou Medical University Xuzhou China
| | - Ting Wang
- Department of Epidemiology and Biostatistics, School of Public Health Xuzhou Medical University Xuzhou China
| | - Yiming Chen
- Affiliated High School of Nanjing Normal University Nanjing China
| | - Ziyuan Shen
- Department of Epidemiology and Biostatistics, School of Public Health Xuzhou Medical University Xuzhou China
| | - Yixing Gao
- Department of Epidemiology and Biostatistics, School of Public Health Xuzhou Medical University Xuzhou China
| | - Lishun Xiao
- Department of Epidemiology and Biostatistics, School of Public Health Xuzhou Medical University Xuzhou China
| | - Junnian Zheng
- Center of Clinical Oncology Affiliated Hospital of Xuzhou Medical University Xuzhou China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute Xuzhou Medical University Xuzhou China
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, School of Public Health Xuzhou Medical University Xuzhou China
- Center for Medical Statistics and Data Analysis, School of Public Health Xuzhou Medical University Xuzhou China
| |
Collapse
|
39
|
Yazdani S, Mariosa D, Hammar N, Andersson J, Ingre C, Walldius G, Fang F. Peripheral immune biomarkers and neurodegenerative diseases: A prospective cohort study with 20 years of follow-up. Ann Neurol 2019; 86:913-926. [PMID: 31604369 PMCID: PMC7611591 DOI: 10.1002/ana.25614] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 09/11/2019] [Accepted: 09/29/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To assess the associations of several blood immune biomarkers with the future risks of amyotrophic lateral sclerosis and Parkinson disease in a prospective cohort study with 20 years of follow-up. METHODS The Swedish Apolipoprotein-Related Mortality Risk study is a longitudinal cohort study including 812,073 participants with repeated blood biomarker measurements between 1985 and 1996 and a follow-up until 2011. Using a Cox model, we first estimated hazard ratios of amyotrophic lateral sclerosis and Parkinson disease in relation to leukocytes, immunoglobulin G, haptoglobin, and uric acid. We further described the temporal changes of these biomarkers during the 20 years prior to the diagnosis of these diseases. RESULTS A total of 585 incident cases of amyotrophic lateral sclerosis and 3,769 incident cases of Parkinson disease were identified during the follow-up. Increasing concentrations of leukocytes, haptoglobin, and uric acid were associated with a lower risk of Parkinson disease. No statistically significant association was, however, noted between the studied biomarkers and amyotrophic lateral sclerosis. Parkinson disease patients appeared to have lower levels of leukocytes and haptoglobin between 20 and 10 years before diagnosis and lower levels of uric acid during the 20 years before diagnosis, compared to controls, although statistically significant differences were only noted during parts of the respective time intervals after multivariable adjustment. No clear differences were noted between patients with amyotrophic lateral sclerosis and controls. INTERPRETATION If verified in studies of independent populations, our findings may suggest a different role of systemic inflammation on the risk of Parkinson disease compared to amyotrophic lateral sclerosis. ANN NEUROL 2019;86:913-926.
Collapse
Affiliation(s)
- Solmaz Yazdani
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Daniela Mariosa
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Niklas Hammar
- Unit of Epidemiology, Institutet of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - John Andersson
- Unit of Immunology and Allergy, Department of Medicine, Karolinska University Hospital Solna, Sweden
| | - Caroline Ingre
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Göran Walldius
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fang Fang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Vlaar T, Elbaz A, Moisan F. Is the incidence of motor neuron disease higher in French military personnel? Amyotroph Lateral Scler Frontotemporal Degener 2019; 21:107-115. [DOI: 10.1080/21678421.2019.1675709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tim Vlaar
- INSERM, Centre for Research in Epidemiology and Population Health, U1018, University Paris-Sud, Villejuif, France and
- Santé publique France, Saint-Maurice, France
| | - Alexis Elbaz
- INSERM, Centre for Research in Epidemiology and Population Health, U1018, University Paris-Sud, Villejuif, France and
- Santé publique France, Saint-Maurice, France
| | - Frédéric Moisan
- INSERM, Centre for Research in Epidemiology and Population Health, U1018, University Paris-Sud, Villejuif, France and
- Santé publique France, Saint-Maurice, France
| |
Collapse
|
41
|
Qian Y, Ye D, Wu DJ, Feng C, Zeng Z, Ye L, Zhu R, Zhang Z, Mao Y. Role of cigarette smoking in the development of ischemic stroke and its subtypes: a Mendelian randomization study. Clin Epidemiol 2019; 11:725-731. [PMID: 31616189 PMCID: PMC6698606 DOI: 10.2147/clep.s215933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/23/2019] [Indexed: 12/02/2022] Open
Abstract
Purpose Numerous studies have indicated that smokers have an increased risk of developing ischemic stroke. However, less is known about the causal relationship between cigarette smoking and ischemic stroke subtypes. In the present study, we aim to determine whether genetically predicted cigarette smoking was associated with subtypes of ischemic stroke using Mendelian randomization (MR). Patients and methods We used summary-level genetic association data from the MEGASTROKE consortium, including 438,847 individuals of European ancestry (34,217 cases of ischemic stroke and 404,630 controls). We used 176 single nucleotide polymorphisms as instrumental variables, which were previously identified to be associated with smoking in the Study of the Social Science Genetic Association Consortium (n=518,633). MR analyses were performed using inverse-variance-weighted method, weighted-median method, and MR-Egger regression. Results We found that genetically predicted smoking was associated with a higher risk of ischemic stroke (odds ratio (OR): 1.24, 95% CI: 1.10–1.39) and large artery ischemic stroke (OR: 1.52, 95% CI: 1.14–2.02), but not with risk of cardioembolic ischemic stroke or small vessel ischemic stroke. Sensitivity analyses using alternative MR approaches produced similar results. Conclusion Genetic predisposition toward smoking is causally associated with a higher incidence of large artery ischemic stroke. Further work is warranted to clarify the underlying mechanism of smoking in the development of large artery ischemic stroke.
Collapse
Affiliation(s)
- Yu Qian
- School of Public Health, Zhejiang Chinese Medical University , Hangzhou, Zhejiang 310053, People's Republic of China
| | - Ding Ye
- School of Public Health, Zhejiang Chinese Medical University , Hangzhou, Zhejiang 310053, People's Republic of China
| | - David Jh Wu
- School of Public Health, Zhejiang Chinese Medical University , Hangzhou, Zhejiang 310053, People's Republic of China.,University of Minnesota Medical School , Minneapolis, MN 55455, USA
| | - Chen Feng
- The Second Clinical Medical College, Zhejiang Chinese Medical University , Hangzhou, Zhejiang 310053, People's Republic of China
| | - Zhen Zeng
- School of Public Health, Zhejiang Chinese Medical University , Hangzhou, Zhejiang 310053, People's Republic of China
| | - Lihong Ye
- School of Public Health, Zhejiang Chinese Medical University , Hangzhou, Zhejiang 310053, People's Republic of China
| | - Rui Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University , Hangzhou, Zhejiang 310053, People's Republic of China
| | - Zhenyu Zhang
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health , Baltimore, MD 21205, USA
| | - Yingying Mao
- School of Public Health, Zhejiang Chinese Medical University , Hangzhou, Zhejiang 310053, People's Republic of China
| |
Collapse
|
42
|
Affiliation(s)
- Carmel Armon
- From the Department of Neurology (C.A.), Tel Aviv University Sackler School of Medicine; Shamir (Assaf Harofeh) Medical Center (C.A.), Israel; Neuromuscular Diseases Research Section (B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda; and Neurology Department (B.J.T.), Johns Hopkins University, Baltimore, MD.
| | - Bryan J Traynor
- From the Department of Neurology (C.A.), Tel Aviv University Sackler School of Medicine; Shamir (Assaf Harofeh) Medical Center (C.A.), Israel; Neuromuscular Diseases Research Section (B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda; and Neurology Department (B.J.T.), Johns Hopkins University, Baltimore, MD
| |
Collapse
|