1
|
Talaat S, Hashem AA, Abu-Seida A, Abdel Wahed A, Abdel Aziz TM. Regenerative potential of mesoporous silica nanoparticles scaffold on dental pulp and root maturation in immature dog's teeth: a histologic and radiographic study. BMC Oral Health 2024; 24:817. [PMID: 39026199 PMCID: PMC11264670 DOI: 10.1186/s12903-024-04368-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/13/2024] [Indexed: 07/20/2024] Open
Abstract
OBJECTIVE To evaluate histologically and radiographically the potential of dog's immature roots with apical periodontitis to regenerate after regenerative endodontic treatment using mesoporous silica nanoparticles (MSNs) with/without bone morphogenic protein (BMP-2) as scaffolds. METHODS In 4 mongrel dogs, 56 immature teeth with 96 roots were infected, resulting in necrotic pulps and periapical pathosis. According to the evaluation time (Group I = 30 days and Group II = 90 days), 90 roots were divided into two equal groups (45 roots each) and 6 roots used to replace any lost root during the procedure. The two main groups were further divided according to treatment protocol into 5 subgroups (9 roots each): blood clot (BC subgroup), mesoporous silica nanoparticles scaffold only (MSNs subgroup), mesoporous silica nanoparticles impregnated with BMP2 (MSNs + BMP2 subgroup), infected teeth without treatment (+ ve control subgroup) and normal untouched teeth (-ve control subgroup). All teeth surfaces were coated with Tincture iodine and calcium hydroxide was applied prior to treatment protocols. Then, teeth were restored with glass ionomer filling to seal the remaining part of the access cavity. Radiography evaluation of the increase in root length, root thickness and occurrence of apical closure were performed. Following the sacrifice of the two dogs at each time of evaluation, histopathological analysis was performed and included the inflammatory cells count, bone resorption, tissue ingrowth, deposition of hard tissue, and closure of the apical part. All data were statistically analyzed. RESULTS Compared to BC subgroup, MSNs and MSNs + BMP-2 subgroups exhibited significant higher increase in root length and thickness as well as higher vital tissue in-growth and new hard tissue formation in group II (P < 0.05). MSNs + BMP-2 subgroup had significant higher increase in root length and thickness as well as significant lower inflammatory cell count than MSNs subgroup in both groups (P < 0.05). There were no significant differences between MSNs and MSNs + BMP-2 subgroups regarding new hard tissue formation in both groups and apical closure in group I (P > 0.05). CONCLUSION MSNs with/without BMP-2 scaffolds enabled the continuing growth of roots in immature teeth with necrotic pulps and periapical pathosis. Addition of BMP-2 to MSNs scaffold improved its outcome in regenerative endodontics. CLINICAL RELEVANCE MSNs with/without BMP-2 scaffolds may alternate blood clot for regenerative endodontic treatment of immature teeth with necrotic pulps.
Collapse
Affiliation(s)
- Samar Talaat
- Endodontic Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, Egypt.
| | - Ahmed A Hashem
- Department of Endodontic, Faculty of Dentistry, Ain Shams University, Cairo, Egypt.
| | - Ashraf Abu-Seida
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Faculty of Dentistry, Galala University, New Galala City, Suez, Egypt
| | - Adel Abdel Wahed
- Endodontic Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, Egypt
| | - Tarek M Abdel Aziz
- Department of Endodontic, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Li J, Wang Q, Han Y, Jiang L, Lu S, Wang B, Qian W, Zhu M, Huang H, Qian P. Development and application of nanomaterials, nanotechnology and nanomedicine for treating hematological malignancies. J Hematol Oncol 2023; 16:65. [PMID: 37353849 PMCID: PMC10290401 DOI: 10.1186/s13045-023-01460-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/30/2023] [Indexed: 06/25/2023] Open
Abstract
Hematologic malignancies (HMs) pose a serious threat to patients' health and life, and the five-year overall survival of HMs remains low. The lack of understanding of the pathogenesis and the complex clinical symptoms brings immense challenges to the diagnosis and treatment of HMs. Traditional therapeutic strategies for HMs include radiotherapy, chemotherapy, targeted therapy and hematopoietic stem cell transplantation. Although immunotherapy and cell therapy have made considerable progress in the last decade, nearly half of patients still relapse or suffer from drug resistance. Recently, studies have emerged that nanomaterials, nanotechnology and nanomedicine show great promise in cancer therapy by enhancing drug targeting, reducing toxicity and side effects and boosting the immune response to promote durable immunological memory. In this review, we summarized the strategies of recently developed nanomaterials, nanotechnology and nanomedicines against HMs and then proposed emerging strategies for the future designment of nanomedicines to treat HMs based on urgent clinical needs and technological progress.
Collapse
Affiliation(s)
- Jinxin Li
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Qiwei Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Yingli Han
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Lingli Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Siqi Lu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Beini Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Wenchang Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Meng Zhu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - He Huang
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Ogi DA, Jin S. Transcriptome-Powered Pluripotent Stem Cell Differentiation for Regenerative Medicine. Cells 2023; 12:1442. [PMID: 37408278 DOI: 10.3390/cells12101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 07/07/2023] Open
Abstract
Pluripotent stem cells are endless sources for in vitro engineering human tissues for regenerative medicine. Extensive studies have demonstrated that transcription factors are the key to stem cell lineage commitment and differentiation efficacy. As the transcription factor profile varies depending on the cell type, global transcriptome analysis through RNA sequencing (RNAseq) has been a powerful tool for measuring and characterizing the success of stem cell differentiation. RNAseq has been utilized to comprehend how gene expression changes as cells differentiate and provide a guide to inducing cellular differentiation based on promoting the expression of specific genes. It has also been utilized to determine the specific cell type. This review highlights RNAseq techniques, tools for RNAseq data interpretation, RNAseq data analytic methods and their utilities, and transcriptomics-enabled human stem cell differentiation. In addition, the review outlines the potential benefits of the transcriptomics-aided discovery of intrinsic factors influencing stem cell lineage commitment, transcriptomics applied to disease physiology studies using patients' induced pluripotent stem cell (iPSC)-derived cells for regenerative medicine, and the future outlook on the technology and its implementation.
Collapse
Affiliation(s)
- Derek A Ogi
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Sha Jin
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY 13902, USA
- Center of Biomanufacturing for Regenerative Medicine, State University of New York at Binghamton, Binghamton, NY 13902, USA
| |
Collapse
|
4
|
Griego A, Scarpa E, De Matteis V, Rizzello L. Nanoparticle delivery through the BBB in central nervous system tuberculosis. IBRAIN 2023; 9:43-62. [PMID: 37786519 PMCID: PMC10528790 DOI: 10.1002/ibra.12087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 10/04/2023]
Abstract
Recent advances in Nanotechnology have revolutionized the production of materials for biomedical applications. Nowadays, there is a plethora of nanomaterials with potential for use towards improvement of human health. On the other hand, very little is known about how these materials interact with biological systems, especially at the nanoscale level, mainly because of the lack of specific methods to probe these interactions. In this review, we will analytically describe the journey of nanoparticles (NPs) through the brain, starting from the very first moment upon injection. We will preliminarily provide a brief overlook of the physicochemical properties of NPs. Then, we will discuss how these NPs interact with the body compartments and biological barriers, before reaching the blood-brain barrier (BBB), the last gate guarding the brain. Particular attention will be paid to the interaction with the biomolecular, the bio-mesoscopic, the (blood) cellular, and the tissue barriers, with a focus on the BBB. This will be framed in the context of brain infections, especially considering central nervous system tuberculosis (CNS-TB), which is one of the most devastating forms of human mycobacterial infections. The final aim of this review is not a collection, nor a list, of current literature data, as it provides the readers with the analytical tools and guidelines for the design of effective and rational NPs for delivery in the infected brain.
Collapse
Affiliation(s)
- Anna Griego
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- The National Institute of Molecular Genetics (INGM)MilanItaly
| | - Edoardo Scarpa
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- The National Institute of Molecular Genetics (INGM)MilanItaly
| | - Valeria De Matteis
- Department of Mathematics and Physics “Ennio De Giorgi”University of SalentoLecceItaly
| | - Loris Rizzello
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- The National Institute of Molecular Genetics (INGM)MilanItaly
| |
Collapse
|
5
|
Majood M, Garg P, Chaurasia R, Agarwal A, Mohanty S, Mukherjee M. Carbon Quantum Dots for Stem Cell Imaging and Deciding the Fate of Stem Cell Differentiation. ACS OMEGA 2022; 7:28685-28693. [PMID: 36033677 PMCID: PMC9404166 DOI: 10.1021/acsomega.2c03285] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 05/12/2023]
Abstract
Nanotechnology advancements and applications have paved the way for new possibilities in regenerative medicine and tissue engineering. It is a relatively new field that has the potential to improve stem cell differentiation and therapy greatly. Numerous studies have demonstrated that nanomaterials can function as a physiological niche for the formation and differentiation of stem cells. However, quantum dots (QDs), such as carbon quantum dots (CQDs) and graphene quantum dots (GQDs), have shown considerable promise in the field of regenerative medicine. To date, most research has focused on stem cell tracking and imaging using CQDs. However, their interaction with stem cells and the associated possibility for differentiation by selectively focusing chemical signals to a particular lineage has received scant attention. In this mini-review, we attempt to categorize a few pathways linked with the role of CQDs in stem cell differentiation.
Collapse
Affiliation(s)
- Misba Majood
- Amity
Institute of Click Chemistry Research and Studies, Amity University Uttar Pradeshs, Noida 201313, India
| | - Piyush Garg
- Amity
Institute of Click Chemistry Research and Studies, Amity University Uttar Pradeshs, Noida 201313, India
| | - Radhika Chaurasia
- Amity
Institute of Click Chemistry Research and Studies, Amity University Uttar Pradeshs, Noida 201313, India
| | - Aakanksha Agarwal
- Amity
Institute of Click Chemistry Research and Studies, Amity University Uttar Pradeshs, Noida 201313, India
| | - Sujata Mohanty
- Stem
Cells Facility, DBT-Centre of Excellence, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Monalisa Mukherjee
- Amity
Institute of Click Chemistry Research and Studies, Amity University Uttar Pradeshs, Noida 201313, India
| |
Collapse
|
6
|
Zanette RDSS, Fayer L, de Oliveira ER, Almeida CG, Oliveira CR, de Oliveira LFC, Maranduba CMC, Alvarenga ÉC, Brandão HM, Munk M. Cytocompatibility and osteogenic differentiation of stem cells from human exfoliated deciduous teeth with cotton cellulose nanofibers for tissue engineering and regenerative medicine. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:627-650. [PMID: 34807809 DOI: 10.1080/09205063.2021.2008787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellulose nanofibers (CNFs) are natural polymers with physical-chemical properties that make them very attractive for modulating stem cell differentiation, a crucial step in tissue engineering and regenerative medicine. Although cellulose is cytocompatible, when materials are in nanoscale, they become more reactive, needing to evaluate its potential toxic effect to ensure safe application. This study aimed to investigate the cytocompatibility of cotton CNF and its differentiation capacity induction on stem cells from human exfoliated deciduous teeth. First, the cotton CNF was characterized. Then, the cytocompatibility and the osteogenic differentiation induced by cotton CNF were examined. The results revealed that cotton CNFs have about 6-18 nm diameters, and the zeta potential was -10 mV. Despite gene expression alteration, the cotton CNF shows good cytocompatibility. The cotton CNF induced an increase in phosphatase alkaline activity and extracellular matrix mineralization. The results indicate that cotton CNF has good cytocompatibility and can promote cell differentiation without using chemical inducers, showing great potential as a new differentiation inductor for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Rafaella de S S Zanette
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Leonara Fayer
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Eduarda R de Oliveira
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Camila G Almeida
- Laboratory of Applied Nanotechnology for Animal Production and Health, Brazilian Agricultural Research Corporation (EMBRAPA), Juiz de Fora, Brazil
| | - Cauê R Oliveira
- National Laboratory of Nanotechnology for Agriculture, Embrapa Instrumentation, São Carlos, Brazil
| | - Luiz F C de Oliveira
- Nucleus of Spectroscopy and Molecular Structure, Department of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Carlos M C Maranduba
- Laboratory of Human Genetics and Cell Therapy, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Érika C Alvarenga
- Department of Natural Sciences, Federal University of São João Del Rei, São João del Rei, Brazil
| | - Humberto M Brandão
- Laboratory of Applied Nanotechnology for Animal Production and Health, Brazilian Agricultural Research Corporation (EMBRAPA), Juiz de Fora, Brazil
| | - Michele Munk
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
7
|
Raghav PK, Mann Z, Ahlawat S, Mohanty S. Mesenchymal stem cell-based nanoparticles and scaffolds in regenerative medicine. Eur J Pharmacol 2021; 918:174657. [PMID: 34871557 DOI: 10.1016/j.ejphar.2021.174657] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/05/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells owing to their regenerative potential and multilineage potency. MSCs have wide-scale applications either in their native cellular form or in conjugation with specific biomaterials as nanocomposites. Majorly, these natural or synthetic biomaterials are being used in the form of metallic and non-metallic nanoparticles (NPs) to encapsulate MSCs within hydrogels like alginate or chitosan or drug cargo loading into MSCs. In contrast, nanofibers of polymer scaffolds such as polycaprolactone (PCL), poly-lactic-co-glycolic acid (PLGA), poly-L-lactic acid (PLLA), silk fibroin, collagen, chitosan, alginate, hyaluronic acid (HA), and cellulose are used to support or grow MSCs directly on it. These MSCs based nanotherapies have application in multiple domains of biomedicine including wound healing, bone and cartilage engineering, cardiac disorders, and neurological disorders. This study focused on current approaches of MSCs-based therapies and has been divided into two major sections. The first section elaborates on MSC-based nano-therapies and their plausible applications including exosome engineering and NPs encapsulation. The following section focuses on the various MSC-based scaffold approaches in tissue engineering. Conclusively, this review mainly focused on MSC-based nanocomposite's current approaches and compared their advantages and limitations for building effective regenerative medicines.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Zoya Mann
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Swati Ahlawat
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Sujata Mohanty
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
8
|
Kladko DV, Falchevskaya AS, Serov NS, Prilepskii AY. Nanomaterial Shape Influence on Cell Behavior. Int J Mol Sci 2021; 22:5266. [PMID: 34067696 PMCID: PMC8156540 DOI: 10.3390/ijms22105266] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
Nanomaterials are proven to affect the biological activity of mammalian and microbial cells profoundly. Despite this fact, only surface chemistry, charge, and area are often linked to these phenomena. Moreover, most attention in this field is directed exclusively at nanomaterial cytotoxicity. At the same time, there is a large body of studies showing the influence of nanomaterials on cellular metabolism, proliferation, differentiation, reprogramming, gene transfer, and many other processes. Furthermore, it has been revealed that in all these cases, the shape of the nanomaterial plays a crucial role. In this paper, the mechanisms of nanomaterials shape control, approaches toward its synthesis, and the influence of nanomaterial shape on various biological activities of mammalian and microbial cells, such as proliferation, differentiation, and metabolism, as well as the prospects of this emerging field, are reviewed.
Collapse
Affiliation(s)
| | | | | | - Artur Y. Prilepskii
- International Institute “Solution Chemistry of Advanced Materials and Technologies”, ITMO University, 191002 Saint Petersburg, Russia; (D.V.K.); (A.S.F.); (N.S.S.)
| |
Collapse
|
9
|
Worku MG. Pluripotent and Multipotent Stem Cells and Current Therapeutic Applications: Review. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2021; 14:3-7. [PMID: 33880040 PMCID: PMC8052119 DOI: 10.2147/sccaa.s304887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022]
Abstract
There is numerous evidence for the presence of stem cells, which is important for the treatment of a wide variety of disease conditions. Stem cells have a great therapeutic effect on different degenerative diseases through the development of specialized cells. Embryonic stem (ES) cells are derived from preimplantation embryos, which have a natural karyotype. This cell has the capacity of proliferation indefinitely and undifferentiated. Stem cells are very crucial for the treatment of different chronic and degenerative diseases. For instance, stem cell clinical trials have been done for ischemic heart disease. Also, the olfactory cells for spinal cord lesions and human fetal pancreatic cells for diabetes mellitus are the other clinical importance of stem cell therapy. Extracellular matrix (ECM) and other environmental factors influence the fate and activity of stem cells.
Collapse
Affiliation(s)
- Misganaw Gebrie Worku
- Department of Human Anatomy, University of Gondar, College of Medicine and Health Science, School of Medicine, Gondar, Ethiopia
| |
Collapse
|
10
|
Advances in nano-biomaterials and their applications in biomedicine. Emerg Top Life Sci 2021; 5:169-176. [PMID: 33825835 DOI: 10.1042/etls20200333] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 01/26/2023]
Abstract
Nanotechnology has received considerable attention and interest over the past few decades in the field of biomedicine due to the wide range of applications it provides in disease diagnosis, drug design and delivery, biomolecules detection, tissue engineering and regenerative medicine. Ultra-small size and large surface area of nanomaterials prove to be greatly advantageous for their biomedical applications. Moreover, the physico-chemical and thus, the biological properties of nanomaterials can be manipulated depending on the application. However, stability, efficacy and toxicity of nanoparticles remain challenge for researchers working in this area. This mini-review highlights the recent advances of various types of nanoparticles in biomedicine and will be of great value to researchers in the field of materials science, chemistry, biology and medicine.
Collapse
|
11
|
Yamoah MA, Thai PN, Zhang XD. Transgene Delivery to Human Induced Pluripotent Stem Cells Using Nanoparticles. Pharmaceuticals (Basel) 2021; 14:334. [PMID: 33917388 PMCID: PMC8067386 DOI: 10.3390/ph14040334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 11/25/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) and hiPSCs-derived cells have the potential to revolutionize regenerative and precision medicine. Genetically reprograming somatic cells to generate hiPSCs and genetic modification of hiPSCs are considered the key procedures for the study and application of hiPSCs. However, there are significant technical challenges for transgene delivery into somatic cells and hiPSCs since these cells are known to be difficult to transfect. The existing methods, such as viral transduction and chemical transfection, may introduce significant alternations to hiPSC culture which affect the potency, purity, consistency, safety, and functional capacity of hiPSCs. Therefore, generation and genetic modification of hiPSCs through non-viral approaches are necessary and desirable. Nanotechnology has revolutionized fields from astrophysics to biology over the past two decades. Increasingly, nanoparticles have been used in biomedicine as powerful tools for transgene and drug delivery, imaging, diagnostics, and therapeutics. The most successful example is the recent development of SARS-CoV-2 vaccines at warp speed to combat the 2019 coronavirus disease (COVID-19), which brought nanoparticles to the center stage of biomedicine and demonstrated the efficient nanoparticle-mediated transgene delivery into human body. Nanoparticles have the potential to facilitate the transgene delivery into the hiPSCs and offer a simple and robust approach. Nanoparticle-mediated transgene delivery has significant advantages over other methods, such as high efficiency, low cytotoxicity, biodegradability, low cost, directional and distal controllability, efficient in vivo applications, and lack of immune responses. Our recent study using magnetic nanoparticles for transfection of hiPSCs provided an example of the successful applications, supporting the potential roles of nanoparticles in hiPSC biology. This review discusses the principle, applications, and significance of nanoparticles in the transgene delivery to hiPSCs and their successful application in the development of COVID-19 vaccines.
Collapse
Affiliation(s)
- Megan A. Yamoah
- Department of Economics, University of Oxford, Oxford OX1 3UQ, UK;
| | - Phung N. Thai
- Department of Internal Medicine, School of Medicine, University of California, Davis, CA 95616, USA;
| | - Xiao-Dong Zhang
- Department of Internal Medicine, School of Medicine, University of California, Davis, CA 95616, USA;
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| |
Collapse
|
12
|
Green Sources Derived Carbon Dots for Multifaceted Applications. J Fluoresc 2021; 31:915-932. [PMID: 33786684 DOI: 10.1007/s10895-021-02721-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
For the past decade, the Carbon dots (CDs) a tiny sized carbon nanomaterial are typically much attentive due to their outstanding properties. Nature is a fortune of exciting starting materials that provides many inexpensive and renewable resources which have received the topmost attention of researchers because of non-hazardous and eco-friendly nature that can be used to prepare green CDs by top-down and bottom-up synthesis including hydrothermal carbonization, microwave synthesis, and pyrolysis due to its simple synthetic process, speedy reactions and clear-cut end steps. Compared to chemically derived CDs, green CDs are varied by their properties such as less toxicity, high water dispersibility, superior biocompatibility, good photostability, bright fluorescence, and ease of modification. These nanomaterials are a promising material for sensor and biological fields, especially in electrochemical sensing of toxic and trace elements in ecosystems, metal sensing, diagnosis of diseases through bio-sensing, and detection of cancerous cells by in-vitro and in-vivo bio-imaging applications. In this review, the various synthetic routes, fluorescent mechanisms, and applications of CDs from discovery to the present are briefly discussed. Herein, the latest developments on the synthesis of CDs derived from green carbon materials and their promising applications in sensing, catalysis and bio-imaging were summarized. Moreover, some challenging problems, as well as upcoming perspectives of this powerful and tremendous material, are also discussed.
Collapse
|
13
|
Peng W, Ren S, Zhang Y, Fan R, Zhou Y, Li L, Xu X, Xu Y. MgO Nanoparticles-Incorporated PCL/Gelatin-Derived Coaxial Electrospinning Nanocellulose Membranes for Periodontal Tissue Regeneration. Front Bioeng Biotechnol 2021; 9:668428. [PMID: 33842452 PMCID: PMC8026878 DOI: 10.3389/fbioe.2021.668428] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/02/2021] [Indexed: 12/19/2022] Open
Abstract
Electrospinning technique has attracted considerable attention in fabrication of cellulose nanofibrils or nanocellulose membranes, in which polycaprolactone (PCL) could be used as a promising precursor to prepare various cellulose nanofibril membranes for periodontal tissue regeneration. Conventional bio-membranes and cellulose films used in guided tissue regeneration (GTR) can prevent the downgrowth of epithelial cells, fibroblasts, and connective tissue in the area of tooth root but have limitations related to osteogenic and antimicrobial properties. Cellulose nanofibrils can be used as an ideal drug delivery material to encapsulate and carry some drugs. In this study, magnesium oxide (MgO) nanoparticles-incorporated PCL/gelatin core-shell nanocellulose periodontal membranes were fabricated using coaxial electrospinning technique, which was termed as Coaxial-MgO. The membranes using single-nozzle electrospinning technique, namely Blending-MgO and Blending-Blank, were used as control. The morphology and physicochemical property of these nanocellulose membranes were characterized by scanning electron microscopy (SEM), energy-dispersive spectrum of X-ray (EDS), transmission electron microscopy (TEM), contact angle, and thermogravimetric analysis (TGA). The results showed that the incorporation of MgO nanoparticles barely affected the morphology and mechanical property of nanocellulose membranes. Coaxial-MgO with core-shell fiber structure had better hydrophilic property and sustainable release of magnesium ion (Mg2+). CCK-8 cell proliferation and EdU staining demonstrated that Coaxial-MgO membranes showed better human periodontal ligament stem cells (hPDLSCs) proliferation rates compared with the other group due to its gelatin shell with great biocompatibility and hydrophilicity. SEM and immunofluorescence assay results illustrated that the Coaxial-MgO scaffold significantly enhanced hPDLSCs adhesion. In vitro osteogenic and antibacterial properties showed that Coaxial-MgO membrane enhanced alkaline phosphatase (ALP) activity, formation of mineralized nodules, osteogenic-related genes [ALP, collagen type 1 (COL1), runt-related transcription factor 2 (Runx2)], and high antibacterial properties toward Escherichia coli (E. coli) and Actinobacillus actinomycetemcomitans (A. a) when compared with controls. Our findings suggested that MgO nanoparticles-incorporated coaxial electrospinning PCL-derived nanocellulose periodontal membranes might have great prospects for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Wenzao Peng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Shuangshuang Ren
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yibo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ruyi Fan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xuanwen Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
14
|
Zhou S, Pan Y, Zhang J, Li Y, Neumann F, Schwerdtle T, Li W, Haag R. Dendritic polyglycerol-conjugated gold nanostars with different densities of functional groups to regulate osteogenesis in human mesenchymal stem cells. NANOSCALE 2020; 12:24006-24019. [PMID: 33242041 DOI: 10.1039/d0nr06570f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanomaterials play an important role in mimicking the biochemical and biophysical cues of the extracellular matrix in human mesenchymal stem cells (MSCs). Increasing studies have demonstrated the crucial impact of functional groups on MSCs, while limited research is available on how the functional group's density on nanoparticles regulates MSC behavior. Herein, the effects of dendritic polyglycerol (dPG)-conjugated gold nanostars (GNSs) with different densities of functional groups on the osteogenesis of MSCs are systematically investigated. dPG@GNS nanocomposites have good biocompatibility and the uptake by MSCs is in a functional group density-dependent manner. The osteogenic differentiation of MSCs is promoted by all dPG@GNS nanocomposites, in terms of alkaline phosphatase activity, calcium deposition, and expression of osteogenic protein and genes. Interestingly, the dPGOH@GNSs exhibit a slight upregulation in the expression of osteogenic markers, while the different charged densities of sulfate and amino groups show more efficacy in the promotion of osteogenesis. Meanwhile, the sulfated nanostars dPGS20@GNSs show the highest enhancement. Furthermore, various dPG@GNS nanocomposites exerted their effects by regulating the activation of Yes-associated protein (YAP) to affect osteogenic differentiation. These results indicate that dPG@GNS nanocomposites have functional group density-dependent influence on the osteogenesis of MSCs, which may provide a new insight into regulating stem cell fate.
Collapse
Affiliation(s)
- Suqiong Zhou
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin, 14195, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Mills DK, Luo Y, Elumalai A, Esteve S, Karnik S, Yao S. Creating Structured Hydrogel Microenvironments for Regulating Stem Cell Differentiation. Gels 2020; 6:gels6040047. [PMID: 33276682 PMCID: PMC7768466 DOI: 10.3390/gels6040047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
The development of distinct biomimetic microenvironments for regulating stem cell behavior and bioengineering human tissues and disease models requires a solid understanding of cell-substrate interactions, adhesion, and its role in directing cell behavior, and other physico-chemical cues that drive cell behavior. In the past decade, innovative developments in chemistry, materials science, microfabrication, and associated technologies have given us the ability to manipulate the stem cell microenvironment with greater precision and, further, to monitor effector impacts on stem cells, both spatially and temporally. The influence of biomaterials and the 3D microenvironment's physical and biochemical properties on mesenchymal stem cell proliferation, differentiation, and matrix production are the focus of this review chapter. Mechanisms and materials, principally hydrogel and hydrogel composites for bone and cartilage repair that create "cell-supportive" and "instructive" biomaterials, are emphasized. We begin by providing an overview of stem cells, their unique properties, and their challenges in regenerative medicine. An overview of current fabrication strategies for creating instructive substrates is then reviewed with a focused discussion of selected fabrication methods with an emphasis on bioprinting as a critical tool in creating novel stem cell-based biomaterials. We conclude with a critical assessment of the current state of the field and offer our view on the promises and potential pitfalls of the approaches discussed.
Collapse
Affiliation(s)
- David K. Mills
- School of Biological Sciences, Louisiana Tech University, Ruston, LA 71270, USA;
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA 71270, USA;
- Correspondence:
| | - Yangyang Luo
- Molecular Sciences and Nanotechnology, Louisiana Tech University, Ruston, LA 71270, USA;
| | - Anusha Elumalai
- School of Biological Sciences, Louisiana Tech University, Ruston, LA 71270, USA;
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA 71270, USA;
| | - Savannah Esteve
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA 71270, USA;
| | - Sonali Karnik
- Department of Mechanical and Energy Engineering, IUPUI, Indianapolis, IN 46202, USA;
| | - Shaomian Yao
- Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA;
| |
Collapse
|
16
|
Vibrational Spectroscopy for In Vitro Monitoring Stem Cell Differentiation. Molecules 2020; 25:molecules25235554. [PMID: 33256146 PMCID: PMC7729886 DOI: 10.3390/molecules25235554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Stem cell technology has attracted considerable attention over recent decades due to its enormous potential in regenerative medicine and disease therapeutics. Studying the underlying mechanisms of stem cell differentiation and tissue generation is critical, and robust methodologies and different technologies are required. Towards establishing improved understanding and optimised triggering and control of differentiation processes, analytical techniques such as flow cytometry, immunohistochemistry, reverse transcription polymerase chain reaction, RNA in situ hybridisation analysis, and fluorescence-activated cell sorting have contributed much. However, progress in the field remains limited because such techniques provide only limited information, as they are only able to address specific, selected aspects of the process, and/or cannot visualise the process at the subcellular level. Additionally, many current analytical techniques involve the disruption of the investigation process (tissue sectioning, immunostaining) and cannot monitor the cellular differentiation process in situ, in real-time. Vibrational spectroscopy, as a label-free, non-invasive and non-destructive analytical technique, appears to be a promising candidate to potentially overcome many of these limitations as it can provide detailed biochemical fingerprint information for analysis of cells, tissues, and body fluids. The technique has been widely used in disease diagnosis and increasingly in stem cell technology. In this work, the efforts regarding the use of vibrational spectroscopy to identify mechanisms of stem cell differentiation at a single cell and tissue level are summarised. Both infrared absorption and Raman spectroscopic investigations are explored, and the relative merits, and future perspectives of the techniques are discussed.
Collapse
|
17
|
Spehar K, Pan A, Beerman I. Restoring aged stem cell functionality: Current progress and future directions. Stem Cells 2020; 38:1060-1077. [PMID: 32473067 PMCID: PMC7483369 DOI: 10.1002/stem.3234] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/07/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022]
Abstract
Stem cell dysfunction is a hallmark of aging, associated with the decline of physical and cognitive abilities of humans and other mammals [Cell 2013;153:1194]. Therefore, it has become an active area of research within the aging and stem cell fields, and various techniques have been employed to mitigate the decline of stem cell function both in vitro and in vivo. While some techniques developed in model organisms are not directly translatable to humans, others show promise in becoming clinically relevant to delay or even mitigate negative phenotypes associated with aging. This review focuses on diet, treatment, and small molecule interventions that provide evidence of functional improvement in at least one type of aged adult stem cell.
Collapse
Affiliation(s)
- Kevin Spehar
- Epigenetics and Stem Cell Aging Unit, Translational Gerontology Branch, National Institute on Aging, NIH, BRC, Baltimore, Maryland
| | - Andrew Pan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Isabel Beerman
- Epigenetics and Stem Cell Aging Unit, Translational Gerontology Branch, National Institute on Aging, NIH, BRC, Baltimore, Maryland
| |
Collapse
|
18
|
Heid S, Boccaccini AR. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Acta Biomater 2020; 113:1-22. [PMID: 32622053 DOI: 10.1016/j.actbio.2020.06.040] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
The growing demand for personalized implants and tissue scaffolds requires advanced biomaterials and processing strategies for the fabrication of three-dimensional (3D) structures mimicking the complexity of the extracellular matrix. During the last years, biofabrication approaches like 3D printing of cell-laden (soft) hydrogels have been gaining increasing attention to design such 3D functional environments which resemble natural tissues (and organs). However, often these polymeric hydrogels show poor stability and low printing fidelity and hence various approaches in terms of multi-material mixtures are being developed to enhance pre- and post-printing features as well as cytocompatibility and post-printing cellular development. Additionally, bioactive properties improve the binding to the surrounding (host) tissue at the implantation site. In this review we focus on the state-of-the-art of a particular type of heterogeneous bioinks, which are composed of polymeric hydrogels incorporating inorganic bioactive fillers. Such systems include isotropic and anisotropic silicates like bioactive glasses and nanoclays or calcium-phosphates like hydroxyapatite (HAp), which provide in-situ crosslinking effects and add extra functionality to the matrix, for example mineralization capability. The present review paper discusses in detail such bioactive composite bioink systems based on the available literature, revealing that a great variety has been developed with substantially improved bioprinting characteristics, in comparison to the pure hydrogel counterparts, and enabling high viability of printed cells. The analysis of the results of the published studies demonstrates that bioactive fillers are a promising addition to hydrogels to print stable 3D constructs for regeneration of tissues. Progress and challenges of the development and applications of such composite bioink approaches are discussed and avenues for future research in the field are presented. STATEMENT OF SIGNIFICANCE: Biofabrication, involving the processing of biocompatible hydrogels including cells (bioinks), is being increasingly applied for developing complex tissue and organ mimicking structures. A variety of multi-material bioinks is being investigated to bioprint 3D constructs showing shape stability and long-term biological performance. Composite hydrogel bioinks incorporating inorganic bioreactive fillers for 3D bioprinting are the subject of this review paper. Results reported in the literature highlight the effect of bioactive fillers on bioink properties, printability and on cell behavior during and after printing and provide important information for optimizing the design of future bioinks for biofabrication, exploiting the extra functionalities provided by inorganic fillers. Further functionalization with drugs/growth factors can target enhanced printability and local drug release for more specialized biomedical therapies.
Collapse
|
19
|
Chuang YC, Chang CC, Yang F, Simon M, Rafailovich M. TiO 2 nanoparticles synergize with substrate mechanics to improve dental pulp stem cells proliferation and differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111366. [PMID: 33254985 DOI: 10.1016/j.msec.2020.111366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/10/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022]
Abstract
Multiple studies exist on the influence of TiO2 nanoparticle uptake on cell behavior. Yet little is known about the lingering influence of nanoparticles accumulation within the external environment which is particularly important to stem cell differentiation. Herein, dental pulp stem cells were cultured on hard and soft polybutadiene substrates, where 0.1 mg/mL rutile TiO2 nanoparticles were introduced once, 24 h after plating. In the absence of TiO2, the doubling time on soft substrate is significantly longer, while addition of TiO2 decreases it to the same level as on the hard substrate. FACS analysis indicates particle uptake initially at 25% is reduced to 2.5% after 14 days. In the absence of TiO2, no biomineralization on the soft and snowflake-like hydroxyapatite deposits on the hard substrate are shown at week 4. With the addition of TiO2, SEM/EDAX reveals copious mineral deposition templated on large banded collagen fibers on both substrates. The mineral-to-matrix ratios analyzed by Raman spectroscopy are unremarkable in the absence of TiO2. However, with addition of TiO2, the ratios are consistent with native bone on the hard and dentin on the soft substrates. This is further confirmed by RT-PCR, which showed upregulation of markers consistent with osteogenesis and odontogenesis, respectively.
Collapse
Affiliation(s)
- Ya-Chen Chuang
- Department of Materials Science & Engineering, Stony Brook University, NY 11794, USA; ThINC Facility, Advanced Energy Center, Stony Brook University, NY 11794, USA
| | - Chung-Chueh Chang
- ThINC Facility, Advanced Energy Center, Stony Brook University, NY 11794, USA
| | - Fan Yang
- Department of Materials Science & Engineering, Stony Brook University, NY 11794, USA
| | - Marcia Simon
- Department of Oral Biology & Pathology, Stony Brook University School of Dental Medicine, NY 11794, USA
| | - Miriam Rafailovich
- Department of Materials Science & Engineering, Stony Brook University, NY 11794, USA.
| |
Collapse
|
20
|
Mutalik SP, Pandey A, Mutalik S. Nanoarchitectronics: A versatile tool for deciphering nanoparticle interaction with cellular proteins, nucleic acids and phospholipids at biological interfaces. Int J Biol Macromol 2020; 151:136-158. [DOI: 10.1016/j.ijbiomac.2020.02.150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
|
21
|
Tejwan N, Saha SK, Das J. Multifaceted applications of green carbon dots synthesized from renewable sources. Adv Colloid Interface Sci 2020; 275:102046. [PMID: 31757388 DOI: 10.1016/j.cis.2019.102046] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/25/2019] [Accepted: 10/05/2019] [Indexed: 12/21/2022]
Abstract
Fluorescent carbon dots (CDs) are an emerging class of nanomaterials in the carbon family. There are various inexpensive and renewable resources that can be used to synthesize green CDs, which have received immense attention from researchers because of their improved aqueous solubility, high biocompatibility, and eco-friendly nature compared with chemically derived CDs. Additional surface passivation is not required, as heteroatoms are present on the surface of green CDs in the form of amine, hydroxyl, carboxyl, or thiol functional groups, which can improve their physicochemical properties, quantum yield, and the probability of visible light absorption. Green CDs have potential applications in the fields of bioimaging, drug/gene delivery systems, catalysis, and sensing. Since their discovery, there have been several review articles that describe the synthesis of green CDs and some of their applications. However, there are no review articles describing the synthesis and complete applications of green CDs. Here, we provide detailed information regarding their synthesis and applications based on the available literature. In addition, we discuss some of the less explored applications of green CDs and the challenges that remain to be overcome.
Collapse
|
22
|
Filippi M, Born G, Felder-Flesch D, Scherberich A. Use of nanoparticles in skeletal tissue regeneration and engineering. Histol Histopathol 2019; 35:331-350. [PMID: 31721139 DOI: 10.14670/hh-18-184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bone and osteochondral defects represent one of the major causes of disabilities in the world. Derived from traumas and degenerative pathologies, these lesions cause severe pain, joint deformity, and loss of joint motion. The standard treatments in clinical practice present several limitations. By producing functional substitutes for damaged tissues, tissue engineering has emerged as an alternative in the treatment of defects in the skeletal system. Despite promising preliminary clinical outcomes, several limitations remain. Nanotechnologies could offer new solutions to overcome those limitations, generating materials more closely mimicking the structures present in naturally occurring systems. Nanostructures comparable in size to those appearing in natural bone and cartilage have thus become relevant in skeletal tissue engineering. In particular, nanoparticles allow for a unique combination of approaches (e.g. cell labelling, scaffold modification or drug and gene delivery) inside single integrated systems for optimized tissue regeneration. In the present review, the main types of nanoparticles and the current strategies for their application to skeletal tissue engineering are described. The collection of studies herein considered confirms that advanced nanomaterials will be determinant in the design of regenerative therapeutic protocols for skeletal lesions in the future.
Collapse
Affiliation(s)
- Miriam Filippi
- Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gordian Born
- Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Delphine Felder-Flesch
- Institut de Physique et Chimie des Matériaux Strasbourg, UMR CNRS-Université de Strasbourg, Strasbourg, France
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland.
| |
Collapse
|
23
|
Asgari V, Landarani-Isfahani A, Salehi H, Amirpour N, Hashemibeni B, Rezaei S, Bahramian H. The Story of Nanoparticles in Differentiation of Stem Cells into Neural Cells. Neurochem Res 2019; 44:2695-2707. [DOI: 10.1007/s11064-019-02900-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
|
24
|
Rajendran A, Kapoor U, Jothinarayanan N, Lenka N, Pattanayak DK. Effect of Silver-Containing Titania Layers for Bioactivity, Antibacterial Activity, and Osteogenic Differentiation of Human Mesenchymal Stem Cells on Ti Metal. ACS APPLIED BIO MATERIALS 2019; 2:3808-3819. [DOI: 10.1021/acsabm.9b00420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Archana Rajendran
- CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu 630006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Upasana Kapoor
- National Centre for Cell Science, Pune, Maharashtra 411007, India
| | | | - Nibedita Lenka
- National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Deepak K. Pattanayak
- CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu 630006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
25
|
Thang DC, Wang Z, Lu X, Xing B. Precise cell behaviors manipulation through light-responsive nano-regulators: recent advance and perspective. Theranostics 2019; 9:3308-3340. [PMID: 31244956 PMCID: PMC6567964 DOI: 10.7150/thno.33888] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
Nanotechnology-assisted spatiotemporal manipulation of biological events holds great promise in advancing the practice of precision medicine in healthcare systems. The progress in internal and/or external stimuli-responsive nanoplatforms for highly specific cellular regulations and theranostic controls offer potential clinical translations of the revolutionized nanomedicine. To successfully implement this new paradigm, the emerging light-responsive nanoregulators with unparalleled precise cell functions manipulation have gained intensive attention, providing UV-Vis light-triggered photocleavage or photoisomerization studies, as well as near-infrared (NIR) light-mediated deep-tissue applications for stimulating cellular signal cascades and treatment of mortal diseases. This review discusses current developments of light-activatable nanoplatforms for modulations of various cellular events including neuromodulations, stem cell monitoring, immunomanipulation, cancer therapy, and other biological target intervention. In summary, the propagation of light-controlled nanomedicine would place a bright prospect for future medicine.
Collapse
Affiliation(s)
- Do Cong Thang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhimin Wang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Xiaoling Lu
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Bengang Xing
- Sino-Singapore International Joint Research Institute (SSIJRI), Guangzhou 510000, China
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
26
|
Abdal Dayem A, Lee SB, Cho SG. The Impact of Metallic Nanoparticles on Stem Cell Proliferation and Differentiation. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E761. [PMID: 30261637 PMCID: PMC6215285 DOI: 10.3390/nano8100761] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022]
Abstract
Nanotechnology has a wide range of medical and industrial applications. The impact of metallic nanoparticles (NPs) on the proliferation and differentiation of normal, cancer, and stem cells is well-studied. The preparation of NPs, along with their physicochemical properties, is related to their biological function. Interestingly, various mechanisms are implicated in metallic NP-induced cellular proliferation and differentiation, such as modulation of signaling pathways, generation of reactive oxygen species, and regulation of various transcription factors. In this review, we will shed light on the biomedical application of metallic NPs and the interaction between NPs and the cellular components. The in vitro and in vivo influence of metallic NPs on stem cell differentiation and proliferation, as well as the mechanisms behind potential toxicity, will be explored. A better understanding of the limitations related to the application of metallic NPs on stem cell proliferation and differentiation will afford clues for optimal design and preparation of metallic NPs for the modulation of stem cell functions and for clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Soo Bin Lee
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
27
|
Pan L, Lee YM, Lim TK, Lin Q, Xu X. Quantitative Proteomics Study Reveals Changes in the Molecular Landscape of Human Embryonic Stem Cells with Impaired Stem Cell Differentiation upon Exposure to Titanium Dioxide Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800190. [PMID: 29741810 DOI: 10.1002/smll.201800190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/27/2018] [Indexed: 06/08/2023]
Abstract
The increasing number of nanoparticles (NPs) being used in various industries has led to growing concerns of potential hazards that NP exposure can incur on human health. However, its global effects on humans and the underlying mechanisms are not systemically studied. Human embryonic stem cells (hESCs), with the ability to differentiate to any cell types, provide a unique system to assess cellular, developmental, and functional toxicity in vitro within a single system highly relevant to human physiology. Here, the quantitative proteomics approach is adopted to evaluate the molecular consequences of titanium dioxide NPs (TiO2 NPs) exposure in hESCs. The study identifies ≈328 unique proteins significantly affected by TiO2 NPs exposure. Proteomics analysis highlights that TiO2 NPs can induce DNA damage, elevated oxidative stress, apoptotic responses, and cellular differentiation. Furthermore, in vivo analysis demonstrates remarkable reduction in the ability of hESCs in teratoma formation after TiO2 NPs exposure, suggesting impaired pluripotency. Subsequently, it is found that TiO2 NPs can disrupt hESC mesoderm differentiation into cardiomyocytes. The study unveils comprehensive changes in the molecular landscape of hESCs by TiO2 NPs and identifies the impact which TiO2 NPs can have on the pluripotency and differentiation properties of human stem cells.
Collapse
Affiliation(s)
- Lei Pan
- Institute of Stem Cell and Regenerative Medicine, Medical College, Xiamen University, Chengzhi Building, Xiang'an Campus, Xiamen, Fujian Province, 361100, P. R. China
| | - Yew Mun Lee
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Xiuqin Xu
- Institute of Stem Cell and Regenerative Medicine, Medical College, Xiamen University, Chengzhi Building, Xiang'an Campus, Xiamen, Fujian Province, 361100, P. R. China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong Province, 518000, P. R. China
| |
Collapse
|
28
|
Effect of Polyhydroxybutyrate/Chitosan/Bioglass nanofiber scaffold on proliferation and differentiation of stem cells from human exfoliated deciduous teeth into odontoblast-like cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:128-139. [PMID: 29752081 DOI: 10.1016/j.msec.2018.03.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 03/16/2018] [Accepted: 03/28/2018] [Indexed: 01/07/2023]
Abstract
Scaffolds and their characteristics play a central role in tissue engineering. The purpose of this study was to determine the effects of Polyhydroxybutyrate (PHB)/Chitosan/nano-bioglass (nBG) nanofiber scaffold made using the electrospinning method, on the proliferation and differentiation of stem cells obtained from human exfoliated deciduous teeth into odontoblast-like cells. In this experimental study, the pulps of the molten deciduous teeth were isolated, thereafter, the stem cells from human exfoliated deciduous teeth (SHED) were extracted and then the 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the cell viability percentage. The expression of some stem cell genes was studied by flowcytometry. These cells were then subjected to odontoblast by using the bone morphogenetic proteins-2 (BMP2) growth factor in the differentiation medium and for the expression of their specific genes. Primers of collagen type-I, dentin sialophosphoprotein (DSPP) and alkaline phosphatase (ALP) were used and the percentage of differentiation to odontoblast cells in induction scaffolds was investigated using real-time PCR and immunohistochemistry methods. The results revealed a 6-fold increase in the expression of DSPP genes and collagen type-I, and a 2-fold increase in the expression of ALP in scaffold with BMP2 group compared to the scaffold as control group which according to the immunohistochemical test results, showed the extracted SHED to have been differentiated into dentin odontoblast-like cells. As a result, this scaffold can be used as a suitable substrate to apply in dentin tissue engineering.
Collapse
|
29
|
Wei M, Li S, Le W. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms. J Nanobiotechnology 2017; 15:75. [PMID: 29065876 PMCID: PMC5655945 DOI: 10.1186/s12951-017-0310-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 10/14/2017] [Indexed: 01/23/2023] Open
Abstract
Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells’ fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.
Collapse
Affiliation(s)
- Min Wei
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People's Republic of China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People's Republic of China
| | - Song Li
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People's Republic of China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People's Republic of China
| | - Weidong Le
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People's Republic of China. .,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People's Republic of China. .,Collaborative Innovation Center for Brain Science, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People's Republic of China.
| |
Collapse
|
30
|
Lee SJ, Yang S. Substrate Curvature Restricts Spreading and Induces Differentiation of Human Mesenchymal Stem Cells. Biotechnol J 2017; 12. [PMID: 28731631 DOI: 10.1002/biot.201700360] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/06/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Sang Joo Lee
- Department of Mechanical and Aerospace EngineeringFlorida Institute of Technology150 West University BoulevardMelbourneFL32901USA
| | - Shengyuan Yang
- Department of Mechanical and Aerospace EngineeringFlorida Institute of Technology150 West University BoulevardMelbourneFL32901USA
| |
Collapse
|