1
|
Gaudreault PO, King SG, Huang Y, Ceceli AO, Kronberg G, Alia-Klein N, Goldstein RZ. FRONTAL WHITE MATTER CHANGES INDICATE RECOVERY WITH INPATIENT TREATMENT IN HEROIN ADDICTION. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.10.24308719. [PMID: 38946983 PMCID: PMC11213111 DOI: 10.1101/2024.06.10.24308719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Importance Amidst an unprecedented opioid epidemic, identifying neurobiological correlates of change with medication-assisted treatment of heroin use disorder is imperative. Distributed white matter (WM) impairments in individuals with heroin use disorder (iHUD) have been associated with increased drug craving, a reliable predictor of treatment outcomes. However, little is known about the extent of whole-brain structural connectivity changes with inpatient treatment and abstinence in iHUD. Objective To assess WM microstructure and associations with drug craving changes with inpatient treatment in iHUD (effects of time/re-scan compared to controls; CTL). Design Longitudinal cohort study (12/2020-09/2022) where iHUD and CTL underwent baseline magnetic resonance imaging (MRI#1) and follow-up (MRI#2) scans, (mean interval of 13.9 weeks in all participants combined). Setting The iHUD and CTL were recruited from urban inpatient treatment facilities and surrounding communities, respectively. Participants Thirty-four iHUD (42.1yo; 7 women), 25 age-/sex-matched CTL (40.5yo; 9 women). Intervention Between scans, inpatient iHUD continued their medically-assisted treatment and related clinical interventions. CTL participants were scanned at similar time intervals. Main Outcomes and Measures Changes in white matter diffusion metrics [fractional anisotropy (FA), mean (MD), axial (AD), and radial diffusivities (RD)] in addition to baseline and cue-induced drug craving, and other clinical outcome variables (mood, sleep, affect, perceived stress, and therapy attendance). Results Main findings showed HUD-specific WM microstructure changes encompassing mostly frontal major callosal, projection, and association tracts, characterized by increased FA (.949<1-p<.986) and decreased MD (.949<1-p<.997) and RD (.949<1-p<.999). The increased FA (r=-0.72, p<.00001) and decreased MD (r=0.69, p<.00001) and RD (r=0.67, p<.0001) in the genu and body of the corpus callosum and the left anterior corona radiata in iHUD were correlated with a reduction in baseline craving (.949<1-p<.999). No other WM correlations with outcome variables reached significance. Conclusions and Relevance Our findings suggest whole-brain normalization of structural connectivity with inpatient medically-assisted treatment in iHUD encompassing recovery in frontal WM pathways implicated in emotional regulation and top-down executive control. The association with decreases in baseline craving further supports the relevance of these WM markers to a major symptom in drug addiction, with implications for monitoring clinical outcomes.
Collapse
Affiliation(s)
- Pierre-Olivier Gaudreault
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Sarah G King
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Yuefeng Huang
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Ahmet O Ceceli
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Greg Kronberg
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Nelly Alia-Klein
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Rita Z Goldstein
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| |
Collapse
|
2
|
Li X, Ramos-Rolón AP, Kass G, Pereira-Rufino LS, Shifman N, Shi Z, Volkow ND, Wiers CE. Imaging neuroinflammation in individuals with substance use disorders. J Clin Invest 2024; 134:e172884. [PMID: 38828729 PMCID: PMC11142750 DOI: 10.1172/jci172884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Increasing evidence suggests a role of neuroinflammation in substance use disorders (SUDs). This Review presents findings from neuroimaging studies assessing brain markers of inflammation in vivo in individuals with SUDs. Most studies investigated the translocator protein 18 kDa (TSPO) using PET; neuroimmune markers myo-inositol, choline-containing compounds, and N-acetyl aspartate using magnetic resonance spectroscopy; and fractional anisotropy using MRI. Study findings have contributed to a greater understanding of neuroimmune function in the pathophysiology of SUDs, including its temporal dynamics (i.e., acute versus chronic substance use) and new targets for SUD treatment.
Collapse
Affiliation(s)
- Xinyi Li
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Astrid P. Ramos-Rolón
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Gabriel Kass
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Lais S. Pereira-Rufino
- Departamento de Morfologia e Genética, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Naomi Shifman
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Zhenhao Shi
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Corinde E. Wiers
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Martucci KT. Neuroimaging of opioid effects in humans across conditions of acute administration, chronic pain therapy, and opioid use disorder. Trends Neurosci 2024; 47:418-431. [PMID: 38762362 PMCID: PMC11168870 DOI: 10.1016/j.tins.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/01/2024] [Accepted: 04/21/2024] [Indexed: 05/20/2024]
Abstract
Evidence of central nervous system (CNS) exogenous opioid effects in humans has been primarily gained through neuroimaging of three participant populations: individuals after acute opioid administration, those with opioid use disorder (OUD), and those with chronic pain receiving opioid therapy. In both the brain and spinal cord, opioids alter processes of pain, cognition, and reward. Opioid-related CNS effects may persist and accumulate with longer opioid use duration. Meanwhile, opioid-induced benefits versus risks to brain health remain unclear. This review article highlights recent accumulating evidence for how exogenous opioids impact the CNS in humans. While investigation of CNS opioid effects has remained largely disparate across contexts of opioid acute administration, OUD, and chronic pain opioid therapy, integration across these contexts may enable advancement toward effective interventions.
Collapse
Affiliation(s)
- Katherine T Martucci
- Human Affect and Pain Neuroscience Lab, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Center for Translational Pain Medicine, Duke University School of Medicine, Durham, NC, USA; Duke Institute for Brain Sciences, Duke University, Durham, NC, USA.
| |
Collapse
|
4
|
Cui Z, Meng L, Zhang Q, Lou J, Lin Y, Sun Y. White and Gray Matter Abnormalities in Young Adult Females with Dependent Personality Disorder: A Diffusion-Tensor Imaging and Voxel-Based Morphometry Study. Brain Topogr 2024; 37:102-115. [PMID: 37831323 DOI: 10.1007/s10548-023-01013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023]
Abstract
We applied diffusion-tensor imaging (DTI) including measurements of fractional anisotropy (FA), a parameter of neuronal fiber integrity, mean diffusivity (MD), a parameter of brain tissue integrity, as well as voxel-based morphometry (VBM), a measure of gray and white matter volume, to provide a basis to improve our understanding of the neurobiological basis of dependent personality disorder (DPD). DTI was performed on young girls with DPD (N = 17) and young female healthy controls (N = 17). Tract-based spatial statistics (TBSS) were used to examine microstructural characteristics. Gray matter volume differences between the two groups were investigated using voxel-based morphometry (VBM). The Pearson correlation analysis was utilized to examine the relationship between distinct brain areas of white matter and gray matter and the Dy score on the MMPI. The DPD had significantly higher fractional anisotropy (FA) values than the HC group in the right retrolenticular part of the internal capsule, right external capsule, the corpus callosum, right posterior thalamic radiation (include optic radiation), right cerebral peduncle (p < 0.05), which was strongly positively correlated with the Dy score of MMPI. The volume of gray matter in the right postcentral gyrus and left cuneus in DPD was significantly increased (p < 0.05), which was strongly positively correlated with the Dy score of MMPI (r1,2= 0.467,0.353; p1,2 = 0.005,0.04). Our results provide new insights into the changes in the brain structure in DPD, which suggests that alterations in the brain structure might implicate the pathophysiology of DPD. Possible visual and somatosensory association with motor nerve circuits in DPD.
Collapse
Affiliation(s)
- Zhixia Cui
- Weifang Mental Health Center, Weifang, Shandong, China
| | | | - Qing Zhang
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jing Lou
- Beijing Normal University, Beijing, China
| | - Yuan Lin
- First Clinical Department, Dalian Medical University, Dalian, China
| | - Yueji Sun
- Department of Psychiatry and Behavioral Sciences, Dalian Medical University, Dalian, China.
| |
Collapse
|
5
|
Wang L, Qin Y, Li X, Li X, Liu Y, Li W, Wang Y. Glymphatic-System Function Is Associated with Addiction and Relapse in Heroin Dependents Undergoing Methadone Maintenance Treatment. Brain Sci 2023; 13:1292. [PMID: 37759893 PMCID: PMC10526898 DOI: 10.3390/brainsci13091292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
This study investigates the impact of methadone maintenance treatment (MMT) on the brain glymphatic system (GS) in opioid addiction in China. A total of 51 male MMT patients, 48 demographically matched healthy controls (HCs), and 20 heroin dependents (HDs) were recruited for this study. The GS functioning was assessed using diffusion-tensor-imaging analysis along perivascular spaces (DTI-ALPS index) and the bilateral ALPS divergency (DivALPS). Group differences were analyzed utilizing ANOVA and two-sample t-tests. The relationship between DivALPS and relapse rate was explored using regression analysis. The DTI-ALPS index was significantly higher for the left-side brain than the right side in all three groups. There was a significant difference for the right side (p = 0.0098) between the groups. The MMT and HD groups showed significantly higher DTI-ALPS than the HC group (p = 0.018 and 0.016, respectively). The DivALPS varied significantly among the three groups (p = 0.04), with the HD group showing the lowest and the HC group the highest values. Significant negative relationships were found between relapse count, DivALPS (p < 0.0001, Exp(B) = 0.6047), and age (p < 0.0001, Exp(B) = 0.9142). The findings suggest that MMT may contribute to promoting brain GS recovery in heroin addicts, and modulation of the GS may serve as a potential biomarker for relapse risk, providing insights into novel therapeutic strategies.
Collapse
Affiliation(s)
- Lei Wang
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (L.W.); (Y.Q.)
- Department of Radiology, Xi’an Daxing Hospital, Xi’an 710016, China
| | - Yue Qin
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (L.W.); (Y.Q.)
- Department of Radiology, Xi’an Daxing Hospital, Xi’an 710016, China
| | - Xiaoshi Li
- Department of Radiology, Xi’an Daxing Hospital, Xi’an 710016, China
| | - Xin Li
- Department of Radiology, Xi’an Daxing Hospital, Xi’an 710016, China
| | - Yuwei Liu
- Department of Medical Imaging, People’s Hospital of Tongchuan City, Tongchuan 727000, China
| | - Wei Li
- Department of Radiology, Tangdu Hospital, Air Force Military Medical University, Xi’an 710038, China
| | - Yarong Wang
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (L.W.); (Y.Q.)
| |
Collapse
|
6
|
Wang L, Hu F, Li W, Li Q, Li Y, Zhu J, Wei X, Yang J, Guo J, Qin Y, Shi H, Wang W, Wang Y. Relapse risk revealed by degree centrality and cluster analysis in heroin addicts undergoing methadone maintenance treatment. Psychol Med 2023; 53:2216-2228. [PMID: 34702384 DOI: 10.1017/s0033291721003937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Based on hubs of neural circuits associated with addiction and their degree centrality (DC), this study aimed to construct the addiction-related brain networks for patients diagnosed with heroin dependence undertaking stable methadone maintenance treatment (MMT) and further prospectively identify the ones at high risk for relapse with cluster analysis. METHODS Sixty-two male MMT patients and 30 matched healthy controls (HC) underwent brain resting-state functional MRI data acquisition. The patients received 26-month follow-up for the monthly illegal-drug-use information. Ten addiction-related hubs were chosen to construct a user-defined network for the patients. Then the networks were discriminated with K-means-clustering-algorithm into different groups and followed by comparative analysis to the groups and HC. Regression analysis was used to investigate the brain regions significantly contributed to relapse. RESULTS Sixty MMT patients were classified into two groups according to their brain-network patterns calculated by the best clustering-number-K. The two groups had no difference in the demographic, psychological indicators and clinical information except relapse rate and total heroin consumption. The group with high-relapse had a wider range of DC changes in the cortical-striatal-thalamic circuit relative to HC and a reduced DC in the mesocorticolimbic circuit relative to the low-relapse group. DC activity in NAc, vACC, hippocampus and amygdala were closely related with relapse. CONCLUSION MMT patients can be identified and classified into two subgroups with significantly different relapse rates by defining distinct brain-network patterns even if we are blind to their relapse outcomes in advance. This may provide a new strategy to optimize MMT.
Collapse
Affiliation(s)
- Lei Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, P.R. China
- Department of Nuclear Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an, P.R. China
| | - Feng Hu
- Department of Radiology, The Hospital of Shaanxi Provincial Geology and Mineral Resources Bureau, Xi'an, P.R. China
| | - Wei Li
- Department of Radiology, Tangdu Hospital, Air Force Military Medical University, Xi'an, P.R. China
| | - Qiang Li
- Department of Radiology, Tangdu Hospital, Air Force Military Medical University, Xi'an, P.R. China
| | - Yongbin Li
- Department of Radiology, The Second Hospital of Xi'an Medical University, Xi'an, P.R. China
| | - Jia Zhu
- Department of Radiology, Tangdu Hospital, Air Force Military Medical University, Xi'an, P.R. China
| | - Xuan Wei
- Department of Radiology, Tangdu Hospital, Air Force Military Medical University, Xi'an, P.R. China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, P.R. China
| | - Jianxin Guo
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, P.R. China
| | - Yue Qin
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, P.R. China
| | - Hong Shi
- Department of Radiology, Xi'an No.1 Hospital, Xi'an, P.R. China
| | - Wei Wang
- Department of Radiology, Tangdu Hospital, Air Force Military Medical University, Xi'an, P.R. China
| | - Yarong Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, P.R. China
| |
Collapse
|
7
|
Gaudreault PO, King SG, Malaker P, Alia-Klein N, Goldstein RZ. Whole-brain white matter abnormalities in human cocaine and heroin use disorders: association with craving, recency, and cumulative use. Mol Psychiatry 2023; 28:780-791. [PMID: 36369361 PMCID: PMC9911401 DOI: 10.1038/s41380-022-01833-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
Neuroimaging studies in substance use disorder have shown widespread impairments in white matter (WM) microstructure suggesting demyelination and axonal damage. However, substantially fewer studies explored the generalized vs. the acute and/or specific drug effects on WM. Our study assessed whole-brain WM integrity in three subgroups of individuals addicted to drugs, encompassing those with cocaine (CUD) or heroin (HUD) use disorder, compared to healthy controls (CTL). Diffusion MRI was acquired in 58 CTL, 28 current cocaine users/CUD+, 32 abstinent cocaine users/CUD-, and 30 individuals with HUD (urine was positive for cocaine in CUD+ and opiates used for treatment in HUD). Tract-Based Spatial Statistics allowed voxelwise analyses of diffusion metrics [fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD)]. Permutation statistics (p-corrected < 0.05) were used for between-group t-tests. Compared to CTL, all individuals with addiction showed widespread decreases in FA, and increases in MD, RD, and AD (19-57% of WM skeleton, p < 0.05). The HUD group showed the most impairments, followed by the CUD+, with only minor FA reductions in CUD- (<0.2% of WM skeleton, p = 0.05). Longer periods of regular use were associated with decreased FA and AD, and higher subjective craving was associated with increased MD, RD, and AD, across all individuals with drug addiction (p < 0.05). These findings demonstrate extensive WM impairments in individuals with drug addiction characterized by decreased anisotropy and increased diffusivity, thought to reflect demyelination and lower axonal packing. Extensive abnormalities in both groups with positive urine status (CUD+ and HUD), and correlations with craving, suggest greater WM impairments with more recent use. Results in CUD-, and correlations with regular use, further imply cumulative and/or persistent WM damage.
Collapse
Affiliation(s)
- Pierre-Olivier Gaudreault
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Sarah G King
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Pias Malaker
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Nelly Alia-Klein
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Rita Z Goldstein
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
8
|
Chen J, Li Y, Wang S, Li W, Liu Y, Jin L, Li Z, Zhu J, Wang F, Liu W, Xue J, Shi H, Wang W, Jin C, Li Q. Methadone maintenance treatment alters couplings of default mode and salience networks in individuals with heroin use disorder: A longitudinal self-controlled resting-state fMRI study. Front Psychiatry 2023; 14:1132407. [PMID: 37139328 PMCID: PMC10149709 DOI: 10.3389/fpsyt.2023.1132407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Background Methadone maintenance treatment (MMT) is a common treatment for heroin use disorder (HUD). Although individuals with HUD have been reported to show impaired coupling among the salience network (SN), executive control network (ECN), and default mode network (DMN), the effects of MMT on the coupling among three large-scale networks in individuals with HUD remains unclear. Methods Thirty-seven individuals with HUD undergoing MMT and 57 healthy controls were recruited. The longitudinal one-year follow-up study aimed to evaluate the effects of methadone on anxiety, depression, withdrawal symptoms and craving and number of relapse, and brain function (SN, DMN and bilateral ECN) in relation to heroin dependence. The changes in psychological characteristics and the coupling among large-scale networks after 1 year of MMT were analyzed. The associations between the changes in coupling among large-scale networks and psychological characteristics and the methadone dose were also examined. Results After 1 year of MMT, individuals with HUD showed a reduction in the withdrawal symptom score. The number of relapses was negatively correlated with the methadone dose over 1 year. The functional connectivity between the medial prefrontal cortex (mPFC) and the left middle temporal gyrus (MTG; both key nodes of the DMN) was increased, and the connectivities between the mPFC and the anterior insular and middle frontal gyrus (key nodes of the SN) were also increased. The mPFC-left MTG connectivity was negatively correlated with the withdrawal symptom score. Conclusion Long-term MMT enhanced the connectivity within the DMN which might be related to reduced withdrawal symptoms, and that between the DMN and SN which might be related to increase in salience values of heroin cues in individuals with HUD. Long-term MMT may be a double-edged sword in treatment for HUD.
Collapse
Affiliation(s)
- Jiajie Chen
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yongbin Li
- Department of Radiology, Xi'an No. 1 Hospital, Xi'an, Shaanxi, China
| | - Shu Wang
- Biomedical Engineering, School of Life Science and Technology, Xi'an Jiao Tong University, Xi'an, Shaanxi, China
| | - Wei Li
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Liu
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Long Jin
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhe Li
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jia Zhu
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fan Wang
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Liu
- Department of Radiology, Xi'an No. 1 Hospital, Xi'an, Shaanxi, China
| | - Jiuhua Xue
- Department of Radiology, Xi'an No. 1 Hospital, Xi'an, Shaanxi, China
| | - Hong Shi
- Department of Radiology, Xi'an No. 1 Hospital, Xi'an, Shaanxi, China
| | - Wei Wang
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Wei Wang,
| | - Chenwang Jin
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Chenwang Jin,
| | - Qiang Li
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- *Correspondence: Qiang Li,
| |
Collapse
|
9
|
King SG, Gaudreault PO, Malaker P, Kim JW, Alia-Klein N, Xu J, Goldstein RZ. Prefrontal-habenular microstructural impairments in human cocaine and heroin addiction. Neuron 2022; 110:3820-3832.e4. [PMID: 36206758 PMCID: PMC9671835 DOI: 10.1016/j.neuron.2022.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/24/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
The habenula (Hb) is central to adaptive reward- and aversion-driven behaviors, comprising a hub for higher-order processing networks involving the prefrontal cortex (PFC). Despite an established role in preclinical models of cocaine addiction, the translational significance of the Hb and its connectivity with the PFC in humans is unclear. Using diffusion tractography, we detailed PFC structural connectivity with the Hb and two control regions, quantifying tract-specific microstructural features in healthy and cocaine-addicted individuals. White matter was uniquely impaired in PFC-Hb projections in both short-term abstainers and current cocaine users. Abnormalities in this tract further generalized to an independent sample of heroin-addicted individuals and were associated, in an exploratory analysis, with earlier onset of drug use across the addiction subgroups, potentially serving as a predisposing marker amenable for early intervention. Importantly, these findings contextualize a plausible PFC-Hb circuit in the human brain, supporting preclinical evidence for its impairment in cocaine addiction.
Collapse
Affiliation(s)
- Sarah G King
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pierre-Olivier Gaudreault
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pias Malaker
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joo-Won Kim
- Departments of Radiology and Psychiatry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nelly Alia-Klein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junqian Xu
- Departments of Radiology and Psychiatry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rita Z Goldstein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
10
|
Single nucleus transcriptomic analysis of rat nucleus accumbens reveals cell type-specific patterns of gene expression associated with volitional morphine intake. Transl Psychiatry 2022; 12:374. [PMID: 36075888 PMCID: PMC9458645 DOI: 10.1038/s41398-022-02135-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Opioid exposure is known to cause transcriptomic changes in the nucleus accumbens (NAc). However, no studies to date have investigated cell type-specific transcriptomic changes associated with volitional opioid taking. Here, we use single nucleus RNA sequencing (snRNAseq) to comprehensively characterize cell type-specific alterations of the NAc transcriptome in rats self-administering morphine. One cohort of male Brown Norway rats was injected with acute morphine (10 mg/kg, i.p.) or saline. A second cohort of rats was allowed to self-administer intravenous morphine (1.0 mg/kg/infusion) for 10 consecutive days. Each morphine-experienced rat was paired with a yoked saline control rat. snRNAseq libraries were generated from NAc punches and used to identify cell type-specific gene expression changes associated with volitional morphine taking. We identified 1106 differentially expressed genes (DEGs) in the acute morphine group, compared to 2453 DEGs in the morphine self-administration group, across 27 distinct cell clusters. Importantly, we identified 1329 DEGs that were specific to morphine self-administration. DEGs were identified in novel clusters of astrocytes, oligodendrocytes, and D1R- and D2R-expressing medium spiny neurons in the NAc. Cell type-specific DEGs included Rgs9, Celf5, Oprm1, and Pde10a. Upregulation of Rgs9 and Celf5 in D2R-expressing neurons was validated by RNAscope. Approximately 85% of all oligodendrocyte DEGs, nearly all of which were associated with morphine taking, were identified in two subtypes. Bioinformatic analyses identified cell type-specific upstream regulatory mechanisms of the observed transcriptome alterations and downstream signaling pathways, including both novel and previously identified molecular pathways. These findings show that volitional morphine taking is associated with distinct cell type-specific transcriptomic changes in the rat NAc and highlight specific striatal cell populations and novel molecular substrates that could be targeted to reduce compulsive opioid taking.
Collapse
|
11
|
Boban J, Thurnher MM, Boban N, Law M, Jahanshad N, Nir TM, Lendak DF, Kozic D. Gradient Patterns of Age-Related Diffusivity Changes in Cerebral White Matter. Front Neurol 2022; 13:870909. [PMID: 35720102 PMCID: PMC9201287 DOI: 10.3389/fneur.2022.870909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
The current concept of brain aging proposes three gradient patterns of changes in white matter that occur during healthy brain aging: antero-posterior, supero-inferior, and the myelodegeneration-retrogenesis (or the “last-in-first-out”) concept. The aim of this study was to correlate white matter diffusivity measures (fractional anisotropy-FA, mean diffusivity-MD, radial diffusivity-RD, and axial diffusivity-AD) in healthy volunteers with chronological age and education level, in order to potentially incorporate the findings with proposed patterns of physiological brain aging. The study was performed on 75 healthy participants of both sexes, with an average age of 37.32 ± 11.91 years underwent brain magnetic resonance imaging (MRI) with diffusion tensor imaging (DTI). DTI was performed using tract-based spatial statistics (TBSS), with the analysis of four parameters: FA, MD, RD, and AD. Skeletonized measures were averaged in 29 regions of interest in white matter. Correlations between age and DTI measures and between education-level and DTI measures were performed using Pearson's correlation test. To correct for multiple comparisons, we applied a Bonferroni correction to the p-values. Significance was set at p ≤ 0.001. A significant negative correlation of FA with age was observed in posterior thalamic radiation (PTR) (p< 0.001). A significant positive correlation between age and MD was observed in sagittal stratum (SS) (p< 0.001), between age and RD in PTR, SS, and retrolenticular internal capsule (p< 0.001), and between age and AD in the body of the corpus callosum (p< 0.001). There were no significant correlations of DTI parameters with educational level. According to our study, RD showed the richest correlations with age, out of all DTI metrics. FA, MD, and RD showed significant changes in the diffusivity of projection fibers, while AD presented diffusivity changes in the commissural fibers. The observed heterogeneity in diffusivity changes across the brain cannot be explained by a single aging gradient pattern, since it seems that different patterns of degradation are true for different fiber tracts that no currently available theory can globally explain age-related changes in the brain. Additional factors, such as the effect of somatosensory decline, should be included as one of the important covariables to the existing patterns.
Collapse
Affiliation(s)
- Jasmina Boban
- Faculty of Medicine Novi Sad, Department of Radiology, University of Novi Sad, Novi Sad, Serbia
- Vojvodina Institute of Oncology, Center for Diagnostic Imaging, Sremska Kamenica, Serbia
- *Correspondence: Jasmina Boban
| | - Majda M. Thurnher
- Department for Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| | - Nikola Boban
- Clinical Center of Vojvodina, Center for Radiology, Novi Sad, Serbia
| | - Meng Law
- Department for Neuroscience, The Alfred Centre, Central Clinical School, Monash University, Melbourne, VIC, United States
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Talia M. Nir
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Dajana F. Lendak
- Faculty of Medicine Novi Sad, Department of Infectious Diseases, University of Novi Sad, Novi Sad, Serbia
- Clinical Center of Vojvodina, Clinic for Infectious Diseases, Novi Sad, Serbia
| | - Dusko Kozic
- Faculty of Medicine Novi Sad, Department of Radiology, University of Novi Sad, Novi Sad, Serbia
- Vojvodina Institute of Oncology, Center for Diagnostic Imaging, Sremska Kamenica, Serbia
| |
Collapse
|
12
|
Xue X, Zong W, Glausier JR, Kim SM, Shelton MA, Phan BN, Srinivasan C, Pfenning AR, Tseng GC, Lewis DA, Seney ML, Logan RW. Molecular rhythm alterations in prefrontal cortex and nucleus accumbens associated with opioid use disorder. Transl Psychiatry 2022; 12:123. [PMID: 35347109 PMCID: PMC8960783 DOI: 10.1038/s41398-022-01894-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022] Open
Abstract
Severe and persistent disruptions to sleep and circadian rhythms are common in people with opioid use disorder (OUD). Preclinical evidence suggests altered molecular rhythms in the brain modulate opioid reward and relapse. However, whether molecular rhythms are disrupted in the brains of people with OUD remained an open question, critical to understanding the role of circadian rhythms in opioid addiction. Using subjects' times of death as a marker of time of day, we investigated transcriptional rhythms in the brains of subjects with OUD compared to unaffected comparison subjects. We discovered rhythmic transcripts in both the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc), key brain areas involved in OUD, that were largely distinct between OUD and unaffected subjects. Fewer rhythmic transcripts were identified in DLPFC of subjects with OUD compared to unaffected subjects, whereas in the NAc, nearly double the number of rhythmic transcripts was identified in subjects with OUD. In NAc of subjects with OUD, rhythmic transcripts peaked either in the evening or near sunrise, and were associated with an opioid, dopamine, and GABAergic neurotransmission. Associations with altered neurotransmission in NAc were further supported by co-expression network analysis which identified OUD-specific modules enriched for transcripts involved in dopamine, GABA, and glutamatergic synaptic functions. Additionally, rhythmic transcripts in DLPFC and NAc of subjects with OUD were enriched for genomic loci associated with sleep-related GWAS traits, including sleep duration and insomnia. Collectively, our findings connect transcriptional rhythm changes in opioidergic, dopaminergic, GABAergic signaling in the human brain to sleep-related traits in opioid addiction.
Collapse
Affiliation(s)
- Xiangning Xue
- grid.21925.3d0000 0004 1936 9000Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Wei Zong
- grid.21925.3d0000 0004 1936 9000Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Jill R. Glausier
- grid.21925.3d0000 0004 1936 9000Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219 USA
| | - Sam-Moon Kim
- grid.21925.3d0000 0004 1936 9000Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219 USA ,grid.21925.3d0000 0004 1936 9000Center for Adolescent Reward, Rhythms, and Sleep, University of Pittsburgh, Pittsburgh, PA 15219 USA
| | - Micah A. Shelton
- grid.21925.3d0000 0004 1936 9000Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219 USA
| | - BaDoi N. Phan
- grid.147455.60000 0001 2097 0344Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Chaitanya Srinivasan
- grid.147455.60000 0001 2097 0344Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Andreas R. Pfenning
- grid.147455.60000 0001 2097 0344Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213 USA ,grid.147455.60000 0001 2097 0344Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - George C. Tseng
- grid.21925.3d0000 0004 1936 9000Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - David A. Lewis
- grid.21925.3d0000 0004 1936 9000Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219 USA
| | - Marianne L. Seney
- grid.21925.3d0000 0004 1936 9000Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219 USA ,grid.21925.3d0000 0004 1936 9000Center for Adolescent Reward, Rhythms, and Sleep, University of Pittsburgh, Pittsburgh, PA 15219 USA
| | - Ryan W. Logan
- grid.189504.10000 0004 1936 7558Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118 USA ,grid.189504.10000 0004 1936 7558Center for Systems Neuroscience, Boston University, Boston, MA 02118 USA
| |
Collapse
|
13
|
Muelbl MJ, Glaeser BL, Shah AS, Chiariello RA, Nawarawong NN, Stemper BD, Budde MD, Olsen CM. Repeated blast mild traumatic brain injury and oxycodone self-administration produce interactive effects on neuroimaging outcomes. Addict Biol 2022; 27:e13134. [PMID: 35229952 PMCID: PMC8896287 DOI: 10.1111/adb.13134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/19/2021] [Accepted: 12/10/2021] [Indexed: 01/11/2023]
Abstract
Traumatic brain injury (TBI) and drug addiction are common comorbidities, but it is unknown if the neurological sequelae of TBI contribute to this relationship. We have previously reported elevated oxycodone seeking after drug self-administration in rats that received repeated blast TBI (rbTBI). TBI and exposure to drugs of abuse can each change structural and functional neuroimaging outcomes, but it is unknown if there are interactive effects of injury and drug exposure. To determine the effects of TBI and oxycodone exposure, we subjected rats to rbTBI and oxycodone self-administration and measured drug seeking and several neuroimaging measures. We found interactive effects of rbTBI and oxycodone on fractional anisotropy (FA) in the nucleus accumbens (NAc) and that FA in the medial prefrontal cortex (mPFC) was correlated with drug seeking. We also found an interactive effect of injury and drug on widespread functional connectivity and regional homogeneity of the blood oxygen level dependent (BOLD) response, and that intra-hemispheric functional connectivity in the infralimbic medial prefrontal cortex positively correlated with drug seeking. In conclusion, rbTBI and oxycodone self-administration had interactive effects on structural and functional magnetic resonance imaging (MRI) measures, and correlational effects were found between some of these measures and drug seeking. These data support the hypothesis that TBI and opioid exposure produce neuroadaptations that contribute to addiction liability.
Collapse
Affiliation(s)
- Matthew J. Muelbl
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Breanna L. Glaeser
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Alok S. Shah
- Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Clement J. Zablocki Veterans Affairs Medical Center, 5000 W National Ave, Milwaukee, WI 53295, USA
| | - Rachel A. Chiariello
- Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Clement J. Zablocki Veterans Affairs Medical Center, 5000 W National Ave, Milwaukee, WI 53295, USA
| | - Natalie N. Nawarawong
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Deparment of Pharmacology & Toxicology, University of Texas at Austin
| | - Brian D. Stemper
- Joint Department of Biomedical Engineering, Marquette University, 1515 W. Wisconsin Ave, Milwaukee WI, 53233, USA and Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Clement J. Zablocki Veterans Affairs Medical Center, 5000 W National Ave, Milwaukee, WI 53295, USA
| | - Matthew D. Budde
- Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Clement J. Zablocki Veterans Affairs Medical Center, 5000 W National Ave, Milwaukee, WI 53295, USA
| | - Christopher M. Olsen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Corresponding author: Christopher M. Olsen, PhD, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA, Phone: (414) 955-7629,
| |
Collapse
|
14
|
Ceceli AO, Bradberry CW, Goldstein RZ. The neurobiology of drug addiction: cross-species insights into the dysfunction and recovery of the prefrontal cortex. Neuropsychopharmacology 2022; 47:276-291. [PMID: 34408275 PMCID: PMC8617203 DOI: 10.1038/s41386-021-01153-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023]
Abstract
A growing preclinical and clinical body of work on the effects of chronic drug use and drug addiction has extended the scope of inquiry from the putative reward-related subcortical mechanisms to higher-order executive functions as regulated by the prefrontal cortex. Here we review the neuroimaging evidence in humans and non-human primates to demonstrate the involvement of the prefrontal cortex in emotional, cognitive, and behavioral alterations in drug addiction, with particular attention to the impaired response inhibition and salience attribution (iRISA) framework. In support of iRISA, functional and structural neuroimaging studies document a role for the prefrontal cortex in assigning excessive salience to drug over non-drug-related processes with concomitant lapses in self-control, and deficits in reward-related decision-making and insight into illness. Importantly, converging insights from human and non-human primate studies suggest a causal relationship between drug addiction and prefrontal insult, indicating that chronic drug use causes the prefrontal cortex damage that underlies iRISA while changes with abstinence and recovery with treatment suggest plasticity of these same brain regions and functions. We further dissect the overlapping and distinct characteristics of drug classes, potential biomarkers that inform vulnerability and resilience, and advancements in cutting-edge psychological and neuromodulatory treatment strategies, providing a comprehensive landscape of the human and non-human primate drug addiction literature as it relates to the prefrontal cortex.
Collapse
Affiliation(s)
- Ahmet O Ceceli
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Rita Z Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
15
|
Seney ML, Kim SM, Glausier JR, Hildebrand MA, Xue X, Zong W, Wang J, Shelton MA, Phan BN, Srinivasan C, Pfenning AR, Tseng GC, Lewis DA, Freyberg Z, Logan RW. Transcriptional Alterations in Dorsolateral Prefrontal Cortex and Nucleus Accumbens Implicate Neuroinflammation and Synaptic Remodeling in Opioid Use Disorder. Biol Psychiatry 2021; 90:550-562. [PMID: 34380600 PMCID: PMC8463497 DOI: 10.1016/j.biopsych.2021.06.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Prevalence rates of opioid use disorder (OUD) have increased dramatically, accompanied by a surge of overdose deaths. While opioid dependence has been extensively studied in preclinical models, an understanding of the biological alterations that occur in the brains of people who chronically use opioids and who are diagnosed with OUD remains limited. To address this limitation, RNA sequencing was conducted on the dorsolateral prefrontal cortex and nucleus accumbens, regions heavily implicated in OUD, from postmortem brains in subjects with OUD. METHODS We performed RNA sequencing on the dorsolateral prefrontal cortex and nucleus accumbens from unaffected comparison subjects (n = 20) and subjects diagnosed with OUD (n = 20). Our transcriptomic analyses identified differentially expressed transcripts and investigated the transcriptional coherence between brain regions using rank-rank hypergeometric orderlap. Weighted gene coexpression analyses identified OUD-specific modules and gene networks. Integrative analyses between differentially expressed transcripts and genome-wide association study datasets using linkage disequilibrium scores assessed the genetic liability of psychiatric-related phenotypes in OUD. RESULTS Rank-rank hypergeometric overlap analyses revealed extensive overlap in transcripts between the dorsolateral prefrontal cortex and nucleus accumbens in OUD, related to synaptic remodeling and neuroinflammation. Identified transcripts were enriched for factors that control proinflammatory cytokine, chondroitin sulfate, and extracellular matrix signaling. Cell-type deconvolution implicated a role for microglia as a potential driver for opioid-induced neuroplasticity. Linkage disequilibrium score analysis suggested genetic liabilities for risky behavior, attention-deficit/hyperactivity disorder, and depression in subjects with OUD. CONCLUSIONS Overall, our findings suggest connections between the brain's immune system and opioid dependence in the human brain.
Collapse
Affiliation(s)
- Marianne L Seney
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Center for Adolescent Reward, Rhythms, and Sleep, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sam-Moon Kim
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Center for Adolescent Reward, Rhythms, and Sleep, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine
| | - Jill R Glausier
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mariah A Hildebrand
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wei Zong
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jiebiao Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Micah A Shelton
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - BaDoi N Phan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Chaitanya Srinivasan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Andreas R Pfenning
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Zachary Freyberg
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ryan W Logan
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts; Center for Systems Neuroscience, Boston University, Boston, Massachusetts.
| |
Collapse
|
16
|
Mill RD, Winfield EC, Cole MW, Ray S. Structural MRI and functional connectivity features predict current clinical status and persistence behavior in prescription opioid users. NEUROIMAGE-CLINICAL 2021; 30:102663. [PMID: 33866300 PMCID: PMC8060550 DOI: 10.1016/j.nicl.2021.102663] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 01/10/2023]
Abstract
Prescription opioid use disorder (POUD) has reached epidemic proportions in the United States, raising an urgent need for diagnostic biological tools that can improve predictions of disease characteristics. The use of neuroimaging methods to develop such biomarkers have yielded promising results when applied to neurodegenerative and psychiatric disorders, yet have not been extended to prescription opioid addiction. With this long-term goal in mind, we conducted a preliminary study in this understudied clinical group. Univariate and multivariate approaches to distinguishing between POUD (n = 26) and healthy controls (n = 21) were investigated, on the basis of structural MRI (sMRI) and resting-state functional connectivity (restFC) features. Univariate approaches revealed reduced structural integrity in the subcortical extent of a previously reported addiction-related network in POUD subjects. No reliable univariate between-group differences in cortical structure or edgewise restFC were observed. Contrasting these mixed univariate results, multivariate machine learning classification approaches recovered more statistically reliable group differences, especially when sMRI and restFC features were combined in a multi-modal model (classification accuracy = 66.7%, p < .001). The same multivariate multi-modal approach also yielded reliable prediction of individual differences in a clinically relevant behavioral measure (persistence behavior; predicted-to-actual overlap r = 0.42, p = .009). Our findings suggest that sMRI and restFC measures can be used to reliably distinguish the neural effects of long-term opioid use, and that this endeavor numerically benefits from multivariate predictive approaches and multi-modal feature sets. This can serve as theoretical proof-of-concept for future longitudinal modeling of prognostic POUD characteristics from neuroimaging features, which would have clearer clinical utility.
Collapse
Affiliation(s)
- Ravi D Mill
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Emily C Winfield
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Suchismita Ray
- Department of Health Informatics, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA.
| |
Collapse
|
17
|
Zhao X, Wang L, Maes JH. Training and transfer effects of working memory training in male abstinent long-term heroin users. Addict Behav Rep 2020; 12:100310. [PMID: 33364318 PMCID: PMC7752720 DOI: 10.1016/j.abrep.2020.100310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/28/2020] [Indexed: 10/26/2022] Open
|
18
|
Luo J, Yang R, Yang W, Duan C, Deng Y, Zhang J, Chen J, Liu J. Increased Amplitude of Low-Frequency Fluctuation in Right Angular Gyrus and Left Superior Occipital Gyrus Negatively Correlated With Heroin Use. Front Psychiatry 2020; 11:492. [PMID: 32719620 PMCID: PMC7350776 DOI: 10.3389/fpsyt.2020.00492] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/14/2020] [Indexed: 12/01/2022] Open
Abstract
Abnormal amplitude of low-frequency fluctuation has been implicated in heroin addiction. However, previous studies lacked consistency and didn't consider the impact of confounding factors such as methadone and alcohol. Fifty-one heroin-dependent (HD) individuals and 40 healthy controls underwent resting-state functional magnetic resonance imaging. The 'amplitude of low-frequency fluctuation' (ALFF) value was calculated and support vector machine (SVM) classification analysis was applied to analyze the data. Compared with healthy controls, heroin addicts exhibited increased ALFF in the right angular gyrus (AG) and left superior occipital gyrus (SOG). A negative correlation was observed between increased ALFF in the right angular gyrus and left superior occipital gyrus and the duration of heroin use (p 1=0.004, r 1=-0.426; p 2=0.009, r 2=-0.361). Moreover, the ALFF in the right AG and left SOG could discriminate the HD subjects from the controls with acceptable accuracy (Acc1=64.85%, p 1=0.004; Acc2=63.80%, p 2=0.005). HD patients showed abnormal ALFF in the brain areas involved in semantic memory and visual networks. The longer HD individuals abused heroin, the less the ALFF of associated brain regions increased. These observed patterns suggested that the accumulative effect of heroin's neurotoxicity overpowered self-recovery of the brain and may be applied as a potential biomarker to identify HD individuals from the controls.
Collapse
Affiliation(s)
- Jing Luo
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ru Yang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenhan Yang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | | | - Yuan Deng
- Yunnan Institute for Drug Abuse, Kunming, China
| | - Jun Zhang
- Hunan Judicial Police Academy, Changsha, China
| | - Jiyuan Chen
- Hunan Drug Rehabilitation Administration, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Reyes S, Rimkus CDM, Lozoff B, Biswal BB, Peirano P, Algarin C. Assessing cognitive control and the reward system in overweight young adults using sensitivity to incentives and white matter integrity. PLoS One 2020; 15:e0233915. [PMID: 32484819 PMCID: PMC7266313 DOI: 10.1371/journal.pone.0233915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/14/2020] [Indexed: 11/18/2022] Open
Abstract
Cognitive control and incentive sensitivity are related to overeating and obesity. Optimal white matter integrity is relevant for an efficient interaction among reward-related brain regions. However, its relationship with sensitivity to incentives remains controversial. The aim of this study was to assess the incentive sensitivity and its relationship to white matter integrity in normal-weight and overweight groups. Seventy-six young adults participated in this study: 31 were normal-weight (body mass index [BMI] 18.5 to < 25.0 kg/m2, 14 females) and 45 were overweight (BMI ≥ 25.0 kg/m2, 22 females). Incentive sensitivity was assessed using an antisaccade task that evaluates the effect of incentives (neutral, reward, and loss avoidance) on cognitive control performance. Diffusion tensor imaging studies were performed to assess white matter integrity. The relationship between white matter microstructure and incentive sensitivity was investigated through tract-based spatial statistics. Behavioral antisaccade results showed that normal-weight participants presented higher accuracy (78.0 vs. 66.7%, p = 0.01) for loss avoidance incentive compared to overweight participants. Diffusion tensor imaging analysis revealed a positive relationship between fractional anisotropy and loss avoidance accuracy in the normal-weight group (p < 0.05). No relationship reached significance in the overweight group. These results support the hypothesis that white matter integrity is relevant for performance in an incentivized antisaccade task.
Collapse
Affiliation(s)
- Sussanne Reyes
- Laboratory of Sleep and Functional Neurobiology, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Carolina de Medeiros Rimkus
- Department of Radiology and Oncology, Laboratory of Medical Investigation (LIM-44), Faculty of Medicine, University of Sao Paulo, São Paulo, São Paulo, Brasil
| | - Betsy Lozoff
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bharat B. Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Patricio Peirano
- Laboratory of Sleep and Functional Neurobiology, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Cecilia Algarin
- Laboratory of Sleep and Functional Neurobiology, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
20
|
Mithani K, Davison B, Meng Y, Lipsman N. The anterior limb of the internal capsule: Anatomy, function, and dysfunction. Behav Brain Res 2020; 387:112588. [PMID: 32179062 DOI: 10.1016/j.bbr.2020.112588] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/22/2019] [Accepted: 02/28/2020] [Indexed: 12/22/2022]
Abstract
The last two decades have seen a re-emergence of neurosurgery for severe, refractory psychiatric diseases, largely due to the advent of more precise and safe operative techniques. Nevertheless, the optimal targets for these surgeries remain a matter of debate, and are often grandfathered from experiences in the late 20th century. To better explore the rationale for one target in particular - the anterior limb of the internal capsule (ALIC) - we comprehensively reviewed all available literature on its role in the pathophysiology and treatment of mental illness. We first provide an overview of its functional anatomy, followed by a discussion on its role in several prevalent psychiatric diseases. Given its structural integration into the limbic system and involvement in a number of cognitive and emotional processes, the ALIC is a robust target for surgical treatment of refractory psychiatric diseases. The advent of novel neuroimaging techniques, coupled with image-guided therapeutics and neuromodulatory treatments, will continue to enable study on the ALIC in mental illness.
Collapse
Affiliation(s)
- Karim Mithani
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Ying Meng
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Browne CJ, Godino A, Salery M, Nestler EJ. Epigenetic Mechanisms of Opioid Addiction. Biol Psychiatry 2020; 87:22-33. [PMID: 31477236 PMCID: PMC6898774 DOI: 10.1016/j.biopsych.2019.06.027] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022]
Abstract
Opioid use kills tens of thousands of Americans each year, devastates families and entire communities, and cripples the health care system. Exposure to opioids causes long-term changes to brain regions involved in reward processing and motivation, leading vulnerable individuals to engage in pathological drug seeking and drug taking that can remain a lifelong struggle. The persistence of these neuroadaptations is mediated in part by epigenetic remodeling of gene expression programs in discrete brain regions. Although the majority of work examining how epigenetic modifications contribute to addiction has focused on psychostimulants such as cocaine, research into opioid-induced changes to the epigenetic landscape is emerging. This review summarizes our knowledge of opioid-induced epigenetic modifications and their consequential changes to gene expression. Current evidence points toward opioids promoting higher levels of permissive histone acetylation and lower levels of repressive histone methylation as well as alterations to DNA methylation patterns and noncoding RNA expression throughout the brain's reward circuitry. Additionally, studies manipulating epigenetic enzymes in specific brain regions are beginning to build causal links between these epigenetic modifications and changes in addiction-related behavior. Moving forward, studies must leverage advanced chromatin analysis and next-generation sequencing approaches combined with bioinformatics pipelines to identify novel gene networks regulated by particular epigenetic modifications. Improved translational relevance also requires increased focus on volitional drug-intake models and standardization of opioid exposure paradigms. Such work will significantly advance our understanding of how opioids cause persistent changes to brain function and will provide a platform on which to develop interventions for treating opioid addiction.
Collapse
Affiliation(s)
- Caleb J Browne
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Arthur Godino
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY 10029, USA
| | - Marine Salery
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY 10029, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
22
|
Avey D, Sankararaman S, Yim AKY, Barve R, Milbrandt J, Mitra RD. Single-Cell RNA-Seq Uncovers a Robust Transcriptional Response to Morphine by Glia. Cell Rep 2019; 24:3619-3629.e4. [PMID: 30257220 DOI: 10.1016/j.celrep.2018.08.080] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/03/2018] [Accepted: 08/24/2018] [Indexed: 12/21/2022] Open
Abstract
Molecular and behavioral responses to opioids are thought to be primarily mediated by neurons, although there is accumulating evidence that other cell types play a prominent role in drug addiction. To investigate cell-type-specific opioid responses, we performed single-cell RNA sequencing (scRNA-seq) of the nucleus accumbens of mice following acute morphine treatment. Differential expression analysis uncovered unique morphine-dependent transcriptional responses by oligodendrocytes and astrocytes. We examined the expression of selected genes, including Cdkn1a and Sgk1, by FISH, confirming their induction by morphine in oligodendrocytes. Further analysis using RNA-seq of FACS-purified oligodendrocytes revealed a large cohort of morphine-regulated genes. The affected genes are enriched for roles in cellular pathways intimately linked to oligodendrocyte maturation and myelination, including the unfolded protein response. Altogether, our data illuminate the morphine-dependent transcriptional response by oligodendrocytes and offer mechanistic insights into myelination defects associated with opioid abuse.
Collapse
Affiliation(s)
- Denis Avey
- Department of Genetics, Washington University, School of Medicine, St. Louis, MO 63110, USA; Center for Genome Sciences and Systems Biology, Washington University, School of Medicine, St. Louis, MO 63110, USA
| | - Sumithra Sankararaman
- Center for Genome Sciences and Systems Biology, Washington University, School of Medicine, St. Louis, MO 63110, USA
| | - Aldrin K Y Yim
- Department of Genetics, Washington University, School of Medicine, St. Louis, MO 63110, USA
| | - Ruteja Barve
- Genome Technology Access Center, Department of Genetics. Washington University, School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University, School of Medicine, St. Louis, MO 63110, USA.
| | - Robi D Mitra
- Department of Genetics, Washington University, School of Medicine, St. Louis, MO 63110, USA; Center for Genome Sciences and Systems Biology, Washington University, School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
23
|
Yang M, Ma H, Jia M, Li Y, Miao D, Cui C, Wu L. The role of the nucleus accumbens OXR1 in cocaine-induced locomotor sensitization. Behav Brain Res 2019; 379:112365. [PMID: 31743729 DOI: 10.1016/j.bbr.2019.112365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/15/2022]
Abstract
Re-exposure to drug or drug-associated cues after withdrawal can induce behavioral sensitization expression in animals or increase in the expected effect to drug in humans, which mean an enhanced drug seeking/taking motivation to trigger relapse after abstinence. The Nucleus accumbens (NAc) is known to play a key role in mediating this motivation. Recently, it has been shown that systemic administration of orexin receptor 1 (OXR1) antagonist attenuates animals' motivation behavior to take drug by self-administration paradigm, which is more effectively than orexin receptor 2 (OXR2) antagonist. However, the effect of OXR1 in the NAc on drug-induced locomotor sensitization remains elusive. The present study was designed to investigate the effect of OXR1 in the NAc on chronic cocaine-induced locomotor sensitization. Rats were given 10 mg/kg cocaine intraperitoneal injection (i.p.) for five consecutive days, followed by 10 mg/kg cocaine re-exposure (challenge) on the 14th day of withdrawal. Results showed that re-exposure to cocaine after withdrawal could induce locomotor sensitization expression in cocaine-sensitized rats. Simultaneously, the number of OXR1 positive neurons and OXR1 membrane protein level in the NAc core but not the shell were significantly increased following the cocaine re-exposure. Further, micro-infusion of SB-334867, an OXR1 selective antagonist, into the NAc core but not the shell before cocaine re-exposure, significantly attenuated the expression of locomotor sensitization in rats. The findings demonstrate that OXR1 in the NAc core partially mediates the expression of chronic cocaine-induced locomotor sensitization.
Collapse
Affiliation(s)
- Mingda Yang
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health Commission, Neuroscience Research Institute, Peking University, Beijing, China
| | - Hui Ma
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health Commission, Neuroscience Research Institute, Peking University, Beijing, China
| | - Meng Jia
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health Commission, Neuroscience Research Institute, Peking University, Beijing, China
| | - Yijing Li
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health Commission, Neuroscience Research Institute, Peking University, Beijing, China
| | - Degen Miao
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health Commission, Neuroscience Research Institute, Peking University, Beijing, China
| | - Cailian Cui
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health Commission, Neuroscience Research Institute, Peking University, Beijing, China.
| | - Liuzhen Wu
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health Commission, Neuroscience Research Institute, Peking University, Beijing, China.
| |
Collapse
|
24
|
Stewart JL, May AC, Paulus MP. Bouncing back: Brain rehabilitation amid opioid and stimulant epidemics. NEUROIMAGE-CLINICAL 2019; 24:102068. [PMID: 31795056 PMCID: PMC6978215 DOI: 10.1016/j.nicl.2019.102068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/20/2019] [Accepted: 11/03/2019] [Indexed: 12/18/2022]
Abstract
Frontoparietal event related potentials predict/track recovery. Frontostriatal functional magnetic resonance imaging signals predict/track recovery. Transcranial magnetic left prefrontal stimulation reduces craving and drug use.
Recent methamphetamine and opioid use epidemics are a major public health concern. Chronic stimulant and opioid use are characterized by significant psychosocial, physical and mental health costs, repeated relapse, and heightened risk of early death. Neuroimaging research highlights deficits in brain processes and circuitry that are linked to responsivity to drug cues over natural rewards as well as suboptimal goal-directed decision-making. Despite the need for interventions, little is known about (1) how the brain changes with prolonged abstinence or as a function of various treatments; and (2) how symptoms change as a result of neuromodulation. This review focuses on the question: What do we know about changes in brain function during recovery from opioids and stimulants such as methamphetamine and cocaine? We provide a detailed overview and critique of published research employing a wide array of neuroimaging methods – functional and structural magnetic resonance imaging, electroencephalography, event-related potentials, diffusion tensor imaging, and multiple brain stimulation technologies along with neurofeedback – to track or induce changes in drug craving, abstinence, and treatment success in stimulant and opioid users. Despite the surge of methamphetamine and opioid use in recent years, most of the research on neuroimaging techniques for recovery focuses on cocaine use. This review highlights two main findings: (1) interventions can lead to improvements in brain function, particularly in frontal regions implicated in goal-directed behavior and cognitive control, paired with reduced drug urges/craving; and (2) the targeting of striatal mechanisms implicated in drug reward may not be as cost-effective as prefrontal mechanisms, given that deep brain stimulation methods require surgery and months of intervention to produce effects. Overall, more studies are needed to replicate and confirm findings, particularly for individuals with opioid and methamphetamine use disorders.
Collapse
Affiliation(s)
- Jennifer L Stewart
- Laureate Institute for Brain Research, Tulsa, OK, United States; Department of Community Medicine, University of Tulsa, Tulsa, OK, United States.
| | - April C May
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK, United States; Department of Community Medicine, University of Tulsa, Tulsa, OK, United States
| |
Collapse
|
25
|
Translational Molecular Approaches in Substance Abuse Research. Handb Exp Pharmacol 2019; 258:31-60. [PMID: 31628598 DOI: 10.1007/164_2019_259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Excessive abuse of psychoactive substances is one of the leading contributors to morbidity and mortality worldwide. In this book chapter, we review translational research strategies that are applied in the pursuit of new and more effective therapeutics for substance use disorder (SUD). The complex, multidimensional nature of psychiatric disorders like SUD presents difficult challenges to investigators. While animal models are critical for outlining the mechanistic relationships between defined behaviors and genetic and/or molecular changes, the heterogeneous pathophysiology of brain diseases is uniquely human, necessitating the use of human studies and translational research schemes. Translational research describes a cross-species approach in which findings from human patient-based data can be used to guide molecular genetic investigations in preclinical animal models in order to delineate the mechanisms of reward circuitry changes in the addicted state. Results from animal studies can then inform clinical investigations toward the development of novel treatments for SUD. Here we describe the strategies that are used to identify and functionally validate genetic variants in the human genome which may contribute to increased risk for SUD, starting from early candidate gene approaches to more recent genome-wide association studies. We will next examine studies aimed at understanding how transcriptional and epigenetic dysregulation in SUD can persistently alter cellular function in the disease state. In our discussion, we then focus on examples from the literature illustrating molecular genetic methodologies that have been applied to studies of different substances of abuse - from alcohol and nicotine to stimulants and opioids - in order to exemplify how these approaches can both delineate the underlying molecular systems driving drug addiction and provide insights into the genetic basis of SUD.
Collapse
|
26
|
Moningka H, Lichenstein S, Yip SW. Current understanding of the neurobiology of opioid use disorder: An overview. Curr Behav Neurosci Rep 2019; 6:1-11. [PMID: 34485022 PMCID: PMC8412234 DOI: 10.1007/s40473-019-0170-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW This review provides an overview of the neurobiological mechanisms underlying opioid use disorder (OUD) drawing from genetic, functional and structural magnetic resonance imaging (MRI) research. RECENT FINDINGS Preliminary evidence suggests an association between OUD and specific variants of the DRD2, δ-opioid receptor 1 (OPRD1) and μ-opioid receptor 1 (OPRM1) genes. Additionally, MRI research indicates functional and structural alterations in striatal and corticolimbic brain regions and pathways underlying reward, emotion/stress and cognitive control processes among individuals with OUD. SUMMARY Individual differences in genetic and functional and structural brain-based features are correlated with differences in OUD severity and treatment outcomes, and therefore may potentially one day be used to inform OUD treatment selection. However, given the heterogeneous findings reported, further longitudinal research across different stages of opioid addiction is needed to yield a convergent characterization of OUD and improve treatment and prevention.
Collapse
Affiliation(s)
- Hestia Moningka
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510
- University College London, Division of Psychology and Language Sciences, London WC1H 0AP
| | - Sarah Lichenstein
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510
| | - Sarah W. Yip
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510
| |
Collapse
|
27
|
Toward biomarkers of the addicted human brain: Using neuroimaging to predict relapse and sustained abstinence in substance use disorder. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:143-154. [PMID: 28322982 PMCID: PMC5603350 DOI: 10.1016/j.pnpbp.2017.03.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/17/2017] [Accepted: 03/01/2017] [Indexed: 01/23/2023]
Abstract
The ability to predict relapse is a major goal of drug addiction research. Clinical and diagnostic measures are useful in this regard, but these measures do not fully and consistently identify who will relapse and who will remain abstinent. Neuroimaging approaches have the potential to complement these standard clinical measures to optimize relapse prediction. The goal of this review was to survey the existing drug addiction literature that either used a baseline functional or structural neuroimaging phenotype to longitudinally predict a clinical outcome, or that examined test-retest of a neuroimaging phenotype during a course of abstinence or treatment. Results broadly suggested that, relative to individuals who sustained abstinence, individuals who relapsed had (1) enhanced activation to drug-related cues and rewards, but reduced activation to non-drug-related cues and rewards, in multiple corticolimbic and corticostriatal brain regions; (2) weakened functional connectivity of these same corticolimbic and corticostriatal regions; and (3) reduced gray and white matter volume and connectivity in prefrontal regions. Thus, beyond these regions showing baseline group differences, reviewed evidence indicates that function and structure of these regions can prospectively predict - and normalization of these regions can longitudinally track - important clinical outcomes including relapse and adherence to treatment. Future clinical studies can leverage this information to develop novel treatment strategies, and to tailor scarce therapeutic resources toward individuals most susceptible to relapse.
Collapse
|
28
|
Hu Y, Long X, Lyu H, Zhou Y, Chen J. Alterations in White Matter Integrity in Young Adults with Smartphone Dependence. Front Hum Neurosci 2017; 11:532. [PMID: 29163108 PMCID: PMC5673664 DOI: 10.3389/fnhum.2017.00532] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/19/2017] [Indexed: 12/24/2022] Open
Abstract
Smartphone dependence (SPD) is increasingly regarded as a psychological problem, however, the underlying neural substrates of SPD is still not clear. High resolution magnetic resonance imaging provides a useful tool to help understand and manage the disorder. In this study, a tract-based spatial statistics (TBSS) analysis on diffusion tensor imaging (DTI) was used to measure white matter integrity in young adults with SPD. A total of 49 subjects were recruited and categorized into SPD and control group based on their clinical behavioral tests. To localize regions with abnormal white matter integrity in SPD, the voxel-wise analysis of fractional anisotropy (FA) and mean diffusivity (MD) on the whole brain was performed by TBSS. The correlation between the quantitative variables of brain structures and the behavior measures were performed. Our result demonstrated that SPD had significantly lower white matter integrity than controls in superior longitudinal fasciculus (SLF), superior corona radiata (SCR), internal capsule, external capsule, sagittal stratum, fornix/stria terminalis and midbrain structures. Correlation analysis showed that the observed abnormalities in internal capsule and stria terminalis were correlated with the severity of dependence and behavioral assessments. Our finding facilitated a primary understanding of white matter characteristics in SPD and indicated that the structural deficits might link to behavioral impairments.
Collapse
Affiliation(s)
- Yuanming Hu
- Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Xiaojing Long
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hanqing Lyu
- Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Yangyang Zhou
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Jianxiang Chen
- Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
29
|
Olivo G, Wiemerslage L, Swenne I, Zhukowsky C, Salonen-Ros H, Larsson EM, Gaudio S, Brooks SJ, Schiöth HB. Limbic-thalamo-cortical projections and reward-related circuitry integrity affects eating behavior: A longitudinal DTI study in adolescents with restrictive eating disorders. PLoS One 2017; 12:e0172129. [PMID: 28248991 PMCID: PMC5332028 DOI: 10.1371/journal.pone.0172129] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/31/2017] [Indexed: 12/20/2022] Open
Abstract
Few studies have used diffusion tensor imaging (DTI) to investigate the micro-structural alterations of WM in patients with restrictive eating disorders (rED), and longitudinal data are lacking. Twelve patients with rED were scanned at diagnosis and after one year of family-based treatment, and compared to twenty-four healthy controls (HCs) through DTI analysis. A tract-based spatial statistics procedure was used to investigate diffusivity parameters: fractional anisotropy (FA) and mean, radial and axial diffusivities (MD, RD and AD, respectively). Reduced FA and increased RD were found in patients at baseline in the corpus callosum, corona radiata and posterior thalamic radiation compared with controls. However, no differences were found between follow-up patients and controls, suggesting a partial normalization of the diffusivity parameters. In patients, trends for a negative correlation were found between the baseline FA of the right anterior corona radiata and the Eating Disorder Examination Questionnaire total score, while a positive trend was found between the baseline FA in the splenium of corpus callosum and the weight loss occurred between maximal documented weight and time of admission. A positive trend for correlation was also found between baseline FA in the right anterior corona radiata and the decrease in the Obsessive-Compulsive Inventory Revised total score over time. Our results suggest that the integrity of the limbic–thalamo–cortical projections and the reward-related circuitry are important for cognitive control processes and reward responsiveness in regulating eating behavior.
Collapse
Affiliation(s)
- Gaia Olivo
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Lyle Wiemerslage
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Ingemar Swenne
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Christina Zhukowsky
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Helena Salonen-Ros
- Department of Neuroscience, Child and Adolescent Psychiatry, Uppsala University, Uppsala, Sweden
| | - Elna-Marie Larsson
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Santino Gaudio
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
- Centre for Integrated Research (CIR), Area of Diagnostic Imaging, Università “Campus Bio-Medico di Roma”, Rome, Italy
| | - Samantha J. Brooks
- Deptartment of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Helgi B. Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
30
|
Li W, Zhu J, Li Q, Ye J, Chen J, Liu J, Li Z, Li Y, Yan X, Wang Y, Wang W. Brain white matter integrity in heroin addicts during methadone maintenance treatment is related to relapse propensity. Brain Behav 2016; 6:e00436. [PMID: 27110449 PMCID: PMC4834937 DOI: 10.1002/brb3.436] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/06/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Cognitive deficits caused by heroin-induced white matter (WM) impairments hinder addicts' engagement in and benefit from treatment. The predictive value of WM integrity in heroin addicts during methadone maintenance treatment (MMT) for future relapse is unclear. METHODS Forty-eight MMT patients were given baseline diffusion tensor imaging scans and divided into heroin relapsers (HR, 25 cases) and abstainers (HA, 23 cases) according to the results of 6-month follow-up. Intergroup comparisons were performed for fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). The correlation between diffusion tensor imaging indices and the degree of heroin relapse was analyzed. RESULTS Compared with HA group, HR group had reduced FA in the right retrolenticular part, left anterior and posterior limb of internal capsule, bilateral anterior corona radiata, and right external capsule. Three out of the six regions showed increased RD, with no changes in AD. The FA and AD values in the left posterior limb of internal capsule correlated negatively with the heroin-positive urinalysis rate within follow-up. CONCLUSIONS Lower WM integrity in MMT patients may add to neurobiological factors associated with relapse to heroin use. Strategies for improving WM integrity provide a new perspective to prevent future relapse to heroin abuse.
Collapse
Affiliation(s)
- Wei Li
- Department of Radiology Tangdu Hospital The Fourth Military Medical University Xi'an Shaanxi China
| | - Jia Zhu
- Department of Radiology Tangdu Hospital The Fourth Military Medical University Xi'an Shaanxi China
| | - Qiang Li
- Department of Radiology Tangdu Hospital The Fourth Military Medical University Xi'an Shaanxi China
| | - Jianjun Ye
- Department of Radiology Tangdu Hospital The Fourth Military Medical University Xi'an Shaanxi China
| | - Jiajie Chen
- Department of Radiology Tangdu Hospital The Fourth Military Medical University Xi'an Shaanxi China
| | - Jierong Liu
- Department of Radiology Tangdu Hospital The Fourth Military Medical University Xi'an Shaanxi China
| | - Zhe Li
- Department of Radiology Tangdu Hospital The Fourth Military Medical University Xi'an Shaanxi China
| | - Yongbin Li
- Department of Radiology Tangdu Hospital The Fourth Military Medical University Xi'an Shaanxi China
| | - Xuejiao Yan
- Department of Radiology Tangdu Hospital The Fourth Military Medical University Xi'an Shaanxi China
| | - Yarong Wang
- Department of Radiology Tangdu Hospital The Fourth Military Medical University Xi'an Shaanxi China
| | - Wei Wang
- Department of Radiology Tangdu Hospital The Fourth Military Medical University Xi'an Shaanxi China
| |
Collapse
|