1
|
Li G, Jia L, Dong E, Zhang S, Zhao F. Performance enhancement of mid-infrared NH 3 sensor using 9.06 μm QCL based on spectral optimization and NGO-LSTM model. Anal Bioanal Chem 2025; 417:653-662. [PMID: 39630249 DOI: 10.1007/s00216-024-05677-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 01/06/2025]
Abstract
A detection sensor for mid-infrared ammonia (NH3) has been developed according to wavelength modulation spectroscopy-tunable diode laser absorption spectroscopy (WMS-TDLAS) technology, which can be applied in the chemical and aquaculture industries. A 9.06 µm quantum cascade laser (QCL) and a 41.5 m multipass gas cell (MPGC) were used to increase the detection limit of NH3. Spectral optimization and the NGO-LSTM (northern goshawk optimization-long short-term memory) model applied to gas detection are designed to improve the accuracy of sensor. Among them, the design of the temperature compensation and spectral drift correction reduces the effect of temperature and other environmental factors. The original second harmonic signal was denoised using the CEEMDAN-WPD (complete ensemble empirical mode decomposition with adaptive noise-wavelet packet decomposition) algorithm. And the NGO-LSTM algorithm was applied to NH3 concentration inversion, adaptively optimizing the weight parameters. The experiment reflects that the measured value of the sensor has an excellent linear relationship with the set value (R2 0.9992). The long-term stability of the sensor was verified based on 400 ppb NH3, with an RMSE (root mean square error) of 4.754 ppb. Allan-Werle bias analysis shows that the detection limit (LoD) is approximately 792 ppt at an integration time of 232 s. Subsequent response time and atmospheric environment simulation experiments have proven that this sensor provides an efficient approach for real-time monitoring of NH3.
Collapse
Affiliation(s)
- Guolin Li
- College of Control Science & Engineering, China University of Petroleum (East China), Qingdao, 266580, P.R. China.
| | - Lupeng Jia
- College of Control Science & Engineering, China University of Petroleum (East China), Qingdao, 266580, P.R. China
| | - Enting Dong
- College of Control Science & Engineering, China University of Petroleum (East China), Qingdao, 266580, P.R. China
| | - Siyu Zhang
- College of Control Science & Engineering, China University of Petroleum (East China), Qingdao, 266580, P.R. China
| | - Fuli Zhao
- College of Control Science & Engineering, China University of Petroleum (East China), Qingdao, 266580, P.R. China
| |
Collapse
|
2
|
Souza MKR, Cardoso ESF, Pinto LMC, Crivelli ISC, Rodrigues CD, Souto RS, Rezende-Filho AT, Lanza MRV, Maia G. Effective Nitrate Electroconversion to Ammonia Using an Entangled Co 3O 4/Graphene Nanoribbon Catalyst. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39729587 DOI: 10.1021/acsami.4c18269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
There has been huge interest among chemical scientists in the electrochemical reduction of nitrate (NO3-) to ammonia (NH4+) due to the useful application of NH4+ in nitrogen fertilizers and fuel. To conduct such a complex reduction reaction, which involves eight electrons and eight protons, one needs to develop high-performance (and stable) electrocatalysts that favor the formation of reaction intermediates that are selective toward ammonia production. In the present study, we developed and applied Co3O4/graphene nanoribbon (GNR) electrocatalysts with excellent properties for the effective reduction of NO3- to NH4+, where NH4+ yield rate of 42.11 mg h-1 mgcat-1, FE of 98.7%, NO3- conversion efficiency of 14.71%, and NH4+ selectivity of 100% were obtained, with the application of only 37.5 μg cm-2 of the catalysts (for the best catalyst ─Co3O4(Cowt %55)GNR, only 20.6 μg cm-2 of Co was applied), confirmed by loadings ranging from 19-150 μg cm-2. The highly satisfactory results obtained from the application of the proposed catalysts were favored by high average values of electrochemically active surface area (ECSA) and low Rct values, along with the presence of several planes in Co3O4 entangled with GNR and the occurrence of a kind of "(Co3(Co(CN)6)2(H2O)12)1.333 complex" structure on the catalyst surface, in addition to the effective migration of NO3- from the cell cathodic branch to the anodic branch, which was confirmed by the experiment conducted using a H-cell separated by a Nafion 117 membrane. The in situ FTIR and Raman spectroscopy results helped identify the adsorbed intermediates, namely, NO3-, NO2-, NO, and NH2OH, and the final product NH4+, which are compatible with the proposed NO3- electroreduction mechanism. The Density Functional Theory (DFT) calculations helped confirm that the Co3O4(Cowt %55)GNR catalyst exhibited a better performance in terms of nitrate electroreduction in comparison with Co3O4(Cowt %75), considering the intermediates identified by the in situ FTIR and Raman spectroscopy results and the rate-determining step (RDS) observed for the transition of *NO to *NHO (0.43 eV).
Collapse
Affiliation(s)
- Marciélli K R Souza
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Avenida Senador Filinto Muller 1555, Campo Grande, Mato Grosso do Sul 79074-460, Brazil
| | - Eduardo S F Cardoso
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Avenida Senador Filinto Muller 1555, Campo Grande, Mato Grosso do Sul 79074-460, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São CarlosSão Paulo 13566-590, Brazil
| | - Leandro M C Pinto
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Avenida Senador Filinto Muller 1555, Campo Grande, Mato Grosso do Sul 79074-460, Brazil
| | - Isabela S C Crivelli
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Avenida Senador Filinto Muller 1555, Campo Grande, Mato Grosso do Sul 79074-460, Brazil
| | - Clauber D Rodrigues
- State University of Mato Grosso do Sul, Rua Rogério Luis Rodrigues s/n, Glória de Dourados, Mato Grosso do Sul 79730-000, Brazil
| | - Robson S Souto
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São CarlosSão Paulo 13566-590, Brazil
| | - Ary T Rezende-Filho
- Faculty of Engineering, Architecture and Urbanism, and Geography, Federal University of Mato Grosso do Sul, Avenida Costa e Silva, s/n°, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São CarlosSão Paulo 13566-590, Brazil
| | - Gilberto Maia
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Avenida Senador Filinto Muller 1555, Campo Grande, Mato Grosso do Sul 79074-460, Brazil
| |
Collapse
|
3
|
Islam MM, Abu Nayem SM, Shah SS, Islam MZ, Aziz MA, Saleh Ahammad AJ. Electrochemical Selective Nitrate Reduction: Pathways to Nitrogen and Ammonia Production. CHEM REC 2024:e202400206. [PMID: 39715734 DOI: 10.1002/tcr.202400206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/05/2024] [Indexed: 12/25/2024]
Abstract
Nitrate (NO3 -) contamination from industrial, agricultural, and anthropogenic activities poses significant risks to human health and ecosystems. While traditional NO3 - remediation methods are effective, they often generate secondary pollutants and incur high costs. Electrochemical NO3 -reduction (ECNR) offers a sustainable alternative, converting NO3 - into environmentally benign nitrogen (N2) or valuable ammonia (NH3). This review explores recent advancements in selective ECNR pathways for NO3 --to-N2and NO3 --to-NH3 conversion, focusing on mechanistic insights, electrocatalyst development, and optimization strategies. Key factors influencing ECNR performance, such as electrode materials, electrolyte composition, and hydrogen evolution inhibition, are discussed. Additionally, the review highlights the role of single-atom, bimetallic, and nanostructured catalysts in enhancing faradaic efficiency, total N2 removal, and selectivity, with particular attention to Pd-Cu systems. Strategies to address challenges like low selectivity and catalyst degradation are also explored. This review underscores the potential of ECNR as a viable alternative to the energy-intensive Haber-Bosch process for NH3 production, aligning with global sustainability goals. Finally, we identify research gaps and propose future directions for improving the efficiency, stability, and scalability of ECNR technologies.
Collapse
Affiliation(s)
- Md Monjorul Islam
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - S M Abu Nayem
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Syed Shaheen Shah
- Socio-Environmental Energy Science Department, Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Md Zahidul Islam
- Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
4
|
Zhang B, Zhao J, Qiu H, Chen M, Ren X, Wang H, Wei Q. Boosting Electrochemical Nitrate Reduction to Ammonia by Fe Doped CuO/Co 3O 4 Nanosheet/Nanowire Heterostructures. Chemphyschem 2024; 25:e202400738. [PMID: 39258742 DOI: 10.1002/cphc.202400738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
The electrochemical nitrate reduction reaction (NO3 -RR) is a novel green method for ammonia synthesis. The development of outstanding NO3 -RR performance is based on reasonable catalyst. Metal oxides have garnered significant attention due to their exceptional electrical conductivity and catalytic properties. Doping serves as an effective strategy for enhancing catalyst performance due to its ability to change the electron cloud distribution and energy levels. In this study, we develop a heterojunction catalyst Fe doped copper oxide nanosheet and cobalt tetroxide nanowire growing on carbon cloth simultaneously (Fe-CuO@Co3O4/CC) via hydrothermal method. The well-designed Fe-CuO@Co3O4/CC has excellent NH3 yield (470.9 μmol h-1 cm-2) and Faraday efficiency (FE: 84.4 %) at -1.2 V versus reversible hydrogen electrode (vs. RHE). The heterostructure increases the specific surface area of the catalyst, and the possibility of contact between the catalyst and NO3 - ions, enhances the catalytic efficiency. In addition, the catalyst has excellent stability and can stably carry out the electrocatalytic nitrate reduction reaction (NO3 -RR), which provides a way for further research on the high-efficiency reduction of nitrate.
Collapse
Affiliation(s)
- Baojian Zhang
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Jinxiu Zhao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Huancheng Qiu
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Mingliang Chen
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xiang Ren
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Huan Wang
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Qin Wei
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
5
|
Zhang Z, Lv Y, Gu Y, Zhou X, Tian B, Zhang A, Yang Z, Chen S, Ma J, Ding M, Zuo JL. Dual Zn 5-NiS 4 Sites in a Redox-Active Metal-Organic Framework Enables Efficient Cascade Catalysis for Nitrate-to-Ammonia Conversion. Angew Chem Int Ed Engl 2024:e202418272. [PMID: 39663525 DOI: 10.1002/anie.202418272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/08/2024] [Accepted: 12/10/2024] [Indexed: 12/13/2024]
Abstract
Electrocatalytic Nitrate Reduction to Ammonia (NO3RR) offers a promising solution to both environmental pollution and the sustainable energy conversion. Here we propose an efficient cascade catalytic mechanism based on a dual Zn5-NiS4 sites, orderly assembled in a redox-active metal-organic framework structure, which separately promotes the reaction kinetics of nitrate-to-nitrite and nitrite-to-ammonia conversions. Specifically, the Zn5 clusters adsorb and selectively reduce the NO3 - to NO2 -, whereas [NiS4] acts as an analogue to the ferredoxins, subsequently boosts the reduction of NO2 - to produce NH3. To this end, the bimetallic Zn5-NiS4TP MOF was synthesized based on the redox-active ligand [Ni(C2S2(TPCOOH)2)2]. A maximum ammonia production rate of 23477.59 μg ⋅ h-1 ⋅ mg-1 cat. and faradaic efficiency 92.87 % was achived by Zn5-NiS4TP MOF under neutral conditions. To validate the critical role of dual Zn5-NiS4 sites, Mn5-NiS4TP and Cd2-NiS4TP were synthesized as control samples, together with Zn-TTFTB, Zn-NiS4Ph and other Zn5-cluster-based MOFs applied for the investigation of electrocatalytic nitrate reduction. Our results indicated that substitution by -thienyl instead of -phenyl group increases the S-heteroatom content, improves the conductivity and facilitates electron transfer. Furthermore, Density Functional Theory (DFT) calculations of the energy changes for the reduction of each species could rationalize experimental results.
Collapse
Affiliation(s)
- Zedong Zhang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yang Lv
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yuming Gu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiaocheng Zhou
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Bailin Tian
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Anqi Zhang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhimei Yang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shizheng Chen
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing Ma
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Mengning Ding
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
6
|
Qiu J, Yuan J, Chu X, Chen S, Zhang J, Peng Z. Correlating Thickness and Phase of Single Co(OH) 2 Micro-Platelets to the Intrinsic Activity of Oxygen Evolution Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402976. [PMID: 38963321 DOI: 10.1002/smll.202402976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Morphology, crystal phase, and its transformation are important structures that frequently determine electrocatalytic activity, but the correlations of intrinsic activity with them are not completely understood. Herein, using Co(OH)2 micro-platelets with well-defined structures (phase, thickness, area, and volume) as model electrocatalysts of oxygen evolution reaction, multiple in situ microscopy is combined to correlate the electrocatalytic activity with morphology, phase, and its transformation. Single-entity morphology and electrochemistry characterized by atomic force microscopy and scanning electrochemical cell microscopy reveal a thickness-dependent turnover frequency (TOF) of α-Co(OH)2. The TOF (≈9.5 s-1) of α-Co(OH)2 with ≈14 nm thickness is ≈95-fold higher than that (≈0.1 s-1) with ≈80 nm. Moreover, this thickness-dependent activity has a critical thickness of ≈30 nm, above which no thickness-dependence is observed. Contrarily, β-Co(OH)2 reveals a lower TOF (≈0.1 s-1) having no significant correlation with thickness. Combining single-entity electrochemistry with in situ Raman microspectroscopy, this thickness-dependent activity is explained by more reversible Co3+/Co2+ kinetics and larger ratio of active Co sites of thinner α-Co(OH)2, accompanied with faster phase transformation and more extensive surface restructuration. The findings highlight the interactions among thickness, ratio of active sites, kinetics of active sites, and phase transformation, and offer new insights into structure-activity relationships at single-entity level.
Collapse
Affiliation(s)
- Ji Qiu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Jiangmei Yuan
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xiaoqing Chu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Shu Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
- Laboratory of Advanced Spectroelectrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhangquan Peng
- Laboratory of Advanced Spectroelectrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
7
|
Wahab O, Baker LA. Spiers Memorial Lecture: New horizons in nanoelectrochemistry. Faraday Discuss 2024. [PMID: 39484676 DOI: 10.1039/d4fd00159a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
This introductory lecture prefaces the 2024 New Horizons in Nanoelectrochemistry Faraday Discussion. A broad view of the previous Discussions related to nanoelectrochemistry is taken. Big ideas or concepts discussed at these previous meetings are identified, along with specific examples in each area. Closing comments aimed at a high level and related to where we are today and what is needed to continue to drive nanoelectrochemistry towards the horizon are considered.
Collapse
Affiliation(s)
- Oluwasegun Wahab
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | - Lane A Baker
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
8
|
Fan Z, Cao C, Yang X, Yuan W, Qin F, Hu Y, Sun X, Liu G, Tian Y, Xu L. Interfacial Electronic Interactions Promoted Activation for Nitrate Electroreduction to Ammonia over Ag-Modified Co 3O 4. Angew Chem Int Ed Engl 2024; 63:e202410356. [PMID: 39107253 DOI: 10.1002/anie.202410356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 08/09/2024]
Abstract
Electrocatalytic nitrate (NO3 -) reduction to ammonia (NRA) offers a promising pathway for ammonia synthesis. The interfacial electronic interactions (IEIs) can regulate the physicochemical capabilities of catalysts in electrochemical applications, while the impact of IEIs on electrocatalytic NRA remains largely unexplored in current literature. In this study, the high-efficiency electrode Ag-modified Co3O4 (Ag1.5Co/CC) is prepared for NRA in neutral media, exhibiting an impressive nitrate conversion rate of 96.86 %, ammonia Faradaic efficiency of 96.11 %, and ammonia selectivity of ~100 %. Notably, the intrinsic activity of Ag1.5Co/CC is ~81 times that of Ag nanoparticles (Ag/CC). Multiple characterizations and theoretical computations confirm the presence of IEIs between Ag and Co3O4, which stabilize the CoO6 octahedrons within Co3O4 and significantly promote the adsorption of reactants (NO3 -) as well as intermediates (NO2 - and NO), while suppressing the Heyrovsky step, thereby improving nitrate electroreduction efficiency. Furthermore, our findings reveal a synergistic effect between different active sites that enables tandem catalysis for NRA: NO3 - reduction to NO2 - predominantly occurs at Ag sites while NO2 - tends to hydrogenate to ammonia at Co sites. This study offers valuable insights for the development of high-performance NRA electrocatalysts.
Collapse
Affiliation(s)
- Zhenhai Fan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chunmei Cao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xingchuan Yang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Wenchuang Yuan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Feiyang Qin
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yating Hu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiaobo Sun
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Guoji Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yun Tian
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Li Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
9
|
Wang Y, Jiang Z, Wu Y, Ai C, Dang F, Xu H, Wan J, Guan W, Albilali R, He C. Simultaneously Promoted Water Resistance and CO 2 Selectivity in Methanol Oxidation Over Pd/CoOOH: Synergy of Co-OH and the Pd-O latt-Co Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18414-18425. [PMID: 39359071 DOI: 10.1021/acs.est.4c06229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Catalytic purification of industrial oxygenated volatile organic compounds (OVOCs) is hindered by the presence of water vapor that attacks the active sites of conventional noble metal-based catalysts and the insufficient mineralization that leads to the generation of hazardous intermediates. Developing catalysts simultaneously with excellent water resistance and a high intermediate suppression ability is still a great challenge. Herein, we proposed a simple strategy to synthesize a Pd/CoOOH catalyst that contains abundant hydroxyl groups and lattice oxygen species, over which a negligible effect was observed on CH3OH conversion with 3 vol % water vapor, while a remarkable conversion reduction of 24% was observed over Pd/Co3O4. Moreover, the low-temperature CO2 selectivity over Pd/CoOOH is significantly enhanced in comparison with Pd/Co(OH)2. The high concentration of surface hydroxyl groups on Pd/CoOOH enhances the water resistance owing to the accelerated activation of H2O to generate Co-OH, which replaces the consumed hydroxyl and facilitates the quick dissociation of surface H2O through timely desorption. Additionally, the presence of Pd-Olatt-Co promotes electron transport from Co to Pd, leading to improved metal-support interactions and weakened metal-O bonds. This in turn enhances the catalyst's capacity to efficaciously convert intermediates. This study sheds new insights into designing multifunctional catalytic platforms for efficient industrial OVOC purification as well as other heterogeneous oxidation reactions.
Collapse
Affiliation(s)
- Yadi Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an 710064, P. R. China
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Zeyu Jiang
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Yani Wu
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Chaoqian Ai
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Fan Dang
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Han Xu
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Jialei Wan
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Weisheng Guan
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an 710064, P. R. China
| | - Reem Albilali
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| |
Collapse
|
10
|
Wang Q, Guo P, Li H, Long J, Yang S, Xiao J. A Theoretical Perspective for Ammonia Synthesis: Nitric Oxide or Nitrate Electroreduction? SMALL METHODS 2024:e2401208. [PMID: 39400471 DOI: 10.1002/smtd.202401208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Ammonia is an important raw material for agricultural production, playing a key role in global food production. However, conventional ammonia synthesis resulted in extensive greenhouse gas emissions and huge energy consumption. Recently, researchers have proposed electrocatalytic reverse artificial nitrogen cycle (eRANC) routes to circumvent these issues, which can be driven by electrocatalysis and sustainable electricity. Here, a theoretical and computational perspective on the challenges and opportunities with the comparison with experimental results: electrochemical reduction of nitrate (eNO3RR) and nitrite (eNO2RR), electrochemical reduction of nitric oxide (eNORR) combined with oxidative nitrogen fixation are presented. By comparison, the N2→NO→NH3 route is proposed as the most promising in case the NO solubility can be solved well in reactor design. Its high efficiency of ammonia production is demonstrated. Instead, the eNO3RR can be another choice because it is non-toxic and the solid-liquid interface is usually efficient for electrochemical reactions, while its low selectivity at low overpotentials is an issue. These fundamentals highlight the potential and key factors of eRANC as an efficient and sustainable route for ammonia production.
Collapse
Affiliation(s)
- Qianxiao Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pu Guo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Huan Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun Long
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Shaoxue Yang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, P. R. China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, P. R. China
| | - Jianping Xiao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Jang W, Oh D, Lee J, Kim J, Matthews JE, Kim H, Lee SW, Lee S, Xu Y, Yu JM, Hwang SW, Jaramillo TF, Jang JW, Cho S. Homogeneously Mixed Cu-Co Bimetallic Catalyst Derived from Hydroxy Double Salt for Industrial-Level High-Rate Nitrate-to-Ammonia Electrosynthesis. J Am Chem Soc 2024; 146:27417-27428. [PMID: 39177778 DOI: 10.1021/jacs.4c07061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Electrocatalytic nitrate reduction reaction (NO3RR) presents an innovative approach for sustainable NH3 production. However, selective NH3 production is hindered by the multiple intermediates involved in the NO3RR process and the competitive hydrogen evolution reaction. Hence, the development of highly efficient NO3RR catalysts is paramount. Herein, we report highly efficient bimetallic catalysts derived from hydroxy double salt (HDS). Under NO3RR conditions, Cu1Co1-HDS undergoes in situ reconstruction, forming nanocomposites of homogeneously distributed metallic Cu0 and Co(OH)2. Reconstruction-induced Cu0 rapidly converts NO3- to NO2-, which is further hydrogenated to NH3 by Co(OH)2. Homogeneously mixed Cu and Co species maximize this synergistic effect, achieving outstanding NO3RR performance including the highest NH3 yield rate (4.625 mmol h-1 cm-2) reported for powder-type NO3RR catalysts. Integration of Cu1Co1-HDS with a commercial Si solar cell attained 4.53% solar-to-ammonia efficiency from industrial wastewater-level concentrations of NO3- (2000 ppm), demonstrating practical application potential for solar-driven NH3 production. This study provides a strategy for enhancing the NH3 yield rate by optimizing the compositions and distributions of Cu and Co.
Collapse
Affiliation(s)
- Wonsik Jang
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dongrak Oh
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jinyoung Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jongkyoung Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jesse E Matthews
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Hyoseok Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sang-Won Lee
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Seunghyun Lee
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yi Xu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Je Min Yu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seon Woo Hwang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Thomas F Jaramillo
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ji-Wook Jang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seungho Cho
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
12
|
Cechanaviciute IA, Kumari B, Alfes LM, Andronescu C, Schuhmann W. Gas Diffusion Electrodes for Electrocatalytic Oxidation of Gaseous Ammonia: Stepping Over the Nitrogen Energy Canyon. Angew Chem Int Ed Engl 2024; 63:e202404348. [PMID: 38923429 DOI: 10.1002/anie.202404348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
As ammonia continues to gain more and more interest as a promising hydrogen carrier compound, so does the electrochemical ammonia oxidation reaction (AmOR). To avoid the liberation of H2 in a reverse Haber-Bosch reaction under release of the energetically more favorable N2, we propose the oxidation of ammonia to value-added nitrite (NO2 -), which is usually obtained during the Ostwald process. We investigated the anodic oxidation of gaseous ammonia directly supplied to a gas diffusion electrode (GDE) using a variety of compositionally different multi-metal catalysts coated on Ni foam under the simultaneous formation of H2 at the cathode. This will double the amount of H2 per ammonia molecule while applying a lower overpotential than that required for water electrolysis (1.4-1.8 V vs. RHE at 50 mA ⋅ cm-2). A selectivity study demonstrated that some of the catalyst compositions were able to produce significant amounts of NO2 -, and further investigations using the most promising catalyst composition Nif_AlCoCrCuFe integrated within a GDE demonstrated up to 88 % Faradaic efficiency for NO2 - at the anode coupled to close to 100 % Faradaic efficiency for the cathodic H2 production.
Collapse
Affiliation(s)
- Ieva A Cechanaviciute
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Bhawana Kumari
- Chemical Technology III, Faculty of Chemistry and CENIDE, Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Str. 199, D-47057, Duisburg, Germany
| | - Lars M Alfes
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Corina Andronescu
- Chemical Technology III, Faculty of Chemistry and CENIDE, Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Str. 199, D-47057, Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| |
Collapse
|
13
|
Zhang J, Quast T, Eid B, Chen YT, Zerdoumi R, Dieckhöfer S, Junqueira JRC, Seisel S, Schuhmann W. In-situ electrochemical reconstruction and modulation of adsorbed hydrogen coverage in cobalt/ruthenium-based catalyst boost electroreduction of nitrate to ammonia. Nat Commun 2024; 15:8583. [PMID: 39362855 PMCID: PMC11450097 DOI: 10.1038/s41467-024-52780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
The electroreduction of nitrate offers a promising, sustainable, and decentralized route to generate valuable ammonia. However, a key challenge in the nitrate reduction reaction is the energy efficiency of the reaction, which requires both a high ammonia yield rate and a high Faradaic efficiency of ammonia at a low working potential (≥-0.2 V versus reversible hydrogen electrode). We propose a bimetallic Co-B/Ru12 electrocatalyst which utilizes complementary effects of Co-B and Ru to modulate the quantity of adsorbed hydrogen and to favor the specific hydrogenation for initiating nitrate reduction reaction at a low overpotential. This effect enables the catalyst to achieve a Faradaic efficiency for ammonia of 90.4 ± 9.2% and a remarkable half-cell energy efficiency of 40.9 ± 4% at 0 V versus reversible hydrogen electrode. The in-situ electrochemical reconstruction of the catalyst contributes to boosting the ammonia yield rate to a high level of 15.0 ± 0.7 mg h-1 cm-2 at -0.2 V versus reversible hydrogen electrode. More importantly, by employing single-entity electrochemistry coupled with identical location transmission electron microscopy, we gain systematic insights into the correlation between the increase in the catalyst's active sites and its structural transformations during the nitrate reduction reaction.
Collapse
Affiliation(s)
- Jian Zhang
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitsätsstr. 150, 44780, Bochum, Germany
| | - Thomas Quast
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitsätsstr. 150, 44780, Bochum, Germany
| | - Bashir Eid
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitsätsstr. 150, 44780, Bochum, Germany
| | - Yen-Ting Chen
- Center for Solvation Science (ZEMOS), Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Ridha Zerdoumi
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitsätsstr. 150, 44780, Bochum, Germany
| | - Stefan Dieckhöfer
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitsätsstr. 150, 44780, Bochum, Germany
| | - João R C Junqueira
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitsätsstr. 150, 44780, Bochum, Germany
| | - Sabine Seisel
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitsätsstr. 150, 44780, Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitsätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
14
|
Xu C, Xie J, Yu L, Shu B, Liu X, Chen S, Li Q, Qi S, Zhao S. Sensitive colorimetric detection of Vibrio vulnificus based on target-induced shielding against the peroxidase-mimicking activity of CeO 2@PtRu nanozyme. Food Chem 2024; 454:139757. [PMID: 38805924 DOI: 10.1016/j.foodchem.2024.139757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/03/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
Vibrio vulnificus infection caused by contaminated aquatic products and seawater can lead to severe disease and high mortality. The development of a rapid and sensitive detection method for Vibrio vulnificus is vital to effectively prevent infection in advance. In this study, CeO2@PtRu with high peroxidase activity was used to construct a colorimetric immunoassay for Vibrio vulnificus detection by conjugating polyclonal antibodies via the biotin-streptavidin system. The developed colorimetric biosensor for Vibrio vulnificus demonstrated rapid operability and good sensitivity with a detection range from 104 CFU/mL to 109 CFU/mL, and the limit of detection (LOD) is 193 CFU/mL. Moreover, the colorimetric biosensor showed excellent specificity and good recoveries from 98.70% to 102.10% with RSD < 7.45% for spiked real samples. This novel CeO2@PtRu-based colorimetric biosensor has great application potential for the sensitive detection of Vibrio vulnificus in seafood.
Collapse
Affiliation(s)
- Chenjing Xu
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Jinpo Xie
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Lian Yu
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, People's Republic of China
| | - Bin Shu
- Department of Burns, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Xiaogang Liu
- Department of Burns, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Siping Chen
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Qinglan Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Shaohai Qi
- Department of Burns, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China.
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
15
|
Zhang M, Gao Y, Xie C, Duan X, Lu X, Luo K, Ye J, Wang X, Gao X, Niu Q, Zhang P, Dai S. Designing water resistant high entropy oxide materials. Nat Commun 2024; 15:8306. [PMID: 39333127 PMCID: PMC11436891 DOI: 10.1038/s41467-024-52531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
The ubiquitous presence of moisture usually shows adverse effects on industrial catalysis. Herein, a concept of engineering entropy to design water-resistant oxide catalysts is proposed. The C3H6 oxidation by spinel ACr2O4 (A=Ni, Mg, Cu, Zn, Co) catalysts is selected as a model. Through DFT calculation, the adsorption energy of C3H6, the dissociation energy of molecular H2O on the oxide surface, and the formation energy of oxygen vacancy all suggest better performance induced by higher configurational entropy. Indeed, (Ni0.2Mg0.2Cu0.2Zn0.2Co0.2)Cr2O4 experimentally show excellent water resistance (>100 h) in C3H6 oxidation, while in sharp contrast binary oxides (e.g., NiCr2O4, CoCr2O4) are deactivated in 20 h. H2O-TPD, in-situ Raman, and in-situ FTIR all confirm the low H2O adsorption energy and strong hydrothermal stability of high entropy oxide, which is attributed to their lower Gibbs free energy. This work may inspire the rational design of water-resistant catalysts.
Collapse
Affiliation(s)
- Mengyuan Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Gao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chengmin Xie
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolan Duan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Lu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Kongliang Luo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Jian Ye
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Xiaopeng Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Xinhua Gao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Qiang Niu
- National enterprise technology center, Inner Mongolia Erdos Power and Metallurgy, Group Co., Ltd.Ordos, Inner Mongolia, China
| | - Pengfei Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China.
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Sheng Dai
- Chemical Science Division, Oak Ridge National Lab, Oak Ridge, US
| |
Collapse
|
16
|
Feng Z, He Y, Cui Y, Qu Y, Ding G, Chen X, Sui C, Wei Q, Wang Z, Jiang Q. Efficient Tandem Electrocatalytic Nitrate Reduction to Ammonia on Bimodal Nanoporous Ag/Ag-Co across Broad Nitrate Concentrations. NANO LETTERS 2024; 24:11929-11936. [PMID: 39264715 DOI: 10.1021/acs.nanolett.4c03218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Electrocatalytic nitrate (NO3-) reduction reaction (NO3-RR) represents a promising strategy for both wastewater treatment and ammonia (NH3) synthesis. However, it is difficult to achieve efficient NO3-RR on a single-component catalyst due to NO3-RR involving multiple reaction steps that rely on distinct catalyst properties. Here we report a facile alloying/dealloying-driven phase-separation strategy to construct a bimodal nanoporous Ag/Ag-Co tandem catalyst that exhibits a remarkable NO3-RR performance in a broad NO3- concentration range from 5 to 500 mM. In 10 and 50 mM NO3- electrolytes, the NH3 yield rates reach 3.4 and 25.1 mg h-1 mgcat.-1 with corresponding NH3 Faradaic efficiencies of 94.0% and 97.1%, respectively, outperforming most of the reported catalysts under the same NO3- concentration. The experimental results and density functional theory calculations demonstrate that Ag ligaments preferentially reduce NO3- to NO2-, while bimetallic Ag-Co ligaments catalyze the reduction of NO2- to NH3.
Collapse
Affiliation(s)
- Zixuan Feng
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Yuexuan He
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Yuhuan Cui
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yanbin Qu
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Guopeng Ding
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Xue Chen
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Chunyu Sui
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Qianling Wei
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Zhili Wang
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
17
|
Zhu A, Liu H, Bu S, Liu K, Luan C, Lin D, Gan G, Zhou Y, Zhang T, Liu K, Hong G, Li H, Zhang W. Facet-Dependent Evolution of Active Components on Spinel Co 3O 4 for Electrochemical Ammonia Synthesis. ACS NANO 2024; 18:22344-22355. [PMID: 39106490 DOI: 10.1021/acsnano.4c06637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Spinel cobalt oxides (Co3O4) have emerged as a promising class of catalysts for the electrochemical nitrate reduction reaction (eNO3RR) to ammonia, offering advantages such as low cost, high activity, and selectivity. However, the specific role of crystallographic facets in determining the catalysts' performance remains elusive, impeding the development of efficient catalysts. In this study, we have synthesized various Co3O4 nanostructures with exposed facets of {100}, {111}, {110}, and {112}, aiming to investigate the dependence of the eNO3RR activity on the crystallographic facets. Among the catalysts tested, Co3O4 {111} shows the best performance, achieving an ammonia Faradaic efficiency of 99.1 ± 1.8% with a yield rate of 35.2 ± 0.6 mg h-1 cm-2 at -0.6 V vs RHE. Experimental and theoretical results reveal a transformation process in which the active phases evolve from Co3O4 to Co3O4-x with oxygen vacancy (Ov), followed by a Co3O4-x-Ov/Co(OH)2 hybrid, and finally Co(OH)2. This process is observed for all facets, but the formation of Ov and Co(OH)2 is the most rapid on the (111) surface. The presence of Ov significantly reduces the free energy of the *NH2 intermediate formation from 1.81 to -0.53 eV, and plentiful active sites on the densely reconstructed Co(OH)2 make Co3O4 {111} an ideal catalyst for ammonia synthesis via eNO3RR. This work provides insights into the understanding of the realistic active components, offers a strategy for developing highly efficient Co-based spinel catalysts for ammonia synthesis through tuning the exposed facets, and helps further advance the design and optimization of catalysts in the field of eNO3RR.
Collapse
Affiliation(s)
- Anquan Zhu
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Heng Liu
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Shuyu Bu
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Kai Liu
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Chuhao Luan
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Dewu Lin
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Guoqiang Gan
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Yin Zhou
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Tian Zhang
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Kunlun Liu
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Guo Hong
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Wenjun Zhang
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
18
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
19
|
Zhou J, Zhao J, Song D, Liu J, Xu W, Li J, Wang N. Cascade Electrocatalytic Reduction of Nitrate to Ammonia Using a Heterobimetallic Covalent Organic Framework Composed of Cu-Porphyrin and Co-Bipyridine. Inorg Chem 2024; 63:15177-15185. [PMID: 39088784 DOI: 10.1021/acs.inorgchem.4c02553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
The electrocatalytic reduction of nitrate (NO3-) to ammonia (NH3) not only offers an effective solution to environmental problems caused by the accumulation of NO3- but also provides a sustainable alternative to the Haber-Bosch process. However, the conversion of NO3- to NH3 is a complicated process involving multiple steps, leading to a low Faradaic efficiency (FE) for NH3 production. The structural designability of covalent organic frameworks (COFs) renders feasible and precise modulation at the molecular level, facilitating the incorporation of multiple well-defined catalytic sites with different reactivities into a cohesive entity. This promotes the efficiency of the overall reaction through the coupling of multistep reactions. Herein, heterobimetallic CuP-CoBpy was prepared by postmodification, involving the anchoring of cobalt ions to the CuP-Bpy structure. As a result of the cascade effect of the bimetallic sites, CuP-CoBpy achieved an outstanding NH3 yield of 13.9 mg h-1 mgcat.-1 with a high FE of 96.7% at -0.70 V versus the reversible hydrogen electrode and exhibited excellent stability during catalysis. A series of experimental and theoretical studies revealed that the CuP unit facilitates the conversion of NO3- to NO2-, while the CoBpy moiety significantly prompts the reduction of NO2- to NH3. This study demonstrates that tailoring the structural units for the construction of COFs based on each step in the multistep reaction can enhance both the catalytic activity and product selectivity of the overall process.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Jiani Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Dengmeng Song
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Jiquan Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Wenhua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Jun Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Ning Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| |
Collapse
|
20
|
Xue Y, Yu Q, Fang J, Jia Y, Wang R, Fan J. A Wetting and Capture Strategy Overcoming Electrostatic Repulsion for Electroreduction of Nitrate to Ammonia from Low-Concentration Sewage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400505. [PMID: 38477685 DOI: 10.1002/smll.202400505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Ammonia production by electrocatalytic nitrate reduction reaction (NO3RR) in water streams is anticipated as a zero-carbon route. Limited by dilute nitrate in natural sewage and the electrostatic repulsion between NO3 - and cathode, NO3RR can hardly be achieved energy-efficiently. The hydrophilic Cu@CuCoO2 nano-island dispersed on support can enrich NO3 - and produce a sensitive current response, followed by electrosynthesis of ammonia through atomic hydrogen (*H) is reported. The accumulated NO3 - can be partially converted to NO2 - without external electric field input, confirming that the Cu@CuCoO2 nano-island can strongly bind NO3 - and then trigger the reduction via dynamic evolution between Cu-Co redox sites. Through the identification of intermediates and theoretical computation. it is found that the N-side hydrogenation of *NO is the optimal reaction step, and the formation of N─N dimer may be prevented. An NH3 product selectivity of 93.5%, a nitrate conversion of 96.1%, and an energy consumption of 0.079 kWh gNH3 -1 is obtained in 48.9 mg-N L-1 naturally nitrate-polluted streams, which outperforms many works using such dilute nitrate influent. Conclusively, the electrocatalytic system provides a platform to guarantee the self-sufficiency of dispersed ammonia production in agricultural regions.
Collapse
Affiliation(s)
- Yinghao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Qihui Yu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Junhua Fang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Yan Jia
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Rongchang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Jianwei Fan
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
21
|
Min S, Xu X, He J, Sun M, Lin W, Kang L. Construction of Cobalt Porphyrin-Modified Cu 2O Nanowire Array as a Tandem Electrocatalyst for Enhanced CO 2 Reduction to C 2 Products. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400592. [PMID: 38501796 DOI: 10.1002/smll.202400592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/27/2024] [Indexed: 03/20/2024]
Abstract
Here, the molecule-modified Cu-based array is first constructed as the self-supporting tandem catalyst for electrocatalytic CO2 reduction reaction (CO2RR) to C2 products. The modification of cuprous oxide nanowire array on copper mesh (Cu2O@CM) with cobalt(II) tetraphenylporphyrin (CoTPP) molecules is achieved via a simple liquid phase method. The systematical characterizations confirm that the formation of axial coordinated Co-O-Cu bond between Cu2O and CoTPP can significantly promote the dispersion of CoTPP molecules on Cu2O and the electrical properties of CoTPP-Cu2O@CM heterojunction array. Consequently, as compared to Cu2O@CM array, the optimized CoTPP-Cu2O@CM sample as electrocatalyst can realize the 2.08-fold C2 Faraday efficiency (73.2% vs 35.2%) and the 2.54-fold current density (‒52.9 vs ‒20.8 mA cm-2) at ‒1.1 V versus RHE in an H-cell. The comprehensive performance is superior to most of the reported Cu-based materials in the H-cell. Further study reveals that the CoTPP adsorption on Cu2O can restrain the hydrogen evolution reaction, improve the coverage of *CO intermediate, and maintain the existence of Cu(I) at low potential.
Collapse
Affiliation(s)
- Shihao Min
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Beijing, 100045, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
- University Chinese Academy of Science, Fujian College, Fuzhou, 350002, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiao Xu
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Beijing, 100045, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
- University Chinese Academy of Science, Fujian College, Fuzhou, 350002, P. R. China
| | - Jiaxin He
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Beijing, 100045, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
- University Chinese Academy of Science, Fujian College, Fuzhou, 350002, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Miao Sun
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Beijing, 100045, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
- University Chinese Academy of Science, Fujian College, Fuzhou, 350002, P. R. China
| | - Wenlie Lin
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Beijing, 100045, P. R. China
| | - Longtian Kang
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Beijing, 100045, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
- University Chinese Academy of Science, Fujian College, Fuzhou, 350002, P. R. China
| |
Collapse
|
22
|
Huang W, Luo W, Liu J, Jia BE, Lee C, Dong J, Yang L, Liu B, Yan Q. Cascade Electrocatalytic Nitrate Reduction Reaching 100% Nitrate-N to Ammonia-N Conversion over Cu 2O@CoO Yolk-Shell Nanocubes. ACS NANO 2024. [PMID: 39069739 DOI: 10.1021/acsnano.4c03995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The electroreduction of nitrate to ammonia via a selective eight-electron transfer nitrate reduction reaction offers a promising, low energy consumption, pollution-free, green NH3 synthesis strategy alternative to the Haber-Bosch method. However, it remains a great challenge to achieve high NH4+ selectivity and complete conversion from NO3--N to NH4+-N. Herein, we report ingredients adjustable Cu2O@CoO yolk-shell nanocubes featured with tunable inner void spaces and diverse activity centers, favoring the rapid cascade conversion of NO3- into NO2- on Cu2O and NO2- into NH4+ on CoO. Cu2O@CoO yolk-shell nanocubes exhibit super NH4+ Faradaic efficiencies (>99%) over a wide potential window (-0.2 V to -0.9 V versus RHE) with a considerable NH4+ yield rate of 15.27 mg h-1 cm-2 and fantastic cycling stability and long-term chronoamperometric durability. Cu2O@CoO yolk-shell nanocubes exhibited glorious NO3--N to NH4+-N conversion efficiency in both dilute (500 ppm) and highly concentrated (0.1 and 1 M) NO3- electrolytes, respectively. The nitrate electrolysis membrane electrode assembly system equipped with Cu2O@CoO yolk-shell nanocubes delivers over 99.8% NH4+ Faradaic efficiency at cell voltages of 1.9-2.3 V.
Collapse
Affiliation(s)
- Wenjing Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Wenyu Luo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jiawei Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Bei-Er Jia
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Carmen Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jinfeng Dong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Lan Yang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Bin Liu
- Department of Materials Science and Engineering, Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR 999077, China
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
23
|
Wei J, Li Y, Lin H, Lu X, Zhou C, Li YY. Copper-based electro-catalytic nitrate reduction to ammonia from water: Mechanism, preparation, and research directions. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100383. [PMID: 38304117 PMCID: PMC10830547 DOI: 10.1016/j.ese.2023.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024]
Abstract
Global water bodies are increasingly imperiled by nitrate pollution, primarily originating from industrial waste, agricultural runoffs, and urban sewage. This escalating environmental crisis challenges traditional water treatment paradigms and necessitates innovative solutions. Electro-catalysis, especially utilizing copper-based catalysts, known for their efficiency, cost-effectiveness, and eco-friendliness, offer a promising avenue for the electro-catalytic reduction of nitrate to ammonia. In this review, we systematically consolidate current research on diverse copper-based catalysts, including pure Cu, Cu alloys, oxides, single-atom entities, and composites. Furthermore, we assess their catalytic performance, operational mechanisms, and future research directions to find effective, long-term solutions to water purification and ammonia synthesis. Electro-catalysis technology shows the potential in mitigating nitrate pollution and has strategic importance in sustainable environmental management. As to the application, challenges regarding complexity of the real water, the scale-up of the commerical catalysts, and the efficient collection of produced NH3 are still exist. Following reseraches of catalyst specially on long term stability and in situ mechanisms are proposed.
Collapse
Affiliation(s)
| | | | | | | | - Chucheng Zhou
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Ya-yun Li
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| |
Collapse
|
24
|
Zhang L, Wahab OJ, Jallow AA, O’Dell ZJ, Pungsrisai T, Sridhar S, Vernon KL, Willets KA, Baker LA. Recent Developments in Single-Entity Electrochemistry. Anal Chem 2024; 96:8036-8055. [PMID: 38727715 PMCID: PMC11112546 DOI: 10.1021/acs.analchem.4c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- L. Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - O. J. Wahab
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - A. A. Jallow
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Z. J. O’Dell
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - T. Pungsrisai
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - S. Sridhar
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - K. L. Vernon
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - K. A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - L. A. Baker
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
25
|
Xiong Y, Wang Y, Zhou J, Liu F, Hao F, Fan Z. Electrochemical Nitrate Reduction: Ammonia Synthesis and the Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304021. [PMID: 37294062 DOI: 10.1002/adma.202304021] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Natural nitrogen cycle has been severely disrupted by anthropogenic activities. The overuse of N-containing fertilizers induces the increase of nitrate level in surface and ground waters, and substantial emission of nitrogen oxides causes heavy air pollution. Nitrogen gas, as the main component of air, has been used for mass ammonia production for over a century, providing enough nutrition for agriculture to support world population increase. In the last decade, researchers have made great efforts to develop ammonia processes under ambient conditions to combat the intensive energy consumption and high carbon emission associated with the Haber-Bosch process. Among different techniques, electrochemical nitrate reduction reaction (NO3RR) can achieve nitrate removal and ammonia generation simultaneously using renewable electricity as the power, and there is an exponential growth of studies in this research direction. Here, a timely and comprehensive review on the important progresses of electrochemical NO3RR, covering the rational design of electrocatalysts, emerging CN coupling reactions, and advanced energy conversion and storage systems is provided. Moreover, future perspectives are proposed to accelerate the industrialized NH3 production and green synthesis of chemicals, leading to a sustainable nitrogen cycle via prosperous N-based electrochemistry.
Collapse
Affiliation(s)
- Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
26
|
Jin H, Zeng W, Qian W, Li L, Ji P, Li Z, He D. Fast and In-Depth Reconstruction of Two-Dimension Cobalt-Based Zeolitic Imidazolate Framework in Glucose Oxidation Processes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8151-8157. [PMID: 38306191 DOI: 10.1021/acsami.3c18585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Currently, metal-organic frameworks (MOFs) have emerged as viable candidates for enduring electrode materials in nonenzyme glucose sensing. However, given the inherent water susceptibility of MOFs and their complete self-reconstruction during the process of electrochemical oxygen evolution in alkaline conditions, we are motivated to explore the truth of MOFs catalyzing glucose oxidation. In this work, we fabricated a two-dimensional cobalt-based zeolitic imidazolate framework (ZIF-L) as the electrode material for catalyzing glucose oxidation in alkaline conditions. Our explorations revealed that while the initial glucose catalytic response varied among ZIF-L samples with differing thicknesses, the ultimate steady-state catalytic performance remained largely consistent. This phenomenon arose from the transformation of ZIF-L with distinct thicknesses into CoOOH with uniform morphological and structural characteristics during the glucose catalysis process. And in situ Raman spectroscopy elucidated the sustained equilibrium within the glucose catalytic system, wherein the dynamic interconversion between CoOOH and Co(OH)2 governs the overall process. This study contributes to an enhanced understanding of the glucose catalytic mechanism aspects of nonenzymatic glucose sensor electrode materials, offering insights that serve as inspiration for the development of advanced glucose electrode materials.
Collapse
Affiliation(s)
- Huihui Jin
- National Engineering Laboratory for Fiber Optic Sensing Technology, School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
- Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Weihao Zeng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Wei Qian
- Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Lun Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Pengxia Ji
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhengying Li
- National Engineering Laboratory for Fiber Optic Sensing Technology, School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Daping He
- Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
27
|
Zhang M, Ye J, Gao Y, Duan X, Zhao J, Zhang S, Lu X, Luo K, Wang Q, Niu Q, Zhang P, Dai S. General Synthesis of High-Entropy Oxide Nanofibers. ACS NANO 2024; 18:1449-1463. [PMID: 38175529 DOI: 10.1021/acsnano.3c07506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The discovery of high-entropy oxides (HEOs) in 2015 has provided a family of potential solid catalysts, due to their tunable components, abundant defects or lattice distorts, excellent thermal stability (ΔG↓ = ΔH - TΔS↑), and so on. When facing the heterogeneous catalysis by HEOs, the micrometer bulky morphology and low surface areas (e.g., <10 m2 g-1) by traditional synthesis methods obstructed their way. In this work, an electrospinning method to fabricate HEO nanofibers with diameters of 50-100 nm was demonstrated. The key point lay in the formation of one-dimensional filamentous precursors, during which the uniform dispersion of five metal species with disordered configuration would help to crystallize into single-phase HEOs at lower temperatures: inverse spinel (Cr0.2Mn0.2Co0.2Ni0.2Fe0.2)3O4 (400 °C), perovskite La(Mn0.2Cu0.2Co0.2Ni0.2Fe0.2)O3 (500 °C), spinel Ni0.2Mg0.2Cu0.2Mn0.2Co0.2)Al2O4 (550 °C), and cubic Ni0.2Mg0.2Cu0.2Zn0.2Co0.2O (750 °C). As a proof-of-concept, (Ni3MoCoZn)Al12O24 nanofiber exhibited good activity (CH4 Conv. > 96%, CO2 Conv. > 99%, H2/CO ≈ 0.98), long-time stability (>100 h) for the dry reforming of methane (DRM) at 700 °C without coke deposition, better than control samples (Ni3MoCoZn)Al12O24-Coprecipitation-700 (CH4 Conv. < 3%, CO2 Conv. < 7%). The reaction mechanism of DRM was studied by in situ infrared spectroscopy, CO2-TPD, and CO2/CH4-TPSR. This electrospinning method provides a synthetic route for HEO nanofibers for target applications.
Collapse
Affiliation(s)
- Mengyuan Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Ye
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Ying Gao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolan Duan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiahua Zhao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuangshuang Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyan Lu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Kongliang Luo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Qiongqiong Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Qiang Niu
- Inner Mongolia Erdos Power and Metallurgy Group Co., Ltd., Ordos 017010, Inner Mongolia China
| | - Pengfei Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Sheng Dai
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge 37830, Tennessee, United States
| |
Collapse
|
28
|
Kang M, Bentley CL, Mefford JT, Chueh WC, Unwin PR. Multiscale Analysis of Electrocatalytic Particle Activities: Linking Nanoscale Measurements and Ensemble Behavior. ACS NANO 2023; 17:21493-21505. [PMID: 37883688 PMCID: PMC10655184 DOI: 10.1021/acsnano.3c06335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
Nanostructured electrocatalysts exhibit variations in electrochemical properties across different length scales, and the intrinsic catalytic characteristics measured at the nanoscale often differ from those at the macro-level due to complexity in electrode structure and/or composition. This aspect of electrocatalysis is addressed herein, where the oxygen evolution reaction (OER) activity of β-Co(OH)2 platelet particles of well-defined structure is investigated in alkaline media using multiscale scanning electrochemical cell microscopy (SECCM). Microscale SECCM probes of ∼50 μm diameter provide voltammograms from small particle ensembles (ca. 40-250 particles) and reveal increasing dispersion in the OER rates for samples of the same size as the particle population within the sample decreases. This suggests the underlying significance of heterogeneous activity at the single-particle level that is confirmed through single-particle measurements with SECCM probes of ∼5 μm diameter. These measurements of multiple individual particles directly reveal significant variability in the OER activity at the single-particle level that do not simply correlate with the particle size, basal plane roughness, or exposed edge plane area. In combination, these measurements demarcate a transition from an "individual particle" to an "ensemble average" response at a population size of ca. 130 particles, above which the OER current density closely reflects that measured in bulk at conventional macroscopic particle-modified electrodes. Nanoscale SECCM probes (ca. 120 and 440 nm in diameter) enable measurements at the subparticle level, revealing that there is selective OER activity at the edges of particles and highlighting the importance of the three-phase boundary where the catalyst, electrolyte, and supporting carbon electrode meet, for efficient electrocatalysis. Furthermore, subparticle measurements unveil heterogeneity in the OER activity among particles that appear superficially similar, attributable to differences in defect density within the individual particles, as well as to variations in electrical and physical contact with the support material. Overall this study provides a roadmap for the multiscale analysis of nanostructured electrocatalysts, directly demonstrating the importance of multilength scale factors, including particle structure, particle-support interaction, presence of defects, etc., in governing the electrochemical activities of β-Co(OH)2 platelet particles and ultimately guiding the rational design and optimization of these materials for alkaline water electrolysis.
Collapse
Affiliation(s)
- Minkyung Kang
- School
of Chemistry, The University of Sydney, Camperdown 2006 NSW, Australia
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
| | | | - J. Tyler Mefford
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - William C. Chueh
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Patrick R. Unwin
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
29
|
Wu S, Jiang Y, Luo W, Xu P, Huang L, Du Y, Wang H, Zhou X, Ge Y, Qian J, Nie H, Yang Z. Ag-Co 3 O 4 -CoOOH-Nanowires Tandem Catalyst for Efficient Electrocatalytic Conversion of Nitrate to Ammonia at Low Overpotential via Triple Reactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303789. [PMID: 37822155 PMCID: PMC10667848 DOI: 10.1002/advs.202303789] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/23/2023] [Indexed: 10/13/2023]
Abstract
The electrocatalytic conversion of nitrate (NO3 ‾) to NH3 (NO3 RR) offers a promising alternative to the Haber-Bosch process. However, the overall kinetic rate of NO3 RR is plagued by the complex proton-assisted multiple-electron transfer process. Herein, Ag/Co3 O4 /CoOOH nanowires (i-Ag/Co3 O4 NWs) tandem catalyst is designed to optimize the kinetic rate of intermediate reaction for NO3 RR simultaneously. The authors proved that NO3 ‾ ions are reduced to NO2 ‾ preferentially on Ag phases and then NO2 ‾ to NO on Co3 O4 phases. The CoOOH phases catalyze NO reduction to NH3 via NH2 OH intermediate. This unique catalyst efficiently converts NO3 ‾ to NH3 through a triple reaction with a high Faradaic efficiency (FE) of 94.3% and a high NH3 yield rate of 253.7 μmol h-1 cm-2 in 1 M KOH and 0.1 M KNO3 solution at -0.25 V versus RHE. The kinetic studies demonstrate that converting NH2 OH into NH3 is the rate-determining step (RDS) with an energy barrier of 0.151 eV over i-Ag/Co3 O4 NWs. Further applying i-Ag/Co3 O4 NWs as the cathode material, a novel Zn-nitrate battery exhibits a power density of 2.56 mW cm-2 and an FE of 91.4% for NH3 production.
Collapse
Affiliation(s)
- Shilu Wu
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Yingyang Jiang
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Wenjie Luo
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Peng Xu
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Longlong Huang
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Yiwen Du
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Hui Wang
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Xuemei Zhou
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Yongjie Ge
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Huagui Nie
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Zhi Yang
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| |
Collapse
|
30
|
Zhang M, Duan X, Gao Y, Zhang S, Lu X, Luo K, Ye J, Wang X, Niu Q, Zhang P, Dai S. Tuning Oxygen Vacancies in Oxides by Configurational Entropy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45774-45789. [PMID: 37740720 DOI: 10.1021/acsami.3c07268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Tuning surface oxygen vacancies is important for oxide catalysts. Doping elements with different chemical valence states or different atomic radii into host oxides is a common method to create oxygen vacancies. However, the concentration of oxygen vacancies in oxide catalysts is still limited to the amount of foreign dopants that can be tolerated (generally less than 10% atoms). Herein, a principle of engineering the configurational entropy to tune oxygen vacancies was proposed. First, the positive relationship between the configuration entropy and the formation energy of oxygen vacancies (Eov) in 16 model oxides was estimated by a DFT calculation. To verify this, single binary oxides and high-entropy quinary oxides (HEOs) were prepared. Indeed, the concentration of oxygen vacancies in HEOs (Oβ/α = 3.66) was higher compared to those of single or binary oxides (Oβ/α = 0.22-0.75) by O1s XPS, O2-TPD, and EPR. Interestingly, the reduction temperatures of transition metal ions in HEOs were generally lower than that in single-metal oxides by H2-TPR. The lower Eov of HEOs may contribute to this feature, which was confirmed by in situ XPS and in situ XRD. Moreover, with catalytic CO/C3H6 oxidation as a model, the high-entropy (MnCuCo3NiFe)xOy catalyst showed higher catalytic activity than single and binary oxides, which experimentally verified the hypothesis of the DFT calculation. This work may inspire more oxide catalysts with preferred oxygen vacancies.
Collapse
Affiliation(s)
- Mengyuan Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolan Duan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Gao
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Shuangshuang Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiaoyan Lu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Kongliang Luo
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jian Ye
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiaopeng Wang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Qiang Niu
- National Enterprise Technology Center, Inner Mongolia Erdos Electric Power and Metallurgy Group Co., Ltd., Ordos 016064, Inner Mongolia, China
| | - Pengfei Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Sheng Dai
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge 37830, Tennessee, United States
| |
Collapse
|
31
|
He W, Chandra S, Quast T, Varhade S, Dieckhöfer S, Junqueira JRC, Gao H, Seisel S, Schuhmann W. Enhanced Nitrate-to-Ammonia Efficiency over Linear Assemblies of Copper-Cobalt Nanophases Stabilized by Redox Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303050. [PMID: 37235856 DOI: 10.1002/adma.202303050] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/13/2023] [Indexed: 05/28/2023]
Abstract
Renewable electricity-powered nitrate (NO3 - ) reduction reaction (NO3 RR) offers a net-zero carbon route to the realization of high ammonia (NH3 ) productivity. However, this route suffers from low energy efficiency (EE, with a half-cell EE commonly <36%), since high overpotentials are required to overcome the weak NO3 - binding affinity and sluggish NO3 RR kinetics. To alleviate this, a rational catalyst design strategy that involves the linear assembly of sub-5 nm Cu/Co nanophases into sub-20 nm thick nanoribbons is suggested. The theoretical and experimental studies show that the Cu-Co nanoribbons, similar to enzymes, enable strong NO3 - adsorption and rapid tandem catalysis of NO3 - to NH3 , owing to their richly exposed binary phase boundaries and adjacent Cu-Co sites at sub-5 nm distance. In situ Raman spectroscopy further reveals that at low applied overpotentials, the Cu/Co nanophases are rapidly activated and subsequently stabilized by a specifically designed redox polymer that in situ scavenges intermediately formed highly oxidative nitrogen dioxide (NO2 ). As a result, a stable NO3 RR with a current density of ≈450 mA cm-2 is achieved, a Faradaic efficiency of >97% for the formation of NH3 , and an unprecedented half-cell EE of ≈42%.
Collapse
Affiliation(s)
- Wenhui He
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Shubhadeep Chandra
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Thomas Quast
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Swapnil Varhade
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Stefan Dieckhöfer
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - João R C Junqueira
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Huimin Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Sabine Seisel
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| |
Collapse
|