1
|
Beattie KA, Verma M, Brennan RJ, Clausznitzer D, Damian V, Leishman D, Spilker ME, Boras B, Li Z, Oziolor E, Rieger TR, Sher A. Quantitative systems toxicology modeling in pharmaceutical research and development: An industry-wide survey and selected case study examples. CPT Pharmacometrics Syst Pharmacol 2024; 13:2036-2051. [PMID: 39412216 DOI: 10.1002/psp4.13227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 12/17/2024] Open
Abstract
Quantitative systems toxicology (QST) models are increasingly being applied for predicting and understanding toxicity liabilities in pharmaceutical research and development. A European Federation of Pharmaceutical Industries and Associations (EFPIA)-wide survey was completed by 15 companies. The results provide insights into the current use of QST models across the industry. 73% of responding companies with more than 10,000 employees utilize QST models. The most applied QST models are for liver, cardiac electrophysiology, and bone marrow/hematology. Responders indicated particular interest in QST models for the central nervous system (CNS), kidney, lung, and skin. QST models are used to support decisions in both preclinical and clinical stages of pharmaceutical development. The survey suggests high demand for QST models and resource limitations were indicated as a common obstacle to broader use and impact. Increased investment in QST resources and training may accelerate application and impact. Case studies of QST model use in decision-making within EFPIA companies are also discussed. This article aims to (i) share industry experience and learnings from applying QST models to inform decision-making in drug discovery and development programs, and (ii) share approaches taken during QST model development and validation and compare these with recommendations for modeling best practices and frameworks proposed in the literature. Discussion of QST-specific applications in relation to these modeling frameworks is relevant in the context of the recently proposed International Council for Harmonization (ICH) M15 guideline on general principles for Model-Informed Drug Development (MIDD).
Collapse
Affiliation(s)
- Kylie A Beattie
- Target and Systems Safety, Non-Clinical Safety, GSK, Stevenage, UK
| | - Meghna Verma
- Systems Medicine, Clinical Pharmacology and Quantitative Pharmacology, R&D BioPharmaceuticals, AstraZeneca, Gaithersburg, Maryland, USA
| | - Richard J Brennan
- Global Investigative Toxicology, Sanofi, Cambridge, Massachusetts, USA
| | - Diana Clausznitzer
- Quantitative, Translational and ADME Sciences, AbbVie Deutschland, Ludwigshafen, Germany
| | - Valeriu Damian
- Computational Sciences, GSK, Upper Providence, Pennsylvania, USA
| | - Derek Leishman
- Translational and Quantitative Toxicology, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Mary E Spilker
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Research and Development, Pfizer Inc., La Jolla, California, USA
| | - Britton Boras
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Research and Development, Pfizer Inc., La Jolla, California, USA
| | - Zhenhong Li
- Translational Modeling and Simulation, Pfizer Research and Development, Pfizer Inc., Cambridge, Massachusetts, USA
| | - Elias Oziolor
- Drug Safety Research and Development, Pfizer Research and Development, Pfizer Inc., Groton, Connecticut, USA
| | - Theodore R Rieger
- Pharmacometrics and Systems Pharmacology, Pfizer Research and Development, Pfizer Inc., Cambridge, Massachusetts, USA
| | - Anna Sher
- Clinical Pharmacology Modeling and Simulation, GSK, Waltham, Massachusetts, USA
| |
Collapse
|
2
|
Harrell AW, Reid K, Vahle J, Brouta F, Beilmann M, Young G, Beattie KA, Valentin JP, Shaid S, Brinck P. Endeavours made by trade associations, pharmaceutical companies and regulators in the replacement, reduction and refinement of animal experimentation in safety testing of pharmaceuticals. Regul Toxicol Pharmacol 2024; 152:105683. [PMID: 39117168 DOI: 10.1016/j.yrtph.2024.105683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Following the European Commission decision to develop a roadmap to phase out animal testing and the signing of the US Modernisation Act, there is additional pressure on regulators and the pharmaceutical industry to abandon animal experimentation in safety testing. Often, endeavours already made by governments, regulators, trade associations, and industry to replace, reduce and refine animal experimentation (3Rs) are unnoticed. Herein, we review such endeavours to promote wider application and acceptance of 3Rs. ICH guidelines have stated 3Rs objectives and have enjoyed many successes driven by global consensus. Initiatives driven by US and European regulators such as the removal of the Abnormal Toxicity Test are neutralised by reticent regional regulators. Stream-lined testing requirements have been proposed for new modalities, oncology, impurity management and animal pharmacokinetics/metabolism. Use of virtual controls, value of the second toxicity species, information sharing and expectations for life-threatening diseases, human specific or well-characterised targets are currently being scrutinised. Despite much effort, progress falls short of the ambitious intent of decisionmakers. From a clinical safety and litigation perspective pharmaceutical companies and regulators are reluctant to step away from current paradigms unless replacement approaches are validated and globally accepted. Such consensus has historically been best achieved through ICH initiatives.
Collapse
Affiliation(s)
| | - Kirsty Reid
- European Federation of Pharmaceutical Industries and Associates, Leopold Plaza Building, Rue Du Trone 108, B-1050. Brussels, Belgium
| | - John Vahle
- Lilly Corporate Center, Lilly Research Laboratories, Indianapolis, IN, USA
| | - Frederic Brouta
- UCB Biopharma SRL, Chemin Du Foriest, B-1420, Braine-l'Alleud, Belgium
| | - Mario Beilmann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach, Germany
| | - Graeme Young
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK. UK
| | - Kylie A Beattie
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK. UK
| | | | - Shajahan Shaid
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK. UK
| | | |
Collapse
|
3
|
Lucena MI, Villanueva-Paz M, Alvarez-Alvarez I, Aithal GP, Björnsson ES, Cakan-Akdogan G, Cubero FJ, Esteves F, Falcon-Perez JM, Fromenty B, Garcia-Ruiz C, Grove JI, Konu O, Kranendonk M, Kullak-Ublick GA, Miranda JP, Remesal-Doblado A, Sancho-Bru P, Nelson L, Andrade RJ, Daly AK, Fernandez-Checa JC. Roadmap to DILI research in Europe. A proposal from COST action ProEuroDILINet. Pharmacol Res 2024; 200:107046. [PMID: 38159783 DOI: 10.1016/j.phrs.2023.107046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
In the current article the aims for a constructive way forward in Drug-Induced Liver Injury (DILI) are to highlight the most important priorities in research and clinical science, therefore supporting a more informed, focused, and better funded future for European DILI research. This Roadmap aims to identify key challenges, define a shared vision across all stakeholders for the opportunities to overcome these challenges and propose a high-quality research program to achieve progress on the prediction, prevention, diagnosis and management of this condition and impact on healthcare practice in the field of DILI. This will involve 1. Creation of a database encompassing optimised case report form for prospectively identified DILI cases with well-characterised controls with competing diagnoses, biological samples, and imaging data; 2. Establishing of preclinical models to improve the assessment and prediction of hepatotoxicity in humans to guide future drug safety testing; 3. Emphasis on implementation science and 4. Enhanced collaboration between drug-developers, clinicians and regulatory scientists. This proposed operational framework will advance DILI research and may bring together basic, applied, translational and clinical research in DILI.
Collapse
Affiliation(s)
- M I Lucena
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Plataforma de Investigación Clínica y Ensayos Clínicos UICEC-IBIMA, Plataforma ISCIII de Investigación Clínica, Madrid, Spain.
| | - M Villanueva-Paz
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - I Alvarez-Alvarez
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - G P Aithal
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
| | - E S Björnsson
- Faculty of Medicine, University of Iceland, Department of Gastroenterology and Hepatology, Landspitali University Hospital, Reykjavik, Iceland
| | - G Cakan-Akdogan
- Izmir Biomedicine and Genome Center, Izmir, Turkey. Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - F J Cubero
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Department of Immunology, Ophthalmology and ORL, Complutense University School of Medicine, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - F Esteves
- Center for Toxicogenomics and Human Health (ToxOmics), NMS | FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - J M Falcon-Perez
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain. IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia 48009, Spain
| | - B Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, F-35000 Rennes, France
| | - C Garcia-Ruiz
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. University of Barcelona, Barcelona, Spain; Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain
| | - J I Grove
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
| | - O Konu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - M Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), NMS | FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - G A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland
| | - J P Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - A Remesal-Doblado
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain
| | - P Sancho-Bru
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. University of Barcelona, Barcelona, Spain
| | - L Nelson
- Institute for Bioengineering, School of Engineering, Faraday Building, The University of Edinburgh, Scotland, UK
| | - R J Andrade
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - A K Daly
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - J C Fernandez-Checa
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. University of Barcelona, Barcelona, Spain; Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
4
|
Battista C, Shoda LKM, Watkins PB, Groettrup-Wolfers E, Rottmann A, Raschke M, Generaux GT. Quantitative Systems Toxicology Identifies Independent Mechanisms for Hepatotoxicity and Bilirubin Elevations Due to AKR1C3 Inhibitor BAY1128688. Clin Pharmacol Ther 2023; 114:1023-1032. [PMID: 37501650 DOI: 10.1002/cpt.3010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
BAY1128688 is a selective inhibitor of AKR1C3, investigated recently in a trial that was prematurely terminated due to drug-induced liver injury. These unexpected observations prompted use of the quantitative systems toxicology model, DILIsym, to determine possible mechanisms of hepatotoxicity. Using mechanistic in vitro toxicity data as well as clinical exposure data, DILIsym predicted the potential for BAY1128688 to cause liver toxicity (elevations in serum alanine aminotransferase (ALT)) and elevations in serum bilirubin. Initial simulations overpredicted hepatotoxicity and bilirubin elevations, so the BAY1128688 representation within DILIsym underwent optimization. The liver partition coefficient Kp was altered to align simulated bilirubin elevations with those observed clinically. Altering the mode of bile acid canalicular and basolateral efflux inhibition was necessary to accurately predict ALT elevations. Optimization results support that bilirubin elevations observed early during treatment are due to altered bilirubin metabolism and transporter inhibition, which is independent of liver injury. The modeling further supports that on-treatment ALT elevations result from inhibition of bile acid transporters, particularly the bile salt excretory pump, leading to accumulation of toxic bile acids. The predicted dose-dependent intrinsic hepatotoxicity may increase patient susceptibility to an adaptive immune response, accounting for ALT elevations observed after completion of treatment. These BAY1128688 simulations provide insight into the mechanisms behind hepatotoxicity and bilirubin elevations and may inform the potential risk posed by future compounds.
Collapse
Affiliation(s)
- Christina Battista
- DILIsym Services division, Simulations Plus, Inc., Durham, North Carolina, USA
| | - Lisl K M Shoda
- DILIsym Services division, Simulations Plus, Inc., Durham, North Carolina, USA
| | - Paul B Watkins
- Eshelman School of Pharmacy, Institute for Drug Safety Sciences, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Antje Rottmann
- Pharmaceuticals Division, Research & Early Development, Bayer AG, Berlin, Germany
| | - Marian Raschke
- Pharmaceuticals Division, Research & Early Development, Bayer AG, Berlin, Germany
| | | |
Collapse
|
5
|
Lakhani VV, Generaux G, Howell BA, Longo DM, Watkins PB. Assessing Liver Effects of Cannabidiol and Valproate Alone and in Combination Using Quantitative Systems Toxicology. Clin Pharmacol Ther 2023; 114:1006-1014. [PMID: 37458709 DOI: 10.1002/cpt.3004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
In clinical trials of cannabidiol (CBD) for the treatment of seizures in patients with Dravet syndrome, Lennox-Gastaut syndrome, and tuberous sclerosis complex, elevations in serum alanine aminotransferase (ALT) > 3× the upper limit of normal were observed in some patents, but the incidence was much greater in patients who were receiving treatment with valproate (VPA) before starting CBD. To explore potential mechanisms underlying this interaction, we used DILIsym, a quantitative systems toxicology model, to predict ALT elevations in a simulated human population treated with CBD alone, VPA alone, and when CBD dosing was starting during treatment with VPA. We gathered in vitro data assessing the potential for CBD, the two major CBD metabolites, and VPA to cause hepatotoxicity via inhibition of bile acid transporters, mitochondrial dysfunction, and production of reactive oxygen species (ROS). Physiologically-based pharmacokinetic models for CBD and VPA were used to predict liver exposure. DILIsym simulations predicted dose-dependent ALT elevations from CBD treatment and this was predominantly driven by ROS production from the parent molecule. DILIsym also predicted VPA treatment to cause ALT elevations which were transient when mitochondrial biogenesis was incorporated into the model. Contrary to the clinical experience, simulation of 2 weeks treatment with VPA prior to introduction of CBD treatment did not predict an increase of the incidence of ALT elevations relative to CBD treatment alone. We conclude that the marked increased incidence of CBD-associated ALT elevations in patients already receiving VPA is unlikely to involve the three major mechanisms of direct hepatotoxicity.
Collapse
Affiliation(s)
- Vinal V Lakhani
- DILIsym Services Inc., A Simulations-Plus Company, Durham, North Carolina, USA
| | - Grant Generaux
- DILIsym Services Inc., A Simulations-Plus Company, Durham, North Carolina, USA
| | - Brett A Howell
- DILIsym Services Inc., A Simulations-Plus Company, Durham, North Carolina, USA
| | - Diane M Longo
- DILIsym Services Inc., A Simulations-Plus Company, Durham, North Carolina, USA
| | - Paul B Watkins
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Beaudoin JJ, Yang K, Adiwidjaja J, Taneja G, Watkins PB, Siler SQ, Howell BA, Woodhead JL. Investigating bile acid-mediated cholestatic drug-induced liver injury using a mechanistic model of multidrug resistance protein 3 (MDR3) inhibition. Front Pharmacol 2023; 13:1085621. [PMID: 36733378 PMCID: PMC9887159 DOI: 10.3389/fphar.2022.1085621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Inhibition of the canalicular phospholipid floppase multidrug resistance protein 3 (MDR3) has been implicated in cholestatic drug-induced liver injury (DILI), which is clinically characterized by disrupted bile flow and damage to the biliary epithelium. Reduction in phospholipid excretion, as a consequence of MDR3 inhibition, decreases the formation of mixed micelles consisting of bile acids and phospholipids in the bile duct, resulting in a surplus of free bile acids that can damage the bile duct epithelial cells, i.e., cholangiocytes. Cholangiocytes may compensate for biliary increases in bile acid monomers via the cholehepatic shunt pathway or bicarbonate secretion, thereby influencing viability or progression to toxicity. To address the unmet need to predict drug-induced bile duct injury in humans, DILIsym, a quantitative systems toxicology model of DILI, was extended by representing key features of the bile duct, cholangiocyte functionality, bile acid and phospholipid disposition, and cholestatic hepatotoxicity. A virtual, healthy representative subject and population (n = 285) were calibrated and validated utilizing a variety of clinical data. Sensitivity analyses were performed for 1) the cholehepatic shunt pathway, 2) biliary bicarbonate concentrations and 3) modes of MDR3 inhibition. Simulations showed that an increase in shunting may decrease the biliary bile acid burden, but raise the hepatocellular concentrations of bile acids. Elevating the biliary concentration of bicarbonate may decrease bile acid shunting, but increase bile flow rate. In contrast to competitive inhibition, simulations demonstrated that non-competitive and mixed inhibition of MDR3 had a profound impact on phospholipid efflux, elevations in the biliary bile acid-to-phospholipid ratio, cholangiocyte toxicity, and adaptation pathways. The model with its extended bile acid homeostasis representation was furthermore able to predict DILI liability for compounds with previously studied interactions with bile acid transport. The cholestatic liver injury submodel in DILIsym accounts for several processes pertinent to bile duct viability and toxicity and hence, is useful for predictions of MDR3 inhibition-mediated cholestatic DILI in humans.
Collapse
Affiliation(s)
- James J. Beaudoin
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, NC, United States
| | - Kyunghee Yang
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, NC, United States
| | - Jeffry Adiwidjaja
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, NC, United States
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Guncha Taneja
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, NC, United States
| | - Paul B. Watkins
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Scott Q. Siler
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, NC, United States
| | - Brett A. Howell
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, NC, United States
| | - Jeffrey L. Woodhead
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, NC, United States
| |
Collapse
|
7
|
Lin J, Li M, Mak W, Shi Y, Zhu X, Tang Z, He Q, Xiang X. Applications of In Silico Models to Predict Drug-Induced Liver Injury. TOXICS 2022; 10:788. [PMID: 36548621 PMCID: PMC9785299 DOI: 10.3390/toxics10120788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Drug-induced liver injury (DILI) is a major cause of the withdrawal of pre-marketed drugs, typically attributed to oxidative stress, mitochondrial damage, disrupted bile acid homeostasis, and innate immune-related inflammation. DILI can be divided into intrinsic and idiosyncratic DILI with cholestatic liver injury as an important manifestation. The diagnosis of DILI remains a challenge today and relies on clinical judgment and knowledge of the insulting agent. Early prediction of hepatotoxicity is an important but still unfulfilled component of drug development. In response, in silico modeling has shown good potential to fill the missing puzzle. Computer algorithms, with machine learning and artificial intelligence as a representative, can be established to initiate a reaction on the given condition to predict DILI. DILIsym is a mechanistic approach that integrates physiologically based pharmacokinetic modeling with the mechanisms of hepatoxicity and has gained increasing popularity for DILI prediction. This article reviews existing in silico approaches utilized to predict DILI risks in clinical medication and provides an overview of the underlying principles and related practical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qingfeng He
- Correspondence: (Q.H.); (X.X.); Tel.: +86-21-51980024 (X.X.)
| | - Xiaoqiang Xiang
- Correspondence: (Q.H.); (X.X.); Tel.: +86-21-51980024 (X.X.)
| |
Collapse
|
8
|
Sové RJ, Verma BK, Wang H, Ho WJ, Yarchoan M, Popel AS. Virtual clinical trials of anti-PD-1 and anti-CTLA-4 immunotherapy in advanced hepatocellular carcinoma using a quantitative systems pharmacology model. J Immunother Cancer 2022; 10:e005414. [PMID: 36323435 PMCID: PMC9639136 DOI: 10.1136/jitc-2022-005414] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer and is the third-leading cause of cancer-related death worldwide. Most patients with HCC are diagnosed at an advanced stage, and the median survival for patients with advanced HCC treated with modern systemic therapy is less than 2 years. This leaves the advanced stage patients with limited treatment options. Immune checkpoint inhibitors (ICIs) targeting programmed cell death protein 1 (PD-1) or its ligand, are widely used in the treatment of HCC and are associated with durable responses in a subset of patients. ICIs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) also have clinical activity in HCC. Combination therapy of nivolumab (anti-PD-1) and ipilimumab (anti-CTLA-4) is the first treatment option for HCC to be approved by Food and Drug Administration that targets more than one immune checkpoints. METHODS In this study, we used the framework of quantitative systems pharmacology (QSP) to perform a virtual clinical trial for nivolumab and ipilimumab in HCC patients. Our model incorporates detailed biological mechanisms of interactions of immune cells and cancer cells leading to antitumor response. To conduct virtual clinical trial, we generate virtual patient from a cohort of 5,000 proposed patients by extending recent algorithms from literature. The model was calibrated using the data of the clinical trial CheckMate 040 (ClinicalTrials.gov number, NCT01658878). RESULTS Retrospective analyses were performed for different immune checkpoint therapies as performed in CheckMate 040. Using machine learning approach, we predict the importance of potential biomarkers for immune blockade therapies. CONCLUSIONS This is the first QSP model for HCC with ICIs and the predictions are consistent with clinically observed outcomes. This study demonstrates that using a mechanistic understanding of the underlying pathophysiology, QSP models can facilitate patient selection and design clinical trials with improved success.
Collapse
Affiliation(s)
- Richard J Sové
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Babita K Verma
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Won Jin Ho
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Yarchoan
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Siler SQ. Applications of Quantitative Systems Pharmacology (QSP) in Drug Development for NAFLD and NASH and Its Regulatory Application. Pharm Res 2022; 39:1789-1802. [PMID: 35610402 PMCID: PMC9314276 DOI: 10.1007/s11095-022-03295-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 02/08/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a widely prevalent disease, but approved pharmaceutical treatments are not available. As such, there is great activity within the pharmaceutical industry to accelerate drug development in this area and improve the quality of life and reduce mortality for NASH patients. The use of quantitative systems pharmacology (QSP) can help make this overall process more efficient. This mechanism-based mathematical modeling approach describes both the pathophysiology of a disease and how pharmacological interventions can modify pathophysiologic mechanisms. Multiple capabilities are provided by QSP modeling, including the use of model predictions to optimize clinical studies. The use of this approach has grown over the last 20 years, motivating discussions between modelers and regulators to agree upon methodologic standards. These include model transparency, documentation, and inclusion of clinical pharmacodynamic biomarkers. Several QSP models have been developed that describe NASH pathophysiology to varying extents. One specific application of NAFLDsym, a QSP model of NASH, is described in this manuscript. Simulations were performed to help understand if patient behaviors could help explain the relatively high rate of fibrosis stage reductions in placebo cohorts. Simulated food intake and body weight fluctuated periodically over time. The relatively slow turnover of liver collagen allowed persistent reductions in predicted fibrosis stage despite return to baseline for liver fat, plasma ALT, and the NAFLD activity score. Mechanistic insights such as this that have been derived from QSP models can help expedite the development of safe and effective treatments for NASH patients.
Collapse
Affiliation(s)
- Scott Q Siler
- DILIsym Services, a Division of Simulations Plus, 510-862-6027, 6 Davis Drive, PO Box 12317, Research Triangle Park, North Carolina, 27709, USA.
| |
Collapse
|
10
|
Quantitative Systems Toxicology and Drug Development: The DILIsym Experience. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2486:181-196. [PMID: 35437723 DOI: 10.1007/978-1-0716-2265-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
DILIsym® is a Quantitative Systems Toxicology (QST) model that has been developed over the last decade by a public-private partnership to predict the liver safety liability in new drug candidates. DILIsym integrates the quantitative abilities of parent and relevant metabolites to cause oxidative stress, mitochondrial dysfunction, and alter bile acid homeostasis. Like the prediction of drug-drug interactions, the data entered into DILIsym are assessed in the laboratory in human experimental systems, and combined with estimates of liver exposure to predict the outcome. DILIsym is now frequently used in decision-making within the pharmaceutical industry and its modeling results are increasingly included in regulatory communications and NDA submissions. DILIsym can be used to identify dominant mechanisms underlying liver toxicity and this information is increasingly being used to identify patient-specific risk factors, including certain disease states. DILIsym is also increasingly used to optimize the interpretation of liver injury biomarkers. DILIsym provides an example of how QST modeling can help speed the delivery of safer new drugs to the patients who need them.
Collapse
|
11
|
Gill MW, Murphy BJ, Cheng PP, Sivaraman L, Davis M, Lehman-McKeeman L. Mechanism of hepatobiliary toxicity of the LPA1 antagonist BMS-986020 developed to treat idiopathic pulmonary fibrosis: Contrasts with BMS-986234 and BMS-986278. Toxicol Appl Pharmacol 2022; 438:115885. [DOI: 10.1016/j.taap.2022.115885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
|
12
|
Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, Lucena MI, Villanueva-Paz M. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): Moving towards prediction. Acta Pharm Sin B 2021; 11:3685-3726. [PMID: 35024301 PMCID: PMC8727925 DOI: 10.1016/j.apsb.2021.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) encompasses the unexpected harms that prescription and non-prescription drugs, herbal and dietary supplements can cause to the liver. iDILI remains a major public health problem and a major cause of drug attrition. Given the lack of biomarkers for iDILI prediction, diagnosis and prognosis, searching new models to predict and study mechanisms of iDILI is necessary. One of the major limitations of iDILI preclinical assessment has been the lack of correlation between the markers of hepatotoxicity in animal toxicological studies and clinically significant iDILI. Thus, major advances in the understanding of iDILI susceptibility and pathogenesis have come from the study of well-phenotyped iDILI patients. However, there are many gaps for explaining all the complexity of iDILI susceptibility and mechanisms. Therefore, there is a need to optimize preclinical human in vitro models to reduce the risk of iDILI during drug development. Here, the current experimental models and the future directions in iDILI modelling are thoroughly discussed, focusing on the human cellular models available to study the pathophysiological mechanisms of the disease and the most used in vivo animal iDILI models. We also comment about in silico approaches and the increasing relevance of patient-derived cellular models.
Collapse
Affiliation(s)
- Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Carlos López-Gómez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Zeus Pérez-Valdés
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
- Platform ISCIII de Ensayos Clínicos, UICEC-IBIMA, Málaga 29071, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
13
|
Zhou Z, Zhu J, Jiang M, Sang L, Hao K, He H. The Combination of Cell Cultured Technology and In Silico Model to Inform the Drug Development. Pharmaceutics 2021; 13:pharmaceutics13050704. [PMID: 34065907 PMCID: PMC8151315 DOI: 10.3390/pharmaceutics13050704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Human-derived in vitro models can provide high-throughput efficacy and toxicity data without a species gap in drug development. Challenges are still encountered regarding the full utilisation of massive data in clinical settings. The lack of translated methods hinders the reliable prediction of clinical outcomes. Therefore, in this study, in silico models were proposed to tackle these obstacles from in vitro to in vivo translation, and the current major cell culture methods were introduced, such as human-induced pluripotent stem cells (hiPSCs), 3D cells, organoids, and microphysiological systems (MPS). Furthermore, the role and applications of several in silico models were summarised, including the physiologically based pharmacokinetic model (PBPK), pharmacokinetic/pharmacodynamic model (PK/PD), quantitative systems pharmacology model (QSP), and virtual clinical trials. These credible translation cases will provide templates for subsequent in vitro to in vivo translation. We believe that synergising high-quality in vitro data with existing models can better guide drug development and clinical use.
Collapse
Affiliation(s)
- Zhengying Zhou
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (Z.Z.); (M.J.)
| | - Jinwei Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (J.Z.); (L.S.)
| | - Muhan Jiang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (Z.Z.); (M.J.)
| | - Lan Sang
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (J.Z.); (L.S.)
| | - Kun Hao
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (J.Z.); (L.S.)
- Correspondence: (K.H.); (H.H.)
| | - Hua He
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (Z.Z.); (M.J.)
- Correspondence: (K.H.); (H.H.)
| |
Collapse
|
14
|
Application of the DILIsym® Quantitative Systems Toxicology drug-induced liver injury model to evaluate the carcinogenic hazard potential of acetaminophen. Regul Toxicol Pharmacol 2020; 118:104788. [PMID: 33153971 DOI: 10.1016/j.yrtph.2020.104788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/11/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
In 2019, the California Office of Environmental Health Hazard Assessment (OEHHA) initiated a review of the carcinogenic hazard potential of acetaminophen. The objective of the analysis herein was to inform this review by assessing whether variability in patient baseline characteristics (e.g. baseline glutathione (GSH) levels, pharmacokinetics, and capacity of hepatic antioxidants) leads to potential differences in carcinogenic hazard potential at different dosing schemes: maximum labeled doses of 4 g/day, repeated doses above the maximum labeled dose (>4-12 g/day), and acute overdoses of acetaminophen (>15 g). This was achieved by performing simulations of acetaminophen exposure in thousands of diverse virtual patients scenarios using the DILIsym® Quantitative Systems Toxicology (QST) model. Simulations included assessments of the dose and exposure response for toxicity and mode of cell death based on evaluations of the kinetics of changes of: GSH, N-acetyl-p-benzoquinone-imine (NAPQI), protein adducts, mitochondrial dysfunction, and hepatic cell death. Results support that, at therapeutic doses, cellular GSH binds to NAPQI providing sufficient buffering capacity to limit protein adduct formation and subsequent oxidative stress. Simulations evaluating repeated high-level supratherapeutic exposures or acute overdoses indicate that cell death precedes DNA damage that could result in carcinogenicity and thus acetaminophen does not present a carcinogenicity hazard to humans at any dose.
Collapse
|
15
|
Watkins PB. DILIsym: Quantitative systems toxicology impacting drug development. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Zhang MQ, Chen B, Zhang JP, Chen N, Liu CZ, Hu CQ. Liver toxicity of macrolide antibiotics in zebrafish. Toxicology 2020; 441:152501. [PMID: 32454074 DOI: 10.1016/j.tox.2020.152501] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/01/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
Macrolide antibiotics (macrolides) are among the most commonly prescribed antibiotics worldwide and are used for a wide range of infections, but macrolides also expose people to the risk of adverse events include hepatotoxicity. Here, we report the liver toxicity of macrolides with different structures in zebrafish. The absorption, distribution, metabolism, excretion and toxicology (ADMET) parameters of macrolide compounds were predicted and contrasted by utilizing in silico analysis. Fluorescence imaging and Oil Red O stain assays showed all the tested macrolide drugs induced liver degeneration, changed liver size and liver steatosis in larval zebrafish. Through RNA-seq analysis, we found seven co-regulated differentially expressed genes (co-DEGs) associated with metabolism, apoptosis and immune system biological processes, and two co-regulated significant pathways including amino sugar and nucleotide sugar metabolism and apoptosis signaling pathway. We found that only fosab of seven co-DEGs was in the two co-regulated significant pathways. fosab encoded proto-oncogene c-Fos, which was closely associated with liver diseases. The whole-mount in situ hybridization showed high transcription of c-Fos induced by macrolide compounds mainly in the liver region of zebrafish larvae. Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) leakage assays revealed that macrolides exerts significant cytotoxic effects on L02 cells. qRT-PCR and western blot analysis demonstrated macrolides also promoted human c-Fos expression in L02 cells. The c-Fos overexpression significantly reduced cell viability by using CCK-8 assay. These data indicate that hepatotoxicity induced by macrolides may be correlated with c-Fos expression activated by these compounds. This study may provide a biomarker for the further investigations on the mechanism of hepatotoxicity induced by macrolide drugs with different structures, and extend our understanding for improving rational clinical application of macrolides.
Collapse
Affiliation(s)
- Miao-Qing Zhang
- Postdoctoral Scientific Research Workstation, China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen 518110, China; Postdoctoral Mobile Research Station, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences & School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, China; Shenzhen China Resources Gosun Pharmaceuticals Co., Ltd., Shenzhen 518049, China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bo Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jing-Pu Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ning Chen
- Shenzhen China Resources Gosun Pharmaceuticals Co., Ltd., Shenzhen 518049, China.
| | - Chun-Zhao Liu
- Postdoctoral Mobile Research Station, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences & School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Chang-Qin Hu
- National Institutes for Food and Drug Control, Beijing 100050, China.
| |
Collapse
|
17
|
Watkins PB. The DILI-sim Initiative: Insights into Hepatotoxicity Mechanisms and Biomarker Interpretation. Clin Transl Sci 2020; 12:122-129. [PMID: 30762301 PMCID: PMC6440570 DOI: 10.1111/cts.12629] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/16/2022] Open
Abstract
The drug‐induced liver injury (DILI)‐sim Initiative is a public‐private partnership involving scientists from industry, academia, and the US Food and Drug Administration (FDA). The Initiative uses quantitative systems toxicology (QST) to build and refine a model (DILIsym) capable of understanding and predicting liver safety liabilities in new drug candidates and to optimize interpretation of liver safety biomarkers used in clinical studies. Insights gained to date include the observation that most dose‐dependent hepatotoxicity can be accounted for by combinations of just three mechanisms (oxidative stress, interference with mitochondrial respiration, and alterations in bile acid homeostasis) and the importance of noncompetitive inhibition of bile acid transporters. The effort has also provided novel insight into species and interpatient differences in susceptibility, structure‐activity relationships, and the role of nonimmune mechanisms in delayed idiosyncratic hepatotoxicity. The model is increasingly used to evaluate new drug candidates and several clinical trials are underway that will test the model's ability to prospectively predict liver safety. With more refinement, in the future, it may be possible to use the DILIsym predictions to justify reduction in the size of some clinical trials. The mature model could also potentially assist physicians in managing the liver safety of their patients as well as aid in the diagnosis of DILI.
Collapse
Affiliation(s)
- Paul B Watkins
- Institute for Drug Safety Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
18
|
Longo DM, Shoda LKM, Howell BA, Coric V, Berman RM, Qureshi IA. Assessing Effects of BHV-0223 40 mg Zydis Sublingual Formulation and Riluzole 50 mg Oral Tablet on Liver Function Test Parameters Utilizing DILIsym. Toxicol Sci 2020; 175:292-300. [PMID: 32040174 PMCID: PMC7253195 DOI: 10.1093/toxsci/kfaa019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
For patients with amyotrophic lateral sclerosis who take oral riluzole tablets, approximately 50% experience alanine transaminase (ALT) levels above upper limit of normal (ULN), 8% above 3× ULN, and 2% above 5× ULN. BHV-0223 is a novel 40 mg rapidly sublingually disintegrating (Zydis) formulation of riluzole, bioequivalent to conventional riluzole 50 mg oral tablets, that averts the need for swallowing tablets and mitigates first-pass hepatic metabolism, thereby potentially reducing risk of liver toxicity. DILIsym is a validated multiscale computational model that supports evaluation of liver toxicity risks. DILIsym was used to compare the hepatotoxicity potential of oral riluzole tablets (50 mg BID) versus BHV-0223 (40 mg BID) by integrating clinical data and in vitro toxicity data. In a simulated population (SimPops), ALT levels > 3× ULN were predicted in 3.9% (11/285) versus 1.4% (4/285) of individuals with oral riluzole tablets and sublingual BHV-0223, respectively. This represents a relative risk reduction of 64% associated with BHV-0223 versus conventional riluzole tablets. Mechanistic investigations revealed that oxidative stress was responsible for the predicted ALT elevations. The validity of the DILIsym representation of riluzole and assumptions is supported by its ability to predict rates of ALT elevations for riluzole oral tablets comparable with that observed in clinical data. Combining a mechanistic, quantitative representation of hepatotoxicity with interindividual variability in both susceptibility and liver exposure suggests that sublingual BHV-0223 confers diminished rates of liver toxicity compared with oral tablets of riluzole, consistent with having a lower overall dose of riluzole and bypassing first-pass liver metabolism.
Collapse
Affiliation(s)
- Diane M Longo
- DILIsym Services, Inc., Research Triangle Park, North Carolina 27709
- To whom correspondence should be addressed at 6 Davis Drive, PO Box 12317, Research Triangle Park, NC 27709. E-mail:
| | - Lisl K M Shoda
- DILIsym Services, Inc., Research Triangle Park, North Carolina 27709
| | - Brett A Howell
- DILIsym Services, Inc., Research Triangle Park, North Carolina 27709
| | - Vladimir Coric
- Biohaven Pharmaceuticals, Inc., New Haven, Connecticut 06510
| | - Robert M Berman
- Biohaven Pharmaceuticals, Inc., New Haven, Connecticut 06510
| | - Irfan A Qureshi
- Biohaven Pharmaceuticals, Inc., New Haven, Connecticut 06510
| |
Collapse
|
19
|
Mechanism-based integrated assay systems for the prediction of drug-induced liver injury. Toxicol Appl Pharmacol 2020; 394:114958. [PMID: 32198022 DOI: 10.1016/j.taap.2020.114958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/29/2020] [Accepted: 03/13/2020] [Indexed: 12/18/2022]
Abstract
Drug-induced liver injury (DILI) can cause hepatic failure and result in drug withdrawal from the market. It has host-related and compound-dependent mechanisms. Preclinical prediction of DILI risk is very challenging and safety assessments based on animals inadequately forecast human DILI risk. In contrast, human-derived in vitro cell culture-based models could improve DILI risk prediction accuracy. Here, we developed and validated an innovative method to assess DILI risk associated with various compounds. Fifty-four marketed and withdrawn drugs classified as DILI risks of "most concern", "less concern", and "no concern" were tested using a combination of four assays addressing mitochondrial injury, intrahepatic lipid accumulation, inhibition of bile canalicular network formation, and bile acid accumulation. Using the inhibitory potencies of the drugs evaluated in these in vitro tests, an algorithm with the highest available DILI risk prediction power was built by artificial neural network (ANN) analysis. It had an overall forecasting accuracy of 73%. We excluded the intrahepatic lipid accumulation assay to avoid overfitting. The accuracy of the algorithm in terms of predicting DILI risks was 62% when it was constructed by ANN but only 49% when it was built by the point-added scoring method. The final algorithm based on three assays made no DILI risk prediction errors such as "most concern " instead of "no concern" and vice-versa. Our mechanistic approach may accurately predict DILI risks associated with numerous candidate drugs.
Collapse
|
20
|
Watkins PB. Quantitative Systems Toxicology Approaches to Understand and Predict Drug-Induced Liver Injury. Clin Liver Dis 2020; 24:49-60. [PMID: 31753250 DOI: 10.1016/j.cld.2019.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The DILI-sim Initiative is a public-private partnership using quantitative systems toxicology to build a model (DILIsym) capable of understanding and predicting liver safety liabilities in drug candidates. The effort has provided insights into mechanisms underlying dose-dependent drug-induced liver injury (DILI) and interpatient differences in susceptibility to dose-dependent DILI. DILIsym may be useful in identifying drugs capable of causing idiosyncratic hepatotoxicity. DILIsym is used to optimize interpretation of traditional and newer serum biomarkers of DILI. DILIsym results are considered in drug development decisions. In the future, it may be possible to use DILsym predictions to justify reduction in size of some clinical trials.
Collapse
Affiliation(s)
- Paul B Watkins
- Institute for Drug Safety Sciences, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, 6 Davis Drive, PO Box 12137, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
21
|
Longo DM, Woodhead JL, Walker P, Herédi-Szabó K, Mogyorósi K, Wolenski FS, Dragan YP, Mosedale M, Siler SQ, Watkins PB, Howell BA. Quantitative Systems Toxicology Analysis of In Vitro Mechanistic Assays Reveals Importance of Bile Acid Accumulation and Mitochondrial Dysfunction in TAK-875-Induced Liver Injury. Toxicol Sci 2020; 167:458-467. [PMID: 30289550 PMCID: PMC6358270 DOI: 10.1093/toxsci/kfy253] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
TAK-875 (fasiglifam), a GPR40 agonist in development for the treatment of type 2 diabetes (T2D), was voluntarily terminated in Phase III trials due to adverse liver effects. The potential mechanisms of TAK-875 toxicity were explored by combining in vitro experiments with quantitative systems toxicology (QST) using DILIsym, a mathematical representation of drug-induced liver injury. In vitro assays revealed that bile acid transporters were inhibited by both TAK-875 and its metabolite, TAK-875-Glu. Experimental data indicated that human bile salt export pump (BSEP) inhibition by TAK-875 was mixed whereas sodium taurocholate co-transporting polypeptide (NTCP) inhibition by TAK-875 was competitive. Furthermore, experimental data demonstrated that both TAK-875 and TAK-875-Glu inhibit mitochondrial electron transport chain (ETC) enzymes. These mechanistic data were combined with a physiologically based pharmacokinetic (PBPK) model constructed within DILIsym to estimate liver exposure of TAK-875 and TAK-875-Glu. In a simulated population (SimPops) constructed to reflect T2D patients, 16/245 (6.5%) simulated individuals developed alanine aminotransferase (ALT) elevations, an incidence similar to that observed with 200 mg daily dosing in clinical trials. Determining the mode of bile acid transporter inhibition (Ki) was critical to accurate predictions. In addition, simulations conducted on a sensitive subset of individuals (SimCohorts) revealed that when either BSEP or ETC inhibition was inactive, ALT elevations were not predicted to occur, suggesting that the two mechanisms operate synergistically to produce the observed clinical response. These results demonstrate how utilizing QST methods to interpret in vitro experimental results can lead to an improved understanding of the clinically relevant mechanisms underlying drug-induced toxicity.
Collapse
Affiliation(s)
- Diane M Longo
- DILIsym Services, Inc., Research Triangle Park, North Carolina 27709
| | | | | | | | | | - Francis S Wolenski
- Takeda Pharmaceuticals International, Inc., Cambridge, Massachusetts 02139
| | - Yvonne P Dragan
- Takeda Pharmaceuticals International, Inc., Cambridge, Massachusetts 02139
| | - Merrie Mosedale
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,UNC Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709
| | - Scott Q Siler
- DILIsym Services, Inc., Research Triangle Park, North Carolina 27709
| | - Paul B Watkins
- DILIsym Services, Inc., Research Triangle Park, North Carolina 27709.,UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,UNC Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709
| | - Brett A Howell
- DILIsym Services, Inc., Research Triangle Park, North Carolina 27709
| |
Collapse
|
22
|
Woodhead JL, Pellegrini L, Shoda LKM, Howell BA. Comparison of the Hepatotoxic Potential of Two Treatments for Autosomal-Dominant Polycystic Kidney DiseaseUsing Quantitative Systems Toxicology Modeling. Pharm Res 2020; 37:24. [PMID: 31909447 PMCID: PMC6944674 DOI: 10.1007/s11095-019-2726-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022]
Abstract
Purpose Autosomal-dominant polycystic kidney disease (ADPKD) is an orphan disease with few current treatment options. The vasopressin V2 receptor antagonist tolvaptan is approved in multiple countries for the treatment of ADPKD, however its use is associated with clinically significant drug-induced liver injury. Methods In prior studies, the potential for hepatotoxicity of tolvaptan was correctly predicted using DILIsym®, a quantitative systems toxicology (QST) mathematical model of drug-induced liver injury. In the current study, we evaluated lixivaptan, another proposed ADPKD treatment and vasopressin V2 receptor antagonist, using DILIsym®. Simulations were conducted that assessed the potential for lixivaptan and its three main metabolites to cause hepatotoxicity due to three injury mechanisms: bile acid accumulation, mitochondrial dysfunction, and oxidative stress generation. Results of these simulations were compared to previously published DILIsym results for tolvaptan. Results No ALT elevations were predicted to occur at the proposed clinical dose for lixivaptan, in contrast to previously published simulation results for tolvaptan. As such, lixivaptan was predicted to have a markedly lower risk of hepatotoxicity compared to tolvaptan with respect to the hepatotoxicity mechanisms represented in DILIsym. Conclusions These results demonstrate the potential for using QST methods to differentiate drugs in the same class for their potential to cause hepatotoxicity. Electronic supplementary material The online version of this article (10.1007/s11095-019-2726-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J L Woodhead
- DILIsym Services, Inc., a Simulations Plus Company, Research Triangle Park, North Carolina, USA.
| | - L Pellegrini
- Palladio Biosciences, Inc., Newtown, Pennsylvania, USA
| | - L K M Shoda
- DILIsym Services, Inc., a Simulations Plus Company, Research Triangle Park, North Carolina, USA
| | - B A Howell
- DILIsym Services, Inc., a Simulations Plus Company, Research Triangle Park, North Carolina, USA
| |
Collapse
|
23
|
Generaux G, Lakhani VV, Yang Y, Nadanaciva S, Qiu L, Riccardi K, Di L, Howell BA, Siler SQ, Watkins PB, Barton HA, Aleo MD, Shoda LKM. Quantitative systems toxicology (QST) reproduces species differences in PF-04895162 liver safety due to combined mitochondrial and bile acid toxicity. Pharmacol Res Perspect 2019; 7:e00523. [PMID: 31624633 PMCID: PMC6785660 DOI: 10.1002/prp2.523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 01/15/2023] Open
Abstract
Many compounds that appear promising in preclinical species, fail in human clinical trials due to safety concerns. The FDA has strongly encouraged the application of modeling in drug development to improve product safety. This study illustrates how DILIsym, a computational representation of liver injury, was able to reproduce species differences in liver toxicity due to PF-04895162 (ICA-105665). PF-04895162, a drug in development for the treatment of epilepsy, was terminated after transaminase elevations were observed in healthy volunteers (NCT01691274). Liver safety concerns had not been raised in preclinical safety studies. DILIsym, which integrates in vitro data on mechanisms of hepatotoxicity with predicted in vivo liver exposure, reproduced clinical hepatotoxicity and the absence of hepatotoxicity observed in the rat. Simulated differences were multifactorial. Simulated liver exposure was greater in humans than rats. The simulated human hepatotoxicity was demonstrated to be due to the interaction between mitochondrial toxicity and bile acid transporter inhibition; elimination of either mechanism from the simulations abrogated injury. The bile acid contribution occurred despite the fact that the IC50 for bile salt export pump (BSEP) inhibition by PF-04895162 was higher (311 µmol/L) than that has been generally thought to contribute to hepatotoxicity. Modeling even higher PF-04895162 liver exposures than were measured in the rat safety studies aggravated mitochondrial toxicity but did not result in rat hepatotoxicity due to insufficient accumulation of cytotoxic bile acid species. This investigative study highlights the potential for combined in vitro and computational screening methods to identify latent hepatotoxic risks and paves the way for similar and prospective studies.
Collapse
Affiliation(s)
- Grant Generaux
- DILIsym Services Inc.Research Triangle ParkNorth Carolina
| | | | - Yuching Yang
- DILIsym Services Inc.Research Triangle ParkNorth Carolina
- Present address:
Division of PharmacometricsOffice of Clinical PharmacologyOffice of Translational SciencesCenter for Drug Evaluation and ResearchFood and Drug Administration Food and Drug AdministrationSilver SpringMaryland
| | - Sashi Nadanaciva
- Compound Safety PredictionWorldwide Medicinal ChemistryPfizer Inc.GrotonConnecticut
| | - Luping Qiu
- Investigative ToxicologyDrug Safety Research and DevelopmentPfizer Inc.GrotonConnecticut
| | - Keith Riccardi
- Pharmacokinetics, Dynamics and MetabolismMedicinal SciencesPfizer Inc.GrotonConnecticut
| | - Li Di
- Pharmacokinetics, Dynamics and MetabolismMedicinal SciencesPfizer Inc.GrotonConnecticut
| | | | - Scott Q. Siler
- DILIsym Services Inc.Research Triangle ParkNorth Carolina
| | - Paul B. Watkins
- UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
- UNC Institute for Drug Safety SciencesUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Hugh A. Barton
- Translational Modeling and SimulationBiomedicine DesignPfizer, Inc.GrotonConnecticut
| | - Michael D. Aleo
- Investigative ToxicologyDrug Safety Research and DevelopmentPfizer Inc.GrotonConnecticut
| | | |
Collapse
|
24
|
Battista C, Yang K, Stahl SH, Mettetal JT, Watkins PB, Siler SQ, Howell BA. Using Quantitative Systems Toxicology to Investigate Observed Species Differences in CKA-Mediated Hepatotoxicity. Toxicol Sci 2019; 166:123-130. [PMID: 30060248 PMCID: PMC6204762 DOI: 10.1093/toxsci/kfy191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
CKA, a chemokine receptor antagonist intended for treating inflammatory conditions, produced dose-dependent hepatotoxicity in rats but advanced into the clinic where single doses of CKA up to 600 mg appeared safe in humans. Because existing toxicological platforms used during drug development are not perfectly predictive, a quantitative systems toxicology model investigated the hepatotoxic potential of CKA in humans and rats through in vitro assessments of CKA on mitochondrial respiration, oxidative stress, and bile acid transporters. DILIsym predicted that single doses of CKA caused serum ALT >3xULN in a subset of the simulated rat population, while single doses in a simulated human population did not produce serum ALT elevations. Species differences were largely attributed to differences in liver exposure, but increased sensitivity to inhibition of mitochondrial respiration in the rat also contributed. We conclude that mechanistic modeling can elucidate species differences in the hepatotoxic potential of drug candidates.
Collapse
Affiliation(s)
- Christina Battista
- DILIsym Services, Inc., Research Triangle Park, North Carolina.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Institute for Drug Safety Sciences, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kyunghee Yang
- DILIsym Services, Inc., Research Triangle Park, North Carolina
| | - Simone H Stahl
- Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, Astra Zeneca R&D, Cambridge CB4 0WG, UK
| | - Jerome T Mettetal
- Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, Astra Zeneca R&D, Waltham, Massachusetts
| | - Paul B Watkins
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Institute for Drug Safety Sciences, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Scott Q Siler
- DILIsym Services, Inc., Research Triangle Park, North Carolina
| | - Brett A Howell
- DILIsym Services, Inc., Research Triangle Park, North Carolina.,DILIsym Services, Inc., Six Davis Drive, PO BOX 12317, Research Triangle Park, NC 27709
| |
Collapse
|
25
|
Deferm N, De Vocht T, Qi B, Van Brantegem P, Gijbels E, Vinken M, de Witte P, Bouillon T, Annaert P. Current insights in the complexities underlying drug-induced cholestasis. Crit Rev Toxicol 2019; 49:520-548. [PMID: 31589080 DOI: 10.1080/10408444.2019.1635081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-induced cholestasis (DIC) poses a major challenge to the pharmaceutical industry and regulatory agencies. It causes both drug attrition and post-approval withdrawal of drugs. DIC represents itself as an impaired secretion and flow of bile, leading to the pathological hepatic and/or systemic accumulation of bile acids (BAs) and their conjugate bile salts. Due to the high number of mechanisms underlying DIC, predicting a compound's cholestatic potential during early stages of drug development remains elusive. A profound understanding of the different molecular mechanisms of DIC is, therefore, of utmost importance. Although many knowledge gaps and caveats still exist, it is generally accepted that alterations of certain hepatobiliary membrane transporters and changes in hepatocellular morphology may cause DIC. Consequently, liver models, which represent most of these mechanisms, are valuable tools to predict human DIC. Some of these models, such as membrane-based in vitro models, are exceptionally well-suited to investigate specific mechanisms (i.e. transporter inhibition) of DIC, while others, such as liver slices, encompass all relevant biological processes and, therefore, offer a better representation of the in vivo situation. In the current review, we highlight the principal molecular mechanisms associated with DIC and offer an overview and critical appraisal of the different liver models that are currently being used to predict the cholestatic potential of drugs.
Collapse
Affiliation(s)
- Neel Deferm
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Tom De Vocht
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Bing Qi
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Pieter Van Brantegem
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Eva Gijbels
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Thomas Bouillon
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Kenna JG, Taskar KS, Battista C, Bourdet DL, Brouwer KLR, Brouwer KR, Dai D, Funk C, Hafey MJ, Lai Y, Maher J, Pak YA, Pedersen JM, Polli JW, Rodrigues AD, Watkins PB, Yang K, Yucha RW. Can Bile Salt Export Pump Inhibition Testing in Drug Discovery and Development Reduce Liver Injury Risk? An International Transporter Consortium Perspective. Clin Pharmacol Ther 2019; 104:916-932. [PMID: 30137645 PMCID: PMC6220754 DOI: 10.1002/cpt.1222] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022]
Abstract
Bile salt export pump (BSEP) inhibition has emerged as an important mechanism that may contribute to the initiation of human drug‐induced liver injury (DILI). Proactive evaluation and understanding of BSEP inhibition is recommended in drug discovery and development to aid internal decision making on DILI risk. BSEP inhibition can be quantified using in vitro assays. When interpreting assay data, it is important to consider in vivo drug exposure. Currently, this can be undertaken most effectively by consideration of total plasma steady state drug concentrations (Css,plasma). However, because total drug concentrations are not predictive of pharmacological effect, the relationship between total exposure and BSEP inhibition is not causal. Various follow‐up studies can aid interpretation of in vitro BSEP inhibition data and may be undertaken on a case‐by‐case basis. BSEP inhibition is one of several mechanisms by which drugs may cause DILI, therefore, it should be considered alongside other mechanisms when evaluating possible DILI risk.
Collapse
Affiliation(s)
| | - Kunal S Taskar
- Mechanistic Safety and Disposition, IVIVT, GlaxoSmithKline, Ware, Hertfordshire, UK
| | - Christina Battista
- DILIsym Services Inc., a Simulations Plus Company, Research Triangle Park, North Carolina, USA
| | - David L Bourdet
- Drug Metabolism and Pharmacokinetics, Theravance Biopharma, South San Francisco, California, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - David Dai
- Clinical Pharmacology, Research and Development Sciences, Agios Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Christoph Funk
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Michael J Hafey
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc, Kenilworth, New Jersey, USA
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, California, USA
| | - Jonathan Maher
- Safety Assessment, Genentech, South San Francisco, California, USA
| | - Y Anne Pak
- Lilly Research Laboratory, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jenny M Pedersen
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Novum, Huddinge, Sweden
| | - Joseph W Polli
- Mechanistic Safety and Drug Disposition, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | | | - Paul B Watkins
- Institute for Drug Safety Sciences, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kyunghee Yang
- DILIsym Services Inc., a Simulations Plus Company, Research Triangle Park, North Carolina, USA
| | - Robert W Yucha
- Takeda Pharmaceuticals, Global Drug Metabolism and Pharmacokinetics, Cambridge, Massachusetts, USA
| | | |
Collapse
|
27
|
Aleo MD, Ukairo O, Moore A, Irrechukwu O, Potter DM, Schneider RP. Liver safety evaluation of endothelin receptor antagonists using HepatoPac
®
: A single model impact assessment on hepatocellular health, function and bile acid disposition. J Appl Toxicol 2019; 39:1192-1207. [DOI: 10.1002/jat.3805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Michael D. Aleo
- Drug Safety Research and Development, Worldwide Research & DevelopmentPfizer Inc. Groton Connecticut
| | | | - Amanda Moore
- BioIVT, formerly Hepregen Corporation Medford Massachusetts
| | | | - David M. Potter
- Drug Safety Research and Development, Worldwide Research & DevelopmentPfizer Inc. Groton Connecticut
| | - Richard P. Schneider
- Pharmacokinetics, Dynamics and Metabolism, Worldwide Research & DevelopmentPfizer Inc. Groton Connecticut
| |
Collapse
|
28
|
Kirouac DC, Cicali B, Schmidt S. Reproducibility of Quantitative Systems Pharmacology Models: Current Challenges and Future Opportunities. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2019; 8:205-210. [PMID: 30697975 PMCID: PMC6482280 DOI: 10.1002/psp4.12390] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/08/2019] [Indexed: 12/27/2022]
Abstract
The provision of model code is required for publication in CPT: Pharmacometrics & Systems Pharmacology, enabling quantitative systems pharmacology (QSP) model availability. A searchable repository of published QSP models would enhance model accessibility. We assess the feasibility of establishing such a resource based on 18 QSP models published in this journal. However, because of the diversity of software platforms (nine), file formats, and functionality, such a resource is premature. We evaluated 12 of the models (those coded in R, PK-Sim/MoBi, and MATLAB) for functionality. Of the 12, only 4 were executable in that figures from the associated manuscript could be generated via a "run" script. Many researchers are aware of the challenges involved in repurposing published models. We offer some ideas to enable model sharing going forward, including annotation guidelines, standardized formats, and the inclusion of "run" scripts. If practitioners can agree to some minimum standards for the provision of model code, model reuse and extension would be accelerated.
Collapse
Affiliation(s)
- Daniel C Kirouac
- Applied BioMath LLC, Oakland, California, USA.,The American Society of Clinical Pharmacology and Therapeutics Quantitative Pharmacology Network, Systems Pharmacology Community, USA
| | - Brian Cicali
- Center for Pharmacometrics and Systems Pharmacology, University of Florida, Orlando, Florida, USA.,The American Society of Clinical Pharmacology and Therapeutics Quantitative Pharmacology Network, Systems Pharmacology Community, USA
| | - Stephan Schmidt
- Center for Pharmacometrics and Systems Pharmacology, University of Florida, Orlando, Florida, USA.,The American Society of Clinical Pharmacology and Therapeutics Quantitative Pharmacology Network, Systems Pharmacology Community, USA
| |
Collapse
|
29
|
Analyzing the Mechanisms Behind Macrolide Antibiotic-Induced Liver Injury Using Quantitative Systems Toxicology Modeling. Pharm Res 2019; 36:48. [PMID: 30734107 PMCID: PMC6373306 DOI: 10.1007/s11095-019-2582-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/27/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Macrolide antibiotics are commonly prescribed treatments for drug-resistant bacterial infections; however, many macrolides have been shown to cause liver enzyme elevations and one macrolide, telithromycin, has been pulled from the market by its provider due to liver toxicity. This work seeks to assess the mechanisms responsible for the toxicity of macrolide antibiotics. METHODS Five macrolides were assessed in in vitro systems designed to test for bile acid transporter inhibition, mitochondrial dysfunction, and oxidative stress. The macrolides were then represented in DILIsym, a quantitative systems pharmacology (QST) model of drug-induced liver injury, placing the in vitro results in context with each compound's predicted liver exposure and known biochemistry. RESULTS DILIsym results suggest that solithromycin and clarithromycin toxicity is primarily due to inhibition of the mitochondrial electron transport chain (ETC) while erythromycin toxicity is primarily due to bile acid transporter inhibition. Telithromycin and azithromycin toxicity was not predicted by DILIsym and may be caused by mechanisms not currently incorporated into DILIsym or by unknown metabolite effects. CONCLUSIONS The mechanisms responsible for toxicity can be significantly different within a class of drugs, despite the structural similarity among the drugs. QST modeling can provide valuable insight into the nature of these mechanistic differences.
Collapse
|
30
|
|
31
|
Chung J, Longo DM, Watkins PB. A Rapid Method to Estimate Hepatocyte Loss Due to Drug‐Induced Liver Injury. Clin Pharmacol Ther 2018; 105:746-753. [DOI: 10.1002/cpt.1254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/15/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Jae‐Yong Chung
- Department of Clinical Pharmacology and Therapeutics Seoul National University College of Medicine and Bundang Hospital Seongnam Korea
| | - Diane M. Longo
- DILIsym Services, Inc. Research Triangle Park North Carolina USA
| | - Paul B. Watkins
- Institute for Drug Safety Sciences Eshelman School of Pharmacy University of North Carolina Chapel Hill North Carolina USA
| |
Collapse
|
32
|
Barnhill MS, Real M, Lewis JH. Latest advances in diagnosing and predicting DILI: what was new in 2017? Expert Rev Gastroenterol Hepatol 2018; 12:1033-1043. [PMID: 30111182 DOI: 10.1080/17474124.2018.1512854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drug-induced liver injury (DILI) remains an increasingly recognized cause of hepatotoxicity and liver failure worldwide. In 2017, we continued to learn about predicting, diagnosing, and prognosticating drug hepatotoxicity. Areas covered: In this review, we selected from over 1200 articles from 2017 to synopsize updates in DILI. There were new HLA haplotypes associated with medications including HLA-C0401 and HLA-B*14. There has been continued work with quantitative systems pharmacology, particularly with the DILIsym® initiative, which employs mathematical representations of DILI mechanisms to predict hepatotoxicity in simulated populations. Additionally, knowledge regarding microRNAs (miRNAs) continues to expand. Some new miRNAs this past year include miRNA-223 and miRNA-605. Aside from miRNAs, other biomarkers for diagnosis, prognosis, and even prediction of DILI were explored. Studies on K18, OPN, and MCSFR have correlated DILI and liver-associated death within 6 months. Conversely, a new prognostic panel using apolipoportein-A1 and haptoglobin has been proposed to predict recovery. Further study of CDH5 has also provided researchers a possible new biomarker for prediction and susceptibility to DILI. Expert commentary: Although research on DILI remains quite promising, there is yet to be a reliable, simple method to predict, diagnose, and risk assess this form of hepatotoxicity.
Collapse
Affiliation(s)
- Michele S Barnhill
- a Department of Internal Medicine , Medstar Georgetown University Hospital , Washington , DC , USA
| | - Mark Real
- a Department of Internal Medicine , Medstar Georgetown University Hospital , Washington , DC , USA
| | - James H Lewis
- b Department of Gastroenterology , Medstar Georgetown University Hospital , Washington , DC , USA
| |
Collapse
|
33
|
Shim JV, Chun B, van Hasselt JGC, Birtwistle MR, Saucerman JJ, Sobie EA. Mechanistic Systems Modeling to Improve Understanding and Prediction of Cardiotoxicity Caused by Targeted Cancer Therapeutics. Front Physiol 2017; 8:651. [PMID: 28951721 PMCID: PMC5599787 DOI: 10.3389/fphys.2017.00651] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/16/2017] [Indexed: 12/13/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are highly potent cancer therapeutics that have been linked with serious cardiotoxicity, including left ventricular dysfunction, heart failure, and QT prolongation. TKI-induced cardiotoxicity is thought to result from interference with tyrosine kinase activity in cardiomyocytes, where these signaling pathways help to control critical processes such as survival signaling, energy homeostasis, and excitation–contraction coupling. However, mechanistic understanding is limited at present due to the complexities of tyrosine kinase signaling, and the wide range of targets inhibited by TKIs. Here, we review the use of TKIs in cancer and the cardiotoxicities that have been reported, discuss potential mechanisms underlying cardiotoxicity, and describe recent progress in achieving a more systematic understanding of cardiotoxicity via the use of mechanistic models. In particular, we argue that future advances are likely to be enabled by studies that combine large-scale experimental measurements with Quantitative Systems Pharmacology (QSP) models describing biological mechanisms and dynamics. As such approaches have proven extremely valuable for understanding and predicting other drug toxicities, it is likely that QSP modeling can be successfully applied to cardiotoxicity induced by TKIs. We conclude by discussing a potential strategy for integrating genome-wide expression measurements with models, illustrate initial advances in applying this approach to cardiotoxicity, and describe challenges that must be overcome to truly develop a mechanistic and systematic understanding of cardiotoxicity caused by TKIs.
Collapse
Affiliation(s)
- Jaehee V Shim
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew York, NY, United States
| | - Bryan Chun
- Department of Biomedical Engineering, University of VirginiaCharlottesville, VA, United States
| | - Johan G C van Hasselt
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew York, NY, United States
| | - Marc R Birtwistle
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew York, NY, United States
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of VirginiaCharlottesville, VA, United States
| | - Eric A Sobie
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew York, NY, United States
| |
Collapse
|
34
|
Shoda LK, Battista C, Siler SQ, Pisetsky DS, Watkins PB, Howell BA. Mechanistic Modelling of Drug-Induced Liver Injury: Investigating the Role of Innate Immune Responses. GENE REGULATION AND SYSTEMS BIOLOGY 2017; 11:1177625017696074. [PMID: 28615926 PMCID: PMC5459514 DOI: 10.1177/1177625017696074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/04/2017] [Indexed: 12/19/2022]
Abstract
Drug-induced liver injury (DILI) remains an adverse event of significant concern for drug development and marketed drugs, and the field would benefit from better tools to identify liver liabilities early in development and/or to mitigate potential DILI risk in otherwise promising drugs. DILIsym software takes a quantitative systems toxicology approach to represent DILI in pre-clinical species and in humans for the mechanistic investigation of liver toxicity. In addition to multiple intrinsic mechanisms of hepatocyte toxicity (ie, oxidative stress, bile acid accumulation, mitochondrial dysfunction), DILIsym includes the interaction between hepatocytes and cells of the innate immune response in the amplification of liver injury and in liver regeneration. The representation of innate immune responses, detailed here, consolidates much of the available data on the innate immune response in DILI within a single framework and affords the opportunity to systematically investigate the contribution of the innate response to DILI.
Collapse
Affiliation(s)
- Lisl Km Shoda
- DILIsym Services, Inc., Research Triangle Park, NC, USA
| | - Christina Battista
- DILIsym Services, Inc., Research Triangle Park, NC, USA.,UNC Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, NC, USA
| | - Scott Q Siler
- DILIsym Services, Inc., Research Triangle Park, NC, USA
| | - David S Pisetsky
- Medical Research Service, Durham VA Medical Center and Duke University Medical Center, Durham, NC, USA
| | - Paul B Watkins
- UNC Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, NC, USA
| | | |
Collapse
|
35
|
Longo DM, Generaux GT, Howell BA, Siler SQ, Antoine DJ, Button D, Caggiano A, Eisen A, Iaci J, Stanulis R, Parry T, Mosedale M, Watkins PB. Refining Liver Safety Risk Assessment: Application of Mechanistic Modeling and Serum Biomarkers to Cimaglermin Alfa (GGF2) Clinical Trials. Clin Pharmacol Ther 2017; 102:961-969. [PMID: 28419467 PMCID: PMC5697568 DOI: 10.1002/cpt.711] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/14/2017] [Accepted: 04/09/2017] [Indexed: 02/06/2023]
Abstract
Cimaglermin alfa (GGF2) is a recombinant human protein growth factor in development for heart failure. Phase I trials were suspended when two cimaglermin alfa‐treated subjects experienced concomitant elevations in serum aminotransferases and total bilirubin, meeting current US Food and Drug Administration criteria for a serious liver safety signal (i.e., “Hy's Law”). We assayed mechanistic biomarkers in archived clinical trial serum samples which confirmed the hepatic origin of the aminotransferase elevations in these two subjects and identified apoptosis as the major mode of hepatocyte death. Using a mathematical model of drug‐induced liver injury (DILIsym) and a simulated population, we estimated that the maximum hepatocyte loss in these two subjects was <13%, which would not result in liver dysfunction sufficient to significantly increase serum bilirubin levels. We conclude that the two subjects should not be considered Hy's Law cases and that mechanistic biomarkers and modeling can aid in refining liver safety risk assessment in clinical trials.
Collapse
Affiliation(s)
- D M Longo
- DILIsym Services Inc., Research Triangle Park, North Carolina, USA
| | - G T Generaux
- DILIsym Services Inc., Research Triangle Park, North Carolina, USA
| | - B A Howell
- DILIsym Services Inc., Research Triangle Park, North Carolina, USA
| | - S Q Siler
- DILIsym Services Inc., Research Triangle Park, North Carolina, USA
| | - D J Antoine
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, Liverpool University, Liverpool, UK
| | - D Button
- Acorda Therapeutics Inc., New York, New York, USA
| | - A Caggiano
- Acorda Therapeutics Inc., New York, New York, USA
| | - A Eisen
- Acorda Therapeutics Inc., New York, New York, USA
| | - J Iaci
- Acorda Therapeutics Inc., New York, New York, USA
| | - R Stanulis
- Acorda Therapeutics Inc., New York, New York, USA
| | - T Parry
- Acorda Therapeutics Inc., New York, New York, USA
| | - M Mosedale
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - P B Watkins
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| |
Collapse
|
36
|
Okudaira N. Evaluation of New Chemical Entities as Substrates of Liver Transporters in the Pharmaceutical Industry: Response to Regulatory Requirements and Future Steps. J Pharm Sci 2017; 106:2251-2256. [PMID: 28533120 DOI: 10.1016/j.xphs.2017.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
Abstract
This article discusses the evaluation of drug candidates as hepatic transporter substrates. Recently, research on the applications of hepatic transporters in the pharmaceutical industry has improved to meet the requirements of the regulatory guidelines for the evaluation of drug interactions. To identify the risk of transporter-mediated drug-drug interactions at an early stage of drug development, we used a strategy of reviewing the in vivo animal pharmacokinetics and tissue distribution data obtained in the discovery stage together with the in vitro data obtained for regulatory submission. In the context of nonclinical evaluation of new chemical entities as medicines, we believe that transporter studies are emerging as a key strategy to predict their pharmacological and toxicological effects. In combination with the recent progress in systems approaches, the estimation of effective concentrations in the target tissues, by using mathematical models to describe the transporter-mediated distribution and elimination, has enabled us to identify promising compounds for clinical development at the discovery stage.
Collapse
Affiliation(s)
- Noriko Okudaira
- Drug Metabolism & Pharmacokinetic Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan.
| |
Collapse
|
37
|
Yang K, Battista C, Woodhead JL, Stahl SH, Mettetal JT, Watkins PB, Siler SQ, Howell BA. Systems pharmacology modeling of drug-induced hyperbilirubinemia: Differentiating hepatotoxicity and inhibition of enzymes/transporters. Clin Pharmacol Ther 2017; 101:501-509. [PMID: 28074467 PMCID: PMC5367379 DOI: 10.1002/cpt.619] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/31/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022]
Abstract
Elevations in serum bilirubin during drug treatment may indicate global liver dysfunction and a high risk of liver failure. However, drugs also can increase serum bilirubin in the absence of hepatic injury by inhibiting specific enzymes/transporters. We constructed a mechanistic model of bilirubin disposition based on known functional polymorphisms in bilirubin metabolism/transport. Using physiologically based pharmacokinetic (PBPK) model-predicted drug exposure and enzyme/transporter inhibition constants determined in vitro, our model correctly predicted indinavir-mediated hyperbilirubinemia in humans and rats. Nelfinavir was predicted not to cause hyperbilirubinemia, consistent with clinical observations. We next examined a new drug candidate that caused both elevations in serum bilirubin and biochemical evidence of liver injury in rats. Simulations suggest that bilirubin elevation primarily resulted from inhibition of transporters rather than global liver dysfunction. We conclude that mechanistic modeling of bilirubin can help elucidate underlying mechanisms of drug-induced hyperbilirubinemia, and thereby distinguish benign from clinically important elevations in serum bilirubin.
Collapse
Affiliation(s)
- K Yang
- DILIsym Services Inc, Research Triangle Park, North Carolina, USA
| | - C Battista
- DILIsym Services Inc, Research Triangle Park, North Carolina, USA.,University of North Carolina Institute for Drug Safety Sciences, The Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J L Woodhead
- DILIsym Services Inc, Research Triangle Park, North Carolina, USA
| | - S H Stahl
- ADME Transporters, Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca, Cambridge, United Kingdom
| | - J T Mettetal
- Drug Safety and Metabolism, AstraZeneca R&D, Waltham, Massachusetts, USA
| | - P B Watkins
- University of North Carolina Institute for Drug Safety Sciences, The Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - S Q Siler
- DILIsym Services Inc, Research Triangle Park, North Carolina, USA
| | - B A Howell
- DILIsym Services Inc, Research Triangle Park, North Carolina, USA
| |
Collapse
|
38
|
Kenna JG. Human biology-based drug safety evaluation: scientific rationale, current status and future challenges. Expert Opin Drug Metab Toxicol 2017; 13:567-574. [PMID: 28150517 DOI: 10.1080/17425255.2017.1290082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Animal toxicity studies used to assess the safety of new candidate pharmaceuticals prior to their progression into human clinical trials are unable to assess the risk of non-pharmacologically mediated idiosyncratic adverse drug reactions (ADRs), the most frequent of which are drug-induced liver injury and cardiotoxicity. Idiosyncratic ADRs occur only infrequently and in certain susceptible humans, but are caused by many hundreds of different drugs and may lead to serious illness. Areas covered: Idiosyncratic ADRs are initiated by drug-related chemical insults, which cause toxicity due to susceptibility factors that manifest only in certain patients. The chemical insults can be detected using in vitro assays. These enable useful discrimination between drugs that cause high versus low levels of idiosyncratic ADR concern. Especially promising assays, which have been described recently in peer-reviewed scientific literature, are highlighted. Expert opinion: Effective interpretation of in vitro toxicity data requires integration of endpoints from multiple assays, which each address different mechanisms, and must also take account of human systemic and tissue drug exposure in vivo. Widespread acceptance and use of such assays has been hampered by the lack of correlation between idiosyncratic human ADR risk and toxicities observed in vivo in animals.
Collapse
|
39
|
Sistare FD, Mattes WB, LeCluyse EL. The Promise of New Technologies to Reduce, Refine, or Replace Animal Use while Reducing Risks of Drug Induced Liver Injury in Pharmaceutical Development. ILAR J 2017; 57:186-211. [DOI: 10.1093/ilar/ilw025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/25/2016] [Accepted: 09/13/2016] [Indexed: 12/19/2022] Open
|
40
|
Sandwich-Cultured Hepatocytes as a Tool to Study Drug Disposition and Drug-Induced Liver Injury. J Pharm Sci 2016; 105:443-459. [PMID: 26869411 DOI: 10.1016/j.xphs.2015.11.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022]
Abstract
Sandwich-cultured hepatocytes (SCH) are metabolically competent and have proper localization of basolateral and canalicular transporters with functional bile networks. Therefore, this cellular model is a unique tool that can be used to estimate biliary excretion of compounds. SCH have been used widely to assess hepatobiliary disposition of endogenous and exogenous compounds and metabolites. Mechanistic modeling based on SCH data enables estimation of metabolic and transporter-mediated clearances, which can be used to construct physiologically based pharmacokinetic models for prediction of drug disposition and drug-drug interactions in humans. In addition to pharmacokinetic studies, SCH also have been used to study cytotoxicity and perturbation of biological processes by drugs and hepatically generated metabolites. Human SCH can provide mechanistic insights underlying clinical drug-induced liver injury (DILI). In addition, data generated in SCH can be integrated into systems pharmacology models to predict potential DILI in humans. In this review, applications of SCH in studying hepatobiliary drug disposition and bile acid-mediated DILI are discussed. An example is presented to show how data generated in the SCH model were used to establish a quantitative relationship between intracellular bile acids and cytotoxicity, and how this information was incorporated into a systems pharmacology model for DILI prediction.
Collapse
|
41
|
Woodhead JL, Brock WJ, Roth SE, Shoaf SE, Brouwer KLR, Church R, Grammatopoulos TN, Stiles L, Siler SQ, Howell BA, Mosedale M, Watkins PB, Shoda LKM. Application of a Mechanistic Model to Evaluate Putative Mechanisms of Tolvaptan Drug-Induced Liver Injury and Identify Patient Susceptibility Factors. Toxicol Sci 2016; 155:61-74. [PMID: 27655350 PMCID: PMC5216653 DOI: 10.1093/toxsci/kfw193] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tolvaptan is a selective vasopressin V2 receptor antagonist, approved in several countries for the treatment of hyponatremia and autosomal dominant polycystic kidney disease (ADPKD). No liver injury has been observed with tolvaptan treatment in healthy subjects and in non-ADPKD indications, but ADPKD clinical trials showed evidence of drug-induced liver injury (DILI). Although all DILI events resolved, additional monitoring in tolvaptan-treated ADPKD patients is required. In vitro assays identified alterations in bile acid disposition and inhibition of mitochondrial respiration as potential mechanisms underlying tolvaptan hepatotoxicity. This report details the application of DILIsym software to determine whether these mechanisms could account for the liver safety profile of tolvaptan observed in ADPKD clinical trials. DILIsym simulations included physiologically based pharmacokinetic estimates of hepatic exposure for tolvaptan and2 metabolites, and their effects on hepatocyte bile acid transporters and mitochondrial respiration. The frequency of predicted alanine aminotransferase (ALT) elevations, following simulated 90/30 mg split daily dosing, was 7.9% compared with clinical observations of 4.4% in ADPKD trials. Toxicity was multifactorial as inhibition of bile acid transporters and mitochondrial respiration contributed to the simulated DILI. Furthermore, simulation analysis identified both pre-treatment risk factors and on-treatment biomarkers predictive of simulated DILI. The simulations demonstrated that in vivo hepatic exposure to tolvaptan and the DM-4103 metabolite, combined with these 2 mechanisms of toxicity, were sufficient to account for the initiation of tolvaptan-mediated DILI. Identification of putative risk-factors and potential novel biomarkers provided insight for the development of mechanism-based tolvaptan risk-mitigation strategies.
Collapse
Affiliation(s)
| | - William J Brock
- Otsuka Pharmaceutical Development & Commercialization, Brock Scientific Consulting, Montgomery Village, Rockville, Maryland
| | - Sharin E Roth
- Otsuka Pharmaceutical Development & Commercialization, Rockville, Maryland
| | - Susan E Shoaf
- Otsuka Pharmaceutical Development & Commercialization, Rockville, Maryland
| | - Kim L R Brouwer
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rachel Church
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,UNC Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina
| | | | | | - Scott Q Siler
- DILIsym Services, Inc, Research Triangle Park, North Carolina
| | - Brett A Howell
- DILIsym Services, Inc, Research Triangle Park, North Carolina
| | - Merrie Mosedale
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,UNC Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina
| | - Paul B Watkins
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,UNC Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina
| | - Lisl K M Shoda
- DILIsym Services, Inc, Research Triangle Park, North Carolina;
| |
Collapse
|
42
|
Advances in Engineered Liver Models for Investigating Drug-Induced Liver Injury. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1829148. [PMID: 27725933 PMCID: PMC5048025 DOI: 10.1155/2016/1829148] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/19/2016] [Indexed: 12/17/2022]
Abstract
Drug-induced liver injury (DILI) is a major cause of drug attrition. Testing drugs on human liver models is essential to mitigate the risk of clinical DILI since animal studies do not always suffice due to species-specific differences in liver pathways. While primary human hepatocytes (PHHs) can be cultured on extracellular matrix proteins, a rapid decline in functions leads to low sensitivity (<50%) in DILI prediction. Semiconductor-driven engineering tools now allow precise control over the hepatocyte microenvironment to enhance and stabilize phenotypic functions. The latest platforms coculture PHHs with stromal cells to achieve hepatic stability and enable crosstalk between the various liver cell types towards capturing complex cellular mechanisms in DILI. The recent introduction of induced pluripotent stem cell-derived human hepatocyte-like cells can potentially allow a better understanding of interindividual differences in idiosyncratic DILI. Liver models are also being coupled to other tissue models via microfluidic perfusion to study the intertissue crosstalk upon drug exposure as in a live organism. Here, we review the major advances being made in the engineering of liver models and readouts as they pertain to DILI investigations. We anticipate that engineered human liver models will reduce drug attrition, animal usage, and cases of DILI in humans.
Collapse
|
43
|
Scotcher D, Jones C, Posada M, Rostami-Hodjegan A, Galetin A. Key to Opening Kidney for In Vitro-In Vivo Extrapolation Entrance in Health and Disease: Part I: In Vitro Systems and Physiological Data. AAPS JOURNAL 2016; 18:1067-1081. [PMID: 27365096 DOI: 10.1208/s12248-016-9942-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/02/2016] [Indexed: 02/07/2023]
Abstract
The programme for the 2015 AAPS Annual Meeting and Exhibition (Orlando, FL; 25-29 October 2015) included a sunrise session presenting an overview of the state-of-the-art tools for in vitro-in vivo extrapolation (IVIVE) and mechanistic prediction of renal drug disposition. These concepts are based on approaches developed for prediction of hepatic clearance, with consideration of scaling factors physiologically relevant to kidney and the unique and complex structural organisation of this organ. Physiologically relevant kidney models require a number of parameters for mechanistic description of processes, supported by quantitative information on renal physiology (system parameters) and in vitro/in silico drug-related data. This review expands upon the themes raised during the session and highlights the importance of high quality in vitro drug data generated in appropriate experimental setup and robust system-related information for successful IVIVE of renal drug disposition. The different in vitro systems available for studying renal drug metabolism and transport are summarised and recent developments involving state-of-the-art technologies highlighted. Current gaps and uncertainties associated with system parameters related to human kidney for the development of physiologically based pharmacokinetic (PBPK) model and quantitative prediction of renal drug disposition, excretion, and/or metabolism are identified.
Collapse
Affiliation(s)
- Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - Christopher Jones
- DMPK, Oncology iMed, AstraZeneca R&D Alderley Park, Macclesfield, Cheshire, UK
| | - Maria Posada
- Drug Disposition, Lilly Research Laboratories, Indianapolis, Indiana, 46203, USA
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.,Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
44
|
Trame MN, Biliouris K, Lesko LJ, Mettetal JT. Systems pharmacology to predict drug safety in drug development. Eur J Pharm Sci 2016; 94:93-95. [PMID: 27251780 DOI: 10.1016/j.ejps.2016.05.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/05/2016] [Accepted: 05/28/2016] [Indexed: 12/20/2022]
Abstract
Ensuring that drugs are safe and effective is a very high priority for drug development and the US Food and Drug Administration review process. This is especially true today because of faster approval times and smaller clinical trials, especially in oncology and rare diseases. In light of these trends, systems pharmacology is seen as an essential strategy to understand and predict adverse drug events during drug development by analyzing interactions between drugs and multiple targets rather than the traditional "one-drug-one-target" approach. This commentary offers an overview of the current trends and challenges of using systems pharmacology to reduce the risks of unintended adverse events.
Collapse
Affiliation(s)
- Mirjam N Trame
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, Lake Nona, Orlando, FL, USA.
| | - Konstantinos Biliouris
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, Lake Nona, Orlando, FL, USA
| | - Lawrence J Lesko
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, Lake Nona, Orlando, FL, USA
| | | |
Collapse
|
45
|
Friedrich CM. A model qualification method for mechanistic physiological QSP models to support model-informed drug development. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2016; 5:43-53. [PMID: 26933515 PMCID: PMC4761232 DOI: 10.1002/psp4.12056] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 12/17/2015] [Indexed: 12/23/2022]
Abstract
Mechanistic physiological modeling is a scientific method that combines available data with scientific knowledge and engineering approaches to facilitate better understanding of biological systems, improve decision‐making, reduce risk, and increase efficiency in drug discovery and development. It is a type of quantitative systems pharmacology (QSP) approach that places drug‐specific properties in the context of disease biology. This tutorial provides a broadly applicable model qualification method (MQM) to ensure that mechanistic physiological models are fit for their intended purposes.
Collapse
|
46
|
Longo DM, Yang Y, Watkins PB, Howell BA, Siler SQ. Elucidating Differences in the Hepatotoxic Potential of Tolcapone and Entacapone With DILIsym(®), a Mechanistic Model of Drug-Induced Liver Injury. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2016; 5:31-9. [PMID: 26844013 PMCID: PMC4728295 DOI: 10.1002/psp4.12053] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/02/2015] [Indexed: 12/18/2022]
Abstract
Tolcapone and entacapone are catechol‐O‐methyltransferase (COMT) inhibitors developed as adjunct therapies for treating Parkinson's disease. While both drugs have been shown to cause mitochondrial dysfunction and inhibition of the bile salt export protein (BSEP), liver injury has only been associated with the use of tolcapone. Here we used a multiscale, mechanistic model (DILIsym®) to simulate the response to tolcapone and entacapone. In a simulated population (SimPops™) receiving recommended doses of tolcapone (200 mg t.i.d.), increases in serum alanine transaminase (ALT) >3× the upper limit of normal (ULN) were observed in 2.2% of the population. In contrast, no simulated patients receiving recommended doses of entacapone (200 mg 8× day) experienced serum ALT >3× ULN. Further, DILIsym® analyses revealed patient‐specific risk factors that may contribute to tolcapone‐mediated hepatotoxicity. In summary, the simulations demonstrated that differences in mitochondrial uncoupling potency and hepatic exposure primarily account for the difference in hepatotoxic potential for tolcapone and entacapone.
Collapse
Affiliation(s)
- D M Longo
- Hamner-UNC Institute for Drug Safety Sciences, Hamner Institutes for Health Sciences, Research Triangle Park North Carolina USA; DILIsym® Services, Research Triangle Park North Carolina USA
| | - Y Yang
- Hamner-UNC Institute for Drug Safety Sciences, Hamner Institutes for Health Sciences, Research Triangle Park North Carolina USA
| | - P B Watkins
- Hamner-UNC Institute for Drug Safety Sciences, Hamner Institutes for Health Sciences, Research Triangle Park North Carolina USA; DILIsym® Services, Research Triangle Park North Carolina USA
| | - B A Howell
- Hamner-UNC Institute for Drug Safety Sciences, Hamner Institutes for Health Sciences, Research Triangle Park North Carolina USA; DILIsym® Services, Research Triangle Park North Carolina USA
| | - S Q Siler
- Hamner-UNC Institute for Drug Safety Sciences, Hamner Institutes for Health Sciences, Research Triangle Park North Carolina USA; DILIsym® Services, Research Triangle Park North Carolina USA
| |
Collapse
|
47
|
Yang Y, Nadanaciva S, Will Y, Woodhead JL, Howell BA, Watkins PB, Siler SQ. MITOsym®: A Mechanistic, Mathematical Model of Hepatocellular Respiration and Bioenergetics. Pharm Res 2015; 32:1975-92. [PMID: 25504454 PMCID: PMC4422870 DOI: 10.1007/s11095-014-1591-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE MITOsym, a new mathematical model of hepatocellular respiration and bioenergetics, has been developed in partnership with the DILIsym® model with the purpose of translating in vitro compound screening data into predictions of drug induced liver injury (DILI) risk for patients. The combined efforts of these two models should increase the efficiency of evaluating compounds in drug development in addition to enhancing patient care. METHODS MITOsym includes the basic, essential biochemical pathways associated with hepatocellular respiration and bioenergetics, including mitochondrial oxidative phosphorylation, electron transport chain activity, mitochondrial membrane potential, and glycolysis; also included are dynamic feedback signals based on perturbation of these pathways. The quantitative relationships included in MITOsym are based primarily on published data; additional new experiments were also performed in HepG2 cells to determine the effects on oxygen consumption rate as media glucose concentrations or oligomycin concentrations were varied. The effects of varying concentrations of FCCP on the mitochondrial proton gradient were also measured in HepG2 cells. RESULTS MITOsym simulates and recapitulates the reported dynamic changes to hepatocellular oxygen consumption rates, extracellular acidification rates, the mitochondrial proton gradient, and ATP concentrations in the presence of classic mitochondrial toxins such as rotenone, FCCP, and oligomycin. CONCLUSIONS MITOsym can be used to simulate hepatocellular respiration and bioenergetics and provide mechanistic hypotheses to facilitate the translation of in vitro data collection to predictions of in vivo human hepatotoxicity risk for novel compounds.
Collapse
Affiliation(s)
- Y. Yang
- Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina USA
| | - S. Nadanaciva
- Compound Safety Prediction, Worldwide Medicinal Chemistry, Pfizer Inc, Groton, Connecticut 06340 USA
| | - Y. Will
- Compound Safety Prediction, Worldwide Medicinal Chemistry, Pfizer Inc, Groton, Connecticut 06340 USA
| | - J. L. Woodhead
- Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina USA
| | - B. A. Howell
- Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina USA
| | - P. B. Watkins
- Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina USA
| | - S. Q. Siler
- Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina USA
| |
Collapse
|
48
|
Lin C, Ballinger KR, Khetani SR. The application of engineered liver tissues for novel drug discovery. Expert Opin Drug Discov 2015; 10:519-40. [PMID: 25840592 DOI: 10.1517/17460441.2015.1032241] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Drug-induced liver injury remains a major cause of drug attrition. Furthermore, novel drugs are being developed for treating liver diseases. However, differences between animals and humans in liver pathways necessitate the use of human-relevant liver models to complement live animal testing during preclinical drug development. Microfabrication tools and synthetic biomaterials now allow for the creation of tissue subunits that display more physiologically relevant and long-term liver functions than possible with declining monolayers. AREAS COVERED The authors discuss acellular enzyme platforms, two-dimensional micropatterned co-cultures, three-dimensional spheroidal cultures, microfluidic perfusion, liver slices and humanized rodent models. They also present the use of cell lines, primary liver cells and induced pluripotent stem cell-derived human hepatocyte-like cells in the creation of cell-based models and discuss in silico approaches that allow integration and modeling of the datasets from these models. Finally, the authors describe the application of liver models for the discovery of novel therapeutics for liver diseases. EXPERT OPINION Engineered liver models with varying levels of in vivo-like complexities provide investigators with the opportunity to develop assays with sufficient complexity and required throughput. Control over cell-cell interactions and co-culture with stromal cells in both two dimension and three dimension are critical for enabling stable liver models. The validation of liver models with diverse sets of compounds for different applications, coupled with an analysis of cost:benefit ratio, is important for model adoption for routine screening. Ultimately, engineered liver models could significantly reduce drug development costs and enable the development of more efficacious and safer therapeutics for liver diseases.
Collapse
Affiliation(s)
- Christine Lin
- Colorado State University, School of Biomedical Engineering , 200 W. Lake St, 1301 Campus Delivery, Fort Collins, CO 80523-1374 , USA
| | | | | |
Collapse
|
49
|
Abstract
Advances in systems biology have allowed the development of a highly characterized systems pharmacology model to study mechanisms of drug-induced hepatotoxicity. In this issue of CPT, Yang et al. describe a model, DILIsym, used to characterize mechanisms of hepatotoxicity of troglitazone. Their modeling approach has provided new insight into troglitazone-induced hepatotoxicity in humans but is not associated with hepatotoxicity in rats, consistent with preclinical data for this drug.
Collapse
|
50
|
Khetani SR, Berger DR, Ballinger KR, Davidson MD, Lin C, Ware BR. Microengineered liver tissues for drug testing. ACTA ACUST UNITED AC 2015; 20:216-50. [PMID: 25617027 DOI: 10.1177/2211068214566939] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Indexed: 01/09/2023]
Abstract
Drug-induced liver injury (DILI) is a leading cause of drug attrition. Significant and well-documented differences between animals and humans in liver pathways now necessitate the use of human-relevant in vitro liver models for testing new chemical entities during preclinical drug development. Consequently, several human liver models with various levels of in vivo-like complexity have been developed for assessment of drug metabolism, toxicity, and efficacy on liver diseases. Recent trends leverage engineering tools, such as those adapted from the semiconductor industry, to enable precise control over the microenvironment of liver cells and to allow for miniaturization into formats amenable for higher throughput drug screening. Integration of liver models into organs-on-a-chip devices, permitting crosstalk between tissue types, is actively being pursued to obtain a systems-level understanding of drug effects. Here, we review the major trends, challenges, and opportunities associated with development and implementation of engineered liver models created from primary cells, cell lines, and stem cell-derived hepatocyte-like cells. We also present key applications where such models are currently making an impact and highlight areas for improvement. In the future, engineered liver models will prove useful for selecting drugs that are efficacious, safer, and, in some cases, personalized for specific patient populations.
Collapse
Affiliation(s)
- Salman R Khetani
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Dustin R Berger
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Kimberly R Ballinger
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Matthew D Davidson
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Christine Lin
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Brenton R Ware
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|