1
|
Cacciaglia R, Falcón C, Benavides GS, Brugulat-Serrat A, Alomà MM, Calvet MS, Molinuevo JL, Fauria K, Minguillón C, Kollmorgen G, Quijano-Rubio C, Blennow K, Zetterberg H, Lorenzini L, Wink AM, Ingala S, Barkhof F, Ritchie CW, Gispert JD. Soluble Aβ pathology predicts neurodegeneration and cognitive decline independently on p-tau in the earliest Alzheimer's continuum: Evidence across two independent cohorts. Alzheimers Dement 2025:e14415. [PMID: 39898436 DOI: 10.1002/alz.14415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/07/2024] [Accepted: 10/27/2024] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Identifying the link between early Alzheimer's disease (AD) pathological changes and neurodegeneration in asymptomatic individuals may lead to the discovery of preventive strategies. We assessed longitudinal brain atrophy and cognitive decline as a function of cerebrospinal fluid (CSF) AD biomarkers in two independent cohorts of cognitively unimpaired (CU) individuals. METHODS We used longitudinal voxel-based morphometry (VBM) in combination with hippocampal subfield segmentation. Changes in neuroimaging and cognitive variables were inspected using general linear models (GLMs) adjusting by age, sex, apolipoprotein E (APOE) status, follow-up time, and years of education. RESULTS In both cohorts, baseline CSF amyloid beta (Aβ) biomarkers significantly predicted medial temporal lobe (MTL) atrophy rates and episodic memory (EM) decline independently of CSF phosphorylated tau (p-tau). DISCUSSION Our data suggest that soluble Aβ dyshomeostasis triggers MTL longitudinal atrophy and EM decline independently of CSF p-tau. Our data underscore the need for secondary preventive strategies at the earliest stages of the AD pathological cascade. HIGHLIGHTS We assessed brain atrophy and cognitive decline in asymptomatic individuals. Aβ biomarkers predicted MTL atrophy independently of p-tau. Our results underscore the importance of undertaking Alzheimer's preclinical trials.
Collapse
Grants
- #2018-02532 HZ is a Wallenberg Scholar supported by grants from the Swedish Research Council
- No. 101053962 the European Union's Horizon Europe Research and Innovation Programme under Grant Agreement
- #ALFGBG-71320 Swedish State Support for Clinical Research
- #ADSF-21-831376-C the AD Strategic Fund and the Alzheimer's Association
- #ADSF-21-831381-C the AD Strategic Fund and the Alzheimer's Association
- #ADSF-21-831377-C the AD Strategic Fund and the Alzheimer's Association
- the Bluefield Project, the Olav Thon Foundation
- #FO2022-0270 the Erling-Persson Family Foundation, Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden
- the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 860197 (MIRIADE)
- JPND2021-00694 the European Union Joint Programme - Neurodegenerative Disease Research
- UKDRI-1003 the UK Dementia Research Institute at University College London (UCL)
- #2017-00915 KB is supported by the Swedish Research Council
- #201809-2016862 the Alzheimer Drug Discovery Foundation (ADDF), USA
- #RDAPB-201809-2016615 the Alzheimer Drug Discovery Foundation (ADDF), USA
- #AF-930351 the Swedish Alzheimer Foundation
- #AF-939721 the Swedish Alzheimer Foundation
- #AF-968270 the Swedish Alzheimer Foundation
- #FO2017-0243 Hjärnfonden, Sweden
- #ALZ2022-0006 Hjärnfonden, Sweden
- #ALFGBG-715986 the Swedish state under the agreement between the Swedish government and the County Councils, the Avtal om Läkarutbildning och Forskning (ALF)-agreement
- #ALFGBG-965240 the Swedish state under the agreement between the Swedish government and the County Councils, the Avtal om Läkarutbildning och Forskning (ALF)-agreement
- JPND2019-466-236 the European Union Joint Program for Neurodegenerative Disorders
- #1R01AG068398-01 the National Institute of Health (NIH), USA
- ZEN-21-848495 the Alzheimer's Association 2021 Zenith Award
- SG-23-1038904 QC the Alzheimer's Association 2022-2025
- MSC receives funding from the European Research Council (ERC)
- Project "PI19/00155" European Union's Horizon 2020 Research and Innovation Programme (Grant agreement No. 948677)
- ID 100010434 Instituto de Salud Carlos III (ISCIII) and co-funded by the European Union, and from a fellowship from "la Caixa" Foundation
- LCF/BQ/PR21/11840004 the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 847648
- MCIN/AEI/10.13039/501100011033/FEDER RC receives funding from "Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación"
- PID2021-125433OA-100 RC receives funding from "Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación"
- RYC2021-031128-I RC receives funding from "Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación"
- MCIN/AEI/10.13039/501100011033 RC receives funding from "Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación"
- the European Union Next Generation EU/Plan de Recuperación
- Transformación y Resiliencia (PRTR)
Collapse
Affiliation(s)
- Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Carles Falcón
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), Madrid, Spain
| | - Gonzalo Sánchez Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Anna Brugulat-Serrat
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
- Global Brain Health Institute, San Francisco, California, USA
| | - Marta Milà Alomà
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Northern California Institute for Research and Education, San Francisco, California, USA
| | - Marc Suárez Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Carolina Minguillón
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | | | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Luigi Lorenzini
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Alle Meije Wink
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Silvia Ingala
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Craig W Ritchie
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
2
|
Michels L, O'Gorman-Tuura R, Bachmann D, Müller S, Studer S, Saake A, Gruber E, Rauen K, Buchmann A, Zuber I, Hock C, Gietl A, Treyer V. The links among age, sex, and glutathione: A cross-sectional magnetic resonance spectroscopy study. Neurobiol Aging 2024; 144:19-29. [PMID: 39255570 DOI: 10.1016/j.neurobiolaging.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
Glutathione (GSH) is a brain marker for oxidative stress and has previously been associated with cerebral amyloid deposition and memory decline. However, to date, no study has examined the links among GSH, sex, age, amyloid, and Apolipoprotein E (APOE) genotype in a large non-clinical cohort of older adults. We performed APOE genotyping, magnetic resonance spectroscopy (MRS) as well as simultaneous positron emission tomography with the radiotracer Flutemetamol (Amyloid-PET), in a group of older adults. The final analysis set comprised 140 healthy older adults (mean age: 64.7 years) and 49 participants with mild cognitive impairment (mean age: 71.4 years). We recorded metabolites in the posterior cingulate cortex (PCC) by a GSH-edited MEGAPRESS sequence. Structural equation modeling revealed that higher GSH levels were associated with female sex, but neither APOE- epsilon 4 carrier status nor age showed significant associations with GSH. Conversely, older age and the presence of an APOE4 allele, but not sex, are linked to higher global amyloid load. Our results suggest that the PCC shows sex-specific GSH alterations in older adults.
Collapse
Affiliation(s)
- Lars Michels
- Department of Neuroradiology, Clinical Neuroscience Center (KNZ), University Hospital Zurich, Zurich, Switzerland.
| | | | - Dario Bachmann
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland
| | - Susanne Müller
- Department of Neuroradiology, Clinical Neuroscience Center (KNZ), University Hospital Zurich, Zurich, Switzerland
| | - Sandro Studer
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland
| | - Antje Saake
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland
| | - Esmeralda Gruber
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland
| | - Katrin Rauen
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland; Department of Geriatric Psychiatry, Psychiatric Hospital Zurich, Zurich, Switzerland
| | - Andreas Buchmann
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland
| | - Isabelle Zuber
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland; Neurimmune, Schlieren, Switzerland
| | - Anton Gietl
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland; Department of Geriatric Psychiatry, Psychiatric Hospital Zurich, Zurich, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland; Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland
| |
Collapse
|
3
|
Bachmann D, Saake A, Studer S, Buchmann A, Rauen K, Gruber E, Michels L, Nitsch RM, Hock C, Gietl A, Treyer V. Hypertension and cerebral blood flow in the development of Alzheimer's disease. Alzheimers Dement 2024; 20:7729-7744. [PMID: 39254220 PMCID: PMC11567827 DOI: 10.1002/alz.14233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024]
Abstract
INTRODUCTION We investigated the interactive associations between amyloid and hypertension on the entorhinal cortex (EC) tau and atrophy and the role of cerebral blood flow (CBF) as a shared mechanism by which amyloid and hypertension contribute to EC tau and regional white matter hyperintensities (WMHs). METHODS We analyzed data from older adults without dementia participating in the Add-Tau study (NCT02958670, n = 138) or Alzheimer's Disease Neuroimaging Initiative (ADNI) (n = 523) who had available amyloid-positron emission tomography (PET), tau-PET, fluid-attenuated inversion recovery (FLAIR), and T1-weighted magnetic resonance imaging (MRI). A subsample in both cohorts had available arterial spin labeling (ASL) MRI (Add-Tau: n = 78; ADNI: n = 89). RESULTS The detrimental effects of hypertension on AD pathology and EC thickness were more pronounced in the Add-Tau cohort. Increased amyloid burden was associated with decreased occipital gray matter CBF in the ADNI cohort. In both cohorts, lower regional gray matter CBF was associated with higher EC tau and posterior WMH burden. DISCUSSION Reduced cerebral perfusion may be one common mechanism through which hypertension and amyloid are related to increased EC tau and WMH volume. HIGHLIGHTS Hypertension is associated with increased entorhinal cortex (EC) tau, particularly in the presence of amyloid. Decreased cortical cerebral blood flow (CBF) is associated with higher regional white matter hyperintensity volume. Increasing amyloid burden is associated with decreasing CBF in the occipital lobe. MTL CBF and amyloid are synergistically associated with EC tau.
Collapse
Affiliation(s)
- Dario Bachmann
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
- Department of Health Sciences and TechnologyETH ZürichZurichSwitzerland
| | - Antje Saake
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
| | - Sandro Studer
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
| | - Andreas Buchmann
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
| | - Katrin Rauen
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
- Department of Geriatric PsychiatryPsychiatric Hospital ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of ZurichZurichSwitzerland
| | - Esmeralda Gruber
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
| | - Lars Michels
- Department of NeuroradiologyClinical Neuroscience Center, University Hospital ZurichZurichSwitzerland
| | - Roger M. Nitsch
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
- NeurimmuneZurichSwitzerland
| | - Christoph Hock
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
- NeurimmuneZurichSwitzerland
| | - Anton Gietl
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
- Department of Geriatric PsychiatryPsychiatric Hospital ZurichZurichSwitzerland
| | - Valerie Treyer
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
- Department of Nuclear MedicineUniversity Hospital of Zurich, University of ZurichZurichSwitzerland
| |
Collapse
|
4
|
Soldevila-Domenech N, Fagundo B, Cuenca-Royo A, Forcano L, Gomis-González M, Boronat A, Pastor A, Castañer O, Zomeño MD, Goday A, Dierssen M, Baghizadeh Hosseini K, Ros E, Corella D, Martínez-González MÁ, Salas-Salvadó J, Fernández-Aranda F, Fitó M, de la Torre R. Relationship between sex, APOE genotype, endocannabinoids and cognitive change in older adults with metabolic syndrome during a 3-year Mediterranean diet intervention. Nutr J 2024; 23:61. [PMID: 38862960 PMCID: PMC11167771 DOI: 10.1186/s12937-024-00966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND The Mediterranean diet (MedDiet) has demonstrated efficacy in preventing age-related cognitive decline and modulating plasma concentrations of endocannabinoids (eCBs) and N-acylethanolamines (NAEs, or eCB-like compounds), which are lipid mediators involved in multiple neurological disorders and metabolic processes. Hypothesizing that eCBs and NAEs will be biomarkers of a MedDiet intervention and will be related to the cognitive response, we investigated this relationship according to sex and apolipoprotein E (APOE) genotype, which may affect eCBs and cognitive performance. METHODS This was a prospective cohort study of 102 participants (53.9% women, 18.8% APOE-ɛ4 carriers, aged 65.6 ± 4.5 years) from the PREDIMED-Plus-Cognition substudy, who were recruited at the Hospital del Mar Research Institute (Barcelona). All of them presented metabolic syndrome plus overweight/obesity (inclusion criteria of the PREDIMED-Plus) and normal cognitive performance at baseline (inclusion criteria of this substudy). A comprehensive battery of neuropsychological tests was administered at baseline and after 1 and 3 years. Plasma concentrations of eCBs and NAEs, including 2-arachidonoylglycerol (2-AG), anandamide (AEA), oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and N-docosahexaenoylethanolamine (DHEA), were also monitored. Baseline cognition, cognitive changes, and the association between eCBs/NAEs and cognition were evaluated according to gender (crude models), sex (adjusted models), and APOE genotype. RESULTS At baseline, men had better executive function and global cognition than women (the effect size of gender differences was - 0.49, p = 0.015; and - 0.42, p = 0.036); however, these differences became nonsignificant in models of sex differences. After 3 years of MedDiet intervention, participants exhibited modest improvements in memory and global cognition. However, greater memory changes were observed in men than in women (Cohen's d of 0.40 vs. 0.25; p = 0.017). In men and APOE-ε4 carriers, 2-AG concentrations were inversely associated with baseline cognition and cognitive changes, while in women, cognitive changes were positively linked to changes in DHEA and the DHEA/AEA ratio. In men, changes in the OEA/AEA and OEA/PEA ratios were positively associated with cognitive changes. CONCLUSIONS The MedDiet improved participants' cognitive performance but the effect size was small and negatively influenced by female sex. Changes in 2-AG, DHEA, the OEA/AEA, the OEA/PEA and the DHEA/AEA ratios were associated with cognitive changes in a sex- and APOE-dependent fashion. These results support the modulation of the endocannabinoid system as a potential therapeutic approach to prevent cognitive decline in at-risk populations. TRIAL REGISTRATION ISRCTN89898870.
Collapse
Grants
- FI_B2021/00104 Agència de Gestió d'Ajuts Universitaris i de Recerca
- PROMETEO/2017/017; Grant FEA/SEA 2017 for Primary Care Research Generalitat Valenciana
- PI13/00233, PI13/00728, PI13/01123, PI13/00462, PI16/00533, PI16/00366, PI16/01094, PI16/00501, PI17/01167, PI19/00017, PI19/00781, PI19/01032, PI19/00576 Instituto de Salud Carlos III
- PI13/00233, PI13/00728, PI13/01123, PI13/00462, PI16/00533, PI16/00366, PI16/01094, PI16/00501, PI17/01167, PI19/00017, PI19/00781, PI19/01032, PI19/00576 Instituto de Salud Carlos III
- PI13/00233, PI13/00728, PI13/01123, PI13/00462, PI16/00533, PI16/00366, PI16/01094, PI16/00501, PI17/01167, PI19/00017, PI19/00781, PI19/01032, PI19/00576 Instituto de Salud Carlos III
- Advanced Research Grant 2014-2019; agreement #340918 HORIZON EUROPE European Research Council
- SLT006/17/00246, SLT002/16/00045 and SLT006/17/00077 Departament de Salut, Generalitat de Catalunya
- SLT006/17/00246, SLT002/16/00045 and SLT006/17/00077 Departament de Salut, Generalitat de Catalunya
- SLT006/17/00246, SLT002/16/00045 and SLT006/17/00077 Departament de Salut, Generalitat de Catalunya
- 2013ACUP00194 'la Caixa' Foundation
- Eat2beNICE/ H2020-SFS-2016-2; Ref 728018; and PRIME/ H2020-SC1-BHC-2018-2020; Ref: 847879 H2020 European Institute of Innovation and Technology
- Eat2beNICE/ H2020-SFS-2016-2; Ref 728018; and PRIME/ H2020-SC1-BHC-2018-2020; Ref: 847879 H2020 European Institute of Innovation and Technology
- Eat2beNICE/ H2020-SFS-2016-2; Ref 728018; and PRIME/ H2020-SC1-BHC-2018-2020; Ref: 847879 H2020 European Institute of Innovation and Technology
- Eat2beNICE/ H2020-SFS-2016-2; Ref 728018; and PRIME/ H2020-SC1-BHC-2018-2020; Ref: 847879 H2020 European Institute of Innovation and Technology
- 2017 SGR 138 Generalitat de Catalunya
- ‘la Caixa’ Foundation
Collapse
Affiliation(s)
- Natalia Soldevila-Domenech
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
| | - Beatriz Fagundo
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- Department of Physiotherapy, Fundació Universitària del Bages (FUB), Manresa, 08042, Spain
| | - Aida Cuenca-Royo
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Laura Forcano
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Maria Gomis-González
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Anna Boronat
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Antoni Pastor
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Olga Castañer
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- Endocrinology Service, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Maria Dolores Zomeño
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- School of Health Sciences, Blanquerna-Ramon Llull University, Barcelona, 08022, Spain
| | - Albert Goday
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- Endocrinology Service, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Mara Dierssen
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
- CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Khashayar Baghizadeh Hosseini
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
- Cardiovascular risk, Nutrition and Aging, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, 08036, Spain
| | - Emilio Ros
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia, 46010, Spain
| | - Dolores Corella
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
| | - Miguel Ángel Martínez-González
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Navarra's Health Research Institute (IdiSNA), Pamplona, Spain
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Unitat de Nutrició Humana, Reus, Spain
| | - Jordi Salas-Salvadó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Fernando Fernández-Aranda
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Clinical Psychology Unit, University Hospital of Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
| | - Montserrat Fitó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Rafael de la Torre
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain.
- Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Dr Aiguader 88, Barcelona, 08003, Spain.
| |
Collapse
|
5
|
Ourry V, Binette AP, St-Onge F, Strikwerda-Brown C, Chagnot A, Poirier J, Breitner J, Arenaza-Urquijo EM, Rabin JS, Buckley R, Gonneaud J, Marchant NL, Villeneuve S. How Do Modifiable Risk Factors Affect Alzheimer's Disease Pathology or Mitigate Its Effect on Clinical Symptom Expression? Biol Psychiatry 2024; 95:1006-1019. [PMID: 37689129 DOI: 10.1016/j.biopsych.2023.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/11/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Epidemiological studies show that modifiable risk factors account for approximately 40% of the population variability in risk of developing dementia, including sporadic Alzheimer's disease (AD). Recent findings suggest that these factors may also modify disease trajectories of people with autosomal-dominant AD. With positron emission tomography imaging, it is now possible to study the disease many years before its clinical onset. Such studies can provide key knowledge regarding pathways for either the prevention of pathology or the postponement of its clinical expression. The former "resistance pathway" suggests that modifiable risk factors could affect amyloid and tau burden decades before the appearance of cognitive impairment. Alternatively, the resilience pathway suggests that modifiable risk factors may mitigate the symptomatic expression of AD pathology on cognition. These pathways are not mutually exclusive and may appear at different disease stages. Here, in a narrative review, we present neuroimaging evidence that supports both pathways in sporadic AD and autosomal-dominant AD. We then propose mechanisms for their protective effect. Among possible mechanisms, we examine neural and vascular mechanisms for the resistance pathway. We also describe brain maintenance and functional compensation as bases for the resilience pathway. Improved mechanistic understanding of both pathways may suggest new interventions.
Collapse
Affiliation(s)
- Valentin Ourry
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| | - Alexa Pichet Binette
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; Clinical Memory Research Unit, Department of Clinical Sciences, Lunds Universitet, Malmö, Sweden
| | - Frédéric St-Onge
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Cherie Strikwerda-Brown
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; School of Psychological Science, The University of Western Australia, Perth, Western Australia, Australia
| | - Audrey Chagnot
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Judes Poirier
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - John Breitner
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Eider M Arenaza-Urquijo
- Environment and Health over the Lifecourse Programme, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Jennifer S Rabin
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Buckley
- Melbourne School of Psychological Sciences University of Melbourne, Parkville, Victoria, Australia; Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Julie Gonneaud
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
| | - Natalie L Marchant
- Division of Psychiatry, University College London, London, United Kingdom
| | - Sylvia Villeneuve
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
6
|
Xie J, You Y, Zheng P, Chen Y, Guo S, Xu Y, Huang J, Liu Z, Tao J. Gender differences in the association between physical activity and cognitive subdomains among elders with type 2 diabetes and mild cognitive impairment: a cross-sectional study. BMJ Open 2024; 14:e080789. [PMID: 38806426 PMCID: PMC11138272 DOI: 10.1136/bmjopen-2023-080789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/21/2024] [Indexed: 05/30/2024] Open
Abstract
OBJECTIVES The objective of this study was to evaluate the gender differences in the correlation between physical activity (PA) and cognitive subdomains in elderly individuals with type 2 diabetes (T2D) and mild cognitive impairment (MCI). DESIGN Cross-sectional study. SETTING The research was carried out in communities located in Fuzhou, Fujian Province and Beijing Municipality. PARTICIPANTS Community-dwelling elders with T2D and MCI aged 60 years or older were eligible for this study. PRIMARY OUTCOME MEASURES AND ANALYSES The weekly PA score was assessed using the International Physical Activity Questionnaire (IPAQ). The cognitive subdomains were evaluated through a battery of cognitive assessments, including the Rey Auditory Verbal Learning Test (RAVLT), Trail Making Test Part B, Digit Symbol Substitution Test (DSST) and the Stroop Color-Word Test (SCWT). Multiple linear regression models were employed to examine the association between PA and cognitive subdomains in both male and female individuals. RESULTS In older men, higher total IPAQ score was positively correlated with higher RAVLT (P=0.011) and SCWT (P=0.049). There was a significant interaction between the total PA score and gender in relation to RAVLT (P=0.008) and SCWT (P=0.027). Moreover, there was a positive correlation between moderate-vigorous PA level and RAVLT in older men (P=0.007). Additionally, a positive correlation was found between moderate-vigorous PA level and DSST in older women (P=0.038). CONCLUSION In older individuals with T2D and MCI, the association between PA and cognitive subdomains differs between men and women. This discrepancy may impact the customisation of exercise recommendations.
Collapse
Affiliation(s)
- Jinjin Xie
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yue You
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Peiyun Zheng
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yannan Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Shuai Guo
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Ying Xu
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jia Huang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhizhen Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
7
|
Wu G, Ou Y, Feng Z, Xiong Z, Li K, Che M, Qi S, Zhou M. Oxytocin attenuates hypothalamic injury-induced cognitive dysfunction by inhibiting hippocampal ERK signaling and Aβ deposition. Transl Psychiatry 2024; 14:208. [PMID: 38796566 PMCID: PMC11127955 DOI: 10.1038/s41398-024-02930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024] Open
Abstract
In clinical settings, tumor compression, trauma, surgical injury, and other types of injury can cause hypothalamic damage, resulting in various types of hypothalamic dysfunction. Impaired release of oxytocin can lead to cognitive impairment and affect prognosis and long-term quality of life after hypothalamic injury. Hypothalamic injury-induced cognitive dysfunction was detected in male animals. Behavioral parameters were measured to assess the characteristics of cognitive dysfunction induced by hypothalamic-pituitary stalk lesions. Brains were collected for high-throughput RNA sequencing and immunostaining to identify pathophysiological changes in hippocampal regions highly associated with cognitive function after injury to corresponding hypothalamic areas. Through transcriptomic analysis, we confirmed the loss of oxytocin neurons after hypothalamic injury and the reversal of hypothalamic-induced cognitive dysfunction after oxytocin supplementation. Furthermore, overactivation of the ERK signaling pathway and β-amyloid deposition in the hippocampal region after hypothalamic injury were observed, and cognitive function was restored after inhibition of ERK signaling pathway overactivation. Our findings suggest that cognitive dysfunction after hypothalamic injury may be caused by ERK hyperphosphorylation in the hippocampal region resulting from a decrease in the number of oxytocin neurons, which in turn causes β-amyloid deposition.
Collapse
Affiliation(s)
- Guangsen Wu
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yichao Ou
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhanpeng Feng
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhiwei Xiong
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Kai Li
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Mengjie Che
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| | - Mingfeng Zhou
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Cumplido-Mayoral I, Brugulat-Serrat A, Sánchez-Benavides G, González-Escalante A, Anastasi F, Milà-Alomà M, López-Martos D, Akinci M, Falcón C, Shekari M, Cacciaglia R, Arenaza-Urquijo EM, Minguillón C, Fauria K, Molinuevo JL, Suárez-Calvet M, Grau-Rivera O, Vilaplana V, Gispert JD. The mediating role of neuroimaging-derived biological brain age in the association between risk factors for dementia and cognitive decline in middle-aged and older individuals without cognitive impairment: a cohort study. THE LANCET. HEALTHY LONGEVITY 2024; 5:e276-e286. [PMID: 38555920 DOI: 10.1016/s2666-7568(24)00025-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Neuroimaging-based brain-age delta has been shown to be a mediator linking cardiovascular risk factors to cognitive function. We aimed to assess the mediating role of brain-age delta in the association between modifiable risk factors of dementia and longitudinal cognitive decline in middle-aged and older individuals who are asymptomatic, stratified by Alzheimer's disease pathology. We also explored whether the mediation effect is specific to cognitive domain. METHODS In this cohort study, we included participants from the ALFA+ cohort aged between 45 years and 65 years who were cognitively unimpaired and who had available structural MRI, cerebrospinal fluid β-amyloid (Aβ)42 and Aβ40 measurements obtained within 1 year of each other, modifiable risk factors assessment, and cognitive evaluation over 3 years. Participants were recruited from the Barcelonaβeta Brain Research Center (Barcelona, Spain). Included individuals underwent a first assessment between Oct 25, 2016, and Jan 28, 2020, and a follow-up cognitive assessment 3·28 (SD 0·27) years later. We computed brain-age delta and composites of different cognitive function domains (preclinical Alzheimer's cognitive composite [PACC], attention, executive function, episodic memory, visual processing, and language). We used partial least squares path modelling to explore mediation effects in the associations between modifiable risk factors (including cardiovascular, mental health, mood, metabolic or endocrine history, and alcohol use) and changes in cognitive composites. To assess the role of Alzheimer's disease pathology, we computed separate models for Aβ-negative and Aβ-positive individuals. FINDINGS Of the 419 participants enrolled in ALFA+, 302 met our inclusion criteria, of which 108 participants were classified as Aβ-positive and 194 as Aβ-negative. In Aβ-positive individuals, brain-age delta partially mediated (percent mediation proportion 15·73% [95% CI 14·22-16·66]) the association between modifiable risk factors and decline in overall cognition (across cognitive domains). Brain-age delta fully mediated (mediation proportion 28·03% [26·25-29·21]) the effect of modifiable risk factors on the PACC, wherein increased values for risk factors correlated with an older brain-age delta, and, consequently, an older brain-age delta was linked to greater PACC decline. This effect appears to be primarily driven by memory decline. Mediation was not significant in Aβ-negative individuals (3·52% [0·072-4·17]) on PACC, although path coefficients were not significantly different from those in the Aβ-positive group. INTERPRETATION Our findings suggest that brain-age delta captures the association between modifiable risk factors and longitudinal cognitive decline in middle-aged and older people. In asymptomatic middle-aged and older individuals who are Aβ-positive, the pathology might be the strongest driver of cognitive decline, whereas the effect of risk factors is smaller. Our results highlight the potential of brain-age delta as an objective outcome measure for preventive lifestyle interventions targeting cognitive decline. FUNDING La Caixa Foundation, the TriBEKa Imaging Platform, and the Universities and Research Secretariat of the Catalan Government. TRANSLATION For the Spanish translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Irene Cumplido-Mayoral
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Biomedicine, Universitat Pompeu Fabra, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain
| | - Anna Brugulat-Serrat
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain; Global Brain Health Institute, San Francisco, CA, USA
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
| | - Armand González-Escalante
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Biomedicine, Universitat Pompeu Fabra, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain
| | - Federica Anastasi
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Milà-Alomà
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Department of Veterans Affairs Medical Center, Northern California Institute for Research and Education, San Francisco, CA, USA; Department of Radiology, University of California, San Francisco, CA, USA
| | - David López-Martos
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain
| | - Muge Akinci
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Biomedicine, Universitat Pompeu Fabra, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; Barcelona Institute of Global Health, Barcelona, Spain
| | - Carles Falcón
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Biomedicine, Universitat Pompeu Fabra, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain
| | - Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Carolina Minguillón
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; H Lundbeck, Copenhagen, Denmark
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain; Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain; Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Verónica Vilaplana
- Department of Signal Theory and Communications, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
| |
Collapse
|
9
|
Bachmann D, von Rickenbach B, Buchmann A, Hüllner M, Zuber I, Studer S, Saake A, Rauen K, Gruber E, Nitsch RM, Hock C, Treyer V, Gietl A. White matter hyperintensity patterns: associations with comorbidities, amyloid, and cognition. Alzheimers Res Ther 2024; 16:67. [PMID: 38561806 PMCID: PMC10983708 DOI: 10.1186/s13195-024-01435-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND White matter hyperintensities (WMHs) are often measured globally, but spatial patterns of WMHs could underlie different risk factors and neuropathological and clinical correlates. We investigated the spatial heterogeneity of WMHs and their association with comorbidities, Alzheimer's disease (AD) risk factors, and cognition. METHODS In this cross-sectional study, we studied 171 cognitively unimpaired (CU; median age: 65 years, range: 50 to 89) and 51 mildly cognitively impaired (MCI; median age: 72, range: 53 to 89) individuals with available amyloid (18F-flutementamol) PET and FLAIR-weighted images. Comorbidities were assessed using the Cumulative Illness Rating Scale (CIRS). Each participant's white matter was segmented into 38 parcels, and WMH volume was calculated in each parcel. Correlated principal component analysis was applied to the parceled WMH data to determine patterns of WMH covariation. Adjusted and unadjusted linear regression models were used to investigate associations of component scores with comorbidities and AD-related factors. Using multiple linear regression, we tested whether WMH component scores predicted cognitive performance. RESULTS Principal component analysis identified four WMH components that broadly describe FLAIR signal hyperintensities in posterior, periventricular, and deep white matter regions, as well as basal ganglia and thalamic structures. In CU individuals, hypertension was associated with all patterns except the periventricular component. MCI individuals showed more diverse associations. The posterior and deep components were associated with renal disorders, the periventricular component was associated with increased amyloid, and the subcortical gray matter structures was associated with sleep disorders, endocrine/metabolic disorders, and increased amyloid. In the combined sample (CU + MCI), the main effects of WMH components were not associated with cognition but predicted poorer episodic memory performance in the presence of increased amyloid. No interaction between hypertension and the number of comorbidities on component scores was observed. CONCLUSION Our study underscores the significance of understanding the regional distribution patterns of WMHs and the valuable insights that risk factors can offer regarding their underlying causes. Moreover, patterns of hyperintensities in periventricular regions and deep gray matter structures may have more pronounced cognitive implications, especially when amyloid pathology is also present.
Collapse
Affiliation(s)
- Dario Bachmann
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland.
- Department of Health Sciences and Technology, ETH Zürich, 8093, Zurich, Switzerland.
| | | | - Andreas Buchmann
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
| | - Martin Hüllner
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Isabelle Zuber
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
| | - Sandro Studer
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
| | - Antje Saake
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
| | - Katrin Rauen
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
- Department of Geriatric Psychiatry, Psychiatric Hospital Zurich, 8032, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, 8057, Zurich, Switzerland
| | - Esmeralda Gruber
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
- Neurimmune AG, 8952, Zurich, Schlieren, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
- Neurimmune AG, 8952, Zurich, Schlieren, Switzerland
| | - Valerie Treyer
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Anton Gietl
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
- Department of Geriatric Psychiatry, Psychiatric Hospital Zurich, 8032, Zurich, Switzerland
| |
Collapse
|
10
|
Slee MG, Rainey‐Smith SR, Villemagne VL, Doecke JD, Sohrabi HR, Taddei K, Ames D, Dore V, Maruff P, Laws SM, Masters CL, Rowe CC, Martins RN, Erickson KI, Brown BM. Physical activity and brain amyloid beta: A longitudinal analysis of cognitively unimpaired older adults. Alzheimers Dement 2024; 20:1350-1359. [PMID: 37984813 PMCID: PMC10917015 DOI: 10.1002/alz.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
INTRODUCTION The current study evaluated the relationship between habitual physical activity (PA) levels and brain amyloid beta (Aβ) over 15 years in a cohort of cognitively unimpaired older adults. METHODS PA and Aβ measures were collected over multiple timepoints from 731 cognitively unimpaired older adults participating in the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study of Aging. Regression modeling examined cross-sectional and longitudinal relationships between PA and brain Aβ. Moderation analyses examined apolipoprotein E (APOE) ε4 carriage impact on the PA-Aβ relationship. RESULTS PA was not associated with brain Aβ at baseline (β = -0.001, p = 0.72) or over time (β = -0.26, p = 0.24). APOE ε4 status did not moderate the PA-Aβ relationship over time (β = 0.12, p = 0.73). Brain Aβ levels did not predict PA trajectory (β = -54.26, p = 0.59). DISCUSSION Our study did not identify a relationship between habitual PA and brain Aβ levels. HIGHLIGHTS Physical activity levels did not predict brain amyloid beta (Aβ) levels over time in cognitively unimpaired older adults (≥60 years of age). Apolipoprotein E (APOE) ε4 carrier status did not moderate the physical activity-brain Aβ relationship over time. Physical activity trajectories were not impacted by brain Aβ levels.
Collapse
Affiliation(s)
- Michael G. Slee
- Centre for Healthy AgeingHealthy Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Stephanie R. Rainey‐Smith
- Centre for Healthy AgeingHealthy Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Australian Alzheimer's Research FoundationNedlandsWestern AustraliaAustralia
- School of Psychological ScienceUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Victor L. Villemagne
- Department of Molecular Imaging & TherapyAustin HealthHeidelbergVictoriaAustralia
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Centre for Precision HealthEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| | - James D. Doecke
- The Australian e‐Health Research CentreCSIROHerstonQueenslandAustralia
| | - Hamid R. Sohrabi
- Centre for Healthy AgeingHealthy Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Australian Alzheimer's Research FoundationNedlandsWestern AustraliaAustralia
- Department of Biomedical SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Kevin Taddei
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Australian Alzheimer's Research FoundationNedlandsWestern AustraliaAustralia
| | - David Ames
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
- National Ageing Research InstituteParkvilleVictoriaAustralia
- Academic Unit for Psychiatry of Old AgeUniversity of MelbourneCarltonVictoriaAustralia
| | - Vincent Dore
- Department of Molecular Imaging & TherapyAustin HealthHeidelbergVictoriaAustralia
| | - Paul Maruff
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
- Cogstate LtdMelbourneVictoriaAustralia
| | - Simon M. Laws
- Centre for Precision HealthEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Collaborative Genomics and Translation GroupSchool of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Christopher C. Rowe
- Department of Molecular Imaging & TherapyAustin HealthHeidelbergVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Ralph N. Martins
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Australian Alzheimer's Research FoundationNedlandsWestern AustraliaAustralia
- Department of Biomedical SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Kirk I. Erickson
- Department of PsychologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Belinda M. Brown
- Centre for Healthy AgeingHealthy Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Australian Alzheimer's Research FoundationNedlandsWestern AustraliaAustralia
| |
Collapse
|
11
|
Bachmann D, Buchmann A, Studer S, Saake A, Rauen K, Gruber E, Nitsch RM, Hock C, Gietl A, Treyer V. Explaining variability in early stages of [18F]-flortaucipir tau-PET binding: Focus on sex differences. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12565. [PMID: 38463040 PMCID: PMC10921068 DOI: 10.1002/dad2.12565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION Female sex is associated with increased [18F]-flortaucipir signal, which may be affected by amyloid pathology, age, and off-target binding in skull and meninges. METHODS In this cross-sectional study comprising 52 females and 52 matched males, we examined sex-related differences in regional tau-positron emission tomography (PET) with and without considering off-target binding. We assessed the respective contributions of sex, age, amyloid-PET burden, and off-target binding to tau-PET signal. We explored associations between age at menopause and hormone replacement therapy (HRT) use with regional tau-PET signals. RESULTS Female sex was associated with increased regional tau both independently and interactively with amyloid, but amyloid-independent associations were largely reduced when controlling for off-target binding. Age but not age*sex interactions explained a small but significant amount of tau-PET signal in temporoparietal regions. Considering the sample size and limited range of amyloid-PET burden, no clear associations between regional tau-PET signals and age at menopause or HRT use could be found. DISCUSSION Female sex is associated with increased [18F]-flortaucipir signal mainly through its interaction with amyloid.
Collapse
Affiliation(s)
- Dario Bachmann
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
- Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| | - Andreas Buchmann
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
| | - Sandro Studer
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
| | - Antje Saake
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
| | - Katrin Rauen
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
- Department of Geriatric PsychiatryPsychiatric Hospital ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of ZurichZurichSwitzerland
| | - Esmeralda Gruber
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
| | - Roger M. Nitsch
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
- NeurimmuneZurichSwitzerland
| | - Christoph Hock
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
- NeurimmuneZurichSwitzerland
| | - Anton Gietl
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
- Department of Geriatric PsychiatryPsychiatric Hospital ZurichZurichSwitzerland
| | - Valerie Treyer
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
- Department of Nuclear MedicineUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| |
Collapse
|
12
|
Bachmann D, Buchmann A, Studer S, Saake A, Rauen K, Zuber I, Gruber E, Nitsch RM, Hock C, Gietl A, Treyer V. Age-, sex-, and pathology-related variability in brain structure and cognition. Transl Psychiatry 2023; 13:278. [PMID: 37574523 PMCID: PMC10423720 DOI: 10.1038/s41398-023-02572-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023] Open
Abstract
This work aimed to investigate potential pathways linking age and imaging measures to early age- and pathology-related changes in cognition. We used [18F]-Flutemetamol (amyloid) and [18F]-Flortaucipir (tau) positron emission tomography (PET), structural MRI, and neuropsychological assessment from 232 elderly individuals aged 50-89 years (46.1% women, 23% APOE-ε4 carrier, 23.3% MCI). Tau-PET was available for a subsample of 93 individuals. Structural equation models were used to evaluate cross-sectional pathways between age, amyloid and tau burden, grey matter thickness and volumes, white matter hyperintensity volume, lateral ventricle volume, and cognition. Our results show that age is associated with worse outcomes in most of the measures examined and had similar negative effects on episodic memory and executive functions. While increased lateral ventricle volume was consistently associated with executive function dysfunction, participants with mild cognitive impairment drove associations between structural measures and episodic memory. Both age and amyloid-PET could be associated with medial temporal lobe tau, depending on whether we used a continuous or a dichotomous amyloid variable. Tau burden in entorhinal cortex was related to worse episodic memory in individuals with increased amyloid burden (Centiloid >12) independently of medial temporal lobe atrophy. Testing models for sex differences revealed that amyloid burden was more strongly associated with regional atrophy in women compared with men. These associations were likely mediated by higher tau burden in women. These results indicate that influences of pathological pathways on cognition and sex-specific vulnerabilities are dissociable already in early stages of neuropathology and cognitive impairment.
Collapse
Affiliation(s)
- Dario Bachmann
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland.
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Andreas Buchmann
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Sandro Studer
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Antje Saake
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Katrin Rauen
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Department of Geriatric Psychiatry, Psychiatric Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Isabelle Zuber
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Esmeralda Gruber
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neurimmune AG, Schlieren, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neurimmune AG, Schlieren, Switzerland
| | - Anton Gietl
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Department of Geriatric Psychiatry, Psychiatric Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Valerie Treyer
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Caldwell JZ, Isenberg N. The aging brain: risk factors and interventions for long term brain health in women. Curr Opin Obstet Gynecol 2023; 35:169-175. [PMID: 36912325 PMCID: PMC10023345 DOI: 10.1097/gco.0000000000000849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
PURPOSE OF REVIEW Poor cognitive aging and dementia pose a significant public health burden, and women face unique risks compared to men. Recent research highlights the role of genetics, menopause, chronic disease, and lifestyle in risk and resilience in women's cognitive aging. This work suggests avenues for clinical action at midlife that may change the course of brain health in aging. RECENT FINDINGS Studies indicate women's risk for poor cognitive aging relates in part to hormone changes at menopause, a time when memory, brain structure and function, and Alzheimer's pathology may be observed in women and not men. Medical and lifestyle risks including diabetes, hypertension, and low physical activity also contribute to women's unique risks. At the same time, literature on resilience suggests women may benefit from lifestyle and chronic disease intervention, possibly more than men. Current studies emphasize the importance of interacting genetic and lifestyle risks, and effects of social determinants of health. SUMMARY Women have greater risk than men for poor cognitive aging; however, by treating the whole person, including genetics, lifestyle, and social environment, clinicians have an opportunity to support healthy cognitive aging in women and reduce the future public health burden of dementia.
Collapse
Affiliation(s)
- Jessica Z.K. Caldwell
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave., Las Vegas, NV 89106
| | - Nancy Isenberg
- Providence Swedish Center for Healthy Aging, Swedish Neuroscience Institute, 1600 E. Jefferson St. A Level, Seattle, WA 98122
| |
Collapse
|