1
|
Dėdelė A, Nemaniūtė-Gužienė J, Gražulevičienė R, Andrušaitytė S, Miškinytė A. Association Between Residential Exposure to Road Traffic Noise and Psychological Health in Preschool Children. J Urban Health 2024:10.1007/s11524-024-00947-8. [PMID: 39730780 DOI: 10.1007/s11524-024-00947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2024] [Indexed: 12/29/2024]
Abstract
Environmental noise pollution is one of the biggest concerns and the most important challenges in urban areas. Evidence from epidemiological studies shows that acoustic pollution can impact human health, and the effects may be stronger in susceptible and sensitive individuals. The objective of the study was to determine the individual exposure to road transport noise for preschool children in the residential environment and to assess its impact on children's psychological health. This is the first representative large-scale noise impact study in Lithuania aimed at the psychological health of children. A total of 1457 parent-child pairs were involved in the study. Residential exposure to environmental noise caused by road transport in Kaunas agglomeration, Lithuania was determined by applying geographic information systems and strategic noise mapping. A standardized Strengths and Difficulties Questionnaire (SDQ) was used to assess psychological health problems in children. Multivariate logistic regression analysis was used to determine the association between residential exposure to environmental noise caused by road transport and children's psychological health. The results of the study showed that the risk of hyperactivity and total scale difficulties increased statistically significantly up to 77% and up to 48%, respectively, in the highest noise (Lnight ≥ 50 dB) exposure. The obtained results provide new knowledge about the relationship between road traffic noise in the residential environment and the psychological health of preschool children.
Collapse
Affiliation(s)
- Audrius Dėdelė
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Jolanta Nemaniūtė-Gužienė
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Regina Gražulevičienė
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Sandra Andrušaitytė
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Auksė Miškinytė
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania.
| |
Collapse
|
2
|
Thacher JD, Snigireva A, Dauter UM, Delaval MN, Oudin A, Mattisson K, Sørensen M, Borgquist S, Albin M, Broberg K. Road traffic noise and breast cancer: DNA methylation in four core circadian genes. Clin Epigenetics 2024; 16:168. [PMID: 39587706 PMCID: PMC11590349 DOI: 10.1186/s13148-024-01774-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/05/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Transportation noise has been linked with breast cancer, but existing literature is conflicting. One proposed mechanism is that transportation noise disrupts sleep and the circadian rhythm. We investigated the relationships between road traffic noise, DNA methylation in circadian rhythm genes, and breast cancer. We selected 610 female participants (318 breast cancer cases and 292 controls) enrolled into the Malmö, Diet, and Cancer cohort. DNA methylation of CpGs (N = 29) in regulatory regions of circadian rhythm genes (CRY1, BMAL1, CLOCK, and PER1) was assessed by pyrosequencing of DNA from lymphocytes collected at enrollment. To assess associations between modeled 5-year mean residential road traffic noise and differentially methylated CpG positions, we used linear regression models adjusting for potential confounders, including sociodemographics, shiftwork, and air pollution. Linear mixed effects models were used to evaluate road traffic noise and differentially methylated regions. Unconditional logistic regression was used to investigate CpG methylation and breast cancer. RESULTS We found that higher mean road traffic noise was associated with lower DNA methylation of three CRY1 CpGs (CpG1, CpG2, and CpG12) and three BMAL1 CpGs (CpG2, CpG6, and CpG7). Road traffic noise was also associated with differential methylation of CRY1 and BMAL1 promoters. In CRY1 CpG2 and CpG5 and in CLOCK CpG1, increasing levels of methylation tended to be associated with lower odds of breast cancer, with odds ratios (OR) of 0.88 (95% confidence interval (CI) 0.76-1.02), 0.84 (95% CI 0.74-0.96), and 0.80 (95% CI 0.68-0.94), respectively. CONCLUSIONS In summary, our data suggest that DNA hypomethylation in CRY1 and BMAL1 could be part of a causal chain from road traffic noise to breast cancer. This is consistent with the hypothesis that disruption of the circadian rhythm, e.g., from road traffic noise exposure, increases the risk of breast cancer. Since no prior studies have explored this association, it is essential to replicate our results.
Collapse
Affiliation(s)
- Jesse D Thacher
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | | | - Ulrike Maria Dauter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mathilde N Delaval
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Munich, Neuherberg, Germany
| | - Anna Oudin
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kristoffer Mattisson
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark
- Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Signe Borgquist
- Department of Oncology, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
- Department of Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Maria Albin
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Zhan ZQ, Li JX, Chen YX, Fang JY. The effects of air and transportation noise pollution-related altered blood gene expression, DNA methylation, and protein abundance levels on gastrointestinal diseases risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175633. [PMID: 39163931 DOI: 10.1016/j.scitotenv.2024.175633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/03/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
INTRODUCTION Air pollution and transportation noise pollution has been linked to gastrointestinal (GI) diseases, but their relationship remains unclear. METHODS We extracted the significantly modulated genes and CpG sites related to air pollution (PM2.5, PM10, and NOx) and transportation noise pollution (aircraft, railway, and traffic road noise) from previous published studies. Genome-wide methylation analysis and colocalization analysis with these CpG sites and GWAS data of GI diseases were performed to disentangle the relationship between pollution-related blood DNA methylation (DNAm) alterations and GI diseases risk. Summary-based Mendelian randomization (SMR) analysis assessed the impact of pollution-related genes on GI diseases risk across methylation, gene expression, and protein levels. Enrichment analysis investigated the implicated biological pathways and immune cell types. RESULTS DNAm at cg00227781 [CD300A] (modulated by NOx exposure) and cg19215199 [ZMIZ1] (modulated by PM2.5 exposure) was significantly linked to increased noninfective enteritis and colitis risk, while cg08500171 [BAT2] (modulated by NOx exposure) is significantly associated with an increased gastroesophageal reflux disease (GERD) risk. Colocalization analysis provides strong evidence supporting a shared causal variant between these associations. Multi-omics levels SMR analysis revealed that pollution-modulated lower DNAm at 5 specific CpG sites were associated with increased expression of 4 genes (IL21R, EVPL, SYNGR1, and WDR46), subsequently increasing the risk of GERD, ulcerative colitis, and gastric ulcer. 7 circulating proteins coded by pollution-modulated genes were observed to be associated with 6 GI diseases risk. Enrichment analysis implicates immune and inflammatory responses, MAPK signaling, and telomere maintenance in these pollution-induced effects. CONCLUSION We identified potential links between air and transportation noise pollution-related gene methylation, expression, and protein abundance with GI diseases risk, possibly revealing new therapeutic targets.
Collapse
Affiliation(s)
- Zhi-Qing Zhan
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Xin Li
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Ma J, Zhang J, Zhang Y, Wang Z. Causal effects of noise and air pollution on multiple diseases highlight the dual role of inflammatory factors in ambient exposures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175743. [PMID: 39182784 DOI: 10.1016/j.scitotenv.2024.175743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Noise and air pollution are significant environmental threats with proven adverse health effects. However, the causality between these ambient exposures and disease is still largely unknown. This study aims to provide genetic evidence for this gap and investigates the dual role of inflammatory factors, emphasizing the need for integrated public health strategies. METHODS We included noise and air pollution as exposures, 91 inflammatory factors as mediators, and 26 diseases as outcomes. We explored causal relationships using Mendelian randomization. To ensure the reliability, we screened single nucleotide polymorphisms (SNPs) closely associated with exposure as instrumental variables (IVs), and assessed the pleiotropy and heterogeneity of these IVs. RESULTS Our results suggest that "Hearing difficulty/problems with background noise" increases the risk of hypertension, bronchitis, and menopause; loud music exposure frequency increases the risk of bronchitis; noisy workplace raises the risk of hypertension, coronary heart disease, narcolepsy, and irritable bowel syndrome; NO2 increases the risk of myocardial infarction and chronic heart failure; NOx increases the risk of pneumonia and inflammatory diseases of female pelvic organs; and PM10 increases the risk of myocardial infarction, narcolepsy, and type 2 diabetes; PM2.5-10 increases the risk of developing pneumonia and type 2 diabetes. Furthermore, we found that nine inflammatory factors play a mediating role, of which four play a mediating role in increasing the risk of morbidity and eight play a mediating role in protection against ambient exposures. Finally, we selected SNPs significantly associated with exposure and outcome for enrichment analysis. CONCLUSIONS This study provides the first genetic evidence linking noise and air pollution to various diseases, highlighting the dual mediating role of inflammatory factors. Our findings align with the "One Health" framework, emphasizing the interconnectedness of environmental and human health. Integrated public health strategies considering these complex biological responses are essential for promoting overall well-being.
Collapse
Affiliation(s)
- Jialao Ma
- The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou 510620, China; Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou 510620, China
| | - Jinwei Zhang
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou 510620, China
| | - Yifan Zhang
- The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou 510620, China; Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou 510620, China
| | - Zhi Wang
- The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou 510620, China; Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou 510620, China.
| |
Collapse
|
5
|
Lee J, Yang J, Kim J, Jang Y, Lee J, Han D, Kim H, Jeong BC, Seong JK. Effects of Environmental Noise Stress on Mouse Metabolism. Int J Mol Sci 2024; 25:10985. [PMID: 39456767 PMCID: PMC11507537 DOI: 10.3390/ijms252010985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Environmental noise is associated with various health outcomes. However, the mechanisms through which these outcomes influence behavior and metabolism remain unclear. This study investigated how environmental noise affects the liver, adipose tissue, and brain metabolic functions, leading to behavioral and body weight changes. Mice were divided into a noise group exposed to construction noise and an unexposed (control) group. Behavior and body weight changes were monitored over 50 days. Early changes in response to noise exposure were assessed by measuring plasma cortisol and glial fibrillary acidic protein expression in brain tissues on days 1, 15, and 30. Chronic responses, including changes in lipoprotein and fat metabolism and neurotransmitters, were investigated by analyzing serum lipoprotein levels and body fat mass and evaluating liver, fat, and brain tissue after 50 days. The noise group showed higher locomotor activity and reduced anxiety in the open-field and Y-maze tests. Noise exposure caused an initial weight loss; however, chronic noise increased fat mass and induced adipocyte hypertrophy. Our findings underscore the role of environmental noise-induced stress in augmenting locomotor activity and reducing anxiety in mice through neurotransmitter modulation while increasing the risk of obesity by decreasing HDL cholesterol levels and promoting adipocyte hypertrophy.
Collapse
Affiliation(s)
- Jungmin Lee
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea;
- Preclinical Resource Center, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.K.); (Y.J.); (J.L.); (D.H.); (H.K.)
| | - Jehoon Yang
- Curogen Technology, Suwon 16419, Republic of Korea;
| | - Jeyun Kim
- Preclinical Resource Center, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.K.); (Y.J.); (J.L.); (D.H.); (H.K.)
| | - Yoonjung Jang
- Preclinical Resource Center, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.K.); (Y.J.); (J.L.); (D.H.); (H.K.)
- College of Veterinary Medicine, Chungbuk National University, Cheong-ju 28644, Republic of Korea
| | - Jisun Lee
- Preclinical Resource Center, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.K.); (Y.J.); (J.L.); (D.H.); (H.K.)
| | - Daehyun Han
- Preclinical Resource Center, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.K.); (Y.J.); (J.L.); (D.H.); (H.K.)
| | - Hunnyun Kim
- Preclinical Resource Center, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.K.); (Y.J.); (J.L.); (D.H.); (H.K.)
| | - Byong Chang Jeong
- Preclinical Resource Center, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.K.); (Y.J.); (J.L.); (D.H.); (H.K.)
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea;
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioinformatics, and BIO-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
6
|
Wang H, Wang Y, Chai Y, Zhang H, Chang Q, Li J, Zhang R, Bao J. Prolonged exposure to a music-enriched environment mitigates acute noise-induced inflammation and apoptosis in the chicken spleen by modulating the Keap-1/Nrf2 and NF-κB pathways. Poult Sci 2024; 103:104100. [PMID: 39094500 PMCID: PMC11345555 DOI: 10.1016/j.psj.2024.104100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
The rise of operational noise as an environmental pollutant for farm animals is an emerging concern. The mechanisms through which music can alleviate oxidative stress, inflammation, and apoptosis induced by noise exposure remain underexplored. This study aims to investigate the alleviating effects and underlying mechanisms of long-term music exposure on noise-induced damage to the chicken spleen. Male Arbor Acres (AA) broilers were divided into four groups: control (C), acute noise stimulation (NS), noise stimulation with music mitigation (NSM), and music only (M). NS and NSM groups were exposed to noise (simulating sudden intensity noise, 115 to 120dB) for 10 minutes daily for a week, starting at 14-days-old. NSM and M groups then received 28 days of 6-hour daily music (Mozart K.448, 60-65 dB). The results showed that noise stimulation significantly activated the Keap-1/Nrf2 and NF-κB signaling pathways. Long-term music intervention has also been demonstrated to successfully mitigate oxidative stress and abnormal apoptosis induced by acute noise stimulation. Microscopic examination of the spleen revealed that acute noise stimulation resulted in an increase in splenic cells, a decrease in lymphocytes, and blurred boundaries between the red and white pulps in the NS group. However, these pathological changes were alleviated in the NSM group following music intervention. Compared with the control group, the NS group exhibited significantly elevated oxidative stress parameters. In contrast, music intervention in the NSM group notably improved antioxidant capacity and partially alleviated morphological abnormalities in the spleen. Additionally, noise stimulation activated the NF-κB pathway, upregulating the downstream genes of the inflammatory factors IL-1β, IL-6, and TNF-α. Noise-induced mitochondrial damage led to apoptosis, as observed by TUNEL staining, along with increased gene and protein expression of Bcl-2, Bax, Cyt-C, Casp-3, Casp-8, and Casp-9. These findings indicate that acute noise exposure can induce splenic damage via oxidative stress, inflammation, and apoptosis by modulating the Keap-1/Nrf2 and NF-κB pathways. Prolonged music stimulation effectively mitigates noise-induced damage, offering a vital experimental foundation for further research on noise pollution's impact on organisms and music's alleviating role.
Collapse
Affiliation(s)
- Haowen Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yulai Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yiwen Chai
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Haoran Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qingqing Chang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| |
Collapse
|
7
|
Arregi A, Vegas O, Lertxundi A, García-Baquero G, Ibarluzea J, Andiarena A, Babarro I, Subiza-Pérez M, Lertxundi N. Hair cortisol determinants in 11-year-old children: Environmental, social and individual factors. Horm Behav 2024; 164:105575. [PMID: 38851169 DOI: 10.1016/j.yhbeh.2024.105575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
INTRODUCTION Children's exposure to chronic stress is associated with several health problems. Measuring hair cortisol concentration is particularly useful for studying chronic stress but much is unknown about hair cortisol determinants in children and adolescents, and previous research has often not considered the simultaneous exposure of multiple variables. This research is focused on investigating the relationship between environmental, social and individual factors with hair cortisol concentration in children. METHODS The data used in this study are from the INMA prospective epidemiological cohort study. The assessment of chronic stress was made on the basis of hair samples taken at the age of 11 years in the INMA-Gipuzkoa cohort (n = 346). A metamodel summarizing the hypothesized relationships among environmental, social and individual factors and hair cortisol concentration was constructed based on previous literature. Structural Equation Modelling was performed to examine the relationships among the variables. RESULTS In the general model higher behavioural problems were associated with higher cortisol levels and an inverse relationship between environmental noise and cortisol levels was observed, explaining 5 % of the variance in HCC. Once stratified by sex these associations were only hold in boys, while no significant effect of any of the study variables was related with cortisol levels in girls. Importantly, maternal stress was positively related to behavioural difficulties in children. Finally, higher traffic-related air pollution and lower exposure to neighborhood greenness were related to higher environmental noise. DISCUSSION This study highlights that simultaneous exposure to different environmental, social and individual characteristics may determine the concentration of hair cortisol. More research is needed and future studies should include this complex view to better understanding of hair cortisol determinants in children.
Collapse
Affiliation(s)
- Ane Arregi
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008 San Sebastian, Spain; Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain s/n, 20014 San Sebastian, Spain.
| | - Oscar Vegas
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008 San Sebastian, Spain; Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain s/n, 20014 San Sebastian, Spain
| | - Aitana Lertxundi
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain s/n, 20014 San Sebastian, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Gonzalo García-Baquero
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain s/n, 20014 San Sebastian, Spain; Faculty of Biology, University of Salamanca, Campus Miguel de Unamuno, Avda Licenciado Méndez Nieto s/n, 37007 Salamanca, Spain
| | - Jesus Ibarluzea
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008 San Sebastian, Spain; Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain s/n, 20014 San Sebastian, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, 20013 San Sebastian, Spain
| | - Ainara Andiarena
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008 San Sebastian, Spain; Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain s/n, 20014 San Sebastian, Spain
| | - Izaro Babarro
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain s/n, 20014 San Sebastian, Spain; Faculty of Medicine and Nursing of the University of the Basque Country (UPV/EHU), 20014 Donostia/San Sebastian, Spain
| | - Mikel Subiza-Pérez
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008 San Sebastian, Spain; Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain s/n, 20014 San Sebastian, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bradford Institute for Health Research, Bradford BD9 6RJ, UK
| | - Nerea Lertxundi
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008 San Sebastian, Spain; Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain s/n, 20014 San Sebastian, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
8
|
Kuntic M, Hahad O, Al-Kindi S, Oelze M, Lelieveld J, Daiber A, Münzel T. Pathomechanistic Synergy Between Particulate Matter and Traffic Noise-Induced Cardiovascular Damage and the Classical Risk Factor Hypertension. Antioxid Redox Signal 2024. [PMID: 38874533 DOI: 10.1089/ars.2024.0659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Affiliation(s)
- Marin Kuntic
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Omar Hahad
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Sadeer Al-Kindi
- Cardiovascular Prevention & Wellness and Center for CV Computational & Precision Health, Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, USA
| | - Matthias Oelze
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| |
Collapse
|
9
|
Arregi A, Vegas O, Lertxundi A, Silva A, Ferreira I, Bereziartua A, Cruz MT, Lertxundi N. Road traffic noise exposure and its impact on health: evidence from animal and human studies-chronic stress, inflammation, and oxidative stress as key components of the complex downstream pathway underlying noise-induced non-auditory health effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46820-46839. [PMID: 38977550 PMCID: PMC11297122 DOI: 10.1007/s11356-024-33973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/08/2024] [Indexed: 07/10/2024]
Abstract
In heavily urbanized world saturated with environmental pollutants, road traffic noise stands out as a significant factor contributing to widespread public health issues. It contributes in the development of a diverse range of non-communicable diseases, such as cardiovascular diseases, metabolic dysregulation, cognitive impairment, and neurodegenerative disorders. Although the exact mechanisms behind these non-auditory health effects remain unclear, the noise reaction model centres on the stress response to noise. When exposed to noise, the body activates the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system, leading to the secretion of stress hormones like catecholamines and cortisol. Prolonged exposure to noise-induced stress results in chronic inflammation and oxidative stress. This review underscores the role of inflammation and oxidative stress in the progression of noise-induced vascular dysfunction, disruption of the circadian rhythm, accelerated aging, neuroinflammation, and changes in microbiome. Additionally, our focus is on understanding the interconnected nature of these health outcomes: These interconnected factors create a cascade effect, contributing to the accumulation of multiple risk factors that ultimately lead to severe adverse health effects.
Collapse
Affiliation(s)
- Ane Arregi
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008, San Sebastian, Spain
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
| | - Oscar Vegas
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008, San Sebastian, Spain
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
| | - Aitana Lertxundi
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Ana Silva
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Isabel Ferreira
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Ainhoa Bereziartua
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
| | - Maria Teresa Cruz
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548, Coimbra, Portugal.
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal.
| | - Nerea Lertxundi
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008, San Sebastian, Spain
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain
| |
Collapse
|
10
|
Zhou L, Wu B, Tang M, Li G, Chan W, Song L, Wang J, Zhu L, Lin L, Lian Y. Association between exposure to metalworking fluid aerosols, occupational noise and chronic kidney disease: a cross-sectional study in China. BMC Public Health 2024; 24:1495. [PMID: 38835007 DOI: 10.1186/s12889-024-19006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) carries a high public health burden yet little is known about the relationship between metalworking fluid (MWF) aerosols, occupational noise and CKD. We aimed to explore the relationship between occupational MWF aerosols, occupational noise and CKD. METHODS A total of 2,738 machinists were sampled from three machining companies in Wuxi, China, in 2022. We used the National Institute for Occupational Safety and Health (NIOSH) method 5524 to collect individual samples for MWF aerosols exposure, and the Chinese national standard (GBZ/T 189.8-2007) method to test individual occupational noise exposure. The diagnostic criteria for CKD were urinary albumin/creatinine ratio (UACR) of ≥ 30 mg/g and reduced renal function (eGFR < 60 mL.min- 1. 1.73 m- 2) lasting longer than 3 months. Smooth curve fitting was conducted to analyze the associations of MWF aerosols and occupational noise with CKD. A segmented regression model was used to analyze the threshold effects. RESULTS Workers exposed to MWF aerosols (odds ratio [OR] = 2.03, 95% confidence interval [CI]: 1.21-3.41) and occupational noise (OR = 1.77, 95%CI: 1.06-2.96) had higher prevalence of CKD than nonexposed workers. A nonlinear and positive association was found between increasing MWF aerosols and occupational noise dose and the risk of CKD. When daily cumulative exposure dose of MWF aerosols exceeded 8.03 mg/m3, the OR was 1.24 (95%CI: 1.03-1.58), and when occupational noise exceeded 87.22 dB(A), the OR was 1.16 (95%CI: 1.04-1.20). In the interactive analysis between MWF aerosols and occupational noise, the workers exposed to both MWF aerosols (cumulative exposure ≥ 8.03 mg/m3-day) and occupational noise (LEX,8 h ≥ 87.22 dB(A)) had an increased prevalence of CKD (OR = 2.71, 95%CI: 1.48-4.96). MWF aerosols and occupational noise had a positive interaction in prevalence of CKD. CONCLUSIONS Occupational MWF aerosols and noise were positively and nonlinearly associated with CKD, and cumulative MWF aerosols and noise exposure showed a positive interaction with CKD. These findings emphasize the importance of assessing kidney function of workers exposed to MWF aerosols and occupational noise. Prospective and longitudinal cohort studies are necessary to elucidate the causality of these associations.
Collapse
Affiliation(s)
- Li Zhou
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Se Yuan Road, No. 9, Nantong, Jiangsu, 226001, China
| | - Beining Wu
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Se Yuan Road, No. 9, Nantong, Jiangsu, 226001, China
| | - Minzhu Tang
- Wuxi Eighth People's Hospital, Wuxi, Jiangsu, China
| | - Geyang Li
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Se Yuan Road, No. 9, Nantong, Jiangsu, 226001, China
| | - Weiling Chan
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Se Yuan Road, No. 9, Nantong, Jiangsu, 226001, China
| | - Lin Song
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Se Yuan Road, No. 9, Nantong, Jiangsu, 226001, China
| | - Jin Wang
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Se Yuan Road, No. 9, Nantong, Jiangsu, 226001, China
| | - Lejia Zhu
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Se Yuan Road, No. 9, Nantong, Jiangsu, 226001, China
| | - Lan Lin
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Se Yuan Road, No. 9, Nantong, Jiangsu, 226001, China
| | - Yulong Lian
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Se Yuan Road, No. 9, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
11
|
Yang JH, Liu WZ, Sun Y, Zhao QK, Zhang XT, Xia ZL, Au W, Sun P. An exploration of biomarkers for noise exposure: mitochondrial DNA copy number and micronucleus frequencies in Chinese workers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2430-2440. [PMID: 37669754 DOI: 10.1080/09603123.2023.2253739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/26/2023] [Indexed: 09/07/2023]
Abstract
Few studies have been conducted that use biomarkers as early warning signals for noise-associated health hazards. To explore potentially effective biomarkers for noise-exposed populations, we recruited 218 noise-exposed male workers in China. We calculated cumulative noise exposure (CNE) through noise intensity and noise-exposed duration. When the model was fully adjusted, ln-transformed relative mitochondrial DNA copy number (mtDNAcn) decreased by 0.014 (95% confidence interval (CI): -0.026, -0.003) units with each 1 dB(A)∙year increase in CNE levels. CNE was further included in the model as a grouping variable, and the results showed a negative dose-effect relationship between relative mtDNAcn and CNE (P-trend = 0.045). However, we did not find a correlation between CNE and micronucleus (MN) frequencies. Our findings suggest that CNE in workers was associated with a decrease in relative mtDNAcn which may provide a potential biomarker for noise and for certain health risk but not with MN frequencies.
Collapse
Affiliation(s)
- Jia-Hao Yang
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - Wu-Zhong Liu
- Occupational Health, Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - Yuan Sun
- Occupational Health, Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - Qian-Kui Zhao
- Occupational Health, Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - Xue-Tao Zhang
- Occupational Health, Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - Zhao-Lin Xia
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - William Au
- Pharmacy, Science and Technology, University of Medicine, Targu Mures, Romania
- Occupational Health, University of Texas Medical Branch, Galveston, TX, USA
| | - Pin Sun
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Wang H, Chai Y, Xu Y, Wang Y, Li J, Zhang R, Bao J. Long-term music stimulating alleviated the inflammatory responses caused by acute noise stress on the immune organs of broilers by NF-κB signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116131. [PMID: 38412629 DOI: 10.1016/j.ecoenv.2024.116131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
As an environmental enrichment, music can positively influence the immune function, while noise has an adverse effect on the physical and mental health of humans and animals. However, whether music-enriched environments mitigate noise-induced acute stress remains unclear. To investigate the anti-inflammatory effects of music on the immune organs of broiler chickens under conditions of early-life acute noise stress, 140 one-day-old white feather broilers (AA) were randomly divided into four groups: control (C), the music stimulation (M) group, the acute noise stimulation (N) group, the acute noise stimulation followed by music (NM) group. At 14 days of age, the N and NM groups received 120 dB noise stimulation for 10 min for one week. After acute noise stimulation, the NM group and M group were subjected to continuous music stimulation for 14 days (6 h per day, 60 dB). At 28 days of age, the body temperature of the chicks, the histopathological changes, quantification of ROS-positive density and apoptosis positivity in tissues of spleen, thymus, and bursa of Fabricius (BF) were measured. The results showed that acute noise stimulation led to an increase in the number and area of splenic microsomes and the cortex/medulla ratio of the detected immune organs. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) of immune tissues of broilers in N group were decreased compared to the broilers in C group, while the mRNA levels of malondialdehyde (MDA), TNF-α, IL-1, and IL-1β increased. In addition, the gene and protein expression levels of IKK, NF-κB, and IFN-γ of three immune organs from broilers in the N group were increased. Compared to the C and N group, chickens from the NM group showed a decrease in the number and area of splenic follicles, an increase in the activities of SOD and GSH-Px, and a decrease in the expression levels of MDA, TNF-α, IL-1, and IL-1β. Therefore, a music-enriched environment can attenuate oxidative stress induced by acute noise stimulation, inhibiting the activation of the NF-κB signaling pathway and consequently alleviating the inflammatory response in immune organs.
Collapse
Affiliation(s)
- Haowen Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yiwen Chai
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yandong Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yulai Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| |
Collapse
|
13
|
Caminiti R, Carresi C, Mollace R, Macrì R, Scarano F, Oppedisano F, Maiuolo J, Serra M, Ruga S, Nucera S, Tavernese A, Gliozzi M, Musolino V, Palma E, Muscoli C, Rubattu S, Volterrani M, Federici M, Volpe M, Mollace V. The potential effect of natural antioxidants on endothelial dysfunction associated with arterial hypertension. Front Cardiovasc Med 2024; 11:1345218. [PMID: 38370153 PMCID: PMC10869541 DOI: 10.3389/fcvm.2024.1345218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Arterial hypertension represents a leading cause of cardiovascular morbidity and mortality worldwide, and the identification of effective solutions for treating the early stages of elevated blood pressure (BP) is still a relevant issue for cardiovascular risk prevention. The pathophysiological basis for the occurrence of elevated BP and the onset of arterial hypertension have been widely studied in recent years. In addition, consistent progress in the development of novel, powerful, antihypertensive drugs and their appropriate applications in controlling BP have increased our potential for successfully managing disease states characterized by abnormal blood pressure. However, the mechanisms responsible for the disruption of endogenous mechanisms contributing to the maintenance of BP within a normal range are yet to be fully clarified. Recently, evidence has shown that several natural antioxidants containing active ingredients originating from natural plant extracts, used alone or in combination, may represent a valid solution for counteracting the development of arterial hypertension. In particular, there is evidence to show that natural antioxidants may enhance the viability of endothelial cells undergoing oxidative damage, an effect that could play a crucial role in the pathophysiological events accompanying the early stages of arterial hypertension. The present review aims to reassess the role of oxidative stress on endothelial dysfunction in the onset and progression of arterial hypertension and that of natural antioxidants in covering several unmet needs in the treatment of such diseases.
Collapse
Affiliation(s)
- Rosamaria Caminiti
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Cristina Carresi
- Department of Health Sciences, Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rocco Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Department of Systems Medicine, University “Tor Vergata” of Rome, Rome, Italy
| | - Roberta Macrì
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Federica Scarano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Maria Serra
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Stefano Ruga
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Saverio Nucera
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Annamaria Tavernese
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Micaela Gliozzi
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Carolina Muscoli
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- IRCCS San Raffaele Roma, Rome, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Italy
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University, Rome, Italy
| | | | - Massimo Federici
- Department of Systems Medicine, University “Tor Vergata” of Rome, Rome, Italy
| | | | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Renato Dulbecco Institute, Catanzaro, Italy
| |
Collapse
|
14
|
Sørensen M, Pershagen G, Thacher JD, Lanki T, Wicki B, Röösli M, Vienneau D, Cantuaria ML, Schmidt JH, Aasvang GM, Al-Kindi S, Osborne MT, Wenzel P, Sastre J, Fleming I, Schulz R, Hahad O, Kuntic M, Zielonka J, Sies H, Grune T, Frenis K, Münzel T, Daiber A. Health position paper and redox perspectives - Disease burden by transportation noise. Redox Biol 2024; 69:102995. [PMID: 38142584 PMCID: PMC10788624 DOI: 10.1016/j.redox.2023.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023] Open
Abstract
Transportation noise is a ubiquitous urban exposure. In 2018, the World Health Organization concluded that chronic exposure to road traffic noise is a risk factor for ischemic heart disease. In contrast, they concluded that the quality of evidence for a link to other diseases was very low to moderate. Since then, several studies on the impact of noise on various diseases have been published. Also, studies investigating the mechanistic pathways underlying noise-induced health effects are emerging. We review the current evidence regarding effects of noise on health and the related disease-mechanisms. Several high-quality cohort studies consistently found road traffic noise to be associated with a higher risk of ischemic heart disease, heart failure, diabetes, and all-cause mortality. Furthermore, recent studies have indicated that road traffic and railway noise may increase the risk of diseases not commonly investigated in an environmental noise context, including breast cancer, dementia, and tinnitus. The harmful effects of noise are related to activation of a physiological stress response and nighttime sleep disturbance. Oxidative stress and inflammation downstream of stress hormone signaling and dysregulated circadian rhythms are identified as major disease-relevant pathomechanistic drivers. We discuss the role of reactive oxygen species and present results from antioxidant interventions. Lastly, we provide an overview of oxidative stress markers and adverse redox processes reported for noise-exposed animals and humans. This position paper summarizes all available epidemiological, clinical, and preclinical evidence of transportation noise as an important environmental risk factor for public health and discusses its implications on the population level.
Collapse
Affiliation(s)
- Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Denmark.
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesse Daniel Thacher
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Timo Lanki
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland; School of Medicine, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Benedikt Wicki
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Manuella Lech Cantuaria
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Jesper Hvass Schmidt
- Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Gunn Marit Aasvang
- Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Sadeer Al-Kindi
- Department of Medicine, University Hospitals, Harrington Heart & Vascular Institute, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Michael T Osborne
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Philip Wenzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Spain
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt Am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Rainer Schulz
- Institute of Physiology, Faculty of Medicine, Justus-Liebig University, Gießen, 35392, Gießen, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Katie Frenis
- Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
15
|
Hu J, Liu B, Cui H, Liu Y, Wan N, Li L, Zheng L, Wang X, Yang Z, Ma Y, Liu C, Qiao C, Wen D. Dose-response associations of maternal prenatal noise exposure duration with antepartum depression status. BMC Pregnancy Childbirth 2024; 24:7. [PMID: 38166840 PMCID: PMC10759523 DOI: 10.1186/s12884-023-06200-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Antepartum depression has been reported to be associated with the intensity of maternal prenatal noise exposure; however, the association between noise exposure duration and the development of antepartum depression has not been established. This study aimed to determine the total and trimester-specific association of prenatal noise exposure duration with the development of antepartum depression. METHODS From May 2018 to June 2021, we recruited 2,166 pregnant women from Shengjing Hospital, northeast China. We used a standardized questionnaire to assess women's prenatal noise exposure and used the Edinburgh Postnatal Depression Scale to assess pregnant women's antepartum depression during the 1st -, 2nd -, and 3rd - trimesters. We calculated a cumulative noise exposure score ranging from 0 to 3, with a higher score reflecting higher frequency and longer duration of noise exposure during pregnancy. RESULTS Women who were exposed to noise for ≥ 15 min per day had an increased risk of antepartum depression compared with women who were not exposed to noise during pregnancy [odds ratio (OR) = 1.83, 95%CI:1.18, 2.83]. Noise exposure in a specific trimester was associated with higher risk of depression in the same trimester and subsequent trimesters. We observed increases in antepartum depression risk with increasing cumulative noise exposure scores (P for trend < 0.05 for all). Pregnant women with the highest scores had the highest risk of antepartum depression during the first (OR = 1.30, 95%CI:1.02, 1.65), second (OR = 1.75, 95%CI:1.23, 2.50) trimesters. Women with a cumulative noise exposure score of 2 had the highest risk of antepartum depression during the third trimester (OR = 1.79, 95%CI:1.14, 2.80), as well as during the whole pregnancy (OR = 1.94, 95%CI:1.14, 3.30). CONCLUSIONS Maternal prenatal noise exposure duration was positively associated with antepartum depression risk in a dose-response manner. It is necessary to develop strategies by which pregnant women can avoid excessive exposure to noise to prevent antepartum depression.
Collapse
Affiliation(s)
- Jiajin Hu
- Health Sciences Institute, China Medical University, Shenyang, 110122, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, 110122, China
- Division of Chronic Disease Research across the Lifecourse, Department of Population Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Borui Liu
- Health Sciences Institute, China Medical University, Shenyang, 110122, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, 110122, China
| | - Hong Cui
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, 110122, China
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, 110004, China
| | - Yilin Liu
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, 110122, China
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, 110004, China
| | - Ningyu Wan
- Health Sciences Institute, China Medical University, Shenyang, 110122, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, 110122, China
| | - Lin Li
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, 110122, China
- Department of Developmental Pediatrics, Shengjing Hospital of China Medical University, China Medical University, Shenyang, 110004, China
| | - Lu Zheng
- Health Sciences Institute, China Medical University, Shenyang, 110122, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, 110122, China
| | - Xiaochuan Wang
- Health Sciences Institute, China Medical University, Shenyang, 110122, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, 110122, China
| | - Zhe Yang
- Health Sciences Institute, China Medical University, Shenyang, 110122, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, 110122, China
| | - Yanan Ma
- Department of Epidemiology and Health Statistics, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Caixia Liu
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, 110122, China.
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, 110004, China.
| | - Chong Qiao
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, 110122, China.
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, 110004, China.
| | - Deliang Wen
- Health Sciences Institute, China Medical University, Shenyang, 110122, China.
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, 110122, China.
- Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China.
| |
Collapse
|
16
|
Xue Y, Lu B, He Y, Lu M. Evaluation on the Effect of Ward-Noise Reduction Management Combined with Monitoring-Training-Planning Management Mode in Hospitalized Patients with Heart Failure. Noise Health 2024; 26:30-36. [PMID: 38570308 PMCID: PMC11141696 DOI: 10.4103/nah.nah_80_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/04/2023] [Accepted: 01/29/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Noise from medical institutions such as hospitals usually exceeds the level recommended by the World Health Organization. This study aimed to explore the application effect of ward-noise reduction management combined with monitoring-training-planning (MTP) management mode in hospitalized patients with heart failure. MATERIALS AND METHODS Among the 168 research objects, 55 patients with heart failure receiving ward-noise reduction management combined with MTP management mode from April 2022 to March 2023 were included in group A, 52 patients with heart failure who underwent MTP management mode from March 2021 to March 2022 were selected as group B, and 61 patients who underwent routine management measures from March 2020 to February 2021 served as the control group. The vital signs, Self-rating Anxiety Scale (SAS) scores, Self-rating Depression Scale (SDS) scores, physical function indices, sleep quality score, and satisfaction degree of patients in the three groups were compared before and after management. RESULTS After 1 month of management, group A had lower heart rate, diastolic blood pressure, systolic blood pressure, and respiratory rate compared to group B and the control group (P < 0.001). The SAS score, SDS score, and Pittsburgh Sleep Quality Index score after management in group A were lower than those in group B and the control group (P < 0.001). Group A had a higher 6-Minute Walk Distance than group B and the control group (P < 0.001). Group A had a higher satisfaction degree after management compared to group B (P < 0.01) and the control group (P < 0.001). Group A had lower noise level than group B and the control group (P < 0.001), and there was no significant difference in noise level between group B and the control group (P > 0.05). CONCLUSION Ward-noise reduction management combined with MTP management mode can reduce the noise level in the ward and improve the psychological state and sleep quality of patients with heart failure.
Collapse
Affiliation(s)
- Yuan Xue
- Cardiology Department, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Bingqing Lu
- Cardiology Department, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Yongming He
- Cardiology Department, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Minxia Lu
- Cardiology Department, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| |
Collapse
|
17
|
Zhou YY, Sun JH, Wang L, Cheng YY. Genetic Polymorphism of NQO1 Influences Susceptibility to Coronary Heart Disease in a Chinese Population: A Cross-Sectional Study and Meta-Anaylsis. Pharmgenomics Pers Med 2023; 16:825-833. [PMID: 37720192 PMCID: PMC10503550 DOI: 10.2147/pgpm.s420874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/11/2023] [Indexed: 09/19/2023] Open
Abstract
Objective The present study is to explore the association between NQO1 gene polymorphism and coronary heart disease (CHD) risk. Methods This research were selected 80 CHD patients as the observation group and 130 healthy people who participated in normal physical examination during the same period as the control group. NQO1 gene polymorphism was detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. In addition, we conducted a meta-analysis to summarize the results of three relevant previously published adult population studies on the association between NQO1 gene polymorphism and coronary heart disease (CHD) risk. Results There were three genotypes (CC, CT, and TT) for NQO1 C609T polymorphism. The significant associations were found in TT genotype and T allele (all p<0.05). Specifically, People with the TT genotype have 2.06 times CHD risk as those with the CC genotype. And People with the T allele have 1.62 times CHD risk as those with the C allele. No significant association was found by any genetic models in the meta-analysis (all p >0.05). Conclusion NQO1 gene polymorphism increased the CHD risk in a Chinese population. Combined with individual gene polymorphism, the accuracy of risk assessment for CHD can be improved and individualized health education can be provided for CHD patients by nurses.
Collapse
Affiliation(s)
- Ying-Yan Zhou
- Department of Cardiovascular Medicine, Haikou Third People's Hospital, Haikou, 571700, People’s Republic of China
| | - Jing-Hua Sun
- Department of Laboratory Medicine, First Medical Centre of Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Li Wang
- Department of Cardiovascular Medicine, Haikou Third People's Hospital, Haikou, 571700, People’s Republic of China
| | - Yan-Yan Cheng
- Department of Cardiovascular Medicine, Haikou Third People's Hospital, Haikou, 571700, People’s Republic of China
| |
Collapse
|
18
|
Fu X, Wang L, Yuan L, Hu H, Li T, Zhang J, Ke Y, Wang M, Gao Y, Huo W, Chen Y, Zhang W, Liu J, Huang Z, Zhao Y, Hu F, Zhang M, Liu Y, Sun X, Hu D. Long-Term Exposure to Traffic Noise and Risk of Incident Cardiovascular Diseases: a Systematic Review and Dose-Response Meta-Analysis. J Urban Health 2023; 100:788-801. [PMID: 37580544 PMCID: PMC10447855 DOI: 10.1007/s11524-023-00769-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/16/2023]
Abstract
While noise pollution from transportation has become an important public health problem, the relationships between different sources of traffic noise and cardiovascular diseases (CVDs) remain inconclusive. A comprehensive meta-analysis was therefore conducted to quantitatively assess the effects of long-term exposure to road traffic, railway, and aircraft noise on CVDs and relevant subtypes. We systematically retrieved PubMed, Embase, and Web of Science for articles published before April 4, 2022. Summary relative risks (RRs) and 95% confidence intervals (CIs) were estimated by the fixed- or random-effects models. In total, 23 articles were included in our meta-analysis. The risk of CVDs increased by 2% (RR 1.020, 95% CI 1.006-1.035) and 1.6% (RR 1.016, 95% CI 1.000-1.032) for every 10 dB increment of road traffic and aircraft noise. For CVD subtypes, the risk increased by 3.4% (1.034, 1.026-1.043) for stroke and 5% (1.050, 1.006-1.096) for heart failure with each 10 dB increment of road traffic noise; the risk of atrial fibrillation increased by 1.1% (1.011, 1.002-1.021) with each 10 dB increment of railway noise; and the risk increased by 1% (1.010, 1.003-1.017) for myocardial infarction, 2.7% (1.027, 1.004-1.050) for atrial fibrillation, and 2.3% (1.023, 1.016-1.030) for heart failure with each 10 dB increment in aircraft noise. Further, effects from road traffic, railway, and aircraft noise all followed positive linear trends with CVDs. Long-term exposure to traffic noise is positively related to the incidence risk of cardiovascular events, especially road traffic noise which significantly increases the risk of CVDs, stroke, and heart failure.
Collapse
Affiliation(s)
- Xueru Fu
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China, No. 47 Youyi Road, Luohu District, Shenzhen, Guangdong, 518001, People's Republic of China
| | - Longkang Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Lijun Yuan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Huifang Hu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Tianze Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jinli Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yamin Ke
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Mengmeng Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yajuan Gao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Weifeng Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yaobing Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Wenkai Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jiong Liu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Zelin Huang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Yang Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Ming Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Yu Liu
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China, No. 47 Youyi Road, Luohu District, Shenzhen, Guangdong, 518001, People's Republic of China
| | - Xizhuo Sun
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China, No. 47 Youyi Road, Luohu District, Shenzhen, Guangdong, 518001, People's Republic of China
| | - Dongsheng Hu
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China, No. 47 Youyi Road, Luohu District, Shenzhen, Guangdong, 518001, People's Republic of China.
| |
Collapse
|
19
|
Veber T, Pyko A, Carlsen HK, Holm M, Gislason T, Janson C, Johannessen A, Sommar JN, Modig L, Lindberg E, Schlünssen V, Toompere K, Orru H. Traffic noise in the bedroom in association with markers of obesity: a cross-sectional study and mediation analysis of the respiratory health in Northern Europe cohort. BMC Public Health 2023; 23:1246. [PMID: 37370100 DOI: 10.1186/s12889-023-16128-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Previous research suggests an association between road traffic noise and obesity, but current evidence is inconclusive. The aim of this study was to assess the association between nocturnal noise exposure and markers of obesity and to assess whether sleep disturbance might be a mediator in this association. METHODS We applied data from the Respiratory Health in Northern Europe (RHINE) cohort. We used self-measured waist circumference (WC) and body mass index (BMI) as outcome values. Noise exposure was assessed as perceived traffic noise in the bedroom and/or the bedroom window's location towards the street. We applied adjusted linear, and logistic regression models, evaluated effect modifications and conducted mediation analysis. RESULTS Based on fully adjusted models we found that women, who reported very high traffic noise levels in bedroom, had 1.30 (95% CI 0.24-2.37) kg/m2 higher BMI and 3.30 (95% CI 0.39-6.20) cm higher WC compared to women, who reported no traffic noise in the bedroom. Women who reported higher exposure to road traffic noise had statistically significant higher odds of being overweight and have abdominal obesity with OR varying from 1.15 to 1.26 compared to women, who reported no traffic noise in the bedroom. For men, the associations were rather opposite, although mostly statistically insignificant. Furthermore, men, who reported much or very much traffic noise in the bedroom, had a statistically significantly lower risk of abdominal obesity. Sleep disturbance fully or partially mediated the association between noise in bedroom and obesity markers among women. CONCLUSION Our results suggest that self-reported traffic noise in the bedroom may be associated to being overweight or obese trough sleep disturbance among women, but associations were inconclusive among men.
Collapse
Affiliation(s)
- Triin Veber
- Institute of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
| | - Andrei Pyko
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hanne Krage Carlsen
- Department of Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mathias Holm
- Department of Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Ane Johannessen
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Johan Nilsson Sommar
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Lars Modig
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Eva Lindberg
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Vivi Schlünssen
- Research Unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Karolin Toompere
- Institute of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
| | - Hans Orru
- Institute of Family Medicine and Public Health, University of Tartu, Tartu, Estonia.
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.
| |
Collapse
|
20
|
Coombs H, Wootton T, Dillner J, Müller H, Berger A, Kozlakidis Z. Creating personas for exposome research: the experience from the HEAP project. OPEN RESEARCH EUROPE 2023; 3:28. [PMID: 37645511 PMCID: PMC10445937 DOI: 10.12688/openreseurope.15474.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 08/31/2023]
Abstract
The exposome is a complex scientific field that has enjoyed consistent growth over the last two decades, defined as the composite of every exposure to which an individual is subjected from conception to death. The study of the exposome requires consideration of both the nature of those exposures and their changes over time, and as such necessitates high quality data and software solutions. As the exposome is both a broad and a recent concept, it is challenging to define or to introduce in a structured way. Thus, an approach to assist with clear definitions and a structured framework is needed for the wider scientific and public communication. Results: A set of 14 personas were developed through three focus groups and a series of 14 semi-structured interviews. The focus groups defined the broad themes specific to exposome research, while the sub-themes emerged to saturation via the interviews process. Personas are imaginary individuals that represent segments/groups of real people within a population. Within the context of the HEAP project, the created personas represented both exposome data generators and users. Conclusion: Personas have been implemented successfully in computer science, improving the understanding of human-computer interaction. The creation of personas specific to exposome research adds a useful tool supporting education and outreach activities for a complex scientific field.
Collapse
Affiliation(s)
- Heather Coombs
- Learning and Capacity Building, International Agency for Research on Cancer, Lyon, 69337, France
| | - Tracy Wootton
- Laboratory Services and Biobanking, International Agency for Research on Cancer, Lyon, 69337, France
| | - Joakim Dillner
- Infectious Disease Epidemiology, Karolinska Institute, Stockholm, Sweden
| | - Heimo Müller
- Information Science and Machine Learning, Medical University of Graz, Graz, Austria
| | - Anouk Berger
- Learning and Capacity Building, International Agency for Research on Cancer, Lyon, 69337, France
| | - Zisis Kozlakidis
- Laboratory Services and Biobanking, International Agency for Research on Cancer, Lyon, 69337, France
| |
Collapse
|
21
|
Discovery of associative patterns between workplace sound level and physiological wellbeing using wearable devices and empirical Bayes modeling. NPJ Digit Med 2023; 6:5. [PMID: 36639725 PMCID: PMC9839735 DOI: 10.1038/s41746-022-00727-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/29/2022] [Indexed: 01/15/2023] Open
Abstract
We conducted a field study using multiple wearable devices on 231 federal office workers to assess the impact of the indoor environment on individual wellbeing. Past research has established that the workplace environment is closely tied to an individual's wellbeing. Since sound is the most-reported environmental factor causing stress and discomfort, we focus on quantifying its association with physiological wellbeing. Physiological wellbeing is represented as a latent variable in an empirical Bayes model with heart rate variability measures-SDNN and normalized-HF as the observed outcomes and with exogenous factors including sound level as inputs. We find that an individual's physiological wellbeing is optimal when sound level in the workplace is at 50 dBA. At lower (<50dBA) and higher (>50dBA) amplitude ranges, a 10 dBA increase in sound level is related to a 5.4% increase and 1.9% decrease in physiological wellbeing respectively. Age, body-mass-index, high blood pressure, anxiety, and computer use intensive work are person-level factors contributing to heterogeneity in the sound-wellbeing association.
Collapse
|
22
|
Zhang J, Yan H, Wang D. Effects of Acoustic Environment Types on Stress Relief in Urban Parks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1082. [PMID: 36673837 PMCID: PMC9859344 DOI: 10.3390/ijerph20021082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Urban public space environments are critical to the health of residents. In previous studies on urban park environments and health, landscape environment questionnaires have been the main method to evaluate the environmental quality and comfort of urban parks. The research on sound perception also focuses on the exploration of evaluation methods and evaluation indicators; there is little objective empirical evidence in these studies. To further explore the nature of the health role of urban parks, this study started with the sound types of urban parks, based on a field survey, combined the electrocardiogram (ECG) index with the sound type of the park through a portable intelligent device, and HR and RMSSD were selected as the ECG indicators to evaluate the stress relief status. The regression model between the type of acoustic environments and the ECG data was established through the analysis of relevant data. This paper tries to improve the physiological recovery benefit and influence mechanism of sound types in urban parks from an objective point of view and puts forward reasonable suggestions to improve the sound environment in urban parks. The preliminary results show that, in a short time frame, natural sound has a strong relieving effect on mental pressure, while mechanical sound has an obvious impediment effect on the recovery of mental pressure. The results also reveal that the human voice has no obvious impediment effect, and changes in wind and broadcast sound have little impact on the recovery of mental pressure.
Collapse
Affiliation(s)
| | - Hongliang Yan
- School of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | | |
Collapse
|
23
|
Fredianelli L, Lercher P, Licitra G. New Indicators for the Assessment and Prevention of Noise Nuisance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12724. [PMID: 36232026 PMCID: PMC9566525 DOI: 10.3390/ijerph191912724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
At present, health effects induced by prolonged noise exposure are widely studied to determine the most spread noise sources and their effects [...]
Collapse
Affiliation(s)
- Luca Fredianelli
- Institute of Chemical and Physical Processes of National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Peter Lercher
- Institute for Highway Engineering and Transport Planning of Graz University of Technology, Rechbauerstraße 12/II, 8010 Graz, Austria
| | - Gaetano Licitra
- Institute of Chemical and Physical Processes of National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy
- Environmental Protection Agency of Tuscany Region, Via Vittorio Veneto 27, 56127 Pisa, Italy
| |
Collapse
|
24
|
Research on the Effects of Soundscapes on Human Psychological Health in an Old Community of a Cold Region. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127212. [PMID: 35742461 PMCID: PMC9223413 DOI: 10.3390/ijerph19127212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022]
Abstract
The acoustic environment of residential areas is critical to the health of the residents. To reveal the impact of the acoustic environment on people's mental health and create a satisfactory acoustic setting, this study took a typical old residential area in Harbin as an example, conducted a field measurement and questionnaire survey on it, and took typical acoustic sources as the research object for human body index measurement. The relationship between heart rate (HR), skin conductivity level (SCL), physiological indicators, semantic differences (SD), and psychological indicators was studied. The sound distribution in the old community was obtained, determining that gender, age, and education level are significant factors producing different sound source evaluations. Music can alleviate residents' psychological depression, while traffic sounds and residents' psychological state can affect the satisfaction evaluation of the sound environment. There is a significant correlation between the physiological and psychological changes produced by different sounds. Pleasant sounds increase a person's HR and decrease skin conductivity. The subjects' HR increased 3.24 times per minute on average, and SCL decreased 1.65 times per minute on average in relation to hearing various sound sources. The SD evaluation showed that lively, pleasant, and attractive birdsongs and music produced the greatest HR and SCL changes, and that the sound barrier works best when placed 8 m and 18 m from the road.
Collapse
|
25
|
Frenis K, Kalinovic S, Ernst BP, Kvandova M, Al Zuabi A, Kuntic M, Oelze M, Stamm P, Bayo Jimenez MT, Kij A, Keppeler K, Klein V, Strohm L, Ubbens H, Daub S, Hahad O, Kröller-Schön S, Schmeisser MJ, Chlopicki S, Eckrich J, Strieth S, Daiber A, Steven S, Münzel T. Long-Term Effects of Aircraft Noise Exposure on Vascular Oxidative Stress, Endothelial Function and Blood Pressure: No Evidence for Adaptation or Tolerance Development. Front Mol Biosci 2022; 8:814921. [PMID: 35174211 PMCID: PMC8841864 DOI: 10.3389/fmolb.2021.814921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Transportation noise is recognized as an important cardiovascular risk factor. Key mechanisms are noise-triggered vascular inflammation and oxidative stress with subsequent endothelial dysfunction. Here, we test for adaptation or tolerance mechanisms in mice in response to chronic noise exposure. C57BL/6J mice were exposed to aircraft noise for 0, 4, 7, 14 and 28d at a mean sound pressure level of 72 dB(A) and peak levels of 85 dB(A). Chronic aircraft noise exposure up to 28d caused persistent endothelial dysfunction and elevation of blood pressure. Likewise, reactive oxygen species (ROS) formation as determined by dihydroethidium (DHE) staining and HPLC-based measurement of superoxide formation in the aorta/heart/brain was time-dependently increased by noise. Oxidative burst in the whole blood showed a maximum at 4d or 7d of noise exposure. Increased superoxide formation in the brain was mirrored by a downregulation of neuronal nitric oxide synthase (Nos3) and transcription factor Foxo3 genes, whereas Vcam1 mRNA, a marker for inflammation was upregulated in all noise exposure groups. Induction of a pronounced hearing loss in the mice was excluded by auditory brainstem response audiometry. Endothelial dysfunction and inflammation were present during the entire 28d of aircraft noise exposure. ROS formation gradually increases with ongoing exposure without significant adaptation or tolerance in mice in response to chronic noise stress at moderate levels. These data further illustrate health side effects of long-term noise exposure and further strengthen a consequent implementation of the WHO noise guidelines in order to prevent the development of noise-related future cardiovascular disease.
Collapse
Affiliation(s)
- Katie Frenis
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Boston Children’s Hospital and Harvard Medical School, Department of Hematology/Oncology, Boston, MA, United States
| | - Sanela Kalinovic
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Benjamin P. Ernst
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Miroslava Kvandova
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ahmad Al Zuabi
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias Oelze
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Paul Stamm
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Karin Keppeler
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Veronique Klein
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Lea Strohm
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Henning Ubbens
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Steffen Daub
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Swenja Kröller-Schön
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Michael J. Schmeisser
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Department of Pharmacology, Medical College of the Jagiellonian University, Krakow, Poland
| | - Jonas Eckrich
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- *Correspondence: Andreas Daiber, ; Thomas Münzel,
| | - Sebastian Steven
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- *Correspondence: Andreas Daiber, ; Thomas Münzel,
| |
Collapse
|
26
|
Krzemińska J, Wronka M, Młynarska E, Franczyk B, Rysz J. Arterial Hypertension—Oxidative Stress and Inflammation. Antioxidants (Basel) 2022; 11:antiox11010172. [PMID: 35052676 PMCID: PMC8772909 DOI: 10.3390/antiox11010172] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/18/2022] Open
Abstract
Arterial hypertension (AH) is a major cause of cardiovascular diseases (CVD), leading to dysfunction of many organs, including the heart, blood vessels and kidneys. AH is a multifactorial disease. It has been suggested that the development of each factor is influenced by oxidative stress, which is characterized by a disturbed oxidant-antioxidant balance. Excessive production of reactive oxygen species (ROS) and an impaired antioxidant system promote the development of endothelial dysfunction (ED), inflammation and increased vascular contractility, resulting in remodeling of cardiovascular (CV) tissue. The hope for restoring the proper functioning of the vessels is placed on antioxidants, and pharmacological strategies are still being sought to reverse the harmful effects of free radicals. In our review, we focused on the correlation of AH with oxidative stress and inflammation, which are influenced by many factors, such as diet, supplementation and pharmacotherapy. Studies show that the addition of a single dietary component may have a beneficial effect on blood pressure (BP) values; however, the relationship between the antioxidant/anti-inflammatory properties of individual dietary components and the hypotensive effect is not clear. Moreover, AH pharmacotherapy alleviates the increased oxidative stress, which may help prevent organ damage.
Collapse
|
27
|
Frenis K, Kuntic M, Hahad O, Bayo Jimenez MT, Oelze M, Daub S, Steven S, Münzel T, Daiber A. Redox Switches in Noise-Induced Cardiovascular and Neuronal Dysregulation. Front Mol Biosci 2021; 8:784910. [PMID: 34869603 PMCID: PMC8637611 DOI: 10.3389/fmolb.2021.784910] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Environmental exposures represent a significant health hazard, which cumulatively may be responsible for up to 2/3 of all chronic non-communicable disease and associated mortality (Global Burden of Disease Study and The Lancet Commission on Pollution and Health), which has given rise to a new concept of the exposome: the sum of environmental factors in every individual’s experience. Noise is part of the exposome and is increasingly being investigated as a health risk factor impacting neurological, cardiometabolic, endocrine, and immune health. Beyond the well-characterized effects of high-intensity noise on cochlear damage, noise is relatively well-studied in the cardiovascular field, where evidence is emerging from both human and translational experiments that noise from traffic-related sources could represent a risk factor for hypertension, ischemic heart disease, diabetes, and atherosclerosis. In the present review, we comprehensively discuss the current state of knowledge in the field of noise research. We give a brief survey of the literature documenting experiments in noise exposure in both humans and animals with a focus on cardiovascular disease. We also discuss the mechanisms that have been uncovered in recent years that describe how exposure to noise affects physiological homeostasis, leading to aberrant redox signaling resulting in metabolic and immune consequences, both of which have considerable impact on cardiovascular health. Additionally, we discuss the molecular pathways of redox involvement in the stress responses to noise and how they manifest in disruptions of the circadian rhythm, inflammatory signaling, gut microbiome composition, epigenetic landscape and vessel function.
Collapse
Affiliation(s)
- Katie Frenis
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany.,Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Marin Kuntic
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany
| | - Omar Hahad
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | | | - Matthias Oelze
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany
| | - Steffen Daub
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
28
|
Hahad O, Kuntic M, Frenis K, Chowdhury S, Lelieveld J, Lieb K, Daiber A, Münzel T. Physical Activity in Polluted Air-Net Benefit or Harm to Cardiovascular Health? A Comprehensive Review. Antioxidants (Basel) 2021; 10:1787. [PMID: 34829658 PMCID: PMC8614825 DOI: 10.3390/antiox10111787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022] Open
Abstract
Both exposure to higher levels of polluted air and physical inactivity are crucial risk factors for the development and progression of major noncommunicable diseases and, in particular, of cardiovascular disease. In this context, the World Health Organization estimated 4.2 and 3.2 million global deaths per year in response to ambient air pollution and insufficient physical activity, respectively. While regular physical activity is well known to improve general health, it may also increase the uptake and deposit of air pollutants in the lungs/airways and circulation, due to increased breathing frequency and minute ventilation, thus increasing the risk of cardiovascular disease. Thus, determining the tradeoff between the health benefits of physical activity and the potential harmful effects of increased exposure to air pollution during physical activity has important public health consequences. In the present comprehensive review, we analyzed evidence from human and animal studies on the combined effects of physical activity and air pollution on cardiovascular and other health outcomes. We further report on pathophysiological mechanisms underlying air pollution exposure, as well as the protective effects of physical activity with a focus on oxidative stress and inflammation. Lastly, we provide mitigation strategies and practical recommendations for physical activity in areas with polluted air.
Collapse
Affiliation(s)
- Omar Hahad
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany;
| | - Marin Kuntic
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
| | - Katie Frenis
- Department of Hematology/Oncology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Sourangsu Chowdhury
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55122 Mainz, Germany; (S.C.); (J.L.)
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55122 Mainz, Germany; (S.C.); (J.L.)
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Klaus Lieb
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany;
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| |
Collapse
|
29
|
Home environment and noise disturbance in a national sample of multi-family buildings in Sweden-associations with medical symptoms. BMC Public Health 2021; 21:1989. [PMID: 34732151 PMCID: PMC8565173 DOI: 10.1186/s12889-021-12069-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Poor acoustic conditions at home can have negative health impact. The aim was to investigate home environment factors and medical symptoms associated with noise disturbance. METHODS All adults (≥18 y) registered in selected apartments in Sweden were invited to participate in a questionnaire survey including medical questions and personal factors. Totally 5775 adults participated (response rate 46%). Information on home environment was obtained through an indoor environment questionnaire. Two-level logistic regression models (individual, municipality) were performed to estimate associations. RESULTS Totally 11.9% reported noise disturbance in general at home. Noise disturbance from voice/radio/TV/music/similar sounds from neighbours (13.2%), scraping sound/footsteps/thumping from neighbours (16.5%) and road traffic (16.1%) were common. Younger age and smoking were related to more noise disturbance and more medical symptoms. Noise disturbance was related to tiredness, headache and difficulty concentrating (OR = 1.70-8.19). Renting the apartment (OR = 2.53) and living above ground floor (OR = 1.37) were related to more noise disturbance in general. Living in newer buildings (constructed from 1986 to 2005) was related to less noise disturbance in general (OR = 0.40-0.59). A warmer climate (OR = 1.95), higher municipality population density (OR = 1.24), a longer living time (OR = 1.34), construction year (1961-1975) (OR = 2.42), renting (OR = 1.80-2.32), living above ground floor (OR = 1.45) and having a bathroom fan (OR = 1.84) were associated with increased noise disturbance from neighbours. Factors associated with increased noise disturbance from installations or ventilation/fans/heat pumps included a warmer climate, higher municipality population density, construction year (1961-1995), renting and any mechanical ventilation. Higher municipality population density, construction year (especially 1961-1985) and renting were associated with more noise disturbance from traffic (OR = 1.77-3.92). Renting the apartment (OR = 1.73) and living above ground floor (OR = 1.60) were related to more severe traffic noise disturbances. Noise disturbance in general was partly a mediator of the effects of old buildings, renting the apartment and lack of mechanical ventilation on medical symptoms (% of total effect mediated by noise disturbance: 19-44.8%). CONCLUSIONS Noise disturbance can be associated medical symptoms. Younger age, smoking, a warmer climate, higher municipality population density and different building factors (e.g. renting the apartment, construction period 1961-1985) can be associated with noise disturbance.
Collapse
|
30
|
Umnyagina IA, Blinova TV, Strakhova LA, Ivanova YV, Troshin VV, Kolesov SA, Fomina YN. Endothelin-1 and nitrogen oxide metabolites in risk diagnostics of arterial hypertension in persons of young and middle ages occupied in harmful working conditions. Klin Lab Diagn 2021; 66:525-532. [PMID: 34543530 DOI: 10.51620/0869-2084-2021-66-9-525-532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hypertension is a global public health problem. One of the reasons contributing to the development of arterial hypertension is endothelial dysfunction, which is expressed in the imbalance of vasoactive indicators of vascular tone - nitrogen oxide and endothelin-1. Monitoring the indicators of endothelial dysfunction in workers exposed to harmful occupational factors will help to identify a risk group for the development of occupationally caused diseases of the cardiovascular system and, in particular, arterial hypertension, for early implementation of preventive measures. This study aims to identify the relationship between endothelin-1, nitrogen oxide metabolites and blood pressure in young and middle-aged people occupied in harmful working conditions, to evaluate the studied parameters as possible markers for diagnosing the risk of hypertension. Two hundred thirty-six (236) employees of young and middle age were examined of one of the metallurgical plants of the Nizhny Novgorod region. In order to characterize the state of vascular tone, a coefficient was used that represents the ratio of the concentration of nitrogen oxide (μmol/L) to endothelin-1 (pg/ml) (NOx/ET-1). It was revealed that in one-third of people with normal and high normal blood pressure, the NOx/ET-1 value was 2-3 times less than in people with optimal blood pressure, which indicates the occurrence of endothelial dysfunction and the possible development of persistent arterial hypertension. Harmful occupational factors negatively affect vascular tone - the value of NOx/ET-1 in individuals exposed to harmful factors was 3-4 times less than in individuals not subjected to such exposure. The NOx/ET-1 coefficient can be used as an informative indicator when monitoring health conditions with an in-depth examination of working people; it can be a criterion for the risk of developing hypertension.
Collapse
Affiliation(s)
- I A Umnyagina
- FBSI «Nizhny Novgorod Research Institute for Hygiene and Occupational Pathology», Rospotrebnadzor
| | - T V Blinova
- FBSI «Nizhny Novgorod Research Institute for Hygiene and Occupational Pathology», Rospotrebnadzor
| | - L A Strakhova
- FBSI «Nizhny Novgorod Research Institute for Hygiene and Occupational Pathology», Rospotrebnadzor
| | - Yu V Ivanova
- FBSI «Nizhny Novgorod Research Institute for Hygiene and Occupational Pathology», Rospotrebnadzor
| | - V V Troshin
- FBSI «Nizhny Novgorod Research Institute for Hygiene and Occupational Pathology», Rospotrebnadzor
| | - S A Kolesov
- FBSI «Nizhny Novgorod Research Institute for Hygiene and Occupational Pathology», Rospotrebnadzor
| | - Yu N Fomina
- FBSI «Nizhny Novgorod Research Institute for Hygiene and Occupational Pathology», Rospotrebnadzor
| |
Collapse
|
31
|
Abstract
Epidemiological studies have found that transportation noise increases the risk of cardiovascular morbidity and mortality, with high-quality evidence for ischaemic heart disease. According to the WHO, ≥1.6 million healthy life-years are lost annually from traffic-related noise in Western Europe. Traffic noise at night causes fragmentation and shortening of sleep, elevation of stress hormone levels, and increased oxidative stress in the vasculature and the brain. These factors can promote vascular dysfunction, inflammation and hypertension, thereby elevating the risk of cardiovascular disease. In this Review, we focus on the indirect, non-auditory cardiovascular health effects of transportation noise. We provide an updated overview of epidemiological research on the effects of transportation noise on cardiovascular risk factors and disease, discuss the mechanistic insights from the latest clinical and experimental studies, and propose new risk markers to address noise-induced cardiovascular effects in the general population. We also explain, in detail, the potential effects of noise on alterations of gene networks, epigenetic pathways, gut microbiota, circadian rhythm, signal transduction along the neuronal-cardiovascular axis, oxidative stress, inflammation and metabolism. Lastly, we describe current and future noise-mitigation strategies and evaluate the status of the existing evidence on noise as a cardiovascular risk factor.
Collapse
|
32
|
Petri D, Licitra G, Vigotti MA, Fredianelli L. Effects of Exposure to Road, Railway, Airport and Recreational Noise on Blood Pressure and Hypertension. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179145. [PMID: 34501735 PMCID: PMC8431620 DOI: 10.3390/ijerph18179145] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022]
Abstract
Noise is one of the most diffused environmental stressors affecting modern life. As such, the scientific community is committed to studying the main emission and transmission mechanisms aiming at reducing citizens' exposure, but is also actively studying the effects that noise has on health. However, scientific literature lacks data on multiple sources of noise and cardiovascular outcomes. The present cross-sectional study aims to evaluate the impact that different types of noise source (road, railway, airport and recreational) in an urban context have on blood pressure variations and hypertension. 517 citizens of Pisa, Italy, were subjected to a structured questionnaire and five measures of blood pressure in one day. Participants were living in the same building for at least 5 years, were aged from 37 to 72 years old and were exposed to one or more noise sources among air traffic, road traffic, railway and recreational noise. Logistic and multivariate linear regression models have been applied in order to assess the association between exposures and health outcomes. The analyses showed that prevalence of high levels of diastolic blood pressure (DBP) is consistent with an increase of 5 dB (A) of night-time noise (β = 0.50 95% CI: 0.18-0.81). Furthermore, increased DBP is also positively associated with more noise sensitive subjects, older than 65 years old, without domestic noise protection, or who never close windows. Among the various noise sources, railway noise was found to be the most associated with DBP (β = 0.68; 95% CI: -1.36, 2.72). The obtained relation between DBP and night-time noise levels reinforces current knowledge.
Collapse
Affiliation(s)
- Davide Petri
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (D.P.); (M.A.V.)
| | - Gaetano Licitra
- Institute for Chemical-Physical Processes, National Research Council, 56124 Pisa, Italy
- Correspondence: (G.L.); (L.F.)
| | - Maria Angela Vigotti
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (D.P.); (M.A.V.)
- Clinical Physiology Institute, National Research Council, 56124 Pisa, Italy
| | - Luca Fredianelli
- IPool S.r.l., Via Cocchi 7, 56121 Pisa, Italy
- Correspondence: (G.L.); (L.F.)
| |
Collapse
|
33
|
Association between moderated level of air pollution and fetal growth: the potential role of noise exposure. Sci Rep 2021; 11:11238. [PMID: 34045628 PMCID: PMC8160128 DOI: 10.1038/s41598-021-90788-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
This study aims to analyze, in a population of singletons, the potential confounding or modifying effect of noise on the relationship between fetal growth restriction (FGR) or small for gestational age (SGA) and environmental exposure to air pollution. All women with single pregnancies living in one of two medium-sized cities (Besançon, Dijon) and who delivered at a university hospital between 2005 and 2009 were included. FGR and SGA were obtained from medical records. Outdoor residential exposure to nitrogen dioxide (NO2) and particulate matter (PM10) was quantified at the mother’s address at delivery over defined pregnancy periods; outdoor noise exposure was considered to be the annual average daily noise levels in the façade of building (LAeq,24 h). Adjusted odds ratios (ORa) were estimated by multivariable logistic regressions. Among the 8994 included pregnancies, 587 presented FGR and 918 presented SGA. In the two-exposure models, for SGA, the ORa for a 10-µg/m3 increase of PM10 during the two last months before delivery was 1.18, 95%CI 1.00–1.41 and for FGR, these ORa were for the first and the third trimesters, and the two last months before delivery: 0.77 (0.61–0.97), 1.38 (1.12–1.70), and 1.35 (1.11–1.66), respectively. Noise was not associated with SGA or FGR and did not confound the relationship between air pollution and SGA or FGR. These results are in favor of an association between PM10 exposure and fetal growth, independent of noise, particularly towards the end of pregnancy, and of a lack of association between noise and fetal growth.
Collapse
|
34
|
Osborne MT, Radfar A, Hassan MZO, Abohashem S, Oberfeld B, Patrich T, Tung B, Wang Y, Ishai A, Scott JA, Shin LM, Fayad ZA, Koenen KC, Rajagopalan S, Pitman RK, Tawakol A. A neurobiological mechanism linking transportation noise to cardiovascular disease in humans. Eur Heart J 2021; 41:772-782. [PMID: 31769799 DOI: 10.1093/eurheartj/ehz820] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/27/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
AIMS Chronic noise exposure associates with increased cardiovascular disease (CVD) risk; however, the role of confounders and the underlying mechanism remain incompletely defined. The amygdala, a limbic centre involved in stress perception, participates in the response to noise. Higher amygdalar metabolic activity (AmygA) associates with increased CVD risk through a mechanism involving heightened arterial inflammation (ArtI). Accordingly, in this retrospective study, we tested whether greater noise exposure associates with higher: (i) AmygA, (ii) ArtI, and (iii) risk for major adverse cardiovascular disease events (MACE). METHODS AND RESULTS Adults (N = 498) without CVD or active cancer underwent clinical 18F-fluorodeoxyglucose positron emission tomography/computed tomography imaging. Amygdalar metabolic activity and ArtI were measured, and MACE within 5 years was adjudicated. Average 24-h transportation noise and potential confounders were estimated at each individual's home address. Over a median 4.06 years, 40 individuals experienced MACE. Higher noise exposure (per 5 dBA increase) predicted MACE [hazard ratio (95% confidence interval, CI) 1.341 (1.147-1.567), P < 0.001] and remained robust to multivariable adjustments. Higher noise exposure associated with increased AmygA [standardized β (95% CI) 0.112 (0.051-0.174), P < 0.001] and ArtI [0.045 (0.001-0.090), P = 0.047]. Mediation analysis suggested that higher noise exposure associates with MACE via a serial mechanism involving heightened AmygA and ArtI that accounts for 12-26% of this relationship. CONCLUSION Our findings suggest that noise exposure associates with MACE via a mechanism that begins with increased stress-associated limbic (amygdalar) activity and includes heightened arterial inflammation. This potential neurobiological mechanism linking noise to CVD merits further evaluation in a prospective population.
Collapse
Affiliation(s)
- Michael T Osborne
- Department of Radiology, Cardiac Imaging Research Center, Massachusetts General Hospital, 165 Cambridge St, Suite 400, Boston, MA 02114, USA.,Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114-2750, USA
| | - Azar Radfar
- Department of Radiology, Cardiac Imaging Research Center, Massachusetts General Hospital, 165 Cambridge St, Suite 400, Boston, MA 02114, USA.,Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114-2750, USA
| | - Malek Z O Hassan
- Department of Radiology, Cardiac Imaging Research Center, Massachusetts General Hospital, 165 Cambridge St, Suite 400, Boston, MA 02114, USA
| | - Shady Abohashem
- Department of Radiology, Cardiac Imaging Research Center, Massachusetts General Hospital, 165 Cambridge St, Suite 400, Boston, MA 02114, USA.,Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114-2750, USA
| | - Blake Oberfeld
- Department of Radiology, Cardiac Imaging Research Center, Massachusetts General Hospital, 165 Cambridge St, Suite 400, Boston, MA 02114, USA
| | - Tomas Patrich
- Department of Radiology, Cardiac Imaging Research Center, Massachusetts General Hospital, 165 Cambridge St, Suite 400, Boston, MA 02114, USA
| | - Brian Tung
- Department of Radiology, Cardiac Imaging Research Center, Massachusetts General Hospital, 165 Cambridge St, Suite 400, Boston, MA 02114, USA
| | - Ying Wang
- Department of Radiology, Cardiac Imaging Research Center, Massachusetts General Hospital, 165 Cambridge St, Suite 400, Boston, MA 02114, USA.,Department of Nuclear Medicine, First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, Liaoning Province, China
| | - Amorina Ishai
- Department of Radiology, Cardiac Imaging Research Center, Massachusetts General Hospital, 165 Cambridge St, Suite 400, Boston, MA 02114, USA
| | - James A Scott
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114-2750, USA
| | - Lisa M Shin
- Department of Psychology, Tufts University, 490 Boston Ave, Medford, MA 02115, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114-2750, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, First Floor, New York, NY 10029, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Sanjay Rajagopalan
- Department of Cardiovascular Medicine, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA
| | - Roger K Pitman
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114-2750, USA
| | - Ahmed Tawakol
- Department of Radiology, Cardiac Imaging Research Center, Massachusetts General Hospital, 165 Cambridge St, Suite 400, Boston, MA 02114, USA.,Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114-2750, USA
| |
Collapse
|
35
|
Frenis K, Helmstädter J, Ruan Y, Schramm E, Kalinovic S, Kröller-Schön S, Bayo Jimenez MT, Hahad O, Oelze M, Jiang S, Wenzel P, Sommer CJ, Frauenknecht KBM, Waisman A, Gericke A, Daiber A, Münzel T, Steven S. Ablation of lysozyme M-positive cells prevents aircraft noise-induced vascular damage without improving cerebral side effects. Basic Res Cardiol 2021; 116:31. [PMID: 33929610 PMCID: PMC8087569 DOI: 10.1007/s00395-021-00869-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/13/2021] [Indexed: 12/17/2022]
Abstract
Aircraft noise induces vascular and cerebral inflammation and oxidative stress causing hypertension and cardiovascular/cerebral dysfunction. With the present studies, we sought to determine the role of myeloid cells in the vascular vs. cerebral consequences of exposure to aircraft noise. Toxin-mediated ablation of lysozyme M+ (LysM+) myeloid cells was performed in LysMCreiDTR mice carrying a cre-inducible diphtheria toxin receptor. In the last 4d of toxin treatment, the animals were exposed to noise at maximum and mean sound pressure levels of 85 and 72 dB(A), respectively. Flow cytometry analysis revealed accumulation of CD45+, CD11b+, F4/80+, and Ly6G-Ly6C+ cells in the aortas of noise-exposed mice, which was prevented by LysM+ cell ablation in the periphery, whereas brain infiltrates were even exacerbated upon ablation. Aircraft noise-induced increases in blood pressure and endothelial dysfunction of the aorta and retinal/mesenteric arterioles were almost completely normalized by ablation. Correspondingly, reactive oxygen species in the aorta, heart, and retinal/mesenteric vessels were attenuated in ablated noise-exposed mice, while microglial activation and abundance in the brain was greatly increased. Expression of phagocytic NADPH oxidase (NOX-2) and vascular cell adhesion molecule-1 (VCAM-1) mRNA in the aorta was reduced, while NFκB signaling appeared to be activated in the brain upon ablation. In sum, we show dissociation of cerebral and peripheral inflammatory reactions in response to aircraft noise after LysM+ cell ablation, wherein peripheral myeloid inflammatory cells represent a dominant part of the pathomechanism for noise stress-induced cardiovascular effects and their central nervous counterparts, microglia, as key mediators in stress responses.
Collapse
Affiliation(s)
- Katie Frenis
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Johanna Helmstädter
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Yue Ruan
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Eva Schramm
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sanela Kalinovic
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Swenja Kröller-Schön
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Matthias Oelze
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Subao Jiang
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Philip Wenzel
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Clemens J Sommer
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Katrin B M Frauenknecht
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Thomas Münzel
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Sebastian Steven
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
36
|
Bayo Jimenez MT, Frenis K, Kröller-Schön S, Kuntic M, Stamm P, Kvandová M, Oelze M, Li H, Steven S, Münzel T, Daiber A. Noise-Induced Vascular Dysfunction, Oxidative Stress, and Inflammation Are Improved by Pharmacological Modulation of the NRF2/HO-1 Axis. Antioxidants (Basel) 2021; 10:antiox10040625. [PMID: 33921821 PMCID: PMC8073373 DOI: 10.3390/antiox10040625] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Vascular oxidative stress, inflammation, and subsequent endothelial dysfunction are consequences of traditional cardiovascular risk factors, all of which contribute to cardiovascular disease. Environmental stressors, such as traffic noise and air pollution, may also facilitate the development and progression of cardiovascular and metabolic diseases. In our previous studies, we investigated the influence of aircraft noise exposure on molecular mechanisms, identifying oxidative stress and inflammation as central players in mediating vascular function. The present study investigates the role of heme oxygenase-1 (HO-1) as an antioxidant response preventing vascular consequences following exposure to aircraft noise. C57BL/6J mice were treated with the HO-1 inducer hemin (25 mg/kg i.p.) or the NRF2 activator dimethyl fumarate (DMF, 20 mg/kg p.o.). During therapy, the animals were exposed to noise at a maximum sound pressure level of 85 dB(A) and a mean sound pressure level of 72 dB(A). Our data showed a marked protective effect of both treatments on animals exposed to noise for 4 days by normalization of arterial hypertension and vascular dysfunction in the noise-exposed groups. We observed a partial normalization of noise-triggered oxidative stress and inflammation by hemin and DMF therapy, which was associated with HO-1 induction. The present study identifies possible new targets for the mitigation of the adverse health effects caused by environmental noise exposure. Since natural dietary constituents can achieve HO-1 and NRF2 induction, these pathways represent promising targets for preventive measures.
Collapse
Affiliation(s)
- Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany; (M.T.B.J.); (K.F.); (S.K.-S.); (M.K.); (P.S.); (M.K.); (M.O.); (T.M.)
| | - Katie Frenis
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany; (M.T.B.J.); (K.F.); (S.K.-S.); (M.K.); (P.S.); (M.K.); (M.O.); (T.M.)
| | - Swenja Kröller-Schön
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany; (M.T.B.J.); (K.F.); (S.K.-S.); (M.K.); (P.S.); (M.K.); (M.O.); (T.M.)
| | - Marin Kuntic
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany; (M.T.B.J.); (K.F.); (S.K.-S.); (M.K.); (P.S.); (M.K.); (M.O.); (T.M.)
| | - Paul Stamm
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany; (M.T.B.J.); (K.F.); (S.K.-S.); (M.K.); (P.S.); (M.K.); (M.O.); (T.M.)
| | - Miroslava Kvandová
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany; (M.T.B.J.); (K.F.); (S.K.-S.); (M.K.); (P.S.); (M.K.); (M.O.); (T.M.)
| | - Matthias Oelze
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany; (M.T.B.J.); (K.F.); (S.K.-S.); (M.K.); (P.S.); (M.K.); (M.O.); (T.M.)
| | - Huige Li
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany;
| | - Sebastian Steven
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany; (M.T.B.J.); (K.F.); (S.K.-S.); (M.K.); (P.S.); (M.K.); (M.O.); (T.M.)
- Correspondence: (S.S.); (A.D.)
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany; (M.T.B.J.); (K.F.); (S.K.-S.); (M.K.); (P.S.); (M.K.); (M.O.); (T.M.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany; (M.T.B.J.); (K.F.); (S.K.-S.); (M.K.); (P.S.); (M.K.); (M.O.); (T.M.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
- Correspondence: (S.S.); (A.D.)
| |
Collapse
|
37
|
Hazari MS, Phillips K, Stratford KM, Khan M, Thompson L, Oshiro W, Hudson G, Herr DW, Farraj AK. Exposure to Intermittent Noise Exacerbates the Cardiovascular Response of Wistar-Kyoto Rats to Ozone Inhalation and Arrhythmogenic Challenge. Cardiovasc Toxicol 2021; 21:336-348. [PMID: 33389603 PMCID: PMC8074345 DOI: 10.1007/s12012-020-09623-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/24/2020] [Indexed: 11/29/2022]
Abstract
Noise has become a prevalent public health problem across the world. Although there is a significant amount of data demonstrating the harmful effects of noise on the body, very little is known about how it impacts subsequent responses to other environmental stressors like air pollution, which tend to colocalize in urban centers. Therefore, this study was conducted to determine the effect of intermittent noise on cardiovascular function and subsequent responses to ozone (O3). Male Wistar-Kyoto rats implanted with radiotelemeters to non-invasively measure heart rate (HR) and blood pressure (BP), and assess heart rate variability (HRV) and baroreflex sensitivity (BRS) were kept in the quiet or exposed to intermittent white noise (85-90 dB) for one week and then exposed to either O3 (0.8 ppm) or filtered air. Left ventricular function and arrhythmia sensitivity were measured 24 h after exposure. Intermittent noise caused an initial increase in HR and BP, which decreased significantly later in the regimen and coincided with an increase in HRV and BRS. Noise caused HR and BP to be significantly elevated early during O3 and lower at the end when compared to animals kept in the quiet while the increased HRV and BRS persisted during the 24 h after. Lastly, noise increased arrhythmogenesis and may predispose the heart to mechanical function changes after O3. This is the first study to demonstrate that intermittent noise worsens the cardiovascular response to inhaled O3. These effects may occur due to autonomic changes and dysregulation of homeostatic controls, which persist one day after exposure to noise. Hence, co-exposure to noise should be taken into account when assessing the health effects of urban air pollution.
Collapse
Affiliation(s)
- Mehdi S Hazari
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 109 Alexander Drive, B105, Research Triangle Park, NC, 27711, USA.
| | - Kaitlyn Phillips
- Department of Environmental Science and Engineering, Gillings School of Public Health, University of North Carolina - Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kimberly M Stratford
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina - Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Malek Khan
- Inhalation Toxicology Facilities Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Leslie Thompson
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 109 Alexander Drive, B105, Research Triangle Park, NC, 27711, USA
| | - Wendy Oshiro
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 109 Alexander Drive, B105, Research Triangle Park, NC, 27711, USA
| | - George Hudson
- Inhalation Toxicology Facilities Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - David W Herr
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Aimen K Farraj
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 109 Alexander Drive, B105, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
38
|
Hahad O, Frenis K, Kuntic M, Daiber A, Münzel T. Accelerated Aging and Age-Related Diseases (CVD and Neurological) Due to Air Pollution and Traffic Noise Exposure. Int J Mol Sci 2021; 22:2419. [PMID: 33670865 PMCID: PMC7957813 DOI: 10.3390/ijms22052419] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The World Health Organization estimates that only approximately 25% of diversity in longevity is explained by genetic factors, while the other 75% is largely determined by interactions with the physical and social environments. Indeed, aging is a multifactorial process that is influenced by a range of environmental, sociodemographic, and biopsychosocial factors, all of which might act in concert to determine the process of aging. The global average life expectancy increased fundamentally over the past century, toward an aging population, correlating with the development and onset of age-related diseases, mainly from cardiovascular and neurological nature. Therefore, the identification of determinants of healthy and unhealthy aging is a major goal to lower the burden and socioeconomic costs of age-related diseases. The role of environmental factors (such as air pollution and noise exposure) as crucial determinants of the aging process are being increasingly recognized. Here, we critically review recent findings concerning the pathomechanisms underlying the aging process and their correlates in cardiovascular and neurological disease, centered on oxidative stress and inflammation, as well as the influence of prominent environmental pollutants, namely air pollution and traffic noise exposure, which is suggested to accelerate the aging process. Insight into these types of relationships and appropriate preventive strategies are urgently needed to promote healthy aging.
Collapse
Affiliation(s)
- Omar Hahad
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany; (O.H.); (K.F.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Katie Frenis
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany; (O.H.); (K.F.); (M.K.)
| | - Marin Kuntic
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany; (O.H.); (K.F.); (M.K.)
| | - Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany; (O.H.); (K.F.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany; (O.H.); (K.F.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| |
Collapse
|
39
|
Panjali Z, Jafari-Tehrani B, Münzel T, Hahad O, Tansaz M, Hamidi M, Hajipour-Verdom B, Zendehdel R. Effect of tea consumption on oxidative stress and expression of DNA repair genes among metal press workers exposed to occupational noise. Toxicol Res (Camb) 2021; 10:134-140. [PMID: 33613980 DOI: 10.1093/toxres/tfaa101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022] Open
Abstract
Several studies have shown that tea consumption is associated with beneficial effects on human health, which is mainly explained by the antioxidant properties of tea. However, evidence on the effect of nutrition interventions on oxidative stress in an occupational setting is limited. Therefore, the present study aimed to investigate the effect of tea consumption on oxidative stress in noise-exposed metal press workers. The study sample comprised 24 metal press workers and 24 age-matched control subjects. Metal press workers were assigned to the intervention group consisting of a glass of jujube tea and a portion of raisins per day for 4 weeks. Full-shift noise dosimetry was performed to measure noise exposure with average noise levels of 89.91 ± 2.92 dB for metal press workers and 61.54 ± 1.03 dB for control subjects. Elevated levels of baseline oxidative stress were observed in metal press workers compared with control subjects as indicated by significantly decreased levels of total antioxidant capacity (TAC) (P = 0.026) and total thiol groups (TTG) (P = 0.0001), whereas no significant difference was observed in case of malondialdehyde (MDA). Intervention with jujube tea and raisins in metal press workers led to a decrease of oxidative stress as displayed by increased levels of TAC and TTG (P = 0.0001) as well as decreased levels of MDA (P = 0.012). Moreover, the intervention significantly altered expression of repair genes in metal press workers as demonstrated by decreased levels of OGG1 (P = 0.0002) and ITPA (P = 0.009), whereas no significant difference was observed in case of MTH1. These data suggest that regular tea consumption may protect occupational noise-exposed subjects from oxidative damages.
Collapse
Affiliation(s)
- Zahra Panjali
- Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Velenjak Avenue, Tehran 198353-5511, Iran
| | - Behjat Jafari-Tehrani
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Velenjak Avenue, Tehran 198353-5511, Iran
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Mozhgan Tansaz
- Department of Traditional Medicine, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Shams Alley, Across from Shaid Abbaspour St, Vali Asr Ave., Tehran 1991953381, Iran
| | - Mansoureh Hamidi
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Velenjak Avenue, Tehran 198353-5511, Iran
| | - Behnam Hajipour-Verdom
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal AleAhmad, Nasr, Tehran 14115-111, Iran
| | - Rezvan Zendehdel
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Velenjak Avenue, Tehran 198353-5511, Iran
| |
Collapse
|
40
|
Robinson JM, Cameron R. The Holobiont Blindspot: Relating Host-Microbiome Interactions to Cognitive Biases and the Concept of the " Umwelt". Front Psychol 2020; 11:591071. [PMID: 33281689 PMCID: PMC7705375 DOI: 10.3389/fpsyg.2020.591071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/29/2020] [Indexed: 01/13/2023] Open
Abstract
Cognitive biases can lead to misinterpretations of human and non-human biology and behavior. The concept of the Umwelt describes phylogenetic contrasts in the sensory realms of different species and has important implications for evolutionary studies of cognition (including biases) and social behavior. It has recently been suggested that the microbiome (the diverse network of microorganisms in a given environment, including those within a host organism such as humans) has an influential role in host behavior and health. In this paper, we discuss the host’s microbiome in relation to cognitive biases and the concept of the Umwelt. Failing to consider the role of host–microbiome (collectively termed a “holobiont”) interactions in a given behavior, may underpin a potentially important cognitive bias – which we refer to as the Holobiont Blindspot. We also suggest that microbially mediated behavioral responses could augment our understanding of the Umwelt. For example, the potential role of the microbiome in perception and action could be an important component of the system that gives rise to the Umwelt. We also discuss whether microbial symbionts could be considered in System 1 thinking – that is, decisions driven by perception, intuition and associative memory. Recognizing Holobiont Blindspots and considering the microbiome as a key factor in the Umwelt and System 1 thinking has the potential to advance studies of cognition. Furthermore, investigating Holobiont Blindspots could have important implications for our understanding of social behaviors and mental health. Indeed, the way we think about how we think may need to be revisited.
Collapse
Affiliation(s)
- Jake M Robinson
- Department of Landscape Architecture, The University of Sheffield, Sheffield, United Kingdom.,In vivo Planetary Health, Worldwide Universities Network (WUN), West New York, NJ, United States.,The Healthy Urban Microbiome Initiative (HUMI), Australia
| | - Ross Cameron
- Department of Landscape Architecture, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
41
|
Acute cardiovascular health effects in a panel study of personal exposure to traffic-related air pollutants and noise in Toronto, Canada. Sci Rep 2020; 10:16703. [PMID: 33028877 PMCID: PMC7541521 DOI: 10.1038/s41598-020-73412-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/10/2020] [Indexed: 12/29/2022] Open
Abstract
Urban populations are often simultaneously exposed to air pollution and environmental noise, which are independently associated with cardiovascular disease. Few studies have examined acute physiologic responses to both air and noise pollution using personal exposure measures. We conducted a repeated measures panel study of air pollution and noise in 46 non-smoking adults in Toronto, Canada. Data were analyzed using linear mixed-effects models and weighted cumulative exposure modeling of recent exposure. We examined acute changes in cardiovascular health effects of personal (ultrafine particles, black carbon) and regional (PM2.5, NO2, O3, Ox) measurements of air pollution and the role of personal noise exposure as a confounder of these associations. We observed adverse changes in subclinical cardiovascular outcomes in response to both air pollution and noise, including changes in endothelial function and heart rate variability (HRV). Our findings show that personal noise exposures can confound associations for air pollutants, particularly with HRV, and that impacts of air pollution and noise on HRV occur soon after exposure. Thus, both noise and air pollution have a measurable impact on cardiovascular physiology. Noise should be considered alongside air pollution in future studies to elucidate the combined impacts of these exposures in urban environments.
Collapse
|
42
|
Liu Z, Li Y, Yu L, Chang Y, Yu J. Penehyclidine hydrochloride inhibits renal ischemia/reperfusion-induced acute lung injury by activating the Nrf2 pathway. Aging (Albany NY) 2020; 12:13400-13421. [PMID: 32652517 PMCID: PMC7377887 DOI: 10.18632/aging.103444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
The nuclear factor (NF)-κB and NOD-like receptor protein 3 (NLRP3) pathways promote inflammatory signaling that injures the kidneys, whereas the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway promotes anti-inflammatory signaling that inhibits oxidative damage. Penehyclidine hydrochloride (PHC) inhibits NF-κB and activates Nrf2 signaling. We investigated whether PHC induces communication between the Nrf2 and NF-κB/NLRP3 pathways, thereby protecting against renal ischemia/reperfusion (rI/R)-induced lung inflammation. Rat alveolar macrophages (NR8383 cells) were stimulated for 24 h with PHC with or without brusatol (a Nrf2 antagonist), after which they were treated for 4 h with tert-butyl hydroperoxide (10 mM). PHC Nrf2-dependently alleviated tert-butyl hydroperoxide-induced reactive oxygen species production in alveolar macrophages. Additionally, wild-type and Nrf2-/- rats were each divided into four groups: (1) sham, (2) PHC (1 mg/kg), (3) rI/R and (4) rI/R + PHC (1 mg/kg). PHC markedly induced the Nrf2 and adenosine monophosphate-activated protein kinase pathways and suppressed rI/R-induced NF-κB and NLRP3 activation in the lungs. Nrf2 deficiency diminished the ability of PHC to ameliorate rI/R-induced histopathological alterations and reactive oxygen species release in the lungs; however, PHC inhibited NLRP3 signaling Nrf2-dependently, while it inhibited NF-κB signaling Nrf2-independently. Our findings demonstrate the beneficial effects of PHC on rI/R-induced lung inflammation.
Collapse
Affiliation(s)
- Zhaohui Liu
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Lili Yu
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yulin Chang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
43
|
Hahad O, Lelieveld J, Birklein F, Lieb K, Daiber A, Münzel T. Ambient Air Pollution Increases the Risk of Cerebrovascular and Neuropsychiatric Disorders through Induction of Inflammation and Oxidative Stress. Int J Mol Sci 2020; 21:ijms21124306. [PMID: 32560306 PMCID: PMC7352229 DOI: 10.3390/ijms21124306] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Exposure to ambient air pollution is a well-established determinant of health and disease. The Lancet Commission on pollution and health concludes that air pollution is the leading environmental cause of global disease and premature death. Indeed, there is a growing body of evidence that links air pollution not only to adverse cardiorespiratory effects but also to increased risk of cerebrovascular and neuropsychiatric disorders. Despite being a relatively new area of investigation, overall, there is mounting recent evidence showing that exposure to multiple air pollutants, in particular to fine particles, may affect the central nervous system (CNS) and brain health, thereby contributing to increased risk of stroke, dementia, Parkinson's disease, cognitive dysfunction, neurodevelopmental disorders, depression and other related conditions. The underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests inflammation and oxidative stress to be crucial factors in the pathogenesis of air pollution-induced disorders, driven by the enhanced production of proinflammatory mediators and reactive oxygen species in response to exposure to various air pollutants. From a public health perspective, mitigation measures are urgent to reduce the burden of disease and premature mortality from ambient air pollution.
Collapse
Affiliation(s)
- Omar Hahad
- Center for Cardiology–Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany;
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia 1645, Cyprus
| | - Frank Birklein
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Klaus Lieb
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
- Leibniz Institute for Resilience Research, 55122 Mainz, Germany
| | - Andreas Daiber
- Center for Cardiology–Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
- Correspondence: (A.D.); (T.M.); Tel.: +49-(0)6131-176280 (A.D.); +49-(0)6131-177251 (T.M.)
| | - Thomas Münzel
- Center for Cardiology–Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
- Correspondence: (A.D.); (T.M.); Tel.: +49-(0)6131-176280 (A.D.); +49-(0)6131-177251 (T.M.)
| |
Collapse
|
44
|
Eze IC, Jeong A, Schaffner E, Rezwan FI, Ghantous A, Foraster M, Vienneau D, Kronenberg F, Herceg Z, Vineis P, Brink M, Wunderli JM, Schindler C, Cajochen C, Röösli M, Holloway JW, Imboden M, Probst-Hensch N. Genome-Wide DNA Methylation in Peripheral Blood and Long-Term Exposure to Source-Specific Transportation Noise and Air Pollution: The SAPALDIA Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:67003. [PMID: 32484729 PMCID: PMC7263738 DOI: 10.1289/ehp6174] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Few epigenome-wide association studies (EWAS) on air pollutants exist, and none have been done on transportation noise exposures, which also contribute to environmental burden of disease. OBJECTIVE We performed mutually independent EWAS on transportation noise and air pollution exposures. METHODS We used data from two time points of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) from 1,389 participants contributing 2,542 observations. We applied multiexposure linear mixed-effects regressions with participant-level random intercept to identify significant Cytosine-phosphate-Guanine (CpG) sites and differentially methylated regions (DMRs) in relation to 1-y average aircraft, railway, and road traffic day-evening-night noise (Lden); nitrogen dioxide (NO 2 ); and particulate matter (PM) with aerodynamic diameter < 2.5 μ m (PM 2.5 ). We performed candidate (CpG-based; cross-systemic phenotypes, combined into "allostatic load") and agnostic (DMR-based) pathway enrichment tests, and replicated previously reported air pollution EWAS signals. RESULTS We found no statistically significant CpGs at false discovery rate < 0.05 . However, 14, 48, 183, 8, and 71 DMRs independently associated with aircraft, railway, and road traffic Lden; NO 2 ; and PM 2.5 , respectively, with minimally overlapping signals. Transportation Lden and air pollutants tendentially associated with decreased and increased methylation, respectively. We observed significant enrichment of candidate DNA methylation related to C-reactive protein and body mass index (aircraft, road traffic Lden, and PM 2.5 ), renal function and "allostatic load" (all exposures). Agnostic functional networks related to cellular immunity, gene expression, cell growth/proliferation, cardiovascular, auditory, embryonic, and neurological systems development were enriched. We replicated increased methylation in cg08500171 (NO 2 ) and decreased methylation in cg17629796 (PM 2.5 ). CONCLUSIONS Mutually independent DNA methylation was associated with source-specific transportation noise and air pollution exposures, with distinct and shared enrichments for pathways related to inflammation, cellular development, and immune responses. These findings contribute in clarifying the pathways linking these exposures and age-related diseases but need further confirmation in the context of mediation analyses. https://doi.org/10.1289/EHP6174.
Collapse
Affiliation(s)
- Ikenna C Eze
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ayoung Jeong
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Emmanuel Schaffner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Faisal I Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- School of Water, Energy and Environment, Cranfield University, Cranfield, UK
| | - Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Maria Foraster
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiologia y Salud Publica, Madrid, Spain
- Blanquerna School of Health Science, Universitat Ramon Llull, Barcelona, Spain
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, UK
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
| | - Mark Brink
- Federal Office for the Environment, Bern, Switzerland
| | - Jean-Marc Wunderli
- Empa Laboratory for Acoustics/Noise Control, Swiss Federal Laboratories for Material Science and Technology, Dübendorf, Switzerland
| | - Christian Schindler
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Christian Cajochen
- Center for Chronobiology, Psychiatric Hospital of the University of Basel, and Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), Basel, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
45
|
Daiber A, Kröller-Schön S, Oelze M, Hahad O, Li H, Schulz R, Steven S, Münzel T. Oxidative stress and inflammation contribute to traffic noise-induced vascular and cerebral dysfunction via uncoupling of nitric oxide synthases. Redox Biol 2020; 34:101506. [PMID: 32371009 PMCID: PMC7327966 DOI: 10.1016/j.redox.2020.101506] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Environmental pollution and non-chemical stressors such as mental stress or traffic noise exposure are increasingly accepted as health risk factors with substantial contribution to chronic noncommunicable diseases (e.g. cardiovascular, metabolic and mental). Whereas the mechanisms of air pollution-mediated adverse health effects are well characterized, the mechanisms of traffic noise exposure are not completely understood, despite convincing clinical and epidemiological evidence for a significant contribution of environmental noise to overall mortality and disability. The initial mechanism of noise-induced cardiovascular, metabolic and mental disease is well defined by the „noise reaction model“ and consists of neuronal activation involving the hypothalamic-pituitary-adrenal (HPA) axis as well as the sympathetic nervous system, followed by a classical stress response via cortisol and catecholamines. Stress pathways are initiated by noise-induced annoyance and sleep deprivation/fragmentation. This review highlights the down-stream pathophysiology of noise-induced mental stress, which is based on an induction of inflammation and oxidative stress. We highlight the sources of reactive oxygen species (ROS) involved and the known targets for noise-induced oxidative damage. Part of the review emphasizes noise-triggered uncoupling/dysregulation of endothelial and neuronal nitric oxide synthase (eNOS and nNOS) and its central role for vascular dysfunction. Exposure to (traffic) noise causes non-auditory (indirect) cardiovascular and cerebral health harms via neuronal activation. Noise activates the HPA axis and sympathetic nervous system increasing levels of stress hormones, vasoconstrictors and ROS. Noise induces inflammation and stimulates several ROS sources leading to cerebral and cardiovascular oxidative damage. Noise leads to eNOS and nNOS uncoupling contributing to cardiometabolic disease and cognitive impairment.
Collapse
Affiliation(s)
- Andreas Daiber
- Center for Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany; Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Swenja Kröller-Schön
- Center for Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany
| | - Matthias Oelze
- Center for Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany
| | - Omar Hahad
- Center for Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany; Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, University Medical Center, Mainz, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Sebastian Steven
- Center for Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany
| | - Thomas Münzel
- Center for Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany; Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131, Mainz, Germany.
| |
Collapse
|
46
|
Hahad O, Wild PS, Prochaska JH, Schulz A, Lackner KJ, Pfeiffer N, Schmidtmann I, Michal M, Beutel M, Daiber A, Münzel T. Midregional pro atrial natriuretic peptide: a novel important biomarker for noise annoyance-induced cardiovascular morbidity and mortality? Clin Res Cardiol 2020; 110:29-39. [PMID: 32306084 PMCID: PMC7806548 DOI: 10.1007/s00392-020-01645-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/06/2020] [Indexed: 01/05/2023]
Abstract
Background Environmental noise exposure has been associated with increased cardiovascular morbidity and mortality. Recently, noise annoyance was shown to induce atrial fibrillation, which was accompanied by significantly increased levels of midregional pro atrial natriuretic peptide (MR-proANP). Therefore, the aim of the present study was to analyze the association between noise annoyance, MR-proANP, incident cardiovascular events, and all-cause mortality. Methods Levels of MR-proANP were measured in the first 5000 participants of the population-based Gutenberg Health Study. Annoyance was assessed separately for aircraft, road traffic, railway, neighborhood, and industrial/construction noise during the day and sleep. Results In cross-sectional analyses, aircraft noise annoyance during day and sleep, industrial/construction noise annoyance during day, and railway noise annoyance during sleep were independently associated with increased levels of MR-proANP after multivariable adjustment. After a 5-year follow-up period, there were 43 cases of incident atrial fibrillation and 103 of incident cardiovascular disease (comprising atrial fibrillation, coronary artery disease, myocardial infarction, heart failure, or stroke). Moreover, there were 301 deaths after a mean follow-up of 7.42 ± 1.66 years. An odds ratio (OR) of 2.82 ([95% confidence interval (CI) 1.86; 4.35], p < 0.0001) for incident atrial fibrillation and an OR of 1.49 ([95% CI 1.13; 1.96], p = 0.0046) for incident cardiovascular disease per 1-standard deviation (SD) increase in MR-proANP levels were found. A 36% (hazard ratio: 1.36 [95% CI 1.19; 1.55], p < 0.0001) higher risk of death was found per 1-SD increase in MR-proANP levels. Conclusions Noise annoyance may contribute to cardiovascular morbidity and mortality and is characterized by increased levels of MR-proANP. Graphic abstract ![]()
Collapse
Affiliation(s)
- Omar Hahad
- Center for Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Rhine-Main, Mainz, Germany
| | - Philipp S Wild
- German Center for Cardiovascular Research (DZHK), Partner site Rhine-Main, Mainz, Germany
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jürgen H Prochaska
- German Center for Cardiovascular Research (DZHK), Partner site Rhine-Main, Mainz, Germany
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andreas Schulz
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Karl J Lackner
- German Center for Cardiovascular Research (DZHK), Partner site Rhine-Main, Mainz, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Irene Schmidtmann
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Matthias Michal
- German Center for Cardiovascular Research (DZHK), Partner site Rhine-Main, Mainz, Germany
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Manfred Beutel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andreas Daiber
- Center for Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Center for Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner site Rhine-Main, Mainz, Germany.
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
47
|
Li H, Kilgallen AB, Münzel T, Wolf E, Lecour S, Schulz R, Daiber A, Van Laake LW. Influence of mental stress and environmental toxins on circadian clocks: Implications for redox regulation of the heart and cardioprotection. Br J Pharmacol 2020; 177:5393-5412. [PMID: 31833063 PMCID: PMC7680009 DOI: 10.1111/bph.14949] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Risk factors in the environment such as air pollution and mental stress contribute to the development of chronic non-communicable disease. Air pollution was identified as the leading health risk factor in the physical environment, followed by water pollution, soil pollution/heavy metals/chemicals and occupational exposures, however neglecting the non-chemical environmental health risk factors (e.g. mental stress and noise). Epidemiological data suggest that environmental risk factors are associated with higher risk for cardiovascular, metabolic and mental diseases, including hypertension, heart failure, myocardial infarction, diabetes, arrhythmia, stroke, depression and anxiety disorders. We provide an overview on the impact of the external exposome comprising risk factors/exposures on cardiovascular health with a focus on dysregulation of stress hormones, mitochondrial function, redox balance and inflammation with special emphasis on the circadian clock. Finally, we assess the impact of circadian clock dysregulation on cardiovascular health and the potential of environment-specific preventive strategies or "chrono" therapy for cardioprotection. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Huige Li
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Aoife B Kilgallen
- Division Heart and Lungs and Regenerative Medicine Centre, University Medical Centre Utrecht and Utrecht University, Utrecht, Netherlands
| | - Thomas Münzel
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Eva Wolf
- Structural Chronobiology, Institute of Molecular Physiology, Johannes Gutenberg University, Mainz, Germany.,Structural Chronobiology, Institute of Molecular Biology, Mainz, Germany
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Daiber
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Linda W Van Laake
- Division Heart and Lungs and Regenerative Medicine Centre, University Medical Centre Utrecht and Utrecht University, Utrecht, Netherlands
| |
Collapse
|
48
|
Occupational and environmental influences on hypertension. J Hum Hypertens 2020; 34:202-206. [PMID: 31965013 DOI: 10.1038/s41371-020-0302-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/13/2019] [Accepted: 01/13/2020] [Indexed: 01/19/2023]
Abstract
In this review I try to summarize concisely available information on common effectors on blood pressure, occupational, and environmental ones, which are sometimes overlooked, so that clinicians involved in caring for patients with hypertension may have somewhat better vision of what our patients are exposed to.
Collapse
|
49
|
Jensen HAR, Rasmussen B, Ekholm O. Neighbour noise annoyance is associated with various mental and physical health symptoms: results from a nationwide study among individuals living in multi-storey housing. BMC Public Health 2019; 19:1508. [PMID: 31718590 PMCID: PMC6849169 DOI: 10.1186/s12889-019-7893-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/01/2019] [Indexed: 12/03/2022] Open
Abstract
Background Noise exposure is considered a stressor that may potentially exert negative health effects among the exposed individuals. On a population basis, the most prevalent and immediate response to noise is annoyance, which is an individually experienced phenomenon that may activate physiological stress-responses and result in both physical and mental symptoms. Health implications of traffic noise have been investigated thoroughly, but not of neighbour noise. The aim of the present study was to examine the associations between neighbour noise annoyance and eight different physical and mental health symptoms. Methods Cross-sectional data from the Danish Health and Morbidity Survey 2017 were used. The present study included a random sample of 3893 adults living in multi-storey housing. Information on neighbour noise annoyance and various health symptoms (e.g. pain in various body parts, headache, sleeping problems, depression, and anxiety) during the past two weeks was obtained by self-administered questionnaires. The question on neighbour noise annoyance and health symptoms, respectively, had three possible response options: ‘Yes, very annoyed/bothered’, ‘Yes, slightly annoyed/bothered’, ‘No’. The associations between neighbour noise annoyance and very bothering physical and mental health symptoms were investigated using multiple logistic regression models. Results Being very annoyed by neighbour noise was significantly associated with higher odds of being very bothered by all eight health symptoms (adjusted OR = 1.73–3.32, all p-values < 0.05) compared to individuals not annoyed by noise from neighbours. Statistically significant interactions were observed between sex and two of the eight health symptoms. Among women, a strong association was observed between neighbour noise annoyance and being very bothered by pain or discomfort in the shoulder or neck, and in the arms, hands, legs, knees, hips or joints. Among men, no associations were observed. Conclusions Based on the findings from this study, neighbour noise annoyance is strongly associated with eight different physical and mental health symptoms. Future studies are encouraged to 1) determine the direction of causality using a longitudinal design, 2) explore the biological mechanisms explaining the sex-specific impact of neighbour noise annoyance on symptoms of musculoskeletal pain or discomfort and the other outcomes as well.
Collapse
Affiliation(s)
- Heidi A R Jensen
- National Institute of Public Health, University of Southern Denmark, Studiestræde 6, 1455, Copenhagen, Denmark
| | - Birgit Rasmussen
- Danish Building Research Institute, Aalborg University, A.C. Meyers Vænge 15, 2450, Copenhagen, Denmark
| | - Ola Ekholm
- National Institute of Public Health, University of Southern Denmark, Studiestræde 6, 1455, Copenhagen, Denmark.
| |
Collapse
|
50
|
Environmental Noise-Induced Effects on Stress Hormones, Oxidative Stress, and Vascular Dysfunction: Key Factors in the Relationship between Cerebrocardiovascular and Psychological Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4623109. [PMID: 31814877 PMCID: PMC6878772 DOI: 10.1155/2019/4623109] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
Abstract
The role of noise as an environmental pollutant and its adverse effects on health are being increasingly recognized. Beyond its direct effects on the auditory system (e.g., hearing loss and tinnitus induced by exposure to high levels of noise), chronic low-level noise exposure causes mental stress associated with known cardiovascular complications. According to recent estimates of the World Health Organization, exposure to traffic noise is responsible for a loss of more than 1.5 million healthy life years per year in Western Europe alone, a major part being related to annoyance, cognitive impairment, and sleep disturbance. Underlying mechanisms of noise-induced mental stress are centered on increased stress hormone levels, blood pressure, and heart rate, which in turn favor the development of cerebrocardiovascular disease such as stroke, arterial hypertension, ischemic heart disease, and myocardial infarction. Furthermore, traffic noise exposure is also associated with mental health symptoms and psychological disorders such as depression and anxiety, which further increase maladaptive coping mechanisms (e.g., alcohol and tobacco use). From a molecular point of view, experimental studies suggest that traffic noise exposure can increase stress hormone levels, thereby triggering inflammatory and oxidative stress pathways by activation of the nicotinamide adenine dinucleotide phosphate oxidase, uncoupling of endothelial/neuronal nitric oxide synthase inducing endothelial and neuronal dysfunction. This review elucidates the mechanisms underlying the relationship between noise exposure and cerebrocardiovascular and psychological disorders, focusing on mental stress signaling pathways including activation of the autonomous nervous system and endocrine signaling and its association with inflammation, oxidative stress, and vascular dysfunction.
Collapse
|