1
|
Jiang M, Giannino N, Goebel GL, Sievers S, Wu P. LIN28-Targeting Chromenopyrazoles and Tetrahydroquinolines Induced Cellular Morphological Changes and Showed High Biosimilarity with BRD PROTACs. ChemMedChem 2025; 20:e202400547. [PMID: 39353851 DOI: 10.1002/cmdc.202400547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
The probing of small molecules with heterocyclic scaffolds covering unexplored chemical space and the evaluation of their biological relevance are essential parts of forward chemical genetics approaches and for the development of potential small-molecule therapeutics. In this study, we profiled sets of chromenopyrazoles (CMPs) and tetrahydroquinolines (THQs), originally developed to target the protein-RNA interaction of LIN28-let-7, in a cell painting assay (CPA) measuring cellular morphological changes. Selected LIN28-inactive CMPs and THQs induced cellular morphological changes to different extents. The most CPA-active CMPs 2 and 3 exhibited high bio-similarity with the LCH and BET clusters, while the most CPA-active THQs 13 and 20 indicated a mechanism of action beyond the currently established biosimilarity clusters. Overall, this work demonstrated that CPA is useful in revealing "hidden" biological targets and mechanisms of action for biologically inactive small molecules, which are CMPs and THQs targeting the RNA-binding protein LIN28 in this case, evaluated in target-based strategies. When compared with annotated reference compounds, CMP 3 exhibited a high biosimilarity with the dual BRD7/9 degrading PROTAC VZ185, suggesting that CPA could potentially function as a new phenotypic approach to identify degrader molecules.
Collapse
Affiliation(s)
- Mao Jiang
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Nicole Giannino
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| | - Georg L Goebel
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Sonja Sievers
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Compound Management and Screening Center, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| |
Collapse
|
2
|
Seal S, Trapotsi MA, Spjuth O, Singh S, Carreras-Puigvert J, Greene N, Bender A, Carpenter AE. Cell Painting: a decade of discovery and innovation in cellular imaging. Nat Methods 2024:10.1038/s41592-024-02528-8. [PMID: 39639168 DOI: 10.1038/s41592-024-02528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/24/2024] [Indexed: 12/07/2024]
Abstract
Modern quantitative image analysis techniques have enabled high-throughput, high-content imaging experiments. Image-based profiling leverages the rich information in images to identify similarities or differences among biological samples, rather than measuring a few features, as in high-content screening. Here, we review a decade of advancements and applications of Cell Painting, a microscopy-based cell-labeling assay aiming to capture a cell's state, introduced in 2013 to optimize and standardize image-based profiling. Cell Painting's ability to capture cellular responses to various perturbations has expanded owing to improvements in the protocol, adaptations for different perturbations, and enhanced methodologies for feature extraction, quality control, and batch-effect correction. Cell Painting is a versatile tool that has been used in various applications, alone or with other -omics data, to decipher the mechanism of action of a compound, its toxicity profile, and other biological effects. Future advances will likely involve computational and experimental techniques, new publicly available datasets, and integration with other high-content data types.
Collapse
Affiliation(s)
- Srijit Seal
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| | - Maria-Anna Trapotsi
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK.
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Phenaros Pharmaceuticals AB, Uppsala, Sweden
| | | | - Jordi Carreras-Puigvert
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Phenaros Pharmaceuticals AB, Uppsala, Sweden
| | - Nigel Greene
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Waltham, MA, USA
| | - Andreas Bender
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
| | | |
Collapse
|
3
|
Goebel GL, Giannino N, Lampe P, Qiu X, Schloßhauer JL, Imig J, Sievers S, Wu P. Profiling Cellular Morphological Changes Induced by Dual-Targeting PROTACs of Aurora Kinase and RNA-Binding Protein YTHDF2. Chembiochem 2024; 25:e202400183. [PMID: 38837838 DOI: 10.1002/cbic.202400183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) are new chemical modalities that degrade proteins of interest, including established kinase targets and emerging RNA-binding proteins (RBPs). Whereas diverse sets of biochemical, biophysical and cellular assays are available for the evaluation and optimizations of PROTACs in understanding the involved ubiquitin-proteasome-mediated degradation mechanism and the structure-degradation relationship, a phenotypic method profiling the cellular morphological changes is rarely used. In this study, first, we reported the only examples of PROTACs degrading the mRNA-binding protein YTHDF2 via screening of multikinase PROTACs. Second, we reported the profiling of cellular morphological changes of the dual kinase- and RBP-targeting PROTACs using the unbiased cell painting assay (CPA). The CPA analysis revealed the high biosimilarity with the established aurora kinase cluster and annotated aurora kinase inhibitors, which reflected the association between YTHDF2 and the aurora kinase signaling network. Broadly, the results demonstrated that the cell painting assay can be a straightforward and powerful approach to evaluate PROTACs. Complementary to the existing biochemical, biophysical and cellular assays, CPA provided a new perspective in characterizing PROTACs at the cellular morphology.
Collapse
Affiliation(s)
- Georg L Goebel
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Nicole Giannino
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| | - Philipp Lampe
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Compound Management and Screening Center, Otto-Hahn Str. 15, Dortmund, 44227, Germany
| | - Xiaqiu Qiu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Jeffrey L Schloßhauer
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| | - Jochen Imig
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| | - Sonja Sievers
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Compound Management and Screening Center, Otto-Hahn Str. 15, Dortmund, 44227, Germany
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| |
Collapse
|
4
|
Ahamad S, Abdulla M, Saquib M, Kamil Hussain M. Pseudo-Natural Products: Expanding chemical and biological space by surpassing natural constraints. Bioorg Chem 2024; 150:107525. [PMID: 38852308 DOI: 10.1016/j.bioorg.2024.107525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
This review explores the recent advancements in the design and synthesis of pseudo-natural products (pseudo-NPs) by employing innovative principles and strategies, heralding a transformative era in chemistry and biology. Pseudo-NPs, produced through in silico fragmentation and the de novo recombination of natural product fragments, reveal compounds endowed with distinct biological activities. Their advantage lies in transcending natural product structures, fostering diverse possibilities. Research in this area over the past decade has yielded unconventional combinations of natural product fragments, leading to the identification of novel compounds possessing unique scaffolds and biological significance, thereby contributing to the discovery of new therapeutics. The pseudo-NPs exert potent biological effects through various signaling pathways. In chemical biology and medicinal chemistry, designing pseudo-NPs is an important strategy, harnessing molecular hybridization and bioinspired synthesis to generate diverse compounds with remarkable biological activities, underscoring their immense potential in drug discovery and development.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India.
| | - Mohd Abdulla
- Babasaheb Bhimrao Ambedkar University, Lucknow-226025, India
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad), 211002, UP, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad), 211010, UP, India.
| | - Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, Rampur-244901, UP, India.
| |
Collapse
|
5
|
Tandon A, Santura A, Waldmann H, Pahl A, Czodrowski P. Identification of lysosomotropism using explainable machine learning and morphological profiling cell painting data. RSC Med Chem 2024; 15:2677-2691. [PMID: 39149097 PMCID: PMC11324048 DOI: 10.1039/d4md00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/09/2024] [Indexed: 08/17/2024] Open
Abstract
Lysosomotropism is a phenomenon of diverse pharmaceutical interests because it is a property of compounds with diverse chemical structures and primary targets. While it is primarily reported to be caused by compounds having suitable lipophilicity and basicity values, not all compounds that fulfill such criteria are in fact lysosomotropic. Here, we use morphological profiling by means of the cell painting assay (CPA) as a reliable surrogate to identify lysosomotropism. We noticed that only 35% of the compound subset with matching physicochemical properties show the lysosomotropic phenotype. Based on a matched molecular pair analysis (MMPA), no key substructures driving lysosomotropism could be identified. However, using explainable machine learning (XML), we were able to highlight that higher lipophilicity, basicity, molecular weight, and lower topological polar surface area are among the important properties that induce lysosomotropism in the compounds of this subset.
Collapse
Affiliation(s)
- Aishvarya Tandon
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology Otto-Hahn-Str. 11 Dortmund Germany
| | - Anna Santura
- Department of Chemistry, Johannes Gutenberg University Mainz Mainz Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology Otto-Hahn-Str. 11 Dortmund Germany
| | - Axel Pahl
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology Otto-Hahn-Str. 11 Dortmund Germany
| | - Paul Czodrowski
- Department of Chemistry, Johannes Gutenberg University Mainz Mainz Germany
| |
Collapse
|
6
|
Pahl A, Grygorenko OO, Kondratov IS, Waldmann H. Identification of readily available pseudo-natural products. RSC Med Chem 2024; 15:2709-2717. [PMID: 39149091 PMCID: PMC11324060 DOI: 10.1039/d4md00310a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/20/2024] [Indexed: 08/17/2024] Open
Abstract
Pseudo-natural products (PNPs) combine fragments derived from NPs in ways that are not found in nature, and may lead to the discovery of novel chemotypes for unexpected targets or the identification of unprecedented bioactivities. PNPs have increasingly been explored in recent drug discovery programs, and are strongly enriched in clinical compounds. We describe how a large number of structurally different PNPs can be accessed readily and without the need to execute labor- and time intensive synthesis programs. We employed an improved version of the previously reported natural product fragment combination (NPFC) tool to analyze the full library of 3.5 M synthetic small molecules and screening libraries from Enamine for PNP content, assessed the spatial complexity of Enamine-PNPs using the recently developed normalized spatial score (nSPS) and evaluated the bioactivity of a selected subset of Enamine-PNPs in the unbiased morphological cell painting assay. A major fraction (32%; 1.1 million compounds) of the Enamine library are PNPs which contain a significant number of compounds with unexpected and probably new bioactivity.
Collapse
Affiliation(s)
- Axel Pahl
- Compound Management and Screening Center (COMAS), Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Oleksandr O Grygorenko
- Enamine Ltd. Chervonotkatska Street 78 Kyïv 02094 Ukraine https://enamine.net
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyïv 01601 Ukraine
| | - Ivan S Kondratov
- Enamine Ltd. Chervonotkatska Street 78 Kyïv 02094 Ukraine https://enamine.net
- V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry, NAS of Ukraine Akademik Kukhar Street 1 Kyïv 02660 Ukraine
- Enamine Germany GmbH, Industriepark Hoechst G837 65926 Frankfurt am Main Germany https://www.enamine.de
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Strasse 6 44221 Dortmund Germany
| |
Collapse
|
7
|
Yao M, Wang H, Wang Z, Song C, Sa X, Du W, Ye M, Qiao X. Construct Phenylethanoid Glycosides Harnessing Biosynthetic Networks, Protein Engineering and One-Pot Multienzyme Cascades. Angew Chem Int Ed Engl 2024; 63:e202402546. [PMID: 38616162 DOI: 10.1002/anie.202402546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Phenylethanoid glycosides (PhGs) exhibit a multitude of structural variations linked to diverse pharmacological activities. Assembling various PhGs via multienzyme cascades represents a concise strategy over traditional synthetic methods. However, the challenge lies in identifying a comprehensive set of catalytic enzymes. This study explores biosynthetic PhG reconstruction from natural precursors, aiming to replicate and amplify their structural diversity. We discovered 12 catalytic enzymes, including four novel 6'-OH glycosyltransferases and three new polyphenol oxidases, revealing the intricate network in PhG biosynthesis. Subsequently, the crystal structure of CmGT3 (2.62 Å) was obtained, guiding the identification of conserved residue 144# as a critical determinant for sugar donor specificity. Engineering this residue in PhG glycosyltransferases (FsGT61, CmGT3, and FsGT6) altered their sugar donor recognition. Finally, a one-pot multienzyme cascade was established, where the combined action of glycosyltransferases and acyltransferases boosted conversion rates by up to 12.6-fold. This cascade facilitated the reconstruction of 26 PhGs with conversion rates ranging from 5-100 %, and 20 additional PhGs detectable by mass spectrometry. PhGs with extra glycosyl and hydroxyl modules demonstrated notable liver cell protection. This work not only provides catalytic tools for PhG biosynthesis, but also serves as a proof-of-concept for cell-free enzymatic construction of diverse natural products.
Collapse
Affiliation(s)
- Mingju Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Haotian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Zilong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Chenglin Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Xiaolin Sa
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Wei Du
- Agilent Technologies, 3 Wangjing North Road, Beijing, 100102, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing, 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing, 100191, China
| |
Collapse
|
8
|
Pahl A, Liu J, Patil S, Rezaei Adariani S, Schölermann B, Warmers J, Bonowski J, Koska S, Akbulut Y, Seitz C, Sievers S, Ziegler S, Waldmann H. Illuminating Dark Chemical Matter Using the Cell Painting Assay. J Med Chem 2024; 67:8862-8876. [PMID: 38687818 PMCID: PMC11181314 DOI: 10.1021/acs.jmedchem.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Screening for small-molecule modulators of disease-relevant targets and phenotypes is the first step on the way to new drugs. Large compound libraries have been synthesized by academia and, particularly, pharmaceutical companies to meet the need for novel chemical entities that are as diverse as possible. Screening of these compound libraries revealed a portion of small molecules that is inactive in more than 100 different assays and was therefore termed "dark chemical matter" (DCM). Deorphanization of DCM promises to yield very selective compounds as they are expected to have less off-target effects. We employed morphological profiling using the Cell Painting assay to detect bioactive DCM. Within the DCM collection, we identified bioactive compounds and confirmed several modulators of microtubules, DNA synthesis, and pyrimidine biosynthesis. Profiling approaches are, therefore, powerful tools to probe compound collections for bioactivity in an unbiased manner and are particularly suitable for deorphanization of DCM.
Collapse
Affiliation(s)
- Axel Pahl
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Jie Liu
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Sohan Patil
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Soheila Rezaei Adariani
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
- Technical
University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Beate Schölermann
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Jens Warmers
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
- Technical
University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Jana Bonowski
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Sandra Koska
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Yasemin Akbulut
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Carina Seitz
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Sonja Sievers
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Slava Ziegler
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Herbert Waldmann
- Max-Planck
Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
- Technical
University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| |
Collapse
|
9
|
Bag S, Liu J, Patil S, Bonowski J, Koska S, Schölermann B, Zhang R, Wang L, Pahl A, Sievers S, Brieger L, Strohmann C, Ziegler S, Grigalunas M, Waldmann H. A divergent intermediate strategy yields biologically diverse pseudo-natural products. Nat Chem 2024; 16:945-958. [PMID: 38365941 PMCID: PMC11164679 DOI: 10.1038/s41557-024-01458-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
The efficient exploration of biologically relevant chemical space is essential for the discovery of bioactive compounds. A molecular design principle that possesses both biological relevance and structural diversity may more efficiently lead to compound collections that are enriched in diverse bioactivities. Here the diverse pseudo-natural product (PNP) strategy, which combines the biological relevance of the PNP concept with synthetic diversification strategies from diversity-oriented synthesis, is reported. A diverse PNP collection was synthesized from a common divergent intermediate through developed indole dearomatization methodologies to afford three-dimensional molecular frameworks that could be further diversified via intramolecular coupling and/or carbon monoxide insertion. In total, 154 PNPs were synthesized representing eight different classes. Cheminformatic analyses showed that the PNPs are structurally diverse between classes. Biological investigations revealed the extent of diverse bioactivity enrichment of the collection in which four inhibitors of Hedgehog signalling, DNA synthesis, de novo pyrimidine biosynthesis and tubulin polymerization were identified from four different PNP classes.
Collapse
Affiliation(s)
- Sukdev Bag
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Jie Liu
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sohan Patil
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Jana Bonowski
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sandra Koska
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Beate Schölermann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Ruirui Zhang
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Lin Wang
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Axel Pahl
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Compound Management and Screening Center, Dortmund, Germany
| | - Sonja Sievers
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Compound Management and Screening Center, Dortmund, Germany
| | - Lukas Brieger
- Faculty of Chemistry and Chemical Biology, Inorganic Chemistry, TU Dortmund University, Dortmund, Germany
| | - Carsten Strohmann
- Faculty of Chemistry and Chemical Biology, Inorganic Chemistry, TU Dortmund University, Dortmund, Germany
| | - Slava Ziegler
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Michael Grigalunas
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
10
|
Wang L, Yilmaz F, Yildirim O, Schölermann B, Bag S, Greiner L, Pahl A, Sievers S, Scheel R, Strohmann C, Squire C, Foley DJ, Ziegler S, Grigalunas M, Waldmann H. Discovery of a Novel Pseudo-Natural Product Aurora Kinase Inhibitor Chemotype through Morphological Profiling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309202. [PMID: 38569218 PMCID: PMC11151026 DOI: 10.1002/advs.202309202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/20/2024] [Indexed: 04/05/2024]
Abstract
The pseudo-natural product (pseudo-NP) concept aims to combine NP fragments in arrangements that are not accessible through known biosynthetic pathways. The resulting compounds retain the biological relevance of NPs but are not yet linked to bioactivities and may therefore be best evaluated by unbiased screening methods resulting in the identification of unexpected or unprecedented bioactivities. Herein, various NP fragments are combined with a tricyclic core connectivity via interrupted Fischer indole and indole dearomatization reactions to provide a collection of highly three-dimensional pseudo-NPs. Target hypothesis generation by morphological profiling via the cell painting assay guides the identification of an unprecedented chemotype for Aurora kinase inhibition with both its relatively highly 3D structure and its physicochemical properties being very different from known inhibitors. Biochemical and cell biological characterization indicate that the phenotype identified by the cell painting assay corresponds to the inhibition of Aurora kinase B.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
| | - Furkan Yilmaz
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
- Faculty of Chemistry and Chemical BiologyTU Dortmund University44227DortmundGermany
| | - Okan Yildirim
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
| | - Beate Schölermann
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
| | - Sukdev Bag
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
| | - Luca Greiner
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
| | - Axel Pahl
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
- Compound Management and Screening Center (COMAS)44227DortmundGermany
| | - Sonja Sievers
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
- Compound Management and Screening Center (COMAS)44227DortmundGermany
| | - Rebecca Scheel
- Faculty of Chemistry and Inorganic ChemistryTU Dortmund University44227DortmundGermany
| | - Carsten Strohmann
- Faculty of Chemistry and Inorganic ChemistryTU Dortmund University44227DortmundGermany
| | - Christopher Squire
- School of Biological SciencesUniversity of Auckland1142AucklandNew Zealand
| | - Daniel J. Foley
- School of Physical and Chemical SciencesUniversity of Canterbury8041ChristchurchNew Zealand
| | - Slava Ziegler
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
| | - Michael Grigalunas
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
| | - Herbert Waldmann
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
- Faculty of Chemistry and Chemical BiologyTU Dortmund University44227DortmundGermany
| |
Collapse
|
11
|
Seal S, Trapotsi MA, Spjuth O, Singh S, Carreras-Puigvert J, Greene N, Bender A, Carpenter AE. A Decade in a Systematic Review: The Evolution and Impact of Cell Painting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592531. [PMID: 38766203 PMCID: PMC11100607 DOI: 10.1101/2024.05.04.592531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
High-content image-based assays have fueled significant discoveries in the life sciences in the past decade (2013-2023), including novel insights into disease etiology, mechanism of action, new therapeutics, and toxicology predictions. Here, we systematically review the substantial methodological advancements and applications of Cell Painting. Advancements include improvements in the Cell Painting protocol, assay adaptations for different types of perturbations and applications, and improved methodologies for feature extraction, quality control, and batch effect correction. Moreover, machine learning methods recently surpassed classical approaches in their ability to extract biologically useful information from Cell Painting images. Cell Painting data have been used alone or in combination with other - omics data to decipher the mechanism of action of a compound, its toxicity profile, and many other biological effects. Overall, key methodological advances have expanded Cell Painting's ability to capture cellular responses to various perturbations. Future advances will likely lie in advancing computational and experimental techniques, developing new publicly available datasets, and integrating them with other high-content data types.
Collapse
Affiliation(s)
- Srijit Seal
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| | - Maria-Anna Trapotsi
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, United Kingdom
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-75124, Uppsala, Sweden
| | - Shantanu Singh
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, United Kingdom
| | - Jordi Carreras-Puigvert
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-75124, Uppsala, Sweden
| | - Nigel Greene
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Andreas Bender
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| | - Anne E. Carpenter
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
| |
Collapse
|
12
|
Seal S, Trapotsi MA, Spjuth O, Singh S, Carreras-Puigvert J, Greene N, Bender A, Carpenter AE. A Decade in a Systematic Review: The Evolution and Impact of Cell Painting. ARXIV 2024:arXiv:2405.02767v1. [PMID: 38745696 PMCID: PMC11092692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
High-content image-based assays have fueled significant discoveries in the life sciences in the past decade (2013-2023), including novel insights into disease etiology, mechanism of action, new therapeutics, and toxicology predictions. Here, we systematically review the substantial methodological advancements and applications of Cell Painting. Advancements include improvements in the Cell Painting protocol, assay adaptations for different types of perturbations and applications, and improved methodologies for feature extraction, quality control, and batch effect correction. Moreover, machine learning methods recently surpassed classical approaches in their ability to extract biologically useful information from Cell Painting images. Cell Painting data have been used alone or in combination with other -omics data to decipher the mechanism of action of a compound, its toxicity profile, and many other biological effects. Overall, key methodological advances have expanded Cell Painting's ability to capture cellular responses to various perturbations. Future advances will likely lie in advancing computational and experimental techniques, developing new publicly available datasets, and integrating them with other high-content data types.
Collapse
Affiliation(s)
- Srijit Seal
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| | - Maria-Anna Trapotsi
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, United Kingdom
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-75124, Uppsala, Sweden
| | - Shantanu Singh
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, United Kingdom
| | - Jordi Carreras-Puigvert
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-75124, Uppsala, Sweden
| | - Nigel Greene
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Andreas Bender
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| | - Anne E. Carpenter
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
| |
Collapse
|
13
|
Pahl I, Pahl A, Hauk A, Budde D, Sievers S, Fruth L, Menzel R. Assessing biologic/toxicologic effects of extractables from plastic contact materials for advanced therapy manufacturing using cell painting assay and cytotoxicity screening. Sci Rep 2024; 14:5933. [PMID: 38467674 PMCID: PMC10928227 DOI: 10.1038/s41598-024-55952-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
Plastic components are essential in the pharmaceutical industry, encompassing container closure systems, laboratory handling equipment, and single-use systems. As part of their material qualification process, studies on interactions between plastic contact materials and process solutions or drug products are conducted. The assessment of single-use systems includes their potential impact on patient safety, product quality, and process performance. This is particularly crucial in cell and gene therapy applications since interactions with the plastic contact material may result in an adverse effect on the isolated therapeutic human cells. We utilized the cell painting assay (CPA), a non-targeted method, for profiling the morphological characteristics of U2OS human osteosarcoma cells in contact with chemicals related to plastic contact materials. Specifically, we conducted a comprehensive analysis of 45 common plastic extractables, and two extracts from single-use systems. Results of the CPA are compared with a standard cytotoxicity assay, an osteogenesis differentiation assay, and in silico toxicity predictions. The findings of this feasibility study demonstrate that the device extracts and most of the tested compounds do not evoke any measurable biological changes on the cells (induction ≤ 5%) among the 579 cell features measured at concentrations ≤ 50 µM. CPA can serve as an important assay to reveal unique information not accessible through quantitative structure-activity relationship analysis and vice versa. The results highlight the need for a combination of in vitro and in silico methods in a comprehensive assessment of single-use equipment utilized in advanced therapy medicinal products manufacturing.
Collapse
Affiliation(s)
- Ina Pahl
- Sartorius Stedim Biotech GmbH, August-Spindler-Str. 11, 37079, Göttingen, Germany.
| | - Axel Pahl
- Compound Management and Screening Center, MPI of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Armin Hauk
- Sartorius Stedim Biotech GmbH, August-Spindler-Str. 11, 37079, Göttingen, Germany
| | - Dana Budde
- Sartorius Stedim Biotech GmbH, August-Spindler-Str. 11, 37079, Göttingen, Germany
| | - Sonja Sievers
- Compound Management and Screening Center, MPI of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Lothar Fruth
- Tox Expert GmbH, An der Feldscheide 1, 37083, Göttingen, Germany
| | - Roberto Menzel
- Sartorius Stedim Biotech GmbH, August-Spindler-Str. 11, 37079, Göttingen, Germany
| |
Collapse
|
14
|
Fan C, Zhang Z, Lai Z, Yang Y, Li J, Liu L, Chen S, Hu X, Zhao H, Cui S. Chemical Evolution and Biological Evaluation of Natural Products for Efficient Therapy of Acute Lung Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305432. [PMID: 38126681 PMCID: PMC10870070 DOI: 10.1002/advs.202305432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/01/2023] [Indexed: 12/23/2023]
Abstract
Acute lung injury (ALI) is one of the most common complications in COVID-19 and also a syndrome of acute respiratory failure with high mortality rates, but lacks effective therapeutic drugs. Natural products provide inspiration and have proven to be the most valuable source for bioactive molecule discovery. In this study, the chemical evolution of the natural product Tanshinone IIA (Tan-IIA) to achieve a piperidine-fused scaffold through a synthetic route of pre-activation, multi-component reaction, and post-modification is presented. Through biological evaluation, it is pinpointed that compound 8b is a standout candidate with remarkable anti-inflammation and anti-oxidative stress properties, coupled with low toxicity. The mechanistic study unveils a multifaceted biological profile of 8b and shows that 8b is highly efficient in vivo for the treatment of ALI. Therefore, this work not only provides an effective strategy for the treatment of ALI, but also offers a distinctive natural product-inspired drug discovery.
Collapse
Affiliation(s)
- Chengcheng Fan
- Institute of Drug Discovery and DesignCollege of Pharmaceutical SciencesNational Key Laboratory of Advanced Drug Delivery and Release SystemsZhejiang University866 Yuhangtang RoadHangzhou310058China
| | - Zeyi Zhang
- College of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhou311402China
| | - Zhencheng Lai
- Institute of Drug Discovery and DesignCollege of Pharmaceutical SciencesNational Key Laboratory of Advanced Drug Delivery and Release SystemsZhejiang University866 Yuhangtang RoadHangzhou310058China
| | - Yanzi Yang
- College of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhou311402China
| | - Jiaming Li
- Institute of Drug Discovery and DesignCollege of Pharmaceutical SciencesNational Key Laboratory of Advanced Drug Delivery and Release SystemsZhejiang University866 Yuhangtang RoadHangzhou310058China
| | - Lei Liu
- Institute of Drug Discovery and DesignCollege of Pharmaceutical SciencesNational Key Laboratory of Advanced Drug Delivery and Release SystemsZhejiang University866 Yuhangtang RoadHangzhou310058China
| | - Siyu Chen
- Institute of Drug Discovery and DesignCollege of Pharmaceutical SciencesNational Key Laboratory of Advanced Drug Delivery and Release SystemsZhejiang University866 Yuhangtang RoadHangzhou310058China
| | - Xueping Hu
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237China
| | - Huajun Zhao
- College of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhou311402China
| | - Sunliang Cui
- Institute of Drug Discovery and DesignCollege of Pharmaceutical SciencesNational Key Laboratory of Advanced Drug Delivery and Release SystemsZhejiang University866 Yuhangtang RoadHangzhou310058China
- Jinhua Institute of Zhejiang UniversityJinhuaZhejiang321299China
| |
Collapse
|
15
|
Aoyama H, Davies C, Liu J, Pahl A, Kirchhoff JL, Scheel R, Sievers S, Strohmann C, Grigalunas M, Waldmann H. Collective Synthesis of Sarpagine and Macroline Alkaloid-Inspired Compounds. Chemistry 2024; 30:e202303027. [PMID: 37755456 DOI: 10.1002/chem.202303027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
Design strategies that can access natural-product-like chemical space in an efficient manner may facilitate the discovery of biologically relevant compounds. We have employed a divergent intermediate strategy to construct an indole alkaloid-inspired compound collection derived from two different molecular design principles, i.e. biology-oriented synthesis and pseudo-natural products. The divergent intermediate was subjected to acid-catalyzed or newly discovered Sn-mediated conditions to selectively promote intramolecular C- or N-acylation, respectively. After further derivatization, a collection totalling 84 compounds representing four classes was obtained. Morphological profiling via the cell painting assay coupled with a subprofile analysis showed that compounds derived from different design principles have different bioactivity profiles. The subprofile analysis suggested that a pseudo-natural product class is enriched in modulators of tubulin, and subsequent assays led to the identification of compounds that suppress in vitro tubulin polymerization and mitotic progression.
Collapse
Affiliation(s)
- Hikaru Aoyama
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, 44227, Dortmund, Germany
| | - Caitlin Davies
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, 44227, Dortmund, Germany
| | - Jie Liu
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, 44227, Dortmund, Germany
| | - Axel Pahl
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, 44227, Dortmund, Germany
- Compound Management and Screening Center, 44227, Dortmund, Germany
| | - Jan-Lukas Kirchhoff
- Technical University Dortmund, Faculty of Chemistry, Inorganic Chemistry, 44227, Dortmund, Germany
| | - Rebecca Scheel
- Technical University Dortmund, Faculty of Chemistry, Inorganic Chemistry, 44227, Dortmund, Germany
| | - Sonja Sievers
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, 44227, Dortmund, Germany
- Compound Management and Screening Center, 44227, Dortmund, Germany
| | - Carsten Strohmann
- Technical University Dortmund, Faculty of Chemistry, Inorganic Chemistry, 44227, Dortmund, Germany
| | - Michael Grigalunas
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, 44227, Dortmund, Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, 44227, Dortmund, Germany
- Technical University Dortmund, Faculty of Chemistry, Chemical Biology, 44227, Dortmund, Germany
| |
Collapse
|
16
|
Xie J, Pahl A, Krzyzanowski A, Krupp A, Liu J, Koska S, Schölermann B, Zhang R, Bonowski J, Sievers S, Strohmann C, Ziegler S, Grigalunas M, Waldmann H. Synthetic Matching of Complex Monoterpene Indole Alkaloid Chemical Space. Angew Chem Int Ed Engl 2023; 62:e202310222. [PMID: 37818743 DOI: 10.1002/anie.202310222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Monoterpene indole alkaloids (MIAs) are endowed with high structural and spatial complexity and characterized by diverse biological activities. Given this complexity-activity combination in MIAs, rapid and efficient access to chemical matter related to and with complexity similar to these alkaloids would be highly desirable, since such compound classes might display novel bioactivity. We describe the design and synthesis of a pseudo-natural product (pseudo-NP) collection obtained by the unprecedented combination of MIA fragments through complexity-generating transformations, resulting in arrangements not currently accessible by biosynthetic pathways. Cheminformatic analyses revealed that both the pseudo-NPs and the MIAs reside in a unique and common area of chemical space with high spatial complexity-density that is only sparsely populated by other natural products and drugs. Investigation of bioactivity guided by morphological profiling identified pseudo-NPs that inhibit DNA synthesis and modulate tubulin. These results demonstrate that the pseudo-NP collection occupies similar biologically relevant chemical space that Nature has endowed MIAs with.
Collapse
Affiliation(s)
- Jianing Xie
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Axel Pahl
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Compound Management and Screening Center (COMAS), Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Adrian Krzyzanowski
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Anna Krupp
- Faculty of Chemistry, Inorganic Chemistry, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Jie Liu
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Sandra Koska
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Beate Schölermann
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Ruirui Zhang
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Jana Bonowski
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Sonja Sievers
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Compound Management and Screening Center (COMAS), Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Carsten Strohmann
- Faculty of Chemistry, Inorganic Chemistry, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Slava Ziegler
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Michael Grigalunas
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| |
Collapse
|
17
|
Hassan AH, Bayoumi WA, El-Sayed SM, Phan TN, Oh T, Ham G, Mahmoud K, No JH, Lee YS. Design, Synthesis, and Repurposing of Rosmarinic Acid-β-Amino-α-Ketoamide Hybrids as Antileishmanial Agents. Pharmaceuticals (Basel) 2023; 16:1594. [PMID: 38004459 PMCID: PMC10675174 DOI: 10.3390/ph16111594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
A series of rosmarinic acid-β-amino-α-ketoamide hybrids were synthesized and rationally repurposed towards the identification of new antileishmanial hit compounds. Two hybrids, 2g and 2h, showed promising activity (IC50 values of 9.5 and 8.8 μM against Leishmania donovani promastigotes, respectively). Their activities were comparable to erufosine. In addition, cytotoxicity evaluation employing human THP-1 cells revealed that the two hybrids 2g and 2h possess no cytotoxic effects up to 100 µM, while erufosine possessed cytotoxicity with CC50 value of 19.4 µM. In silico docking provided insights into structure-activity relationship emphasizing the importance of the aliphatic chain at the α-carbon of the cinnamoyl carbonyl group establishing favorable binding interactions with LdCALP and LARG in both hybrids 2g and 2h. In light of these findings, hybrids 2g and 2h are suggested as potential safe antileishmanial hit compounds for further development of anti-leishmanial agents.
Collapse
Affiliation(s)
- Ahmed H.E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Waleed A. Bayoumi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Selwan M. El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Trong-Nhat Phan
- Institute of Applied Science and Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Vietnam
| | - Taegeun Oh
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gyeongpyo Ham
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kazem Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt
| | - Joo Hwan No
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
18
|
Yang Y, Gao ZF, Hou GG, Meng QG, Hou Y. Discovery of anti-neuroinflammatory agents from 1,4,5,6-tetrahydrobenzo[2,3]oxepino[4,5-d]pyrimidin-2-amine derivatives by regulating microglia polarization. Eur J Med Chem 2023; 259:115688. [PMID: 37544188 DOI: 10.1016/j.ejmech.2023.115688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Neuroinflammation mediated by microglia activation leads to various neurodegenerative and neurological disorders. In order to develop more and better options for this disorders, a series of 3,4-dihydrobenzo[b]oxepin-5(2H)-one derivatives (BZPs, 6-19) and novel 1,4,5,6-tetrahydrobenzo[2,3]oxepino[4,5-d]pyrimidin-2-amine derivatives (BPMs, 20-33) were synthesized and screened the anti-neuroinflamamtion effects. 3,5-bis-trifluoromethylphenyl-substituted BPM 29 showed more potent anti-neuroinflammatory activity and no toxicity to BV2 microglia cells in vitro. 29 significantly reduced the number of M1 phenotype of microglia cells, but significantly increased the number of M2 phenotype of microglia cells in lipopolysaccharide (LPS)-induced BV2 microglia cells. 29 significantly reduced the secretion of inflammatory cytokines (IL-18, IL-1β, TNF-α), but increased the secretion of anti-inflammatory cytokines (IL-10) from LPS-induced BV2 microglia cells. Also, 29 inhibited the NOD-like receptor NLRP3 inflammasome formation, and down-regulated the expression of M2 isoform of pyruvate kinase in LPS-induced BV2 microglia cells. In vivo, 29 reduced the neuroinflammation in cuprizone-induced inflammatory and demyelinating mice by reducing the expression of inducible nitric-oxide synthase, but increased the expression of CD206. Taken together, 29 might be a prospective anti-neuroinflammatory compound for neuroinflammatory and demyelinating disease by alleviating microglia activation.
Collapse
Affiliation(s)
- Yang Yang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, PR China
| | - Zhong-Fei Gao
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Gui-Ge Hou
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China.
| | - Qing-Guo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China.
| | - Yun Hou
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, PR China.
| |
Collapse
|
19
|
Stossi F, Singh PK, Safari K, Marini M, Labate D, Mancini MA. High throughput microscopy and single cell phenotypic image-based analysis in toxicology and drug discovery. Biochem Pharmacol 2023; 216:115770. [PMID: 37660829 DOI: 10.1016/j.bcp.2023.115770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Measuring single cell responses to the universe of chemicals (drugs, natural products, environmental toxicants etc.) is of paramount importance to human health as phenotypic variability in sensing stimuli is a hallmark of biology that is considered during high throughput screening. One of the ways to approach this problem is via high throughput, microscopy-based assays coupled with multi-dimensional single cell analysis methods. Here, we will summarize some of the efforts in this vast and growing field, focusing on phenotypic screens (e.g., Cell Painting), single cell analytics and quality control, with particular attention to environmental toxicology and drug screening. We will discuss advantages and limitations of high throughput assays with various end points and levels of complexity.
Collapse
Affiliation(s)
- Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA.
| | - Pankaj K Singh
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA; Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Kazem Safari
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA; Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Michela Marini
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA; Department of Mathematics, University of Houston, Houston, TX, USA
| | - Demetrio Labate
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA; Department of Mathematics, University of Houston, Houston, TX, USA
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA; Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| |
Collapse
|
20
|
Wanner DM, Becker PM, Suhr S, Wannenmacher N, Ziegler S, Herrmann J, Willig F, Gabler J, Jangid K, Schmid J, Hans AC, Frey W, Sarkar B, Kästner J, Peters R. Cooperative Lewis Acid-1,2,3-Triazolium-Aryloxide Catalysis: Pyrazolone Addition to Nitroolefins as Entry to Diaminoamides. Angew Chem Int Ed Engl 2023; 62:e202307317. [PMID: 37358186 DOI: 10.1002/anie.202307317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
Pyrazolones represent an important structural motif in active pharmaceutical ingredients. Their asymmetric synthesis is thus widely studied. Still, a generally highly enantio- and diastereoselective 1,4-addition to nitroolefins providing products with adjacent stereocenters is elusive. In this article, a new polyfunctional CuII -1,2,3-triazolium-aryloxide catalyst is presented which enables this reaction type with high stereocontrol. DFT studies revealed that the triazolium stabilizes the transition state by hydrogen bonding between C(5)-H and the nitroolefin and verify a cooperative mode of activation. Moreover, they show that the catalyst adopts a rigid chiral cage/pore structure by intramolecular hydrogen bonding, by which stereocontrol is achieved. Control catalyst systems confirm the crucial role of the triazolium, aryloxide and CuII , requiring a sophisticated structural orchestration for high efficiency. The addition products were used to form pyrazolidinones by chemoselective C=N reduction. These heterocycles are shown to be valuable precursors toward β,γ'-diaminoamides by chemoselective nitro and N-N bond reductions. Morphological profiling using the Cell painting assay identified biological activities for the pyrazolidinones and suggest modulation of DNA synthesis as a potential mode of action. One product showed biological similarity to Camptothecin, a lead structure for cancer therapy.
Collapse
Affiliation(s)
- Daniel M Wanner
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Patrick M Becker
- Universität Stuttgart, Institut für Theoretische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Simon Suhr
- Universität Stuttgart, Institut für Anorganische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Nick Wannenmacher
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Slava Ziegler
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Justin Herrmann
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Felix Willig
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Julia Gabler
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Khushbu Jangid
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Juliane Schmid
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Andreas C Hans
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Wolfgang Frey
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Biprajit Sarkar
- Universität Stuttgart, Institut für Anorganische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Johannes Kästner
- Universität Stuttgart, Institut für Theoretische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - René Peters
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
21
|
Qin LQ, Sun JY, Chen NY, Li XW, Gao DF, Wang W, Mo DL, Su JC, Su GF, Pan CX. Design and synthesis of pseudo-rutaecarpines as potent anti-inflammatory agents via regulating MAPK/NF-κB pathways to relieve inflammation-induced acute liver injury in mice. Bioorg Chem 2023; 138:106611. [PMID: 37236073 DOI: 10.1016/j.bioorg.2023.106611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Pseudo-natural products (PNPs) design strategy provides a great valuable entrance to effectively identify of novel bioactive scaffolds. In this report, novel pseudo-rutaecarpines were designed via the combination of several privileged structure units and 46 target compounds were synthesized. Most of them display moderate to potent inhibitory effect on LPS-induced NO production and low cytotoxicity in RAW264.7 macrophage. The results of the anti-inflammatory efficacy and action mechanism of compounds 7l and 8c indicated that they significantly reduced the release of IL-6, IL-1β and TNF-α. Further studies revealed that they can strongly inhibit the activation of NF-κB and MAPK signal pathways. The LPS-induced acute liver injury mice model studies not only confirmed their anti-inflammatory efficacy in vivo but also could effectively relieve the liver injury in mice. The results suggest that compounds 7l and 8c might serve as lead compounds to develop therapeutic drugs for treatment of inflammation.
Collapse
Affiliation(s)
- Li-Qing Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China; Department of Chemistry and Pharmaceutical Science, Guilin Normal College, 9 Feihu Road, Gulin 541199, China
| | - Jia-Yi Sun
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Nan-Ying Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Xin-Wei Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - De-Feng Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Wang Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Jun-Cheng Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| | - Cheng-Xue Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| |
Collapse
|
22
|
Pahl A, Schölermann B, Lampe P, Rusch M, Dow M, Hedberg C, Nelson A, Sievers S, Waldmann H, Ziegler S. Morphological subprofile analysis for bioactivity annotation of small molecules. Cell Chem Biol 2023:S2451-9456(23)00159-9. [PMID: 37385259 DOI: 10.1016/j.chembiol.2023.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/21/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023]
Abstract
Fast prediction of the mode of action (MoA) for bioactive compounds would immensely foster bioactivity annotation in compound collections and may early on reveal off-targets in chemical biology research and drug discovery. Morphological profiling, e.g., using the Cell Painting assay, offers a fast, unbiased assessment of compound activity on various targets in one experiment. However, due to incomplete bioactivity annotation and unknown activities of reference compounds, prediction of bioactivity is not straightforward. Here we introduce the concept of subprofile analysis to map the MoA for both, reference and unexplored compounds. We defined MoA clusters and extracted cluster subprofiles that contain only a subset of morphological features. Subprofile analysis allows for the assignment of compounds to, currently, twelve targets or MoA. This approach enables rapid bioactivity annotation of compounds and will be extended to further clusters in the future.
Collapse
Affiliation(s)
- Axel Pahl
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | - Beate Schölermann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Philipp Lampe
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Marion Rusch
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Mark Dow
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Christian Hedberg
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Adam Nelson
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sonja Sievers
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany; Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Slava Ziegler
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| |
Collapse
|
23
|
Gaudêncio SP, Bayram E, Lukić Bilela L, Cueto M, Díaz-Marrero AR, Haznedaroglu BZ, Jimenez C, Mandalakis M, Pereira F, Reyes F, Tasdemir D. Advanced Methods for Natural Products Discovery: Bioactivity Screening, Dereplication, Metabolomics Profiling, Genomic Sequencing, Databases and Informatic Tools, and Structure Elucidation. Mar Drugs 2023; 21:md21050308. [PMID: 37233502 DOI: 10.3390/md21050308] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Natural Products (NP) are essential for the discovery of novel drugs and products for numerous biotechnological applications. The NP discovery process is expensive and time-consuming, having as major hurdles dereplication (early identification of known compounds) and structure elucidation, particularly the determination of the absolute configuration of metabolites with stereogenic centers. This review comprehensively focuses on recent technological and instrumental advances, highlighting the development of methods that alleviate these obstacles, paving the way for accelerating NP discovery towards biotechnological applications. Herein, we emphasize the most innovative high-throughput tools and methods for advancing bioactivity screening, NP chemical analysis, dereplication, metabolite profiling, metabolomics, genome sequencing and/or genomics approaches, databases, bioinformatics, chemoinformatics, and three-dimensional NP structure elucidation.
Collapse
Affiliation(s)
- Susana P Gaudêncio
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Engin Bayram
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
| | - Ana R Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
- Instituto Universitario de Bio-Orgánica (IUBO), Universidad de La Laguna, 38206 La Laguna, Spain
| | - Berat Z Haznedaroglu
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Carlos Jimenez
- CICA- Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, HCMR Thalassocosmos, 71500 Gournes, Crete, Greece
| | - Florbela Pereira
- LAQV, REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Fernando Reyes
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Armilla, Spain
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
- Faculty of Mathematics and Natural Science, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
24
|
Dahlin JL, Hua BK, Zucconi BE, Nelson SD, Singh S, Carpenter AE, Shrimp JH, Lima-Fernandes E, Wawer MJ, Chung LPW, Agrawal A, O'Reilly M, Barsyte-Lovejoy D, Szewczyk M, Li F, Lak P, Cuellar M, Cole PA, Meier JL, Thomas T, Baell JB, Brown PJ, Walters MA, Clemons PA, Schreiber SL, Wagner BK. Reference compounds for characterizing cellular injury in high-content cellular morphology assays. Nat Commun 2023; 14:1364. [PMID: 36914634 PMCID: PMC10011410 DOI: 10.1038/s41467-023-36829-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Robust, generalizable approaches to identify compounds efficiently with undesirable mechanisms of action in complex cellular assays remain elusive. Such a process would be useful for hit triage during high-throughput screening and, ultimately, predictive toxicology during drug development. Here we generate cell painting and cellular health profiles for 218 prototypical cytotoxic and nuisance compounds in U-2 OS cells in a concentration-response format. A diversity of compounds that cause cellular damage produces bioactive cell painting morphologies, including cytoskeletal poisons, genotoxins, nonspecific electrophiles, and redox-active compounds. Further, we show that lower quality lysine acetyltransferase inhibitors and nonspecific electrophiles can be distinguished from more selective counterparts. We propose that the purposeful inclusion of cytotoxic and nuisance reference compounds such as those profiled in this resource will help with assay optimization and compound prioritization in complex cellular assays like cell painting.
Collapse
Grants
- R35 GM127045 NIGMS NIH HHS
- U01 CA272612 NCI NIH HHS
- T32 HL007627 NHLBI NIH HHS
- R37 GM062437 NIGMS NIH HHS
- S10 OD026839 NIH HHS
- R35 GM122481 NIGMS NIH HHS
- U01 DK123717 NIDDK NIH HHS
- Wellcome Trust
- R35 GM122547 NIGMS NIH HHS
- U01 CA217848 NCI NIH HHS
- K99 GM124357 NIGMS NIH HHS
- R35 GM149229 NIGMS NIH HHS
- This study was supported by the Ono Pharma Breakthrough Science Initiative Award (to BKW). Authors acknowledge the following financial support: JLD (NIH NHLBI, T32-HL007627); BKH (National Science Foundation, DGE1144152 and DGE1745303); BEZ (NIH NIGMS, K99-GM124357); SDN (Harvard University’s Graduate Prize Fellowship, Eli Lilly Graduate Fellowship in Chemistry); PA Cole (NIH NIGMS, R37-GM62437); SLS (NIGMS, R35-GM127045); BKW (Ono Pharma Foundation; NIH NIDDK, U01-DK123717); SS (NIH NIGMS, R35-GM122547). The authors gratefully acknowledge the use of the Opera Phenix High-Content/High-Throughput imaging system at the Broad Institute, funded by the NIH S10 grant OD026839. This research was supported in part by the Intramural/Extramural research program of the NCATS, NIH.
Collapse
Affiliation(s)
- Jayme L Dahlin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA.
| | - Bruce K Hua
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Beth E Zucconi
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | - Jonathan H Shrimp
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | | | - Mathias J Wawer
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Lawrence P W Chung
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Ayushi Agrawal
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | | | | | - Magdalena Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Parnian Lak
- Department of Pharmaceutical Chemistry and Quantitative Biology Institute, University of California San Francisco, San Francisco, CA, USA
| | - Matthew Cuellar
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, USA
| | - Philip A Cole
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Tim Thomas
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jonathan B Baell
- Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Michael A Walters
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, USA
| | - Paul A Clemons
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Bridget K Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
25
|
de Dios SMR, Hass JL, Graham DL, Kumar N, Antony AE, Morton MD, Berkowitz DB. Information-Rich, Dual-Function 13C/ 2H-Isotopic Crosstalk NMR Assay for Human Serine Racemase (hSR) Provides a PLP-Enzyme "Partitioning Fingerprint" and Reveals Disparate Chemotypes for hSR Inhibition. J Am Chem Soc 2023; 145:3158-3174. [PMID: 36696670 PMCID: PMC11103274 DOI: 10.1021/jacs.2c12774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The first dual-function assay for human serine racemase (hSR), the only bona fide racemase in human biology, is reported. The hSR racemization function is essential for neuronal signaling, as the product, d-serine (d-Ser), is a potent N-methyl d-aspartate (NMDA) coagonist, important for learning and memory, with dysfunctional d-Ser-signaling being observed in some neuronal disorders. The second hSR function is β-elimination and gives pyruvate; this activity is elevated in colorectal cancer. This new NMR-based assay allows one to monitor both α-proton-exchange chemistry and β-elimination using only the native l-Ser substrate and hSR and is the most sensitive such assay. The assay judiciously employs segregated dual 13C-labeling and 13C/2H crosstalk, exploiting both the splitting and shielding effects of deuterium. The assay is deployed to screen a 1020-compound library and identifies an indolo-chroman-2,4-dione inhibitor family that displays allosteric site binding behavior (noncompetitive inhibition vs l-Ser substrate; competitive inhibition vs adenosine 5'-triphosphate (ATP)). This assay also reveals important mechanistic information for hSR; namely, that H/D exchange is ∼13-fold faster than racemization, implying that K56 protonates the carbanionic intermediate on the si-face much faster than does S84 on the re-face. Moreover, the 13C NMR peak pattern seen is suggestive of internal return, pointing to K56 as the likely enamine-protonating residue for β-elimination. The 13C/2H-isotopic crosstalk assay has also been applied to the enzyme tryptophan synthase and reveals a dramatically different partition ratio in this active site (β-replacement: si-face protonation ∼6:1 vs β-elimination: si-face protonation ∼1:3.6 for hSR), highlighting the value of this approach for fingerprinting the pyridoxal phosphate (PLP) enzyme mechanism.
Collapse
Affiliation(s)
| | | | | | - Nivesh Kumar
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 USA
| | - Aina E. Antony
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 USA
| | - Martha D. Morton
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 USA
| | | |
Collapse
|
26
|
Grigalunas M, Patil S, Krzyzanowski A, Pahl A, Flegel J, Schölermann B, Xie J, Sievers S, Ziegler S, Waldmann H. Unprecedented Combination of Polyketide Natural Product Fragments Identifies the New Hedgehog Signaling Pathway Inhibitor Grismonone. Chemistry 2022; 28:e202202164. [PMID: 36083197 PMCID: PMC10091983 DOI: 10.1002/chem.202202164] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/09/2022]
Abstract
Pseudo-natural products (pseudo-NPs) are de novo combinations of natural product (NP) fragments that define novel bioactive chemotypes. For their discovery, new design principles are being sought. Previously, pseudo-NPs were synthesized by the combination of fragments originating from biosynthetically unrelated NPs to guarantee structural novelty and novel bioactivity. We report the combination of fragments from biosynthetically related NPs in novel arrangements to yield a novel chemotype with activity not shared by the guiding fragments. We describe the synthesis of the polyketide pseudo-NP grismonone and identify it as a structurally novel and potent inhibitor of Hedgehog signaling. The insight that the de novo combination of fragments derived from biosynthetically related NPs may also yield new biologically relevant compound classes with unexpected bioactivity may be considered a chemical extension or diversion of existing biosynthetic pathways and greatly expands the opportunities for exploration of biologically relevant chemical space by means of the pseudo-NP principle.
Collapse
Affiliation(s)
- Michael Grigalunas
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Sohan Patil
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Adrian Krzyzanowski
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Technical University DortmundFaculty of ChemistryChemical BiologyDortmund44227Germany
| | - Axel Pahl
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Compound Management and Screening CenterDortmund44227Germany
| | - Jana Flegel
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Beate Schölermann
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Jianing Xie
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Sonja Sievers
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Compound Management and Screening CenterDortmund44227Germany
| | - Slava Ziegler
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Technical University DortmundFaculty of ChemistryChemical BiologyDortmund44227Germany
| |
Collapse
|
27
|
Davies C, Dötsch L, Ciulla MG, Hennes E, Yoshida K, Gasper R, Scheel R, Sievers S, Strohmann C, Kumar K, Ziegler S, Waldmann H. Identification of a Novel Pseudo-Natural Product Type IV IDO1 Inhibitor Chemotype. Angew Chem Int Ed Engl 2022; 61:e202209374. [PMID: 35959923 DOI: 10.1002/anie.202209374] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 01/07/2023]
Abstract
Natural product (NP)-inspired design principles provide invaluable guidance for bioactive compound discovery. Pseudo-natural products (PNPs) are de novo combinations of NP fragments to target biologically relevant chemical space not covered by NPs. We describe the design and synthesis of apoxidoles, a novel pseudo-NP class, whereby indole- and tetrahydropyridine fragments are linked in monopodal connectivity not found in nature. Apoxidoles are efficiently accessible by an enantioselective [4+2] annulation reaction. Biological evaluation revealed that apoxidoles define a new potent type IV inhibitor chemotype of indoleamine 2,3-dioxygenase 1 (IDO1), a heme-containing enzyme considered a target for the treatment of neurodegeneration, autoimmunity and cancer. Apoxidoles target apo-IDO1, prevent heme binding and induce unique amino acid positioning as revealed by crystal structure analysis. Novel type IV apo-IDO1 inhibitors are in high demand, and apoxidoles may provide new opportunities for chemical biology and medicinal chemistry research.
Collapse
Affiliation(s)
- Caitlin Davies
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Technical University of Dortmund, Department of Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Lara Dötsch
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Technical University of Dortmund, Department of Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Maria Gessica Ciulla
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Current address: Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Elisabeth Hennes
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Technical University of Dortmund, Department of Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Kei Yoshida
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Raphael Gasper
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Rebecca Scheel
- Technical University of Dortmund, Department of Inorganic Chemistry, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Sonja Sievers
- Compound Management and Screening Center (COMAS), Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Carsten Strohmann
- Technical University of Dortmund, Department of Inorganic Chemistry, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Kamal Kumar
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Current address: AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str. 475, 42117, Wuppertal, Germany
| | - Slava Ziegler
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Technical University of Dortmund, Department of Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| |
Collapse
|
28
|
Gharpure SJ, Fartade DJ, Gupta KS, Patel RK. Transposition of an acrylate moiety in TMSOTf-mediated reaction of alkynyl vinylogous carbonates gives heterocyclic dienes. Chem Commun (Camb) 2022; 58:9762-9765. [PMID: 35959727 DOI: 10.1039/d2cc03802a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TMSOTf-mediated reaction of alkynyl vinylogous carbonates serendipitously gave 1,4-oxazepine and dihydropyran dienes via transposition of an ethyl acrylate moiety involving intramolecular cascade Prins-type cyclization/retro-oxa-Michael reaction/cycloisomerisation. The developed atom-economical protocol selectively provides an E double bond geometry. Dihydropyran dienes could be reduced diastereoselectively using Et3SiH/TMSOTf or could be transformed into polycyclic heterocycles by Heck reaction.
Collapse
Affiliation(s)
- Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| | - Dipak J Fartade
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| | - Krishna S Gupta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| | - Raj K Patel
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| |
Collapse
|
29
|
Liang L, Guo LD, Tong R. Achmatowicz Rearrangement-Inspired Development of Green Chemistry, Organic Methodology, and Total Synthesis of Natural Products. Acc Chem Res 2022; 55:2326-2340. [PMID: 35916456 DOI: 10.1021/acs.accounts.2c00358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The six-membered heterocycles containing oxygen and nitrogen (tetrahydropyrans, pyrans, piperidines) are among the most common heterocyclic structures ubiquitously present in bioactive molecules such as carbohydrates, small-molecule drugs, and natural products. Chemical synthesis of fully functionalized pyrans and piperidines is a research theme of practical importance and scientific significance and, thus, has attracted continuous interest from synthetic chemists. Among the numerous synthetic approaches, Achmatowicz rearrangement (AchR) represents a general and unique strategy that uses biomass-derived furfuryl alcohols as the renewable starting material to obtain fully functionalized six-membered oxygen/nitrogen heterocycles, which provides golden opportunities for organic chemists to address various synthetic challenges.This Account summarizes our 10 years of work on exploiting AchR to address some challenges in organic synthesis ranging from green chemistry and organic methodology to the total synthesis of natural products. We enabled the sustainable and safe use of AchR in a small (academia) or large (industrial) scale by developing two generations of green approaches for AchR (oxone-halide and Fenton-halide), which largely eliminate the use of the most popular, but more toxic and expansive, NBS and m-CPBA. This triggered our intensive interest in developing new green chemistry for important organic reactions, in particular, halogenation/oxidation reactions involving reactive halogenating species with the aim of eliminating the use of commonly used toxic halogen agents such as elemental bromine, chlorine gas, and various N-haloamide reagents (NBS, NCS, and NIS). We successfully employed oxone-halide and Fenton-halide as green alternatives to several mechanistically related organic reactions including arene/alkene halogenation, oxidation or oxidative rearrangement of indoles, oxidation of alcohols/thioacetals, and oxidative halogenation of aldoximes for the in situ generation of nitrile oxide. These green reactions are expected to have a solid impact on the future of organic synthesis in academia and industries.We expanded the synthetic utility of AchR by exploring several new transformations of AchR products and developed a cascade reductive ring expansion, reductive deoxygenation/Heck-Matsuda arylation, palladium-catalyzed C-arylation, and regiodivergent [3 + 2] cycloaddition with 1,3-dicarbonyls. These methodologies offer a new avenue to fully functionalized six-membered heterocycles.The synthetic utility of AchR was demonstrated in our total synthesis of 28 natural products with a pyran/piperidine moiety. The AchR-based strategy endows the total synthesis with scalability, sustainability, and flexibility. The green and scalable approaches developed in our lab for AchR allow us to easily obtain decagrams of synthetically valuable pyrans and/or piperidines with low risk and low cost from biomass-derived furfuryl alcohol/aldehyde.
Collapse
|
30
|
Li Y, Cheng S, Tian Y, Zhang Y, Zhao Y. Recent ring distortion reactions for diversifying complex natural products. Nat Prod Rep 2022; 39:1970-1992. [PMID: 35972343 DOI: 10.1039/d2np00027j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 2013-2022.Chemical diversification of natural products is an efficient way to generate natural product-like compounds for modern drug discovery programs. Utilizing ring-distortion reactions for diversifying natural products would directly alter the core ring systems of small molecules and lead to the production of structurally complex and diverse compounds for high-throughput screening. We review the ring distortion reactions recently used in complexity-to-diversity (CtD) and pseudo natural products (pseudo-NPs) strategies for diversifying complex natural products. The core ring structures of natural products are altered via ring expansion, ring cleavage, ring edge-fusion, ring spiro-fusion, ring rearrangement, and ring contraction. These reactions can rapidly provide natural product-like collections with properties suitable for a wide variety of biological and medicinal applications. The challenges and limitations of current ring distortion reactions are critically assessed, and avenues for future improvements of this rapidly expanding field are discussed. We also provide a toolbox for chemists for the application of ring distortion reactions to access natural product-like molecules.
Collapse
Affiliation(s)
- Yu Li
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Shihao Cheng
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yun Tian
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yanan Zhang
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yu Zhao
- School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
31
|
Davies C, Dötsch L, Ciulla MG, Hennes E, Yoshida K, Gasper R, Scheel R, Sievers S, Strohmann C, Kumar K, Ziegler S, Waldmann H. Identification of a Novel Pseudo‐Natural Product Type IV IDO1 Inhibitor Chemotype. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Caitlin Davies
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Lara Dötsch
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Maria Gessica Ciulla
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Elisabeth Hennes
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Kei Yoshida
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Raphael Gasper
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Crystallography and Biophysics Facility GERMANY
| | - Rebecca Scheel
- Technische Universität Dortmund: Technische Universitat Dortmund Inorganic Chemistry GERMANY
| | - Sonja Sievers
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Compound Management and Screening Center GERMANY
| | - Carsten Strohmann
- Technische Universität Dortmund: Technische Universitat Dortmund Inorganic Chemistry GERMANY
| | - Kamal Kumar
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Slava Ziegler
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Herbert Waldmann
- Max-Planck-Institute of Molecular Physiology: Max-Planck-Institut fur molekulare Physiologie Chemical Biology Otto-Hahn-Str. 11 44227 Dortmund GERMANY
| |
Collapse
|
32
|
Rietdijk J, Aggarwal T, Georgieva P, Lapins M, Carreras-Puigvert J, Spjuth O. Morphological profiling of environmental chemicals enables efficient and untargeted exploration of combination effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155058. [PMID: 35390365 DOI: 10.1016/j.scitotenv.2022.155058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Environmental chemicals are commonly studied one at a time, and there is a need to advance our understanding of the effect of exposure to their combinations. Here we apply high-content microscopy imaging of cells stained with multiplexed dyes (Cell Painting) to profile the effects of Cetyltrimethylammonium bromide (CTAB), Bisphenol A (BPA), and Dibutyltin dilaurate (DBTDL) exposure on four human cell lines; both individually and in all combinations. We show that morphological features can be used with multivariate data analysis to discern between exposures from individual compounds, concentrations, and combinations. CTAB and DBTDL induced concentration-dependent morphological changes across the four cell lines, and BPA exacerbated morphological effects when combined with CTAB and DBTDL. Combined exposure to CTAB and BPA induced changes in the ER, Golgi apparatus, nucleoli and cytoplasmic RNA in one of the cell lines. Different responses between cell lines indicate that multiple cell types are needed when assessing combination effects. The rapid and relatively low-cost experiments combined with high information content make Cell Painting an attractive methodology for future studies of combination effects. All data in the study is made publicly available on Figshare.
Collapse
Affiliation(s)
- Jonne Rietdijk
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Sweden
| | - Tanya Aggarwal
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Sweden
| | - Polina Georgieva
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Sweden
| | - Maris Lapins
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Sweden
| | - Jordi Carreras-Puigvert
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Sweden.
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Sweden.
| |
Collapse
|
33
|
Hamed EO, Assy MG, Ouf NH, Elsayed DA, Abdellattif MH. Cyclization of N-acetyl derivative: Novel synthesis – azoles and azines, antimicrobial activities, and computational studies. HETEROCYCL COMMUN 2022. [DOI: 10.1515/hc-2022-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
2-Pyridone is considered as one of the most famous efficient pharmaceutical compounds. Many approaches were discovered to synthesize 2-pyridone. In this present research, chloroacetylation of benzylamine at simple conditions, EtONa/EtCOONa produced N-benzyl-2-chloroacetamide 2. Compound 2 was allowed to react with different reagents. These reagents are acetylacetone, ethyl cyanoacetate, ethyl acetoacetate, and diethyl malonate, creating 2-pyridone derivatives with a good yield. The structures of the prepared compounds were elucidated by spectral data (IR, 1HNMR, and 13CNMR). The synthesized compound was tested for its antimicrobial activity against the Gram-positive (Staphylococcus aureus) and the Gram-negative (Escherichia coli) bacteria. In addition, the antifungal activities of the compounds were tested against two fungi (Candida albicans and Aspergillus flavus). Molecular docking studies were applied using the Autodock vina method. Theoretical methods prove all the experimental results by using molecular docking using Autodock vina and by ADEMT studies. The docking results represent that compound 20 had the best docking free energy, and it is the effective compound toward the selected bacterial and fungal proteins. ADME studies showed that the only compound 18 could cross the blood–brain barrier, and compound 15 was predicted to be soluble.
Collapse
Affiliation(s)
- Eman O. Hamed
- Department of Chemistry, Faculty of Science, Zagazig University , Zagazig 44519 , Egypt
| | - Mohamed G. Assy
- Department of Chemistry, Faculty of Science, Zagazig University , Zagazig 44519 , Egypt
| | - Nabil H. Ouf
- Department of Chemistry, Faculty of Science, Zagazig University , Zagazig 44519 , Egypt
| | - Doaa A. Elsayed
- Department of Chemistry, Faculty of Science, Zagazig University , Zagazig 44519 , Egypt
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University , Taif , 21944 , Saudi Arabia
| |
Collapse
|
34
|
Morphological profiling by means of the Cell Painting assay enables identification of tubulin-targeting compounds. Cell Chem Biol 2021; 29:1053-1064.e3. [PMID: 34968420 DOI: 10.1016/j.chembiol.2021.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/27/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022]
Abstract
In phenotypic compound discovery, conclusive identification of cellular targets and mode of action are often impaired by off-target binding. In particular, microtubules are frequently targeted in cellular assays. However, in vitro tubulin binding assays do not correctly reflect the cellular context, and conclusive high-throughput phenotypic assays monitoring tubulin binding are scarce, such that tubulin binding is rarely identified. We report that morphological profiling using the Cell Painting assay (CPA) can efficiently detect tubulin modulators in compound collections with a high throughput, including annotated reference compounds and unannotated compound classes with unrelated chemotypes and scaffolds. Small-molecule tubulin binders share similar CPA fingerprints, which enables prediction and experimental validation of microtubule-binding activity. Our findings suggest that CPA or a related morphological profiling approach will be an invaluable addition to small-molecule discovery programs in chemical biology and medicinal chemistry, enabling early identification of one of the most frequently observed off-target activities.
Collapse
|
35
|
Gally JM, Pahl A, Czodrowski P, Waldmann H. Pseudonatural Products Occur Frequently in Biologically Relevant Compounds. J Chem Inf Model 2021; 61:5458-5468. [PMID: 34669418 PMCID: PMC8611719 DOI: 10.1021/acs.jcim.1c01084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
A new methodology
for classifying fragment combinations and characterizing
pseudonatural products (PNPs) is described. The source code is based
on open-source tools and is organized as a Python package. Tasks can
be executed individually or within the context of scalable, robust
workflows. First, structures are standardized and duplicate entries
are filtered out. Then, molecules are probed for the presence of predefined
fragments. For molecules with more than one match, fragment combinations
are classified. The algorithm considers the pairwise relative position
of fragments within the molecule (fused atoms, linkers, intermediary
rings), resulting in 18 different possible fragment combination categories.
Finally, all combinations for a given molecule are assembled into
a fragment combination graph, with fragments as nodes and combination
types as edges. This workflow was applied to characterize PNPs in
the ChEMBL database via comparison of fragment combination graphs
with natural product (NP) references, represented by the Dictionary
of Natural Products. The Murcko fragments extracted from 2000 structures
previously described were used to define NP fragments. The results
indicate that ca. 23% of the biologically relevant compounds listed
in ChEMBL comply to the PNP definition and that, therefore, PNPs occur
frequently among known biologically relevant small molecules. The
majority (>95%) of PNPs contain two to four fragments, mainly (>95%)
distributed in five different combination types. These findings may
provide guidance for the design of new PNPs.
Collapse
Affiliation(s)
- José-Manuel Gally
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Axel Pahl
- Compound Management and Screening Center, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Paul Czodrowski
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| |
Collapse
|
36
|
Heinrich S, Grote M, Sievers S, Kushnir S, Schulz F. Polyether Cyclization Cascade Alterations in Response to Monensin Polyketide Synthase Mutations. Chembiochem 2021; 23:e202100584. [PMID: 34729883 DOI: 10.1002/cbic.202100584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/11/2022]
Abstract
The targeted manipulation of polyketide synthases has in recent years led to numerous new-to-nature polyketides. For type I polyketide synthases the response of post-polyketide synthases (PKS) processing enzymes onto the most frequently polyketide backbone manipulations is so far insufficiently studied. In particular, complex processes such as the polyether cyclisation in the biosynthesis of ionophores such as monensin pose interesting objects of research. We present here a study of the substrate promiscuity of the polyether cyclisation cascade enzymes in monensin biosynthesis in the conversion of redox derivatives of the nascent polyketide chain. LC-HRMS/MS2 -based studies revealed a remarkable flexibility of the post-PKS enzymes. They acted on derivatized polyketide backbones based on the three possible polyketide redox states within two different modules and gave rise to an altered polyether structure. One of these monensin derivatives was isolated and characterized by 2D-NMR spectroscopy, crystallography, and bioactivity studies.
Collapse
Affiliation(s)
- Sascha Heinrich
- Organic Chemistry I, Chemistry and Biochemistry of Natural Products, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Marius Grote
- Organic Chemistry I, Chemistry and Biochemistry of Natural Products, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Sonja Sievers
- Max PIanck Institute for molecular Physiology, COMAS - Compound Management and Screening Center, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Susanna Kushnir
- Organic Chemistry I, Chemistry and Biochemistry of Natural Products, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Frank Schulz
- Organic Chemistry I, Chemistry and Biochemistry of Natural Products, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
37
|
Zhu L, Zhao RH, Li Y, Liu GQ, Zhao Y. CtD strategy to construct stereochemically complex and structurally diverse compounds from griseofulvin. Chem Commun (Camb) 2021; 57:10755-10758. [PMID: 34585686 DOI: 10.1039/d1cc04007c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Complexity to Diversity (CtD) strategy, a strategy for the synthesis of stereochemically complex and structurally diverse small molecules from natural products using ring-distortion reactions, was applied in the synthesis of a 47-member compound collection from the natural product griseofulvin. A Tsuji-Trost allylation and oxa-Michael cyclization tandem reaction was used for the first time in the CtD strategy to generate complex ring fused compounds.
Collapse
Affiliation(s)
- Li Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Rui-Han Zhao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yu Li
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Gong-Qing Liu
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yu Zhao
- School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
38
|
Burhop A, Bag S, Grigalunas M, Woitalla S, Bodenbinder P, Brieger L, Strohmann C, Pahl A, Sievers S, Waldmann H. Synthesis of Indofulvin Pseudo-Natural Products Yields a New Autophagy Inhibitor Chemotype. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102042. [PMID: 34346568 PMCID: PMC8498912 DOI: 10.1002/advs.202102042] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/14/2021] [Indexed: 06/01/2023]
Abstract
Chemical and biological limitations in bioactive compound design based on natural product (NP) structure can be overcome by the combination of NP-derived fragments in unprecedented arrangements to afford "pseudo-natural products" (pseudo-NPs). A new pseudo-NP design principle is described, i.e., the combination of NP-fragments by transformations that are not part of current biosynthesis pathways. A collection of indofulvin pseudo-NPs is obtained from 2-hydroxyethyl-indoles and ketones derived from the fragment-sized NP griseofulvin by means of an iso-oxa-Pictet-Spengler reaction. Cheminformatic analysis indicates that the indofulvins reside in an area of chemical space sparsely covered by NPs, drugs, and drug-like compounds and they may combine favorable properties of these compound classes. Biological evaluation of the compound collection in different cell-based assays and the unbiased high content cell painting assay reveal that the indofulvins define a new autophagy inhibitor chemotype that targets mitochondrial respiration.
Collapse
Affiliation(s)
- Annina Burhop
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Technical University DortmundFaculty of ChemistryChemical BiologyDortmund44227Germany
| | - Sukdev Bag
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Michael Grigalunas
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Sophie Woitalla
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Technical University DortmundFaculty of ChemistryChemical BiologyDortmund44227Germany
| | - Pia Bodenbinder
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Technical University DortmundFaculty of ChemistryChemical BiologyDortmund44227Germany
| | - Lukas Brieger
- Technical University DortmundFaculty of ChemistryInorganic ChemistryDortmund44227Germany
| | - Carsten Strohmann
- Technical University DortmundFaculty of ChemistryInorganic ChemistryDortmund44227Germany
| | - Axel Pahl
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Compound Management and Screening CenterDortmund44227Germany
| | - Sonja Sievers
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Compound Management and Screening CenterDortmund44227Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Technical University DortmundFaculty of ChemistryChemical BiologyDortmund44227Germany
| |
Collapse
|
39
|
Yildirim O, Grigalunas M, Brieger L, Strohmann C, Antonchick AP, Waldmann H. Dynamic Catalytic Highly Enantioselective 1,3-Dipolar Cycloadditions. Angew Chem Int Ed Engl 2021; 60:20012-20020. [PMID: 34236754 PMCID: PMC8456807 DOI: 10.1002/anie.202108072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Indexed: 11/06/2022]
Abstract
In dynamic covalent chemistry, reactions follow a thermodynamically controlled pathway through equilibria. Reversible covalent‐bond formation and breaking in a dynamic process enables the interconversion of products formed under kinetic control to thermodynamically more stable isomers. Notably, enantioselective catalysis of dynamic transformations has not been reported and applied in complex molecule synthesis. We describe the discovery of dynamic covalent enantioselective metal‐complex‐catalyzed 1,3‐dipolar cycloaddition reactions. We have developed a stereodivergent tandem synthesis of structurally and stereochemically complex molecules that generates eight stereocenters with high diastereo‐ and enantioselectivity through asymmetric reversible bond formation in a dynamic process in two consecutive Ag‐catalyzed 1,3‐dipolar cycloadditions of azomethine ylides with electron‐poor olefins. Time‐dependent reversible dynamic covalent‐bond formation gives enantiodivergent and diastereodivergent access to structurally complex double cycloadducts with high selectivity from a common set of reagents.
Collapse
Affiliation(s)
- Okan Yildirim
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Technichal University Dortmund, Faculty of Chemistry, Chemical Biology, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany
| | - Michael Grigalunas
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Lukas Brieger
- Technichal University Dortmund, Faculty of Chemistry, Inorganic Chemistry, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany
| | - Carsten Strohmann
- Technichal University Dortmund, Faculty of Chemistry, Inorganic Chemistry, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany
| | - Andrey P Antonchick
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Technichal University Dortmund, Faculty of Chemistry, Chemical Biology, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany.,Nottingham Trent University, Department of Chemistry and Forensics, Cifton Lane, NG11 8NS, Nottingham, UK
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Technichal University Dortmund, Faculty of Chemistry, Chemical Biology, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany
| |
Collapse
|
40
|
Yildirim O, Grigalunas M, Brieger L, Strohmann C, Antonchick AP, Waldmann H. Dynamic Catalytic Highly Enantioselective 1,3‐Dipolar Cycloadditions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Okan Yildirim
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technichal University Dortmund Faculty of Chemistry Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Michael Grigalunas
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Lukas Brieger
- Technichal University Dortmund Faculty of Chemistry Inorganic Chemistry Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Carsten Strohmann
- Technichal University Dortmund Faculty of Chemistry Inorganic Chemistry Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Andrey P. Antonchick
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technichal University Dortmund Faculty of Chemistry Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
- Nottingham Trent University Department of Chemistry and Forensics Cifton Lane NG11 8NS Nottingham UK
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technichal University Dortmund Faculty of Chemistry Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| |
Collapse
|
41
|
Tian Q, Xiao S, Cheng G. Base‐Promoted
Synthesis of
3‐Alkenyl
‐2‐pyridones from
N
‐Propargyl
‐β‐enaminones and Aryl Aldehydes. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qingyu Tian
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Instrumental Analysis Center, Huaqiao University Xiamen Fujian 361021 China
| | - Shangyun Xiao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Instrumental Analysis Center, Huaqiao University Xiamen Fujian 361021 China
| | - Guolin Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Instrumental Analysis Center, Huaqiao University Xiamen Fujian 361021 China
| |
Collapse
|
42
|
Rietdijk J, Tampere M, Pettke A, Georgiev P, Lapins M, Warpman-Berglund U, Spjuth O, Puumalainen MR, Carreras-Puigvert J. A phenomics approach for antiviral drug discovery. BMC Biol 2021; 19:156. [PMID: 34334126 PMCID: PMC8325993 DOI: 10.1186/s12915-021-01086-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The emergence and continued global spread of the current COVID-19 pandemic has highlighted the need for methods to identify novel or repurposed therapeutic drugs in a fast and effective way. Despite the availability of methods for the discovery of antiviral drugs, the majority tend to focus on the effects of such drugs on a given virus, its constituent proteins, or enzymatic activity, often neglecting the consequences on host cells. This may lead to partial assessment of the efficacy of the tested anti-viral compounds, as potential toxicity impacting the overall physiology of host cells may mask the effects of both viral infection and drug candidates. Here we present a method able to assess the general health of host cells based on morphological profiling, for untargeted phenotypic drug screening against viral infections. RESULTS We combine Cell Painting with antibody-based detection of viral infection in a single assay. We designed an image analysis pipeline for segmentation and classification of virus-infected and non-infected cells, followed by extraction of morphological properties. We show that this methodology can successfully capture virus-induced phenotypic signatures of MRC-5 human lung fibroblasts infected with human coronavirus 229E (CoV-229E). Moreover, we demonstrate that our method can be used in phenotypic drug screening using a panel of nine host- and virus-targeting antivirals. Treatment with effective antiviral compounds reversed the morphological profile of the host cells towards a non-infected state. CONCLUSIONS The phenomics approach presented here, which makes use of a modified Cell Painting protocol by incorporating an anti-virus antibody stain, can be used for the unbiased morphological profiling of virus infection on host cells. The method can identify antiviral reference compounds, as well as novel antivirals, demonstrating its suitability to be implemented as a strategy for antiviral drug repurposing and drug discovery.
Collapse
Affiliation(s)
- Jonne Rietdijk
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden
| | - Marianna Tampere
- Department of Oncology and Pathology and Science for Life Laboratory, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- National Veterinary Institute, SE-756 51, Uppsala, Sweden
| | - Aleksandra Pettke
- Department of Oncology and Pathology and Science for Life Laboratory, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Polina Georgiev
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden
| | - Maris Lapins
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden
| | - Ulrika Warpman-Berglund
- Department of Oncology and Pathology and Science for Life Laboratory, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden
| | - Marjo-Riitta Puumalainen
- Department of Oncology and Pathology and Science for Life Laboratory, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Jordi Carreras-Puigvert
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
43
|
Karageorgis G, Foley DJ, Laraia L, Brakmann S, Waldmann H. Pseudo Natural Products-Chemical Evolution of Natural Product Structure. Angew Chem Int Ed Engl 2021; 60:15705-15723. [PMID: 33644925 PMCID: PMC8360037 DOI: 10.1002/anie.202016575] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/27/2021] [Indexed: 01/05/2023]
Abstract
Pseudo-natural products (PNPs) combine natural product (NP) fragments in novel arrangements not accessible by current biosynthesis pathways. As such they can be regarded as non-biogenic fusions of NP-derived fragments. They inherit key biological characteristics of the guiding natural product, such as chemical and physiological properties, yet define small molecule chemotypes with unprecedented or unexpected bioactivity. We iterate the design principles underpinning PNP scaffolds and highlight their syntheses and biological investigations. We provide a cheminformatic analysis of PNP collections assessing their molecular properties and shape diversity. We propose and discuss how the iterative analysis of NP structure, design, synthesis, and biological evaluation of PNPs can be regarded as a human-driven branch of the evolution of natural products, that is, a chemical evolution of natural product structure.
Collapse
Affiliation(s)
- George Karageorgis
- Max-Planck Institute of Molecular PhysiologyOtto-Hahn Strasse 1144227DortmundGermany
| | - Daniel J. Foley
- Max-Planck Institute of Molecular PhysiologyOtto-Hahn Strasse 1144227DortmundGermany
- Current address: School of Physical and Chemical SciencesUniversity of CanterburyPrivate Bag 4800Christchurch8140New Zealand
| | - Luca Laraia
- Max-Planck Institute of Molecular PhysiologyOtto-Hahn Strasse 1144227DortmundGermany
- Current address: Department of ChemistryTechnical University of Denmark, kemitorvet 2072800 Kgs.LyngbyDenmark
| | - Susanne Brakmann
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Strasse 4a44227DortmundGermany
| | - Herbert Waldmann
- Max-Planck Institute of Molecular PhysiologyOtto-Hahn Strasse 1144227DortmundGermany
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Strasse 4a44227DortmundGermany
| |
Collapse
|
44
|
Schneidewind T, Brause A, Schölermann B, Sievers S, Pahl A, Sankar MG, Winzker M, Janning P, Kumar K, Ziegler S, Waldmann H. Combined morphological and proteome profiling reveals target-independent impairment of cholesterol homeostasis. Cell Chem Biol 2021; 28:1780-1794.e5. [PMID: 34214450 DOI: 10.1016/j.chembiol.2021.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/11/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022]
Abstract
Unbiased profiling approaches are powerful tools for small-molecule target or mode-of-action deconvolution as they generate a holistic view of the bioactivity space. This is particularly important for non-protein targets that are difficult to identify with commonly applied target identification methods. Thereby, unbiased profiling can enable identification of novel bioactivity even for annotated compounds. We report the identification of a large bioactivity cluster comprised of numerous well-characterized drugs with different primary targets using a combination of the morphological Cell Painting Assay and proteome profiling. Cluster members alter cholesterol homeostasis and localization due to their physicochemical properties that lead to protonation and accumulation in lysosomes, an increase in lysosomal pH, and a disturbed cholesterol homeostasis. The identified cluster enables identification of modulators of cholesterol homeostasis and links regulation of genes or proteins involved in cholesterol synthesis or trafficking to physicochemical properties rather than to nominal targets.
Collapse
Affiliation(s)
- Tabea Schneidewind
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany; Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Alexandra Brause
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Beate Schölermann
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Sonja Sievers
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Axel Pahl
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Muthukumar G Sankar
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Michael Winzker
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Petra Janning
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Kamal Kumar
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Slava Ziegler
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Herbert Waldmann
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany; Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, Dortmund 44227, Germany.
| |
Collapse
|
45
|
Wilke J, Kawamura T, Xu H, Brause A, Friese A, Metz M, Schepmann D, Wünsch B, Artacho-Cordón A, Nieto FR, Watanabe N, Osada H, Ziegler S, Waldmann H. Discovery of a σ 1 receptor antagonist by combination of unbiased cell painting and thermal proteome profiling. Cell Chem Biol 2021; 28:848-854.e5. [PMID: 33567254 DOI: 10.1016/j.chembiol.2021.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/09/2020] [Accepted: 01/06/2021] [Indexed: 11/23/2022]
Abstract
Phenotypic screening for bioactive small molecules is typically combined with affinity-based chemical proteomics to uncover the respective molecular targets. However, such assays and the explored bioactivity are biased toward the monitored phenotype, and target identification often requires chemical derivatization of the hit compound. In contrast, unbiased cellular profiling approaches record hundreds of parameters upon compound perturbation to map bioactivity in a broader biological context and may link a profile to the molecular target or mode of action. Herein we report the discovery of the diaminopyrimidine DP68 as a Sigma 1 (σ1) receptor antagonist by combining morphological profiling using the Cell Painting assay and thermal proteome profiling. Our results highlight that integration of complementary profiling approaches may enable both detection of bioactivity and target identification for small molecules.
Collapse
Affiliation(s)
- Julian Wilke
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany; TU Dortmund University, Emil-Figge-Str. 72, 44221 Dortmund, Germany; RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tatsuro Kawamura
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany; RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hao Xu
- Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Alexandra Brause
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Alexandra Friese
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Malte Metz
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Antonia Artacho-Cordón
- Department of Pharmacology and Institute of Neuroscience, University of Granada, Avenida de la Investigación, 11, 18016 Granada, Spain
| | - Francisco R Nieto
- Department of Pharmacology and Institute of Neuroscience, University of Granada, Avenida de la Investigación, 11, 18016 Granada, Spain
| | - Nobumoto Watanabe
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Bio-Active Compounds Discovery Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Slava Ziegler
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany; TU Dortmund University, Emil-Figge-Str. 72, 44221 Dortmund, Germany.
| |
Collapse
|
46
|
Morja MI, Chauhan PM, Chikhalia KH. Palladium‐Catalyzed Novel C(formyl)‐C(aryl)/C(aryl)‐N(amine) Coupling Sequence Between 2‐(Methylamino)nicotinaldehyde and 3‐Bromo‐2‐chlorothiophene: An Efficient Construction of 4‐Pyridone Fused Hybrid Scaffolds. ChemistrySelect 2021. [DOI: 10.1002/slct.202100790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mayur I. Morja
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| | | | - Kishor H. Chikhalia
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| |
Collapse
|
47
|
Yuan S, Yue YL, Zhang DQ, Zhang JY, Yu B, Liu HM. Synthesis of new tetracyclic benzodiazepine-fused isoindolinones using recyclable mesoporous silica nanoparticles. Chem Commun (Camb) 2021; 56:11461-11464. [PMID: 32853306 DOI: 10.1039/d0cc04875e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pseudo natural products (NPs) feature structural novelty and diversity and thus are a new source of lead compounds for drug discovery. We first report the mesoporous silica nanoparticles (MSNs)-catalyzed de novo combination of benzodiazepine and isoindolinone, giving tetracyclic benzodiazepine-fused isoindolinone pseudo natural products (21 examples, 55-91% yields). The work also demonstrates that MSNs are efficient acidic catalysts for multi-component reactions.
Collapse
Affiliation(s)
- Shuo Yuan
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| | | | | | | | | | | |
Collapse
|
48
|
Liu X, Li B, Han G, Liu X, Cao Z, Jiang DE, Sun Y. Electrocatalytic synthesis of heterocycles from biomass-derived furfuryl alcohols. Nat Commun 2021; 12:1868. [PMID: 33767166 PMCID: PMC7994825 DOI: 10.1038/s41467-021-22157-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/23/2021] [Indexed: 11/08/2022] Open
Abstract
It is very attractive yet underexplored to synthesize heterocyclic moieties pertaining to biologically active molecules from biomass-based starting compounds. Herein, we report an electrocatalytic Achmatowicz reaction for the synthesis of hydropyranones from furfuryl alcohols, which can be readily produced from biomass-derived and industrially available furfural. Taking advantage of photo-induced polymerization of a bipyridyl ligand, we demonstrate the facile preparation of a heterogenized nickel electrocatalyst, which effectively drives the Achmatowicz reaction electrochemically. A suite of characterization techniques and density functional theory computations were performed to aid the understanding of the reaction mechanism. It is rationalized that the unsaturated coordination sphere of nickel sites in our electrocatalyst plays an important role at low applied potential, not only allowing the intimate interaction between the nickel center and furfuryl alcohol but also enabling the transfer of hydroxide from nickel to the bound furfuryl alcohol.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Bo Li
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Guanqun Han
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Xingwu Liu
- Syncat@Beijing, Synfuels CHINA Co., Ltd, Beijing, China
| | - Zhi Cao
- Syncat@Beijing, Synfuels CHINA Co., Ltd, Beijing, China.
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China.
| | - De-En Jiang
- Department of Chemistry, University of California, Riverside, CA, USA.
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
49
|
Grigalunas M, Burhop A, Zinken S, Pahl A, Gally JM, Wild N, Mantel Y, Sievers S, Foley DJ, Scheel R, Strohmann C, Antonchick AP, Waldmann H. Natural product fragment combination to performance-diverse pseudo-natural products. Nat Commun 2021; 12:1883. [PMID: 33767198 PMCID: PMC7994817 DOI: 10.1038/s41467-021-22174-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Natural product structure and fragment-based compound development inspire pseudo-natural product design through different combinations of a given natural product fragment set to compound classes expected to be chemically and biologically diverse. We describe the synthetic combination of the fragment-sized natural products quinine, quinidine, sinomenine, and griseofulvin with chromanone or indole-containing fragments to provide a 244-member pseudo-natural product collection. Cheminformatic analyses reveal that the resulting eight pseudo-natural product classes are chemically diverse and share both drug- and natural product-like properties. Unbiased biological evaluation by cell painting demonstrates that bioactivity of pseudo-natural products, guiding natural products, and fragments differ and that combination of different fragments dominates establishment of unique bioactivity. Identification of phenotypic fragment dominance enables design of compound classes with correctly predicted bioactivity. The results demonstrate that fusion of natural product fragments in different combinations and arrangements can provide chemically and biologically diverse pseudo-natural product classes for wider exploration of biologically relevant chemical space.
Collapse
Affiliation(s)
- Michael Grigalunas
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Annina Burhop
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Dortmund, Germany
| | - Sarah Zinken
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Dortmund, Germany
| | - Axel Pahl
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Compound Management and Screening Center, Dortmund, Germany
| | - José-Manuel Gally
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Compound Management and Screening Center, Dortmund, Germany
| | - Niklas Wild
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Yannik Mantel
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sonja Sievers
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Compound Management and Screening Center, Dortmund, Germany
| | - Daniel J Foley
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- College of Science, University of Canterbury, Canterbury, New Zealand
| | - Rebecca Scheel
- Technical University Dortmund, Faculty of Chemistry and Inorganic Chemistry, Dortmund, Germany
| | - Carsten Strohmann
- Technical University Dortmund, Faculty of Chemistry and Inorganic Chemistry, Dortmund, Germany
| | - Andrey P Antonchick
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Dortmund, Germany
- College of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Dortmund, Germany.
| |
Collapse
|
50
|
Karageorgis G, Foley DJ, Laraia L, Brakmann S, Waldmann H. Pseudo Natural Products—Chemical Evolution of Natural Product Structure. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016575] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- George Karageorgis
- Max-Planck Institute of Molecular Physiology Otto-Hahn Strasse 11 44227 Dortmund Germany
| | - Daniel J. Foley
- Max-Planck Institute of Molecular Physiology Otto-Hahn Strasse 11 44227 Dortmund Germany
- Current address: School of Physical and Chemical Sciences University of Canterbury Private Bag 4800 Christchurch 8140 New Zealand
| | - Luca Laraia
- Max-Planck Institute of Molecular Physiology Otto-Hahn Strasse 11 44227 Dortmund Germany
- Current address: Department of Chemistry Technical University of Denmark, kemitorvet 207 2800 Kgs. Lyngby Denmark
| | - Susanne Brakmann
- Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn Strasse 4a 44227 Dortmund Germany
| | - Herbert Waldmann
- Max-Planck Institute of Molecular Physiology Otto-Hahn Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn Strasse 4a 44227 Dortmund Germany
| |
Collapse
|