1
|
Lopez Baltazar JM, Gu W, Yu Q. Enhancing Extracellular Vesicle Detection via Cotargeting Tetraspanin Biomarkers. Anal Chem 2024; 96:16406-16414. [PMID: 39360503 DOI: 10.1021/acs.analchem.4c04086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Extracellular vesicles (EVs) are emerging as key diagnostic biomarkers due to their widespread presence in body fluids and the proteins on their surfaces, which reflect the identity and condition of their parent cells. Research has focused on detecting EVs with biosensors that target individual transmembrane proteins (TMPs) like tetraspanins. However, due to TMP heterogeneity and the formation of tetraspanin-enriched microdomains (TEMs), cotargeting multiple TMPs is a promising strategy for enhancing EV detection. In this work, we introduce a dual-antibody surface functionalization approach using surface plasmon resonance (SPR) biosensors to cotarget tetraspanins on EVs derived from mouse macrophages. The expression of EV tetraspanin markers followed the trend of CD9 > CD63 > CD81, which was consistent with the EV detection targeting their nontetraspanin partners, exhibiting LFA-1 > ICAM-1 > VCAM-1, and suggesting a differential role of tetraspanins with their associated TMPs. Cotargeting EV tetraspanins via CD81/CD63, CD81/CD9, and CD63/CD9 dual monoclonal antibody surfaces resulted in higher EV detection compared to predictions based on binding with two monoclonal antibodies against tetraspanins without cotargeting. Furthermore, the optimization of dual monoclonal antibody surface ratios to improve cotargeting effect yielded a statistically significant enhancement in the sensitivity of EV detection. These findings underscore the importance of TEMs in designing EV-based biosensing platforms to achieve optimized sensitivity in EV detection.
Collapse
Affiliation(s)
- Jesus M Lopez Baltazar
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Wenchao Gu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Qiuming Yu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
2
|
Mazahir F, Yadav AK. Recent progress in engineered extracellular vesicles and their biomedical applications. Life Sci 2024; 350:122747. [PMID: 38797364 DOI: 10.1016/j.lfs.2024.122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
AIMS To present the recent update on the isolation, engineering techniques for extracellular vesicles, limitations associated with different isolation techniques, different biomedical applications, and challenges of engineered extracellular vesicles for the benefit of researchers from academic, industry, etc. MATERIALS AND METHODS: Peer-reviewed articles from most recognized journals were collected, and presented information was analyzed to discuss collection, chemical, electroporation, cellular, and membrane surface engineering to design extracellular vesicles for various therapeutic applications. In addition, we present the applications and limitations of techniques for the collection of extracellular vesicles. KEY FINDINGS There is a need for isolation techniques with the gold standard. However, advanced extracellular vesicle isolation techniques showed improved recovery, and purity of extracellular vesicles. Tumor therapy is a major part of the therapy section that illustrates the role of engineered extracellular vesicles in synergetic therapy such as phototherapy, theragnostic, and delivery of genetic materials. In addition, extracellular vesicles have shown their potential in the treatment of retinal disorders, neurodegenerative disease, tuberculosis, osteoporosis, inflammatory bowel disease, vaccine production, and wound healing. SIGNIFICANCE Engineered extracellular vesicles can deliver cargo to the specific cells, elicit an immune response and could be used for the development of the vaccines in the future. However, the progress is at the initial stage. Overall, this review will provide a comprehensive understanding and could serve as a reference for researchers in the clinical translation of engineered extracellular vesicles in different biomedical fields.
Collapse
Affiliation(s)
- Farhan Mazahir
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Raebareli, A Transit Campus, Bijnor-Sisendi Road, Bijnor, Lucknow-226002, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Raebareli, A Transit Campus, Bijnor-Sisendi Road, Bijnor, Lucknow-226002, India.
| |
Collapse
|
3
|
Fan X, Zhang Y, Liu W, Shao M, Gong Y, Wang T, Xue S, Nian R. A comprehensive review of engineered exosomes from the preparation strategy to therapeutic applications. Biomater Sci 2024; 12:3500-3521. [PMID: 38828621 DOI: 10.1039/d4bm00558a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Exosomes exhibit high bioavailability, biological stability, targeted specificity, low toxicity, and low immunogenicity in shuttling various bioactive molecules such as proteins, lipids, RNA, and DNA. Natural exosomes, however, have limited production, targeting abilities, and therapeutic efficacy in clinical trials. On the other hand, engineered exosomes have demonstrated long-term circulation, high stability, targeted delivery, and efficient intracellular drug release, garnering significant attention. The engineered exosomes bring new insights into developing next-generation drug delivery systems and show enormous potential in therapeutic applications, such as tumor therapies, diabetes management, cardiovascular disease, and tissue regeneration and repair. In this review, we provide an overview of recent advancements associated with engineered exosomes by focusing on the state-of-the-art strategies for cell engineering and exosome engineering. Exosome isolation methods, including traditional and emerging approaches, are systematically compared along with advancements in characterization methods. Current challenges and future opportunities are further discussed in terms of the preparation and application of engineered exosomes.
Collapse
Affiliation(s)
- Xiying Fan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| | - Yiwen Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People's Republic of China
| | - Wenshuai Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| | - Mingzheng Shao
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Yibo Gong
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People's Republic of China
| | - Tingya Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People's Republic of China
| | - Song Xue
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| |
Collapse
|
4
|
Wang C, Qiu J, Liu M, Wang Y, Yu Y, Liu H, Zhang Y, Han L. Microfluidic Biochips for Single-Cell Isolation and Single-Cell Analysis of Multiomics and Exosomes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401263. [PMID: 38767182 PMCID: PMC11267386 DOI: 10.1002/advs.202401263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Single-cell multiomic and exosome analyses are potent tools in various fields, such as cancer research, immunology, neuroscience, microbiology, and drug development. They facilitate the in-depth exploration of biological systems, providing insights into disease mechanisms and aiding in treatment. Single-cell isolation, which is crucial for single-cell analysis, ensures reliable cell isolation and quality control for further downstream analyses. Microfluidic chips are small lightweight systems that facilitate efficient and high-throughput single-cell isolation and real-time single-cell analysis on- or off-chip. Therefore, most current single-cell isolation and analysis technologies are based on the single-cell microfluidic technology. This review offers comprehensive guidance to researchers across different fields on the selection of appropriate microfluidic chip technologies for single-cell isolation and analysis. This review describes the design principles, separation mechanisms, chip characteristics, and cellular effects of various microfluidic chips available for single-cell isolation. Moreover, this review highlights the implications of using this technology for subsequent analyses, including single-cell multiomic and exosome analyses. Finally, the current challenges and future prospects of microfluidic chip technology are outlined for multiplex single-cell isolation and multiomic and exosome analyses.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Jiaoyan Qiu
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Mengqi Liu
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Yihe Wang
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Yang Yu
- Department of PeriodontologySchool and Hospital of StomatologyCheeloo College of MedicineShandong UniversityJinan250100China
| | - Hong Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Yu Zhang
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Lin Han
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence ApplicationJinan250100China
| |
Collapse
|
5
|
Skoczylas Ł, Gawin M, Fochtman D, Widłak P, Whiteside TL, Pietrowska M. Immune capture and protein profiling of small extracellular vesicles from human plasma. Proteomics 2024; 24:e2300180. [PMID: 37713108 PMCID: PMC11046486 DOI: 10.1002/pmic.202300180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Extracellular vesicles (EVs), the key players in inter-cellular communication, are produced by all cell types and are present in all body fluids. Analysis of the proteome content is an important approach in structural and functional studies of these vesicles. EVs circulating in human plasma are heterogeneous in size, cellular origin, and functions. This heterogeneity and the potential presence of contamination with plasma components such as lipoprotein particles and soluble plasma proteins represent a challenge in profiling the proteome of EV subsets by mass spectrometry. An immunocapture strategy prior to mass spectrometry may be used to isolate a homogeneous subpopulation of small EVs (sEV) with a specific endocytic origin from plasma or other biofluids. Immunocapture selectively separates EV subpopulations in biofluids based on the presence of a unique protein carried on the vesicle surface. The advantages and disadvantages of EV immune capture as a preparative step for mass spectrometry are discussed.
Collapse
Affiliation(s)
- Łukasz Skoczylas
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland
| | - Marta Gawin
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland
| | - Daniel Fochtman
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland
- Silesian University of Technology, 44-100 Gliwice, Poland
| | - Piotr Widłak
- Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Theresa L. Whiteside
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland
| |
Collapse
|
6
|
Bhavsar D, Raguraman R, Kim D, Ren X, Munshi A, Moore K, Sikavitsas V, Ramesh R. Exosomes in diagnostic and therapeutic applications of ovarian cancer. J Ovarian Res 2024; 17:113. [PMID: 38796525 PMCID: PMC11127348 DOI: 10.1186/s13048-024-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/16/2024] [Indexed: 05/28/2024] Open
Abstract
Ovarian cancer accounts for more deaths than any other female reproductive tract cancer. The major reasons for the high mortality rates include delayed diagnoses and drug resistance. Hence, improved diagnostic and therapeutic options for ovarian cancer are a pressing need. Extracellular vesicles (EVs), that include exosomes provide hope in both diagnostic and therapeutic aspects. They are natural lipid nanovesicles secreted by all cell types and carry molecules that reflect the status of the parent cell. This facilitates their potential use as biomarkers for an early diagnosis. Additionally, EVs can be loaded with exogenous cargo, and have features such as high stability and favorable pharmacokinetic properties. This makes them ideal for tumor-targeted delivery of biological moieties. The International Society of Extracellular Vesicles (ISEV) based on the Minimal Information for Studies on Extracellular Vesicles (MISEV) recommends the usage of the term "small extracellular vesicles (sEVs)" that includes exosomes for particles that are 30-200 nm in size. However, majority of the studies reported in the literature and relevant to this review have used the term "exosomes". Therefore, this review will use the term "exosomes" interchangeably with sEVs for consistency with the literature and avoid confusion to the readers. This review, initially summarizes the different isolation and detection techniques developed to study ovarian cancer-derived exosomes and the potential use of these exosomes as biomarkers for the early diagnosis of this devastating disease. It addresses the role of exosome contents in the pathogenesis of ovarian cancer, discusses strategies to limit exosome-mediated ovarian cancer progression, and provides options to use exosomes for tumor-targeted therapy in ovarian cancer. Finally, it states future research directions and recommends essential research needed to successfully transition exosomes from the laboratory to the gynecologic-oncology clinic.
Collapse
Affiliation(s)
- Dhaval Bhavsar
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Rajeswari Raguraman
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N, Stonewall Ave, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Xiaoyu Ren
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N, Stonewall Ave, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Kathleen Moore
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Vassilios Sikavitsas
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
- Department of Chemical, Biological and Materials Engineering, Oklahoma University, Norman, OK, 73019, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA.
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
7
|
Shanehband N, Naghib SM. Recent advances in nano/microfluidics-based cell isolation techniques for cancer diagnosis and treatments. Biochimie 2024; 220:122-143. [PMID: 38176605 DOI: 10.1016/j.biochi.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/26/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
Miniaturization has improved significantly in the recent decade, which has enabled the development of numerous microfluidic systems. Microfluidic technologies have shown great potential for separating desired cells from heterogeneous samples, as they offer benefits such as low sample consumption, easy operation, and high separation accuracy. Microfluidic cell separation approaches can be classified into physical (label-free) and biological (labeled) methods based on their working principles. Each method has remarkable and feasible benefits for the purposes of cancer detection and therapy, as well as the challenges that we have discussed in this article. In this review, we present the recent advances in microfluidic cell sorting techniques that incorporate both physical and biological aspects, with an emphasis on the methods by which the cells are separated. We first introduce and discuss the biological cell sorting techniques, followed by the physical cell sorting techniques. Additionally, we explore the role of microfluidics in drug screening, drug delivery, and lab-on-chip (LOC) therapy. In addition, we discuss the challenges and future prospects of integrated microfluidics for cell sorting.
Collapse
Affiliation(s)
- Nahid Shanehband
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran.
| |
Collapse
|
8
|
Wang W, Sun H, Duan H, Sheng G, Tian N, Liu D, Sun Z. Isolation and usage of exosomes in central nervous system diseases. CNS Neurosci Ther 2024; 30:e14677. [PMID: 38497529 PMCID: PMC10945885 DOI: 10.1111/cns.14677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/10/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Exosomes are vesicles secreted by all types of mammalian cells. They are characterized by a double-layered lipid membrane structure. They serve as carriers for a plethora of signal molecules, including DNA, RNA, proteins, and lipids. Their unique capability of effortlessly crossing the blood-brain barrier underscores their critical role in the progression of various neurological disorders. This includes, but is not limited to, diseases such as Alzheimer's, Parkinson's, and ischemic stroke. Establishing stable and mature methods for isolating exosomes is a prerequisite for the study of exosomes and their biomedical significance. The extraction technologies of exosomes include differential centrifugation, density gradient centrifugation, size exclusion chromatography, ultrafiltration, polymer coprecipitation, immunoaffinity capture, microfluidic, and so forth. Each extraction technology has its own advantages and disadvantages, and the extraction standards of exosomes have not been unified internationally. AIMS This review aimed to showcase the recent advancements in exosome isolation techniques and thoroughly compare the advantages and disadvantages of different methods. Furthermore, the significant research progress made in using exosomes for diagnosing and treating central nervous system (CNS) diseases has been emphasized. CONCLUSION The varying isolation methods result in differences in the concentration, purity, and size of exosomes. The efficient separation of exosomes facilitates their widespread application, particularly in the diagnosis and treatment of CNS diseases.
Collapse
Affiliation(s)
- Wenjing Wang
- Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijingChina
| | - Hong Sun
- Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijingChina
- Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Huijuan Duan
- Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Gang Sheng
- Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijingChina
| | - Na Tian
- Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijingChina
| | - Dingyi Liu
- Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijingChina
| | - Zhaogang Sun
- Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijingChina
- Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| |
Collapse
|
9
|
Zhao Z, Yang S, Tang X, Feng L, Ding Z, Chen Z, Luo X, Deng R, Sheng J, Xie S, Chang K, Chen M. DNA four-way junction-driven dual-rolling circle amplification sandwich-type aptasensor for ultra-sensitive and specific detection of tumor-derived exosomes. Biosens Bioelectron 2024; 246:115841. [PMID: 38006701 DOI: 10.1016/j.bios.2023.115841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/27/2023]
Abstract
There is an urgent need to accurately quantify tumor-derived exosomes, which have emerged as promising non-invasive tumor diagnostic biomarkers. Herein, a bispecific-aptamer sandwich-type gold nanoparticle-modified electrochemical aptasensor was developed based on a four-way junction (4-WJ)-triggered dual rolling circle amplification (RCA)-assisted methylene blue (MB)/G-quadruplex strategy for extremely specific and sensitive exosome detection. This aptamer/exosome/aptamer sandwich-type design contained a CD63-specific aptamer and a cancerous mucin-1 (MUC1) protein-specific aptamer. The CD63 aptamer modified on a gold electrode captured exosomes, and then the sandwich-type aptasensor was formed with the addition of the MUC1 aptamer. The MUC1 aptamer's 3'-end sequence facilitated the formation of 4-WJ, assisted by a molecular beacon probe and a binary DNA probe. Subsequently, a dual-RCA reaction was triggered by binding to two cytosine-rich circle DNA templates at both ends of 4-WJ. Ultimately, dual-RCA products containing multiple G-quadruplex conformations were generated with the assistance of K+ to trap abundant MB indicators and amplify electrochemical signals. The aptasensor exhibited high specificity, sensitivity, repeatability, and stability toward MCF-7-derived exosomes, with a detection limit of 20 particles/mL and a linear range of 1 × 102 to 1 × 107 particles/mL. Moreover, it showed excellent applicability in clinical settings to recover exosomes in normal human serum. Our aptasensor is anticipated to serve as a versatile platform for detecting various specific aptamer-based targets in biomedical and bioanalytical applications.
Collapse
Affiliation(s)
- Zhuyang Zhao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Sha Yang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Liu Feng
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Zishan Ding
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Zhiguo Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Xing Luo
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Ruijia Deng
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Jing Sheng
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Shuang Xie
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China.
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China; College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
10
|
Wang Z, Wang Q, Qin F, Chen J. Exosomes: a promising avenue for cancer diagnosis beyond treatment. Front Cell Dev Biol 2024; 12:1344705. [PMID: 38419843 PMCID: PMC10900531 DOI: 10.3389/fcell.2024.1344705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Exosomes, extracellular vesicles secreted by cells, have garnered significant attention in recent years for their remarkable therapeutic potential. These nanoscale carriers can be harnessed for the targeted delivery of therapeutic agents, such as pharmaceuticals, proteins, and nucleic acids, across biological barriers. This versatile attribute of exosomes is a promising modality for precision medicine applications, notably in the realm of cancer therapy. However, despite their substantial therapeutic potential, exosomes still confront challenges tied to standardization and scalability that impede their practice in clinical applications. Moreover, heterogeneity in isolation methodologies and limited cargo loading mechanisms pose obstacles to ensuring consistent outcomes, thereby constraining their therapeutic utility. In contrast, exosomes exhibit a distinct advantage in cancer diagnosis, as they harbor specific signatures reflective of the tumor's genetic and proteomic profile. This characteristic endows them with the potential to serve as valuable liquid biopsies for non-invasive and real-time monitoring, making possible early cancer detection for the development of personalized treatment strategies. In this review, we provide an extensive evaluation of the advancements in exosome research, critically examining their advantages and limitations in the context of cancer therapy and early diagnosis. Furthermore, we present a curated overview of the most recent technological innovations utilizing exosomes, with a focus on enhancing the efficacy of early cancer detection.
Collapse
Affiliation(s)
- Zhu Wang
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Qin
- School of Basic Medicine, Dali University, Dali, Yunnan, China
| | - Jie Chen
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Chew CH, Lee HL, Chen AL, Huang WT, Chen SM, Liu YL, Chen CC. Review of electrospun microtube array membrane (MTAM)-a novel new class of hollow fiber for encapsulated cell therapy (ECT) in clinical applications. J Biomed Mater Res B Appl Biomater 2024; 112:e35348. [PMID: 38247238 DOI: 10.1002/jbm.b.35348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/02/2023] [Accepted: 10/14/2023] [Indexed: 01/23/2024]
Abstract
Encapsulated cell therapy (ECT) shows significant potential for treating neurodegenerative disorders including Alzheimer's and Parkinson's, which currently lack curative medicines and must be managed symptomatically. This novel technique encapsulates functional cells with a semi-permeable membrane, providing protection while enabling critical nutrients and therapeutic substances to pass through. Traditional ECT procedures, on the other hand, pose difficulties in terms of cell survival and retrieval. We introduce the Microtube Array Membrane (MTAM), a revolutionary technology that solves these constraints, in this comprehensive overview. Microtube Array Membrane has distinct microstructures that improve encapsulated cells' long-term viability by combining the advantages of macro and micron scales. Importantly, the MTAM platform improves biosafety by allowing the entire encapsulated unit to be retrieved in the event of an adverse reaction. Our findings show that MTAM-based ECT has a great potential in a variety of illness situations. For cancer treatment, hybridoma cells secreting anti-CEACAM 6 antibodies inhibit triple-negative breast cancer cell lines for an extended period of time. In animal brain models of Alzheimer's disease, hybridoma cells secreting anti-pTau antibodies successfully reduce pTau buildup, accompanied by improvements in memory performance. In mouse models, MTAM-encapsulated primary cardiac mesenchymal stem cells dramatically improve overall survival and heart function. These findings illustrate the efficacy and adaptability of MTAM-based ECT in addressing major issues such as immunological isolation, cell viability, and patient safety. We provide new possibilities for the treatment of neurodegenerative illnesses and other conditions by combining the potential of ECT with MTAM. Continued research and development in this subject has a lot of promise for developing cell therapy and giving hope to people suffering from chronic diseases.
Collapse
Affiliation(s)
- Chee Ho Chew
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Research and Marketing Department, MTAMTech Corporation, Taipei, Taiwan
| | - Hsin-Lun Lee
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Amanda Lin Chen
- Immune Deficiency Cellular Therapy Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Wan-Ting Huang
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Research and Marketing Department, MTAMTech Corporation, Taipei, Taiwan
| | - Shu-Mei Chen
- Division of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yen-Lin Liu
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chien-Chung Chen
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Research and Marketing Department, MTAMTech Corporation, Taipei, Taiwan
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- The PhD Program for Translational Medicine, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
12
|
Singh S, Dansby C, Agarwal D, Bhat PD, Dubey PK, Krishnamurthy P. Exosomes: Methods for Isolation and Characterization in Biological Samples. Methods Mol Biol 2024; 2835:181-213. [PMID: 39105917 DOI: 10.1007/978-1-0716-3995-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Exosomes are small lipid bilayer-encapsulated nanosized extracellular vesicles of endosomal origin. Exosomes are secreted by almost all cell types and are a crucial player in intercellular communication. Exosomes transmit cellular information from donor to recipient cells in the form of proteins, lipids, and nucleic acids and influence several physiological and pathological responses. Due to their capacity to carry a variety of cellular cargo, low immunogenicity and cytotoxicity, biocompatibility, and ability to cross the blood-brain barrier, these nanosized vesicles are considered excellent diagnostic tools and drug-delivery vehicles. Despite their tremendous potential, the progress in therapeutic applications of exosomes is hindered by inadequate isolation techniques, poor characterization, and scarcity of specific biomarkers. The current research in the field is focused on overcoming these limitations. In this chapter, we have reviewed conventional exosome isolation and characterization methods and recent advancements, their advantages and limitations, persistent challenges in exosome research, and future directions.
Collapse
Affiliation(s)
- Sarojini Singh
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cassidy Dansby
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Divyanshi Agarwal
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Purnima Devaki Bhat
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Praveen Kumar Dubey
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
13
|
Wu W, He J. Unveiling the functional paradigm of exosome-derived long non-coding RNAs (lncRNAs) in cancer: based on a narrative review and systematic review. J Cancer Res Clin Oncol 2023; 149:15219-15247. [PMID: 37578522 DOI: 10.1007/s00432-023-05273-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND AND PURPOSE The intricate mechanisms underlying intercellular communication within the tumor microenvironment remain largely elusive. Recently, attention has shifted towards exploring the intercellular signaling mediated by exosomal long non-coding RNAs (lncRNAs) within this context. This comprehensive systematic review aims to elucidate the functional paradigm of exosome-derived lncRNAs in cancer. MATERIALS AND METHODS The review provides a comprehensive narrative of lncRNA definition, characteristics, as well as the formation, sorting, and uptake processes of exosome-derived lncRNAs. Additionally, it describes comprehensive technology for exosome research and nucleic acid drug loading. This review further systematically examines the cellular origins, functional roles, and underlying mechanisms of exosome-derived lncRNAs in recipient cells within the cancer setting. RESULTS The functional paradigm of exosome-derived lncRNAs in cancer mainly depends on the source cells and sorting mechanism of exosomal lncRNAs, the recipient cells and uptake mechanisms of exosomal lncRNAs, and the specific molecular mechanisms of lncRNAs in recipient cells. The source cells of exosomal lncRNAs mainly involved in the current review included tumor cells, cancer stem cells, normal cells, macrophages, and cancer-associated fibroblasts. CONCLUSION This synthesis of knowledge offers valuable insights for accurately identifying exosomal lncRNAs with potential as tumor biomarkers. Moreover, it aids in the selection of appropriate targeting strategies and preclinical models, thereby facilitating the clinical translation of exosomal lncRNAs as promising therapeutic targets against cancer. Through a comprehensive understanding of the functional role of exosome-derived lncRNAs in cancer, this review paves the way for advancements in personalized medicine and improved treatment outcomes.
Collapse
Affiliation(s)
- Wenhan Wu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jia He
- Faculty Affairs and Human Resources Management Department, Southwest Medical University, Luzhou, China
| |
Collapse
|
14
|
Xia L, Zhang M, Hu Y, Mei W, Long Y, Wang H, Zou L, Wang Q, Yang X, Wang K. "One suction and one extrusion" mode-based wash-free platform for determination of breast cancer cell-derived exosomes. Mikrochim Acta 2023; 190:322. [PMID: 37491600 DOI: 10.1007/s00604-023-05898-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
A simple and wash-free POCT platform based on microcapillary was developed, using breast cancer cell-derived exosomes as a model. This method adopted the "one suction and one extrusion" mode. The hybridized complex of epithelial cell adhesion molecule (EpCAM) aptamer and complementary DNA-horseradish peroxidase conjugate (CDNA-HRP) was pre-modified on the microcapillary's inner surface. "One suction" meant inhaling the sample into the functionalized microcapillary. The exosomes could specifically bind with the EpCAM aptamer on the microcapillary's inner wall, and then the CDNA-HRP complex was released. "One extrusion" referred to squeezing the shedding CDNA-HRP into the 3,3',5,5'-tetramethylbenzidine (TMB)/H2O2 solution, and then the enzyme-catalyzed reaction would occur to make the solution yellow using sulfuric acid as the terminator. Therefore, exosome detection could be realized. The limit of detection was 2.69 × 104 particles mL-1 and the signal value had excellent linearity in the concentration range from 2.75 × 104 to 2.75 × 108 particles⋅mL-1 exosomes. In addition, the wash-free POCT platform also displayed a favorable reproducibility (RSD = 2.9%) in exosome detection. This method could effectively differentiate breast cancer patients from healthy donors. This work provided an easy-to-operate method for detecting cancer-derived exosomes without complex cleaning steps, which is expected to be applied to breast cancer screening.
Collapse
Affiliation(s)
- Ling Xia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
| | - Mingwan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
| | - Yingyun Hu
- Department of Cancer Prevention and Control, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenjing Mei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
| | - Ying Long
- Translational Medicine Centre, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hongqiang Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
| | - Liyuan Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China.
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
| |
Collapse
|
15
|
Feng L, Feng Z, Hu J, Gao J, Li A, He X, Liu L, Shen Z. Identification of hsa-miR-619-5p and hsa-miR-4454 in plasma-derived exosomes as a potential biomarker for lung adenocarcinoma. Front Genet 2023; 14:1138230. [PMID: 37252659 PMCID: PMC10213947 DOI: 10.3389/fgene.2023.1138230] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: Lung cancer has long been at the forefront of all cancers in terms of incidence and mortality. Lung adenocarcinoma is the most common type of lung cancer, accounting for 40% of all lung cancer types. Exosomes can act as biomarkers of tumors and thus play an important role. Methods: In this article, high-throughput sequencing of miRNAs in plasma exosomes from lung adenocarcinoma patients and healthy individuals was performed to obtain 87 upregulated miRNAs, which were then combined with data from the GSE137140 database uploaded by others for screening. The database included 1566 preoperative lung cancer patients, 180 postoperative patients, and 1774 non-cancerous controls. We overlapped the miRNAs upregulated in the serum of lung cancer patients in the database relative to those of non-cancer controls and post-operative patients with the upregulated miRNAs obtained from our next-generation sequencing to obtain nine miRNAs. Two miRNAs that were not reported as tumor markers in lung cancer, hsa-miR-4454 and hsa-miR-619-5p, were selected from them and then validated by qRT-PCR, and further analysis of miRNAs was performed using bioinformatics. Results: Real-time quantitative PCR showed that the expression levels of hsa-miR-4454 and hsa-miR-619-5p in plasma exosomes of patients with lung adenocarcinoma were significantly up-regulated. The AUC values of hsa-miR-619-5p and hsa-miR-4454 were 0.906 and 0.975, respectively, both greater than 0.5, showing good performance. The target genes of miRNAs were screened by bioinformatics methods, and the regulatory network between miRNAs and lncRNAs and mRNAs was studied. Discussion: Our work demonstrated that hsa-miR-4454 and hsa-miR-619-5p have the potential to be used as biomarkers for the early diagnosis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Linxiang Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Zian Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Jie Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Jiahui Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Ang Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Xiaodong He
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Liu Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Zuojun Shen
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| |
Collapse
|
16
|
Ghorbanizamani F, Moulahoum H, Guler Celik E, Zihnioglu F, Beduk T, Goksel T, Turhan K, Timur S. Design of Polymeric Surfaces as Platforms for Streamlined Cancer Diagnostics in Liquid Biopsies. BIOSENSORS 2023; 13:400. [PMID: 36979612 PMCID: PMC10046689 DOI: 10.3390/bios13030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Minimally invasive approaches for cancer diagnosis are an integral step in the quest to improve cancer survival. Liquid biopsies such as blood samples are matrices explored to extract valuable information about the tumor and its state through various indicators, such as proteins, peptides, tumor DNA, or circulating tumor cells. Although these markers are scarce, making their isolation and detection in complex matrices challenging, the development in polymer chemistry producing interesting structures, including molecularly imprinted polymers, branched polymers, nanopolymer composites, and hybrids, allowed the development of enhanced platforms with impressive performance for liquid biopsies analysis. This review describes the latest advances and developments in polymer synthesis and their application for minimally invasive cancer diagnosis. The polymer structures improve the operational performances of biosensors through various processes, such as increased affinity for enhanced sensitivity, improved binding, and avoidance of non-specific interactions for enhanced specificity. Furthermore, polymer-based materials can be a tremendous help in signal amplification of usually low-concentrated targets in the sample. The pros and cons of these materials, how the synthesis process affects their performance, and the device applications for liquid biopsies diagnosis will be critically reviewed to show the essentiality of this technology in oncology and clinical biomedicine.
Collapse
Affiliation(s)
- Faezeh Ghorbanizamani
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Emine Guler Celik
- Bioengineering Department, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Türkiye
- EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, Bornova, 35100 Izmir, Türkiye
| | - Figen Zihnioglu
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Tutku Beduk
- Silicon Austria Labs GmbH: Sensor Systems, Europastrasse 12, 9524 Villach, Austria
| | - Tuncay Goksel
- EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, Bornova, 35100 Izmir, Türkiye
- Department of Pulmonary Medicine, Faculty of Medicine, Ege University, Bornova, 35100 Izmir, Türkiye
- EGESAM-Ege University Translational Pulmonary Research Center, Bornova, 35100 Izmir, Türkiye
| | - Kutsal Turhan
- EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, Bornova, 35100 Izmir, Türkiye
- Department of Thoracic Surgery, Faculty of Medicine, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
- EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, Bornova, 35100 Izmir, Türkiye
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, Bornova, 35100 Izmir, Türkiye
| |
Collapse
|
17
|
Asci Erkocyigit B, Ozufuklar O, Yardim A, Guler Celik E, Timur S. Biomarker Detection in Early Diagnosis of Cancer: Recent Achievements in Point-of-Care Devices Based on Paper Microfluidics. BIOSENSORS 2023; 13:387. [PMID: 36979600 PMCID: PMC10046104 DOI: 10.3390/bios13030387] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Microfluidics is very crucial in lab-on-a-chip systems for carrying out operations in a large-scale laboratory environment on a single chip. Microfluidic systems are miniaturized devices in which the fluid behavior and control can be manipulated on a small platform, with surface forces on the platform being greater than volumetric forces depending on the test method used. In recent years, paper-based microfluidic analytical devices (μPADs) have been developed to be used in point-of-care (POC) technologies. μPADs have numerous advantages, including ease of use, low cost, capillary action liquid transfer without the need for power, the ability to store reagents in active form in the fiber network, and the capability to perform multiple tests using various measurement techniques. These benefits are critical in the advancement of paper-based microfluidics in the fields of disease diagnosis, drug application, and environment and food safety. Cancer is one of the most critical diseases for early detection all around the world. Detecting cancer-specific biomarkers provides significant data for both early diagnosis and controlling the disease progression. μPADs for cancer biomarker detection hold great promise for improving cure rates, quality of life, and minimizing treatment costs. Although various types of bioanalytical platforms are available for the detection of cancer biomarkers, there are limited studies and critical reviews on paper-based microfluidic platforms in the literature. Hence, this article aims to draw attention to these gaps in the literature as well as the features that future platforms should have.
Collapse
Affiliation(s)
- Bilge Asci Erkocyigit
- Department of Biotechnology, Institute of Natural Sciences, Ege University, Izmir 35100, Turkey
| | - Ozge Ozufuklar
- Department of Biotechnology, Institute of Natural Sciences, Ege University, Izmir 35100, Turkey
| | - Aysenur Yardim
- Department of Bioengineering, Institute of Natural Sciences, Ege University, Izmir 35100, Turkey
| | - Emine Guler Celik
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir 35100, Turkey
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35100, Turkey
- Central Research Test and Analysis Laboratory Application, Research Center, Ege University, Izmir 35100, Turkey
| |
Collapse
|
18
|
Recent progress in aptamer-based microfluidics for the detection of circulating tumor cells and extracellular vesicles. J Pharm Anal 2023; 13:340-354. [PMID: 37181295 PMCID: PMC10173182 DOI: 10.1016/j.jpha.2023.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Liquid biopsy is a technology that exhibits potential to detect cancer early, monitor therapies, and predict cancer prognosis due to its unique characteristics, including noninvasive sampling and real-time analysis. Circulating tumor cells (CTCs) and extracellular vesicles (EVs) are two important components of circulating targets, carrying substantial disease-related molecular information and playing a key role in liquid biopsy. Aptamers are single-stranded oligonucleotides with superior affinity and specificity, and they can bind to targets by folding into unique tertiary structures. Aptamer-based microfluidic platforms offer new ways to enhance the purity and capture efficiency of CTCs and EVs by combining the advantages of microfluidic chips as isolation platforms and aptamers as recognition tools. In this review, we first briefly introduce some new strategies for aptamer discovery based on traditional and aptamer-based microfluidic approaches. Then, we subsequently summarize the progress of aptamer-based microfluidics for CTC and EV detection. Finally, we offer an outlook on the future directional challenges of aptamer-based microfluidics for circulating targets in clinical applications.
Collapse
|
19
|
Jonak ST, Liu Z, Liu J, Li T, D'Souza BV, Schiaffino JA, Oh S, Xie YH. Analyzing bronchoalveolar fluid derived small extracellular vesicles using single-vesicle SERS for non-small cell lung cancer detection. SENSORS & DIAGNOSTICS 2023; 2:90-99. [PMID: 36741247 PMCID: PMC9850358 DOI: 10.1039/d2sd00109h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
An emerging body of research by biologists and clinicians has demonstrated the clinical application of small extracellular vesicles (sEVs, also commonly referred to as exosomes) as biomarkers for cancer detections. sEVs isolated from various body fluids such as blood, saliva, urine, and cerebrospinal fluid have been used for biomarker discoveries with highly encouraging outcomes. Among the biomarkers discovered are those responsible for multiple cancer types and immune responses. These biomarkers are recapitulated from the tumor microenvironments. Yet, despite numerous discussions of sEVs in scientific literature, sEV-based biomarkers have so far played only a minor role for cancer diagnostics in the clinical setting, notably less so than other techniques such as imaging and biopsy. In this paper, we report the results of a pilot study (n = 10 from each of the patient and the control group) using bronchoalveolar lavage fluid to determine the presence of sEVs related to non-small cell lung cancer in twenty clinical samples examined using surface enhanced Raman spectroscopy (SERS).
Collapse
Affiliation(s)
- Sumita T. Jonak
- NurLabsSan AntonioTX 78201USA,UCLA Biodesign, University of California Los AngelesLos AngelesCA 90095USA
| | - Zirui Liu
- Department of Materials Science and Engineering, University of California Los AngelesLos AngelesCA 90095USA(310) 259 6946
| | - Jun Liu
- Department of Materials Science and Engineering, University of California Los AngelesLos AngelesCA 90095USA(310) 259 6946
| | - Tieyi Li
- Department of Materials Science and Engineering, University of California Los AngelesLos AngelesCA 90095USA(310) 259 6946
| | - Brian V. D'Souza
- NurLabsSan AntonioTX 78201USA,UCLA Biodesign, University of California Los AngelesLos AngelesCA 90095USA
| | - J. Alan Schiaffino
- NurLabsSan AntonioTX 78201USA,UCLA Biodesign, University of California Los AngelesLos AngelesCA 90095USA
| | - Scott Oh
- NurLabsSan AntonioTX 78201USA,UCLA Biodesign, University of California Los AngelesLos AngelesCA 90095USA,UCLA Health System, University of California Los AngelesLos AngelesCA 90095USA
| | - Ya-Hong Xie
- Department of Materials Science and Engineering, University of California Los AngelesLos AngelesCA 90095USA(310) 259 6946,NurLabsSan AntonioTX 78201USA,UCLA Biodesign, University of California Los AngelesLos AngelesCA 90095USA,UCLA Jonsson Comprehensive Cancer Center, University of California, Los AngelesLos AngelesCA 90095USA
| |
Collapse
|
20
|
Wang Y, Wang S, Li L, Zou Y, Liu B, Fang X. Microfluidics‐based molecular profiling of tumor‐derived exosomes for liquid biopsy. VIEW 2023. [DOI: 10.1002/viw.20220048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yuqing Wang
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Shurong Wang
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Lanting Li
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Yan Zou
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Baohong Liu
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Xiaoni Fang
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| |
Collapse
|
21
|
Søreide K, Ismail W, Roalsø M, Ghotbi J, Zaharia C. Early Diagnosis of Pancreatic Cancer: Clinical Premonitions, Timely Precursor Detection and Increased Curative-Intent Surgery. Cancer Control 2023; 30:10732748231154711. [PMID: 36916724 PMCID: PMC9893084 DOI: 10.1177/10732748231154711] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The overall poor prognosis in pancreatic cancer is related to late clinical detection. Early diagnosis remains a considerable challenge in pancreatic cancer. Unfortunately, the onset of clinical symptoms in patients usually indicate advanced disease or presence of metastasis. ANALYSIS AND RESULTS Currently, there are no designated diagnostic or screening tests for pancreatic cancer in clinical use. Thus, identifying risk groups, preclinical risk factors or surveillance strategies to facilitate early detection is a target for ongoing research. Hereditary genetic syndromes are a obvious, but small group at risk, and warrants close surveillance as suggested by society guidelines. Screening for pancreatic cancer in asymptomatic individuals is currently associated with the risk of false positive tests and, thus, risk of harms that outweigh benefits. The promise of cancer biomarkers and use of 'omics' technology (genomic, transcriptomics, metabolomics etc.) has yet to see a clinical breakthrough. Several proposed biomarker studies for early cancer detection lack external validation or, when externally validated, have shown considerably lower accuracy than in the original data. Biopsies or tissues are often taken at the time of diagnosis in research studies, hence invalidating the value of a time-dependent lag of the biomarker to detect a pre-clinical, asymptomatic yet operable cancer. New technologies will be essential for early diagnosis, with emerging data from image-based radiomics approaches, artificial intelligence and machine learning suggesting avenues for improved detection. CONCLUSIONS Early detection may come from analytics of various body fluids (eg 'liquid biopsies' from blood or urine). In this review we present some the technological platforms that are explored for their ability to detect pancreatic cancer, some of which may eventually change the prospects and outcomes of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Kjetil Søreide
- Department of Gastrointestinal Surgery, HPB unit, 60496Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Gastrointestinal Translational Research Group, Laboratory for Molecular Medicine, 60496Stavanger University Hospital, Stavanger, Norway
| | - Warsan Ismail
- Department of Gastrointestinal Surgery, HPB unit, 60496Stavanger University Hospital, Stavanger, Norway
| | - Marcus Roalsø
- Department of Gastrointestinal Surgery, HPB unit, 60496Stavanger University Hospital, Stavanger, Norway.,Gastrointestinal Translational Research Group, Laboratory for Molecular Medicine, 60496Stavanger University Hospital, Stavanger, Norway.,Department of Quality and Health Technology, 60496University of Stavanger, Stavanger, Norway
| | - Jacob Ghotbi
- Department of Gastrointestinal Surgery, HPB unit, 60496Stavanger University Hospital, Stavanger, Norway
| | - Claudia Zaharia
- Gastrointestinal Translational Research Group, Laboratory for Molecular Medicine, 60496Stavanger University Hospital, Stavanger, Norway.,Department of Pathology, 60496Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
22
|
Lapizco-Encinas BH, Zhang YV. Microfluidic systems in clinical diagnosis. Electrophoresis 2023; 44:217-245. [PMID: 35977346 DOI: 10.1002/elps.202200150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 02/01/2023]
Abstract
The use of microfluidic devices is highly attractive in the field of biomedical and clinical assessments, as their portability and fast response time have become crucial in providing opportune therapeutic treatments to patients. The applications of microfluidics in clinical diagnosis and point-of-care devices are continuously growing. The present review article discusses three main fields where miniaturized devices are successfully employed in clinical applications. The quantification of ions, sugars, and small metabolites is examined considering the analysis of bodily fluids samples and the quantification of this type of analytes employing real-time wearable devices. The discussion covers the level of maturity that the devices have reached as well as cost-effectiveness. The analysis of proteins with clinical relevance is presented and organized by the function of the proteins. The last section covers devices that can perform single-cell metabolomic and proteomic assessments. Each section discusses several strategically selected recent reports on microfluidic devices successfully employed for clinical assessments, to provide the reader with a wide overview of the plethora of novel systems and microdevices developed in the last 5 years. In each section, the novel aspects and main contributions of each reviewed report are highlighted. Finally, the conclusions and future outlook section present a summary and speculate on the future direction of the field of miniaturized devices for clinical applications.
Collapse
Affiliation(s)
- Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, New York, USA
| | - Yan Victoria Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
23
|
Temperini ME, Di Giacinto F, Romanò S, Di Santo R, Augello A, Polito R, Baldassarre L, Giliberti V, Papi M, Basile U, Niccolini B, Krasnowska EK, Serafino A, De Spirito M, Di Gaspare A, Ortolani M, Ciasca G. Antenna-enhanced mid-infrared detection of extracellular vesicles derived from human cancer cell cultures. J Nanobiotechnology 2022; 20:530. [PMID: 36514065 PMCID: PMC9746222 DOI: 10.1186/s12951-022-01693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/30/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Extracellular Vesicles (EVs) are sub-micrometer lipid-bound particles released by most cell types. They are considered a promising source of cancer biomarkers for liquid biopsy and personalized medicine due to their specific molecular cargo, which provides biochemical information on the state of parent cells. Despite this potential, EVs translation process in the diagnostic practice is still at its birth, and the development of novel medical devices for their detection and characterization is highly required. RESULTS In this study, we demonstrate mid-infrared plasmonic nanoantenna arrays designed to detect, in the liquid and dry phase, the specific vibrational absorption signal of EVs simultaneously with the unspecific refractive index sensing signal. For this purpose, EVs are immobilized on the gold nanoantenna surface by immunocapture, allowing us to select specific EV sub-populations and get rid of contaminants. A wet sample-handling technique relying on hydrophobicity contrast enables effortless reflectance measurements with a Fourier-transform infrared (FTIR) spectro-microscope in the wavelength range between 10 and 3 µm. In a proof-of-principle experiment carried out on EVs released from human colorectal adenocarcinoma (CRC) cells, the protein absorption bands (amide-I and amide-II between 5.9 and 6.4 µm) increase sharply within minutes when the EV solution is introduced in the fluidic chamber, indicating sensitivity to the EV proteins. A refractive index sensing curve is simultaneously provided by our sensor in the form of the redshift of a sharp spectral edge at wavelengths around 5 µm, where no vibrational absorption of organic molecules takes place: this permits to extract of the dynamics of EV capture by antibodies from the overall molecular layer deposition dynamics, which is typically measured by commercial surface plasmon resonance sensors. Additionally, the described metasurface is exploited to compare the spectral response of EVs derived from cancer cells with increasing invasiveness and metastatic potential, suggesting that the average secondary structure content in EVs can be correlated with cell malignancy. CONCLUSIONS Thanks to the high protein sensitivity and the possibility to work with small sample volumes-two key features for ultrasensitive detection of extracellular vesicles- our lab-on-chip can positively impact the development of novel laboratory medicine methods for the molecular characterization of EVs.
Collapse
Affiliation(s)
- Maria Eleonora Temperini
- grid.7841.aDepartment of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy ,grid.25786.3e0000 0004 1764 2907Center for Life Neuro and Nano Sciences IIT@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Flavio Di Giacinto
- grid.414603.4Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy ,grid.8142.f0000 0001 0941 3192Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sabrina Romanò
- grid.414603.4Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy ,grid.8142.f0000 0001 0941 3192Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Di Santo
- grid.414603.4Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Alberto Augello
- grid.414603.4Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Raffaella Polito
- grid.7841.aDepartment of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy
| | - Leonetta Baldassarre
- grid.7841.aDepartment of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy
| | - Valeria Giliberti
- grid.25786.3e0000 0004 1764 2907Center for Life Neuro and Nano Sciences IIT@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Massimiliano Papi
- grid.414603.4Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy ,grid.8142.f0000 0001 0941 3192Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Umberto Basile
- grid.414603.4Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Benedetta Niccolini
- grid.8142.f0000 0001 0941 3192Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ewa K. Krasnowska
- grid.5326.20000 0001 1940 4177Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| | - Annalucia Serafino
- grid.5326.20000 0001 1940 4177Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| | - Marco De Spirito
- grid.414603.4Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy ,grid.8142.f0000 0001 0941 3192Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandra Di Gaspare
- grid.414603.4Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy ,grid.509494.5NEST, CNR-Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Michele Ortolani
- grid.7841.aDepartment of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy ,grid.25786.3e0000 0004 1764 2907Center for Life Neuro and Nano Sciences IIT@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Gabriele Ciasca
- grid.414603.4Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy ,grid.8142.f0000 0001 0941 3192Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
24
|
Non-Invasive Biomarkers for Early Lung Cancer Detection. Cancers (Basel) 2022; 14:cancers14235782. [PMID: 36497263 PMCID: PMC9739091 DOI: 10.3390/cancers14235782] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022] Open
Abstract
Worldwide, lung cancer (LC) is the most common cause of cancer death, and any delay in the detection of new and relapsed disease serves as a major factor for a significant proportion of LC morbidity and mortality. Though invasive methods such as tissue biopsy are considered the gold standard for diagnosis and disease monitoring, they have several limitations. Therefore, there is an urgent need to identify and validate non-invasive biomarkers for the early diagnosis, prognosis, and treatment of lung cancer for improved patient management. Despite recent progress in the identification of non-invasive biomarkers, currently, there is a shortage of reliable and accessible biomarkers demonstrating high sensitivity and specificity for LC detection. In this review, we aim to cover the latest developments in the field, including the utility of biomarkers that are currently used in LC screening and diagnosis. We comment on their limitations and summarise the findings and developmental stages of potential molecular contenders such as microRNAs, circulating tumour DNA, and methylation markers. Furthermore, we summarise research challenges in the development of biomarkers used for screening purposes and the potential clinical applications of newly discovered biomarkers.
Collapse
|
25
|
Batool SM, Hsia T, Khanna SK, Gamblin AS, Rosenfeld Y, You DG, Carter BS, Balaj L. Decoding vesicle-based precision oncology in gliomas. Neurooncol Adv 2022; 4:ii53-ii60. [PMID: 36380860 PMCID: PMC9650467 DOI: 10.1093/noajnl/vdac035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) represent a valuable tool in liquid biopsy with tremendous clinical potential in diagnosis, prognosis, and therapeutic monitoring of gliomas. Compared to tissue biopsy, EV-based liquid biopsy is a low-cost, minimally invasive method that can provide information on tumor dynamics before, during, and after treatment. Tumor-derived EVs circulating in biofluids carry a complex cargo of molecular biomarkers, including DNA, RNA, and proteins, which can be indicative of tumor growth and progression. Here, we briefly review current commercial and noncommercial methods for the isolation, quantification, and biochemical characterization of plasma EVs from patients with glioma, touching on whole EV analysis, mutation detection techniques, and genomic and proteomic profiling. We review notable advantages and disadvantages of plasma EV isolation and analytical methods, and we conclude with a discussion on clinical translational opportunities and key challenges associated with the future implementation of EV-based liquid biopsy for glioma treatment.
Collapse
Affiliation(s)
| | | | - Sirena K Khanna
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Austin S Gamblin
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yulia Rosenfeld
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Dong Gil You
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Leonora Balaj
- Corresponding Author: Leonora Balaj, PhD, Department of Neurosurgery, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA ()
| |
Collapse
|
26
|
Recent advances in integrated microfluidics for liquid biopsies and future directions. Biosens Bioelectron 2022; 217:114715. [PMID: 36174359 DOI: 10.1016/j.bios.2022.114715] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 07/20/2022] [Accepted: 09/09/2022] [Indexed: 12/12/2022]
Abstract
Liquid biopsies have piqued the interest of researchers as a new tumor diagnosis technique due to their unique benefits of non-invasiveness, sensitivity, and convenience. Recent advances in microfluidic technology have integrated separation, purification, and detection, allowing for high-throughput, high-sensitivity, and high-controllability detection of specific biomarkers in liquid biopsies. With the increasing demand for tumor detection and individualized treatment, new challenges are emerging for the ever-improving microfluidic technology. The state-of-the-art microfluidic design and fabrications have been reviewed in this manuscript, and how this technology can be applied to liquid biopsies from the point of view of the detection process. The primary discussion objectives are circulating tumor cells (CTCs), exosomes, and circulating nucleic acid (ctDNA). Furthermore, the challenges and future direction of microfluidic technology in detecting liquid biomarkers have been discussed.
Collapse
|
27
|
Khosla NK, Lesinski JM, Colombo M, Bezinge L, deMello AJ, Richards DA. Simplifying the complex: accessible microfluidic solutions for contemporary processes within in vitro diagnostics. LAB ON A CHIP 2022; 22:3340-3360. [PMID: 35984715 PMCID: PMC9469643 DOI: 10.1039/d2lc00609j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/15/2022] [Indexed: 05/02/2023]
Abstract
In vitro diagnostics (IVDs) form the cornerstone of modern medicine. They are routinely employed throughout the entire treatment pathway, from initial diagnosis through to prognosis, treatment planning, and post-treatment surveillance. Given the proven links between high quality diagnostic testing and overall health, ensuring broad access to IVDs has long been a focus of both researchers and medical professionals. Unfortunately, the current diagnostic paradigm relies heavily on centralized laboratories, complex and expensive equipment, and highly trained personnel. It is commonly assumed that this level of complexity is required to achieve the performance necessary for sensitive and specific disease diagnosis, and that making something affordable and accessible entails significant compromises in test performance. However, recent work in the field of microfluidics is challenging this notion. By exploiting the unique features of microfluidic systems, researchers have been able to create progressively simple devices that can perform increasingly complex diagnostic assays. This review details how microfluidic technologies are disrupting the status quo, and facilitating the development of simple, affordable, and accessible integrated IVDs. Importantly, we discuss the advantages and limitations of various approaches, and highlight the remaining challenges within the field.
Collapse
Affiliation(s)
- Nathan K Khosla
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland.
| | - Jake M Lesinski
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland.
| | - Monika Colombo
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland.
| | - Léonard Bezinge
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland.
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland.
| | - Daniel A Richards
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland.
| |
Collapse
|
28
|
Xie Y, Xu X, Lin J, Xu Y, Wang J, Ren Y, Wu A. Effective Separation of Cancer-Derived Exosomes in Biological Samples for Liquid Biopsy: Classic Strategies and Innovative Development. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100131. [PMID: 36176940 PMCID: PMC9463520 DOI: 10.1002/gch2.202100131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/28/2022] [Indexed: 05/26/2023]
Abstract
Liquid biopsy has remarkably facilitated clinical diagnosis and surveillance of cancer via employing a non-invasive way to detect cancer-derived components, such as circulating tumor DNA and circulating tumor cells from biological fluid samples. The cancer-derived exosomes, which are nano-sized vesicles secreted by cancer cells have been investigated in liquid biopsy as their important roles in intracellular communication and disease development have been revealed. Given the challenges posed by the complicated humoral microenvironment, which contains a variety of different cells and macromolecular substances in addition to the exosomes, it has attracted a large amount of attention to effectively isolate exosomes from collected samples. In this review, the authors aim to analyze classic strategies for separation of cancer-derived exosomes, giving an extensive discussion of advantages and limitations of these methods. Furthermore, the innovative multi-strategy methods to realize efficient isolation of cancer-derived exosomes in practical applications are also presented. Additionally, the possible development trends of exosome separation in to the future is discussed in this review.
Collapse
Affiliation(s)
- Yujiao Xie
- Cixi Institute of Biomedical EngineeringInternational Cooperation Base of Biomedical MaterialsTechnology and ApplicationChinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and EngineeringCASNingbo315201P. R. China
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhou516000P. R. China
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100China
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100China
| | - Xiawei Xu
- Cixi Institute of Biomedical EngineeringInternational Cooperation Base of Biomedical MaterialsTechnology and ApplicationChinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and EngineeringCASNingbo315201P. R. China
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhou516000P. R. China
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100China
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100China
| | - Jie Lin
- Cixi Institute of Biomedical EngineeringInternational Cooperation Base of Biomedical MaterialsTechnology and ApplicationChinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and EngineeringCASNingbo315201P. R. China
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhou516000P. R. China
| | - Yanping Xu
- Cixi Institute of Biomedical EngineeringInternational Cooperation Base of Biomedical MaterialsTechnology and ApplicationChinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and EngineeringCASNingbo315201P. R. China
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhou516000P. R. China
| | - Jing Wang
- Department of Electrical and Electronic EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100China
- Key Laboratory of More Electric Aircraft Technology of Zhejiang ProvinceUniversity of Nottingham Ningbo ChinaNingbo315100China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteNingbo315040China
| | - Yong Ren
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100China
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteNingbo315040China
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang ProvinceUniversity of Nottingham Ningbo ChinaNingbo315100China
| | - Aiguo Wu
- Cixi Institute of Biomedical EngineeringInternational Cooperation Base of Biomedical MaterialsTechnology and ApplicationChinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and EngineeringCASNingbo315201P. R. China
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhou516000P. R. China
| |
Collapse
|
29
|
Wang Y, Gao Y, Song Y. Microfluidics-Based Urine Biopsy for Cancer Diagnosis: Recent Advances and Future Trends. ChemMedChem 2022; 17:e202200422. [PMID: 36040297 DOI: 10.1002/cmdc.202200422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/23/2022] [Indexed: 11/08/2022]
Abstract
Urine biopsy, allowing for the detection, analysis and monitoring of numerous cancer-associated urinary biomarkers to provide insights into cancer occurrence, progression and metastasis, has emerged as an attractive liquid biopsy strategy with enormous advantages over traditional tissue biopsy, such as noninvasiveness, large sample volume, and simple sampling operation. Microfluidics enables precise manipulation of fluids in a tiny chip and exhibits outstanding performance in urine biopsy owing to its minimization, low cost, high integration, high throughput and low sample consumption. Herein, we review recent advances in microfluidic techniques employed in urine biopsy for cancer detection. After briefly summarizing the major urinary biomarkers used for cancer diagnosis, we provide an overview of the typical microfluidic techniques utilized to develop urine biopsy devices. Some prospects along with the major challenges to be addressed for the future of microfluidic-based urine biopsy are also discussed.
Collapse
Affiliation(s)
- Yanping Wang
- Nanjing University of Science and Technology, Sino-French Engineer School, CHINA
| | - Yanfeng Gao
- Nanjing University, College of Engineering and Applied Sciences, CHINA
| | - Yujun Song
- Nanjing University, Biomedical Engineering, 22 Hankou Road, 210093, Nanjing, CHINA
| |
Collapse
|
30
|
Kumar A, Parihar A, Panda U, Parihar DS. Microfluidics-Based Point-of-Care Testing (POCT) Devices in Dealing with Waves of COVID-19 Pandemic: The Emerging Solution. ACS APPLIED BIO MATERIALS 2022; 5:2046-2068. [PMID: 35473316 PMCID: PMC9063993 DOI: 10.1021/acsabm.1c01320] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/11/2022] [Indexed: 02/08/2023]
Abstract
Recent advances in microfluidics-based point-of-care testing (POCT) technology such as paper, array, and beads have shown promising results for diagnosing various infectious diseases. The fast and timely detection of viral infection has proven to be a critical step for deciding the therapeutic outcome in the current COVID-19 pandemic, which in turn not only enhances the patient survival rate but also reduces the disease-associated comorbidities. In the present scenario, rapid, noninvasive detection of the virus using low cost and high throughput microfluidics-based POCT devices embraces the advantages over existing diagnostic technologies, for which a centralized lab facility, expensive instruments, sample pretreatment, and skilled personnel are required. Microfluidic-based multiplexed POCT devices can be a boon for clinical diagnosis in developing countries that lacks a centralized health care system and resources. The microfluidic devices can be used for disease diagnosis and exploited for the development and testing of drug efficacy for disease treatment in model systems. The havoc created by the second wave of COVID-19 led several countries' governments to the back front. The lack of diagnostic kits, medical devices, and human resources created a huge demand for a technology that can be remotely operated with single touch and data that can be analyzed on a phone. Recent advancements in information technology and the use of smartphones led to a paradigm shift in the development of diagnostic devices, which can be explored to deal with the current pandemic situation. This review sheds light on various approaches for the development of cost-effective microfluidics POCT devices. The successfully used microfluidic devices for COVID-19 detection under clinical settings along with their pros and cons have been discussed here. Further, the integration of microfluidic devices with smartphones and wireless network systems using the Internet-of-things will enable readers for manufacturing advanced POCT devices for remote disease management in low resource settings.
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Mechanical Engineering,
Indian Institute of Information Technology Design & Manufacturing
Kancheepuram, Chennai 600127, India
| | - Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials,
CSIR-Advanced Materials and Processes Research Institute
(AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh 462026,
India
| | - Udwesh Panda
- Department of Mechanical Engineering,
Indian Institute of Information Technology Design & Manufacturing
Kancheepuram, Chennai 600127, India
| | | |
Collapse
|
31
|
Dual rolling circle amplification-enabled ultrasensitive multiplex detection of exosome biomarkers using electrochemical aptasensors. Anal Chim Acta 2022; 1205:339762. [DOI: 10.1016/j.aca.2022.339762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/03/2022] [Accepted: 03/22/2022] [Indexed: 01/31/2023]
|
32
|
Chang L, Li J, Zhang R. Liquid biopsy for early diagnosis of non-small cell lung carcinoma: recent research and detection technologies. Biochim Biophys Acta Rev Cancer 2022; 1877:188729. [DOI: 10.1016/j.bbcan.2022.188729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/14/2022] [Accepted: 04/10/2022] [Indexed: 02/07/2023]
|
33
|
Yang SM, Lv S, Zhang W, Cui Y. Microfluidic Point-of-Care (POC) Devices in Early Diagnosis: A Review of Opportunities and Challenges. SENSORS (BASEL, SWITZERLAND) 2022; 22:1620. [PMID: 35214519 PMCID: PMC8875995 DOI: 10.3390/s22041620] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022]
Abstract
The early diagnosis of infectious diseases is critical because it can greatly increase recovery rates and prevent the spread of diseases such as COVID-19; however, in many areas with insufficient medical facilities, the timely detection of diseases is challenging. Conventional medical testing methods require specialized laboratory equipment and well-trained operators, limiting the applicability of these tests. Microfluidic point-of-care (POC) equipment can rapidly detect diseases at low cost. This technology could be used to detect diseases in underdeveloped areas to reduce the effects of disease and improve quality of life in these areas. This review details microfluidic POC equipment and its applications. First, the concept of microfluidic POC devices is discussed. We then describe applications of microfluidic POC devices for infectious diseases, cardiovascular diseases, tumors (cancer), and chronic diseases, and discuss the future incorporation of microfluidic POC devices into applications such as wearable devices and telemedicine. Finally, the review concludes by analyzing the present state of the microfluidic field, and suggestions are made. This review is intended to call attention to the status of disease treatment in underdeveloped areas and to encourage the researchers of microfluidics to develop standards for these devices.
Collapse
Grants
- BRA2017216, BE2018627,2020THRC-GD-7, D18003, LM201603, KFKT2018001 the 333 project of Jiangsu Province in 2017, the Primary Research & Development Plan of Jiangsu Province, the Taihu Lake talent plan, the Complex and Intelligent Research Center, School of Mechanical and Power Engineering, East China University of Scien
- NSFC81971511 the National Natural Sciences Foundation of China
Collapse
Affiliation(s)
- Shih-Mo Yang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; (S.-M.Y.); (S.L.)
| | - Shuangsong Lv
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; (S.-M.Y.); (S.L.)
| | - Wenjun Zhang
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada;
| | - Yubao Cui
- Clinical Research Center, The Affiliated Wuxi People’s Hospital, Nanjing Medical University, 299 Qingyang Road, Wuxi 214023, China
| |
Collapse
|
34
|
Wang Y, Li B, Tian T, Liu Y, Zhang J, Qian K. Advanced on-site and in vitro signal amplification biosensors for biomolecule analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Chen J, Li P, Zhang T, Xu Z, Huang X, Wang R, Du L. Review on Strategies and Technologies for Exosome Isolation and Purification. Front Bioeng Biotechnol 2022; 9:811971. [PMID: 35071216 PMCID: PMC8766409 DOI: 10.3389/fbioe.2021.811971] [Citation(s) in RCA: 228] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Exosomes, a nano-sized subtype of extracellular vesicles secreted from almost all living cells, are capable of transferring cell-specific constituents of the source cell to the recipient cell. Cumulative evidence has revealed exosomes play an irreplaceable role in prognostic, diagnostic, and even therapeutic aspects. A method that can efficiently provide intact and pure exosomes samples is the first step to both exosome-based liquid biopsies and therapeutics. Unfortunately, common exosomal separation techniques suffer from operation complexity, time consumption, large sample volumes and low purity, posing significant challenges for exosomal downstream analysis. Efficient, simple, and affordable methods to isolate exosomes are crucial to carrying out relevant researches. In the last decade, emerging technologies, especially microfluidic chips, have proposed superior strategies for exosome isolation and exhibited fascinating performances. While many excellent reviews have overviewed various methods, a compressive review including updated/improved methods for exosomal isolation is indispensable. Herein, we first overview exosomal properties, biogenesis, contents, and functions. Then, we briefly outline the conventional technologies and discuss the challenges of clinical applications of these technologies. Finally, we review emerging exosomal isolation strategies and large-scale GMP production of engineered exosomes to open up future perspectives of next-generation Exo-devices for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Jiaci Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Taiyi Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhipeng Xu
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Xiaowen Huang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
36
|
Frankman ZD, Jiang L, Schroeder JA, Zohar Y. Application of Microfluidic Systems for Breast Cancer Research. MICROMACHINES 2022; 13:152. [PMID: 35208277 PMCID: PMC8877872 DOI: 10.3390/mi13020152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
Cancer is a disease in which cells in the body grow out of control; breast cancer is the most common cancer in women in the United States. Due to early screening and advancements in therapeutic interventions, deaths from breast cancer have declined over time, although breast cancer remains the second leading cause of cancer death among women. Most deaths are due to metastasis, as cancer cells from the primary tumor in the breast form secondary tumors in remote sites in distant organs. Over many years, the basic biological mechanisms of breast cancer initiation and progression, as well as the subsequent metastatic cascade, have been studied using cell cultures and animal models. These models, although extremely useful for delineating cellular mechanisms, are poor predictors of physiological responses, primarily due to lack of proper microenvironments. In the last decade, microfluidics has emerged as a technology that could lead to a paradigm shift in breast cancer research. With the introduction of the organ-on-a-chip concept, microfluidic-based systems have been developed to reconstitute the dominant functions of several organs. These systems enable the construction of 3D cellular co-cultures mimicking in vivo tissue-level microenvironments, including that of breast cancer. Several reviews have been presented focusing on breast cancer formation, growth and metastasis, including invasion, intravasation, and extravasation. In this review, realizing that breast cancer can recur decades following post-treatment disease-free survival, we expand the discussion to account for microfluidic applications in the important areas of breast cancer detection, dormancy, and therapeutic development. It appears that, in the future, the role of microfluidics will only increase in the effort to eradicate breast cancer.
Collapse
Affiliation(s)
- Zachary D. Frankman
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA;
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA;
| | - Joyce A. Schroeder
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA;
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
37
|
Abouali H, Hosseini SA, Purcell E, Nagrath S, Poudineh M. Recent Advances in Device Engineering and Computational Analysis for Characterization of Cell-Released Cancer Biomarkers. Cancers (Basel) 2022; 14:288. [PMID: 35053452 PMCID: PMC8774172 DOI: 10.3390/cancers14020288] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
During cancer progression, tumors shed different biomarkers into the bloodstream, including circulating tumor cells (CTCs), extracellular vesicles (EVs), circulating cell-free DNA (cfDNA), and circulating tumor DNA (ctDNA). The analysis of these biomarkers in the blood, known as 'liquid biopsy' (LB), is a promising approach for early cancer detection and treatment monitoring, and more recently, as a means for cancer therapy. Previous reviews have discussed the role of CTCs and ctDNA in cancer progression; however, ctDNA and EVs are rapidly evolving with technological advancements and computational analysis and are the subject of enormous recent studies in cancer biomarkers. In this review, first, we introduce these cell-released cancer biomarkers and briefly discuss their clinical significance in cancer diagnosis and treatment monitoring. Second, we present conventional and novel approaches for the isolation, profiling, and characterization of these markers. We then investigate the mathematical and in silico models that are developed to investigate the function of ctDNA and EVs in cancer progression. We convey our views on what is needed to pave the way to translate the emerging technologies and models into the clinic and make the case that optimized next-generation techniques and models are needed to precisely evaluate the clinical relevance of these LB markers.
Collapse
Affiliation(s)
- Hesam Abouali
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (H.A.); (S.A.H.)
| | - Seied Ali Hosseini
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (H.A.); (S.A.H.)
| | - Emma Purcell
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2800, USA; (E.P.); (S.N.)
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2800, USA; (E.P.); (S.N.)
| | - Mahla Poudineh
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (H.A.); (S.A.H.)
| |
Collapse
|
38
|
Hassanpour Tamrin S, Sanati Nezhad A, Sen A. Label-Free Isolation of Exosomes Using Microfluidic Technologies. ACS NANO 2021; 15:17047-17079. [PMID: 34723478 DOI: 10.1021/acsnano.1c03469] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exosomes are cell-derived structures packaged with lipids, proteins, and nucleic acids. They exist in diverse bodily fluids and are involved in physiological and pathological processes. Although their potential for clinical application as diagnostic and therapeutic tools has been revealed, a huge bottleneck impeding the development of applications in the rapidly burgeoning field of exosome research is an inability to efficiently isolate pure exosomes from other unwanted components present in bodily fluids. To date, several approaches have been proposed and investigated for exosome separation, with the leading candidate being microfluidic technology due to its relative simplicity, cost-effectiveness, precise and fast processing at the microscale, and amenability to automation. Notably, avoiding the need for exosome labeling represents a significant advance in terms of process simplicity, time, and cost as well as protecting the biological activities of exosomes. Despite the exciting progress in microfluidic strategies for exosome isolation and the countless benefits of label-free approaches for clinical applications, current microfluidic platforms for isolation of exosomes are still facing a series of problems and challenges that prevent their use for clinical sample processing. This review focuses on the recent microfluidic platforms developed for label-free isolation of exosomes including those based on sieving, deterministic lateral displacement, field flow, and pinched flow fractionation as well as viscoelastic, acoustic, inertial, electrical, and centrifugal forces. Further, we discuss advantages and disadvantages of these strategies with highlights of current challenges and outlook of label-free microfluidics toward the clinical utility of exosomes.
Collapse
Affiliation(s)
- Sara Hassanpour Tamrin
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, CCIT 125, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Amir Sanati Nezhad
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, CCIT 125, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Arindom Sen
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
39
|
Akgönüllü S, Bakhshpour M, Pişkin AK, Denizli A. Microfluidic Systems for Cancer Diagnosis and Applications. MICROMACHINES 2021; 12:mi12111349. [PMID: 34832761 PMCID: PMC8619454 DOI: 10.3390/mi12111349] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022]
Abstract
Microfluidic devices have led to novel biological advances through the improvement of micro systems that can mimic and measure. Microsystems easily handle sub-microliter volumes, obviously with guidance presumably through laminated fluid flows. Microfluidic systems have production methods that do not need expert engineering, away from a centralized laboratory, and can implement basic and point of care analysis, and this has attracted attention to their widespread dissemination and adaptation to specific biological issues. The general use of microfluidic tools in clinical settings can be seen in pregnancy tests and diabetic control, but recently microfluidic platforms have become a key novel technology for cancer diagnostics. Cancer is a heterogeneous group of diseases that needs a multimodal paradigm to diagnose, manage, and treat. Using advanced technologies can enable this, providing better diagnosis and treatment for cancer patients. Microfluidic tools have evolved as a promising tool in the field of cancer such as detection of a single cancer cell, liquid biopsy, drug screening modeling angiogenesis, and metastasis detection. This review summarizes the need for the low-abundant blood and serum cancer diagnosis with microfluidic tools and the progress that has been followed to develop integrated microfluidic platforms for this application in the last few years.
Collapse
Affiliation(s)
- Semra Akgönüllü
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Turkey; (S.A.); (M.B.)
| | - Monireh Bakhshpour
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Turkey; (S.A.); (M.B.)
| | - Ayşe Kevser Pişkin
- Department of Medical Biology, Faculty of Medicine, Lokman Hekim University, Ankara 06230, Turkey;
| | - Adil Denizli
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Turkey; (S.A.); (M.B.)
- Correspondence:
| |
Collapse
|
40
|
Martinez-Dominguez MV, Zottel A, Šamec N, Jovčevska I, Dincer C, Kahlert UD, Nickel AC. Current Technologies for RNA-Directed Liquid Diagnostics. Cancers (Basel) 2021; 13:5060. [PMID: 34680210 PMCID: PMC8534233 DOI: 10.3390/cancers13205060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
There is unequivocal acceptance of the variety of enormous potential liquid nucleic acid-based diagnostics seems to offer. However, the existing controversies and the increased awareness of RNA-based techniques in society during the current global COVID-19 pandemic have made the readiness of liquid nucleic acid-based diagnostics for routine use a matter of concern. In this regard-and in the context of oncology-our review presented and discussed the status quo of RNA-based liquid diagnostics. We summarized the technical background of the available assays and benchmarked their applicability against each other. Herein, we compared the technology readiness level in the clinical context, economic aspects, implementation as part of routine point-of-care testing as well as performance power. Since the preventive care market is the most promising application sector, we also investigated whether the developments predominantly occur in the context of early disease detection or surveillance of therapy success. In addition, we provided a careful view on the current biotechnology investment activities in this sector to indicate the most attractive strategies for future economic success. Taken together, our review shall serve as a current reference, at the interplay of technology, clinical use and economic potential, to guide the interested readers in this rapid developing sector of precision medicine.
Collapse
Affiliation(s)
| | - Alja Zottel
- Medical Center for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (N.Š.); (I.J.)
| | - Neja Šamec
- Medical Center for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (N.Š.); (I.J.)
| | - Ivana Jovčevska
- Medical Center for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (N.Š.); (I.J.)
| | - Can Dincer
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110 Freiburg, Germany;
- Laboratory for Sensors, Department of Microsystems Engineering—IMTEK, University of Freiburg, 79110 Freiburg, Germany
| | - Ulf Dietrich Kahlert
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.V.M.-D.); (U.D.K.)
- Molecular and Experimental Surgery, Clinic of General-, Visceral-, Vascular-, and Transplant Surgery, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Ann-Christin Nickel
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.V.M.-D.); (U.D.K.)
| |
Collapse
|
41
|
High-quality milk exosomes as oral drug delivery system. Biomaterials 2021; 277:121126. [PMID: 34544033 DOI: 10.1016/j.biomaterials.2021.121126] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
Many drugs must be administered intravenously instead of oral administration due to their poor oral bioavailability. The cost of repeated infusion treatment for 6 weeks every year is as high as tens of billions of dollars worldwide. Exosomes are nano-sized (30-150 nm) extracellular vesicles secreted by mammalian cells due to environmental stimulation or self-activation. Milk contains abundant exosomes originated from multiple cellular sources. It has been proved that milk exosomes (MEs) could survive with the strongly acidic conditions in the stomach and degradative conditions in the gut. Furthermore, they can cross biological barriers to reach targeted tissues. The ability of MEs to cross the gastrointestinal barrier makes them as a promising drug delivery tool for oral delivery. This review is devoted to the purification of MEs, their biocompatibility and immunogenicity, and prospects for their use as natural drug carriers for oral administration.
Collapse
|
42
|
Jing Z, Chen K, Gong L. The Significance of Exosomes in Pathogenesis, Diagnosis, and Treatment of Esophageal Cancer. Int J Nanomedicine 2021; 16:6115-6127. [PMID: 34511909 PMCID: PMC8423492 DOI: 10.2147/ijn.s321555] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022] Open
Abstract
Esophageal cancer is one of the most common malignancy in China with high mortality. Understanding pathogenesis and identifying early diagnosis biomarkers can significantly improve the prognosis of patients with esophageal cancer. Exosomes are small vesicular structures containing a variety of components (including DNA, RNA, and proteins) mediating cell-to-cell material exchange and signal communication. Growing evidences have shown that exosomes and its components are involved in growth, metastasis and angiogenesis in cancer, and could also be used as diagnostic and prognostic markers. In this review, we summarized recent progress to elucidate the significance of exosomes in the esophageal cancer progression, microenvironment remodeling, therapeutic resistance, and immunosuppression. We also discuss the utility of exosomes as diagnostic and prognostic biomarkers and therapeutic tool in esophageal cancer.
Collapse
Affiliation(s)
- Zhao Jing
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Kai Chen
- Department of Cardiovascular and Thoracic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ling Gong
- Department of Infectious Disease (Liver Diseases), The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
43
|
Dunphy K, O’Mahoney K, Dowling P, O’Gorman P, Bazou D. Clinical Proteomics of Biofluids in Haematological Malignancies. Int J Mol Sci 2021; 22:ijms22158021. [PMID: 34360786 PMCID: PMC8348619 DOI: 10.3390/ijms22158021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022] Open
Abstract
Since the emergence of high-throughput proteomic techniques and advances in clinical technologies, there has been a steady rise in the number of cancer-associated diagnostic, prognostic, and predictive biomarkers being identified and translated into clinical use. The characterisation of biofluids has become a core objective for many proteomic researchers in order to detect disease-associated protein biomarkers in a minimally invasive manner. The proteomes of biofluids, including serum, saliva, cerebrospinal fluid, and urine, are highly dynamic with protein abundance fluctuating depending on the physiological and/or pathophysiological context. Improvements in mass-spectrometric technologies have facilitated the in-depth characterisation of biofluid proteomes which are now considered hosts of a wide array of clinically relevant biomarkers. Promising efforts are being made in the field of biomarker diagnostics for haematologic malignancies. Several serum and urine-based biomarkers such as free light chains, β-microglobulin, and lactate dehydrogenase are quantified as part of the clinical assessment of haematological malignancies. However, novel, minimally invasive proteomic markers are required to aid diagnosis and prognosis and to monitor therapeutic response and minimal residual disease. This review focuses on biofluids as a promising source of proteomic biomarkers in haematologic malignancies and a key component of future diagnostic, prognostic, and disease-monitoring applications.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Kelly O’Mahoney
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland; (K.O.); (P.O.)
| | - Paul Dowling
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland; (K.O.); (P.O.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland; (K.O.); (P.O.)
- Correspondence:
| |
Collapse
|
44
|
Koyagura SS, Majarikar V, Takehara H, Ichiki T. Experimental Evaluation and Modeling of Adsorption Phenomena of Nanoliposomes on Poly(dimethylsiloxane) Surfaces. J PHOTOPOLYM SCI TEC 2021. [DOI: 10.2494/photopolymer.34.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Virendra Majarikar
- Department of Materials Engineering, School of Engineering, The University of Tokyo
| | - Hiroaki Takehara
- Department of Materials Engineering, School of Engineering, The University of Tokyo
| | | |
Collapse
|
45
|
Di Santo R, Romanò S, Mazzini A, Jovanović S, Nocca G, Campi G, Papi M, De Spirito M, Di Giacinto F, Ciasca G. Recent Advances in the Label-Free Characterization of Exosomes for Cancer Liquid Biopsy: From Scattering and Spectroscopy to Nanoindentation and Nanodevices. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1476. [PMID: 34199576 PMCID: PMC8230295 DOI: 10.3390/nano11061476] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022]
Abstract
Exosomes (EXOs) are nano-sized vesicles secreted by most cell types. They are abundant in bio-fluids and harbor specific molecular constituents from their parental cells. Due to these characteristics, EXOs have a great potential in cancer diagnostics for liquid biopsy and personalized medicine. Despite this unique potential, EXOs are not yet widely applied in clinical settings, with two main factors hindering their translational process in diagnostics. Firstly, conventional extraction methods are time-consuming, require large sample volumes and expensive equipment, and often do not provide high-purity samples. Secondly, characterization methods have some limitations, because they are often qualitative, need extensive labeling or complex sampling procedures that can induce artifacts. In this context, novel label-free approaches are rapidly emerging, and are holding potential to revolutionize EXO diagnostics. These methods include the use of nanodevices for EXO purification, and vibrational spectroscopies, scattering, and nanoindentation for characterization. In this progress report, we summarize recent key advances in label-free techniques for EXO purification and characterization. We point out that these methods contribute to reducing costs and processing times, provide complementary information compared to the conventional characterization techniques, and enhance flexibility, thus favoring the discovery of novel and unexplored EXO-based biomarkers. In this process, the impact of nanotechnology is systematically highlighted, showing how the effectiveness of these techniques can be enhanced using nanomaterials, such as plasmonic nanoparticles and nanostructured surfaces, which enable the exploitation of advanced physical phenomena occurring at the nanoscale level.
Collapse
Affiliation(s)
- Riccardo Di Santo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (R.D.S.); (S.R.); (A.M.); (G.N.); (M.P.); (F.D.G.)
| | - Sabrina Romanò
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (R.D.S.); (S.R.); (A.M.); (G.N.); (M.P.); (F.D.G.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
| | - Alberto Mazzini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (R.D.S.); (S.R.); (A.M.); (G.N.); (M.P.); (F.D.G.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
| | - Svetlana Jovanović
- “Vinča” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Giuseppina Nocca
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (R.D.S.); (S.R.); (A.M.); (G.N.); (M.P.); (F.D.G.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gaetano Campi
- Rome International Centre Materials Science Superstripes RICMASS, via dei Sabelli 119A, 00185 Rome, Italy;
- Institute of Crystallography, CNR, via Salaria Km 29. 300, Monterotondo Stazione, 00016 Roma, Italy
| | - Massimiliano Papi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (R.D.S.); (S.R.); (A.M.); (G.N.); (M.P.); (F.D.G.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (R.D.S.); (S.R.); (A.M.); (G.N.); (M.P.); (F.D.G.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
| | - Flavio Di Giacinto
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (R.D.S.); (S.R.); (A.M.); (G.N.); (M.P.); (F.D.G.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
| | - Gabriele Ciasca
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (R.D.S.); (S.R.); (A.M.); (G.N.); (M.P.); (F.D.G.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
46
|
Guerrini L, Garcia-Rico E, O’Loghlen A, Giannini V, Alvarez-Puebla RA. Surface-Enhanced Raman Scattering (SERS) Spectroscopy for Sensing and Characterization of Exosomes in Cancer Diagnosis. Cancers (Basel) 2021; 13:cancers13092179. [PMID: 33946619 PMCID: PMC8125149 DOI: 10.3390/cancers13092179] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The distinct molecular and biological properties of exosomes, together with their abundance and stability, make them an ideal target in liquid biopsies for early diagnosis and disease monitoring. On the other hand, in recent years, nanomaterial-based optical biosensors have been extensively investigated as novel, rapid and sensitive tools for exosome detection and discrimination. The scope of this review is to summarize and coherently discussed the diverse applications, challenges and limitations of nanosensors based on surface-enhanced Raman spectroscopy (SERS) as the optosensing technique. Abstract Exosomes are emerging as one of the most intriguing cancer biomarkers in modern oncology for early cancer diagnosis, prognosis and treatment monitoring. Concurrently, several nanoplasmonic methods have been applied and developed to tackle the challenging task of enabling the rapid, sensitive, affordable analysis of exosomes. In this review, we specifically focus our attention on the application of plasmonic devices exploiting surface-enhanced Raman spectroscopy (SERS) as the optosensing technique for the structural interrogation and characterization of the heterogeneous nature of exosomes. We summarized the current state-of-art of this field while illustrating the main strategic approaches and discuss their advantages and limitations.
Collapse
Affiliation(s)
- Luca Guerrini
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Carrer de Marcel·li Domingo s/n, 43007 Tarragona, Spain
- Correspondence: (L.G.); (R.A.A.-P.)
| | - Eduardo Garcia-Rico
- Fundación de Investigación HM Hospitales, San Bernardo 101, 28015 Madrid, Spain;
- School of Medicine, San Pablo CEU, Calle Julian Romea, 18, 28003 Madrid, Spain
| | - Ana O’Loghlen
- Epigenetics & Cellular Senescence Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| | - Vincenzo Giannini
- Instituto de Estructura de la Materia (IEM-CSIC), Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain;
- Technology Innovation Institute, Masdar City, Abu Dhabi 9639, United Arab Emirates
| | - Ramon A. Alvarez-Puebla
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Carrer de Marcel·li Domingo s/n, 43007 Tarragona, Spain
- ICREA, Passeig Lluis Companys 23, 08010 Barcelona, Spain
- Correspondence: (L.G.); (R.A.A.-P.)
| |
Collapse
|
47
|
Datta B, Paul D, Pal U, Rakshit T. Intriguing Biomedical Applications of Synthetic and Natural Cell-Derived Vesicles: A Comparative Overview. ACS APPLIED BIO MATERIALS 2021; 4:2863-2885. [PMID: 35014382 DOI: 10.1021/acsabm.0c01480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The significant role of a vesicle is well recognized; however, only lately has the advancement in biomedical applications started to uncover their usefulness. Although the concept of vesicles originates from cell biology, it later transferred to chemistry and material science to develop nanoscale artificial vesicles for biomedical applications. Herein, we examine different synthetic and biological vesicles and their applications in the biomedical field in general. As our understanding of biological vesicles increases, more suitable biomimicking synthetic vesicles will be developed. The comparative discussion between synthetic and natural vesicles for biomedical applications is a relevant topic, and we envision this could enable the development of a proper approach to realize the next-generation treatment goals.
Collapse
Affiliation(s)
- Brateen Datta
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake City, Kolkata 700106, India
| | - Debashish Paul
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake City, Kolkata 700106, India
| | - Uttam Pal
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake City, Kolkata 700106, India
| | - Tatini Rakshit
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake City, Kolkata 700106, India
| |
Collapse
|
48
|
Abstract
Liver metastases are commonly detected in a range of malignancies including colorectal cancer (CRC), pancreatic cancer, melanoma, lung cancer and breast cancer, although CRC is the most common primary cancer that metastasizes to the liver. Interactions between tumour cells and the tumour microenvironment play an important part in the engraftment, survival and progression of the metastases. Various cells including liver sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, parenchymal hepatocytes, dendritic cells, resident natural killer cells as well as other immune cells such as monocytes, macrophages and neutrophils are implicated in promoting and sustaining metastases in the liver. Four key phases (microvascular, pre-angiogenic, angiogenic and growth phases) have been identified in the process of liver metastasis. Imaging modalities such as ultrasonography, CT, MRI and PET scans are typically used for the diagnosis of liver metastases. Surgical resection remains the main potentially curative treatment among patients with resectable liver metastases. The role of liver transplantation in the management of liver metastasis remains controversial. Systemic therapies, newer biologic agents (for example, bevacizumab and cetuximab) and immunotherapeutic agents have revolutionized the treatment options for liver metastases. Moving forward, incorporation of genetic tests can provide more accurate information to guide clinical decision-making and predict prognosis among patients with liver metastases.
Collapse
|
49
|
Zhu S, Guo Y, Zhang X, Liu H, Yin M, Chen X, Peng C. Pyruvate kinase M2 (PKM2) in cancer and cancer therapeutics. Cancer Lett 2021; 503:240-248. [PMID: 33246091 DOI: 10.1016/j.canlet.2020.11.018] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/12/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023]
Abstract
Pyruvate kinase M2 (PKM2), a key rate-limiting enzyme of glycolysis, is a critical regulator in tumor metabolism. PKM2 has been demonstrated to overexpressed in various cancers and promoted proliferation and metastasis of tumor cells. The errant expression of PKM2 has inspired people to investigate the function of PKM2 and the therapeutic potential in cancer. In addition, some studies have shown that the upregulation of PKM2 in tumor tissues is associated with the altered expression of lncRNAs and the poor survival. Therefore, researchers have begun to unravel the specific molecular mechanisms of lncRNA-mediated PKM2 expression in cancer metabolism. As the tumor microenvironment (TME) is essential in tumor development, it is necessary to identify the role of PKM2 in TME. In this review, we will introduce the role of PKM2 in different cancers as well as TME, and summarize the molecular mechanism of PKM2-related lncRNAs in cancer metabolism. We expect that this work will lead to a better understanding of the molecular mechanisms of PKM2 that may help in developing therapeutic strategies in clinic for researchers.
Collapse
Affiliation(s)
- Susi Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China; Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yeye Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China; Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China; Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China; Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingzhu Yin
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China; Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China; Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China; Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
50
|
Yan H, Li Y, Cheng S, Zeng Y. Advances in Analytical Technologies for Extracellular Vesicles. Anal Chem 2021; 93:4739-4774. [PMID: 33635060 DOI: 10.1021/acs.analchem.1c00693] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- He Yan
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yutao Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Shibo Cheng
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.,University of Florida Health Cancer Center, Gainesville, Florida 32610, United States
| |
Collapse
|