1
|
Nier S, Rinn N, Guggolz L, Dehnen S. Dimers and 2D Networks of Adamantane-Related Ternary Organosilicon Coinage Metal Sulfide Clusters. Chemistry 2024; 30:e202401656. [PMID: 38969621 DOI: 10.1002/chem.202401656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/07/2024]
Abstract
Adamantane-type organotin sulfide clusters were recently shown to react with coinage metal phosphine complexes under replacement of an organic substituent by a metal-phosphine unit. An extension of such studies involving the silicon-based congener [(PhSi)4S6] (A) revealed that the cluster core will be partly disassembled and a {PhSi} moiety is replaced by a coinage metal phosphine complex to form [(Et3PAg)3(PhSi)3S6] (B) and [Na2(thf)2.33][(Me3PCu)(PhSi)3S6] (C). Herein, we present an extension of this work upon variation of the reactants and reaction conditions. Besides the isolation of crystalline precursor complexes [CuCl(PMe2Ph)3] (1) and [AgCl(PMe2Ph)2]2 (2), the study addresses reactions of A with AgCl and a phosphine ligand in CH2Cl2, upon which A is completely disassembled to form [(Ph3P)3Ag(μ-S)SiCl2Ph] (3). In another case a CH2 group, most likely stemming from CH2Cl2, was attached to the ligand, thus generating [{PhCl(S)SiSCH2P(Ph2)CH2CH2}2] (4). Upon using CuCl and 1,4-bis(diphenylphosphino)butane (dppb) we isolated the phosphine-bridged analog of B, [{(dppbCu2)CuP(Ph2)(CH2CH2)(PhSi)3S6}2] (5). In order to receive the yet elusive silver homolog of C, we used PMe2Ph as a bulkier ligand. This way we generated a 2D coordination polymer of the desired composition, [Na2(thf)1.5][(Me2PhPAg)(PhSi)3S6] (6). UV-visible spectra of 6 indicated a bandgap of 3.89 eV, thus blue-shifted in regards to B and C.
Collapse
Affiliation(s)
- Simon Nier
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Niklas Rinn
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Lukas Guggolz
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Stefanie Dehnen
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Lenchours Pezzano J, Rodriguez YE, Fernández-Gimenez AV, Laitano MV. Exploring fishery waste potential as antifouling component. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20159-20171. [PMID: 38372927 DOI: 10.1007/s11356-024-32491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
Marine biofouling is a global issue with economic and ecological implications. Existing solutions, such as biocide-based antifouling paints, are toxic for the environment. The search for better antifouling agents remains crucial. Recent research focuses on eco-friendly antifouling paints containing natural compounds like enzymes. This study evaluates enzymatic extracts from fishery residues for antifouling potential. Extracts from Pleoticus muelleri shrimp, Illex argentinus squid, and Lithodes santolla king crab were analyzed. Proteolytic activity and thermal stability were assessed, followed by bioassays on mussel byssus thread formation and barnacle cypris adhesive footprints. All three extracts demonstrated proteolytic activity and 24-h stability at temperate oceanic temperatures, except I. argentinus. P. muelleri extracts hindered cyprid footprint formation and mussel byssus thread generation. Further purification is required for L. santolla extract to assess its antifouling potential activity. This study introduces the use of fishery waste-derived enzyme extracts as a novel antifouling agent, providing a sustainable tool to fight against biofouling formation.
Collapse
Affiliation(s)
- Juliana Lenchours Pezzano
- Marine Science Department, Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - Yamila E Rodriguez
- Marine Science Department, Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Argentina
- Marine and Coastal Research Institute (IIMyC), Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Scientific and Technological Research National Council, Mar del Plata, Argentina
| | - Analía V Fernández-Gimenez
- Marine Science Department, Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Argentina
- Marine and Coastal Research Institute (IIMyC), Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Scientific and Technological Research National Council, Mar del Plata, Argentina
| | - María V Laitano
- Marine Science Department, Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Argentina.
- Marine and Coastal Research Institute (IIMyC), Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Scientific and Technological Research National Council, Mar del Plata, Argentina.
| |
Collapse
|
3
|
Braga CR, Richard KN, Gardner H, Swain G, Hunsucker KZ. Investigating the Impacts of UVC Radiation on Natural and Cultured Biofilms: An assessment of Cell Viability. Microorganisms 2023; 11:1348. [PMID: 37317322 DOI: 10.3390/microorganisms11051348] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
Biofilms are conglomerates of cells, water, and extracellular polymeric substances which can lead to various functional and financial setbacks. As a result, there has been a drive towards more environmentally friendly antifouling methods, such as the use of ultraviolet C (UVC) radiation. When applying UVC radiation, it is important to understand how frequency, and thus dose, can influence an established biofilm. This study compares the impacts of varying doses of UVC radiation on both a monocultured biofilm consisting of Navicula incerta and field-developed biofilms. Both biofilms were exposed to doses of UVC radiation ranging from 1626.2 mJ/cm2 to 9757.2 mJ/cm2 and then treated with a live/dead assay. When exposed to UVC radiation, the N. incerta biofilms demonstrated a significant reduction in cell viability compared to the non-exposed samples, but all doses had similar viability results. The field biofilms were highly diverse, containing not only benthic diatoms but also planktonic species which may have led to inconsistencies. Although they are different from each other, these results provide beneficial data. Cultured biofilms provide insight into how diatom cells react to varying doses of UVC radiation, whereas the real-world heterogeneity of field biofilms is useful for determining the dosage needed to effectively prevent a biofilm. Both concepts are important when developing UVC radiation management plans that target established biofilms.
Collapse
Affiliation(s)
- Cierra R Braga
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Kailey N Richard
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Harrison Gardner
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Geoffrey Swain
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Kelli Z Hunsucker
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL 32901, USA
| |
Collapse
|
4
|
Weber F, Esmaeili N. Marine biofouling and the role of biocidal coatings in balancing environmental impacts. BIOFOULING 2023; 39:661-681. [PMID: 37587856 DOI: 10.1080/08927014.2023.2246906] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Marine biofouling is a global problem affecting various industries, particularly the shipping industry due to long-distance voyages across various ecosystems. Therein fouled hulls cause increased fuel consumption, greenhouse gas emissions, and the spread of invasive aquatic species. To counteract these issues, biofouling management plans are employed using manual cleaning protocols and protective coatings. This review provides a comprehensive overview of adhesion strategies of marine organisms, and currently available mitigation methods. Further, recent developments and open challenges of antifouling (AF) and fouling release (FR) coatings are discussed with regards to the future regulatory environment. Finally, an overview of the environmental and economic impact of fouling is provided to point out why and when the use of biocidal solutions is beneficial in the overall perspective.
Collapse
Affiliation(s)
- Florian Weber
- Department of Materials and Nanotechnology, SINTEF, Oslo, Norway
| | | |
Collapse
|
5
|
Riaz NN, Ahmed MM, Kashif M, Sajid M, Ali M, Mahmood K. Biologically potent organotin(iv) complexes of N-acetylated β-amino acids with spectroscopic, X-ray powder diffraction and molecular docking studies. RSC Adv 2023; 13:10768-10789. [PMID: 37033437 PMCID: PMC10074041 DOI: 10.1039/d2ra06718h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Twelve novel organotin(iv) complexes (1-12) of N-acetylated β-amino acids (L1-L8) were synthesized and characterized by elemental analysis, FTIR, multinuclear (1H, 13C, 119Sn) NMR, EI-MS and powder XRD techniques. The XRD results determined lattice parameters, average particle size, and intrinsic strain and confirmed the crystalline nature of complexes as face centered cubic phases. Molecular docking analysis using a catalytic pocket of the α-glucosidase enzyme indicated that most of the compounds displayed a well-fitted orientation and occupied important amino acids in the enzyme's catalytic pocket. Furthermore, in vitro α-glucosidase inhibitory activity results revealed that L1 and complexes 4, 6 and 10 showed the highest activity with IC50 values of 21.54 ± 0.45, 37.96 ± 0.81 and 35.20 ± 1.02, respectively, compared to standard acarbose with an IC50 value of 42.51 ± 0.21. In addition, in vivo antidiabetic activity of selected compounds using alloxan induced diabetic rabbits showed that L4 and complexes 4, 6, 10, 12 showed significant activities like standard metformin. Anti-bacterial activity against the selected Gram-positive and Gram-negative bacterial strains has the following order Escherichia coli > Pseudomonas aeruginosa > Staphylococcus aureus > Bacillus subtilis. Similarly, antioxidant activity by the DPPH scavenging method was also studied with following results: triorganotin > diorganotin > ligands.
Collapse
Affiliation(s)
- Nagina Naveed Riaz
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan Pakistan
- Department of Chemistry, Division of Science & Technology, University of Education Lahore Pakistan
| | | | | | - Muhammad Sajid
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan Pakistan
| | - Muhammad Ali
- School of Materials Science and Engineering, University of Science and Technology of China 96 Jinzhai Road, Baohe District Hefei 230026 PR China
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan Pakistan
| |
Collapse
|
6
|
Tin(II) and Tin(IV) Complexes Incorporating the Oxygen Tripodal Ligands [( η5-C 5R 5)Co{P(OEt) 2O} 3] -, (R = H, Me; Et = -C 2H 5) as Potent Inflammatory Mediator Inhibitors: Cytotoxic Properties and Biological Activities against the Platelet-Activating Factor (PAF) and Thrombin. Molecules 2023; 28:molecules28041859. [PMID: 36838847 PMCID: PMC9964123 DOI: 10.3390/molecules28041859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Metal complexes displaying antiplatelet properties is a promising research area. In our methodology, Platelet-Activating Factor (PAF), the most potent lipid pro-inflammatory mediator, serves as a biological probe. The antiplatelet activity is exerted by the inhibition of the PAF-induced aggregation in washed rabbit platelets (WRPs) and in rabbit plasma rich in platelets (rPRPs). Herein, the synthesis and biological investigation of a series of organometallic tin(II) and tin(IV) complexes, featuring the oxygen tripodal Kläui ligands [(η5-C5R5)Co{P(OEt)2O}3]-, {R = H, (LOEt-); Me (L*OEt-)}, are reported. Reaction of NaLOEt (1a) and NaL*OEt (1b) with SnCl2, yielded the rare four-coordinate LOEtSnCl (2a) and L*OEtSnCl (2b) complexes. Accordingly, LOEtSnPh3 (3a) and L*OEtSnPh3 (3b) were prepared, starting from Ph3SnCl. Characterization includes spectroscopy and X-ray diffraction studies for 2a, 2b and 3b. The antiplatelet activity of the lead complexes 2b and 3a (IC50 = 0.5 μΜ) is superior compared to that of 1a and 1b, while both complexes display a pronounced inhibitory activity against thrombin (IC50 = 1.8 μM and 0.6 μM). The in vitro cytotoxic activities of 3a and 2b on human Jurkat T lymphoblastic tumor cell line is higher than that of cisplatin.
Collapse
|
7
|
Takamura H, Kinoshita Y, Yorisue T, Kadota I. Chemical synthesis and antifouling activity of monoterpene-furan hybrid molecules. Org Biomol Chem 2023; 21:632-638. [PMID: 36562351 DOI: 10.1039/d2ob02203f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Geraniol, a monoterpene, and furan are structural motifs that exhibit antifouling activity. In this study, monoterpene-furan hybrid molecules with potentially enhanced antifouling activity were designed and synthesized. The nine synthetic hybrids showed antifouling activity against the cypris larvae of the barnacle Balanus (Amphibalanus) amphitrite with EC50 values of 1.65-4.70 μg mL-1. This activity is higher than that of geraniol and the reference furan compound. This hybridization approach to increase antifouling activity is useful and can also be extended to other active structural units.
Collapse
Affiliation(s)
- Hiroyoshi Takamura
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Yuya Kinoshita
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Takefumi Yorisue
- Institute of Natural and Environmental Sciences, University of Hyogo, 6 Yayoigaoka, Sanda 669-1546, Japan.,Division of Nature and Environmental Management, Museum of Nature and Human Activities, 6 Yayoigaoka, Sanda 669-1546, Japan
| | - Isao Kadota
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
8
|
Mikac N, Furdek Turk M, Petrović D, Bigović M, Krivokapić S. First assessment of butyltins (BuTs) contamination of the Montenegrin coast (Southeast Adriatic): Tributyltin (TBT) poses a threat to the marine ecosystem. MARINE POLLUTION BULLETIN 2022; 185:114270. [PMID: 36347191 DOI: 10.1016/j.marpolbul.2022.114270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
This study presents the first assessment of butyltins (BuTs) pollution of the Montenegrin coast. The distribution of tributyltin (TBT), dibutyltin (DBT) and monobutyltin (MBT) was investigated in mussels, sediments and water overlying sediment after the sediment resuspension. The results showed that the investigated sites (marinas, ports, shipyards) are contaminated with BuTs (19-402 ng (Sn)/g in mussels; 43-20,641 ng (Sn)/g in sediments; 9-566 ng (Sn)/L in overlying waters). The measured TBT concentrations indicate that toxic effects on marine organisms are expected at most locations. The simultaneous analysis of BuTs and total Sn in sediment cores allowed the assessment of TBT historical input, while it was demonstrated that resuspension of contaminated sediments leads to the release of all BuTs into the water column. This study shows that, despite the ban of TBT-based antifouling paints more than a decade ago, pollution of the marine environment with TBT is still a problem and regular monitoring remains essential.
Collapse
Affiliation(s)
- Nevenka Mikac
- Division for Marine and Environmental Research, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Martina Furdek Turk
- Division for Marine and Environmental Research, Ruđer Bošković Institute, 10000 Zagreb, Croatia.
| | - Dragana Petrović
- Faculty of Natural Sciences and Mathematics, University of Montenegro, 81000 Podgorica, Montenegro
| | - Miljan Bigović
- Faculty of Natural Sciences and Mathematics, University of Montenegro, 81000 Podgorica, Montenegro
| | - Sladjana Krivokapić
- Faculty of Natural Sciences and Mathematics, University of Montenegro, 81000 Podgorica, Montenegro
| |
Collapse
|
9
|
Beyer J, Song Y, Tollefsen KE, Berge JA, Tveiten L, Helland A, Øxnevad S, Schøyen M. The ecotoxicology of marine tributyltin (TBT) hotspots: A review. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105689. [PMID: 35777303 DOI: 10.1016/j.marenvres.2022.105689] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Tributyltin (TBT) was widely used as a highly efficient biocide in antifouling paints for ship and boat hulls. Eventually, TBT containing paints became globally banned when TBT was found to cause widespread contamination and non-target adverse effects in sensitive species, with induced pseudohermaphroditism in female neogastropods (imposex) being the best-known example. In this review, we address the history and the status of knowledge regarding TBT pollution and marine TBT hotspots, with a special emphasis on the Norwegian coastline. The review also presents a brief update on knowledge of TBT toxicity in various marine species and humans, highlighting the current understanding of toxicity mechanisms relevant for causing endocrine disruption in marine species. Despite observations of reduced TBT sediment concentrations in many marine sediments over the recent decades, contaminant hotspots are still prevalent worldwide. Consequently, efforts to monitor TBT levels and assessment of potential effects in sentinel species being potentially susceptible to TBT in these locations are still highly warranted.
Collapse
Affiliation(s)
- Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway.
| | - You Song
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - John Arthur Berge
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Lise Tveiten
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | | | - Sigurd Øxnevad
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Merete Schøyen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| |
Collapse
|
10
|
Methylmercury, Trace Metals, Organotins and Their Effects on the Qatari Mangrove Shrimp, Palaemon khori. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10070843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Qatari mangroves of Al-Khor are being increasingly exposed to a wide variety of anthropogenic pollutants due to land reclamation and urban expansion. In this study, we evaluated the lethal and genotoxic effects of methylmercury, trace metals, and organotins, assessing mortality and aneuploidy levels (abnormal number of chromosomes) in the endemic shrimp Palaemon khori under laboratory conditions. In the experimental design, two different concentrations were used for each family of contaminant (single or combined): an environmental concentration equivalent to the maximum value reported in the environment and a value ten times higher, for a period of eight weeks. Survival decreased significantly when pollutants were administrated in combination, even at environmental concentrations (as shown by Cox proportional hazards ratios): similar levels of mortality would be reached by individual type of pollutants only at ten times the environmental concentration. This critical result, under controlled lab conditions, highlights the importance of monitoring mixtures of contaminant types over single ones in the marine environment. Aneuploidy was reported in all treatments and control ranging from 5% to 19% at week four and from 7% to 21% at week eight. All treatments presented significantly higher aneuploidy levels when compared to the control. However, no significant difference was observed between the two time periods, even though 30% of the treatments could not be assessed at week eight, as not enough animals were still alive. In conclusion, the use of endemic species should be considered a valuable tool to determine local perturbations, representing a regional bioindicator of multiple environmental stressors from the initial stages of contamination.
Collapse
|
11
|
Biocide vs. Eco-Friendly Antifoulants: Role of the Antioxidative Defence and Settlement in Mytilus galloprovincialis. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10060792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antifoulant paints were developed to prevent and reduce biofouling on surfaces immersed in seawater. The widespread use of these substances over the years has led to a significant increase of their presence in the marine environment. These compounds were identified as environmental and human threats. As a result of an international ban, research in the last decade has focused on developing a new generation of benign antifoulant paints. This review outlines the detrimental effects associated with biocide versus eco-friendly antifoulants, highlighting what are effective antifoulants and why there is a need to monitor them. We examine the effects of biocide and eco-friendly antifoulants on the antioxidative defence mechanism and settlement in a higher sessile organism, specifically the Mediterranean mussel, Mytilus galloprovincialis. These antifoulants can indirectly assess the potential of these two parameters in order to outline implementation of sustainable antifoulants.
Collapse
|
12
|
Synthesis, spectral studies, in vitro antimicrobial activity and molecular docking studies of organotin(IV) complexes derived from tridentate Schiff base ligands. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04731-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Paz-Villarraga CA, Castro ÍB, Fillmann G. Biocides in antifouling paint formulations currently registered for use. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30090-30101. [PMID: 34997484 DOI: 10.1007/s11356-021-17662-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Antifouling paints incorporate biocides in their composition seeking to avoid or minimize the settlement and growing of undesirable fouling organisms. Therefore, biocides are released into the aquatic environments also affecting several nontarget organisms and, thus, compromising ecosystems. Despite global efforts to investigate the environmental occurrence and toxicity of biocides currently used in antifouling paints, the specific active ingredients that have been used in commercial products are poorly known. Thus, the present study assessed the frequencies of occurrence and relative concentrations of biocides in antifouling paint formulations registered for marketing worldwide. The main data were obtained from databases of governmental agencies, business associations, and safety data sheets from paint manufacturers around the world. The results pointed out for 25 active ingredients currently used as biocides, where up to six biocides have been simultaneously used in the examined formulations. Cuprous oxide, copper pyrithione, zinc pyrithione, zineb, DCOIT, and cuprous thiocyanate were the most frequent ones, with mean relative concentrations of 35.9 ± 12.8%, 2.9 ± 1.6%, 4.0 ± 5.3%, 5.4 ± 2.0%, 1.9 ± 1.9%, and 18.1 ± 8.0% (w/w) of respective biocide present in the antifouling paint formulations. Surprisingly, antifouling paints containing TBT as an active ingredient are still being registered for commercialization nowadays. These results can be applied as a proxy of biocides that are possibly being used by antifouling systems and, consequently, released into the aquatic environment, which can help to prioritize the active ingredients that should be addressed in future studies.
Collapse
Affiliation(s)
- César Augusto Paz-Villarraga
- Laboratório de Microcontaminantes Orgânicos E Ecotoxicologia Aquática, Instituto de Oceanografia, Universidade Federal Do Rio Grande, Rio Grande Do Sul, Av. Itália, km 8, s/n, Rio Grande, 96201-900, Brazil
- Programa de Pós-Graduação Em Oceanologia, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Ítalo Braga Castro
- Programa de Pós-Graduação Em Oceanologia, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
- Laboratório de Ecotoxicologia E Contaminação Marinha, Instituto Do Mar, Universidade Federal de São Paulo, Rua Maria Máximo 168, Santos, São Paulo, 11030-100, Brazil
| | - Gilberto Fillmann
- Laboratório de Microcontaminantes Orgânicos E Ecotoxicologia Aquática, Instituto de Oceanografia, Universidade Federal Do Rio Grande, Rio Grande Do Sul, Av. Itália, km 8, s/n, Rio Grande, 96201-900, Brazil.
- Programa de Pós-Graduação Em Oceanologia, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil.
| |
Collapse
|
14
|
Butyltin Contamination in Fishing Port Sediments after the Ban of Tributyltin Antifouling Paint: A Case of Qianzhen Fishing Port in Taiwan. WATER 2022. [DOI: 10.3390/w14050813] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the concentrations of monobutyltin (MBT), dibutyltin (DBT) and tributyltin (TBT) in the sediments of the Qianzhen Fishing Port (Taiwan) in 2020. Further, the pollution status, composition, and potential ecotoxicity of BTs were evaluated. This case study provides a reference for the benefits of the ban of TBT-based antifouling paint to date. Results showed that the total butyltin (ΣBTs, sum of TBT, DBT, and MBT) concentrations measured in the sediments of the Qianzhen Fishing Port ranged between 14.2–807 ngSn·g−1 dw, with an average of 356 ± 305 ngSn·g−1 dw. TBT was the most dominant species, with an average concentration of 303 ± 287 ngSn·g−1 dw. This average TBT concentration is about 4.3 times lower than in 2003, showing the progress of gradual degradation of TBT in the sediments. Still, the degradation is rather slow, with a half-life of about 8.09 years. An analysis of the effects of TBT on organisms in the sediments of the Qianzhen Fishing Port was carried out according to the TBT toxicity guidelines of the US Environmental Protection Agency and the assessment class criterion for imposex (ACCI) of the Oslo and Paris Commission (OSPAR). The results showed that TBT levels in 80% of the sediments may pose negative effects on sensitive gastropods, and half of the sediments may even have an impact on gastropod reproduction. These show that marine life is still affected and threatened by TBT compounds, despite the decline of TBT concentrations since the ban of TBT-containing antifouling paints on ships in 2008. Therefore, it is necessary to continue paying attention to the changes of TBT concentrations and their potential ecological risks in the marine environment, and to formulate TBT management plans and strategies to mitigate their impacts in marine ecosystems.
Collapse
|
15
|
Çetintürk K, Ünlü S. The first observation of antifouling organotin compounds and booster biocides in sediments from Samsun Port area, Black Sea, Turkey. MARINE POLLUTION BULLETIN 2022; 176:113408. [PMID: 35152116 DOI: 10.1016/j.marpolbul.2022.113408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The distribution of antifouling organotin compounds (OTCs) and booster biocides in surface sediments of Samsun Port (Black Sea, Turkey) in September 2014 was investigated by gas chromatography-tandem mass spectrometry (GC-MS/MS) method. The total organotin concentrations ranged from <1.0 to 669.6 ng/g, dw. Among the studied booster biocides, Diuron (<1.0-11.28 ng/g) was found in 70.58% of the investigated sediments, while Irgarol (<1.0-26.53 ng/g) was detected in two stations. Traces of fresh input organotin and high Irgarol were found at the park/repairment points of the port. The Principal Component Analysis (PCA) showed that sediment characteristic types and Total Organic Carbon (TOC) were the main relevant parameters in the accumulation of antifouling contamination in the Port area. In comparison with several types of environmental sediment quality criteria, Samsun Port is highly polluted area. The concentrations of OTCs and Diuron maybe used as a baseline reference level for future monitoring programs in Turkish Ports.
Collapse
Affiliation(s)
- Kartal Çetintürk
- Istanbul University, Institute of Marine Science and Management, 34470, Vefa, Istanbul, Turkey.
| | - Selma Ünlü
- Istanbul University, Institute of Marine Science and Management, 34470, Vefa, Istanbul, Turkey
| |
Collapse
|
16
|
Effects of Exposure to Trade Antifouling Paints and Biocides on Larval Settlement and Metamorphosis of the Compound Ascidian Botryllus schlosseri. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To evaluate the effects of antifouling paints and biocides on larval settlement and metamorphosis, newly hatched swimming larvae of the compound ascidian Botryllus schlosseri, a dominant species of soft-fouling in coastal communities, were exposed to (i) substrata coated with seven antifouling paints on the market containing different biocidal mixtures and types of matrices and (ii) sea water containing various concentrations of eight biocidal constituents. All antifouling paints showed high performance, causing 100% mortality and metamorphic inhibition, with ≥75% not-settled dead larvae. All antifouling biocides prevented the settlement of larvae. The most severe larval malformations, i.e., (i) the formation of a bubble encasing the cephalenteron and (ii) the inhibition of tail resorption, were observed after exposure to metal and organometal compounds, including tributyltin (TBT) at 1 μM (325.5 µg L−1), zinc pyrithione (ZnP) at 1 μM (317.7 µg L−1), and CuCl at 0.1 μM (98.99 µg L−1), and to antimicrobials and fungicides, including Sea-Nine 211 at 1 μM (282.2 µg L−1) and Chlorothalonil at 1 μM (265.9 µg L−1). The herbicides seemed to be less active. Irgarol 1051 was not lethal at any of the concentrations tested. Diuron at 250 μM (58.2 mg L−1) and 2,3,5,6-tetrachloro-4-(methylsulphonyl)pyridine (TCMS pyridine) at 50 μM (14.8 mg L−1) completely inhibited larval metamorphosis. These results may have important implications for the practical use of different antifouling components, highlighting the importance of their testing for negative impacts on native benthic species.
Collapse
|
17
|
Qiu H, Feng K, Gapeeva A, Meurisch K, Kaps S, Li X, Yu L, Mishra YK, Adelung R, Baum M. Functional Polymer Materials for Modern Marine Biofouling Control. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101516] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Wang X, Jiang X, Yu L. Preparation and evaluation of polyphenol derivatives as potent antifouling agents: addition of a side chain affects the biological activity of polyphenols. BIOFOULING 2022; 38:29-41. [PMID: 34875955 DOI: 10.1080/08927014.2021.2010720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
In this study, eight polyphenol derivatives were prepared to serve as green antifoulants. Polyphenol derivatives, which can hinder the growth of bacteria and algae and decrease the adhesion of some marine organisms, showed good AF activity; in particular, the activities of these derivatives were much higher than those of the corresponding polyphenols. The antibacterial rates of the products (20 μg ml-1) exceeded 88%. Moreover, the anti-algal rates of compounds a3, b1, b2, b3 and b4 (15 μg ml-1) were over 57% at 240 h, but these compounds showed low toxicity, and the 120 h EC50 values were > 6.60 μg ml-1. In addition, there were fewer marine microorganisms on the test panel than on the control. The above results show that some polyphenol derivatives possess relatively high antibacterial, anti-algal, and AF activity; more notably, the addition of chlorine atoms and amide groups can further increase the activity of these derivatives.
Collapse
Affiliation(s)
- Xuan Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xiaohui Jiang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
19
|
Liu J, Xia W, Wan Y, Xu S. Azole and strobilurin fungicides in source, treated, and tap water from Wuhan, central China: Assessment of human exposure potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149733. [PMID: 34467936 DOI: 10.1016/j.scitotenv.2021.149733] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/24/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Fungicides are widely used in agriculture worldwide. However, data on the occurrence of fungicides in drinking water are scarce. This study aimed to determine the occurrence of 12 selected fungicides in drinking water, the removal efficiency of conventional water treatment processes for fungicides, and the risk of fungicide exposure. In this study, source water (February and July), treated water (February and July), and tap water samples (February, April, July, and October) were collected from Wuhan, central China, in 2019. Seven of the twelve selected fungicides were 100% detected in the three types of water samples; tricyclazole was found with the highest concentrations in the source water phase (median: 15.2 ng/L; range: 4.21-67.9 ng/L). The concentrations of the 12 selected fungicides remaining in the treated water samples (median proportion of the remaining content: 77.5%) revealed that most of the target analytes may not be removed efficiently by conventional water treatment processes, though they could be removed efficiently by advanced treatment. Higher concentrations of the fungicides were observed in samples collected in July (median: 38.7 ng/L; range: 12.5-85.8 ng/L), followed by those in October (median: 21.8 ng/L; range: 10.2-58.8 ng/L), February (median: 9.82 ng/L; range: 5.63-93.3 ng/L), and April (median: 7.13 ng/L; range: 6.23-91.1 ng/L). The health risk assessment implied that estimated daily intake of these fungicides through tap water ingestion might pose a low risk to consumers, though risk associated with infant exposure to the fungicides requires further attention. This study provides baseline data on the occurrence, removal efficiencies, and seasonal variations of the selected fungicides in tap water from central China.
Collapse
Affiliation(s)
- Juan Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
20
|
Devi J, Pachwania S. Synthesis, characterization, in vitro antioxidant and antimicrobial activities of diorganotin(IV) complexes derived from hydrazide Schiff base ligands. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1960835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jai Devi
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Haryana, India
| | - Sushila Pachwania
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Haryana, India
| |
Collapse
|
21
|
Kuprijanov I, Väli G, Sharov A, Berezina N, Liblik T, Lips U, Kolesova N, Maanio J, Junttila V, Lips I. Hazardous substances in the sediments and their pathways from potential sources in the eastern Gulf of Finland. MARINE POLLUTION BULLETIN 2021; 170:112642. [PMID: 34175699 DOI: 10.1016/j.marpolbul.2021.112642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Contamination by hazardous substances is one of the main environmental problems in the eastern Gulf of Finland, Baltic Sea. A trilateral effort to sample and analyse heavy metals (HMs), polycyclic aromatic hydrocarbons (PAHs), and organotins from bottom sediments in 2019-2020 were conducted along with harvesting historical data in Russian, Estonian and Finnish waters. We suggest that the input of organotins still occurs along the ship traffic routes. The tributyltin content exceeded the established quality criteria up to more than 300 times. High contamination by PAHs found near the ports, most likely originate from incomplete fuel incineration processes. The Neva River Estuary and Luga Bay might potentially suffer from severe cadmium contamination. The high ecological risk attributed to the HMs was detected at deep offshore areas. The simulated accumulation pattern qualitatively agrees with field observations of HMs in sediments, demonstrating the potential of numerical tools to tackle the hazardous substances problems.
Collapse
Affiliation(s)
- Ivan Kuprijanov
- Department of Marine Systems, Tallinn University of Technology (TalTech), Tallinn, Estonia.
| | - Germo Väli
- Department of Marine Systems, Tallinn University of Technology (TalTech), Tallinn, Estonia
| | - Andrey Sharov
- Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences (SRCES RAS), Saint Petersburg, Russia
| | - Nadezhda Berezina
- Zoological Institute of the Russian Academy of Sciences (ZIN RAS), Saint-Petersburg, Russia
| | - Taavi Liblik
- Department of Marine Systems, Tallinn University of Technology (TalTech), Tallinn, Estonia
| | - Urmas Lips
- Department of Marine Systems, Tallinn University of Technology (TalTech), Tallinn, Estonia
| | - Natalja Kolesova
- Department of Marine Systems, Tallinn University of Technology (TalTech), Tallinn, Estonia
| | - Jaakko Maanio
- Finnish Environment Institute (SYKE), Helsinki, Finland
| | | | - Inga Lips
- Department of Marine Systems, Tallinn University of Technology (TalTech), Tallinn, Estonia
| |
Collapse
|
22
|
Vodopivez C, Curtosi A, Pelletier E, Saint-Louis R, Spairani LU, Hernández EA, Zakrajsek A, Genez A, Mac Cormack WP. Low levels of PAHs and organotin compounds in surface sediment samples from a broad marine area of 25 de Mayo (King George) Island, South Shetland Islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147206. [PMID: 33957587 DOI: 10.1016/j.scitotenv.2021.147206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
The Northern region of the Antarctic Peninsula constitutes the area with the highest human presence in West Antarctica. The human presence, with all the activities associated such as logistic, scientific and tourism operations, represents a potential risk of chemical pollution with both, organic and inorganic contaminants. Under these conditions knowledge about the presence and levels of the main persistent organic pollutants (POPs) is essential to evaluate the environmental status of this ecologically relevant and sensitive area. In this work, which complements our previous study regarding trace elements, we performed the first regional-scale monitoring of 24 PAHs (16 of them included in EPA list of primary pollutant), and organotin compounds (OTCs:TBT, DBT and MBT) in surface sediment from 68 sites comprising six different areas in Maxwell Bay, southeast coast of 25 de Mayo (King George) Island. POPs were quantified in surface sediment samples (20-30 m depth) obtained during two summer Antarctic expeditions by gas chromatography-mass spectrometry (GC-MS). The two most anthropized areas (South Fildes and Potter Cove) showed moderated evidence of pollution for PAHs and OTC. In some sampling sites the concentration of total PAHs was higher than 100 ng/g dw, while TBT was detected in only five samples, two of them located in Potter Cove (ranged between 14 and 18 ng/g dw), and three, located in South Fildes area (ranged between 118 and 416 ng/g dw). Although POPs contamination was evidenced in some samples close to scientific stations, a pollution pattern was not clearly identified.
Collapse
Affiliation(s)
- C Vodopivez
- Instituto Antártico Argentino, 25 de Mayo 1143, San Martín B1650HMK, Provincia de Buenos Aires, Argentina
| | - A Curtosi
- Instituto Antártico Argentino, 25 de Mayo 1143, San Martín B1650HMK, Provincia de Buenos Aires, Argentina
| | - E Pelletier
- Institut des Sciences de la Mer de Rimouski (ISMER), Université du Québec à Rimouski, 310 Allée des Ursulines, Rimouski G5L 3A1, Canada
| | - R Saint-Louis
- Département de biologie, chimie et géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski G5L 3A1, Canada
| | - L U Spairani
- Instituto Antártico Argentino, 25 de Mayo 1143, San Martín B1650HMK, Provincia de Buenos Aires, Argentina
| | - E A Hernández
- Instituto Antártico Argentino, 25 de Mayo 1143, San Martín B1650HMK, Provincia de Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto NANOBIOTEC UBA-CONICET, Junín 956 6to piso, CABA, Argentina
| | - A Zakrajsek
- Instituto Antártico Argentino, 25 de Mayo 1143, San Martín B1650HMK, Provincia de Buenos Aires, Argentina
| | - A Genez
- Instituto Antártico Argentino, 25 de Mayo 1143, San Martín B1650HMK, Provincia de Buenos Aires, Argentina
| | - W P Mac Cormack
- Instituto Antártico Argentino, 25 de Mayo 1143, San Martín B1650HMK, Provincia de Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto NANOBIOTEC UBA-CONICET, Junín 956 6to piso, CABA, Argentina..
| |
Collapse
|
23
|
Horseradish Essential Oil as a Promising Anti-Algal Product for Prevention of Phytoplankton Proliferation and Biofouling. PLANTS 2021; 10:plants10081550. [PMID: 34451595 PMCID: PMC8400301 DOI: 10.3390/plants10081550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022]
Abstract
Increased proliferation of algae is a current problem in natural and artificial water bodies. Controlling nutrients is the most sustainable treatment of increased algal proliferation, however in certain cases, it is not sufficiently available, or it does not provide results fast enough. Chemicals derived from natural sources, which could be effective in low concentrations and are biodegradable, may have an advantage over conventional chemical treatments. The main aim of the present study was to investigate the anti-cyanobacterial and anti-algal properties of allyl-isothiocyanate-containing essential oil produced from horseradish roots with a complex approach of the topic: on laboratory strains of cyanobacteria and eukaryotic algae, on microcosms containing natural phytoplankton assemblages, and on semi-natural biofilms. The results show that acute treatment can significantly reduce the viability of all the tested cyanobacteria and eukaryotic algae. Results of microcosm experiments with natural phytoplankton assemblages show that horseradish essential oil from 7.1 × 10−6% (v/v) is applicable to push back phytoplankton proliferation even in natural assemblages. The individual number in the biofilm was dropped down to one-fifth of the original individual number, so 7.1 × 10−6% (v/v) and higher concentration of the essential oil can be considered as a successful treatment against biofouling.
Collapse
|
24
|
Syed Annuar SN, Kamaludin NF, Awang N, Chan KM. Cellular Basis of Organotin(IV) Derivatives as Anticancer Metallodrugs: A Review. Front Chem 2021; 9:657599. [PMID: 34368075 PMCID: PMC8342812 DOI: 10.3389/fchem.2021.657599] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
Organotin(IV) compounds have wide applications in industrial and agricultural fields owing to their ability to act as poly(vinyl chloride) stabilizers and catalytic agents as well as their medicinal properties. Moreover, organotin(IV) compounds may have applications as antitumor, anti-inflammatory, antifungal, or antimicrobial agents based on the observation of synergistic effects following the binding of their respective ligands, resulting in the enhancement of their biological activities. In this review, we describe the antiproliferative activities of organotin(IV) compounds in various human cancer cell lines based on different types of ligands. We also discuss the molecular mechanisms through which organotin(IV) compounds induce cell death via apoptosis through the mitochondrial intrinsic pathway. Finally, we present the mechanisms of cell cycle arrest induced by organotin(IV) compounds. Our report provides a basis for studies of the antitumor activities of organotin(IV) compounds and highlights the potential applications of these compounds as anticancer metallodrugs with low toxicity and few side effects.
Collapse
|
25
|
Insights into the Restoration of Tributyltin Contaminated Environments Using Marine Bacteria from Portuguese Fishing Ports. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tributyltin (TBT) is an organotin chemical mainly used as biocide in marine antifouling paints. Despite the restrictions and prohibitions on its use, TBT is still an environmental problem due to its extensive application and subsequent release into the environment, being regarded as one of the most toxic chemicals released into the marine ecosystems. Microorganisms inhabiting impacted sites are crucial for their restoration since they have developed mechanisms to tolerate and break down pollutants. Nonetheless, transformation products resulting from the degradation process may still be toxic or, sometimes, even more toxic than the parent compound. The determination of the parent and degradation products by analytical methods, although necessary, may not be ecologically relevant since no information is provided regarding their ecotoxicity. In this study, marine bacteria collected from seven Portuguese fishing ports were isolated and grown in the presence of TBT. Bacteria that exhibited higher growth were used to bioremediate TBT-contaminated waters. The potential of these bacteria as bioremediation agents was evaluated through ecotoxicological assays using the sea snail Gibbula umbilicalis as model organism. Data suggested that some TBT-tolerant bacteria, such as Pseudomonas putida, can reduce the toxicity of TBT contaminated environments. This work contributes to the knowledge of TBT-degrading bacteria.
Collapse
|
26
|
Storozhenko PA, Grachev AA, Magdeev KD, Shiryaev VI. Organotin Compounds in Industrial Catalysis III: Vulcanization of Blocked Isocyanates and Silicones. CATALYSIS IN INDUSTRY 2021. [DOI: 10.1134/s2070050421020112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Dong M, Liu Z, Gao Y, Wang X, Chen J, Yang J. Synergistic effect of copolymeric resin grafted 1,2-benzisothiazol-3(2 H)-one and heterocyclic groups as a marine antifouling coating. RSC Adv 2021; 11:18787-18796. [PMID: 35478638 PMCID: PMC9033553 DOI: 10.1039/d1ra01826d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/13/2021] [Indexed: 11/21/2022] Open
Abstract
In order to find a new type of antifouling coating with higher biological activity and more environmental protection, heterocyclic compounds and benzisothiazolinone were introduced into acrylic resin to prepare a new type of antifouling resin. In this study, a series of grafted acrylic resins simultaneously containing benzoisothiazolinone and heterocyclic monomers were prepared by the copolymerization of an allyl monomer with methyl methacrylate (MMA) and butyl acrylate (BA). Inhibitory activities of the copolymers against marine fouling organisms were also investigated. Results revealed that the copolymers exhibit a clear synergistic inhibitory effect on the growth of three seaweeds: Chlorella, Isochrysis galbana and Chaetoceros curvisetus, respectively, and three bacteria, Staphylococcus aureus, Vibrio coralliilyticus and Vibrio parahaemolyticus, respectively. In addition, the copolymers exhibited excellent inhibition against barnacle larvae. Marine field tests indicated that the resins exhibit outstanding antifouling potency against marine fouling organisms. Moreover, the introduction of the heterocyclic group led to the significantly enhanced antifouling activities of the resins; the addition of the heterocyclic unit in copolymers led to better inhibition than that observed in the case of the resin copolymerized with only the benzoisothiazolinone active monomer.
Collapse
Affiliation(s)
- Miao Dong
- Key Laboratory of Green Catalysis and Reaction Engineering of Haikou, College of Science, Hainan University Haikou 570228 P. R. China
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 P. R. China
| | - Zheng Liu
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 P. R. China
| | - Yuxing Gao
- Key Laboratory of Green Catalysis and Reaction Engineering of Haikou, College of Science, Hainan University Haikou 570228 P. R. China
| | - Xuemei Wang
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 P. R. China
| | - Junhua Chen
- Key Laboratory of Green Catalysis and Reaction Engineering of Haikou, College of Science, Hainan University Haikou 570228 P. R. China
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 P. R. China
| | - Jianxin Yang
- Key Laboratory of Green Catalysis and Reaction Engineering of Haikou, College of Science, Hainan University Haikou 570228 P. R. China
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 P. R. China
| |
Collapse
|
28
|
Qian B, He Y, Zhao J, Peng L, Han B. Simultaneous Determination of Five Organotins in Tropical Fruits Using Modified QuEChERS Combined with Ultra-high Performance Liquid Chromatography-Tandem Mass Spectrometry. J Chromatogr Sci 2021; 59:269-279. [PMID: 33257935 DOI: 10.1093/chromsci/bmaa103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/06/2020] [Indexed: 11/14/2022]
Abstract
A sensitive, confirmatory ultra-high performance liquid chromatography-tandem mass spectrometry based on modified QuEChERS was developed and validated to detect five organotin compounds (tributyltin chloride (TBT), triphenyltin chloride (TPT), trimethyltin chloride (TMT), azocyclotin and cyhexatin) in classical tropical fruits (mango, pineapple and banana). Fruits samples were ultrasonically extracted with methanol and subsequently purified by graphitized carbon black adsorbents. Five organotins were separated on a C18 column with the mobile phase of a mixture of methanol and 0.1% (v/v) aqueous formic acid, and detected by MS/MS under multiple reaction monitoring mode. The developed method was validated in terms of linearity, limit of detection (LOD), recovery and precision. Results were linear in their corresponding concentration ranges, with coefficients of determination (r) bigger than 0.999. The average LODs (S/N = 3) of the method for TBT, TPT, TMT, azocyclotin and cyhexatin were 1.3, 3.5, 3.2, 5.1 and 1.7 μg/kg, respectively. The average recoveries (n = 5) at three spiked levels (0.01, 0.1 and 0.2 mg/kg) ranged from 69 to 103% with relative standard deviations of 2.1-11.9%. The method is simple, effective, accurate and non-derivatized, and meets the routine monitoring requirements for trace organotins in tropical fruits.
Collapse
Affiliation(s)
- Bing Qian
- Analysis & Testing Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China.,College of Forestry, Hainan University, Haikou 570228, China
| | - Yan He
- Analysis & Testing Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China
| | - Jing Zhao
- Analysis & Testing Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China.,College of Plant Protection, Hainan University, Haikou 570228, China
| | - LiXu Peng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - BingJun Han
- Analysis & Testing Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China
| |
Collapse
|
29
|
Zhang Q, Lai HD, Lin Q. Synthesis and photoluminescence of organotin-dithiothreitol clusters. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Chen L, Duan Y, Cui M, Huang R, Su R, Qi W, He Z. Biomimetic surface coatings for marine antifouling: Natural antifoulants, synthetic polymers and surface microtopography. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144469. [PMID: 33422842 DOI: 10.1016/j.scitotenv.2020.144469] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/20/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Marine biofouling is a ubiquitous problem that accompanies human marine activities and marine industries. It exerts detrimental impacts on the economy, environment, ecology, and safety. Traditionally, mainstream approaches utilize metal ions to prevent biological contamination, but this also leads to environmental pollution and damage to the ecosystem. Efficient and environmentally friendly coatings are urgently needed to prevent marine devices from biofouling. Since nature is always the best teacher for humans, it offers us delightful thoughts on the research and development of high-efficiency, broad-spectrum and eco-friendly antifouling coatings. In this work, we focus on the research frontier of marine antifouling coatings from a bionic perspective. Enlightened by three distinctive dimensions of bionics: chemical molecule bionic, physiological mechanism bionic, and physical structure bionic, the research status of three main bioinspired strategies, which are natural antifoulants, bioinspired polymeric antifouling coatings, and biomimetic surface microtopographies, respectively, are demonstrated. The antifouling mechanisms are further interpreted based on biomimetic comprehension. The main fabrication methods and antifouling performances of these coatings are presented along with their advantages and drawbacks. Finally, the challenges are summarized, and future research prospects are proposed. It is believed that biomimetic antifouling strategies will contribute to the development of nontoxic antifouling techniques with exceptional repellency and stability.
Collapse
Affiliation(s)
- Liren Chen
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yanyi Duan
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineeringand Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Mei Cui
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineeringand Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Renliang Huang
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China.
| | - Rongxin Su
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China; State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineeringand Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China.
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineeringand Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineeringand Technology, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
31
|
Storozhenko PA, Veselov AV, Grachev AA, Kirilina NI, Shiryaev VI. Organotin Compounds in Industrial Catalysis, Part I: Processes of (Trans)esterification. CATALYSIS IN INDUSTRY 2021. [DOI: 10.1134/s2070050420040078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Delgado A, Briciu-Burghina C, Regan F. Antifouling Strategies for Sensors Used in Water Monitoring: Review and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:E389. [PMID: 33429907 PMCID: PMC7827029 DOI: 10.3390/s21020389] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/01/2022]
Abstract
Water monitoring sensors in industrial, municipal and environmental monitoring are advancing our understanding of science, aid developments in process automatization and control and support real-time decisions in emergency situations. Sensors are becoming smaller, smarter, increasingly specialized and diversified and cheaper. Advanced deployment platforms now exist to support various monitoring needs together with state-of-the-art power and communication capabilities. For a large percentage of submersed instrumentation, biofouling is the single biggest factor affecting the operation, maintenance and data quality. This increases the cost of ownership to the extent that it is prohibitive to maintain operational sensor networks and infrastructures. In this context, the paper provides a brief overview of biofouling, including the development and properties of biofilms. The state-of-the-art established and emerging antifouling strategies are reviewed and discussed. A summary of the currently implemented solutions in commercially available sensors is provided and current trends are discussed. Finally, the limitations of the currently used solutions are reviewed, and future research and development directions are highlighted.
Collapse
Affiliation(s)
| | | | - Fiona Regan
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland; (A.D.); (C.B.-B.)
| |
Collapse
|
33
|
Tian L, Yin Y, Bing W, Jin E. Antifouling Technology Trends in Marine Environmental Protection. JOURNAL OF BIONIC ENGINEERING 2021; 18:239-263. [PMID: 33815489 PMCID: PMC7997792 DOI: 10.1007/s42235-021-0017-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Marine fouling is a worldwide problem, which is harmful to the global marine ecological environment and economic benefits. The traditional antifouling strategy usually uses toxic antifouling agents, which gradually exposes a serious environmental problem. Therefore, green, long-term, broad-spectrum and eco-friendly antifouling technologies have been the main target of engineers and researchers. In recent years, many eco-friendly antifouling technologies with broad application prospects have been developed based on the low toxicity and non-toxicity antifouling agents and materials. In this review, contemporary eco-friendly antifouling technologies and materials are summarized into bionic antifouling and non-bionic antifouling strategies (2000-2020). Non-bionic antifouling technologies mainly include protein resistant polymers, antifoulant releasing coatings, foul release coatings, conductive antifouling coatings and photodynamic antifouling technology. Bionic antifouling technologies mainly include the simulated shark skin, whale skin, dolphin skin, coral tentacles, lotus leaves and other biology structures. Brief future research directions and challenges are also discussed in the end, and we expect that this review would boost the development of marine antifouling technologies.
Collapse
Affiliation(s)
- Limei Tian
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
- Weihai Institute for Bionics-Jilin University, Weihai, 264207 China
| | - Yue Yin
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
| | - Wei Bing
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012 China
| | - E. Jin
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
| |
Collapse
|
34
|
Vieriu SM, Someşan AA, Silvestru C, Licarete E, Banciu M, Varga RA. Synthesis, structural characterization and in vitro antiproliferative effects of novel organotin( iv) compounds with nicotinate and isonicotinate moieties on carcinoma cells. NEW J CHEM 2021. [DOI: 10.1039/d0nj05069e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Novel triorganotin(iv) nicotinates and isonicotinates were successfully synthesized and fully characterized. The preliminary results for their in vitro antiproliferative activity against the mouse colon carcinoma C26 cell line are also reported.
Collapse
Affiliation(s)
- Sabina-Mădălina Vieriu
- Supramolecular Organic and Organometallic Chemistry Center
- Department of Chemistry
- Faculty of Chemistry and Chemical Engineering
- Babeş-Bolyai University
- Cluj-Napoca
| | - Adrian-Alexandru Someşan
- Supramolecular Organic and Organometallic Chemistry Center
- Department of Chemistry
- Faculty of Chemistry and Chemical Engineering
- Babeş-Bolyai University
- Cluj-Napoca
| | - Cristian Silvestru
- Supramolecular Organic and Organometallic Chemistry Center
- Department of Chemistry
- Faculty of Chemistry and Chemical Engineering
- Babeş-Bolyai University
- Cluj-Napoca
| | - Emilia Licarete
- Department of Molecular Biology and Biotechnology
- Faculty of Biology and Geology
- Babeş-Bolyai University
- Cluj-Napoca
- Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology
- Faculty of Biology and Geology
- Babeş-Bolyai University
- Cluj-Napoca
- Romania
| | - Richard A. Varga
- Supramolecular Organic and Organometallic Chemistry Center
- Department of Chemistry
- Faculty of Chemistry and Chemical Engineering
- Babeş-Bolyai University
- Cluj-Napoca
| |
Collapse
|
35
|
Furdek Turk M, Ivanić M, Dautović J, Bačić N, Mikac N. Simultaneous analysis of butyltins and total tin in sediments as a tool for the assessment of tributyltin behaviour, long-term persistence and historical contamination in the coastal environment. CHEMOSPHERE 2020; 258:127307. [PMID: 32554007 DOI: 10.1016/j.chemosphere.2020.127307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
This study presents a new approach for the investigation of tributyltin (TBT) behaviour and fate in the marine environment. The approach is based on a simultaneous analysis of butyltins (BuTs) and total Sn in sediments, thus enabling an assessment of long-term persistence and historical input of TBT. The study also presents first evaluation of the extent to which the TBT-antifouling paints contribute to the contamination of coastal environments with inorganic Sn; it was demonstrated that the inorganic Sn in the investigated areas primarily originates from TBT degradation. The study was conducted by analyzing BuTs and total Sn in sediments from 34 locations along the Croatian Adriatic coast. The results revealed that 85% of the locations were contaminated with both BuTs and inorganic Sn. The share of ƩBuTs/total Sn was low (<10%) even in sediments with low TBT degradation efficiency (TBT/ƩBuTs >40%), demonstrating that only small portion of TBT introduced into the water column reached the sediment before being degraded. This means that recent TBT input into the marine environment may be at least 10 times higher than the amount estimated if only BuTs levels in sediments are considered. It was also demonstrated that TBT concentration in sediments with TOC <1% is not a good indicator of the overall pollution level, even if TBT/TOC approach is used in pollution assessment. Finally, in situ investigation showed that resuspension of contaminated sediments leads to significant release of MBT and DBT into the water column, whereas TBT mainly remains in sediment.
Collapse
Affiliation(s)
- Martina Furdek Turk
- Ruđer Bošković Institute, Division for Marine and Environmental Research, 10000, Zagreb, Croatia.
| | - Maja Ivanić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, 10000, Zagreb, Croatia
| | - Jelena Dautović
- Ruđer Bošković Institute, Division for Marine and Environmental Research, 10000, Zagreb, Croatia
| | - Niko Bačić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, 10000, Zagreb, Croatia
| | - Nevenka Mikac
- Ruđer Bošković Institute, Division for Marine and Environmental Research, 10000, Zagreb, Croatia
| |
Collapse
|
36
|
Song K, Shim J, Jung JY, Lee C, Nam Y. Endowing antifouling properties on metal substrata by creating an artificial barrier layer based on scalable metal oxide nanostructures. BIOFOULING 2020; 36:766-782. [PMID: 32842788 DOI: 10.1080/08927014.2020.1811238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Here, by creating different types of artificial barrier layer against bacterial attachment, anti-biofouling properties were endowed on three metallic surfaces - aluminum, stainless steel and titanium. To each metallic surface, a tailored chemical oxidation process was applied to grow scalable oxide structures with an additional appropriate coating, resulting in three different types of anti-biofouling barrier, a thin water film, an air layer and an oil layer. Fluorescence images of the attached bacteria showed that the water layer improved the anti-biofouling performance up to 8-12 h and the air layer up to 12-24 h, comparable with the lifetime of the air layer. In comparison, the oil layer exhibited the best anti-biofouling performance by suppressing the fouled area by < 10% up to 72 h regardless of the substratum type. The present work provides simple, low-cost, scalable strategies to enhance the anti-biofouling performance of industrially important metallic surfaces. [Formula: see text].
Collapse
Affiliation(s)
- Kyounghwan Song
- Department of Mechanical Engineering, Kyung Hee University, Yongin, Republic of Korea
| | - Jaehwan Shim
- Department of Mechanical Engineering, Kyung Hee University, Yongin, Republic of Korea
| | - Jung-Yeul Jung
- Maritime Safety and Environmental Research Division, Korea Research Institute of Ships & Ocean Engineering, Daejeon, Republic of Korea
| | - Choongyeop Lee
- Department of Mechanical Engineering, Kyung Hee University, Yongin, Republic of Korea
| | - Youngsuk Nam
- Department of Mechanical Engineering, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
37
|
Monin EA, Bykova IA, Nosova VM, Kisin AV, Philippov AM, Storozhenko PA. The reaction of (tert-Butoxysilyl)methylmagnesium chlorides with some organotin and organosilicon monochlorides. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Shahabadi N, Mahdavi M, Momeni BZ. Multispectroscopic analysis, atomic force microscopy, molecular docking and molecular dynamic simulation studies of the interaction between [SnMe 2Cl 2(Me 2phen)] complex and ct-DNA in the presence of glucose. J Biomol Struct Dyn 2020; 39:5068-5082. [PMID: 32588754 DOI: 10.1080/07391102.2020.1784793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this study, the spectroscopic methods (UV-vis, fluorimetric), Atomic force microscopy, and computational studies (molecular docking and molecular dynamic simulation) were used to investigate the interaction of [SnMe2Cl2(Me2phen)] complex with CT-DNA in the presence of glucose. The results showed the complex in the medium containing glucose has less effect on calf thymus DNA (ct-DNA) than the medium without glucose. Cytotoxicity of [SnMe2Cl2(Me2phen)] complex on MCF-7 cells was examined and showed Sn(IV) complex possesses potential cytotoxicity against this cell line. Molecular docking study showed that Sn(IV) complex interacts with DNA by groove binding mode. Radius of gyration (Rg) was smaller upon binding of the Sn(IV) complex suggesting a more compact structure of DNA in the presence of Sn(IV) complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.,Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Mahdavi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Badri Z Momeni
- Faculty of Chemistry, K.N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
39
|
Chen M, Li Z, Chen L. Highly antibacterial rGO/Cu2O nanocomposite from a biomass precursor: Synthesis, performance, and mechanism. NANO MATERIALS SCIENCE 2020. [DOI: 10.1016/j.nanoms.2019.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Guerreiro ADS, Abreu FEL, Fillmann G, Sandrini JZ. Effects of chlorothalonil on the antioxidant defense system of mussels Perna perna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110119. [PMID: 31891835 DOI: 10.1016/j.ecoenv.2019.110119] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Chlorothalonil is an effective fungicide used in agriculture and formulations of antifouling paints, which use and possible toxicity has been generating great concern. Thus, the present study investigated the effects of chlorothalonil on the antioxidant defense system (ADS) of the mussel Perna perna. The ADS was evaluated in gills and digestive gland after 24 h and 96 h of exposure to environmental relevant levels of chlorothalonil (0.1 and 10 μg/L). The activity of the enzymes superoxide dismutase (SOD), catalase (CAT), glutamate cysteine-ligase (GCL) and glutathione S-transferase (GST), levels of non-enzymatic defenses, represented by glutathione (GSH), and lipoperoxidation (LPO) and protein carbonyls (PCO) were evaluated. Results indicated that exposure to chlorothalonil is affecting the ADS in both tissues. While the activity of SOD increased and GST and GSH were not altered in gills, they decreased in digestive gland after 24 h of exposure to 10 μg/L of chlorothalonil. The contrasting results indicate that gills and digestive gland presented different patterns of responses after exposure to chlorothalonil. Moreover, a tissue-specific response to chlorothalonil was observed. Gills could be acting as the first line of defense, presenting higher enzymatic levels with minor effects on the parameters analyzed. On the other hand, digestive gland, with lower levels of antioxidant defenses, was the most affect organ by chlorothalonil. It also should be highlighted that the fungicide reduced the glutathione metabolism in the digestive gland, which can lead to an imbalance of the redox state within the cells of animals.
Collapse
Affiliation(s)
- Amanda da Silveira Guerreiro
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, ICB, Universidade Federal do Rio Grande - FURG, 96203-900, Rio Grande, RS, Brazil.
| | - Fiamma Eugênia Lemos Abreu
- Programa de Pós-Graduação em Oceanologia, Instituto de Oceanografia, IO, Universidade Federal do Rio Grande - FURG, 96203-900, Rio Grande, RS, Brazil
| | - Gilberto Fillmann
- Programa de Pós-Graduação em Oceanologia, Instituto de Oceanografia, IO, Universidade Federal do Rio Grande - FURG, 96203-900, Rio Grande, RS, Brazil
| | - Juliana Zomer Sandrini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, ICB, Universidade Federal do Rio Grande - FURG, 96203-900, Rio Grande, RS, Brazil
| |
Collapse
|
41
|
Choudhary VK, Bhatt AK, Dash D, Sharma N. Synthesis, characterization, thermal, computational and biological activity studies of new potential bioactive diorganotin (IV) nitrosubstitutedhydroxamates‐A comparative study. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Arvind Kumar Bhatt
- Department of BiotechnologyHimachal Pradesh University Summer Hill Shimla‐5 India
| | - Dibyajit Dash
- Department of ChemistrySant Longowal Institute of Engineering & Technology Longowal Sangrur Punjab‐148106 India
| | - Neeraj Sharma
- Department of ChemistryHimachal Pradesh University Summer Hill Shimla India
| |
Collapse
|
42
|
Peters B, Lichtenberger N, Dornsiepen E, Dehnen S. Current advances in tin cluster chemistry. Chem Sci 2020; 11:16-26. [PMID: 32110355 PMCID: PMC7012043 DOI: 10.1039/c9sc04363b] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/19/2019] [Indexed: 11/21/2022] Open
Abstract
This perspective summarizes highlights and most recent advances in tin cluster chemistry, thereby addressing the whole diversity of (mostly) discrete units containing tin atoms. Although being a (semi-)metallic element, tin is in the position to occur both in formally positive or negative oxidation states in these molecules, which causes a broad range of fundamentally different properties of the corresponding compounds. Tin(iv) compounds are not as oxophilic and not as prone to hydrolysis as related Si or Ge compounds, hence allowing for easier handling and potential application. Nevertheless, their reactivity is high due to an overall reduction of bond energies, which makes tin clusters interesting candidates for functional compounds. Beside aspects that point towards bioactivity or even medical applications, materials composed of naked or ligand-protected tin clusters, with or without bridging ligands, show interesting optical, and ion/molecule-trapping properties.
Collapse
Affiliation(s)
- Bertram Peters
- Fachbereich Chemie , Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) , Philipps-Universität Marburg , Hans-Meerwein-Straße 4 , D-35043 Marburg , Germany .
| | - Niels Lichtenberger
- Fachbereich Chemie , Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) , Philipps-Universität Marburg , Hans-Meerwein-Straße 4 , D-35043 Marburg , Germany .
| | - Eike Dornsiepen
- Fachbereich Chemie , Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) , Philipps-Universität Marburg , Hans-Meerwein-Straße 4 , D-35043 Marburg , Germany .
| | - Stefanie Dehnen
- Fachbereich Chemie , Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) , Philipps-Universität Marburg , Hans-Meerwein-Straße 4 , D-35043 Marburg , Germany .
| |
Collapse
|
43
|
A liquid chromatography detector based on continuous-flow chemical vapor generation coupled glow discharge atomic emission spectrometry: Determination of organotin compounds in food samples. J Chromatogr A 2019; 1608:460406. [DOI: 10.1016/j.chroma.2019.460406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 11/17/2022]
|
44
|
Zhao W, Yang J, Guo H, Xu T, Li Q, Wen C, Sui X, Lin C, Zhang J, Zhang L. Slime-resistant marine anti-biofouling coating with PVP-based copolymer in PDMS matrix. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.06.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Padmavathi AR, Sriyutha Murthy P, Das A, Nishad PA, Pandian R, Rao TS. Copper oxide nanoparticles as an effective anti-biofilm agent against a copper tolerant marine bacterium, Staphylococcus lentus. BIOFOULING 2019; 35:1007-1025. [PMID: 31718302 DOI: 10.1080/08927014.2019.1687689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Biofilm formation on antifouling coatings is a serious concern in seawater cooling systems and the maritime industry. A prolific biofilm forming strain (Staphylococcus lentus), possessing high tolerance (>1,000 µg ml-1) to dissolved copper ions (Cu++) was isolated from titanium coupons exposed in the coastal waters of Kalpakkam, east coast of India. S. lentus formed increased biofilm (p < 0.05) at 100 µg ml-1 of Cu++ ions, when compared with the untreated control. To combat biofilm formation of this strain, the efficacy of copper oxide nanoparticles synthesized from copper nitrate by varying the concentrations of hexamine and cetyl trimethyl ammonium bromide (CTAB), was investigated. Complete (100%) inhibition of biofilm formation was observed with plain CuO NP (0.5 M hexamine, uncapped) at 1,000 µg ml-1. Capping with CTAB, influenced the morphology and the purity of the synthesized CuO NPs but did not alter their surface charge. Capping reduced metal ion release from CuO NPs and their antibacterial and anti-biofilm property against S. lentus. Overall, uncapped CuO NPs were effective in controlling biofilm formation of S. lentus. Concurrent release of copper ions and contact mediated physical damage by CuO NPs offer a promising approach to tackle metal tolerant biofilm bacteria.
Collapse
Affiliation(s)
- Alwar Ramanujam Padmavathi
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, India
| | - P Sriyutha Murthy
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, India
- Life Sciences Department, Homi Bhabha National Institute, Mumbai, India
| | - Arindam Das
- Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
- Chemical Sciences Department, Homi Bhabha National Institute, Mumbai, India
| | - Padala Abdul Nishad
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, India
| | - Ramanathasamy Pandian
- Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
| | - Toleti Subba Rao
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, India
- Life Sciences Department, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
46
|
Formalewicz MM, Rampazzo F, Noventa S, Gion C, Petranich E, Crosera M, Covelli S, Faganeli J, Berto D. Organotin compounds in touristic marinas of the northern Adriatic Sea: occurrence, speciation and potential recycling at the sediment-water interface. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31142-31157. [PMID: 31463746 DOI: 10.1007/s11356-019-06269-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Butyltin compound (BTC) contamination was evaluated in two north Adriatic marinas, San Rocco (Italy) and Lucija (Slovenia). BTC sedimentary concentrations (121 ± 46 and 352 ± 30 ng Sn g-1 in San Rocco and Lucija, respectively) evidenced the past use of antifouling paints, confirmed by the reduced tributyltin content (~ 46%) with respect to the sum of BTC. Elemental and organic carbon isotopic (δ13C) analyses of bulk sediments and its lipid and humic substances were performed in order to evaluate their role in BTC partitioning and preservation. The δ13C of sedimentary bulk and refractory organic matter suggested that diagenetic processes could play a role in the preservation or release of pollutants. No contamination was found in water collected from the benthic chamber and thus, fluxes at the sediment-water interface were not assessed, except for MBT efflux at Lucija (28.9 ng Sn m-2 day-1). Nevertheless, BTC concentrations in porewaters (up to 75 ng Sn l-1) and rather low sediment-porewater partitioning coefficients (Kd) with respect to the data reported in the literature would suggest a potential risk of the reintroduction of BTC into the water column at both sites: at Lucija, sedimentary contamination is high despite the greater Log Kd, whilst at San Rocco, the low BTC concentration is associated with a reduced sediment affinity.
Collapse
Affiliation(s)
- Malgorzata M Formalewicz
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Brondolo, 30015, Chioggia, Italy
| | - Federico Rampazzo
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Brondolo, 30015, Chioggia, Italy
| | - Seta Noventa
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Brondolo, 30015, Chioggia, Italy
| | - Claudia Gion
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Brondolo, 30015, Chioggia, Italy
| | - Elisa Petranich
- Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, Via Weiss 2, 34128, Trieste, Italy
| | - Matteo Crosera
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Stefano Covelli
- Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, Via Weiss 2, 34128, Trieste, Italy
| | - Jadran Faganeli
- Marine Biological Station, National Institute of Biology, Fornace 41, 6330, Piran, Slovenia
| | - Daniela Berto
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Brondolo, 30015, Chioggia, Italy.
| |
Collapse
|
47
|
Sang VT, Dat TTH, Vinh LB, Cuong LCV, Oanh PTT, Ha H, Kim YH, Anh HLT, Yang SY. Coral and Coral-Associated Microorganisms: A Prolific Source of Potential Bioactive Natural Products. Mar Drugs 2019; 17. [PMID: 31405226 DOI: 10.3390/md1708046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 05/20/2023] Open
Abstract
Marine invertebrates and their associated microorganisms are rich sources of bioactive compounds. Among them, coral and its associated microorganisms are promising providers of marine bioactive compounds. The present review provides an overview of bioactive compounds that are produced by corals and coral-associated microorganisms, covering the literature from 2010 to March 2019. Accordingly, 245 natural products that possess a wide range of potent bioactivities, such as anti-inflammatory, cytotoxic, antimicrobial, antivirus, and antifouling activities, among others, are described in this review.
Collapse
Affiliation(s)
- Vo Thanh Sang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 5, Ho Chi Minh City 748000, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Le Ba Vinh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Vietnam
| | - Le Canh Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Phung Thi Thuy Oanh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Hoang Le Tuan Anh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam.
- Graduated University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam.
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
48
|
Sang VT, Dat TTH, Vinh LB, Cuong LCV, Oanh PTT, Ha H, Kim YH, Anh HLT, Yang SY. Coral and Coral-Associated Microorganisms: A Prolific Source of Potential Bioactive Natural Products. Mar Drugs 2019; 17:E468. [PMID: 31405226 PMCID: PMC6723858 DOI: 10.3390/md17080468] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Marine invertebrates and their associated microorganisms are rich sources of bioactive compounds. Among them, coral and its associated microorganisms are promising providers of marine bioactive compounds. The present review provides an overview of bioactive compounds that are produced by corals and coral-associated microorganisms, covering the literature from 2010 to March 2019. Accordingly, 245 natural products that possess a wide range of potent bioactivities, such as anti-inflammatory, cytotoxic, antimicrobial, antivirus, and antifouling activities, among others, are described in this review.
Collapse
Affiliation(s)
- Vo Thanh Sang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 5, Ho Chi Minh City 748000, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Le Ba Vinh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Vietnam
| | - Le Canh Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Phung Thi Thuy Oanh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Hoang Le Tuan Anh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam.
- Graduated University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam.
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
49
|
Spectroscopic characterizations, structural peculiarities, molecular docking study and evaluation of biological potential of newly designed organotin(IV) carboxylates. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111516. [DOI: 10.1016/j.jphotobiol.2019.111516] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/30/2019] [Accepted: 05/27/2019] [Indexed: 01/23/2023]
|
50
|
Su Y, Li H, Xie J, Xu C, Dong Y, Han F, Qin JG, Chen L, Li E. Toxicity of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) in the marine decapod Litopenaeus vannamei. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:708-716. [PMID: 31108304 DOI: 10.1016/j.envpol.2019.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/18/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one) is the main component of SeaNine-211, a new antifouling agent that replaces tributyltin to prevent the growth of undesirable organisms on ships. There have been some studies on the toxicity of DCOIT, but the mechanism of DCOIT's toxicity to crustaceans still requires elucidation. This study examined the chronic toxicity (4 weeks) of 0, 3, 15, and 30 μg/L DCOIT to the Pacific white shrimp (Litopenaeus vannamei) from the aspects of growth and physiological and histological changes in the hepatopancreas and gills. A transcriptomic analysis was performed on the hepatopancreas to reveal the underlying mechanism of DCOIT in shrimp. The exposure to 30 μg/L DCOIT significantly reduced the survival and weight gain of L. vannamei. High Na+/K+-ATPase activity and melanin deposition were found in the gills after 4 weeks of 15 μg/L or 30 μg/L DCOIT exposure. The highest concentration of DCOIT (30 μg/L) induced changes in hepatopancreatic morphology and metabolism, including high anaerobic respiration and the accumulation of triglycerides. Compared with the exposure to 3 μg/L DCOIT, shrimp exposed to 15 μg/L DCOIT showed more differentially expressed genes (DEGs) than those in the control, and these DEGs were involved in biological processes such as starch and sucrose metabolism and choline metabolism in cancer. The findings of this study indicate that L. vannamei is sensitive to the antifouling agent DCOIT and that DCOIT can induce altered gene expression at a concentration of 15 μg/L and can interfere with shrimp metabolism, growth and survival at 30 μg/L.
Collapse
Affiliation(s)
- Yujie Su
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan, 570228, China; School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Huifeng Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jia Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan, 570228, China
| | - Chang Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan, 570228, China
| | - Yangfan Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan, 570228, China
| | - Fenglu Han
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jian G Qin
- School of Biological Sciences, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Erchao Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan, 570228, China; Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|