1
|
Tachachartvanich P, Sangsuwan R, Navasumrit P, Ruchirawat M. Assessment of immunomodulatory effects of five commonly used parabens on human THP-1 derived macrophages: Implications for ecological and human health impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173823. [PMID: 38851341 DOI: 10.1016/j.scitotenv.2024.173823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Parabens are widely used as broad-spectrum anti-microbials and preservatives in food, cosmetics, pharmaceuticals, and personal care products. Studies suggest that the utilization of parabens has substantially increased over the past years, particularly during the global pandemic of coronavirus disease 2019 (COVID-19). Although parabens are generally recognized as safe by the U.S. FDA, some concerns have been raised regarding the potential health effects of parabens associated with immunotoxicity. Herein, we comprehensively investigated several key characteristics of immunotoxicants of five commonly used parabens (methyl-, ethyl-, propyl-, butyl-, and benzyl parabens) in human THP-1 derived macrophages, which are effector cells serving as a first line of host defense against pathogens and tumor immunosurveillance. The results indicate parabens, at concentrations found in humans and biota, significantly dampened macrophage chemotaxis and secretion of major pro-inflammatory cytokines (TNF-α and IL-6) and anti-inflammatory cytokine (IL-10), corroborating the mRNA expression profile. Furthermore, some parabens were found to markedly alter macrophage adhesion and cell surface expression of costimulatory molecules, CD80+ and CD86+, and significantly increase macrophage phagocytosis. Collectively, these findings heighten awareness of potential immunotoxicity posed by paraben exposure at biologically relevant concentrations, providing implications for human health and ecological risks associated with immune dysfunctions.
Collapse
Affiliation(s)
- Phum Tachachartvanich
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Rapeepat Sangsuwan
- Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand.
| |
Collapse
|
2
|
Yesildemir O, Celik MN. The Effect of Various Environmental Pollutants on the Reproductive Health in Children: A Brief Review of the Literature. Curr Nutr Rep 2024; 13:382-392. [PMID: 38935249 PMCID: PMC11327209 DOI: 10.1007/s13668-024-00557-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE OF REVIEW Environmental pollutants in air, water, soil, and food are a significant concern due to their potential adverse effects on fetuses, newborns, babies, and children. These chemicals, which pass to fetuses and babies through trans-placental transfer, breast milk, infant formula, dermal transfer, and non-nutritive ingestion, can cause health problems during childhood. This review aims to discuss how exposure to various environmental pollutants in early life stages can disrupt reproductive health in children. RECENT FINDINGS Environmental pollutants can affect Leydig cell proliferation and differentiation, decreasing testosterone production throughout life. This may result in cryptorchidism, hypospadias, impaired semen parameters, and reduced fertility. Although many studies on female reproductive health cannot be interpreted to support causal relationships, exposure to pollutants during critical windows may subsequently induce female reproductive diseases, including early or delayed puberty, polycystic ovary syndrome, endometriosis, and cancers. There is growing evidence that fetal and early-life exposure to environmental pollutants could affect reproductive health in childhood. Although diet is thought to be the primary route by which humans are exposed to various pollutants, there are no adopted nutritional interventions to reduce the harmful effects of pollutants on children's health. Therefore, understanding the impact of environmental contaminants on various health outcomes may inform the design of future human nutritional studies.
Collapse
Affiliation(s)
- Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, 16059, Bursa, Türkiye.
| | - Mensure Nur Celik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayis University, 55200, Samsun, Türkiye
| |
Collapse
|
3
|
Calcaterra V, Cena H, Loperfido F, Rossi V, Grazi R, Quatrale A, De Giuseppe R, Manuelli M, Zuccotti G. Evaluating Phthalates and Bisphenol in Foods: Risks for Precocious Puberty and Early-Onset Obesity. Nutrients 2024; 16:2732. [PMID: 39203868 PMCID: PMC11357315 DOI: 10.3390/nu16162732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Recent scientific results indicate that diet is the primary source of exposure to endocrine-disrupting chemicals (EDCs) due to their use in food processing, pesticides, fertilizers, and migration from packaging to food, particularly in plastic or canned foods. Although EDCs are not listed on nutrition labels, their migration from packaging to food could inadvertently lead to food contamination, affecting individuals by inhalation, ingestion, and direct contact. The aim of our narrative review is to investigate the role of phthalates and bisphenol A (BPA) in foods, assessing their risks for precocious puberty (PP) and early-onset obesity, which are two clinical entities that are often associated and that share common pathogenetic mechanisms. The diverse outcomes observed across different studies highlight the complexity of phthalates and BPA effects on the human body, both in terms of early puberty, particularly in girls, and obesity with its metabolic disruptions. Moreover, obesity, which is independently linked to early puberty, might confound the relationship between exposure to these EDCs and pubertal timing. Given the potential public health implications, it is crucial to adopt a precautionary approach, minimizing exposure to these EDCs, especially in vulnerable populations such as children.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
- Clinical Nutrition and Dietetics Unit, ICS Maugeri IRCCS, 27100 Pavia, Italy;
| | - Federica Loperfido
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
| | - Virginia Rossi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Roberta Grazi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Antonia Quatrale
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
| | - Matteo Manuelli
- Clinical Nutrition and Dietetics Unit, ICS Maugeri IRCCS, 27100 Pavia, Italy;
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
- Department of Biomedical and Clinical Science, University of Milano, 20157 Milano, Italy;
| |
Collapse
|
4
|
Park SY, Kong SH, Kim KJ, Ahn SH, Hong N, Ha J, Lee S, Choi HS, Baek KH, Kim JE, Kim SW. Effects of Endocrine-Disrupting Chemicals on Bone Health. Endocrinol Metab (Seoul) 2024; 39:539-551. [PMID: 39015028 PMCID: PMC11375301 DOI: 10.3803/enm.2024.1963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 07/18/2024] Open
Abstract
This comprehensive review critically examines the detrimental impacts of endocrine-disrupting chemicals (EDCs) on bone health, with a specific focus on substances such as bisphenol A (BPA), per- and polyfluoroalkyl substances (PFASs), phthalates, and dioxins. These EDCs, by interfering with the endocrine system's normal functioning, pose a significant risk to bone metabolism, potentially leading to a heightened susceptibility to bone-related disorders and diseases. Notably, BPA has been shown to inhibit the differentiation of osteoblasts and promote the apoptosis of osteoblasts, which results in altered bone turnover status. PFASs, known for their environmental persistence and ability to bioaccumulate in the human body, have been linked to an increased osteoporosis risk. Similarly, phthalates, which are widely used in the production of plastics, have been associated with adverse bone health outcomes, showing an inverse relationship between phthalate exposure and bone mineral density. Dioxins present a more complex picture, with research findings suggesting both potential benefits and adverse effects on bone structure and density, depending on factors such as the timing and level of exposure. This review underscores the urgent need for further research to better understand the specific pathways through which EDCs affect bone health and to develop targeted strategies for mitigating their potentially harmful impacts.
Collapse
Affiliation(s)
- So Young Park
- Department of Endocrinology and Metabolism, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sung Hye Kong
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung Jin Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Seong Hee Ahn
- Department of Endocrinology and Metabolism, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| | - Namki Hong
- Department of Internal Medicine, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jeonghoon Ha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sihoon Lee
- Department of Internal Medicine, Gachon University College of Medicine, Incheon, Korea
| | - Han Seok Choi
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Ki-Hyun Baek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sang Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Boramae Medical Center, Seoul, Korea
| |
Collapse
|
5
|
Ri H, Zhu Y, Jo H, Miao X, Ri U, Yin J, Zhou L, Ye L. Di-(2-ethylhexyl) phthalate and its metabolites research trend: a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50142-50165. [PMID: 39107640 DOI: 10.1007/s11356-024-34533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/24/2024] [Indexed: 09/01/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is one of the most widely used plasticizers. Many studies focus on the impact of continuous exposure to DEHP on humans and ecosystems. In this study, the bibliometric analysis of DEHP and its metabolites research was conducted to assess the research performances, hotspot issues, and trends in this field. The data was retrieved from a Web of Science Core Collection online database. VOSviewer 1.6.18 was used to analyze. A total of 4672 publications were collected from 1975 to 2022 October 21. The number of publications and citations increased annually in the last decades. China had the largest number of publications, and the USA had the highest co-authorship score. The most productive and most frequently cited institutions were the Chinese Academy of Sciences and the Centers for Disease Control & Prevention (USA), respectively. The journal with the most publications was the Science of Total Environment, and the most cited one was the Environmental Health Perspectives. The most productive and cited author was Calafat A. M. (USA). The most cited reference was "Phthalates: toxicology and exposure." Four hotspot issues were as follows: influences of DEHP on the organisms and its possible mechanisms, assessment of DEHP exposure to the human and its metabolism, dynamics of DEHP in external environments, and indoor exposure of DEHP and health outcomes. The research trends were DNOP, preterm birth, gut microbiota, microplastics, lycopene, hypertension, and thyroid hormones. This study can provide researchers with new ideas and decision-makers with reference basis to formulate relevant policies.
Collapse
Affiliation(s)
- Hyonju Ri
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, 130000, Jilin, China
- Pyongyang Medical University, Pyongyang, 999093, Democratic People's Republic of Korea
| | - Ying Zhu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, 130000, Jilin, China
| | - Hyonsu Jo
- Pyongyang Medical University, Pyongyang, 999093, Democratic People's Republic of Korea
- Department of Breast Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, China
| | - Xiaohan Miao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, 130000, Jilin, China
| | - Unsim Ri
- Department of Epidemiology, Central Hygienic and Anti-Epidemiologic Institute, Ministry of Health, Pyongyang, 999093, Democratic People's Republic of Korea
| | - Jianli Yin
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, 130000, Jilin, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, 130000, Jilin, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, 130000, Jilin, China.
| |
Collapse
|
6
|
Yesildemir O, Celik MN. Association between pre- and postnatal exposure to endocrine-disrupting chemicals and birth and neurodevelopmental outcomes: an extensive review. Clin Exp Pediatr 2024; 67:328-346. [PMID: 37986566 PMCID: PMC11222910 DOI: 10.3345/cep.2023.00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 11/22/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are natural or synthetic chemicals that mimic, block, or interfere with the hormones in the body. The most common and well- studied EDCs are bisphenol A, phthalates, and persistent organic pollutants including polychlorinated biphenyls, polybrominated diphenyl ethers, per- and polyfluoroalkyl substances, other brominated flame retardants, organochlorine pesticides, dioxins, and furans. Starting in embryonic life, humans are constantly exposed to EDCs through air, diet, skin, and water. Fetuses and newborns undergo crucial developmental processes that allow adaptation to the environment throughout life. As developing organisms, they are extremely sensitive to low doses of EDCs. Many EDCs can cross the placental barrier and reach the developing fetal organs. In addition, newborns can be exposed to EDCs through breastfeeding or formula feeding. Pre- and postnatal exposure to EDCs may increase the risk of childhood diseases by disrupting the hormone-mediated processes critical for growth and development during gestation and infancy. This review discusses evidence of the relationship between pre- and postnatal exposure to several EDCs, childbirth, and neurodevelopmental outcomes. Available evidence suggests that pre- and postnatal exposure to certain EDCs causes fetal growth restriction, preterm birth, low birth weight, and neurodevelopmental problems through various mechanisms of action. Given the adverse effects of EDCs on child development, further studies are required to clarify the overall associations.
Collapse
Affiliation(s)
- Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Mensure Nur Celik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
7
|
Krause S, Ouellet V, Allen D, Allen S, Moss K, Nel HA, Manaseki-Holland S, Lynch I. The potential of micro- and nanoplastics to exacerbate the health impacts and global burden of non-communicable diseases. Cell Rep Med 2024; 5:101581. [PMID: 38781963 PMCID: PMC11228470 DOI: 10.1016/j.xcrm.2024.101581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/01/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Non-communicable diseases (NCD) constitute one of the highest burdens of disease globally and are associated with inflammatory responses in target organs. There is increasing evidence of significant human exposure to micro- and nanoplastics (MnPs). This review of environmental MnP exposure and health impacts indicates that MnP particles, directly and indirectly through their leachates, may exacerbate inflammation. Meanwhile, persistent inflammation associated with NCDs in gastrointestinal and respiratory systems potentially increases MnP uptake, thus influencing MnP access to distal organs. Consequently, a future increase in MnP exposure potentially augments the risk and severity of NCDs. There is a critical need for an integrated one-health approach to human health and environmental research for assessing the drivers of human MnP exposure and their bidirectional links with NCDs. Assessing these risks requires interdisciplinary efforts to identify and link drivers of environmental MnP exposure and organismal uptake to studies of impacted disease mechanisms and health outcomes.
Collapse
Affiliation(s)
- Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Institute for Global Innovation, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Birmingham Institute for Sustainability and Climate Action (BISCA), University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Université Claude Bernard Lyon 1, Lyon, CNRS, ENTPE, UMR5023, 69622 Villeurbanne, France.
| | - Valerie Ouellet
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Institute for Global Innovation, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Deonie Allen
- WESP - Centre for Water, Environment, Sustainability & Public Health, Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Steven Allen
- WESP - Centre for Water, Environment, Sustainability & Public Health, Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Kerry Moss
- Institute for Global Innovation, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Holly A Nel
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Semira Manaseki-Holland
- Institute for Global Innovation, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Institute for Global Innovation, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Birmingham Institute for Sustainability and Climate Action (BISCA), University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
8
|
Hong S, Kang BS, Kim O, Won S, Kim HS, Wie JH, Shin JE, Choi SK, Jo YS, Kim YH, Yang M, Kang H, Lee DW, Park IY, Park JS, Ko HS. The associations between maternal and fetal exposure to endocrine-disrupting chemicals and asymmetric fetal growth restriction: a prospective cohort study. Front Public Health 2024; 12:1351786. [PMID: 38665245 PMCID: PMC11043493 DOI: 10.3389/fpubh.2024.1351786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Recent evidence has revealed associations between endocrine-disrupting chemicals (EDCs) and placental insufficiency due to altered placental growth, syncytialization, and trophoblast invasion. However, no epidemiologic study has reported associations between exposure to EDCs and asymmetric fetal growth restriction (FGR) caused by placenta insufficiency. The aim of this study was to evaluate the association between EDC exposure and asymmetric FGR. This was a prospective cohort study including women admitted for delivery to the Maternal Fetal Center at Seoul St. Mary's Hospital between October 2021 and October 2022. Maternal urine and cord blood samples were collected, and the levels of bisphenol-A (BPA), monoethyl phthalates, and perfluorooctanoic acid in each specimen were analyzed. We investigated linear and non-linear associations between the levels of EDCs and fetal growth parameters, including the head circumference (HC)/abdominal circumference (AC) ratio as an asymmetric parameter. The levels of EDCs were compared between fetuses with and without asymmetric FGR. Of the EDCs, only the fetal levels of BPA showed a linear association with the HC/AC ratio after adjusting for confounding variables (β = 0.003, p < 0.05). When comparing the normal growth and asymmetric FGR groups, the asymmetric FGR group showed significantly higher maternal and fetal BPA levels compared to the normal growth group (maternal urine BPA, 3.99 μg/g creatinine vs. 1.71 μg/g creatinine [p < 0.05]; cord blood BPA, 1.96 μg/L vs. -0.86 μg/L [p < 0.05]). In conclusion, fetal exposure levels of BPA show linear associations with asymmetric fetal growth patterns. High maternal and fetal exposure to BPA might be associated with asymmetric FGR.
Collapse
Affiliation(s)
- Subeen Hong
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung Soo Kang
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Oyoung Kim
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sangeun Won
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeon Soo Kim
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Ha Wie
- Department of Obstetrics and Gynecology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Eun Shin
- Department of Obstetrics and Gynecology, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sae Kyung Choi
- Department of Obstetrics and Gynecology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yun Sung Jo
- Department of Obstetrics and Gynecology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeon Hee Kim
- Department of Obstetrics and Gynecology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mihi Yang
- College of Pharmacy, Sookmyung Women’s University, Seoul, Republic of Korea
- Goodbeing Center Co. Ltd., Seoul, Republic of Korea
| | - Huiwon Kang
- College of Pharmacy, Sookmyung Women’s University, Seoul, Republic of Korea
- Goodbeing Center Co. Ltd., Seoul, Republic of Korea
| | - Dong-Wook Lee
- Department of Occupational & Environmental Medicine, Inha University Hospital, Inha University, Incheon, Republic of Korea
| | - In Yang Park
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joong Shin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Sun Ko
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
9
|
Rahimlou M, Mousavi MA, Chiti H, Peyda M, Mousavi SN. Association of maternal exposure to endocrine disruptor chemicals with cardio-metabolic risk factors in children during childhood: a systematic review and meta-analysis of cohort studies. Diabetol Metab Syndr 2024; 16:82. [PMID: 38576015 PMCID: PMC10993545 DOI: 10.1186/s13098-024-01320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND In the present systematic review and meta-analysis, the association of maternal exposure to the endocrine disrupting chemicals (EDCs) with cardio-metabolic risk factors in children during childhood for the first time. METHOD The PubMed, Scopus, EMBASE, and Web of Science databases were systematically searched, up to Feb 2023. In total 30 cohort studies had our inclusion criteria. A random-effects model was used for the variables that had considerable heterogeneity between studies. The Newcastle-Ottawa Scale (NOS) tool was used to classify the quality score of studies. All statistical analyses were conducted using Stata 14 and P-value < 0.05 considered as a significant level. RESULTS In the meta-analysis, maternal exposure to the EDCs was weakly associated with higher SBP (Fisher_Z: 0.06, CI: 0.04, 0.08), BMI (Fisher_Z: 0.07, CI: 0.06, 0.08), and WC (Fisher_Z: 0.06, CI: 0.03, 0.08) z-scores in children. A significant linear association was found between maternal exposure to the bisphenol-A and pesticides with BMI and WC z-score in children (p < 0.001). Subgroup analysis showed significant linear association of BPA and pesticides, in the urine samples of mothers at the first trimester of pregnancy, with BMI and WC z-score in children from 2-8 years (p < 0.05). CONCLUSION Prenatal exposure to the EDCs in the uterine period could increase the risk of obesity in children. Maternal exposure to bisphenol-A and pesticides showed the strongest association with the obesity, especially visceral form, in the next generation.
Collapse
Affiliation(s)
- Mehran Rahimlou
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mir Ali Mousavi
- Department of General Surgery, Ayatollah Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Chiti
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mazyar Peyda
- Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, Honarestan St., Janbazan St., Zanjan, Iran
| | - Seyedeh Neda Mousavi
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
10
|
Kek T, Geršak K, Virant-Klun I. Exposure to endocrine disrupting chemicals (bisphenols, parabens, and triclosan) and their associations with preterm birth in humans. Reprod Toxicol 2024; 125:108580. [PMID: 38522559 DOI: 10.1016/j.reprotox.2024.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Preterm birth in humans (PTB), defined as birth prior to 37 weeks of gestation, is one of the most important causes of neonatal morbidity and mortality and is associated with adverse health outcomes later in life. Attributed to many different etiological factors, estimated 15.1 million or 11.1% of births each year are preterm, which is more than 1 per 10 livebirths globally. Environmental pollution is a well-established risk factor that could influence the pathogenesis of PTB. Increasing evidence has shown an association between maternal exposure to endocrine disrupting chemicals (EDCs) and PTB. This scoping review aims to summarize current research on the association between EDC exposure and PTB in humans. Database PubMed was used to identify articles discussing the effect of selected EDCs, namely bisphenol A, bisphenol S, bisphenol F, parabens, and triclosan, found in plastics, cosmetics and other personal care products, on PTB occurrence. Regardless of some inconsistences in the findings across studies, the reviewed studies suggest a potential association between involuntary exposure to reviewed EDCs and the risk of PTB. However, further studies are needed to delineate exact correlations and mechanisms through which EDC exposure causes PTB so that efficient preventative measures could be implemented. Until then, health care providers should inform women about possible EDC exposure thus empowering them to make healthy choices and at the same time decrease the EDC negative effects.
Collapse
Affiliation(s)
- Tina Kek
- Clinical Research Centre, University Medical Centre Ljubljana, Zaloška cesta 2, Ljubljana 1000, Slovenia.
| | - Ksenija Geršak
- Medical Faculty, University of Ljubljana, Vrazov trg 2, Ljubljana 1000, Slovenia; Division of Gynaecology and Obstetrics, University Medical Centre Ljubljana, Šlajmerjeva 3, Ljubljana 1000, Slovenia
| | - Irma Virant-Klun
- Clinical Research Centre, University Medical Centre Ljubljana, Zaloška cesta 2, Ljubljana 1000, Slovenia
| |
Collapse
|
11
|
Kaimal A, Hooversmith JM, Cherry AD, Garrity JT, Al Mansi MH, Martin NM, Buechter H, Holmes PV, MohanKumar PS, MohanKumar SMJ. Prenatal exposure to bisphenol A and/or diethylhexyl phthalate alters stress responses in rat offspring in a sex- and dose-dependent manner. FRONTIERS IN TOXICOLOGY 2023; 5:1264238. [PMID: 38152552 PMCID: PMC10751317 DOI: 10.3389/ftox.2023.1264238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
Background: Prenatal exposures to endocrine disrupting chemicals (EDCs) are correlated with adverse behavioral outcomes, but the effects of combinations of these chemicals are unclear. The aim of this study was to determine the dose-dependent effects of prenatal exposure to EDCs on male and female behavior. Methods: Pregnant Sprague-Dawley rats were orally dosed with vehicle, bisphenol A (BPA) (5 μg/kg body weight (BW)/day), low-dose (LD) diethylhexyl phthalate (DEHP) (5 μg/kg BW/day), high-dose (HD) DEHP (7.5 mg/kg BW/day), a combination of BPA and LD-DEHP (B + D (LD)), or a combination of BPA and HD-DEHP (B + D (HD)) on gestational days 6-21. Adult offspring were subjected to the Open Field Test (OFT), Elevated Plus Maze (EPM), and Shock Probe Defensive Burying test (SPDB) in adulthood. Body, adrenal gland, and pituitary gland weights were collected at sacrifice. Corticosterone (CORT) was measured in the serum. Results: Female EDC-exposed offspring showed anxiolytic effects in the OFT, while male offspring were unaffected. DEHP (HD) male offspring demonstrated a feminization of behavior in the EPM. Most EDC-exposed male offspring buried less in the SPDB, while their female counterparts showed reduced shock reactivity, indicating sex-specific maladaptive alterations in defensive behaviors. Additionally, DEHP (LD) males and females and B + D (LD) females displayed increased immobility in this test. DEHP (LD) alone and in combination with BPA led to lower adrenal gland weights, but only in male offspring. Finally, females treated with a mixture of B + D (HD) had elevated CORT levels. Conclusion: Prenatal exposure to BPA, DEHP, or a mixture of the two, affects behavior, CORT levels, and adrenal gland weights in a sex- and dose-dependent manner.
Collapse
Affiliation(s)
- Amrita Kaimal
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA, United States
- Biomedical and Translational Sciences Institute, Neuroscience Division, University of Georgia, Athens, GA, United States
| | - Jessica M. Hooversmith
- Behavioral Neuropharmacology Laboratory, University of Georgia, Athens, GA, United States
| | - Ariana D. Cherry
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA, United States
| | - Jillian T. Garrity
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA, United States
| | - Maryam H. Al Mansi
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA, United States
| | - Nicholas M. Martin
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA, United States
| | - Hannah Buechter
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA, United States
| | - Philip V. Holmes
- Biomedical and Translational Sciences Institute, Neuroscience Division, University of Georgia, Athens, GA, United States
- Behavioral Neuropharmacology Laboratory, University of Georgia, Athens, GA, United States
| | - Puliyur S. MohanKumar
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA, United States
- Biomedical and Translational Sciences Institute, Neuroscience Division, University of Georgia, Athens, GA, United States
| | - Sheba M. J. MohanKumar
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA, United States
- Biomedical and Translational Sciences Institute, Neuroscience Division, University of Georgia, Athens, GA, United States
| |
Collapse
|
12
|
Lee JH, Joh JS, Choi S. Comparison of maternal and neonatal survival exposed to humidifier disinfectants during perinatal periods: a case-series study. Sci Rep 2023; 13:20026. [PMID: 37973969 PMCID: PMC10654421 DOI: 10.1038/s41598-023-47438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
A humidifier disinfectant (HD) has been prohibited by the government due to its serious effects on the human body. Several studies on the relationship between HD and lung diseases have been performed independently on children and adults. However, there have been no reports on the effects of HD exposure on pregnant women and their foetuses. Therefore, the present study was conducted to investigate the effects of HD exposure on the foetuses of women who encountered HD during pregnancy. A total of 56 cases were recruited from 2017 to 2019 through the Korea Environmental Industry & Technology Institute, and data obtained from the medical records included maternal date of birth, maternal date of death, maternal start and end date of HD exposure, maternal date of symptom onset, neonatal birthday, neonatal birthweight, gestational age, and neonatal survival status within 28 days. All data were retrospectively investigated through medical records. Of the 47 mothers, 20 (42.6%) mothers survived, and 27 (57.4%) mothers died. In the group of survivors, there was a shorter period of total HD use, period of HD use before pregnancy and period of HD use to onset of symptoms. Shorter durations of HD use resulted in higher survival rate of mothers. HD use caused an increase in gestational age surviving foetuses, and foetal mortality increased when clinical symptoms developed before birth.
Collapse
Affiliation(s)
- Jang Hoon Lee
- Department of Paediatrics, Ajou University School of Medicine, 164 World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Joon Sung Joh
- Department of Pulmonology, National Medical Center, Seoul, Republic of Korea
| | - Seoheui Choi
- Department of Paediatrics, Ajou University School of Medicine, 164 World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| |
Collapse
|
13
|
Lan L, Wei H, Chen D, Pang L, Xu Y, Tang Q, Li J, Xu Q, Li H, Lu C, Wu W. Associations between maternal exposure to perfluoroalkylated substances (PFASs) and infant birth weight: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89805-89822. [PMID: 37458883 DOI: 10.1007/s11356-023-28458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/23/2023] [Indexed: 08/11/2023]
Abstract
The objective of this study was to determine the associations between maternal exposure to PFASs and infant birth weight and to explore evidence for a possible dose-response relationship. Four databases including PubMed, Embase, Web of Science, and Medline before 20 September 2022 were systematically searched. A fixed-effect model was used to estimate the change in infant birth weight (g) associated with PFAS concentrations increasing by 10-fold. Dose-response meta-analyses were also conducted when possible. The study follows the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). A total of 21 studies were included. Among these studies, 18 studies examined the associations between PFOA and birth weight, 17 studies reported PFOS, and 11 studies discussed PFHxS. Associations between PFHxS (ES = -5.67, 95% CI: -33.92 to 22.59, P = 0.694) were weaker than those for PFOA and PFOS (ES = -58.62, 95% CI: -85.23 to -32.01, P < 0.001 for PFOA; ES = -54.75, 95% CI: -84.48 to -25.02, P < 0.001 for PFOS). The association was significantly stronger in the high median PFOS concentration group (ES = -107.23, 95% CI: -171.07 to -43.39, P < 0.001) than the lower one (ES = -29.15, 95% CI: -63.60 to -5.30, P = 0.097; meta-regression, P = 0.045). Limited evidence of a dose-response relationship was found. This study showed negative associations between maternal exposure to PFASs and infant birth weight. Limited evidence of a dose-response relationship between exposure to PFOS and infant birth weight was found. Further studies are needed to find more evidence.
Collapse
Affiliation(s)
- Linchen Lan
- State Key Laboratory of Reproductive Medicine, Wuxi Medical Center, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongcheng Wei
- State Key Laboratory of Reproductive Medicine, Wuxi Medical Center, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Danrong Chen
- State Key Laboratory of Reproductive Medicine, Wuxi Medical Center, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Liya Pang
- State Key Laboratory of Reproductive Medicine, Wuxi Medical Center, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yifan Xu
- State Key Laboratory of Reproductive Medicine, Wuxi Medical Center, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuqin Tang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jinhui Li
- Stanford University Medical Center, Stanford, CA, USA
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine, Wuxi Medical Center, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huijun Li
- Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Wuxi Medical Center, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Wuxi Medical Center, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
14
|
Płotka-Wasylka J, Mulkiewicz E, Lis H, Godlewska K, Kurowska-Susdorf A, Sajid M, Lambropoulou D, Jatkowska N. Endocrine disrupting compounds in the baby's world - A harmful environment to the health of babies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163350. [PMID: 37023800 DOI: 10.1016/j.scitotenv.2023.163350] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 06/01/2023]
Abstract
Globally, there has been a significant increase in awareness of the adverse effects of chemicals with known or suspected endocrine-acting properties on human health. Human exposure to endocrine disrupting compounds (EDCs) mainly occurs by ingestion and to some extent by inhalation and dermal uptake. Although it is difficult to assess the full impact of human exposure to EDCs, it is well known that timing of exposure is of importance and therefore infants are more vulnerable to EDCs and are at greater risk compared to adults. In this regard, infant safety and assessment of associations between prenatal exposure to EDCs and growth during infancy and childhood has been received considerable attention in the last years. Hence, the purpose of this review is to provide a current update on the evidence from biomonitoring studies on the exposure of infants to EDCs and a comprehensive view of the uptake, the mechanisms of action and biotransformation in baby/human body. Analytical methods used and concentration levels of EDCs in different biological matrices (e.g., placenta, cord plasma, amniotic fluid, breast milk, urine, and blood of pregnant women) are also discussed. Finally, key issues and recommendations were provided to avoid hazardous exposure to these chemicals, taking into account family and lifestyle factors related to this exposure.
Collapse
Affiliation(s)
- Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland; BioTechMed Center, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | - Hanna Lis
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | - Klaudia Godlewska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | | | - Muhammad Sajid
- Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Dimitra Lambropoulou
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece
| | - Natalia Jatkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| |
Collapse
|
15
|
Kim HK, Jeong GH, Min HY. The effects of environmental prenatal program on environmental health perception and behavior using internet-based intervention in South Korea: A non-randomized controlled study. PLoS One 2022; 17:e0277501. [PMID: 36378675 PMCID: PMC9665389 DOI: 10.1371/journal.pone.0277501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
PURPOSE This study aimed to develop and examine the effects of an internet-based intervention program on environmental perception and behavior among Korean pregnant women based on revised protection motivation theory. METHOD This study was a non-equivalent control group pre-post-test design. The experimental program consisted of prenatal education, reduction of fine dust, birth education, environmental health promotion, and postnatal management education using zoom video conferences. The face-to-face interventions were provided through regular prenatal classes at public health services for the control group. The total participant was 49 pregnant women: 25 in the experimental group and 24 in the control group. The program adaptation was conducted between April 2021 and November 2021 in Korea. The data were analyzed by ANCOVA and t-test to examine the effects using SPSS 26.0 program. RESULTS After intervention of the program, environmental severity (F = 17.96, p < .001), response efficacy (F = 15.69, p < .001), and total environmental perception (F = 7.80, p = .008) were higher in the experimental group than in the control group. There were no significant differences in feasibility, accessibility, satisfaction, susceptibility, self-efficacy, barrier, personal environmental behavior, and community environmental behavior between the two groups. CONCLUSION The internet-based educational program can be the alternative for the face-to-face prenatal class to promote environmental health perceptions during pregnancy in the pandemic situations.
Collapse
Affiliation(s)
- Hyun Kyoung Kim
- Department of Nursing, Kongju National University, Gongju, South Korea
| | - Geum Hee Jeong
- School of Nursing and Research Institute in Nursing Science, Hallym University, Chuncheon, South Korea
- * E-mail:
| | - Hye Young Min
- College of Nursing, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
16
|
Lorigo M, Cairrao E. UV-B filter octylmethoxycinnamate-induced vascular endothelial disruption on rat aorta: In silico and in vitro approach. CHEMOSPHERE 2022; 307:135807. [PMID: 35931261 DOI: 10.1016/j.chemosphere.2022.135807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Throughout human life, an extensive and varied range of emerging environmental contaminants, called endocrine disruptors (EDCs), cause adverse health effects, including in the cardiovascular (CV) system. Cardiovascular diseases (CVD) are worryingly one of the leading causes of all mortality and mobility worldwide. The UV-B filter octylmethoxycinnamate (also designated octinoxate, or ethylhexyl methoxycinnamate (CAS number: 5466-77-3)) is an EDC widely present in all personal care products. However, to date, there are no studies evaluating the OMC-induced effects on vasculature using animal models to improve human cardiovascular health. This work analysed the effects of OMC on rat aorta vasculature and explored the modes of action implicated in these effects. Our results indicated that OMC relaxes the rat aorta by endothelium-dependent mechanisms through the signaling pathways of cyclic nucleotides and by endothelium-independent mechanisms involving inhibition of L-Type voltage-operated Ca2+ channels (L-Type VOCC). Overall, OMC toxicity on rat aorta may produce hypotension via vasodilation due to excessive NO release and blockade of L-Type VOCC. Moreover, the OMC-induced endothelial dysfunction may also occur by promoting the endothelial release of endothelin-1. Therefore, our findings demonstrate that exposure to OMC alters the reactivity of the rat aorta and highlight that long-term OMC exposure may increase the risk of human CV diseases.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal; C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501, Covilhã, Portugal.
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal; C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501, Covilhã, Portugal.
| |
Collapse
|
17
|
Witczak A, Pohoryło A, Aftyka A, Pokorska-Niewiada K, Witczak G. Changes in Polychlorinated Biphenyl Residues in Milk during Lactation: Levels of Contamination, Influencing Factors, and Infant Risk Assessment. Int J Mol Sci 2022; 23:12717. [PMID: 36361507 PMCID: PMC9655485 DOI: 10.3390/ijms232112717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022] Open
Abstract
Given the importance of breastfeeding infants, the contamination of human milk is a significant public concern. The aim of this study was to assess the contamination of human milk with dioxin-like PCBs (dl-PCBs) and non-dioxin-like PCBs (ndl-PCBs) in relation to the duration of lactation and other influencing factors, especially the frequency of the consumption of selected foods during pregnancy. Based on this, the health risk to infants was assessed and compared to the tolerable daily intake (TDI). PCB determinations were performed using gas chromatography/mass spectrometry. The ∑ndl-PCB content ranged from 0.008 to 0.897 ng/g w.w., at an average of 0.552 ng/g wet weight, which was 55% of the maximum level according to the EU guidelines for foods for infants and young children. The toxic equivalent (TEQ) was in the range of 0.033-5.67 pg-TEQ/g w.w. The content of non-ortho, mono-ortho, and ndl-PCBs in human milk decreased the longer lactation continued. Moreover, when pregnant women smoked tobacco, this correlated significantly with increases in the concentrations of PCB congeners 156, 118, and 189 in human milk. The human milk contents of PCB congeners 77, 81, 186, 118, and 189 were strongly positively correlated with the amount of fish consumed. The content of stable congeners PCB 135 and PCB 153 increased with age.
Collapse
Affiliation(s)
- Agata Witczak
- Department of Toxicology, Dairy Technology, and Food Storage, West Pomeranian University of Technology in Szczecin, Papieża Pawła VI Street 3, 71-459 Szczecin, Poland
| | - Anna Pohoryło
- Department of Toxicology, Dairy Technology, and Food Storage, West Pomeranian University of Technology in Szczecin, Papieża Pawła VI Street 3, 71-459 Szczecin, Poland
| | - Aleksandra Aftyka
- Veterinary Inspection Provincial Veterinary Inspectorate in Szczecin, 71-337 Szczecin, Poland
| | - Kamila Pokorska-Niewiada
- Department of Toxicology, Dairy Technology, and Food Storage, West Pomeranian University of Technology in Szczecin, Papieża Pawła VI Street 3, 71-459 Szczecin, Poland
| | - Grzegorz Witczak
- Department of Gynecology, Endocrinology and Gynecological Oncology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| |
Collapse
|
18
|
Takahashi T, Eguchi A, Watanabe M, Todaka E, Sakurai K, Mori C. Association between telomere length in human umbilical cord tissues and polychlorinated biphenyls in maternal and cord serum. CHEMOSPHERE 2022; 300:134560. [PMID: 35427669 DOI: 10.1016/j.chemosphere.2022.134560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Environmental exposure to persistent organic pollutants during pregnancy has potential adverse health effects on the fetus. One of the environmental pollutants is polychlorinated biphenyl (PCB). Earlier, we reported the presence of PCBs in fetal tissues such as the umbilical cord. Telomere length (TL) is a biomarker of aging because it shortens with each cell division. According to the Developmental Origins of Health and Disease hypothesis, fetal exposure to environmental pollutants during pregnancy affects the occurrence of non-communicable diseases in later life. In the current study, we investigated the association between cord tissue TL and serum levels of PCBs. The subjects were 114 mother-child pairs participating in a birth cohort study, the Chiba Study of Mother and Child Health (C-MACH). Maternal serum was collected during pregnancy, and cord serum and tissue were obtained at birth. TL was assessed by qPCR using genomic DNA extracted from the cord tissue. Maternal and cord serum PCB congener levels were assessed using gas chromatography and negative ion chemical ionization qMS. In male fetuses, serum levels of PCB74 in the cord blood were significantly associated with TL following covariate adjustment, but no significant association was found in female fetuses. These data suggest that the TL of the umbilical cord is affected by fetal exposure to PCBs.
Collapse
Affiliation(s)
- Tomoko Takahashi
- Department of Environmental Preventive Medicine (Yamada Bee Company, Inc.), Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Japan.
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Japan.
| | - Masahiro Watanabe
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Japan.
| | - Emiko Todaka
- Department of Global Preventive Medicine, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | - Kenichi Sakurai
- Department of Nutrition and Metabolic Medicine, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Japan.
| | - Chisato Mori
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
19
|
Association between Total and Individual PCB Congener Levels in Maternal Serum and Birth Weight of Newborns: Results from the Chiba Study of Mother and Child Health Using Weighted Quantile Sum Regression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020694. [PMID: 35055516 PMCID: PMC8775854 DOI: 10.3390/ijerph19020694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 01/06/2023]
Abstract
Maternal exposure to polychlorinated biphenyls (PCBs) during pregnancy is associated with a low birth weight; however, the congener-specific effects of PCB congeners are not well defined. In this study, we used maternal serum samples from the Chiba Study of Mother and Child Health (C-MACH) cohort, collected at 32 weeks of gestational age, to analyze the effects of PCB congener exposure on birth weight by examining the relationship between newborn birth weight and individual PCB congener levels in maternal serum (n = 291). The median total PCB level in the serum of mothers of male and female newborns at approximately 32 weeks of gestation was 39 and 37 ng g−1 lipid wt, respectively. The effect of the total PCB levels and the effects of PCB congener mixtures were analyzed using a linear regression model and a generalized weighted quantile sum regression model (gWQS). The birth weight of newborns was significantly associated with maternal exposure to PCB mixtures in the gWQS model. The results suggest that exposure to PCB mixtures results in low newborn birth weight. However, specific impacts of individual PCB congeners could not be related to newborn birth weight.
Collapse
|
20
|
Ramírez V, Gálvez-Ontiveros Y, González-Domenech PJ, Baca MÁ, Rodrigo L, Rivas A. Role of endocrine disrupting chemicals in children's neurodevelopment. ENVIRONMENTAL RESEARCH 2022; 203:111890. [PMID: 34418446 DOI: 10.1016/j.envres.2021.111890] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/08/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Environmental stressors, like endocrine disrupting chemicals (EDC), are considered important contributors to the increased rates of neurodevelopmental dysfunctions. Considering the cumulative research on adverse neurodevelopmental effects associated with prenatal exposure to EDC, the purpose of this study was to review the available limited literature about the effects of postnatal exposure to EDC on child neurodevelopment and behaviour. Despite widespread children's exposure to EDC, there are a limited number of epidemiological studies on the association of this exposure with neurodevelopmental disorders, in particular in the postnatal period. The available research suggests that postnatal EDC exposure is related to adverse neurobehavioral outcomes in children; however the underlying mechanisms of action remain unclear. Timing of exposure is a key factor determining potential neurodevelopmental consequences, hence studying the impact of multiple EDC co-exposure in different vulnerable life periods could guide the identification of sensitive subpopulations. Most of the reviewed studies did not take into account sex differences in the EDC effects on children neurodevelopment. We believe that the inclusion of sex in the study design should be considered as the role of EDC on children neurodevelopment are likely sex-specific and should be taken into consideration when determining susceptibility and potential mechanisms of action.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, University of Granada, Granada, Spain
| | - Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Pablo José González-Domenech
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain
| | | | - Lourdes Rodrigo
- Department of Legal Medicine and Toxicology, University of Granada, Granada, Spain.
| | - Ana Rivas
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| |
Collapse
|
21
|
Kim HK, Jeong GH. Effect of Pro-Environmental Prenatal Education Program on Pregnant Women’s Environmental Health Awareness and Behaviors based on the Protection Motivation Theory. INQUIRY: THE JOURNAL OF HEALTH CARE ORGANIZATION, PROVISION, AND FINANCING 2022; 59:469580211047045. [PMID: 35227127 PMCID: PMC8891827 DOI: 10.1177/00469580211047045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
This study aimed to verify whether a pro-environmental prenatal education program has an effect on pregnant women’s environmental health awareness and behaviors in Korea. This quasi-experimental study employed a nonequivalent control group and nonsynchronized design based on the protection motivation theory as a theoretical framework. In total, 96 pregnant women had their data collected and analyzed in Korea (40 in the experimental group; and 56 in the control group). Data collection through self-reported questionnaire was conducted between September 2017 and August 2018. The program consisted of lectures and group activities aimed at educating participants on environmental awareness and behaviors. The data were analyzed using t-test, chi square test, and ANCOVA using SPSS 24.0 program. After the intervention, the experimental group showed significantly higher sensitivity (54.78 ± 9.47 and 49.75 ± 5.42; F = 15.13, P < .001), susceptibility (26.30 ± 5.18 and 24.28 ± 4.53; F = 53.94, P < .001), response efficacy (27.40 ± 3.40 and 25.18 ± 4.23; F = 39.42, P < .001), self-efficacy (22.43 ± 4.15 and 21.35 ± 4.25; F = 41.13, P < .001), individual environmental behavior (58.59 ± 12.25 and 51.93 ± 12.64; F = 172.75, P < .001), and communal environmental behavior (18.45 ± 9.68 and 13.13 ± 8.24; F = 126.26, P < .001) than the control group. The developed pro-environmental prenatal education program contained content on the environment and pregnancy, environmental toxin, effects of endocrine disruptors, airborne pollutants, water pollutant, soil pollutant, radio-electronic exposure, and pro-environmental health behaviors during pregnancy. Pregnant women who participated in the pro-environmental prenatal education program had positive changes in environmental health perceptions and behaviors. As environmental hazards continue to increase, pregnant women should receive effective motivational education on eco-environmental protection to increase their sensitivity to environmental risk factors and to encourage active environmental health behaviors.
Collapse
|
22
|
Tran-Guzman A, Moradian R, Cui H, Culty M. In vitro impact of genistein and mono(2-ethylhexyl) phthalate (MEHP) on the eicosanoid pathway in spermatogonial stem cells. Reprod Toxicol 2021; 107:150-165. [PMID: 34942354 DOI: 10.1016/j.reprotox.2021.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 02/09/2023]
Abstract
Perinatal exposures to endocrine disrupting chemicals (EDCs) alter the male reproductive system. Infants are exposed to genistein (GEN) through soy-based formula, and to Mono(2-ethylhexyl) Phthalate (MEHP), metabolite of the plasticizer DEHP. Spermatogonial stem cells (SSCs) are formed in infancy and their integrity is essential for spermatogenesis. Thus, understanding the impact of EDCs on SSCs is critical. Prostaglandins (PGs) are inflammatory mediators synthesized via the eicosanoid pathway starting with cyclooxygenases (Coxs), that regulate physiological and pathological processes. Our goal was to study the eicosanoid pathway in SSCs and examine whether it was disrupted by GEN and MEHP, potentially contributing to their adverse effects. The mouse C18-4 cell line used as SSC model expressed high levels of Cox1 and Cox2 genes and proteins, and eicosanoid pathway genes similarly to levels measured in primary rat spermatogonia. Treatments with GEN and MEHP at 10 and 100 μM decreased Cox1 gene and protein expression, whereas Cox2, phospholipase A2, prostaglandin synthases transcripts, PGE2, PGF2a and PGD2 were upregulated. Simultaneously, the transcript levels of spermatogonia progenitor markers Foxo1 and Mcam and differentiated spermatogonial markers cKit and Stra8 were increased. Foxo1 was also increased by EDCs in primary rat spermatogonia. This study shows that the eicosanoid pathway is altered during SSC differentiation and that exposure to GEN and MEHP disrupts this process, mainly driven by GEN effects on Cox2 pathway, while MEHP acts through an alternative mechanism. Thus, understanding the role of Cox enzymes in SSCs and how GEN and MEHP exposures alter their differentiation warrants further studies.
Collapse
Affiliation(s)
- Amy Tran-Guzman
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Renita Moradian
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Haoyi Cui
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Ouazzani HE, Rouillon S, Venisse N, Sifer-Rivière L, Dupuis A, Cambien G, Ayraud-Thevenot S, Gourgues AS, Pierre-Eugène P, Pierre F, Rabouan S, Migeot V, Albouy-Llaty M. Impact of perinatal environmental health education intervention on exposure to endocrine disruptors during pregnancy-PREVED study: study protocol for a randomized controlled trial. Trials 2021; 22:876. [PMID: 34863252 PMCID: PMC8642981 DOI: 10.1186/s13063-021-05813-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/10/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The suspected or actual effects on health of endocrine-disrupting chemicals (EDC) and their ubiquitous presence in everyday life justify the implementation of health promotion interventions. These interventions should ideally be applied during critical windows like pregnancy. Perinatal environmental health education interventions may help to reduce EDC exposure during pregnancy. METHODS/DESIGN PREVED (Pregnancy, PreVention, Endocrine Disruptors) is an open-label randomized controlled trial assessing the impact of environmental health education intervention on EDC exposure during pregnancy. Inclusion, consent, and randomization take place during the first trimester. The participants are randomly allocated into three groups: (i) control group (information leaflet on EDCs), (ii) intervention group in neutral location (information leaflet and workshops in a meeting room), and (iii) intervention group in contextualized location (information leaflet and workshops in a real apartment). Workshops are organized between the second and third trimesters of pregnancy. Main outcome is the percentage of participants who reported consuming manufactured/industrial food. Secondary outcomes are as follows: (i) psycho-social dimensions, (ii) EDC concentrations in urine, (iii) EDC concentration in colostrum, and (iv) percentage of participants who reported consuming paraben-free personal care products. DISCUSSION PREVED is a ground-breaking intervention research project dedicated to perinatal environmental health education that aims to identify pollutant sources in daily life and to offer accessible and realistic alternative solutions, by promoting the sharing of know-how and experience in a positive and non-alarmist approach. TRIAL REGISTRATION ClinicalTrials.gov : NCT03233984 (current status: ongoing). Retrospectively registered on 31 July 2017 ( https://clinicaltrials.gov/ct2/show/NCT03233984 ) because when the first participant was enrolled in this non-drug intervention, ClinicalTrials.gov was centered in therapeutic trials. The World Health Organization Trial Registration Data Set is in Additional file 1.
Collapse
Affiliation(s)
- Houria El. Ouazzani
- Health-Endocrine Disruptors-EXposome (HEDEX), INSERM-CIC1402, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 rue de la Milétrie, 86000 Poitiers, France
- BioSPharm Pole, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France
| | - Steeve Rouillon
- Health-Endocrine Disruptors-EXposome (HEDEX), INSERM-CIC1402, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 rue de la Milétrie, 86000 Poitiers, France
- BioSPharm Pole, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France
- UMR CNRS 7285, IC2MP, Poitiers, France
| | - Nicolas Venisse
- Health-Endocrine Disruptors-EXposome (HEDEX), INSERM-CIC1402, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France
- BioSPharm Pole, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France
| | - Lynda Sifer-Rivière
- Health-Endocrine Disruptors-EXposome (HEDEX), INSERM-CIC1402, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France
- Research Center of Medicine, Sciences, Health and Society (Cermes 3), EHESS, University of Paris Descartes, Villejuif, France
| | - Antoine Dupuis
- Health-Endocrine Disruptors-EXposome (HEDEX), INSERM-CIC1402, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 rue de la Milétrie, 86000 Poitiers, France
- BioSPharm Pole, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France
| | - Guillaume Cambien
- Health-Endocrine Disruptors-EXposome (HEDEX), INSERM-CIC1402, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 rue de la Milétrie, 86000 Poitiers, France
| | - Sarah Ayraud-Thevenot
- Health-Endocrine Disruptors-EXposome (HEDEX), INSERM-CIC1402, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 rue de la Milétrie, 86000 Poitiers, France
| | - Anne-Sophie Gourgues
- Health-Endocrine Disruptors-EXposome (HEDEX), INSERM-CIC1402, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France
| | - Pascale Pierre-Eugène
- Health-Endocrine Disruptors-EXposome (HEDEX), INSERM-CIC1402, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France
| | - Fabrice Pierre
- BioSPharm Pole, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France
- Department of Obstetrics and Gynecology and Reproductive Medicine, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France
| | - Sylvie Rabouan
- Health-Endocrine Disruptors-EXposome (HEDEX), INSERM-CIC1402, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 rue de la Milétrie, 86000 Poitiers, France
| | - DisProSE Group
- Health-Endocrine Disruptors-EXposome (HEDEX), INSERM-CIC1402, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 rue de la Milétrie, 86000 Poitiers, France
- BioSPharm Pole, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France
- UMR CNRS 7285, IC2MP, Poitiers, France
- Research Center of Medicine, Sciences, Health and Society (Cermes 3), EHESS, University of Paris Descartes, Villejuif, France
- Department of Obstetrics and Gynecology and Reproductive Medicine, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France
| | - Virginie Migeot
- Health-Endocrine Disruptors-EXposome (HEDEX), INSERM-CIC1402, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 rue de la Milétrie, 86000 Poitiers, France
- BioSPharm Pole, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France
| | - Marion Albouy-Llaty
- Health-Endocrine Disruptors-EXposome (HEDEX), INSERM-CIC1402, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 rue de la Milétrie, 86000 Poitiers, France
- BioSPharm Pole, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers CEDEX, France
| |
Collapse
|
24
|
Lorigo M, Cairrao E. Fetoplacental vasculature as a model to study human cardiovascular endocrine disruption. Mol Aspects Med 2021; 87:101054. [PMID: 34839931 DOI: 10.1016/j.mam.2021.101054] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/15/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Increasing evidence has associated the exposure of endocrine-disrupting chemicals (EDCs) with the cardiovascular (CV) system. This exposure is particularly problematic in a sensitive window of development, pregnancy. Pregnancy exposome can affect the overall health of the pregnancy by dramatic changes in vascular physiology and endocrine activity, increasing maternal susceptibility. Moreover, fetoplacental vascular function is generally altered, increasing the risk of developing pregnancy complications (including cardiovascular diseases, CVD) and predisposing the foetus to adverse health risks later in life. Thus, our review summarizes the existing literature on exposures to EDCs during pregnancy and adverse maternal health outcomes, focusing on the human placenta, vein, and umbilical artery associated with pregnancy complications. The purpose of this review is to highlight the role of fetoplacental vasculature as a model for the study of human cardiovascular endocrine disruption. Therefore, we emphasize that the placenta, together with the umbilical arteries and veins, allows a better characterization of the pregnant woman's exposome. Consequently, it contributes to the protection of the mother and foetus against CV disorders in life.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
25
|
Han L, Wang J, Zhao T, Wu Y, Wei Y, Chen J, Kang L, Shen L, Long C, Yang Z, Wu S, Wei G. Stereological analysis and transcriptome profiling of testicular injury induced by di-(2-ethylhexyl) phthalate in prepubertal rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112326. [PMID: 34015638 DOI: 10.1016/j.ecoenv.2021.112326] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is the most common phthalate that can affect the male reproductive system. DEHP exposure at the prepubertal stage could lead to the injury of immature testes, but the mechanism has not been fully clarified. In the present study, we elucidated the possible underlying mechanism of DEHP-induced prepubertal testicular injury through stereological analysis and transcriptome profiling. Compared with the control group, the DEHP-treated rats had lower body weight gain and decreased testicular weight and organ coefficient. Moreover, lower serum levels of testosterone and LH were observed in the DEHP group, in contrast to the increased FSH level. Additionally, the serum level of estradiol had no significant difference after DEHP exposure. Stereological analysis showed significant reduction in volumes of most testicular structures, especially in the seminiferous tubule and seminiferous epithelium, along with a vast decrease of spermatogenic cells and obvious structural damages with substantial pathological signs (germ cracks, cytoplasmic vacuolization, sloughing, multinucleated giant cell formation, chromatolysis desquamation and dissolution, pyknosis of nuclei) in the seminiferous tubule upon DEHP exposure at the prepubertal stage. Furthermore, transcriptome profiling identified 5548 differentially expressed genes (DEGs) upon DEHP exposure. Pathway enrichment analysis revealed several crucial signaling pathways related to retinol metabolism, oxidative phosphorylation, steroid hormone biosynthesis, and cell adhesion molecules (CAMs). In addition, seven DEGs selected from RNA-seq data were validated by quantitative real-time polymerase chain reaction (qRT-PCR), and the results showed the same trends as the RNA-seq results. In conclusion, the above findings provide basic morphological data and lay a foundation for systematic research on transcriptome profiling in prepubertal testicular injury induced by DEHP.
Collapse
Affiliation(s)
- Lindong Han
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Junke Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Tianxin Zhao
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Yuhao Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Yuexin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Jiadong Chen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Lian Kang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Chunlan Long
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Zhengwei Yang
- Morphometric Research Laboratory, North Sichuan Medical College, Nanchong 637000, PR China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China.
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China.
| |
Collapse
|
26
|
Lorigo M, Quintaneiro C, Maia CJ, Breitenfeld L, Cairrao E. UV-B filter octylmethoxycinnamate impaired the main vasorelaxant mechanism of human umbilical artery. CHEMOSPHERE 2021; 277:130302. [PMID: 33789217 DOI: 10.1016/j.chemosphere.2021.130302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/06/2021] [Accepted: 03/12/2021] [Indexed: 05/24/2023]
Abstract
Personal care products (PCPs) are a group of diverse substances widely used daily for health, beauty, and cleanliness. More than 90% of all PCPs contain the UV-B filter octylmethoxycinnamate (OMC) as a protective function, however, their safety has recently been questioned. The purpose of the present work was to understand how the long-term exposure of UV-filter OMC, used daily by pregnant women, disrupts their vascular homeostasis, altering vascular responses of proteins and channels involved in contractile processes. The long-term effects of 24 h of exposure to OMC (1, 10, and 50 μmol/L) were evaluated on contractile responses of human umbilical arteries (HUA) to serotonin and potassium chloride. Since OMC altered vascular homeostasis of arteries, its vascular mode of action was explored in more detail through the analysis of the activity of cGMP and Ca2+-channels, two pathways involved in their relaxation and contraction, respectively. Our findings showed that long-term exposure of UV-filter OMC impaired the main vasorelaxant mechanism of HUA, once OMC altered the vasorelaxant response pattern of sodium nitroprusside and nifedipine. Results also showed that long-term exposure to OMC induced a decreased vasorelaxation response on HUA due to an interference with the NO/sGC/cGMP/PKG pathway. Moreover, OMC seems to modulate the L-type Ca2+ channels, the BKCa 1.1 α-subunit channels, and the PKG. Overall, since OMC compromises the vascular homeostasis of pregnant women it can be an inductor of pregnancy hypertensive disorders.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| | - Carla Quintaneiro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Cláudio J Maia
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| | - Luiza Breitenfeld
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
27
|
Lee B, Park SM, Jeong S, Kim K, Jeung EB. Combined Exposure to Diazinon and Nicotine Exerts a Synergistic Adverse Effect In Vitro and Disrupts Brain Development and Behaviors In Vivo. Int J Mol Sci 2021; 22:ijms22147742. [PMID: 34299375 PMCID: PMC8307861 DOI: 10.3390/ijms22147742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 12/19/2022] Open
Abstract
A real-life environment during pregnancy involves multiple and simultaneous exposures to toxic chemicals. Perinatal exposures to toxic chemicals have been reported to exert an inhibitory effect on mouse neural development and behaviors. However, the effect of combined exposures of organophosphate and nicotine has not been previously reported. In this study, we investigated whether a combined exposure of diazinon and nicotine can have a synergistic effect. The effects of the combined chemical exposure on cell viability and neuronal differentiation were examined using mouse Sox1-GFP cells. Additionally, mice were maternally administered 0.18 mg/kg diazinon, a no adverse effect level (NOAEL) dose, combined with 0.4, 1, and 2 mg/kg nicotine. Mice offspring underwent behavior tests to assess locomotor, depressive, cognitive, and social behaviors. Morphological change in the brain was investigated with immunolocalization. We revealed that the combined exposure to diazinon and nicotine can have a synergistic adverse effect in vitro. In addition, the chemical-treated mouse offspring showed abnormalities in motor learning, compulsive-like behaviors, spatial learning, and social interaction patterns. Moreover, 0.18 mg/kg diazinon and 2 mg/kg nicotine co-exposure resulted in an increase in tyrosine hydroxylase (TH)-positive dopaminergic neurons. Thus, the findings suggest that perinatal co-exposure to nicotine and diazinon can result in abnormal neurodevelopment and behavior, even at low-level administration.
Collapse
Affiliation(s)
| | | | | | | | - Eui-Bae Jeung
- Correspondence: ; Tel.: +82-43-261-2397; Fax: +82-43-267-3150
| |
Collapse
|
28
|
Effects of Endocrine-Disrupting Chemicals on Endometrial Receptivity and Embryo Implantation: A Systematic Review of 34 Mouse Model Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136840. [PMID: 34202247 PMCID: PMC8297133 DOI: 10.3390/ijerph18136840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 01/23/2023]
Abstract
Several available studies have already analyzed the systemic effects of endocrine-disrupting chemicals (EDCs) on fertile woman and neonatal outcomes, but little is still known in humans about the precise mechanisms of interference of these compounds with the endometrial receptivity. There is consistent evidence that continuous and prolonged exposure to EDCs is a risk factor for reduced fertility and fecundity in women. Preliminary studies on mammalian models provide robust evidence about this issue and could help gynecologists worldwide to prevent long term injury caused by EDCs on human fertility. In this systematic review, we aimed to systematically summarize all available data about EDC effects on blastocyst endometrial implantation. We performed a systematic review using PubMed®/MEDLINE® to summarize all in vivo studies, carried out on mice models, analyzing the molecular consequences of the prolonged exposure of EDC on the implantation process. 34 studies carried out on mouse models were included. Primary effects of EDC were a reduction of the number of implantation sites and pregnancy rates, particularly after BPA and phthalate exposure. Furthermore, the endometrial expression of estrogen (ER) and progesterone receptors (PR), as well as their activation pathways, is compromised after EDC exposure. Finally, the expression of the primary endometrial markers of receptivity (such as MUC1, HOXA10, Inn and E-cadherin) after EDC contact was analyzed. In conclusion EDC deeply affect blastocyst implantation in mouse model. Several players of the implantation mechanism are strongly influenced by the exposure to different categories of EDC.
Collapse
|
29
|
Rodgers A, Sferruzzi-Perri AN. Developmental programming of offspring adipose tissue biology and obesity risk. Int J Obes (Lond) 2021; 45:1170-1192. [PMID: 33758341 PMCID: PMC8159749 DOI: 10.1038/s41366-021-00790-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 02/01/2023]
Abstract
Obesity is reaching epidemic proportions and imposes major negative health crises and an economic burden in both high and low income countries. The multifaceted nature of obesity represents a major health challenge, with obesity affecting a variety of different organs and increases the risk of many other noncommunicable diseases, such as type 2 diabetes, fatty liver disease, dementia, cardiovascular diseases, and even cancer. The defining organ of obesity is the adipose tissue, highlighting the need to more comprehensively understand the development and biology of this tissue to understand the pathogenesis of obesity. Adipose tissue is a miscellaneous and highly plastic endocrine organ. It comes in many different sizes and shades and is distributed throughout many different locations in the body. Though its development begins prenatally, quite uniquely, it has the capacity for unlimited growth throughout adulthood. Adipose tissue is also a highly sexually dimorphic tissue, patterning men and women in different ways, which means the risks associated with obesity are also sexually dimorphic. Recent studies show that environmental factors during prenatal and early stages of postnatal development have the capacity to programme the structure and function of adipose tissue, with implications for the development of obesity. This review summarizes the evidence for a role for early environmental factors, such as maternal malnutrition, hypoxia, and exposure to excess hormones and endocrine disruptors during gestation in the programming of adipose tissue and obesity in the offspring. We will also discuss the complexity of studying adipose tissue biology and the importance of appreciating nuances in adipose tissue, such as sexual dimorphism and divergent responses to metabolic and endocrine stimuli. Given the rising levels of obesity worldwide, understanding how environmental conditions in early life affects adipose tissue phenotype and the subsequent development of obesity is of absolute importance.
Collapse
Affiliation(s)
- Amanda Rodgers
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, UK.
| |
Collapse
|
30
|
Lisco G, Giagulli VA, Iovino M, Guastamacchia E, Pergola GD, Triggiani V. Endocrine-Disrupting Chemicals: Introduction to the Theme. Endocr Metab Immune Disord Drug Targets 2021; 22:677-685. [PMID: 33847259 DOI: 10.2174/1871530321666210413124425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/03/2021] [Accepted: 02/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endocrine-disrupting chemicals (EDCs) are natural or synthetic compounds deriving from different human activities and are widely spread into the environment, contributing to indoor and outdoor pollution. EDCs may be conveyed by food and water consumption and skin, airways, placental, and breastfeeding. Upon entering the circulation, they can interfere with endocrine system homeostasis by several mechanisms. AIM In this narrative review, the authors overviewed the leading mechanisms by which EDCs interact and disrupt the endocrine system, leading to possible human health concerns. RESULTS The leading mechanisms of EDCs-related toxicity have been illustrated in in vitro studies and animal models and may be summarized as follows: receptor agonism and antagonism; modulation of hormone receptor expression; interference with signal transduction in hormone-responsive cells; epigenetic modifications in hormone-producing or hormone-responsive cells; interference with hormone synthesis; interference with hormone transport across cell membranes; interference with hormone metabolism or clearance; interference with the destiny of hormone-producing or hormone-responsive cells. DISCUSSION Despite these well-defined mechanisms, some limitations do not allow for conclusive assumptions. Indeed, epidemiological and ecological studies are currently lacking and usually refer to a specific cluster of patients (occupational exposure). Methodological aspects could further complicate the issue since these studies could require a long time to provide useful information. The lack of a real unexposed group in environmental conditions, possible interference of EDCs mixture on biological results, and unpredictable dose-response curves for some EDCs should also be considered significant limitations. CONCLUSION Given these limitations, specific observational and long-term studies are needed to identify at-risk populations for adequate treatment of exposed patients and effective prevention plans against excessive exposure to EDCs.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari. Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari. Italy
| | - Michele Iovino
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari. Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari. Italy
| | - Giovanni De Pergola
- Clinical Nutrition Unit, Medical Oncology, Department of Internal Medicine and Clinical Oncology, University of Bari, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari. Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari. Italy
| |
Collapse
|
31
|
Warner GR, Meling DD, De La Torre KM, Wang K, Flaws JA. Environmentally relevant mixtures of phthalates and phthalate metabolites differentially alter the cell cycle and apoptosis in mouse neonatal ovaries†. Biol Reprod 2021; 104:806-817. [PMID: 33511402 PMCID: PMC8023422 DOI: 10.1093/biolre/ioab010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/17/2020] [Accepted: 01/16/2021] [Indexed: 01/26/2023] Open
Abstract
Phthalates are a group of chemicals used as additives in various consumer products, medical equipment, and personal care products. Phthalates and their metabolites are consistently detected in humans, indicating widespread and continuous exposure to multiple phthalates. Thus, environmentally relevant mixtures of phthalates and phthalate metabolites were investigated to determine the effects of phthalates on the function of the ovary during the neonatal period of development. Neonatal ovaries from CD-1 mice were cultured with dimethyl sulphoxide (DMSO; vehicle control), phthalate mixture (0.1-100 μg/mL), or phthalate metabolite mixture (0.1-100 μg/mL). The phthalate mixture was composed of 35% diethyl phthalate, 21% di(2-ethylhexyl) phthalate, 15% dibutyl phthalate, 15% diisononyl phthalate, 8% diisobutyl phthalate, and 5% benzylbutyl phthalate. The phthalate metabolite mixture was composed of 37% monoethyl phthalate, 19% mono(2-ethylhexyl) phthalate, 15% monobutyl phthalate, 10% monoisononyl phthalate, 10% monoisobutyl phthalate, and 8% monobenzyl phthalate. After 96 h of culture, ovaries were harvested for histological analysis of folliculogenesis, gene expression analysis of cell cycle and apoptosis regulators, and immune staining for cell proliferation and apoptosis. The metabolite mixture significantly decreased the number and percentage of abnormal follicles (100 μg/mL) compared to controls. The metabolite mixture also significantly increased the expression of cell cycle inhibitors (100 μg/mL) and the antiapoptotic factor Bcl2l10 (10 μg/mL) compared to controls. The phthalate mixture did not significantly alter gene expression or follicle counts, but ovaries exposed to the phthalate mixture (0.1 μg/mL) exhibited marginally significantly increased apoptosis as revealed by DNA fragmentation staining. Overall, these data show that parent phthalates and phthalate metabolites differentially impact ovarian function.
Collapse
Affiliation(s)
- Genoa R Warner
- Department of Comparative Bioscience, University of Illinois, Urbana, IL, USA
| | - Daryl D Meling
- Department of Comparative Bioscience, University of Illinois, Urbana, IL, USA
| | - Kathy M De La Torre
- Department of Comparative Bioscience, University of Illinois, Urbana, IL, USA
| | - Karen Wang
- Department of Comparative Bioscience, University of Illinois, Urbana, IL, USA
| | - Jodi A Flaws
- Department of Comparative Bioscience, University of Illinois, Urbana, IL, USA
- Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| |
Collapse
|
32
|
Chae J, Kim HK. Birth cohort effects on maternal and child environmental health: a systematic review. KOREAN JOURNAL OF WOMEN HEALTH NURSING 2021; 27:27-39. [PMID: 36311987 PMCID: PMC9334170 DOI: 10.4069/kjwhn.2021.03.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 11/22/2022] Open
|
33
|
UV-B Filter Octylmethoxycinnamate Alters the Vascular Contractility Patterns in Pregnant Women with Hypothyroidism. Biomedicines 2021; 9:biomedicines9020115. [PMID: 33530401 PMCID: PMC7912698 DOI: 10.3390/biomedicines9020115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence relating the exposure and/or bioaccumulation of endocrine-disrupting compounds (EDCs) with cardiovascular system are arising. Octylmethoxycinnamate (OMC) is the most widely used UV-B filter and as EDC interacts with TH receptors. However, their effects on thyroid diseases during pregnancy remain unknown. The purpose of this work was to assess the short- and long-term effects of OMC on arterial tonus of pregnant women with hypothyroidism. To elucidate this, human umbilical artery (HUA) rings without endothelium were used to explore the vascular effects of OMC by arterial and cellular experiments. The binding energy and the modes of interaction of the OMC into the active center of the TSHR and THRα were analyzed by molecular docking studies. Our results indicated that OMC altered the contractility patterns of HUA contracted with serotonin, histamine and KCl, possibly due to an interference with serotonin and histamine receptors or an involvement of the Ca2+ channels. The molecular docking analysis show that OMC compete with T3 for the binding center of THRα. Taken together, these findings pointed out to alterations in HUA reactivity as result of OMC-exposure, which may be involved in the development and increased risk of cardiovascular diseases.
Collapse
|
34
|
Derakhshan A, Philips EM, Ghassabian A, Santos S, Asimakopoulos AG, Kannan K, Kortenkamp A, Jaddoe VWV, Trasande L, Peeters RP, Korevaar TIM. Association of urinary bisphenols during pregnancy with maternal, cord blood and childhood thyroid function. ENVIRONMENT INTERNATIONAL 2021; 146:106160. [PMID: 33068853 DOI: 10.1016/j.envint.2020.106160] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Most pregnant women are exposed to bisphenols, a group of chemicals that can interfere with various components of the thyroid system. OBJECTIVES To investigate the association of maternal urinary bisphenol concentrations during pregnancy with maternal, newborn and early childhood thyroid function. METHODS This study was embedded in Generation R, a prospective, population-based birth cohort (Rotterdam, the Netherlands). Maternal urine samples were analyzed for eight bisphenols at early (<18), mid (18-25) and late (>25 weeks) pregnancy. Maternal serum thyroid stimulating hormone (TSH), free thyroxine (FT4) and total thyroxine (TT4) were measured in early pregnancy and child TSH and FT4 were measured in cord blood and childhood. RESULTS The final study population comprised 1,267 mothers, 853 newborns and 882 children. Of the eight bisphenols measured, only bisphenol A (BPA) was detected in >50% of samples at all three time-points and bisphenol S (BPS) at the first time-point. There was no association of BPA or the bisphenol molar sum with maternal thyroid function. Higher BPS concentrations were associated with a higher maternal TT4 (β [95% CI] per 1 (natural-log) unit increase: 0.97 [0.03 to 1.91]) but there was no association with TSH or FT4. Furthermore, higher BPS was associated with an attenuation of the association between maternal FT4 and TSH (Pinteraction = 0.001). There was no association of early or mid-pregnancy BPA or early pregnancy BPS with cord blood or childhood TSH and FT4. A higher late pregnancy maternal BPA exposure was associated with a higher TSH in female newborns (Pinteraction = 0.06) and a higher FT4 during childhood in males (Pinteraction = 0.08). DISCUSSION Our findings show that exposure to bisphenols may interfere with the thyroid system during pregnancy. Furthermore, the potential developmental toxicity of exposure to bisphenols during pregnancy could affect the thyroid system in the offspring in a sex-specific manner.
Collapse
Affiliation(s)
- Arash Derakhshan
- Academic Center for Thyroid Diseases, Erasmus MC, Rotterdam, the Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Elise M Philips
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Sophia Children's Hospital, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Akhgar Ghassabian
- Department of Pediatrics, New York University School of Medicine, New York City, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA; Department of Population of Health, New York University School of Medicine, New York City, NY, USA
| | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Sophia Children's Hospital, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Alexandros G Asimakopoulos
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201, United States; Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York City, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA; Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Andreas Kortenkamp
- Institute of Environment, Health and Societies, Brunel University, London, Uxbridge, UK
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Sophia Children's Hospital, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Leonardo Trasande
- Department of Pediatrics, New York University School of Medicine, New York City, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA; Department of Population of Health, New York University School of Medicine, New York City, NY, USA; New York University College of Global Public Health, New York City, NY, USA; New York Wagner School of Public Service, New York City, NY, USA
| | - Robin P Peeters
- Academic Center for Thyroid Diseases, Erasmus MC, Rotterdam, the Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Tim I M Korevaar
- Academic Center for Thyroid Diseases, Erasmus MC, Rotterdam, the Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
35
|
Araiza-Olivera D, Gutierrez-Aguilar M, Espinosa-García AM, García-García JA, Tapia-Orozco N, Sánchez-Pérez C, Palacios-Reyes C, Escárcega D, Villalón-López DN, García-Arrazola R. From bench to bedside: Biosensing strategies to evaluate endocrine disrupting compounds based on epigenetic events and their potential use in medicine. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103450. [PMID: 32622887 DOI: 10.1016/j.etap.2020.103450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
The relationship between endocrine system disorders and health risks due to chemical environmental compounds has become a growing concern in recent years. Involuntary exposure to endocrine disruptors (EDCs) is associated with the worldwide increase of diseases such as cancer, obesity, diabetes, and neurocortical disorders. EDCs are compounds that target the nuclear hormonereceptors (NHR) leading to epigenetic changes. Consequently, the use of biosensing strategies based on epigenetic events have a great potential to provide outstanding information about the exposition of EDCs and their evaluation in human health. This review addresses the novel trends in biosensing EDCs evaluation based on DNA methylation assays associated with different human diseases.
Collapse
Affiliation(s)
- D Araiza-Olivera
- Department of Chemistry and Biomolecules, Institute of Chemistry, UNAM, Mexico.
| | | | - A M Espinosa-García
- Unidad de Medicina Genómica, Hospital General de México, Dr. Balmis 148, Mexico City, Mexico.
| | - J A García-García
- Department of Education, Hospital General de México, Dr. Balmis 148, Mexico City, Mexico.
| | - N Tapia-Orozco
- Departmentof Food Science and Biotechnology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Ave. Universidad 3000, 04510, Coyoacán, Mexico City, Mexico.
| | - C Sánchez-Pérez
- Institute of Applied Sciences and Technology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Ave. Universidad 3000, 04510, Coyoacán, Mexico City, Mexico.
| | - C Palacios-Reyes
- Laboratory of Genetics and Molecular Diagnostics, Juarez Hospital of Mexico, Mexico City, Mexico.
| | - D Escárcega
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Ciudad de México, calle del Puente 222, Ejidos de Huipulco, Tlalpan 14380, Mexico City, Mexico.
| | - Demelza N Villalón-López
- Instituto Politénico Nacional-Escuela Nacional de Ciencias Biológicas, Departamento de Química Orgánica, Prolongación de Carpio y Plande Ayala, colonia Casco de Santo Tomás. Del, Miguel Hidalgo, 11350, Mexico.
| | - R García-Arrazola
- Departmentof Food Science and Biotechnology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Ave. Universidad 3000, 04510, Coyoacán, Mexico City, Mexico.
| |
Collapse
|
36
|
Liu J, Zeng L, Zhuang S, Zhang C, Li Y, Zhu J, Zhang W. Cadmium exposure during prenatal development causes progesterone disruptors in multiple generations via steroidogenic enzymes in rat ovarian granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110765. [PMID: 32497815 DOI: 10.1016/j.ecoenv.2020.110765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Exposure to the heavy metal cadmium (Cd) in the environment is linked to adverse health. To fully understand the adverse effects of this important endocrine-disrupting compound (EDC) requires studies that address multigenerational effects and epigenetic mechanisms. The present study orally dosed pregnant SD rats with Cd from gestation day 1 until birth. First filial generation (F1) female rats were mated with untreated males to generate the secondary filial generation (F2). Ovarian granulosa cells (OGCs) were collected at postnatal day (PND) 56 from both generations after prenatal Cd exposure, and hormone secretion examinations showed a progesterone disorder. Significant decreases in steroidogenic enzymes (steroidogenic acute regulatory protein (StAR) and P450 cholesterol side-chain cleavage enzyme (CYP11A1)) were observed in F1 and F2 rats. However, F1 and F2 rats had different patterns of mRNA and protein expression of steroidogenic factor 1 (SF-1). We also found that microRNAs were significantly changed using a microarray, and miR-10b-5p and miR-27a-3p were upregulated in F1 and F2 rats. The COV434 cell line microRNA-knockdown model showed that these two important microRNAs regulated the StAR-induced Cd effect on progesterone secretion. Overall, the results of this study indicate that prenatal Cd exposure causes cytotoxicity problems, progesterone disorder and microRNAs expression changed in a multigenerational manner. And progesterone disorder may interfere with the steroidogenic enzymes in offspring. The present study also revealed that environmental pollution produces multigenerational effects.
Collapse
Affiliation(s)
- Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou Coudslanty, Fuzhou, 350108, China.
| | - Lingfeng Zeng
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou Coudslanty, Fuzhou, 350108, China; School Key Discipline of Nutrition and Food Hygiene, Public Health School, Changsha Medical University, Changsha, China.
| | - Siqi Zhuang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou Coudslanty, Fuzhou, 350108, China.
| | - Chenyun Zhang
- Department of Health Law and Policy, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou, 350108, China.
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou Coudslanty, Fuzhou, 350108, China.
| | - Jianlin Zhu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou Coudslanty, Fuzhou, 350108, China.
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou Coudslanty, Fuzhou, 350108, China.
| |
Collapse
|
37
|
Suh S, Pham C, Smith J, Mesinkovska NA. The banned sunscreen ingredients and their impact on human health: a systematic review. Int J Dermatol 2020; 59:1033-1042. [PMID: 32108942 PMCID: PMC7648445 DOI: 10.1111/ijd.14824] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 01/18/2023]
Abstract
Recent evidence of high systemic absorption of sunscreen ingredients has raised concerns regarding the safety of sunscreen products. Oxybenzone (BP-3) and octinoxate (OMC), two common sunscreen ingredients, were recently banned in Key West and Hawaii owing to their toxic effects on marine ecosystems. Their impact on human health requires a careful assessment. To summarize the current evidence on the association between the systemic level of BP-3 or OMC and its health impact, a primary literature search was conducted using PubMed database in February 2019. There are 29 studies that address the impact of these ingredients on human health. Studies show that elevated systemic level of BP-3 has no adverse effect on male and female fertility, female reproductive hormone level, adiposity, fetal growth, child's neurodevelopment, and sexual maturation. However, the association of BP-3 level on thyroid hormone, testosterone level, kidney function, and pubertal timing has been reported and prompts further investigations to validate a true association. The systemic absorption of OMC has no reported effect on thyroid and reproductive hormone levels. In conclusion, current evidence is not sufficient to support the causal relationship between the elevated systemic level of BP-3 or OMC and adverse health outcomes. There are either contradictory findings among different studies or an insufficient number of studies to corroborate the observed association. To accurately evaluate the long-term risk of exposure to BP-3 and OMC from sunscreen, a well-designed longitudinal randomized controlled trial needs to be conducted.
Collapse
Affiliation(s)
- Susie Suh
- University of California, Irvine, Department of Dermatology, Irvine, CA
- Case Western Reserve University, Department of Pharmacology, Cleveland, OH
- University of California, Irvine, Department of Ophthalmology, Gavin Herbert Eye Institute, Irvine, CA
| | - Christine Pham
- University of California, Irvine, Department of Dermatology, Irvine, CA
| | - Janellen Smith
- University of California, Irvine, Department of Dermatology, Irvine, CA
| | | |
Collapse
|
38
|
Xu H, Wu X, Liang C, Shen J, Tao S, Wen X, Liu W, Zou L, Yang Y, Xie Y, Jin Z, Li T, Tao F. Association of urinary phthalates metabolites concentration with emotional symptoms in Chinese university students. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114279. [PMID: 32443185 DOI: 10.1016/j.envpol.2020.114279] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/30/2020] [Accepted: 02/25/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have shown the associations between phthalates exposure and psychological behavior problems in children and adolescents, but such associations have not been fully elucidated in university students, especially among Chinese university students. This study aims to examine the association between urinary phthalates metabolites concentration and emotional symptoms in Chinese university students. A school-based cross-sectional survey was carried out among 990 university students aged 17-24 years from two universities in Anhui and Jiangxi provinces of China. Concentration of six phthalate metabolites in urine was determined by high-performance liquid chromatography-tandem mass spectrometry and the emotional symptoms were assessed by the 21-item Depression, Anxiety, and Stress Scale. The detection rate of six phthalate metabolites in urine ranged from 79.6% to 99.7%. The median concentration of six phthalate metabolites ranged from 2.90 to 119.64 ng/mL. The positive rates of depressive symptoms, anxiety symptoms, and stress were 17.4%, 24.8%, and 9.5%, respectively. After adjusting for the confounding variables, mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) was found to be associated with depressive symptoms (β = 8.84, P = 0.017), anxiety symptoms (β = 8.46, P = 0.015), and stress symptoms (β = 9.95, P = 0.012) in males; whereas, monobutyl phthalate (MBP) was found to be associated with depressive symptoms (β = 1.86, P = 0.002), anxiety symptoms (β = 1.81, P = 0.005), and stress symptoms (β = 1.48, P = 0.047) in females. Our study demonstrates that Chinese university students are widely exposed to phthalates; and high- and low-molecular weight phthalates are associated with emotional symptoms in males and females, respectively.
Collapse
Affiliation(s)
- Honglv Xu
- School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China
| | - Xiaoyan Wu
- School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China
| | - Chunmei Liang
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China
| | - Jie Shen
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China
| | - Shuman Tao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China
| | - Xing Wen
- School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China
| | - Wenwen Liu
- School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China
| | - Liwei Zou
- School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China
| | - Yajuan Yang
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China
| | - Yang Xie
- School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China
| | - Zhongxiu Jin
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China
| | - Tingting Li
- School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, PR China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, PR China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, PR China.
| |
Collapse
|
39
|
Mokshagundam S, Ding T, Rumph JT, Dallas M, Stephens VR, Osteen KG, Bruner-Tran KL. Developmental 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure of either parent enhances the risk of necrotizing enterocolitis in neonatal mice. Birth Defects Res 2020; 112:1209-1223. [PMID: 32519502 DOI: 10.1002/bdr2.1742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/22/2020] [Accepted: 05/20/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a rare, but potentially fatal intestinal inflammatory condition most often arising in premature infants. Infants provided formula are also at greater risk of developing this disease. Although the majority of formula-fed, preterm infants do not develop NEC, up to 30% of infants with the disease do not survive. Thus, identifying additional, currently unrecognized factors, which may predispose a specific infant to NEC development would be a significant clinical advancement. In this regard, we have previously reported that offspring of female or male mice with a history of developmental exposure to the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exhibit altered sensitivity to inflammatory challenges and are frequently born premature. Herein, we examined the possibility that, compared to unexposed mice (F1NONE ), developmental TCDD exposure of either parent (maternal, F1MTCDD , or paternal, F1PTCDD ) would enhance the risk of NEC in offspring (F2TCDD mice) in association with supplemental formula feeding. METHODS Beginning on postnatal day 7, all neonates were randomized to maternal milk only or maternal milk with up to 20 supplemental formula feedings. All pups remained with the Dams and were additionally allowed to nurse ad libitum. RESULTS Formula-fed F2NONE pups rarely developed NEC while this disease was common in formula-fed F2MTCDD and F2PTCDD mice. Unexpectedly, 50% of F2MTCDD pups that were not provided supplemental formula also developed NEC. CONCLUSIONS Our studies provide evidence that a history of parental TCDD exposure enhances the risk of NEC in offspring and suggest exposure to environmental immunotoxicants such as TCDD may also contribute to this inflammatory disease in humans.
Collapse
Affiliation(s)
- Shilpa Mokshagundam
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tianbing Ding
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jelonia T Rumph
- Department of Immunology, Microbiology and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | | | - Victoria R Stephens
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kevin G Osteen
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Kaylon L Bruner-Tran
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
40
|
Lupu D, Andersson P, Bornehag CG, Demeneix B, Fritsche E, Gennings C, Lichtensteiger W, Leist M, Leonards PEG, Ponsonby AL, Scholze M, Testa G, Tresguerres JAF, Westerink RHS, Zalc B, Rüegg J. The ENDpoiNTs Project: Novel Testing Strategies for Endocrine Disruptors Linked to Developmental Neurotoxicity. Int J Mol Sci 2020; 21:ijms21113978. [PMID: 32492937 PMCID: PMC7312023 DOI: 10.3390/ijms21113978] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 12/21/2022] Open
Abstract
Ubiquitous exposure to endocrine-disrupting chemicals (EDCs) has caused serious concerns about the ability of these chemicals to affect neurodevelopment, among others. Since endocrine disruption (ED)-induced developmental neurotoxicity (DNT) is hardly covered by the chemical testing tools that are currently in regulatory use, the Horizon 2020 research and innovation action ENDpoiNTs has been launched to fill the scientific and methodological gaps related to the assessment of this type of chemical toxicity. The ENDpoiNTs project will generate new knowledge about ED-induced DNT and aims to develop and improve in vitro, in vivo, and in silico models pertaining to ED-linked DNT outcomes for chemical testing. This will be achieved by establishing correlative and causal links between known and novel neurodevelopmental endpoints and endocrine pathways through integration of molecular, cellular, and organismal data from in vitro and in vivo models. Based on this knowledge, the project aims to provide adverse outcome pathways (AOPs) for ED-induced DNT and to develop and integrate new testing tools with high relevance for human health into European and international regulatory frameworks.
Collapse
Affiliation(s)
- Diana Lupu
- Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden;
- Institute of Environmental Medicine, Karolinska Institute, 17177 Stockholm, Sweden
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Patrik Andersson
- Faculty of Science and Technology, Umeå University, 90187 Umeå, Sweden;
| | | | - Barbara Demeneix
- Evolution of Endocrine Regulations UMR 7221, Centre National de la Recherche Scientifique, 75005 Paris, France;
| | - Ellen Fritsche
- IUF—Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany;
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | | | - Marcel Leist
- In Vitro Toxicology and Biomedicine, University of Konstanz, D-78457 Konstanz, Germany;
| | - Pim E. G. Leonards
- Department Environment and Health, Vrije University, 1081HV Amsterdam, The Netherlands;
| | - Anne-Louise Ponsonby
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Victoria 3052, Australia;
| | - Martin Scholze
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK;
| | - Giuseppe Testa
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
| | - Jesus A. F. Tresguerres
- Department of Physiology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Remco H. S. Westerink
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands;
| | - Bernard Zalc
- Sorbonne Université, Inserm, CNRS, ICM-GH Pitié-Salpêtrière, 75651 Paris, France;
| | - Joëlle Rüegg
- Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden;
- Institute of Environmental Medicine, Karolinska Institute, 17177 Stockholm, Sweden
| |
Collapse
|
41
|
Du ZP, Feng S, Li YL, Li R, Lv J, Ren WQ, Feng QW, Liu P, Wang QN. Di-(2-ethylhexyl) phthalate inhibits expression and internalization of transthyretin in human placental trophoblastic cells. Toxicol Appl Pharmacol 2020; 394:114960. [PMID: 32201330 DOI: 10.1016/j.taap.2020.114960] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/29/2020] [Accepted: 03/18/2020] [Indexed: 11/23/2022]
Abstract
During pregnancy, fetal thyroid hormones (THs) are dependent on maternal placental transport and their physiological level is crucial for normal fetal neurodevelopment. Earlier research has shown that Di-(2-ethylhexyl) phthalate (DEHP) disrupts thyroid function and THs homeostasis in pregnant women and fetuses, and affects placental THs transport. However, the underlying mechanisms are poorly understood. The present study, therefore, aimed to systematically investigate the potential mechanisms of DEHP-induced disruption in the placental THs transport using two human placental trophoblastic cells, HTR-8/SVneo cells and JEG-3 cells. While the exposure of DEHP at the doses of 0-400 μM for 24 h did not affect cell viability, we found reduced consumption of T3 and T4 in the culture medium of HTR-8/Svneo cells treated with DEHP at 400 μM. DEHP treatment did not affect T3 uptake and the expression of monocarboxylate transporters 8 (MCT8) and organic anion transporters 1C1 (OATP1C1). However, DEHP significantly inhibited transthyretin (TTR) internalization, down-regulated TTR, deiodinase 2 (DIO2), and thyroid hormone receptors mRNA expression and protein levels, and up-regulated deiodinase 3 (DIO3) protein levels in a dose-dependent manner. These results indicate that DEHP acts on placental trophoblast cells, inhibits its TTR internalization, down-regulates TTR expression and affects the expression of DIO2, DIO3, and thyroid hormone receptor. These may be the mechanisms by which PAEs affects THs transport through placental.
Collapse
Affiliation(s)
- Zhi-Ping Du
- Department of Toxicology, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes/Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
| | - Shun Feng
- Department of Toxicology, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes/Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
| | - Yan-Ling Li
- Department of Toxicology, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes/Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
| | - Rong Li
- Department of Toxicology, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes/Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
| | - Jia Lv
- Department of Toxicology, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes/Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
| | - Wen-Qiang Ren
- Department of Toxicology, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes/Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
| | - Qiang-Wei Feng
- Department of Toxicology, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes/Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
| | - Ping Liu
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
| | - Qu-Nan Wang
- Department of Toxicology, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes/Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
42
|
The EDCMET Project: Metabolic Effects of Endocrine Disruptors. Int J Mol Sci 2020; 21:ijms21083021. [PMID: 32344727 PMCID: PMC7215524 DOI: 10.3390/ijms21083021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/08/2023] Open
Abstract
Endocrine disruptors (EDs) are defined as chemicals that mimic, block, or interfere with hormones in the body's endocrine systems and have been associated with a diverse array of health issues. The concept of endocrine disruption has recently been extended to metabolic alterations that may result in diseases, such as obesity, diabetes, and fatty liver disease, and constitute an increasing health concern worldwide. However, while epidemiological and experimental data on the close association of EDs and adverse metabolic effects are mounting, predictive methods and models to evaluate the detailed mechanisms and pathways behind these observed effects are lacking, thus restricting the regulatory risk assessment of EDs. The EDCMET (Metabolic effects of Endocrine Disrupting Chemicals: novel testing METhods and adverse outcome pathways) project brings together systems toxicologists; experimental biologists with a thorough understanding of the molecular mechanisms of metabolic disease and comprehensive in vitro and in vivo methodological skills; and, ultimately, epidemiologists linking environmental exposure to adverse metabolic outcomes. During its 5-year journey, EDCMET aims to identify novel ED mechanisms of action, to generate (pre)validated test methods to assess the metabolic effects of Eds, and to predict emergent adverse biological phenotypes by following the adverse outcome pathway (AOP) paradigm.
Collapse
|
43
|
Tabachnik M, Sheiner E, Wainstock T. The association between second to fourth digit ratio, reproductive and general health among women: findings from an Israeli pregnancy cohort. Sci Rep 2020; 10:6341. [PMID: 32286380 PMCID: PMC7156723 DOI: 10.1038/s41598-020-62599-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/15/2020] [Indexed: 12/17/2022] Open
Abstract
The ratio between the length of second and fourth digits (2D:4D) is a putative biomarker for prenatal testosterone and estrogen exposure. The aim of the study was to examine the association between 2D:4D and women’s general and reproductive health. This analysis was conducted within a prospective pregnancy cohort study. The study population included 187 women. 2D:4D was measured directly in both hands using a digital caliper. Multivariable linear and logistic models were used to study the associations between digit ratio and the studied health characteristics. Mean age of the participants was 30.7 ± 4.9 years. The mean age at menarche was 12.9 ± 1.4 years. Right hand 2D:4D mean ± SD was 0.965 ± 0.03. Left hand 2D:4D mean ± SD was 0.956 ± 0.03. An association was found between right 2D:4D and age at menarche, with older age in women with 2D:4D ≥ mean versus 2D:4D < mean (13.2 ± 1.5 and 12.8 ± 1.3 respectively, b = 0.48, 95%CI:0.06–0.91) while controlling for ethnicity. Higher 2D:4D was also associated with heavier menses bleeding and dysmenorrhea. There is an association between 2D:4D and sub optimal reproductive characteristics, including later age at menarche, heavier menses bleeding and dysmenorrhea. These findings support the association between the intrauterine period and reproductive characteristics. Further studies are required to support our findings.
Collapse
Affiliation(s)
- Maya Tabachnik
- The Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 84105, Israel.
| | - Eyal Sheiner
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, POB 151, Beer-Sheva, 84101, Israel
| | - Tamar Wainstock
- The Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 84105, Israel
| |
Collapse
|
44
|
Jeong GH, Kim HK. Pro-environmental health behaviour and educational needs among pregnant women: A cross-sectional survey. J Adv Nurs 2020; 76:1638-1646. [PMID: 32147877 DOI: 10.1111/jan.14346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 01/20/2023]
Abstract
AIM To investigate pro-environmental health perceptions, behaviour and educational needs among pregnant women in Korea. BACKGROUND Based on concerns about the effects of environmental hazards and pollution on their babies and themselves, pregnant women behave in ways that protect their health. The framework of this study was based on Rogers' protection motivation theory. DESIGN Cross-sectional survey using questionnaires. METHOD The sample comprised 358 pregnant women recruited from July - August 2018 in South Korea. Participants were recruited from prenatal classes at two healthcare centres and patients receiving prenatal check-ups at two women's hospitals. RESULTS Perceived educational needs were ranked in the following order: particulate matter (23.7%), electromagnetic waves (11.7%), instant food (food additives) (9.0%) and environmental hormones (8.3%). Age (β = 0.17, p = .001), perceived severity (β = 0.19, p = .001) and response efficacy (β = 0.28, p < .001) affected pro-environmental behaviour, which explained 23.0% of the variance. CONCLUSION Educational programs are necessary for mitigating environmental risks during pregnancy. Pregnant women engage in pro-environmental behaviour influenced by pro-environmental perceptions, especially perceptions of severity regarding environmental diseases and the efficacy of health behavioural responses. Nursing professionals can use these results to promote pro-environmental health in pregnant women. IMPACT This study demonstrated that pregnant women need environmental health programs in prenatal education. Pro-environmental perceptions regarding the severity of the environmental diseases and behavioural efficacy preceded the formation of environmental health behaviours. Nurses should support pregnant women's environmental health through educational interventions including air, electromagnetic, food pollution and endocrine disruptors.
Collapse
Affiliation(s)
- Geum Hee Jeong
- School of Nursing and Research Institute in Nursing Science, Hallym University, Chuncheon, South Korea
| | - Hyun Kyoung Kim
- Department of Nursing, Kongju National University, Kongju, South Korea
| |
Collapse
|
45
|
A heretical view: rather than a solely placental protective function, placental 11β hydroxysteroid dehydrogenase 2 also provides substrate for fetal peripheral cortisol synthesis in obese pregnant ewes. J Dev Orig Health Dis 2020; 12:94-100. [PMID: 32151296 DOI: 10.1017/s2040174420000112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Exposure to glucocorticoid levels higher than appropriate for current developmental stages induces offspring metabolic dysfunction. Overfed/obese (OB) ewes and their fetuses display elevated blood cortisol, while fetal Adrenocorticotropic hormone (ACTH) remains unchanged. We hypothesized that OB pregnancies would show increased placental 11β hydroxysteroid dehydrogenase 2 (11β-HSD2) that converts maternal cortisol to fetal cortisone as it crosses the placenta and increased 11β-HSD system components responsible for peripheral tissue cortisol production, providing a mechanism for ACTH-independent increase in circulating fetal cortisol. Control ewes ate 100% National Research Council recommendations (CON) and OB ewes ate 150% CON diet from 60 days before conception until necropsy at day 135 gestation. At necropsy, maternal jugular and umbilical venous blood, fetal liver, perirenal fat, and cotyledonary tissues were harvested. Maternal plasma cortisol and fetal cortisol and cortisone were measured. Fetal liver, perirenal fat, cotyledonary 11β-HSD1, hexose-6-phosphate dehydrogenase (H6PD), and 11β-HSD2 protein abundance were determined by Western blot. Maternal plasma cortisol, fetal plasma cortisol, and cortisone were higher in OB vs. CON (p < 0.01). 11β-HSD2 protein was greater (p < 0.05) in OB cotyledonary tissue than CON. 11β-HSD1 abundance increased (p < 0.05) in OB vs. CON fetal liver and perirenal fat. Fetal H6PD, an 11β-HSD1 cofactor, also increased (p < 0.05) in OB vs. CON perirenal fat and tended to be elevated in OB liver (p < 0.10). Our data provide evidence for increased 11β-HSD system components responsible for peripheral tissue cortisol production in fetal liver and adipose tissue, thereby providing a mechanism for an ACTH-independent increase in circulating fetal cortisol in OB fetuses.
Collapse
|
46
|
Ullah A, Pirzada M, Jahan S, Ullah H, Razak S, Rauf N, Khan MJ, Mahboob SZ. Prenatal BPA and its analogs BPB, BPF, and BPS exposure and reproductive axis function in the male offspring of Sprague Dawley rats. Hum Exp Toxicol 2020; 38:1344-1365. [PMID: 31514588 DOI: 10.1177/0960327119862335] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research in the past has indicated associated long-term and low levels of exposure of bisphenol A (BPA) in early life and neuroendocrine disorders, such as obesity, precocious puberty, diabetes, and hypertension. BPA and its analogs bisphenol B (BPB), bisphenol F (BPF), and bisphenol S (BPS) have been reported to have similar or even more toxic effect as compared to BPA. Exposure of rats to BPA and its analogs BPB, BPF, and BPS resulted in decreased sperm production, testosterone secretion, and histological changes in the reproductive tissues of male rats. In the present study, BPA, BPB, BPF, and BPS were administered in drinking water at concentrations of (5, 25, and 50 μg/L) from pregnancy day (PD) 1 to PD 21. Body weight (BW), hormonal concentrations, antioxidant enzymes, and histological changes were determined in the reproductive tissues. BPA and its analogs prenatal exposure to female rats induced significant statistical difference in the antioxidant enzymes, plasma testosterone, and estrogen concentrations in the male offspring when compared with the control. Histological parameters of both testis and epididymis revealed prominent changes in the reproductive tissues. The present study suggests that BPA and its analogs BPB, BPF, and BPS different concentrations led to marked alterations in the development of the male reproductive system.
Collapse
Affiliation(s)
- A Ullah
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - M Pirzada
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - S Jahan
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - H Ullah
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - S Razak
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - N Rauf
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - M J Khan
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - S Z Mahboob
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
47
|
Dualde P, Pardo O, Corpas-Burgos F, Kuligowski J, Gormaz M, Vento M, Pastor A, Yusà V. Biomonitoring of parabens in human milk and estimated daily intake for breastfed infants. CHEMOSPHERE 2020; 240:124829. [PMID: 31563722 DOI: 10.1016/j.chemosphere.2019.124829] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/01/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
In this study, we assessed the presence of four parabens in human milk of 120 mothers from Valencia (Spain) which took part in a human biomonitoring project (BETTERMILK). The detection frequency ranges of parabens were 41-60% and 61-89% for unconjugated- and total (unconjugated + conjugated)-parabens, respectively. The concentrations ranged from <LoQ to 31 ng/mL and from <LoQ to 49 ng/mL for unconjugated- and total-parabens, respectively. The frequency of use of some cosmetic products and human milk protein levels were the main predictors of parabens in milk. The study evidences the presence of both conjugated and unconjugated paraben forms in human milk. The newborns estimated daily intake of parabens through human milk was several orders of magnitude lower than the 0-10 mg/kg bw-day acceptable daily intake for the sum of methyl and ethyl paraben established by EFSA. To our knowledge, this is currently the largest biomonitoring study of parabens in human milk.
Collapse
Affiliation(s)
- Pablo Dualde
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020, Valencia, Spain; Analytical Chemistry Department, University of Valencia, Edifici Jeroni Muñoz, Dr. Moliner 50, 46100, Burjassot, Spain
| | - Olga Pardo
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020, Valencia, Spain
| | - Francisca Corpas-Burgos
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020, Valencia, Spain
| | - Julia Kuligowski
- Neonatal Research Unit, Health Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - María Gormaz
- Neonatal Division at the University and Polytechnic Hospital La Fe, Avenida Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Máximo Vento
- Neonatal Division at the University and Polytechnic Hospital La Fe, Avenida Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Agustín Pastor
- Analytical Chemistry Department, University of Valencia, Edifici Jeroni Muñoz, Dr. Moliner 50, 46100, Burjassot, Spain
| | - Vicent Yusà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020, Valencia, Spain; Analytical Chemistry Department, University of Valencia, Edifici Jeroni Muñoz, Dr. Moliner 50, 46100, Burjassot, Spain; Public Health Laboratory of Valencia, 21, Avenida Catalunya, 46020, Valencia, Spain.
| |
Collapse
|
48
|
Dusza H, Janssen E, Kanda R, Legler J. Method Development for Effect-Directed Analysis of Endocrine Disrupting Compounds in Human Amniotic Fluid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14649-14659. [PMID: 31584268 PMCID: PMC6921688 DOI: 10.1021/acs.est.9b04255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The developing fetus represents a highly sensitive period of exposure to endocrine disrupting compounds (EDCs). However, risk assessment of EDCs is hampered by the lack of data on direct in utero exposure. In this study, we developed a robust analytical methodology for the identification of a wide range of known and unknown EDCs in full-term amniotic fluid (AF). First, a method for extraction and fractionation of a broad range of polar and nonpolar EDCs was developed and validated. Maximal recoveries of reference compounds and minimal interference from the matrix were achieved with a combination of solid phase extraction and dispersive liquid/liquid extraction. Bioassay analysis using cell-based reporter gene assays revealed estrogenic, androgenic, and dioxin-like activity in AF extract corresponding to 1.4 nmol EEQ/L, 76.6 pmol DHT-EQ/L, and 10.1 pmol TEQ/L, respectively. Targeted analysis revealed 13 xenobiotics, phytoestrogens, and endogenous hormones in the AF extract that partly contributed to the bioassay activity. Separation of the complex mixture of chemicals in the AF extract with reversed-phase chromatographic fractionation and subsequent bioassay analysis revealed activity in fractions over a wide range of polarity, indicating diverse (unidentified) substances with potential ED activity. The method developed here represents the first methodological step in an effect-directed analysis approach to identify unknown biologically active compounds in the fetal environment.
Collapse
Affiliation(s)
- Hanna
M. Dusza
- Division
of Toxicology, Institute for Risk Assessment Sciences, Faculty of
Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Elwin Janssen
- Institute
for Molecules, Medicines and Systems, Department of Chemistry &
Pharmaceutical Sciences, Vrije Universiteit
Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Rakesh Kanda
- Institute
of Environment, Health and Societies, Brunel
University London, Uxbridge, UB8 3PH Middlesex, U.K.
| | - Juliette Legler
- Division
of Toxicology, Institute for Risk Assessment Sciences, Faculty of
Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
- Utrecht
Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- E-mail: . Phone: +31 30 253 5217
| |
Collapse
|
49
|
Grohs MN, Reynolds JE, Liu J, Martin JW, Pollock T, Lebel C, Dewey D. Prenatal maternal and childhood bisphenol a exposure and brain structure and behavior of young children. Environ Health 2019; 18:85. [PMID: 31615514 PMCID: PMC6794724 DOI: 10.1186/s12940-019-0528-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/25/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is commonly used in the manufacture of plastics and epoxy resins. In North America, over 90% of the population has detectable levels of urinary BPA. Human epidemiological studies have reported adverse behavioral outcomes with BPA exposure in children, however, corresponding effects on children's brain structure have not yet been investigated. The current study examined the association between prenatal maternal and childhood BPA exposure and white matter microstructure in children aged 2 to 5 years, and investigated whether brain structure mediated the association between BPA exposure and child behavior. METHODS Participants were 98 mother-child pairs who were recruited between January 2009 and December 2012. Total BPA concentrations in spot urine samples obtained from mothers in the second trimester of pregnancy and from children at 3-4 years of age were analyzed. Children participated in a diffusion magnetic resonance imaging (MRI) scan at age 2-5 years (3.7 ± 0.8 years). Associations between prenatal maternal and childhood BPA and children's fractional anisotropy and mean diffusivity of 10 isolated white matter tracts were investigated, controlling for urinary creatinine, child sex, and age at the time of MRI. Post-hoc analyses examined if alterations in white matter mediated the relationship of BPA and children's scores on the Child Behavior Checklist (CBCL). RESULTS Prenatal maternal urinary BPA was significantly associated with child mean diffusivity in the splenium and right inferior longitudinal fasciculus. Splenium diffusivity mediated the relationship between maternal prenatal BPA levels and children's internalizing behavior (indirect effect: β = 0.213, CI [0.0167, 0.564]). No significant associations were found between childhood BPA and white matter microstructure. CONCLUSIONS This study provides preliminary evidence for the neural correlates of BPA exposure in humans. Our findings suggest that prenatal maternal exposure to BPA may lead to alterations in white matter microstructure in preschool aged children, and that such alterations mediate the relationship between early life exposure to BPA and internalizing problems.
Collapse
Affiliation(s)
- Melody N Grohs
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jess E Reynolds
- Owerko Centre, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Science for Life Laboratory, Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Tyler Pollock
- Owerko Centre, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Catherine Lebel
- Owerko Centre, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Deborah Dewey
- Owerko Centre, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- University of Calgary, #397 Owerko Center, Child Development Centre 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
50
|
Costa O, Iñiguez C, Manzano-Salgado CB, Amiano P, Murcia M, Casas M, Irizar A, Basterrechea M, Beneito A, Schettgen T, Sunyer J, Vrijheid M, Ballester F, Lopez-Espinosa MJ. First-trimester maternal concentrations of polyfluoroalkyl substances and fetal growth throughout pregnancy. ENVIRONMENT INTERNATIONAL 2019; 130:104830. [PMID: 31247476 DOI: 10.1016/j.envint.2019.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Several studies have investigated the possible association between prenatal exposure to perfluoroalkyl substances (PFASs) and birth anthropometry. However, none has assessed fetal size longitudinally. We studied the possible association between PFASs and fetal biometry. METHODS In 1230 mother-child pairs of three cohorts from the Spanish INMA-Project, we analyzed perfluorohexanesulfonic acid (PFHxS), perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) in first-trimester maternal plasma (collection: 2003-2008). We measured abdominal circumference (AC), femur length (FL), biparietal diameter (BPD), and estimated fetal weight (EFW) by ultrasounds at 12, 20, and 34 gestational weeks. We conducted multivariable linear regression analyses between log2-transformed (PFASs) and SD-scores of fetal parameters in each cohort and subsequent meta-analysis. We also assessed effect modification by sex and maternal smoking. RESULTS PFHxS, PFOA, PFOS, and PFNA medians were: 0.58, 2.35, 6.05, and 0.65 ng/mL, respectively. There were no associations for the whole population in any trimester of pregnancy. However, we found an indication that maternal smoking modified the effect in different directions depending on the PFAS. Among smokers (31%), we found negative associations between both PFOA and PFNA and FL or EFW at week 20 (% change ranging between -6.8% and -5.7% per twofold PFAS increase) and positive associations between PFHxS or PFOS and BPD at week 34 (6.8% and 6.3%, respectively). CONCLUSIONS Results did not suggest an overall association between prenatal PFASs and fetal growth. The results among smokers should be taken with caution and further studies are warranted to elucidate the possible role of smoking in this association.
Collapse
Affiliation(s)
- Olga Costa
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Carmen Iñiguez
- Department of Statistics and Computational Research, Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Cyntia B Manzano-Salgado
- ISGlobal, Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Pilar Amiano
- Public Health Division of Gipuzkoa, Basque Government, Gipuzkoa, Spain; Health Research Institute, Biodonostia, San Sebastian, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Mario Murcia
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Maribel Casas
- ISGlobal, Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Amaia Irizar
- Health Research Institute, Biodonostia, San Sebastian, Spain
| | - Mikel Basterrechea
- Public Health Division of Gipuzkoa, Basque Government, Gipuzkoa, Spain; Health Research Institute, Biodonostia, San Sebastian, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Andrea Beneito
- Department of Nursing and Chiropody, Universitat de València, Valencia, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Thomas Schettgen
- Institute for Occupational Medicine, RWTH Aachen University, Aachen, Germany
| | - Jordi Sunyer
- ISGlobal, Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Ferran Ballester
- Department of Nursing and Chiropody, Universitat de València, Valencia, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Maria-Jose Lopez-Espinosa
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Nursing and Chiropody, Universitat de València, Valencia, Spain.
| |
Collapse
|