1
|
Sun Z, Du X, Li X, Xu X. EnT mediated alkoxy radical generation: the construction of 1,6-amino alcohols using bifunctional oxime esters. Chem Commun (Camb) 2024. [PMID: 39498662 DOI: 10.1039/d4cc05299d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The generation of long-chain alkoxy radicals via visible light-induced energy transfer (EnT) has been accomplished through the design of a new class of bifunctional oxime esters derived from iminophenylacetic acid. The 1,5-hydrogen atom abstraction (HAT) of the alkoxy radicals, followed by alkylamination of alkenes, enables the construction of a 1,6-linkage across a double bond to obtain the valuable 1,6-amino alcohols.
Collapse
Affiliation(s)
- Zetian Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiaohua Du
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiaoqing Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiangsheng Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
2
|
Liu D, Tu T, Zhang T, Nie G, Liao T, Ren SC, Zhang X, Chi YR. Photocatalytic Direct Para-Selective C-H Amination of Benzyl Alcohols: Selectivity Independent of Side Substituents. Angew Chem Int Ed Engl 2024; 63:e202407293. [PMID: 39072873 DOI: 10.1002/anie.202407293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Aminoarenes are important molecules for broad applications in nearly all modern industries that involve chemicals. Direct and site-selective C-H bond amination of arenes provides the most efficient and convenient method to prepare aminoarenes. A main challenge is to selectively install the amino group (or other functional groups) to the distal para-carbon of arenes (especially multi-substituted arenes) during the C-H bond functionalization events. Herein, we address this problem by designing a new strategy via a sequential radical dearomatization/radical amination/rearomatization process for para-selective amination of benzyl alcohols. The para-selectivity of our reaction is completely independent of the electronic and steric properties of the other substituents of the arene substrates. Aminoarenes with many substituents (up to full substitution) and diverse substitution patterns, including those difficult to synthesize previously, could be readily prepared using our protocols. Further exploration of the current strategy shall lead to other challenging C-H functionalization of arenes.
Collapse
Affiliation(s)
- Donghan Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Ting Tu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Tinglei Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Guihua Nie
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Tianhui Liao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Shi-Chao Ren
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xinglong Zhang
- Institute of High Performance Computing, A*STAR (Agency for Science, Technology and Research), Singapore, 138632, Singapore
| | - Yonggui Robin Chi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
3
|
Li M, Wu Y, Song X, Sun J, Zhang Z, Zheng G, Zhang Q. Visible light-mediated organocatalyzed 1,3-aminoacylation of cyclopropane employing N-benzoyl saccharin as bifunctional reagent. Nat Commun 2024; 15:8930. [PMID: 39414792 PMCID: PMC11484876 DOI: 10.1038/s41467-024-53202-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
The carboamination of unsaturated molecules using bifunctional reagents is considered an attractive approach for the synthesis of nitrogen-containing compounds. However, bifunctional C-N reagents have never been employed in the carboamination of cyclopropane. In this study, we use an N-heterocyclic carbene (NHC), N-benzoyl saccharin, as a bifunctional reagent and a photoredox catalyst for a dual-catalyzed 1,3-aminoacylation of cyclopropane. NHCs play multiple roles, functioning as Lewis base catalysts to activate C-N bonds, promoting the oxidative quenching process of PC*, and acting as efficient acyl radical transfer catalysts for the formation of C-C bonds. The oxidative quenching process between the excited-state PC* and acyl NHC adduct is the key to the photooxidation generality of aryl cyclopropanes.
Collapse
Affiliation(s)
- Mingrui Li
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Yingtao Wu
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Xiao Song
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Jiaqiong Sun
- Department of Chemistry, Northeast Normal University, Changchun, China.
- School of Environment, Northeast Normal University, Changchun, China.
| | - Zuxiao Zhang
- Department of Chemistry, University of Hawai'i at Mānoa. 2545 McCarthy Mall, Honolulu, HI, USA
| | - Guangfan Zheng
- Department of Chemistry, Northeast Normal University, Changchun, China.
| | - Qian Zhang
- Department of Chemistry, Northeast Normal University, Changchun, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu, Shanghai, China
| |
Collapse
|
4
|
Stevenson BG, Gironda C, Talbott E, Prascsak A, Burnett NL, Kompanijec V, Nakhamiyayev R, Fredin LA, Swierk JR. Photoredox Product Selectivity Controlled by Persistent Radical Stability. J Org Chem 2024; 89:13818-13825. [PMID: 37252849 DOI: 10.1021/acs.joc.3c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The use of photoredox catalysis for the synthesis of small organic molecules relies on harnessing and converting the energy in visible light to drive reactions. Specifically, photon energy is used to generate radical ion species that can be harnessed through subsequent reaction steps to form a desired product. Cyanoarenes are widely used as arylating agents in photoredox catalysis because of their stability as persistent radical anions. However, there are marked, unexplained variations in product yields when using different cyanoarenes. In this study, the quantum yield and product yield of an α-aminoarylation photoredox reaction between five cyanoarene coupling partners and N-phenylpyrrolidine were characterized. Significant discrepancies in cyanoarene consumption and product yield suggested a chemically irreversible, unproductive pathway in the reaction. Analysis of the side products in the reaction demonstrated the formation of species consistent with radical anion fragmentation. Electrochemical and computational methods were used to study the fragmentation of the different cyanoarenes and revealed a correlation between product yield and cyanoarene radical anion stability. Kinetic modeling of the reaction demonstrates that cross-coupling selectivity between N-phenylpyrrolidine and the cyanoarene is controlled by the same phenomenon present in the persistent radical effect.
Collapse
Affiliation(s)
- Bernard G Stevenson
- Department of Chemistry, State University of New York at Binghamton, Vestal, New York 13850, United States
| | - Cameron Gironda
- Department of Chemistry, State University of New York at Binghamton, Vestal, New York 13850, United States
| | - Eric Talbott
- Department of Chemistry, State University of New York at Binghamton, Vestal, New York 13850, United States
| | - Amanda Prascsak
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Nora L Burnett
- Department of Chemistry, State University of New York at Binghamton, Vestal, New York 13850, United States
| | - Victoria Kompanijec
- Department of Chemistry, State University of New York at Binghamton, Vestal, New York 13850, United States
| | - Roman Nakhamiyayev
- Department of Chemistry, State University of New York at Binghamton, Vestal, New York 13850, United States
| | - Lisa A Fredin
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - John R Swierk
- Department of Chemistry, State University of New York at Binghamton, Vestal, New York 13850, United States
| |
Collapse
|
5
|
Ji DS, Zhou C, Zhang X, Ye Y, Bao X, Yuan Y, Huo C. Photoredox/NHC Dual Catalysis Enabled de Novo Synthesis of α-Amino Acids Derivatives. Org Lett 2024; 26:8435-8440. [PMID: 39311488 DOI: 10.1021/acs.orglett.4c03387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Herein, we report a mild and operationally simple photoredox/NHC dual catalysis strategy for the α-carboxylation of tertiary amine C(sp3)-H bonds using diethyl pyrocarbonate. This method offers a novel approach for synthesizing α-amino acid derivatives. The protocol features a broad substrate scope, accommodating both N-aryl tetrahydroisoquinolines (THIQ) and N-methyl aniline and is scalable to gram quantities. Additionally, it is suitable for the late-stage derivatization of certain pharmaceutical compounds.
Collapse
Affiliation(s)
- Dong-Sheng Ji
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Chenxing Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Xin Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Youwan Ye
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Xiazhen Bao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Yong Yuan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Congde Huo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| |
Collapse
|
6
|
Guo JD, Korsaye FA, Schutz D, Ciofini I, Miesch L. Photocatalyst-free, visible-light-induced regio- and stereoselective synthesis of phosphorylated enamines from N-allenamides via [1,3]-sulfonyl shift at room temperature. Chem Sci 2024:d4sc05190d. [PMID: 39397817 PMCID: PMC11467721 DOI: 10.1039/d4sc05190d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Herein, we report the first visible-light-induced strategy for the rapid synthesis of densely functionalized α- and γ-phosphorylated β-sulfonyl enamines in a regio- and stereoselective manner from N-sulfonyl allenamides and H-phosphine oxides. The transformation displays a broad substrate scope, while operating at room temperature under photocatalyst- and additive-free conditions. In this atom-economical process, either terminal or substituted N-sulfonyl allenamides trigger an unprecedented N-to-C [1,3]-sulfonyl shift, relying on a dual radical allyl resonance and α-heteroatom effect in its triplet excited state. A plausible reaction mechanism is proposed which was supported by the outcomes of theoretical approaches based on Density Functional Theory (DFT) calculations.
Collapse
Affiliation(s)
- Jia-Dong Guo
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS UMR 7177, 4 rue Blaise Pascal, CS 90032 67081 Strasbourg France
| | - Feven-Alemu Korsaye
- Chemical Theory and Modelling Group, Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences F-75005 Paris France
| | - Dorian Schutz
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS UMR 7177, 4 rue Blaise Pascal, CS 90032 67081 Strasbourg France
| | - Ilaria Ciofini
- Chemical Theory and Modelling Group, Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences F-75005 Paris France
| | - Laurence Miesch
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS UMR 7177, 4 rue Blaise Pascal, CS 90032 67081 Strasbourg France
| |
Collapse
|
7
|
Nishikata T. α-Halocarbonyls as a Valuable Functionalized Tertiary Alkyl Source. ChemistryOpen 2024; 13:e202400108. [PMID: 38989712 DOI: 10.1002/open.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
This review introduces the synthetic organic chemical value of α-bromocarbonyl compounds with tertiary carbons. This α-bromocarbonyl compound with a tertiary carbon has been used primarily only as a radical initiator in atom transfer radical polymerization (ATRP) reactions. However, with the recent development of photo-radical reactions (around 2010), research on the use of α-bromocarbonyl compounds as tertiary alkyl radical precursors became popular (around 2012). As more examples were reported, α-bromocarbonyl compounds were studied not only as radicals but also for their applications in organometallic and ionic reactions. That is, α-bromocarbonyl compounds act as nucleophiles as well as electrophiles. The carbonyl group of α-bromocarbonyl compounds is also attractive because it allows the skeleton to be converted after the reaction, and it is being applied to total synthesis. In our survey until 2022, α-bromocarbonyl compounds can be used to perform a full range of reactions necessary for organic synthesis, including multi-component reactions, cross-coupling, substitution, cyclization, rearrangement, stereospecific reactions, asymmetric reactions. α-Bromocarbonyl compounds have created a new trend in tertiary alkylation, which until then had limited reaction patterns in organic synthesis. This review focuses on how α-bromocarbonyl compounds can be used in synthetic organic chemistry.
Collapse
Affiliation(s)
- Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| |
Collapse
|
8
|
Liu WD, Gao J, Mo JN, Zhou Y, Zhao J. Cooperative NHC and Photoredox Catalyzed Radical Aminoacylation of Alkenes to Tetrahydropyridazines. Chemistry 2024; 30:e202402288. [PMID: 39072808 DOI: 10.1002/chem.202402288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Tetrahydropyridazines constitute an important structural motif found in numerous natural products and pharmaceutical compounds. Herein, we report an aminoacylation reaction of alkenes that enables the synthesis of 1,4,5,6-tetrahydropyridazines through cooperative N-heterocyclic carbene (NHC) and photoredox catalysis. This approach involves the 6-endo-trig cyclization of N-centered hydrazonyl radicals, generated via single-electron oxidation of hydrazones, followed by a radical-radical coupling step. The mild process tolerates a wide range of common functional groups and affords a variety of tetrahydropyridazines in moderate to high yields. Preliminary investigations using chiral NHC catalysts demonstrate the potential of this protocol for asymmetric radical reactions.
Collapse
Affiliation(s)
- Wen-Deng Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jiyuan Gao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jia-Nan Mo
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Jiannan Zhao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
9
|
Dang X, Li Z, Shang J, Zhang C, Wang C, Xu Z. Photoinduced C(sp 3)-H Bicyclopentylation Enabled by an Electron Donor-Acceptor Complex-Mediated Chemoselective Three-Component Radical Relay. Angew Chem Int Ed Engl 2024; 63:e202400494. [PMID: 38598042 DOI: 10.1002/anie.202400494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
The photoredox electron donor-acceptor (EDA) complex-mediated radical coupling reaction has gained prominence in the field of organic synthesis, finding widespread application in two-component coupling reactions. However, EDA complex-promoted multi-component reactions are not well developed with only a limited number of examples have been reported. Herein, we report a photoinduced and EDA complex-promoted highly chemoselective three-component radical arylalkylation of [1.1.1]propellane, which allows the direct functionalization of C(sp3)-H with bicyclo[1.1.1]pentanes (BCP)-aryl groups under mild conditions. A variety of unnatural α-amino acids, featuring structurally diversified 1,3-disubstituted BCP moieties, were synthesized in a single-step process. Notably, leveraging the high tension release of [1.1.1]propellane, the highly unstable transient aryl radical undergoes rapid conversion into a relatively stable tertiary alkyl transient radical, and consequently, the competing side-reaction of two-component coupling was entirely suppressed. The strategic use of this transient radical conversion approach would be useful for the design of diverse EDA complex-mediated multi-component reactions. It is noteworthy that the highly chemoselective late-stage incorporation of the 1,3-disubstituted BCP pharmacophores into peptides was achieved both in liquid-phase and solid-phase reactions. This advancement is anticipated to have significant application potential in the future development of peptide drugs.
Collapse
Affiliation(s)
- Xiaobo Dang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Zhixuan Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Jinlong Shang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Chenyang Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Chao Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
- Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou, 730000, China
- Technology & Engineering Institute of Lanzhou University, Gongyuan Road, Baiyin, 730900, China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
- Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou, 730000, China
| |
Collapse
|
10
|
Gan Z, Chen J, Wang H, Xue Z, Chen Z, Zhang Y, Wang L, Zi H, Liu S, Shi L, Jin Y. Photoinduced Phosphoniumation of Aryl Halides and Arylthianthrenium Salts via an Electron Donor-Acceptor Complex. Org Lett 2024; 26:7751-7756. [PMID: 39235211 DOI: 10.1021/acs.orglett.4c02909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Owing to their remarkable practicality and utility, phosphonium salts have attracted substantial interest and are widely applied in critical areas, such as medicine, materials science, and catalysis. Herein, we developed a facile and photocatalyst/metal-free synthetic strategy for the preparation of phosphonium salts utilizing aryl halides/arylthianthrenium salts as aryl radical precursors. This approach is disclosed to undergo an efficient light-induced electron donor-acceptor pathway, facilitating the synthesis of a structurally diverse range of phosphonium salts.
Collapse
Affiliation(s)
- Ziyu Gan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Jiajin Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Han Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Zhiyan Xue
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Ziyang Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Yongqiang Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Lifang Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Hui Zi
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Shuyang Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Yunhe Jin
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| |
Collapse
|
11
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
12
|
Pünner F, Sohtome Y, Lyu Y, Hashizume D, Akakabe M, Yoshimura M, Yashiroda Y, Yoshida M, Sodeoka M. Catalytic Aerobic Carbooxygenation for the Construction of Vicinal Tetrasubstituted Centers: Application to the Synthesis of Hexasubstituted γ-Lactones. Angew Chem Int Ed Engl 2024; 63:e202405876. [PMID: 39031750 DOI: 10.1002/anie.202405876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
Strategic design for the construction of contiguous tetrasubstituted carbon centers represents a daunting challenge in synthetic organic chemistry. Herein, we report a combined experimental and computational investigation aimed at developing catalytic aerobic carbooxygenation, involving the intramolecular addition of tertiary radicals to geminally disubstituted alkenes, followed by aerobic oxygenation. This reaction provides a straightforward route to various α,α,β,β-tetrasubstituted γ-lactones, which can be readily transformed into hexasubstituted γ-lactones through allylation/translactonization. Computational analysis reveals that the key mechanistic foundation for achieving the developed aerobic carbooxygenation involves the design of endothermic (energetically uphill) C-C bond formation followed by exothermic (energetically downhill) oxygenation. Furthermore, we highlight a unique fluorine-induced stereoelectronic effect that stabilizes the endothermic stereodetermining transition state.
Collapse
Affiliation(s)
- Florian Pünner
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
| | - Yoshihiro Sohtome
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
- Organic & Biomolecular Chemistry Laboratory Department of Applied Chemistry College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Shiga, Japan
| | - Yanzong Lyu
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
| | - Daisuke Hashizume
- Materials Characterization Support Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
| | - Mai Akakabe
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
| | - Mami Yoshimura
- Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
| | - Yoko Yashiroda
- Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
| |
Collapse
|
13
|
Bhattacharya D, Scherübl M, Daniliuc CG, Studer A. Intermolecular radical oxyalkylation of arynes with alkenes and TEMPO. Chem Sci 2024; 15:13712-13716. [PMID: 39211489 PMCID: PMC11351772 DOI: 10.1039/d4sc04369c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Radical transformations with arynes represent an underexplored research field and only a few examples have been disclosed. In this research article, the implementation of arynes in three-component reactions with TEMPO (2,2,6,6-tetramethylpiperidine 1-oxyl) and activated alkenes is demonstrated. TEMPO is added to arynes, which triggers a Meerwein-type arylation cascade where the final alkyl radial is eventually trapped by a second equivalent of TEMPO. This method is applicable to activated alkenes such as electron-deficient acrylates, styrenes and also vinyl acetate to provide various bisalkoxyamines. This work is a contribution to the emerging field of radical aryne chemistry.
Collapse
Affiliation(s)
- Debkanta Bhattacharya
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Maximilian Scherübl
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
14
|
Buettner C, Stavagna C, Tilby MJ, Górski B, Douglas JJ, Yasukawa N, Leonori D. Synthesis and Suzuki-Miyaura Cross-Coupling of Alkyl Amine-Boranes. A Boryl Radical-Enabled Strategy. J Am Chem Soc 2024; 146:24042-24052. [PMID: 39137918 PMCID: PMC11363021 DOI: 10.1021/jacs.4c07767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024]
Abstract
Alkyl organoborons are powerful materials for the construction of C(sp3)-C(sp2) bonds, predominantly via Suzuki-Miyaura cross-coupling. These species are generally assembled using 2-electron processes that harness the ability of boron reagents to act as both electrophiles and nucleophiles. Herein, we demonstrate an alternative borylation strategy based on the reactivity of amine-ligated boryl radicals. This process features the use of a carboxylic acid containing amine-ligated borane that acts as boryl radical precursor for photoredox oxidation and decarboxylation. The resulting amine-ligated boryl radical undergoes facile addition to styrenes and imines through radical-polar crossover manifolds. This delivers a new class of sp3-organoborons that are stable solids and do not undergo protodeboronation. These novel materials include unprotected α-amino derivatives that are generally unstable. Crucially, these aliphatic organoboron species can be directly engaged in Suzuki-Miyaura cross-couplings with structurally complex aryl halides. Preliminary studies suggest that they enable slow-release of the corresponding and often difficult to handle alkyl boronic acids.
Collapse
Affiliation(s)
- Cornelia
S. Buettner
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Chiara Stavagna
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Michael J. Tilby
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Bartosz Górski
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - James J. Douglas
- Early
Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - Naoki Yasukawa
- Department
of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Daniele Leonori
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| |
Collapse
|
15
|
Zhao Y, Zhang Y, Huang Y. Enantioselective Relay Coupling of Perfluoroalkyl and Vinylogous Ketyl Radicals. Angew Chem Int Ed Engl 2024; 63:e202409566. [PMID: 38865105 DOI: 10.1002/anie.202409566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/13/2024]
Abstract
β-Chiral carboxylic acids and their derivatives are highly valuable structural motifs in the fields of asymmetric synthesis and medicinal chemistry. However, the introduction of a sterically demanding sidechain to the β-carbon, such as an all-carbon quaternary center, remains a significant challenge in classical polar processes. Recently, N-heterocyclic carbene (NHC) mediated coupling reactions involving persistent ketyl radicals have emerged as a promising strategy to assemble highly crowded carbon-carbon bonds. Nevertheless, achieving enantioselectivity in these reactions remains highly challenging. In this work, we report our recent progress in controlling enantioselectivity for relay coupling of perfluoroalkyl and persistent vinylogous ketyl radicals. We developed a chiral bifunctional NHC-squaramide catalyst that achieves high facial selectivity in a critical bond-forming event involving the coupling of a congested tertiary carbon radical and vinylogous ketyl radical. Chiral carboxylates bearing an all-carbon quaternary center at the β-position can be prepared in good yield and excellent enantiomeric excess. Results from density functional theory (DFT) calculations and nuclear Overhauser effect (NOE) experiments indicate that the N,N'-diaryl squaramide motif adopts an unusual syn-syn conformation, enabling hydrogen bonding interactions with the enolate oxygen, thereby rigidifying the overall conformation of the transition state.
Collapse
Affiliation(s)
- Yuxin Zhao
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yichi Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
16
|
Wang Y, Das S, Aboulhosn K, Champagne SE, Gemmel PM, Skinner KC, Ragsdale SW, Zimmerman PM, Narayan ARH. Nature-Inspired Radical Pyridoxal-Mediated C-C Bond Formation. J Am Chem Soc 2024; 146:23321-23329. [PMID: 39106078 DOI: 10.1021/jacs.4c05997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Pyridoxal-5'-phosphate (PLP) and derivatives of this cofactor enable a plethora of reactions in both enzyme-mediated and free-in-solution transformations. With few exceptions in each category, such chemistry has predominantly involved two-electron processes. This sometimes poses a significant challenge for using PLP to build tetrasubstituted carbon centers, especially when the reaction is reversible. The ability to access radical pathways is paramount to broadening the scope of reactions catalyzed by this coenzyme. In this study, we demonstrate the ability to access a radical PLP-based intermediate and engage this radical intermediate in a number of C-C bond-forming reactions. By selection of an appropriate oxidant, single-electron oxidation of the quinonoid intermediate can be achieved, which can subsequently be applied to C-C bond-forming reactions. Through this radical reaction pathway, we synthesized a series of α-tertiary amino acids and esters to investigate the substrate scope and identify nonproductive reaction pathways. Beyond the amino acid model system, we demonstrate that other classes of amine substrates can be applied in this reaction and that a range of small molecule reagents can serve as coupling partners to the semiquinone radical. We anticipate that this versatile semiquinone radical species will be central to the development of a range of novel reactions.
Collapse
Affiliation(s)
- Ye Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Soumik Das
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kareem Aboulhosn
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sarah E Champagne
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Philipp M Gemmel
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kevin C Skinner
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alison R H Narayan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
17
|
Weng Y, Jin Y, Wu J, Leng X, Lou X, Geng F, Hu B, Wu B, Shen Q. Oxidative Substitution of Organocopper(II) by a Carbon-Centered Radical. J Am Chem Soc 2024; 146:23555-23565. [PMID: 39116098 DOI: 10.1021/jacs.4c07552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Copper-catalyzed coupling reactions of alkyl halides are believed to prominently involve copper(II) species and alkyl radicals as pivotal intermediates, with their exact interaction mechanism being the subject of considerable debate. In this study, a visible light-responsive fluoroalkylcopper(III) complex, [(terpy)Cu(CF3)2(CH2CO2tBu)] Trans-1, was designed to explore the mechanism. Upon exposure to blue LED irradiation, Trans-1 undergoes copper-carbon bond homolysis, generating Cu(II) species and carbon-centered radicals, where the carbon-centered radical then recombines with the Cu(II) intermediate, resulting in the formation of Cis-1, the Cis isomer of Trans-1. Beyond this, a well-defined fluoroalkylcopper(II) intermediate ligated with a sterically hindered ligand was isolated and underwent full characterization and electronic structure studies. The collective experimental, computational, and spectroscopic findings in this work strongly suggest that organocopper(II) engages with carbon-centered radicals via an "oxidative substitution" mechanism, which is likely the operational pathway for copper-catalyzed C-H bond trifluoromethylation reactions.
Collapse
Affiliation(s)
- Yuecheng Weng
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Yuxuan Jin
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Jian Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Xiaobing Lou
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Fushan Geng
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Bingwen Hu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Botao Wu
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Qilong Shen
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
18
|
Dai D, Zhan Q, Shi T, Wang D, Zheng Y. Spin characteristics in conjugated stable diradicals. Chem Commun (Camb) 2024; 60:8997-9006. [PMID: 39081131 DOI: 10.1039/d4cc03067b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Spin properties are intrinsic characters of electrons. Radical molecules contain unpaired electron(s), and their unique chemical and physical properties make them an ideal platform for investigating spin properties in molecular systems. Among them, the burgeoning interest in stable conjugated diradicals is attributed to their distinctive characteristics, notably the dynamic resonance structures between open-shell and closed-shell forms, the malleability of their spin states, and the profound influence of intermolecular spin-spin interactions. A deep understanding of the spin characteristics of unpaired electrons in stable conjugated diradicals provides guidance for the design, synthesis, and characterization of radical-based materials. In this review, we discuss the unique spin delocalization, spin states, and spin-spin coupling characteristics of conjugated diradicals and emphasize how to precisely control these spin characteristics to understand their role in the molecules and as functional radical materials.
Collapse
Affiliation(s)
- Dacheng Dai
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, People's Republic of China.
| | - Qian Zhan
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, People's Republic of China.
| | - Tianfang Shi
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, People's Republic of China.
| | - Dongsheng Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, People's Republic of China.
| | - Yonghao Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, People's Republic of China.
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| |
Collapse
|
19
|
Yamada Y, Yoshinaga R, Matsui Y, Nagatomo M, Fujino H, Inoue M. Et 3Al/Light-Promoted Radical-Polar Crossover Reactions of α-Alkoxyacyl Tellurides. J Org Chem 2024; 89:11701-11706. [PMID: 39110480 DOI: 10.1021/acs.joc.4c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Here, we report new radical-polar crossover reactions of α-alkoxy carbon radicals for constructing highly oxygenated molecules with contiguous stereocenters. The method employs a 370 nm UV light-emitting diode (LED) for the photoexcitation of α-alkoxyacyl telluride, and Et3Al as the radical initiator and terminator. First, Et3Al and UV LED promoted radical coupling between the α-alkoxyacyl telluride and cyclopentenone via C-Te bond homolysis, CO expulsion, and C-C bond formation. Second, Et3Al converted the radical species to the corresponding aluminum enolate. Third, the second C-C bond formation occurred via a polar mechanism: intermolecularly with aldehydes/ketones and intramolecularly with epoxide, producing aldol and SN2 adducts, respectively. The present coupling reactions increase the molecular complexity in a single step by stereoselective formation of the two hindered C-C bonds. The devised method is expected to be useful for the expeditious assembly of densely oxygenated natural products.
Collapse
Affiliation(s)
- Yutaro Yamada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Risa Yoshinaga
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuki Matsui
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masanori Nagatomo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Haruka Fujino
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
20
|
Tan CY, Hong S. Harnessing the potential of acyl triazoles in bifunctional cobalt-catalyzed radical cross-coupling reactions. Nat Commun 2024; 15:6965. [PMID: 39138198 PMCID: PMC11322283 DOI: 10.1038/s41467-024-51376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Persistent radicals facilitate numerous selective radical coupling reactions. Here, we have identified acyl triazole as a new and versatile moiety for generating persistent radical intermediates through single-electron transfer processes. The efficient generation of these persistent radicals is facilitated by the formation of substrate-coordinated cobalt complexes, which subsequently engage in radical cross-coupling reactions. Remarkably, triazole-coordinated cobalt complexes exhibit metal-hydride hydrogen atom transfer (MHAT) capabilities with alkenes, enabling the efficient synthesis of diverse ketone products without the need for external ligands. By leveraging the persistent radical effect, this catalytic approach also allows for the development of other radical cross-coupling reactions with two representative radical precursors. The discovery of acyl triazoles as effective substrates for generating persistent radicals and as ligands for cobalt catalysis, combined with the bifunctional nature of the cobalt catalytic system, opens up new avenues for the design and development of efficient and sustainable organic transformations.
Collapse
Affiliation(s)
- Chang-Yin Tan
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| |
Collapse
|
21
|
Tian Y, Cui F, Bian Z, Tao X, Wang H, Zhang N, Zhu G. Construction of Porous Aromatic Frameworks with Specifically Designed Motifs for Charge Storage and Transport. Acc Chem Res 2024; 57:2130-2143. [PMID: 39044415 DOI: 10.1021/acs.accounts.4c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
ConspectusPorous frameworks possess high porosity and adjustable functions. The two features conjointly create sufficient interfaces for matter exchange and energy transfer within the skeletons. For crystalline porous frameworks, including metal organic frameworks (MOFs) and covalent organic frameworks (COFs), their long-range ordered structures indeed play an important role in managing versatile physicochemical behaviors such as electron transfer or band gap engineering. It is now feasible to predict their functions based on the unveiled structures and structure-performance relationships. In contrast, porous organic frameworks (POFs) represent a member of the porous solid family with no long-range regularity. For the case of POFs, the randomly packed building units and their disordered connections hinder the electronic structural consistency throughout the entire networks. However, many investigations have demonstrated that the functions of POFs could also be designed and originated from their local motifs.In this Account, we will first provide an overview of the design and synthesis principles for porous aromatic frameworks (PAFs), which are a typical family of POFs with high porosity and exceptional stability. Specifically, the functions achieved by the specific design and synthesis of in-framework motifs will be demonstrated. This strategy is particularly intuitive to introduce desired functions to PAFs, owing to the exceptional tolerance of PAFs to harsh chemical treatments and synthetic conditions. The local structures can be either obtained by selecting suitable building units, sometimes with the aid of computational screening, or emerge as the product of coupling reactions during the synthetic process. Radical PAFs can be obtained by incorporating a persistent radical molecule as a building unit, and the rigid and porous framework may facilitate the formation of radical species by trapping spins in the organic network, which could avoid the delocalizing and recombining processes. Alternatively, radical motifs can also be formed during the formation of the framework linkages. The coupling reaction plays an important role in the construction of functional motifs like diacetylene. The highly porous, radical PAFs showed significant performance as anodes of lithium-ion batteries. To improve the charge transport within the framework, the building units and their connecting manner were cohesively considered, and the framework with a fully conjugated backbone was built up. In another case, the explicit product of the cross-coupling reaction ensured the precise assembly of two building units with electron donating and accepting abilities; therefore, the moving direction of photogenerated electrons was rationally controlled. Constructing a fully conjugated backbone or rationally designing a D-A system for charge transfer in porous frameworks introduced exciting properties for photovoltaic and photocatalysis, and their highly porous, stable frameworks improved their functional applications for perovskite solar cells and chemical productions. These investigations shed light on the designable combination of intrinsic functional motifs with highly porous organic frameworks for effective energy storage and conversion.
Collapse
Affiliation(s)
- Yuyang Tian
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, School of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Fengchao Cui
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, School of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zheng Bian
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, School of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xin Tao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, School of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Hengguo Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, School of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Ning Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, School of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, School of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
22
|
Ling B, Yao S, Ouyang S, Bai H, Zhai X, Zhu C, Li W, Xie J. Nickel-Catalyzed Highly Selective Radical C-C Coupling from Carboxylic Acids with Photoredox Catalysis. Angew Chem Int Ed Engl 2024; 63:e202405866. [PMID: 38787803 DOI: 10.1002/anie.202405866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
Controlling the cross-coupling reaction between two different radicals is a long-standing challenge due to the process occurring statistically, which would lead to three products, including two homocoupling products and one cross-coupling product. Generally, the cross-coupling selectivity is achieved by the persistent radical effect (PRE) that requires the presence of a persistent radical and a transient radical, thus resulting in limited radical precursors. In this paper, a highly selective cross-coupling of alkyl radicals with acyl radicals to construct C(sp2)-C(sp3) bonds, or with alkyl radicals to construct C(sp3)-C(sp3) bonds have been achieved with the readily available carboxylic acids and their derivatives (NHPI ester) as coupling partners. The success originates from the use of tridentate ligand (2,2' : 6',2''-terpyridine) to enable radical cross-coupling process to Ni-mediated organometallic mechanism. This protocol offers a facile and flexible access to structurally diverse ketones (up to 90 % yield), and also a new solution for the challenging double decarboxylative C(sp3)-C(sp3) coupling. The broad utility and functional group tolerance are further illustrated by the late-stage functionalization of natural-occurring carboxylic acids and drugs.
Collapse
Affiliation(s)
- Bo Ling
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shunruo Yao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shengmao Ouyang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Haonan Bai
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xinyi Zhai
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 200032, China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
23
|
Dong CL, Liu HC, Guan Z, He YH. Photoredox-Neutral Radical-Radical Cross-Coupling of Isatins and Benzyl Carboxylic Acids. J Org Chem 2024; 89:10929-10938. [PMID: 39034667 DOI: 10.1021/acs.joc.4c01268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
A photoredox-neutral radical-radical cross-coupling is described for the synthesis of 3-hydroxy-3-alkyloxindoles using isatins and benzyl carboxylic acids as substrates and 2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) as the photocatalyst. The method features a broad substrate scope and good functional group tolerance, providing 30 sterically hindered alcohols with moderate to excellent yields. This approach utilizes inexpensive and commercially available starting materials, avoiding the use of transition metals, extra oxidants/reductants, and harsh reaction conditions, showcasing significant applicability and environmental friendliness.
Collapse
Affiliation(s)
- Chun-Lin Dong
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Han-Chi Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
24
|
Yang Z, Liu J, Xie L. Stabilized Carbon-Centered Radical-Mediated Carbosulfenylation of Styrenes: Modular Synthesis of Sulfur-Containing Glycine and Peptide Derivatives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402428. [PMID: 38852190 PMCID: PMC11304285 DOI: 10.1002/advs.202402428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/27/2024] [Indexed: 06/11/2024]
Abstract
Sulfur-containing amino acids and peptides play critical roles in organisms. Thiol-ene reactions between the thiol residues of L-cysteine and the alkenyl fragments in the designed coupling partners serve as primary tools for constructing C─S bonds in the synthesis of unnatural sulfur-containing amino acid derivatives. These reactions are favored due to the preference for hydrogen transfer from thiol to β-sulfanyl carbon radical intermediates. In this paper, the study proposes utilizing carbon-centered radicals stabilized by the capto-dative effect, generated under photocatalytic conditions from N-aryl glycine derivatives. The aim is to compete with the thiol hydrogen, enabling radical C─C bond formation with β-sulfanyl carbon radicals. This protocol is robust in the presence of air and water, offers significant potential as a modular and efficient platform for synthesizing sulfur-containing amino acids and modifying peptides, particularly with abundant disulfides and styrenes.
Collapse
Affiliation(s)
- Zihui Yang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsJiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Jia Liu
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsJiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Lan‐Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsJiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| |
Collapse
|
25
|
Patra S, Nandasana BN, Valsamidou V, Katayev D. Mechanochemistry Drives Alkene Difunctionalization via Radical Ligand Transfer and Electron Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402970. [PMID: 38829256 PMCID: PMC11304296 DOI: 10.1002/advs.202402970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Indexed: 06/05/2024]
Abstract
A general and modular protocol is reported for olefin difunctionalization through mechanochemistry, facilitated by cooperative radical ligand transfer (RLT) and electron catalysis. Utilizing mechanochemical force and catalytic amounts of 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO), ferric nitrate can leverage nitryl radicals, transfer nitrooxy-functional group via RLT, and mediate an electron catalysis cycle under room temperature. A diverse range of activated and unactivated alkenes exhibited chemo- and regioselective 1,2-nitronitrooxylation under solvent-free or solvent-less conditions, showcasing excellent functional group tolerance. Mechanistic studies indicated a significant impact of mechanochemistry and highlighted the radical nature of this nitrative difunctionalization process.
Collapse
Affiliation(s)
- Subrata Patra
- Department of ChemistryBiochemistry, and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| | - Bhargav N. Nandasana
- Department of ChemistryBiochemistry, and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| | - Vasiliki Valsamidou
- Department of ChemistryBiochemistry, and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| | - Dmitry Katayev
- Department of ChemistryBiochemistry, and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| |
Collapse
|
26
|
Huang H, Yu ZY, Han LY, Wu YQ, Jiang L, Li QZ, Huang W, Han B, Li JL. N-Heterocyclic carbene catalytic 1,2-boron migrative acylation accelerated by photocatalysis. SCIENCE ADVANCES 2024; 10:eadn8401. [PMID: 39047096 PMCID: PMC11268412 DOI: 10.1126/sciadv.adn8401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
The transformation of organoboron compounds plays an important role in synthetic chemistry, and recent advancements in boron-migration reactions have garnered considerable attention. Here, we report an unprecedented 1,2-boron migrative acylation upon photocatalysis-facilitated N-heterocyclic carbene catalysis. The design of a redox-active boronic ester substrate, serving as an excellent β-boron radical precursor, is the linchpin to the success of this chemistry. With the established protocol, a wide spectrum of β-boryl ketones has been rapidly synthesized, which could further undergo various C─B bond transformations to give multifunctionalized products. The robustness of this catalytic strategy is underscored by its successful application in late-stage modification of drug-derived molecules and natural products. Preliminary mechanistic investigations, including several control experiments, photochemistry measurements, and computational studies, shed light on the catalytic radical reaction mechanism.
Collapse
Affiliation(s)
- Hua Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhao-Yuan Yu
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Lu-Yao Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yi-Qi Wu
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Lu Jiang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Qing-Zhu Li
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
27
|
Li W, Diao C, Lu Y, Li H. Photoinduced Vicinal Sulfamoyloximation of Alkenes: Harnessing Bifunctional Nitrosamines via a Rapid Radical Trapping Strategy. Org Lett 2024; 26:6253-6258. [PMID: 39018472 DOI: 10.1021/acs.orglett.4c02245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
We developed a photoinduced method for vicinal sulfamoyloximation of alkenes using N-nitrosamines as bifunctional reagents, with DABSO serving as both a sulfonyl source and a rapid aminyl radical trap. This strategy prevents radical recombination, enabling bifunctional activation under neutral conditions to generate key sulfamoyl radicals. It accommodates broad substrate scope and functional group compatibility, enabling late-stage modifications of bioactive molecules and expanding sulfonamide diversity in organic synthesis.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chenchen Diao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yilian Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Huaifeng Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
28
|
van Zadelhoff A, Vincken JP, de Bruijn WJC. Exploring the formation of heterodimers of barley hydroxycinnamoylagmatines by oxidative enzymes. Food Chem 2024; 446:138898. [PMID: 38447386 DOI: 10.1016/j.foodchem.2024.138898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Dimers of hydroxycinnamoylagmatines are phenolic compounds found in barley and beer. Although they are bioactive and sensory-active compounds, systematic reports on their structure-property relationships are missing. This is partly due to lack of protocols to obtain a diverse set of hydroxycinnamoylagmatine homo- and heterodimers. To better understand dimer formation in complex systems, combinations of the monomers coumaroylagmatine (CouAgm), feruloylagmatine (FerAgm), and sinapoylagmatine (SinAgm) were incubated with horseradish peroxidase. For all combinations, the main oxidative coupling products were homodimers. Additionally, minor amounts of heterodimers were formed, except for the combination of FerAgm and CouAgm. Oxidative coupling was also performed with laccases from Agaricus bisporus and Trametes versicolor, resulting in formation of the same coupling products and no formation of CouAgm-FerAgm heterodimers. Our protocol for oxidative coupling combinations of hydroxycinnamoylagmatines yielded a structurally diverse set of coupling products, facilitating production of dimers for future research on their structure-property relationships.
Collapse
Affiliation(s)
- Annemiek van Zadelhoff
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| | - Wouter J C de Bruijn
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
29
|
Bao Y, Zheng C, Xiong K, Hu C, Lu P, Wang Y, Lu Z. Enantioconvergent Hydroboration of E/ Z-Mixed Trisubstituted Alkenes. J Am Chem Soc 2024. [PMID: 38994866 DOI: 10.1021/jacs.4c06585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The lack of mode for chirality recognition makes it particularly challenging to carry out asymmetric transformations on E/Z-mixed minimally functionalized trisubstituted alkenes. Here, we report a catalytic enantioconvergent hydroboration of minimally functionalized trisubstituted E/Z-mixed alkenes to construct chiral organoboronic esters with excellent enantioselectivity using chiral radical cobalt catalyst. This C(sp3)-H borylation protocol showed good functional group tolerance and products could be converted to valuable compounds via C-B derivatizations. The mechanistic studies, which included control experiments, nonlinear effect experiments, deuterated labeling experiments, and X-ray diffraction, demonstrated that the favorable compatibility between the thermodynamically unfavorable isomerization and hydroboration was the key factor in achieving convergent transformation.
Collapse
Affiliation(s)
- Yinwei Bao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chenggong Zheng
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Kangyu Xiong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chenke Hu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Peng Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuwen Wang
- Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
30
|
Hoque IU, Samanta A, Pramanik S, Chowdhury SR, Lo R, Maity S. Photocascade chemoselective controlling of ambident thio(seleno)cyanates with alkenes via catalyst modulation. Nat Commun 2024; 15:5739. [PMID: 38982050 PMCID: PMC11233607 DOI: 10.1038/s41467-024-49279-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/28/2024] [Indexed: 07/11/2024] Open
Abstract
Controlling the ambident reactivity of thiocyanates in reaction manifolds has been a long-standing and formidable challenge. We report herein a photoredox strategy for installing thiocyanates and isothiocyanates in a controlled chemoselective fashion by manipulating the ambident-SCN through catalyst modulation. The methodology allows redox-, and pot-economical 'on-demand' direct access to both hydrothiophene and pyrrolidine heterocycles from the same feedstock alkenes and bifunctional thiocyanomalonates in a photocascade sequence. Its excellent chemoselectivity profile was further expanded to access Se- and N-heterocycles by harnessing selenonitriles. Redox capability of the catalysts, which dictates the substrates to participate in a single or cascade catalytic cycle, was proposed as the key to the present chemodivergency of this process. In addition, detailed mechanistic insights are provided by a conjugation of extensive control experiments and dispersion-corrected density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Injamam Ul Hoque
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, 826004, India
| | - Apurba Samanta
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, 826004, India
| | - Shyamal Pramanik
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, 826004, India
| | - Soumyadeep Roy Chowdhury
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, 826004, India
| | - Rabindranath Lo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, Prague, 160 000, Czech Republic
| | - Soumitra Maity
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, 826004, India.
| |
Collapse
|
31
|
Wang R, Yuan JL, Liang KL, Hu JY, Fu Q, Liang FS. Ambient-Light-Promoted Stereospecific Synthesis of ( Z)-Vinyl Thioesters under Solvent- and Catalyst-Free Conditions. J Org Chem 2024; 89:9597-9608. [PMID: 38885461 DOI: 10.1021/acs.joc.4c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
An ambient-light-promoted stereospecific olefinic C(sp2)-S bond construction of thioacids and 1,1-diarylethenes has been demonstrated, affording various (Z)-vinyl thioesters in 51-85% yields under solvent- and catalyst-free conditions. Mechanistic studies indicated that the formation of thioacid-olefin complexes is responsible for generating a carbonyl thiyl radical and dioxygen in the air participates in the reaction and functions as a traceless reagent. Moreover, synthetic applications have been demonstrated by the gram scale synthesis and aggregation-induced emission property of representative compound 3i.
Collapse
Affiliation(s)
- Rui Wang
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
- College of Chemical Engineering, Tianjin University, Tianjin 300072, China
- YASUA Chemical Co., Ltd., Zhejiang 314200, China
| | - Jia-Long Yuan
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Kun-Long Liang
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Ji-Yun Hu
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Qiang Fu
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Fu-Shun Liang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| |
Collapse
|
32
|
Sato K, Egami H, Hamashima Y. Thiobenzoic Acid-Catalyzed Cα-H Cross Coupling of Benzyl Alcohols with α-Ketoacid Derivatives. Org Lett 2024; 26:5285-5289. [PMID: 38869244 DOI: 10.1021/acs.orglett.4c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The C-H alkylation of benzyl alcohols with α-ketoacid derivatives was achieved in the presence of thiobenzoic acid with or without Ru or Ir photoredox catalysts. The thiobenzoic acid serves as a photoexcited single-electron reducing reagent and a hydrogen atom transfer catalyst, while addition of the metal photoredox catalyst assists the electron transfer and improves the reaction efficiency. Various functional groups were tolerant of the reaction conditions, and sterically hindered diols were produced in good to high yield.
Collapse
Affiliation(s)
- Kaichi Sato
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiromichi Egami
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshitaka Hamashima
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
33
|
Zou L, Sun R, Tao Y, Wang X, Zheng X, Lu Q. Photoelectrochemical Fe/Ni cocatalyzed C-C functionalization of alcohols. Nat Commun 2024; 15:5245. [PMID: 38898017 PMCID: PMC11187109 DOI: 10.1038/s41467-024-49557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
The simultaneous activation of reactants on the anode and cathode via paired electrocatalysis has not been extensively demonstrated. This report presents a paired oxidative and reductive catalysis based on earth-abundant iron/nickel cocatalyzed C-C functionalization of ubiquitous alcohols. A variety of alcohols (i.e., primary, secondary, tertiary, or unstrained cyclic alcohols) can be activated at very low oxidation potential of (~0.30 V vs. Ag/AgCl) via photoelectrocatalysis coupled with versatile electrophiles. This reactivity yields a wide range of structurally diverse molecules with broad functional group compatibility (more than 50 examples).
Collapse
Affiliation(s)
- Long Zou
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Rui Sun
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Yongsheng Tao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Xiaofan Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Xinyue Zheng
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China.
| |
Collapse
|
34
|
Ji P, Duan K, Li M, Wang Z, Meng X, Zhang Y, Wang W. Photochemical dearomative skeletal modifications of heteroaromatics. Chem Soc Rev 2024; 53:6600-6624. [PMID: 38817197 PMCID: PMC11181993 DOI: 10.1039/d4cs00137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Indexed: 06/01/2024]
Abstract
Dearomatization has emerged as a powerful tool for rapid construction of 3D molecular architectures from simple, abundant, and planar (hetero)arenes. The field has evolved beyond simple dearomatization driven by new synthetic technology development. With the renaissance of photocatalysis and expansion of the activation mode, the last few years have witnessed impressive developments in innovative photochemical dearomatization methodologies, enabling skeletal modifications of dearomatized structures. They offer truly efficient and useful tools for facile construction of highly complex structures, which are viable for natural product synthesis and drug discovery. In this review, we aim to provide a mechanistically insightful overview on these innovations based on the degree of skeletal alteration, categorized into dearomative functionalization and skeletal editing, and to highlight their synthetic utilities.
Collapse
Affiliation(s)
- Peng Ji
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | - Kuaikuai Duan
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
| | - Menglong Li
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, School of Basic Medicinal Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Zhiyuan Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Meng
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| | - Yueteng Zhang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, School of Basic Medicinal Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Wei Wang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| |
Collapse
|
35
|
Hota SK, Singh G, Murarka S. Direct C-H alkylation of 3,4-dihydroquinoxaline-2-ones with N-(acyloxy)phthalimides via radical-radical cross coupling. Chem Commun (Camb) 2024; 60:6268-6271. [PMID: 38808396 DOI: 10.1039/d4cc01837k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We present an organophotoredox-catalyzed direct Csp3-H alkylation of 3,4-dihydroquinoxalin-2-ones employing N-(acyloxy)pthalimides to provide corresponding products in good yields. A broad spectrum of NHPI esters (1°, 2°, 3°, and sterically encumbered) participates in the photoinduced alkylation of a variety of 3,4-dihydroquinoxalin-2-ones. In general, mild conditions, broad scope with good functional group tolerance, and scalability are the salient features of this direct alkylation process.
Collapse
Affiliation(s)
- Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Gulshan Singh
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| |
Collapse
|
36
|
Zhao X, Zhong B, Dong L, Zhang YS, Luo HT, Yang JD, Cheng JP. Hydroxylamine-Mediated C(sp 2)-H Trifluoromethylation of Terminal Alkenes. Chemistry 2024; 30:e202400995. [PMID: 38600034 DOI: 10.1002/chem.202400995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/12/2024]
Abstract
Introduction of the trifluoromethyl (CF3) group into organic compounds has garnered substantial interest because of its significant role in pharmaceuticals and agrochemicals. Here, we report a hydroxylamine-mediated radical process for C(sp2)-H trifluoromethylation of terminal alkenes. The reaction shows good reactivity, impressive E/Z selectivity (up to >20 : 1), and broad functional group compatibility. Expansion of this approach to perfluoroalkylation and late-stage trifluoromethylation of bioactive molecules demonstrates its promising application potential. Mechanistic studies suggest that the reaction follows a radical addition and subsequent elimination pathway.
Collapse
Affiliation(s)
- Xiao Zhao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bing Zhong
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Likun Dong
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yu-Shan Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hai-Tian Luo
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jin-Dong Yang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Jin-Pei Cheng
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
37
|
Wang Y, Yi Z, Xie L, Mao Y, Ji W, Liu Z, Wei X, Su F, Chen CM. Releasing Free Radicals in Precursor Triggers the Formation of Closed Pores in Hard Carbon for Sodium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401249. [PMID: 38529803 DOI: 10.1002/adma.202401249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/12/2024] [Indexed: 03/27/2024]
Abstract
Increasing closed pore volume in hard carbon is considered to be the most effective way to enhance the electrochemical performance in sodium-ion batteries. However, there is a lack of systematic insights into the formation mechanisms of closed pores at molecular level. In this study, a regulation strategy of closed pores via adjustment of the content of free radicals is reported. Sufficient free radicals are exposed by part delignification of bamboo, which is related to the formation of well-developed carbon layers and rich closed pores. In addition, excessive free radicals from nearly total delignification lead to more reactive sites during pyrolysis, which competes for limited precursor debris to form smaller microcrystals and therefore compact the material. The optimal sample delivers a large closed pore volume of 0.203 cm3 g-1, which leads to a high reversible capacity of 350 mAh g-1 at 20 mA g-1 and enhanced Na+ transfer kinetics. This work provides insights into the formation mechanisms of closed pores at molecular level, enabling rational design of hard carbon pore structures.
Collapse
Affiliation(s)
- Yilin Wang
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zonglin Yi
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Lijing Xie
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Yixuan Mao
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjun Ji
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanjun Liu
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Xianxian Wei
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Fangyuan Su
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Cheng-Meng Chen
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
38
|
Zheng K, Liang C, Chen H, Zhao Y, Wang Z, Cheng J. I 2 Catalyzed and TBHP/Ammonium-Promoted Conversion of Arylethanone to Nitriles via β-Scission of Iminyl Radicals. Org Lett 2024; 26:3935-3939. [PMID: 38668726 DOI: 10.1021/acs.orglett.4c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Herein, we report a general I2-catalyzed and TBHP/ammonium-promoted conversion of arylethanone to aromatic nitriles under air. This procedure proceeded with the β-scission of iminyl radical, which was facilitated via quenching the released alkyl radical by tert-butyl peroxyl radical leading to peroxide followed with Kornblum-DeLaMare rearrangement. A series of aryl methyl ketone and alkyl aryl ketone worked well with good functional group tolerance in high yields. As such, this metal-free procedure represents a facile, safe, green, and practical procedure in conversion of arylethanone to aromatic nitriles.
Collapse
Affiliation(s)
- Kui Zheng
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Chen Liang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Hailong Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yang Zhao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Zhenlian Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Jiang Cheng
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
39
|
Deng G, Chen Z, Bai Y, Zhang L, Xia D, Duan S, Chen W, Zhang H, Walsh PJ, Yang X. Sulfonamides as N-Centered Radical Precursors for C-N Coupling Reactions To Generate Amidines. Org Lett 2024; 26:3855-3860. [PMID: 38687847 DOI: 10.1021/acs.orglett.4c01014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Nitrogen-centered radicals (NCRs) are valuable intermediates for the construction of C-N bonds. Traditional methods for the generation of NCRs employ toxic radical initiators, transition metal catalysts, photocatalysts, or organometallic reagents. Herein, we report a novel strategy for the generation of NCRs toward the construction of C-N bonds under transition-metal-free conditions. Thus, super-electron-donor (SED) 2-azaallyl anions undergo single-electron transfer (SET) with sulfonamides, forming aminyl radicals (R2N•, R = alkyl) and culminating in the generation of amidines bearing various functional groups (33 examples, up to 96% yield). Broad substrate scope and gram-scale telescoped preparation demonstrate the practicality of this method. Radical clock and electron paramagnetic resonance (EPR) experiments support the proposed radical coupling pathway between the generated N-centered radical and the C-centered 2-azaallyl radical.
Collapse
Affiliation(s)
- Guogang Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, Yunnan 650500, People's Republic of China
| | - Zhuo Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, Yunnan 650500, People's Republic of China
| | - Yifeng Bai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, Yunnan 650500, People's Republic of China
| | - Lening Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, Yunnan 650500, People's Republic of China
| | - Dazhen Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, Yunnan 650500, People's Republic of China
| | - Shengzu Duan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, Yunnan 650500, People's Republic of China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, Yunnan 650500, People's Republic of China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, Yunnan 650500, People's Republic of China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, Yunnan 650500, People's Republic of China
| |
Collapse
|
40
|
Cai Q, McWhinnie IM, Dow NW, Chan AY, MacMillan DWC. Engaging Alkenes in Metallaphotoredox: A Triple Catalytic, Radical Sorting Approach to Olefin-Alcohol Cross-Coupling. J Am Chem Soc 2024; 146:12300-12309. [PMID: 38657210 PMCID: PMC11493080 DOI: 10.1021/jacs.4c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metallaphotoredox cross-coupling is a well-established strategy for generating clinically privileged aliphatic scaffolds via single-electron reactivity. Correspondingly, expanding metallaphotoredox to encompass new C(sp3)-coupling partners could provide entry to a novel, medicinally relevant chemical space. In particular, alkenes are abundant, bench-stable, and capable of versatile C(sp3)-radical reactivity via metal-hydride hydrogen atom transfer (MHAT), although metallaphotoredox methodologies invoking this strategy remain underdeveloped. Importantly, merging MHAT activation with metallaphotoredox could enable the cross-coupling of olefins with feedstock partners such as alcohols, which undergo facile open-shell activation via photocatalysis. Herein, we report the first C(sp3)-C(sp3) coupling of MHAT-activated alkenes with alcohols by performing deoxygenative hydroalkylation via triple cocatalysis. Through synergistic Ir photoredox, Mn MHAT, and Ni radical sorting pathways, this branch-selective protocol pairs diverse olefins and methanol or primary alcohols with remarkable functional group tolerance to enable the rapid construction of complex aliphatic frameworks.
Collapse
Affiliation(s)
- Qinyan Cai
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - Iona M. McWhinnie
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - Nathan W. Dow
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - Amy Y. Chan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - David W. C. MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
41
|
Venditto NJ, Boerth JA. Deoxy-Arylation of Amides via a Tandem Hydrosilylation/Radical- Radical Coupling Sequence. Org Lett 2024; 26:3617-3621. [PMID: 38651818 DOI: 10.1021/acs.orglett.4c01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Vaska's complex is a prominent catalyst for the hydrosilylation of amides. The O-silyl hemiaminal intermediate formed in these processes has been demonstrated as an electrophile for nucleophilic additions. More recently, these intermediates have been shown to be suitable for single electron reduction to generate α-amino radicals. Leveraging the ability to generate α-amino radicals from these hemiaminals, we describe a two-step, one-pot, deoxy-arylation of amides utilizing iridium-catalyzed hydrosilylation and photoredox catalysis. This transformation can be tailored toward the late-stage functionalization of biologically relevant molecules, with drug discovery applications as shown in the streamlined synthesis of an NPY Y2 inhibitor.
Collapse
Affiliation(s)
- Nicholas J Venditto
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Jeffrey A Boerth
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| |
Collapse
|
42
|
Yang L, Wu J, Li Y, Tang Y, Li J, Xu S. Construction of C-P Bonds from Free Cyclobutanone Oximes and Chlorophosphines via Radical-Radical Coupling. Org Lett 2024; 26:3208-3212. [PMID: 38597783 DOI: 10.1021/acs.orglett.4c00799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Herein, we report a catalyst-free reaction of cyclobutanone oximes with chlorophosphines (R2PCl), which forms a fragile C═N-O-PR2 species that undergoes N-O homolysis, fragmentation, and radical-radical coupling, leading to the formation of cyano-containing phosphine oxides in good yields. The reaction features an in situ activation of cyclobutanone oximes for radical generation, in which R2PCl plays a dual role as both an activator and a reactant.
Collapse
Affiliation(s)
- LuLu Yang
- School of Chemistry, and Engineering Research, Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jiale Wu
- School of Chemistry, and Engineering Research, Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yang Li
- School of Chemistry, and Engineering Research, Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuhai Tang
- School of Chemistry, and Engineering Research, Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jing Li
- School of Chemistry, and Engineering Research, Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Silong Xu
- School of Chemistry, and Engineering Research, Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
43
|
Feng S, Liu H, Li Y, Fang Y. Photoredox-catalyzed radical-radical cross coupling of ketyl radicals with unstabilized primary alkyl radicals. Chem Commun (Camb) 2024; 60:4431-4434. [PMID: 38563261 DOI: 10.1039/d4cc00620h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Herein, a novel protocol dealing with the preparation of sterically hindered alcohols has been successfully developed via radical-radical coupling reactions enabled by mild and redox-neutral photocatalysis. With alkylsilicates as the radical precursors, a range of primary alkyl radicals bearing various functional groups could couple with a range of phthalimides and activated ketones.
Collapse
Affiliation(s)
- Shishen Feng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Ministry-of-Education Key Laboratory for Synthesis and Application of Organic Functional Molecules, Hubei University, No. 368 YouyiDadao, Wuhan 430062, China.
| | - Hong Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Ministry-of-Education Key Laboratory for Synthesis and Application of Organic Functional Molecules, Hubei University, No. 368 YouyiDadao, Wuhan 430062, China.
| | - Yan Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Ministry-of-Education Key Laboratory for Synthesis and Application of Organic Functional Molecules, Hubei University, No. 368 YouyiDadao, Wuhan 430062, China.
| | - Yewen Fang
- School of Materials and Chemical Engineering, Ningbo University of Technology, No. 201 Fenghua Road, Ningbo 315211, China.
- Zhejiang Institute of Tianjin University, No. 201 Fenghua Road, Ningbo 315211, China
| |
Collapse
|
44
|
Laskar R, Dutta S, Spies JC, Mukherjee P, Rentería-Gómez Á, Thielemann RE, Daniliuc CG, Gutierrez O, Glorius F. γ-Amino Alcohols via Energy Transfer Enabled Brook Rearrangement. J Am Chem Soc 2024; 146:10899-10907. [PMID: 38569596 PMCID: PMC11027157 DOI: 10.1021/jacs.4c01667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
In the long-standing quest to synthesize fundamental building blocks with key functional group motifs, photochemistry in the recent past has comprehensively established its attractiveness. Amino alcohols are not only functionally diverse but are ubiquitous in the biologically active realm of compounds. We developed bench-stable bifunctional reagents that could then access the sparsely reported γ-amino alcohols directly from feedstock alkenes through energy transfer (EnT) photocatalysis. A designed 1,3-linkage across alkenes is made possible by the intervention of a radical Brook rearrangement that takes place downstream to the EnT-mediated homolysis of our reagent(s). A combination of experimental mechanistic investigations and detailed computational studies (DFT) indicates a radical chain propagated reaction pathway.
Collapse
Affiliation(s)
- Ranjini Laskar
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Subhabrata Dutta
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Jan C. Spies
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Poulami Mukherjee
- Department
of Chemistry, Texas A&M University, 77843 College Station, Texas, United States
| | - Ángel Rentería-Gómez
- Department
of Chemistry, Texas A&M University, 77843 College Station, Texas, United States
| | - Rebecca E. Thielemann
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Osvaldo Gutierrez
- Department
of Chemistry, Texas A&M University, 77843 College Station, Texas, United States
| | - Frank Glorius
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| |
Collapse
|
45
|
Hoving M, Haaksma JJ, Stoppel A, Chronc L, Hoffmann J, Beil SB. Triplet Energy Transfer Mechanism in Copper Photocatalytic N- and O-Methylation. Chemistry 2024; 30:e202400560. [PMID: 38363220 DOI: 10.1002/chem.202400560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/17/2024]
Abstract
Methylation reactions are chemically simple but challenging to perform under mild and non-toxic conditions. A photochemical energy transfer strategy was merged with copper catalysis to enable fast reaction times of minutes and broad applicability to N-heterocycles, (hetero-)aromatic carboxylic acids, and drug-like molecules in high yields and good functional group tolerance. Detailed mechanistic investigations, using kinetic analysis, aprotic MS, UV/Vis, and luminescence quenching experiments revealed a triplet-triplet energy transfer mechanism between hypervalent iodine(III) reagents and readily available photosensitizers.
Collapse
Affiliation(s)
- Martijn Hoving
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Jacob-Jan Haaksma
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Anne Stoppel
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Lukas Chronc
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Jonas Hoffmann
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Sebastian B Beil
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
46
|
Zeng J, You F, Zhu J. Screening seven-electron boron-centered radicals for dinitrogen activation. J Comput Chem 2024; 45:648-654. [PMID: 38073508 DOI: 10.1002/jcc.27281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 03/02/2024]
Abstract
The activation of dinitrogen is significant as nitrogen-containing compounds play an important role in industries. However, the inert NN triple bond caused by its large HOMO-LUMO gap (10.8 eV) and high bond dissociation energy (945 kJ mol-1 ) renders its activation under mild conditions particularly challenging. Recent progress shows that a few main group species can mimic transition metal complexes to activate dinitrogen. Here, we demonstrate that a series of seven-electron (7e) boron-centered radical can be used to activate N2 via density functional theory calculations. It is found that boron-centered radicals containing amine ligand perform best on the thermodynamics of dinitrogen activation. In addition, when electron-donating groups are introduced at the boron atom, these radicals can be used to activate N2 with low reaction barriers. Further analysis suggests that the electron transfer from the boron atom to the π* orbitals of dinitrogen is essential for its activation. Our findings suggest great potential of 7e boron radicals in the field of dinitrogen activation.
Collapse
Affiliation(s)
- Jie Zeng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, China
| | - Feiying You
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Jun Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
47
|
Yi ZY, Wang ZC, Li RN, Li ZH, Duan JJ, Yang XQ, Wang YQ, Chen T, Wang D, Wan LJ. Silver Surface-Assisted Dehydrobrominative Cross-Coupling between Identical Aryl Bromides. J Am Chem Soc 2024. [PMID: 38598684 DOI: 10.1021/jacs.4c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Cross-coupling reactions represent an indispensable tool in chemical synthesis. An intriguing challenge in this field is to achieve selective cross-coupling between two precursors with similar reactivity or, to the limit, the identical molecules. Here we report an unexpected dehydrobrominative cross-coupling between 1,3,5-tris(2-bromophenyl)benzene molecules on silver surfaces. Using scanning tunneling microscopy, we examine the reaction process at the single-molecular level, quantify the selectivity of the dehydrobrominative cross-coupling, and reveal the modulation of selectivity by substrate lattice-related catalytic activity or molecular assembly effect. Theoretical calculations indicate that the dehydrobrominative cross-coupling proceeds via regioselective C-H bond activation of debrominated TBPB and subsequent highly selective C-C coupling of the radical-based intermediates. The reaction kinetics plays an important role in the selectivity for the cross-coupling. This work not only expands the toolbox for chemical synthesis but also provides important mechanistic insights into the selectivity of coupling reactions on the surface.
Collapse
Affiliation(s)
- Zhen-Yu Yi
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Cong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruo-Ning Li
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Hao Li
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Jie Duan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Qing Yang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Qi Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Chen
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Wang C, Lin J, Huang H, Ye C, Bao H. Regio- and Diastereoselective Radical Dimerization Reactions for the Construction of Benzo[ f]isoindole Dimers. Org Lett 2024; 26:2580-2584. [PMID: 38526484 DOI: 10.1021/acs.orglett.4c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
This study presents a novel approach for synthesizing benzo[f]isoindole dimers, which involves cascade cyclization and oxidative radical dimerization. Our method allows for the formation of up to five carbon-carbon bonds in a single reaction, exhibiting remarkable diastereoselectivity and regioselectivity. The mechanism and regioselectivity were investigated through a combination of experiments and calculations.
Collapse
Affiliation(s)
- Chuanchuan Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. of China
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
- Fujian College, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Jingyi Lin
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. of China
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
- Fujian College, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Haiyang Huang
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Changqing Ye
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
- Fujian College, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
| |
Collapse
|
49
|
Wang JZ, Lyon WL, MacMillan DWC. Alkene dialkylation by triple radical sorting. Nature 2024; 628:104-109. [PMID: 38350601 PMCID: PMC11474584 DOI: 10.1038/s41586-024-07165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
The development of bimolecular homolytic substitution (SH2) catalysis has expanded cross-coupling chemistries by enabling the selective combination of any primary radical with any secondary or tertiary radical through a radical sorting mechanism1-8. Biomimetic9,10 SH2 catalysis can be used to merge common feedstock chemicals-such as alcohols, acids and halides-in various permutations for the construction of a single C(sp3)-C(sp3) bond. The ability to sort these two distinct radicals across commercially available alkenes in a three-component manner would enable the simultaneous construction of two C(sp3)-C(sp3) bonds, greatly accelerating access to complex molecules and drug-like chemical space11. However, the simultaneous in situ formation of electrophilic and primary nucleophilic radicals in the presence of unactivated alkenes is problematic, typically leading to statistical radical recombination, hydrogen atom transfer, disproportionation and other deleterious pathways12,13. Here we report the use of bimolecular homolytic substitution catalysis to sort an electrophilic radical and a nucleophilic radical across an unactivated alkene. This reaction involves the in situ formation of three distinct radical species, which are then differentiated by size and electronics, allowing for regioselective formation of the desired dialkylated products. This work accelerates access to pharmaceutically relevant C(sp3)-rich molecules and defines a distinct mechanistic approach for alkene dialkylation.
Collapse
Affiliation(s)
- Johnny Z Wang
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | - William L Lyon
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
50
|
Man Y, Xu B. Generation and Radical-Radical Cross-Coupling of Alkenyloxy Radical. Org Lett 2024. [PMID: 38502939 DOI: 10.1021/acs.orglett.4c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Alkene-attached oxygen radicals are rarely used, as highly reactive oxygen radicals are incompatible with the alkene moiety. The direct radical-radical cross-coupling of O radicals is also challenging (limited to N-O bond formation) because of the lack of suitable persistent radical species. This study demonstrated the feasibility of using Breslow intermediate radical (BIR) as a persistent radical to capture unstable π-conjugated O radicals and allow the C-O radical-radical cross-coupling.
Collapse
Affiliation(s)
- Yunquan Man
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|