1
|
Lee DA, Lee HJ, Kim SE, Park KM. Peak width of skeletonized mean diffusivity as a marker of small vessel disease in patients with temporal lobe epilepsy with hippocampal sclerosis. Epilepsia 2024. [PMID: 39636200 DOI: 10.1111/epi.18205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE White matter abnormalities in patients with temporal lobe epilepsy (TLE) and hippocampal sclerosis (HS) are well known. Peak width of skeletonized mean diffusivity (PSMD) is a novel marker for quantifying white matter integrity that may reflect small vessel disease. In this study, we aimed to quantify the extent of white matter damage in patients with TLE and HS by using PSMD. METHODS We enrolled 52 patients with TLE with HS and 54 age- and sex-matched healthy controls. Diffusion tensor imaging (DTI) was performed using a 3-T magnetic resonance imaging scanner. We measured PSMD using DTI findings and compared PSMD between patients with TLE with HS and healthy controls. We also evaluated the correlation between PSMD and clinical factors in patients with TLE and HS. RESULTS PSMD differed significantly between healthy controls and patients with TLE and HS, and it was higher in the patients (2.375 × 10-4 mm2/s vs. 2.108 × 10-4 mm2/s, p < .001). Furthermore, PSMD in the ipsilateral hemisphere of the HS was higher than in the contralateral hemisphere of the HS (2.472 × 10-4 mm2/s vs. 2.258 × 10-4 mm2/s, p = .040). PSMD was positively correlated with age (r = .512, p < .001) and age at seizure onset (r = .423, p = .002) in patients with TLE and HS. SIGNIFICANCE Patients with TLE and HS had higher PSMD values than healthy controls, and PSMD was positively correlated with age. These findings provide evidence of white matter damage probably due to small vessel disease in patients with TLE and HS and support the feasibility of PSMD as a promising imaging marker for epileptic disorders.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Sung Eun Kim
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
2
|
Lee DA, Ko J, Kim S, Lee H, Park KM. The association between structural connectivity and anti-seizure medication response in patients with temporal lobe epilepsy. Epilepsia Open 2024; 9:2408-2418. [PMID: 39388245 PMCID: PMC11633711 DOI: 10.1002/epi4.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/30/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
OBJECTIVES This study aimed to investigate the differences in structural connectivity and glymphatic system function between patients with temporal lobe epilepsy (TLE) and hippocampal sclerosis (HS) and healthy controls. Additionally, we analyzed the association between structural connectivity, glymphatic system function, and antiseizure medication (ASM) response. METHODS We retrospectively enrolled patients with TLE and HS and healthy controls who underwent diffusion tensor imaging at our hospital. We assessed structural connectivity in patients with TLE and HS and healthy controls by calculating network measures using graph theory and evaluated glymphatic system function using the diffusion tensor image analysis along the perivascular space (DTI-ALPS) index. Patients with TLE and HS were categorized into two groups: ASM poor and good responders. RESULTS We enrolled 55 patients with TLE and HS and 53 healthy controls. Of the 55 patients with TLE and HS, 39 were ASM poor responders, and 16 were ASM good responders. The assortativity coefficient in patients with TLE and HS was higher than that in healthy controls (0.004 vs. -0.007, p = 0.004), and the assortativity coefficient in ASM poor responders was lower than that in ASM good responders (-0.001 vs. -0.197, p = 0.003). The DTI-ALPS index in patients with TLE and HS was lower than that in healthy controls (1.403 vs. 1.709, p < 0.001); however, the DTI-ALPS index did not differ between ASM poor and good responders (1.411 vs. 1.385, p = 0.628). The DTI-ALPS index had a significant negative correlation with age in patients with TLE and HS (r = -0.267, p = 0.049). SIGNIFICANCE We confirmed increased assortativity coefficient in structural connectivity and decreased DTI-ALPS index in patients with TLE and HS compared with healthy controls. Additionally, we demonstrated an association between decreased assortativity coefficient in structural connectivity and ASM poor response in patients with TLE patients and HS. PLAIN LANGUAGE SUMMARY This study investigates the relationship between brain connectivity changes and glymphatic system function with antiseizure medication response in patients with temporal lobe epilepsy and hippocampal sclerosis. The research reveals that these patients show altered brain connectivity and glymphatic function compared to healthy individuals. A key finding is the strong link between a specific connectivity measure (assortativity coefficient) and antiseizure medication response, providing valuable insights that could influence epilepsy treatment and future research directions.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology, Haeundae Paik HospitalInje University College of MedicineBusanRepublic of Korea
| | - Junghae Ko
- Department of Internal Medicine, Haeundae Paik HospitalInje University College of MedicineBusanRepublic of Korea
| | - Sung‐Tae Kim
- Department of Neurosurgery, Haeundae Paik HospitalInje University College of MedicineBusanRepublic of Korea
| | - Ho‐Joon Lee
- Department of Radiology, Haeundae Paik HospitalInje University College of MedicineBusanRepublic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik HospitalInje University College of MedicineBusanRepublic of Korea
| |
Collapse
|
3
|
Kim J, Lee HJ, Lee DA, Park KM. Choroid plexus enlargement in patients with obstructive sleep apnea. Sleep Med 2024; 121:179-183. [PMID: 38996618 DOI: 10.1016/j.sleep.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
OBJECTIVES The function of choroid plexus is to produce cerebrospinal fluid, which is critical for the glymphatic system function. In this study, we aimed to analyze the differences in choroid plexus volume between patients with obstructive sleep apnea (OSA) and healthy controls, with the goal of discovering the glymphatic system dysfunction in patients with OSA. METHODS We prospectively enrolled 40 patients with OSA confirmed by polysomnography and 38 age- and sex-matched healthy controls. All participants underwent three-dimensional T1-weighted brain imaging, which was suitable for volumetric analysis. We compared choroid plexus volumes between patients with OSA and healthy controls, and analyzed the association between choroid plexus volume and polysomnographic findings in patients with OSA. RESULTS Choroid plexus volumes were significantly larger in patients with OSA than in healthy controls (2.311 % vs. 2.096 %, p = 0.005). However, no significant association was detected between choroid plexus volume and polysomnographic findings. CONCLUSION This study demonstrated enlargement of the choroid plexus in patients with OSA compared with healthy controls. This finding could be related with glymphatic system dysfunction in patients with OSA.
Collapse
Affiliation(s)
- Jinseung Kim
- Department of Family Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
4
|
Lee DA, Lee WH, Lee HJ, Park KM. Multilayer network analysis in patients with juvenile myoclonic epilepsy. Neuroradiology 2024; 66:1363-1371. [PMID: 38847850 DOI: 10.1007/s00234-024-03390-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/30/2024] [Indexed: 07/14/2024]
Abstract
INTRODUCTION We conducted a multilayer network analysis in patients with juvenile myoclonic epilepsy (JME) and healthy controls, to investigate the gray matter layer using a morphometric similarity network and analyze the white matter layer using structural connectivity. METHODS We enrolled 42 patients with newly diagnosed JME and 53 healthy controls. Brain magnetic resonance imaging (MRI) using a three-tesla MRI scanner, including T1-weighted imaging and diffusion tensor imaging (DTI) were performed. We created a gray matter layer matrix with a morphometric similarity network using T1-weighted imaging, and a white matter layer matrix with structural connectivity using the DTI. Subsequently, we performed a multilayer network analysis by applying graph theory. RESULTS There were significant differences in network at the global level in the multilayer network analysis between the groups. The average multiplex participation of patients with JME was lower than that of healthy controls (0.858 vs. 0.878, p = 0.007). In addition, several regions showed significant differences in multiplex participation at the nodal level in the multilayer network analysis. Multiplex participation in the right entorhinal cortex was lower, whereas multiplex participation in the right supramarginal gyrus was higher at the nodal level in the multilayer network analysis of patients with JME compared to healthy controls. CONCLUSION We demonstrated differences in network at the global and nodal levels in the multilayer network analysis between patients with JME and healthy controls. These features may be associated with the pathophysiology of JME and could help us understand the complex brain network in patients with JME.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, 48108, Republic of Korea
| | - Won Hee Lee
- Department of Neurosurgey, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, 48108, Republic of Korea.
| |
Collapse
|
5
|
Giovagnoli AR, Parisi A. Fifty Years of Handedness Research: A Neurological and Methodological Update. Brain Sci 2024; 14:418. [PMID: 38790397 PMCID: PMC11117861 DOI: 10.3390/brainsci14050418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Handedness, a complex human aspect that reflects the functional lateralization of the hemispheres, also interacts with the immune system. This study aimed to expand the knowledge of the lateralization of hand, foot, and eye activities in patients with immune-mediated (IM) or other (noIM) neurological diseases and to clarify the properties of the Edinburgh Handedness Inventory (EHI) in an Italian population. Three hundred thirty-four patients with IM or noIM diseases affecting the brain or spine and peripheral nervous system were interviewed about stressful events preceding the disease, subjective handedness, and familiarity for left-handedness or ambidexterity. The patients and 40 healthy subjects underwent EHI examination. In the whole group of participants, 24 items of the EHI were classified into five factors (Hand Transitive, Hand Refined, Hand Median, Foot, Eye), demonstrating good reliability and validity. Chronological age had a significant influence on hand and foot EHI factors and the laterality quotient (LQ), particularly on writing and painting. In the patient groups, EHI factors and the LQ were also predicted by age of disease onset, duration of disease, and family history of left-handedness or ambidexterity. No differences were found between patients and healthy subjects, but pencil use scored significantly lower in patients with IM diseases than in those with noIM brain diseases. These results demonstrate that the lateralization of hand and foot activities is not a fixed human aspect, but that it can change throughout life, especially for abstract and symbolic activities. Chronic neurological diseases can cause changes in handedness. This may explain why, unlike systemic immunological diseases, IM neurological diseases are not closely associated with left-handedness. In these patients, the long version of the EHI is appropriate for determining the lateralization of body activities to contextualize the neurological picture; therefore, these findings extend the Italian normative data sets.
Collapse
Affiliation(s)
- Anna Rita Giovagnoli
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milano, Italy;
| | | |
Collapse
|
6
|
Lee DA, Kim SE, Park KM. Increased Thalamic Connectivity in Juvenile Myoclonic Epilepsy Based on Electroencephalography Source-Level Analysis. Brain Connect 2024; 14:182-188. [PMID: 38343360 DOI: 10.1089/brain.2023.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Background: This study investigated alterations in the intrinsic thalamic network of patients with juvenile myoclonic epilepsy (JME) based on an electroencephalography (EEG) source-level analysis. Materials and Methods: We enrolled patients newly diagnosed with JME as well as healthy controls. The assessments were conducted in the resting state. We computed sources based on the scalp electrical potentials using a minimum-norm imaging method and a standardized, low-resolution, brain electromagnetic tomography approach. To create a functional connectivity matrix, we used the Talairach atlas to define thalamic nodes and applied the coherence method to measure brain synchronization as edges. We then calculated the intrinsic thalamic network using graph theory. We compared the intrinsic thalamic network of patients with JME with those of healthy controls. Results: This study included 67 patients with JME and 66 healthy controls. EEG source-level analysis revealed significant differences in the intrinsic thalamic networks between patients with JME and healthy controls. The measures of functional connectivity (radius, diameter, and characteristic path length) were significantly lower in patients with JME than in healthy controls (radius: 2.769 vs. 3.544, p = 0.015; diameter: 4.464 vs. 5.443, p = 0.024; and characteristic path length: 2.248 vs. 2.616, p = 0.046). Conclusions: We demonstrated alterations in the intrinsic thalamic network in patients with JME compared with those in healthy controls based on the EEG source-level analysis. These findings indicated increased thalamic connectivity in the JME group. These intrinsic thalamic network changes may be related to the pathophysiology of JME.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Sung Eun Kim
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
7
|
Lee DA, Lee HJ, Park KM. Altered cerebellar volumes and intrinsic cerebellar networks in patients with transient global amnesia. Brain Imaging Behav 2024; 18:315-323. [PMID: 38057649 DOI: 10.1007/s11682-023-00833-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
This study aimed to investigate the differences in cerebellar volumes and intrinsic cerebellar networks between patients with transient global amnesia (TGA) and healthy controls. We retrospectively enrolled patients with TGA and age- and sex-matched healthy controls. We used three-dimensional T1-weighted imaging at the time of TGA diagnosis to obtain cerebellar volumes, and the intrinsic cerebellar network was calculated by applying graph theory based on cerebellar volumes. The nodes were defined as individual cerebellar volumes, and edges as partial correlations, controlling for the effects of age and sex. The cerebellar volumes and intrinsic cerebellar networks were compared between the two groups. We enrolled 44 patients with TGA and 47 healthy controls. The volume of the left cerebellar white matter in patients with TGA was significantly lower than that in healthy controls (1.0328 vs. 1.0753%, p = 0.0094). In addition, there were significant differences in intrinsic cerebellar networks between the two groups. The small-worldness index in patients with TGA was higher than that in the healthy controls (0.951 vs. 0.880, p = 0.038). In the correlation analysis, the volumes of the right cerebellar cortex and lobules VIIIB were significantly correlated with age in patients with TGA (r = -0.323, p = 0.033; r = -0.313, p = 0.038, respectively). Patients with TGA exhibit alterations in cerebellar volumes and intrinsic cerebellar networks compared with healthy controls. These findings may contribute to a better understanding of the pathophysiology of the TGA.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-Ro 875, Haeundae-Gu, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-Ro 875, Haeundae-Gu, Busan, Republic of Korea.
| |
Collapse
|
8
|
Kim J, Lee H, Lee DA, Park KM. Sarcopenia and anti-seizure medication response in juvenile myoclonic epilepsy. Brain Behav 2024; 14:e3464. [PMID: 38468473 PMCID: PMC10928337 DOI: 10.1002/brb3.3464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
INTRODUCTION This study aimed to investigate the presence of sarcopenia in patients with juvenile myoclonic epilepsy (JME) and the association between sarcopenia and response to anti-seizure medication (ASM) in patients with JME. METHODS We enrolled 42 patients with JME and 42 healthy controls who underwent brain magnetic resonance imaging with three-dimensional T1-weighted imaging. We measured the temporal muscle thickness (TMT), a radiographic marker for sarcopenia, using T1-weighted imaging. We compared the TMT between patients with JME and healthy controls and analyzed it according to the ASM response in patients with JME. We also performed a receiver operating characteristic (ROC) curve analysis to evaluate how well the TMT differentiated the groups. RESULTS The TMT in patients with JME did not differ from that in healthy controls (9.630 vs. 9.956 mm, p = .306); however, ASM poor responders had a lower TMT than ASM good responders (9.109 vs. 10.104 mm, p = .023). ROC curve analysis revealed that the TMT exhibited a poor performance in differentiating patients with JME from healthy controls, with an area under the ROC curve of .570 (p = .270), but good performance in differentiating between ASM good and poor responders, with an area under the ROC curve of .700 (p = .015). CONCLUSION The TMT did not differ between patients with JME and healthy controls; however, it was reduced in ASM poor responders compared to ASM good responders, suggesting a link between ASM response and sarcopenia in patients with JME. TMT can be used to investigate sarcopenia in various neurological disorders.
Collapse
Affiliation(s)
- Jinseung Kim
- Department of Family MedicineBusan Paik HospitalInje University College of MedicineBusanRepublic of Korea
| | - Ho‐Joon Lee
- Department of RadiologyHaeundae Paik HospitalInje University College of MedicineBusanRepublic of Korea
| | - Dong Ah Lee
- Department of NeurologyHaeundae Paik HospitalInje University College of MedicineBusanRepublic of Korea
| | - Kang Min Park
- Department of NeurologyHaeundae Paik HospitalInje University College of MedicineBusanRepublic of Korea
| |
Collapse
|
9
|
Kim J, Lee HJ, Lee DA, Park KM. Cerebellar volumes and the intrinsic cerebellar network in patients with obstructive sleep apnea. Sleep Breath 2024; 28:301-309. [PMID: 37710027 DOI: 10.1007/s11325-023-02916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
PURPOSE This research aimed to explore changes in both cerebellar volume and the intrinsic cerebellar network in patients with obstructive sleep apnea (OSA). METHODS Newly diagnosed OSA patients and healthy controls were included in the study. All participants underwent three-dimensional T1-weighted imaging using a 3-T MRI scanner. Cerebellar volumes, both overall and subdivided, were quantified using the ACAPULCO program. The intrinsic cerebellar network was assessed using the BRAPH program, which applied graph theory to the cerebellar volume subdivision. Comparisons were drawn between the patients with OSA and healthy controls. RESULTS The study revealed that the 26 patients with OSA exhibited a notably lower total cerebellar volume compared to the 28 healthy controls (8.330 vs. 9.068%, p < 0.001). The volume of the left lobule VIIB was reduced in patients with OSA compared to healthy controls (0.339 vs. 0.407%, p = 0.001). Among patients with OSA, there was a negative correlation between the volume of the left lobule X and apnea-hypopnea index during non-rapid eye movement sleep (r = - 0.536, p = 0.005). However, no significant differences were observed in the intrinsic cerebellar network between patients and healthy controls. CONCLUSION This study established that patients with OSA exhibited decreased total cerebellar volumes and particularly reduced volumes in subdivisions such as the left lobule VIIB compared to healthy controls. These findings suggest potential involvement of the cerebellum in the underlying mechanisms of OSA.
Collapse
Affiliation(s)
- Jinseung Kim
- Department of Family Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-Ro 875, Haeundae-Gu, 48108, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-Ro 875, Haeundae-Gu, 48108, Busan, Republic of Korea.
| |
Collapse
|
10
|
Meisler SL, Gabrieli JDE, Christodoulou JA. White matter microstructural plasticity associated with educational intervention in reading disability. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:10.1162/imag_a_00108. [PMID: 38974814 PMCID: PMC11225775 DOI: 10.1162/imag_a_00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Children's reading progress typically slows during extended breaks in formal education, such as summer vacations. This stagnation can be especially concerning for children with reading difficulties or disabilities, such as dyslexia, because of the potential to exacerbate the skills gap between them and their peers. Reading interventions can prevent skill loss and even lead to appreciable gains in reading ability during the summer. Longitudinal studies relating intervention response to brain changes can reveal educationally relevant insights into rapid learning-driven brain plasticity. The current work focused on reading outcomes and white matter connections, which enable communication among the brain regions required for proficient reading. We collected reading scores and diffusion-weighted images at the beginning and end of summer for 41 children with reading difficulties who had completed either 1st or 2nd grade. Children were randomly assigned to either receive an intensive reading intervention (n = 26; Seeing Stars from Lindamood-Bell which emphasizes orthographic fluency) or be deferred to a wait-list group (n = 15), enabling us to analyze how white matter properties varied across a wide spectrum of skill development and regression trajectories. On average, the intervention group had larger gains in reading compared to the non-intervention group, who declined in reading scores. Improvements on a proximal measure of orthographic processing (but not other more distal reading measures) were associated with decreases in mean diffusivity within core reading brain circuitry (left arcuate fasciculus and left inferior longitudinal fasciculus) and increases in fractional anisotropy in the left corticospinal tract. Our findings suggest that responses to intensive reading instruction are related predominantly to white matter plasticity in tracts most associated with reading.
Collapse
Affiliation(s)
- Steven L. Meisler
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - John D. E. Gabrieli
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- McGovern Institute for Brain Research, Cambridge, MA, United States
| | - Joanna A. Christodoulou
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- McGovern Institute for Brain Research, Cambridge, MA, United States
- Department of Communication Sciences and Disorders, MGH Institute of Health Professions, Charlestown, MA, United States
| |
Collapse
|
11
|
Liao YC, Yang CJ, Yu HY, Huang CJ, Hong TY, Li WC, Chen LF, Hsieh JC. Inner sense of rhythm: percussionist brain activity during rhythmic encoding and synchronization. Front Neurosci 2024; 18:1342326. [PMID: 38419665 PMCID: PMC10899486 DOI: 10.3389/fnins.2024.1342326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction The main objective of this research is to explore the core cognitive mechanisms utilized by exceptionally skilled percussionists as they navigate complex rhythms. Our specific focus is on understanding the dynamic interactions among brain regions, respectively, related to externally directed cognition (EDC), internally directed cognition (IDC), and rhythm processing, defined as the neural correlates of rhythm processing (NCRP). Methods The research involved 26 participants each in the percussionist group (PG) and control group (CG), who underwent task-functional magnetic resonance imaging (fMRI) sessions focusing on rhythm encoding and synchronization. Comparative analyses were performed between the two groups under each of these conditions. Results Rhythmic encoding showed decreased activity in EDC areas, specifically in the right calcarine cortex, left middle occipital gyrus, right fusiform gyrus, and left inferior parietal lobule, along with reduced NCRP activity in the left dorsal premotor, right sensorimotor cortex, and left superior parietal lobule. During rhythmic synchronization, there was increased activity in IDC areas, particularly in the default mode network, and in NCRP areas including the left inferior frontal gyrus and bilateral putamen. Conversely, EDC areas like the right dorsolateral prefrontal gyrus, right superior temporal gyrus, right middle occipital gyrus, and bilateral inferior parietal lobule showed decreased activity, as did NCRP areas including the bilateral dorsal premotor cortex, bilateral ventral insula, bilateral inferior frontal gyrus, and left superior parietal lobule. Discussion PG's rhythm encoding is characterized by reduced cognitive effort compared to CG, as evidenced by decreased activity in brain regions associated with EDC and the NCRP. Rhythmic synchronization reveals up-regulated IDC, down-regulated EDC involvement, and dynamic interplay among regions with the NCRP, suggesting that PG engages in both automatic and spontaneous processing simultaneously. These findings provide valuable insights into expert performance and present opportunities for improving music education.
Collapse
Affiliation(s)
- Yin-Chun Liao
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Ju Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Yen Yu
- Graduate Institute of Arts and Humanities Education, Taipei National University of the Arts, Taipei, Taiwan
| | - Chiu-Jung Huang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tzu-Yi Hong
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Wei-Chi Li
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jen-Chuen Hsieh
- Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Graduate Institute of Arts and Humanities Education, Taipei National University of the Arts, Taipei, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
12
|
Korbmacher M, van der Meer D, Beck D, de Lange AMG, Eikefjord E, Lundervold A, Andreassen OA, Westlye LT, Maximov II. Brain asymmetries from mid- to late life and hemispheric brain age. Nat Commun 2024; 15:956. [PMID: 38302499 PMCID: PMC10834516 DOI: 10.1038/s41467-024-45282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
The human brain demonstrates structural and functional asymmetries which have implications for ageing and mental and neurological disease development. We used a set of magnetic resonance imaging (MRI) metrics derived from structural and diffusion MRI data in N=48,040 UK Biobank participants to evaluate age-related differences in brain asymmetry. Most regional grey and white matter metrics presented asymmetry, which were higher later in life. Informed by these results, we conducted hemispheric brain age (HBA) predictions from left/right multimodal MRI metrics. HBA was concordant to conventional brain age predictions, using metrics from both hemispheres, but offers a supplemental general marker of brain asymmetry when setting left/right HBA into relationship with each other. In contrast to WM brain asymmetries, left/right discrepancies in HBA are lower at higher ages. Our findings outline various sex-specific differences, particularly important for brain age estimates, and the value of further investigating the role of brain asymmetries in brain ageing and disease development.
Collapse
Affiliation(s)
- Max Korbmacher
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway.
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway.
- Mohn Medical Imaging and Visualization Centre (MMIV), Bergen, Norway.
| | - Dennis van der Meer
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Dani Beck
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ann-Marie G de Lange
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Eli Eikefjord
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre (MMIV), Bergen, Norway
| | - Arvid Lundervold
- Mohn Medical Imaging and Visualization Centre (MMIV), Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ole A Andreassen
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ivan I Maximov
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway.
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
13
|
Kim S, Kim SE, Lee DA, Lee H, Park KM. Anti-seizure medication response and the glymphatic system in patients with focal epilepsy. Eur J Neurol 2024; 31:e16097. [PMID: 37823697 PMCID: PMC11235655 DOI: 10.1111/ene.16097] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND AND PURPOSE We aimed to evaluate (i) glymphatic system function in patients with focal epilepsy in comparison with healthy controls, and (ii) the association between anti-seizure medication (ASM) response and glymphatic system function by using diffusion tensor image analysis along the perivascular space (DTI-ALPS). METHODS We retrospectively enrolled 100 patients with focal epilepsy who had normal brain magnetic resonance imaging (MRI) findings, and classified them as "poor" or "good" ASM responders according to their seizure control at the time of brain MRI. We also included 79 age- and sex-matched healthy controls. All patients and healthy controls underwent conventional brain MRI and diffusion tensor imaging. The DTI-ALPS index was calculated using the DSI studio program. RESULTS Of the 100 patients with focal epilepsy, 38 and 62 were poor and good ASM responders, respectively. The DTI-ALPS index differed significantly between patients with focal epilepsy and healthy controls and was significantly lower in patients with focal epilepsy (1.55 vs. 1.70; p < 0.001). The DTI-ALPS index also differed significantly according to ASM response and was lower in poor ASM responders (1.48 vs. 1.59; p = 0.047). Furthermore, the DTI-ALPS index was negatively correlated with age (r = -0.234, p = 0.019) and duration of epilepsy (r = -0.240, p = 0.016) in patients with focal epilepsy. CONCLUSION Our study is the first to identify, in focal epilepsy patients, a greater reduction in glymphatic system function among poor ASM responders compared to good responders. To confirm our results, further prospective multicenter studies with large sample sizes are needed.
Collapse
Affiliation(s)
- Sung‐Tae Kim
- Department of NeurosugeryInje University Busan Paik HospitalBusanKorea
| | - Sung Eun Kim
- Department of Neurology, Haeundae Paik HospitalInje University College of MedicineBusanKorea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik HospitalInje University College of MedicineBusanKorea
| | - Ho‐Joon Lee
- Department of Radiology, Haeundae Paik HospitalInje University College of MedicineBusanKorea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik HospitalInje University College of MedicineBusanKorea
| |
Collapse
|
14
|
Przybylski L, Kroliczak G. The functional organization of skilled actions in the adextral and atypical brain. Neuropsychologia 2023; 191:108735. [PMID: 37984793 DOI: 10.1016/j.neuropsychologia.2023.108735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/21/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
When planning functional grasps of tools, right-handed individuals (dextrals) show mostly left-lateralized neural activity in the praxis representation network (PRN), regardless of the used hand. Here we studied whether or not similar cerebral asymmetries are evident in non-righthanded individuals (adextrals). Sixty two participants, 28 righthanders and 34 non-righthanders (21 lefthanders, 13 mixedhanders), planned functional grasps of tools vs. grasps of control objects, and subsequently performed their pantomimed executions, in an event-related functional magnetic resonance imaging (fMRI) project. Both hands were tested, separately in two different sessions, counterbalanced across participants. After accounting for non-functional components of the prospective grasp, planning functional grasps of tools was associated with greater engagement of the same, left-hemisphere occipito-temporal, parietal and frontal areas of PRN, regardless of hand and handedness. Only when the analyses involved signal changes referenced to resting baseline intervals, differences between adextrals and dextrals emerged. Whereas in the left hemisphere the neural activity was equivalent in both groups (except for the occipito-temporo-parietal junction), its increases in the right occipito-temporal cortex, medial intraparietal sulcus (area MIP), the supramarginal gyrus (area PFt/PF), and middle frontal gyrus (area p9-46v) were significantly greater in adextrals. The inverse contrast was empty. Notably, when individuals with atypical and typical hemispheric phenotypes were directly compared, planning functional (vs. control) grasps invoked, instead, significant clusters located nearly exclusively in the left hemisphere of the typical phenotype. Previous studies interpret similar right-sided vs. left-sided increases in neural activity for skilled actions as handedness dependent, i.e., located in the hemisphere dominant for manual skills. Yet, none of the effects observed here can be purely handedness dependent because there were mixed-handed individuals among adextrals, and numerous mixed-handed and left-handed individuals possess the typical phenotype. Thus, our results clearly show that hand dominance has limited power in driving the cerebral organization of motor cognitive functions.
Collapse
Affiliation(s)
- Lukasz Przybylski
- Action & Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland
| | - Gregory Kroliczak
- Action & Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland; Cognitive Neuroscience Center, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
15
|
Qiu P, Chen M, Lv S, Xie J, Wu J. The association between walking pace and hand grip strength with the risk of chronic obstructive pulmonary disease: a bidirectional Mendelian randomization study. BMC Pulm Med 2023; 23:450. [PMID: 37986176 PMCID: PMC10658936 DOI: 10.1186/s12890-023-02759-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) currently ranks as the third leading cause of mortality worldwide, imposing substantial burdens on societal and individual health. Amongst health research tools, walking pace (WP) and hand grip strength (HGS) are cornerstones, extensively associated with diverse health conditions. However, the intricate interplay between these factors and COPD risk remains ambiguous. This study aims to elucidate the causal association of WP, HGS, with COPD risk through a bidirectional Mendelian randomization (MR) approach. METHODS Bidirectional MR analysis was performed using Genome-wide association study (GWAS) data of European individuals for WP, HGS, and COPD. Inverse Variance Weighted (IVW) served as the primary MR analysis approach. To supplement the IVW findings, four additional MR methods [MR-Egger, weighted median, maximum likelihood, simple median] were used. To assess heterogeneity and pleiotropy, sensitivity analyses were performed. In addition, multivariate MR (MVMR) analysis was used to assess causality after adjustment for potential confounders. RESULTS IVW method results show a significant negative association between WP and COPD risk in both initial (genome-wide threshold, odds ratio (OR) = 0.21, 95% confidence interval (CI) 0.09-0.51, P = 5.06 × 10- 4) and secondary (locus-wide threshold, OR = 0.27, 95%CI: 0.18-0.41, P = 4.88 × 10- 10) MR analysis. The reverse MR analysis suggested that COPD also diminishes WP. Additionally, a causal risk reduction for COPD with right HGS (OR = 0.74, 95% CI: 0.58-0.94, P = 1.44 × 10- 2) was only found in secondary MR analysis. The outcomes of the four additional MR methods also suggested similar causal relationships, and sensitivity analyses endorsed their robustness. Lastly, the MVMR analysis demonstrated that the WP's effect on reducing COPD risk persisted independently of potential confounding variables. CONCLUSION A bidirectional causal relationship exists between typical WP and COPD risk. Conversely, a decrease in right HGS is unidirectionally associated with an increased risk of COPD. The study suggests that WP may serve as a predictive factor for COPD or as a simple evaluative indicator for prognosis.
Collapse
Affiliation(s)
- Peng Qiu
- Department of Rehabilitation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mingxian Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Shuaibing Lv
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Juanjuan Xie
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junyu Wu
- School of Physical Education, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
16
|
Brooks NE, Lipman JM, French JC. The Right Way to Teach Lefties - Exploring the Experiences of Left-Handed Trainees and Surgeons. JOURNAL OF SURGICAL EDUCATION 2023; 80:1552-1566. [PMID: 37563001 DOI: 10.1016/j.jsurg.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023]
Abstract
OBJECTIVE This study describes the educational experiences of left-handed (LH) surgeons and provides recommendations for educating LH trainees, who face challenges due to their handedness. DESIGN, SETTING, AND PARTICIPANTS A mixed methods analysis was performed. Semi-structured interviews were conducted with LH trainees, LH attendings, and right-handed (RH) attendings representing 4 hospitals within a large academic hospital system. Questions were curated from current literature to explore the educational experiences of LH trainees. Inductive and iterative coding techniques were employed to manually generate themes. Laterality questionnaires for skills in daily life and surgery were collected and analyzed. RESULTS Laterality questionnaires demonstrate that LH trainees and surgeons are more mixed-handed and use their nondominant hand to a greater extent in surgery compared to daily life than RH attendings. Key themes were identified in the dimension of learning, including that initial decisions for which hand to use remain fixed throughout career, LH learning is largely self-directed, forced conformation to RH norms and microaggressions are common, LH instruments are rarely practical, and LH surgeons are advantaged with situational ambidexterity. Key themes related to teaching include that communication regarding handedness is lacking, RH surgeons are often unaware of/resistant to a LH approach, the onus is on the trainee to suggest accommodations to use their left hand, and attendings rarely effectively mentor LH learners in using their left hand. CONCLUSIONS Left-handed surgeons face challenges in an environment designed for RH individuals, represented by themes regarding learning and teaching experiences of LH surgeons told by themselves and their teachers. Recommendations were created for LH trainees in learning, all attendings in teaching, LH attendings in their opportunity to mentor, and surgical societies in supporting LH trainees. Development of resources for LH trainees could fill a substantial gap. Exploration of how LH surgeons evolve situational ambidexterity could benefit all surgeons.
Collapse
Affiliation(s)
- Nicole E Brooks
- Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio.
| | - Jeremy M Lipman
- Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Judith C French
- Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
17
|
He M, Kis-Jakab G, Komáromy H, Perlaki G, Orsi G, Bosnyák E, Rozgonyi R, John F, Trauninger A, Eklics K, Pfund Z. The volume of the thalamus and hippocampus in a right-handed female episodic migraine group. Front Neurol 2023; 14:1254628. [PMID: 37928149 PMCID: PMC10622660 DOI: 10.3389/fneur.2023.1254628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Background/aim Migraine is a disabling headache with clinical and radiological complications. The aim of this study was to investigate the volume of the thalamus and hippocampus in migraineurs, the role of white matter lesions (WMLs), and the migraine characteristics in volume changes. Methods Brain MRIs of 161 right-handed female episodic migraine patients and 40 right-handed, age-related, healthy women were performed. Left and right thalamus segmentation was performed on the 3D MPRAGE images using the Freesurfer 5.3 image analysis suite. Hippocampal subfield segmentation was based on a novel statistical atlas built primarily upon ultra-high-resolution ex vivo MRI data. Results The left hippocampus had a smaller and the left thalamus had a larger total volume than the right one in both the control (p < 0.001) and migraine groups (p <0.001). Patients with white matter lesions (L+) showed smaller right thalamus and right hippocampal tail volumes than patients without lesions (L-) (p = 0.002 and p = 0.015, respectively) and controls (p = 0.039 and p = 0.025, respectively). For the right hippocampal body, we found significantly smaller volume in L+ patients when compared to L- patients (p = 0.018) and a similar trend when compared to the control group (p = 0.064). Patients without aura (A-) showed a larger right hippocampus (p = 0.029), right hippocampal body (p = 0.012), and tail volumes (p = 0.011) than patients with aura (A+). Inverse correlations were found between attack frequency and the volumes of the left and right hippocampal tails (p = 0.018 and p = 0.008, respectively). Conclusion These findings indicate that WMLs may influence the volume of the right thalamus and hippocampus, while migraine aura and attack frequency may lead to volume changes in different parts of the hippocampi in migraine patients. These data support the necessity of effective migraine management to limit subcortical volume loss in migraineurs.
Collapse
Affiliation(s)
| | - Gréta Kis-Jakab
- The Hungarian Research Network-Pécsi Tudományegyetem, Clinical Neuroscience Magnetic Resonance Research Group, Pécs, Hungary
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | | | - Gábor Perlaki
- Pécs Diagnostic Center, Pécs, Hungary
- The Hungarian Research Network-Pécsi Tudományegyetem, Clinical Neuroscience Magnetic Resonance Research Group, Pécs, Hungary
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Gergely Orsi
- Pécs Diagnostic Center, Pécs, Hungary
- The Hungarian Research Network-Pécsi Tudományegyetem, Clinical Neuroscience Magnetic Resonance Research Group, Pécs, Hungary
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Edit Bosnyák
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Renáta Rozgonyi
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Flóra John
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Anita Trauninger
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Kata Eklics
- Department of Languages for Biomedical Purposes and Communication, University of Pécs, Pécs, Hungary
| | - Zoltán Pfund
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
18
|
Song Y, Lee D, Choi J, Lee JW, Hong K. Genome-wide association and replication studies for handedness in a Korean community-based cohort. Brain Behav 2023; 13:e3121. [PMID: 37337823 PMCID: PMC10498080 DOI: 10.1002/brb3.3121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023] Open
Abstract
INTRODUCTION Handedness is a conspicuous characteristic in human behavior, with a worldwide proportion of approximately 90% of people preferring to use the right hand for many tasks. In the Korean population, the proportion of left-handedness is relatively low at approximately 7%-10%, similar to that in other East-Asian cultures in which the use of the left hand for writing and other public activities has historically been oppressed. METHODS In this study, we conducted two genome-wide association studies (GWASs) between right-handedness and left-handedness, and between right-handedness and ambidexterity using logistic regression analyses using a Korean community-based cohort. We also performed association analyses with previously reported variants and our findings. RESULTS A total of 8806 participants were included for analysis, and the results identified 28 left-handedness-associated and 15 ambidexterity-associated loci; of these, two left-handedness loci (NEIL3 [rs11726465] and SVOPL [rs117495448]) and one ambidexterity locus (PDE8B/WDR41 [rs118077080]) showed near genome-wide significance. Association analyses with previously reported variants replicated ANKS1B (rs7132513) in left-handedness and ANKIB1 (rs2040498) in ambidexterity. CONCLUSION The variants and positional candidate genes identified and replicated in this study were largely associated with brain development, cerebral asymmetry, neurological processes, and neuropsychiatric diseases in line with previous findings. As the first East-Asian GWAS related to handedness, these results may provide an intriguing reference for further human neurologic research in the future.
Collapse
Affiliation(s)
- Youhyun Song
- Department of Family MedicineGangnam Severance HospitalYonsei University College of MedicineSeoulSouth Korea
- Healthcare Research Team, Health Promotion CenterGangnam Severance HospitalYonsei University College of MedicineSeoulSouth Korea
| | - Dasom Lee
- Theragen Bio Co. Ltd.Gyeonggi‐doSouth Korea
| | | | - Ji Won Lee
- Department of Family MedicineSeverance HospitalYonsei University College of MedicineSeoulSouth Korea
- Institute for Innovation in Digital HealthcareYonsei UniversitySeoulSouth Korea
| | | |
Collapse
|
19
|
Park KM, Kim J. Alterations of Limbic Structure Volumes in Patients with Obstructive Sleep Apnea. Can J Neurol Sci 2023; 50:730-737. [PMID: 36245412 DOI: 10.1017/cjn.2022.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES We investigated the change in limbic structure volumes and intrinsic limbic network in patients with obstructive sleep apnea (OSA) compared to healthy controls. METHODS We enrolled 26 patients with OSA and 30 healthy controls. They underwent three-dimensional T1-weighted magnetic resonance imaging (MRI) on a 3 T MRI scanner. The limbic structures were analyzed volumetrically using the FreeSurfer program. We examined the intrinsic limbic network using the Brain Analysis with Graph Theory program and compared the groups' limbic structure volumes and intrinsic limbic network. RESULTS There were significant differences in specific limbic structure volumes between the groups. The volumes in the right amygdala, right hippocampus, right hypothalamus, right nucleus accumbens, left amygdala, left basal forebrain, left hippocampus, left hypothalamus, and left nucleus accumbens in patients with OSA were lower than those in healthy controls (right amygdala, 0.102 vs. 0.113%, p = 0.004; right hippocampus, 0.253 vs. 0.281%, p = 0.002; right hypothalamus, 0.028 vs. 0.032%, p = 0.002; right nucleus accumbens, 0.021 vs. 0.024%, p = 0.019; left amygdala, 0.089 vs. 0.098%, p = 0.007; left basal forebrain, 0.020 vs. 0.022%, p = 0.027; left hippocampus, 0.245 vs. 0.265%, p = 0.021; left hypothalamus, 0.028 vs. 0.031%, p = 0.016; left nucleus accumbens, 0.023 vs. 0.027%, p = 0.002). However, there were no significant differences in network measures between the groups. CONCLUSION We demonstrate that the volumes of several limbic structures in patients with OSA are significantly lower than those in healthy controls. However, there are no alterations to the intrinsic limbic network. These findings suggest that OSA is one of the risk factors for cognitive impairments.
Collapse
Affiliation(s)
- Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Jinseung Kim
- Department of Family medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
20
|
Lee DA, Lee HJ, Park KM. Cerebellar Volume Reduction in Patients with Isolated REM Sleep Behavior Disorder: Evidence of a Potential Role of the Cerebellum. Eur Neurol 2023; 86:341-347. [PMID: 37527632 DOI: 10.1159/000533297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
INTRODUCTION In this study, we aimed to investigate changes in the total cerebellar volume, subdivisions of the cerebellar volume, and intrinsic cerebellar network in patients with isolated rapid eye movement (REM) sleep behavior disorder (iRBD) compared to healthy controls. METHODS We enrolled patients with newly diagnosed iRBD and healthy controls who had no structural lesions according to their brain MRI. All participants underwent three-dimensional T1-weighted imaging. We obtained the total cerebellar volume and subdivisions of the cerebellar volume using the ACAPULCO program and calculated the intrinsic cerebellar network using a BRAPH program based on the subdivisions of the cerebellar volume by applying a graph theory. We compared the cerebellar volumes and intrinsic cerebellar network between the patients with iRBD and healthy controls. RESULTS In total, we enrolled 43 patients with iRBD and 47 healthy controls. Total cerebellar volume in patients with iRBD was lower than that in the healthy controls (8.4637 vs. 9.0863%, p = 0.0001). There were significant differences in the subdivisions of cerebellar volume between the groups. The volumes of the right and left lobule VIIB in the patients with iRBD were lower than those in the healthy controls (right, 0.3495 vs. 0.4025%, p = 0.0009; left, 0.3561 vs. 0.4293%, p < 0.0001). However, the other cerebellar volumes, such as the corpus meullare and vermis, were not different between the groups. The intrinsic cerebellar network was not different between the patients with iRBD and healthy controls. CONCLUSION We found decreased total cerebellar volumes and subdivisions of the cerebellar volume, particularly in the right and left lobule VIIB, in patients with iRBD compared to healthy controls. The present results suggest that the cerebellum may play a potential role in the pathogenesis of iRBD.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
21
|
Lee DA, Lee HJ, Park KM. Structural brain network analysis in occipital lobe epilepsy. BMC Neurol 2023; 23:268. [PMID: 37454057 PMCID: PMC10349483 DOI: 10.1186/s12883-023-03326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND This study aimed to analyze the structural brain network in patients with occipital lobe epilepsy (OLE) and investigate the differences in structural brain networks between patients with OLE and healthy controls. METHODS Patients with OLE and healthy controls with normal brain MRI findings were enrolled. They underwent diffusion tensor imaging using a 3.0T MRI scanner, and we computed the network measures of global and local structural networks in patients with OLE and healthy controls using the DSI studio program. We compared network measures between the groups. RESULTS We enrolled 23 patients with OLE and 42 healthy controls. There were significant differences in the global structural network between patients with OLE and healthy controls. The assortativity coefficient (-0.0864 vs. -0.0814, p = 0.0214), mean clustering coefficient (0.0061 vs. 0.0064, p = 0.0203), global efficiency (0.0315 vs. 0.0353, p = 0.0086), and small-worldness index (0.0001 vs. 0.0001, p = 0.0175) were lower, whereas the characteristic path length (59.2724 vs. 53.4684, p = 0.0120) was higher in patients with OLE than those in the healthy controls. There were several nodes beyond the occipital lobe that showed significant differences in the local structural network between the groups. In addition, the assortativity coefficient was negatively correlated with the duration of epilepsy (r=-0.676, p = 0.001).
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea.
| |
Collapse
|
22
|
de Zoete RMJ, Berryman CF, Nijs J, Walls A, Jenkinson M. Differential Structural Brain Changes Between Responders and Nonresponders After Physical Exercise Therapy for Chronic Nonspecific Neck Pain. Clin J Pain 2023; 39:270-277. [PMID: 37220328 DOI: 10.1097/ajp.0000000000001115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/23/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVES Physical exercise therapy is effective for some people with chronic nonspecific neck pain but not for others. Differences in exercise-induced pain-modulatory responses are likely driven by brain changes. We investigated structural brain differences at baseline and changes after an exercise intervention. The primary aim was to investigate changes in structural brain characteristics after physical exercise therapy for people with chronic nonspecific neck pain. The secondary aims were to investigate (1) baseline differences in structural brain characteristics between responders and nonresponders to exercise therapy, and (2) differential brain changes after exercise therapy between responders and nonresponders. MATERIALS AND METHODS This was a prospective longitudinal cohort study. Twenty-four participants (18 females, mean age 39.7 y) with chronic nonspecific neck pain were included. Responders were selected as those with ≥20% improvement in Neck Disability Index. Structural magnetic resonance imaging was obtained before and after an 8-week physical exercise intervention delivered by a physiotherapist. Freesurfer cluster-wise analyses were performed and supplemented with an analysis of pain-specific brain regions of interest. RESULTS Various changes in grey matter volume and thickness were found after the intervention, for example, frontal cortex volume decreased (cluster-weighted P value = 0.0002, 95% CI: 0.0000-0.0004). We found numerous differences between responders and nonresponders, most notably, after the exercise intervention bilateral insular volume decreased in responders, but increased in nonresponders (cluster-weighted P value ≤ 0.0002). DISCUSSION The brain changes found in this study may underpin clinically observed differential effects between responders and nonresponders to exercise therapy for people with chronic neck pain. Identification of these changes is an important step toward personalized treatment approaches.
Collapse
Affiliation(s)
| | - Carolyn F Berryman
- Brain Stimulation, Imaging and Cognition Group, School of Medicine
- IIMPACT in Health, The University of South Australia
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel
- Chronic pain rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Belgium
- Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Angela Walls
- Clinical and Research Imaging Centre, South Australian Health and Medical Research Institute
| | - Mark Jenkinson
- Australian Institute for Machine Learning (AIML), School of Computer Science, University of Adelaide
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| |
Collapse
|
23
|
Linli Z, Rolls ET, Zhao W, Kang J, Feng J, Guo S. Smoking is associated with lower brain volume and cognitive differences: A large population analysis based on the UK Biobank. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110698. [PMID: 36528239 DOI: 10.1016/j.pnpbp.2022.110698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
The evidence about the association of smoking with both brain structure and cognitive functions remains inconsistent. Using structural magnetic resonance imaging from the UK Biobank (n = 33,293), we examined the relationships between smoking status, dosage, and abstinence with total and 166 regional brain gray matter volumes (GMV). The relationships between the smoking parameters with cognitive function, and whether this relationship was mediated by brain structure, were then investigated. Smoking was associated with lower total and regional GMV, with the extent depending on the frequency of smoking and on whether smoking had ceased: active regular smokers had the lowest GMV (Cohen's d = -0.362), and former light smokers had a slightly smaller GMV (Cohen's d = -0.060). The smaller GMV in smokers was most evident in the thalamus. Higher lifetime exposure (i.e., pack-years) was associated with lower total GMV (β = -311.84, p = 8.35 × 10-36). In those who ceased smoking, the duration of abstinence was associated with a larger total GMV (β = 139.57, p = 2.36 × 10-08). It was further found that reduced cognitive function was associated with smoker parameters and that the associations were partially mediated by brain structure. This is the largest scale investigation we know of smoking and brain structure, and these results are likely to be robust. The findings are of associations between brain structure and smoking, and in the future, it will be important to assess whether brain structure influences smoking status, or whether smoking influences brain structure, or both.
Collapse
Affiliation(s)
- Zeqiang Linli
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, PR China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha, PR China; School of Mathematics and Statistics, Guangdong University of Foreign Studies, Guangzhou, PR China.
| | - Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; Department of Computer Science, University of Warwick, Coventry, UK
| | - Wei Zhao
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, PR China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha, PR China
| | - Jujiao Kang
- Centre for Computational Systems Biology, Fudan University, Shanghai, PR China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry, UK; Centre for Computational Systems Biology, Fudan University, Shanghai, PR China.
| | - Shuixia Guo
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, PR China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha, PR China.
| |
Collapse
|
24
|
Lee HJ, Lee DA, Park KM. Altered Cerebellar Volumes and Intrinsic Cerebellar Network in Juvenile Myoclonic Epilepsy. Acta Neurol Scand 2023. [DOI: 10.1155/2023/7907887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Objectives. This study is aimed at investigating the alterations in cerebellar volumes and intrinsic cerebellar network in patients with juvenile myoclonic epilepsy (JME) in comparison with healthy controls. Methods. Patients newly diagnosed with JME and healthy controls were enrolled. Three-dimensional T1-weighted imaging was conducted, and no structural lesions were found on brain magnetic resonance imaging. Cerebellar volumes were obtained using the ACAPULCO program, while the intrinsic cerebellar network was evaluated by applying graph theory using the BRAPH program. The nodes were defined as individual cerebellar volumes and edges as partial correlations, controlling for the effects of age and sex. Cerebellar volumes and intrinsic cerebellar networks were compared between the two groups. Results. Forty-five patients with JME and 45 healthy controls were enrolled. Compared with the healthy controls, the patients with JME had significantly lower volumes of the right and left cerebellar white matter (3.33 vs. 3.48%,
; 3.35 vs. 3.49%,
), corpus medullare (0.99 vs. 1.03%,
), and left lobule V (0.19 vs. 0.22%,
). The intrinsic cerebellar networks also showed significant differences between the two groups. The small-worldness index in the patients with JME was significantly lower than that in the healthy controls (0.771 vs. 0.919,
). Conclusion. The cerebellar volumes and intrinsic cerebellar network demonstrated alterations in the patients with JME when compared with those of the healthy controls. Our study results provide evidence that the cerebellum may play a role in the pathogenesis of JME.
Collapse
|
25
|
Gurlek Celik N, Tiryaki S. Changes in the volumes and asymmetry of subcortical structures in healthy individuals according to gender. Anat Sci Int 2023:10.1007/s12565-023-00714-w. [PMID: 36947348 DOI: 10.1007/s12565-023-00714-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
In recent years, with the development of technology, three-dimensional software has entered our lives. Volumetric measurements made with Magnetic Resonance Imaging (MRI) are essential in the morphometry of the brain and subcortical structures. In this study, we aim to share the volume and asymmetry of the hippocampus, its sub-branches, and other subcortical structures and their interaction with age/sex using volBrain, a web-based automated software.1.5 T T1-weighted volumetric MRI, of 90 healthy individuals (51 females, 39 males) of both genders were included in our study. Pallidum, hippocampus, Cornu Ammonis1 (CA1), Cornu Ammonis2-3 (CA2-CA3), and Cornu Ammonis4-Dentate Gyrus (CA4-DG) measurements in females and males had a statistically higher mean in the right region (p < 0.05). In addition, females' hippocampus, CA1, CA2-CA3, and CA4-DG averages decreased more rapidly in the right region than in the left region. Subiculum measurement had a higher mean in the left region in both males and females (p < 0.05).The mean subiculum of males decreased more rapidly in the right region than in the left region. When the total values of the subcortical region in males and females were compared according to age categories, amygdala, pallidum, putamen, hippocampus, CA2-CA3, and subiculum values did not differ to gender in individuals aged 50 and over (p > 0.05). In individuals under 50 years old, the mean of females was statistically lower than the mean of males (p < 0.05).The Stratum radiatum (SR), Stratum lacunosum (SL), and Stratum molecuare (SM) asymmetry values of males in the examined subcortical regions had a higher mean than females (p = 0.039). In other regions, there was no statistically asymmetrical difference (p > 0.05). Studies evaluating the volumetric analysis and asymmetry of hippocampus subbranches and other subcortical structures in adults are very limited. As a result, the morphometry of the hippocampus subbranches and other subcortical structures was examined in detail. It was determined that the structures differed according to age, gender and body side.
Collapse
Affiliation(s)
- Nihal Gurlek Celik
- Department of Anatomy, Faculty of Medicine, Amasya University, 05100, Amasya, Turkey.
| | - Saban Tiryaki
- Department of Radiology, Faculty of Medicine, Kirsehir Ahi Evran University, 40100, Kirsehir, Turkey
| |
Collapse
|
26
|
Lee DA, Lee HJ, Park KM. Thalamic nuclei volumes and intrinsic thalamic network in patients with occipital lobe epilepsy. Brain Behav 2023; 13:e2968. [PMID: 36924055 PMCID: PMC10097051 DOI: 10.1002/brb3.2968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/18/2023] Open
Abstract
INTRODUCTION This study aimed to investigate the alterations in individual thalamic nuclei volumes in patients with occipital lobe epilepsy (OLE) compared with those of healthy controls, and to analyze the intrinsic thalamic network based on these volumes using graph theory. METHODS Thirty adult patients with newly diagnosed OLE and 42 healthy controls were retrospectively enrolled (mean age, 33.8 ± 17.0 and 32.2 ± 6.6 years, respectively). The study participants underwent brain magnetic resonance imaging with three-dimensional T1-weighted imaging. The right and left total thalamic and individual thalamic nuclei volumes were obtained using the FreeSurfer program. Then, the intrinsic thalamic network was calculated based on the individual thalamic nuclei volumes and graph theory using a BRAPH program. RESULTS There were no differences in the right and left whole-thalamic volumes between the two groups (0.445% vs. 0.469%, p = .142 and 0.481% vs. 0.490%, p = .575, respectively). However, significant differences were observed in the volumes of several thalamic nuclei between the two groups. The right medial geniculate and right suprageniculate nuclei volumes were increased (0.0077% vs. 0.0064%, p = .0003 and 0.0013% vs. 0.0010%, p = .0004, respectively), whereas the right and left parafascicular nuclei volumes were decreased in patients with OLE compared with those in healthy controls (0.0038% vs. 0.0048%, p < .0001 and 0.0037% vs. 0.0045%, p = .0001, respectively). There were no differences in the network measures regarding intrinsic thalamic network between the two groups. CONCLUSION We successfully demonstrated the alterations in individual thalamic nuclei volumes, especially the increased medial geniculate and suprageniculate, and decreased parafascicular nuclei volumes in patients with OLE compared with those of healthy controls despite no changes in the whole-thalamic volumes. These findings suggest an important role of the thalamus in the epileptic network of OLE.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
27
|
Guma E, Andrýsková L, Brázdil M, Chakravarty MM, Marečková K. Perinatal maternal mental health and amygdala morphology in young adulthood. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110676. [PMID: 36372293 DOI: 10.1016/j.pnpbp.2022.110676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/11/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
The pre- and perinatal environment is thought to play a critical role in shaping brain development. Specifically, maternal mental health and maternal care have been shown to influence offspring brain development in regions implicated in emotional regulation such as the amygdala. In this study, we used data from a neuroimaging follow-up of a prenatal birth-cohort, the European Longitudinal Study of Pregnancy and Childhood, to investigate the impact of early postnatal maternal anxiety/co-dependence, and prenatal and early-postnatal depression and dysregulated mood on amygdala volume and morphology in young adulthood (n = 103). We observed that in typically developing young adults, greater maternal anxiety/co-dependence after birth was significantly associated with lower volume (right: t = -2.913, p = 0.0045, β = -0.523; left: t = -1.471, p = 0.144, β = -0.248) and non-significantly associated with surface area (right: t = -3.502, q = 0.069, <10%FDR, β = -0.090, left: t = -3.137, q = 0.117, <10%FDR, = -0.088) of the amygdala in young adulthood. Conversely, prenatal maternal depression and mood dysregulation in the early postnatal period was not associated with any volumetric or morphological changes in the amygdala in young adulthood. Our findings provide evidence for subtle but long-lasting alterations to amygdala morphology associated with differences in maternal anxiety/co-dependence in early development.
Collapse
Affiliation(s)
- Elisa Guma
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Lenka Andrýsková
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Milan Brázdil
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - M Mallar Chakravarty
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada.
| | - Klára Marečková
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
28
|
Kim J, Lee DA, Lee HJ, Park KM. Glymphatic system dysfunction in patients with occipital lobe epilepsy. J Neuroimaging 2023; 33:455-461. [PMID: 36627235 DOI: 10.1111/jon.13083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE We aimed to investigate the glymphatic system function in patients with occipital lobe epilepsy (OLE) and healthy controls using diffusion tensor image analysis along the perivascular space (DTI-ALPS) index. METHODS We retrospectively included 23 patients with OLE and 30 healthy controls. The participants underwent brain MRI, which was normal, and diffusion tensor imaging. We used the DSI Studio for data preprocessing, obtained the fiber orientation and diffusivities, and calculated the DTI-ALPS index from the diffusivity values associated with the projection and association fibers in the left hemisphere. RESULTS There were no differences in mean age (31.6 years [range: 13-58] vs. 31.3 years [range: 20-57], p = .912) and male sex ratio (10/23 [43.5%] vs. 15/30 [50.0%]) between the groups. Compared to healthy controls, the diffusivities in patients with OLE were higher along the Y-axis in the projection fiber and along the Z-axis in the association fiber and lower along the Y-axis in the association fiber. The DTI-ALPS index in patients with OLE was lower than that in the healthy controls (1.421 ± 0.171 vs. 1.667 ± 0.271, p < .001, 95% confidence interval of difference = 0.117-0.376, Test statistic t = 3.823). We found no association between the DTI-ALPS index and clinical characteristics in OLE. CONCLUSION The DTI-ALPS index in patients with OLE was significantly lower than that in healthy controls, suggesting glymphatic system dysfunction in OLE. The DTI-ALPS index could help assess the glymphatic system function in patients with epilepsy.
Collapse
Affiliation(s)
- Jinseung Kim
- Department of Family Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
29
|
Cho KH, Lee HJ, Lee DA, Park KM. Mammillary Body Atrophy in Temporal Lobe Epilepsy With Hippocampal Sclerosis. J Clin Neurol 2022; 18:635-641. [PMID: 36367061 PMCID: PMC9669561 DOI: 10.3988/jcn.2022.18.6.635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE We aimed to determine 1) the frequency of mammillary body (MB) atrophy in patients with temporal lobe epilepsy (TLE) and hippocampal sclerosis (HS), 2) the clinical significance of MB atrophy, and 3) the association between MB atrophy and volume changes in other subcortical limbic structures. METHODS We enrolled 69 patients with pathologically confirmed TLE with HS, who underwent a standard anterior temporal lobectomy, as well as 40 healthy controls. We used the FreeSurfer deep-learning tool of U-Net to obtain the volumes of the subcortical limbic structures, including the MB, hypothalamus, basal forebrain, septal nuclei, fornix, and nucleus accumbens. MB atrophy was considered to be present when the MB volume was decreased relative to the healthy controls. RESULTS MB atrophy was present in 18 (26.1%) of the 69 patients with TLE and HS. Among the clinical characteristics, the mean age at seizure onset was higher (25.5 vs. 15.9 years, p=0.027) and the median duration of epilepsy was shorter (149 vs. 295 months, p=0.003) in patients with than without MB atrophy. The basal forebrain (0.0185% vs. 0.0221%, p=0.004) and septal nuclei (0.0062% vs. 0.0075%, p=0.003) in the ipsilateral hemisphere of HS were smaller in the patients with MB atrophy. CONCLUSIONS We observed ipsilateral MB atrophy in about one-quarter of patients with TLE and HS. The severity of subcortical limbic structure abnormalities was greater in patients without MB atrophy. These findings suggest that MB atrophy in TLE with HS is not rare, but it has little clinical significance.
Collapse
Affiliation(s)
- Kyoo Ho Cho
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Department of Neurology, Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje Unversity College of Medicine, Busan, Korea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje Unversity College of Medicine, Busan, Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje Unversity College of Medicine, Busan, Korea.
| |
Collapse
|
30
|
ISHIHARA TORU, MIYAZAKI ATSUSHI, TANAKA HIROKI, MATSUDA TETSUYA. Association of Cardiovascular Risk Markers and Fitness with Task-Related Neural Activity during Animacy Perception. Med Sci Sports Exerc 2022; 54:1738-1750. [PMID: 35666157 PMCID: PMC9473717 DOI: 10.1249/mss.0000000000002963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PURPOSE Numerous studies have demonstrated the association between cardiovascular risk markers and fitness, and broad aspects of cognition; however, the possible association of cardiovascular risk markers and fitness with social cognition, which plays a significant role in the development and maintenance of social relationships, has largely been ignored. Herein, we investigated the relationship of cardiovascular risk markers and fitness with task-related neural activity during animacy perception. METHODS We analyzed data from the Human Connectome Project derived from 1027 adults age 22-37 yr. Canonical correlation analysis (CCA) was conducted to evaluate the association between participants' body mass index, systolic and diastolic blood pressure, submaximal endurance, gait speed, hand dexterity, and muscular strength with task-related neural activity during animacy perception. RESULTS We observed a single significant CCA mode. Body mass index and blood pressure demonstrated negative cross-loadings with task-related neural activity in the temporoparietal, superior and anterior temporal, posterior cingulate, and inferior frontal regions, whereas submaximal endurance, hand dexterity, and muscular strength demonstrated positive cross-loadings. The observed CCA variates did not seem highly heritable, as the absolute differences in CCA variates in monozygotic twins, dizygotic twins, and nontwin siblings were not statistically different. Furthermore, the cardiovascular risk markers and fitness CCA variates were positively associated with animacy perception and emotion recognition accuracy, which was mediated by the task-related neural activity. CONCLUSIONS The present findings can provide new insights into the role of markers for cardiovascular health and fitness, specifically their association with social cognition and the underlying neural basis. The intervention for cardiovascular risk and fitness could be a potentially cost-effective method of targeting social cognition.
Collapse
Affiliation(s)
- TORU ISHIHARA
- Graduate School of Human Development and Environment, Kobe University, Kobe, JAPAN
| | | | - HIROKI TANAKA
- Tamagawa University Brain Science Institute, Tokyo, JAPAN
- Japan Society for the Promotion of Science, Tokyo, JAPAN
| | | |
Collapse
|
31
|
Brain Anatomy Alterations and Mental Health Challenges Correlate to Email Addiction Tendency. Brain Sci 2022; 12:brainsci12101278. [PMID: 36291212 PMCID: PMC9599620 DOI: 10.3390/brainsci12101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the widespread use of email, our knowledge regarding the consequences of email addiction is lacking. The purpose of this study was to develop an email addiction tendency scale to evaluate its correlation to behavior and brain structure. Following this, the validity and reliability of the developed scale was investigated. We used voxel-based morphometry, correlation, and univariate regression analysis to assess the relationships between email addiction tendency scores and regional gray and white matter volumes, depression, and nonverbal reasoning abilities in a large sample of healthy young adults (n = 1152; mean age, 20.69 ± 1.84 years). The content validity ratio, content validity index, principal component analysis, and confirmatory factorial analysis all showed that the email addiction tendency scale (EATS) has high validity. Additionally, the Cronbach’s alpha internal consistency and split-half reliability coefficient showed that the EATS has high reliability. We found that email addiction tendency scores were significantly negatively correlated with nonverbal reasoning. We also observed that the email addiction tendency scores were significantly and positively correlated with depression symptom severity and gray matter volume of the left rostrolateral prefrontal cortex (RLPC) in subjects. These results indicate that email addiction tendency is associated with lower mental health outcomes and increased GMV in the left RLPC.
Collapse
|
32
|
Archery under the (electroencephalography-)hood: Theta-lateralization as a marker for motor learning. Neuroscience 2022; 499:23-39. [PMID: 35870564 DOI: 10.1016/j.neuroscience.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022]
Abstract
An intrinsic characteristic of the motor system is the preference of one side of the body. Lateralization is found in motor behavior and in the structural and functional correlates of cortical motor networks. While genetic factors have been elucidated as mechanisms leading to such asymmetries, findings in motor learning and experience from clinical experience demonstrate considerable additional plasticity during the lifespan. If and how functional lateralization develops in short timeframes during training of motor skills involving both sides of the body is still largely unclear. In the present exploratory study, we investigate lateralization of theta-, alpha- and beta-band oscillations during training of an ecologically valid skill - archery. We relate lateralization shift to performance improvement and elucidate the underlying cortical areas. To this end, healthy participants without any previous experience in archery underwent intensive training with 100 shots on each of three days. 64-channel electroencephalography was recorded simultaneously during the individual shots. We found that a central-parietal theta lateralization shift to the left immediately before the shot was associated with performance improvement. Lateralization of alpha or beta did not yield a significant association. Importantly, areas of maximum activation were not identical with areas showing the strongest associations with performance improvement. These data suggest that learning a complex bimanual motor skill is associated with a shift of theta-band oscillations to the left in central-parietal areas. The relationship with performance improvement may reflect increased cortical efficiency of task-relevant processing.
Collapse
|
33
|
Chen J, Tian C, Zhang Q, Xiang H, Wang R, Hu X, Zeng X. Changes in Volume of Subregions Within Basal Ganglia in Obsessive–Compulsive Disorder: A Study With Atlas-Based and VBM Methods. Front Neurosci 2022; 16:890616. [PMID: 35794954 PMCID: PMC9251343 DOI: 10.3389/fnins.2022.890616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe role of basal ganglia in the pathogenesis of obsessive–compulsive disorder (OCD) remains unclear. The studies on volume changes of basal ganglia in OCD commonly use the VBM method; however, the Atlas-based method used in such research has not been reported. Atlas-based method has a lower false positive rate compared with VBM method, thus having advantages partly.ObjectivesThe current study aimed to detect the volume changes of subregions within basal ganglia in OCD using Atlas-based method to further delineate the precise neural circuitry of OCD. What is more, we explored the influence of software used in Atlas-based method on the volumetric analysis of basal ganglia and compared the results of Atlas-based method and regularly used VBM method.MethodsWe analyzed the brain structure images of 37 patients with OCD and 41 healthy controls (HCs) using the VBM method, Atlas-based method based on SPM software, or Freesurfer software to find the areas with significant volumetric variation between the two groups, and calculated the effects size of these areas.ResultsVBM analysis revealed a significantly increased volume of bilateral lenticular nucleus in patients compared to HCs. In contrast, Atlas-based method based on Freesurfer revealed significantly increased volume of left globus pallidus in patients, and the largest effect size of volumetric variation was revealed by Freesurfer analysis.ConclusionsThis study showed that the volume of bilateral lenticular nucleus significantly increased in patients compared to HCs, especially left globus pallidus, which was in accordance with the previous findings. In addition, Freesurfer is better than SPM and a good choice for Atlas-based volumetric analysis of basal ganglia.
Collapse
Affiliation(s)
- Jiaxiang Chen
- School of Medicine, Guizhou University, Guiyang, China
| | - Chong Tian
- Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, China
| | - Qun Zhang
- Department of Psychology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hui Xiang
- Department of Psychology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Rongpin Wang
- Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xiaofei Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Xiaofei Hu
| | - Xianchun Zeng
- School of Medicine, Guizhou University, Guiyang, China
- Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, China
- Xianchun Zeng
| |
Collapse
|
34
|
Kim J, Lee DA, Lee HJ, Park BS, Ko J, Park SH, Lee YJ, Kim IH, Park JH, Park KM. Glymphatic system dysfunction in patients with cluster headache. Brain Behav 2022; 12:e2631. [PMID: 35582786 PMCID: PMC9226822 DOI: 10.1002/brb3.2631] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/31/2022] [Accepted: 05/03/2022] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION The aim of this study was to investigate alterations of the glymphatic system function in patients with cluster headache. METHODS We enrolled patients with cluster headache and healthy controls, and they underwent brain magnetic resonance imaging (MRI), including diffusion tensor imaging (DTI). We used the MRIcron and DSI studio programs for DTI preprocessing and DTI analysis with perivascular space (DTI-ALPS) index calculation. RESULTS Fourteen patients with cluster headache and 23 healthy controls were enrolled. The DTI-ALPS indexes of the groups were significantly different. The DTI-ALPS index for the patients with cluster headache was lower than that for the healthy controls (1.586 vs. 1.786, p = 0.044). There was a significant negative correlation between the DTI-ALPS index and age in the patients with cluster headache (r = -0.549, p = 0.042). However, the DTI-ALPS index was not associated with other clinical characteristics, including disease duration and headache intensity (r = -0.405, p = 0.150; r = -0.048, p = 0.869, respectively). CONCLUSION Patients with cluster headache had a lower DTI-ALPS index than the healthy controls; this might indicate glymphatic system dysfunction in the patients with cluster headache. Further research is required to determine whether glymphatic system dysfunction is related to the pathophysiology of cluster headache.
Collapse
Affiliation(s)
- Jinseung Kim
- Department of Family Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Bong Soo Park
- Department of Internal medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Junghae Ko
- Department of Internal medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Si Hyung Park
- Department of Internal medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Yoo Jin Lee
- Department of Internal medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Il Hwan Kim
- Department of Internal medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Jin Han Park
- Department of Internal medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
35
|
Tejavibulya L, Peterson H, Greene A, Gao S, Rolison M, Noble S, Scheinost D. Large-scale differences in functional organization of left- and right-handed individuals using whole-brain, data-driven analysis of connectivity. Neuroimage 2022; 252:119040. [PMID: 35272202 PMCID: PMC9013515 DOI: 10.1016/j.neuroimage.2022.119040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/15/2022] Open
Abstract
Handedness influences differences in lateralization of language areas as well as dominance of motor and somatosensory cortices. However, differences in whole-brain functional connectivity (i.e., functional connectomes) due to handedness have been relatively understudied beyond pre-specified networks of interest. Here, we compared functional connectomes of left- and right-handed individuals at the whole brain level. We explored differences in functional connectivity of previously established regions of interest, and showed differences between primarily left- and primarily right-handed individuals in the motor, somatosensory, and language areas using functional connectivity. We then proceeded to investigate these differences in the whole brain and found that the functional connectivity of left- and right-handed individuals are not specific to networks of interest, but extend across every region of the brain. In particular, we found that connections between and within the cerebellum show distinct patterns of connectivity. To put these effects into context, we show that the effect sizes associated with handedness differences account for a similar amount of individual differences in the connectome as sex differences. Together these results shed light on regions of the brain beyond those traditionally explored that contribute to differences in the functional organization of left- and right-handed individuals and underscore that handedness effects are neurobiologically meaningful in addition to being statistically significant.
Collapse
Affiliation(s)
- Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA.
| | - Hannah Peterson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Abigail Greene
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA; MD PhD Program, Yale School of Medicine, New Haven, CT, USA
| | - Siyuan Gao
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Max Rolison
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Stephanie Noble
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Child Study Center, Yale School of Medicine, New Haven, CT, USA; Department of Statistics and Data Science, Yale University, New Haven, CT, USA
| |
Collapse
|
36
|
Lee J, Kim N, Jeong H, Jun JY, Yoo SY, Lee SH, Lee J, Lee YJ, Kim SJ. Gray Matter Volume of Thalamic Nuclei in Traumatized North Korean Refugees. Front Psychiatry 2022; 13:756202. [PMID: 35573348 PMCID: PMC9095986 DOI: 10.3389/fpsyt.2022.756202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
The current study investigated differences in the regional gray matter (GM) volume of specific thalamic nuclei between North Korean (NK) refugees and South Korean (SK) residents. It also investigated associations between thalamic GM volume changes and psychological symptoms. Psychological evaluations and magnetic resonance imaging were conducted on 50 traumatized NK refugees and 55 non-traumatized SK residents. The regional GM volume ratios in the bilateral thalami were calculated for all participants using voxel-based morphometry. NK refugees showed greater GM volume ratios in the right medial-posterior nuclei and left medial nuclei compared with SK residents. NK refugees also exhibited more depressive symptoms than SK residents. However, increased GM volume ratios in both right medial-posterior nuclei and left medial nuclei were correlated with fewer depressive symptoms in NK refugees, but not in SK residents. The findings indicate that traumatized NK refugees had increased GM volumes in the right medial-posterior nuclei and left medial nuclei, which were associated with fewer depressive symptoms. The enlarged specific thalamic nuclei presented among refugees in the current study might be associated with a neurobiological compensatory mechanism that prevents the development or progression of depression in refugees after repetitive traumatic experiences.
Collapse
Affiliation(s)
- Jiye Lee
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Nambeom Kim
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
| | - Hyunwoo Jeong
- Geumsan-gun Public Health Center, Seoul, South Korea
| | - Jin Yong Jun
- Department of Psychiatry, Seoul National Hospital, Seoul, South Korea
| | - So Young Yoo
- Department of Psychiatry, National Medical Center, Seoul, South Korea
| | - So Hee Lee
- Department of Psychiatry, National Medical Center, Seoul, South Korea
| | - Jooyoung Lee
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yu Jin Lee
- Department of Psychiatry and Center for Sleep and Chronobiology, Seoul National University Hospital, Seoul, South Korea
| | - Seog Ju Kim
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
37
|
High Estrogen Levels Cause Greater Leg Muscle Fatigability in Eumenorrheic Young Women after 4 mA Transcranial Direct Current Stimulation. Brain Sci 2022; 12:brainsci12040506. [PMID: 35448037 PMCID: PMC9032567 DOI: 10.3390/brainsci12040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) research has shown great outcome variability in motor performance tasks, with one possible source being sex differences. The goal of this study was to evaluate the effects of estrogen levels on leg muscle fatigability during a fatigue task (FT) after 4 mA tDCS over the left motor cortex (M1). Ten young, healthy eumenorrheic women received 4 mA anodal active or sham stimulation over the left M1 during periods of high and low estrogen levels. A fatigue index (FI) was calculated to quantify fatigability, and the electromyography (EMG) of the knee extensors and flexors was recorded during the FT. The findings showed that tDCS applied during high estrogen levels resulted in greater leg muscle fatigability. Furthermore, a significant increase in EMG activity of the right knee extensors was observed during periods of active stimulation, independent of estrogen level. These results suggest that estrogen levels should be considered in tDCS studies with young healthy women.
Collapse
|
38
|
Lee DA, Park BS, Ko J, Park SH, Park JH, Kim IH, Lee YJ, Park KM. Glymphatic system function in patients with newly diagnosed focal epilepsy. Brain Behav 2022; 12:e2504. [PMID: 35107879 PMCID: PMC8933756 DOI: 10.1002/brb3.2504] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/22/2021] [Accepted: 01/01/2022] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION The aim of this study was to analyze the glymphatic system function and its relationship with clinical characteristics, global diffusion tensor imaging (DTI) parameters, and global structural connectivity in treatment-naïve patients with newly diagnosed focal epilepsy. METHODS This retrospective single-center study investigated patients with focal epilepsy and healthy controls. All participants underwent routine brain magnetic resonance imaging and DTI. DTI analysis along the perivascular space (DTI-ALPS) was used to evaluate glymphatic system function. We also calculated the measures of global DTI parameters, including whole-brain fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD), and performed a graph theoretical network analysis to measure global structural connectivity. RESULTS A total of 109 patients with focal epilepsy and 88 healthy controls were analyzed. There were no significant differences in the DTI-ALPS index (1.67 vs. 1.68, p = 0.861) between the groups. However, statistically significant associations were found between the DTI-ALPS index and age (r = -0.242, p = 0.01), FA (r = 0.257, p = 0.007), MD (r = -0.469, p < 0.001), AD (r = -0.303, p = 0.001), RD (r = -0.434, p < 0.001), and the assortative coefficient (r = 0.230, p = 0.016) in patients with focal epilepsy. CONCLUSION The main finding of this study is that DTI-ALPS index is significantly correlated with global DTI parameters and structural connectivity measures of the brain in patients with focal epilepsy. In addition, DTI-ALPS index decreases with age in these patients. We conclude that the DTI-ALPS index can be used to investigate glymphatic system function in patients with focal epilepsy.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Bong Soo Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Junghae Ko
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Si Hyung Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Jin-Han Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Il Hwan Kim
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Yoo Jin Lee
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
39
|
An YW, Kang Y, Jun HP, Chang E. Anterior Cruciate Ligament Reconstructed Patients Who Recovered Normal Postural Control Have Dissimilar Brain Activation Patterns Compared to Healthy Controls. BIOLOGY 2022; 11:biology11010119. [PMID: 35053116 PMCID: PMC8773195 DOI: 10.3390/biology11010119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 11/21/2022]
Abstract
Simple Summary We report that patients with anterior cruciate ligament reconstruction have similar postural control but different cortical activation patterns in several regions of the brain when compared to healthy controls. This is significant because dissimilar cortical activation patterns indicate that neural adaptation in the brain is responsible for motor coordination, possibly due to altered proprioception, despite having a surgical reconstruction after an anterior cruciate ligament injury. Such neuroplasticity in ACLR patients may imply compensatory neural protective mechanisms in order to sustain postural control, which is a fundamental functional skill in daily activities. We believe that our findings will elucidate other researchers and clinicians about the effects of a peripheral joint injury on the brain’s function during postural control. Abstract Postural control, which is a fundamental functional skill, reflects integration and coordination of sensory information. Damaged anterior cruciate ligament (ACL) may alter neural activation patterns in the brain, despite patients’ surgical reconstruction (ACLR). However, it is unknown whether ACLR patients with normal postural control have persistent neural adaptation in the brain. Therefore, we explored theta (4–8 Hz) and alpha-2 (10–12 Hz) oscillation bands at the prefrontal, premotor/supplementary motor, primary motor, somatosensory, and primary visual cortices, in which electrocortical activation is highly associated with goal-directed decision-making, preparation of movement, motor output, sensory input, and visual processing, respectively, during first 3 s of a single-leg stance at two different task complexities (stable/unstable) between ACLR patients and healthy controls. We observed that ACLR patients showed similar postural control ability to healthy controls, but dissimilar neural activation patterns in the brain. To conclude, we demonstrated that ACLR patients may rely on more neural sources on movement preparation in conjunction with sensory feedback during the early single-leg stance period relative to healthy controls to maintain postural control. This may be a compensatory protective mechanism to accommodate for the altered sensory inputs from the reconstructed knee and task complexity. Our study elucidates the strategically different brain activity utilized by ACLR patients to sustain postural control.
Collapse
Affiliation(s)
- Yong Woo An
- Department of Health and Human Sciences, Loyola Marymount University, Los Angeles, CA 90045, USA;
| | - Yangmi Kang
- Department of Kinesiology, New Mexico State University, Las Cruces, NM 88003, USA;
| | - Hyung-Pil Jun
- Department of Physical Education, Dong-A University, Busan 03722, Korea;
| | - Eunwook Chang
- Department of Kinesiology, Inha University, Incheon 22212, Korea
- Correspondence: ; Tel.: +82-32-860-8185; Fax: +82-32-860-8188
| |
Collapse
|
40
|
Li L, Yu H, Zhong M, Liu S, Wei W, Meng Y, Li ML, Li T, Wang Q. Gray matter volume alterations in subjects with overweight and obesity: Evidence from a voxel-based meta-analysis. Front Psychiatry 2022; 13:955741. [PMID: 36226110 PMCID: PMC9548618 DOI: 10.3389/fpsyt.2022.955741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/05/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Obesity is a multi-systemic disease with complex etiology. And consistent evidence indicated obesity or overweight subjects render brain structure changes. Increasing evidence indicates these subjects have shown widespread structural brain gray matter volume (GMV) changes. However, results from other neuroimaging studies have been inconsistent. Consequently, the question remains whether body mass index (BMI), a gold standard to define obesity/overweight, is associated with brain structural changes. METHODS This study will apply an updated meta-analysis of voxel-based GMV studies to compare GMV changes in overweight and obese subjects. Online databases were used to build on relevant studies published before May 2022. The updated Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) explores GMV changes in individuals with overweight and obesity and further examines the correlation between GMV and obesity-related variables, specifically body mass index (BMI). RESULTS This research included fourteen studies and provided a whole-brain analysis of GMV distribution in overweight and obese individuals. It revealed lower GMV in brain regions, including the left putamen and right precentral gyrus, in individuals with overweight and obesity compared to lean controls. Further, meta-regression analyses revealed GMV in the left middle occipital gyrus was negatively correlated with the BMI of the whole sample. CONCLUSION GMV decreased was reported in reward circuit processing areas and sensorimotor processing areas of individuals with overweight and obesity diagnoses, suggesting an underlying structural basis for reward processing and sensorimotor processing dysregulation in overweight and obese subjects. Our results also suggest that GMV in occipital gyrus, a key region for food visual and gustatory encoding, is negatively associated with BMI. These results provide further evidence for the dysregulated reward circuit in individuals with overweight and obesity.
Collapse
Affiliation(s)
- Lei Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Hua Yu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Ming Zhong
- Department of Sport and Health Science, University of Exeter, Exeter, United Kingdom
| | - Siyi Liu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Wei Wei
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Yajing Meng
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Ming-Li Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiang Wang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| |
Collapse
|
41
|
Sadeghi S, Takeuchi H, Shalani B, Taki Y, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, Sekiguchi A, Iizuka K, Hanawa S, Araki T, Miyauchi CM, Sakaki K, Nozawa T, Ikeda S, Yokota S, Magistro D, Sassa Y, Kawashima R. Brain structures and activity during a working memory task associated with internet addiction tendency in young adults: A large sample study. PLoS One 2021; 16:e0259259. [PMID: 34780490 PMCID: PMC8592411 DOI: 10.1371/journal.pone.0259259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/15/2021] [Indexed: 11/19/2022] Open
Abstract
The structural and functional brain characteristics associated with the excessive use of the internet have attracted substantial research attention in the past decade. In current study, we used voxel-based morphometry (VBM) and multiple regression analysis to assess the relationship between internet addiction tendency (IAT) score and regional gray and white matter volumes (rGMVs and rWMVs) and brain activity during a WM task in a large sample of healthy young adults (n = 1,154, mean age, 20.71 ± 1.78 years). We found a significant positive correlation between IAT score and gray matter volume (GMV) of right supramarginal gyrus (rSMG) and significant negative correlations with white matter volume (WMV) of right temporal lobe (sub-gyral and superior temporal gyrus), right sublobar area (extra-nuclear and lentiform nucleus), right cerebellar anterior lobe, cerebellar tonsil, right frontal lobe (inferior frontal gyrus and sub-gyral areas), and the pons. Also, IAT was significantly and positively correlated with brain activity in the default-mode network (DMN), medial frontal gyrus, medial part of the superior frontal gyrus, and anterior cingulate cortex during a 2-back working memory (WM) task. Moreover, whole-brain analyses of rGMV showed significant effects of interaction between sex and the IAT scores in the area spreading around the left anterior insula and left lentiform. This interaction was moderated by positive correlation in women. These results indicate that IAT is associated with (a) increased GMV in rSMG, which is involved in phonological processing, (b) decreased WMV in areas of frontal, sublobar, and temporal lobes, which are involved in response inhibition, and (c) reduced task-induced deactivation of the DMN, indicative of altered attentional allocation.
Collapse
Affiliation(s)
- Saeid Sadeghi
- Institute for Cognitive and Brain Sciences (ICBS), Shahid Beheshti University, Tehran, Iran
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Center of Excellence in Cognitive Neuropsychology, Shahid Beheshti University, Tehran, Iran
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Bita Shalani
- Department of Psychology, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai, Japan
- Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Yuka Kotozaki
- Division of Clinical research, Medical-Industry Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Seishu Nakagawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Psychiatry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Atsushi Sekiguchi
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kunio Iizuka
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sugiko Hanawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Carlos Makoto Miyauchi
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kohei Sakaki
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takayuki Nozawa
- Research Center for the Earth Inclusive Sensing Empathizing with Silent Voices, Tokyo Institute of Technology, Tokyo, Japan
- Graduate School of Arts and Sciences, Department of General Systems Studies, The University of Tokyo, Tokyo, Japan
| | - Shigeyuki Ikeda
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Susumu Yokota
- Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| | - Daniele Magistro
- Department of Sport Science, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
42
|
Lee HJ, Lee DA, Shin KJ, Park KM. Glymphatic system dysfunction in patients with juvenile myoclonic epilepsy. J Neurol 2021; 269:2133-2139. [PMID: 34510256 DOI: 10.1007/s00415-021-10799-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The glymphatic system is a glial cell-dependent waste clearance pathway in the brain that is essential for the maintenance of brain homeostasis. In this study, we evaluated glymphatic system function in patients with juvenile myoclonic epilepsy (JME) compared with healthy controls. METHODS Patients with JME and healthy controls were retrospectively enrolled in this study. All the participants underwent brain diffusion tensor imaging (DTI). The "DTI-analysis along the perivascular space (ALPS)"-index was calculated to evaluate the glymphatic system function of the participants. The ALPS-indices of the patients with JME were compared with those of the healthy controls. In addition, the correlations between ALPS-index and the clinical characteristics of the patients with JME were analyzed to validate changes in glymphatic system function. RESULTS A total of 39 patients with JME and 38 healthy controls were enrolled in this study. The mean ALPS- index of the patients with JME was significantly lower than that of the healthy controls (1.541 vs. 1.653, p = 0.041). ALPS-index was negatively correlated with age in patients with JME (r = -0.375, p = 0.018). However, ALPS-index was not correlated with age at onset, duration of epilepsy, or anti-seizure medication load in patients with JME. CONCLUSION This study is the first in which the ALPS method was used to demonstrate that patients with JME have significant glymphatic system dysfunction. The results also show that glymphatic system index is negatively correlated with age in patients with JME, a finding which demonstrates that the glymphatic system function of patients with JME gradually declines with age. The ALPS-index might be a potential biomarker for monitoring glymphatic system function in patients with epilepsy.
Collapse
Affiliation(s)
- Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, 48108, Republic of Korea
| | - Kyong Jin Shin
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, 48108, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, 48108, Republic of Korea.
| |
Collapse
|
43
|
Handedness Does Not Impact Inhibitory Control, but Movement Execution and Reactive Inhibition Are More under a Left-Hemisphere Control. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The relationship between handedness, laterality, and inhibitory control is a valuable benchmark for testing the hypothesis of the right-hemispheric specialization of inhibition. According to this theory, and given that to stop a limb movement, it is sufficient to alter the activity of the contralateral hemisphere, then suppressing a left arm movement should be faster than suppressing a right-arm movement. This is because, in the latter case, inhibitory commands produced in the right hemisphere should be sent to the other hemisphere. Further, as lateralization of cognitive functions in left-handers is less pronounced than in right-handers, in the former, the inhibitory control should rely on both hemispheres. We tested these predictions on a medium-large sample of left- and right-handers (n = 52). Each participant completed two sessions of the reaching versions of the stop-signal task, one using the right arm and one using the left arm. We found that reactive and proactive inhibition do not differ according to handedness. However, we found a significant advantage of the right versus the left arm in canceling movements outright. By contrast, there were no differences in proactive inhibition. As we also found that participants performed movements faster with the right than with the left arm, we interpret our results in light of the dominant role of the left hemisphere in some aspects of motor control.
Collapse
|
44
|
Fietsam AC, Deters JR, Workman CD, Rudroff T. Personal Protective Equipment Alters Leg Muscle Fatigability Independent of Transcranial Direct Current Stimulation: A Comparison with Pre-COVID-19 Pandemic Results. Brain Sci 2021; 11:brainsci11080962. [PMID: 34439581 PMCID: PMC8392507 DOI: 10.3390/brainsci11080962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 01/12/2023] Open
Abstract
In response to the COVID-19 pandemic, the use of personal protective equipment (PPE; e.g., face mask) has increased. Mandating subjects to wear PPE during vigorous exercise might affect the fatigue outcomes of transcranial direct current stimulation (tDCS) studies. The purpose of this study was to investigate whether the use of PPE affected the performance of a tDCS-influenced fatigue task in healthy adults. A total of 16 young and healthy subjects were recruited and wore PPE during an isokinetic fatigue task in conjunction with sham, 2 mA, and 4 mA tDCS conditions. Subjects were matched to subjects who did not wear PPE during our previous pre-pandemic study in which right knee extensor fatigability increased under these same conditions. The results show that right knee extensor fatigability, derived from torque and work (FI-T and FI-W, respectively), was higher in the PPE study compared to the No PPE study in the sham condition. Additionally, there were no differences in knee extensor fatigability or muscle activity between sham, 2 mA, and 4 mA tDCS in the present study, which contrasts with our previous results. Thus, PPE worn by subjects and researchers might have a detrimental effect on fatigue outcomes in tDCS studies irrespective of the stimulation intervention.
Collapse
Affiliation(s)
- Alexandra C. Fietsam
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA; (A.C.F.); (J.R.D.); (C.D.W.)
| | - Justin R. Deters
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA; (A.C.F.); (J.R.D.); (C.D.W.)
| | - Craig D. Workman
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA; (A.C.F.); (J.R.D.); (C.D.W.)
| | - Thorsten Rudroff
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA; (A.C.F.); (J.R.D.); (C.D.W.)
- Department of Neurology, University of Iowa Health Clinics, Iowa City, IA 52242, USA
- Correspondence: ; Tel.: +1-319-467-0363
| |
Collapse
|
45
|
Lee DA, Lee H, Kim BJ, Park BS, Kim SE, Park KM. Identification of focal epilepsy by diffusion tensor imaging using machine learning. Acta Neurol Scand 2021; 143:637-645. [PMID: 33733467 DOI: 10.1111/ane.13407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the feasibility of machine learning based on diffusion tensor imaging (DTI) measures to distinguish patients with focal epilepsy versus healthy controls and antiseizure medication (ASM) responsiveness. METHODS This was a retrospective study performed at a tertiary hospital. We enrolled 456 patients with focal epilepsy, who underwent DTI and were taking ASMs. We enrolled 100 healthy subjects as a control. We obtained the conventional DTI measures and structural connectomic profiles from the DTI. RESULTS The support vector machine (SVM) classifier based on the conventional DTI measures revealed an accuracy of 76.5% and an area under curve (AUC) of 0.604 (95% Confidence interval (CI), 0.506-0.695). Another SVM classifier combined with structural connectomic profiles demonstrated an accuracy of 82.8% and an AUC of 0.701 (95% CI, 0.606-0.784). Of the 456 patients with epilepsy, 242 patients were ASM good responders, whereas 214 patients were ASM poor responders. In the classification of the ASM responders, an SVM classifier based on the conventional DTI measures revealed an accuracy of 54.9% and an AUC of 0.551 (95% CI, 0.443-0.655). Another SVM classifier combined with structural connectomic profiles demonstrated an accuracy of 59.3% and an AUC of 0.594 (95% CI, 0.485-0.695). CONCLUSION DTI using a machine learning is useful for differentiating patients with focal epilepsy from healthy controls, but it cannot classify ASM responsiveness. Combining structural connectomic profiles results in a better classification performance than the use of conventional DTI measures alone for identifying focal epilepsy and ASM responsiveness.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology Haeundae Paik Hospital Inje University College of Medicine Busan Korea
| | - Ho‐Joon Lee
- Department of Radiology Haeundae Paik Hospital Inje University College of Medicine Busan Korea
| | - Byung Joon Kim
- Department of Neurology Haeundae Paik Hospital Inje University College of Medicine Busan Korea
| | - Bong Soo Park
- Department of Internal Medicine Haeundae Paik Hospital Inje University College of Medicine Busan Korea
| | - Sung Eun Kim
- Department of Neurology Haeundae Paik Hospital Inje University College of Medicine Busan Korea
| | - Kang Min Park
- Department of Neurology Haeundae Paik Hospital Inje University College of Medicine Busan Korea
| |
Collapse
|
46
|
Garcia MAC, Nogueira-Campos AA, Moraes VH, Souza VH. Can Corticospinal Excitability Shed Light Into the Effects of Handedness on Motor Performance? FRONTIERS IN NEUROERGONOMICS 2021; 2:651501. [PMID: 38235226 PMCID: PMC10790861 DOI: 10.3389/fnrgo.2021.651501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/01/2021] [Indexed: 01/19/2024]
Affiliation(s)
- Marco Antonio Cavalcanti Garcia
- Programa de Pós-Graduação em Ciências da Reabilitação e Desempenho Físico-Funcional, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Laboratório de Neurofisiologia Cognitiva (LabNeuro), Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Grupo de Estudos em Neuro Biomecânica, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Núcleo de Pesquisas em Neurociências e Reabilitação Motora, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anaelli Aparecida Nogueira-Campos
- Laboratório de Neurofisiologia Cognitiva (LabNeuro), Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Grupo de Estudos em Neuro Biomecânica, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Victor Hugo Moraes
- Núcleo de Pesquisas em Neurociências e Reabilitação Motora, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Hugo Souza
- Grupo de Estudos em Neuro Biomecânica, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| |
Collapse
|
47
|
Bennett C, Burrows T, Pursey K, Poudel G, Ng KW, Nguo K, Walker K, Porter J. Neural responses to food cues in middle to older aged adults: a scoping review of fMRI studies. Nutr Diet 2020; 78:343-364. [PMID: 33191542 DOI: 10.1111/1747-0080.12644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 01/18/2023]
Abstract
AIM Understanding neural responses through functional magnetic resonance imaging (fMRI) to food and food cues in middle-older adults may lead to better treatment options to address the growing issue of malnutrition. This scoping review aimed to determine the extent, range and nature of research using fMRI, related to reward-based regions, in response to food cues in middle to older aged adults (50 years and over). METHODS The following databases were systematically searched in July 2019: CINAHL, CENTRAL, Embase, Dissertations and Theses, Ovid Medline, PsycINFO, PsycEXTRA, Scopus and Web of Science. Studies were eligible for inclusion if participants had a mean or median age ≥50 years, utilised and reported outcomes of either a food cue task-related fMRI methodology or resting-state fMRI. Data from included studies were charted, and synthesised narratively. RESULTS Twenty-two studies were included. Eighteen studies utilised a task-related design to measure neural activation, two studies measured resting state neural connectivity only and an additional two studies measured both. The fMRI scanning paradigms, food cue tools and procedure of presentation varied markedly. Four studies compared the neural responses to food between younger and older adults, providing no consensus on neural age-related changes to food cues; two studies utilised longitudinal scans. CONCLUSION This review identified significant extent, range and nature in the approaches used to assess neuronal activity in response to food cues in adults aged 50 years and over. Future studies are needed to understand the age-related appetite changes whilst considering personal preferences for food cues.
Collapse
Affiliation(s)
- Christie Bennett
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Tracy Burrows
- School of Health Sciences, Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, New South Wales, Australia
| | - Kirrilly Pursey
- School of Health Sciences, Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, New South Wales, Australia
| | - Govinda Poudel
- Behaviour Environment and Cognition, Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Ker Wei Ng
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Kay Nguo
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Karen Walker
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Judi Porter
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
48
|
Dong TS, Gupta A, Jacobs JP, Lagishetty V, Gallagher E, Bhatt RR, Vora P, Osadchiy V, Stains J, Balioukova A, Chen Y, Dutson E, Mayer EA, Sanmiguel C. Improvement in Uncontrolled Eating Behavior after Laparoscopic Sleeve Gastrectomy Is Associated with Alterations in the Brain-Gut-Microbiome Axis in Obese Women. Nutrients 2020; 12:E2924. [PMID: 32987837 PMCID: PMC7599899 DOI: 10.3390/nu12102924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bariatric surgery is proven to change eating behavior and cause sustained weight loss, yet the exact mechanisms underlying these changes are not clearly understood. We explore this in a novel way by examining how bariatric surgery affects the brain-gut-microbiome (BGM) axis. METHODS Patient demographics, serum, stool, eating behavior questionnaires, and brain magnetic resonance imaging (MRI) were collected before and 6 months after laparoscopic sleeve gastrectomy (LSG). Differences in eating behavior and brain morphology and resting-state functional connectivity in core reward regions were correlated with serum metabolite and 16S microbiome data. RESULTS LSG resulted in significant weight loss and improvement in maladaptive eating behaviors as measured by the Yale Food Addiction Scale (YFAS). Brain imaging showed a significant increase in brain volume of the putamen (p.adj < 0.05) and amygdala (p.adj < 0.05) after surgery. Resting-state connectivity between the precuneus and the putamen was significantly reduced after LSG (p.adj = 0.046). This change was associated with YFAS symptom count. Bacteroides, Ruminococcus, and Holdemanella were associated with reduced connectivity between these areas. Metabolomic profiles showed a positive correlation between this brain connection and a phosphatidylcholine metabolite. CONCLUSION Bariatric surgery modulates brain networks that affect eating behavior, potentially through effects on the gut microbiota and its metabolites.
Collapse
Affiliation(s)
- Tien S. Dong
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (T.S.D.); (A.G.); (J.P.J.); (V.L.); (E.A.M.)
- UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90025, USA
| | - Arpana Gupta
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (T.S.D.); (A.G.); (J.P.J.); (V.L.); (E.A.M.)
- UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA 90095, USA; (E.G.); (R.R.B.); (P.V.); (V.O.); (J.S.)
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (Y.C.); (E.D.)
| | - Jonathan P. Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (T.S.D.); (A.G.); (J.P.J.); (V.L.); (E.A.M.)
- UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90025, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA 90095, USA; (E.G.); (R.R.B.); (P.V.); (V.O.); (J.S.)
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (Y.C.); (E.D.)
| | - Venu Lagishetty
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (T.S.D.); (A.G.); (J.P.J.); (V.L.); (E.A.M.)
- UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90025, USA
| | - Elizabeth Gallagher
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA 90095, USA; (E.G.); (R.R.B.); (P.V.); (V.O.); (J.S.)
| | - Ravi R. Bhatt
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA 90095, USA; (E.G.); (R.R.B.); (P.V.); (V.O.); (J.S.)
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine at USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Priten Vora
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA 90095, USA; (E.G.); (R.R.B.); (P.V.); (V.O.); (J.S.)
| | - Vadim Osadchiy
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA 90095, USA; (E.G.); (R.R.B.); (P.V.); (V.O.); (J.S.)
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jean Stains
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA 90095, USA; (E.G.); (R.R.B.); (P.V.); (V.O.); (J.S.)
| | - Anna Balioukova
- UCLA Center for Obesity and METabolic Health (COMET), Los Angeles, CA 90024, USA;
| | - Yijun Chen
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (Y.C.); (E.D.)
- UCLA Center for Obesity and METabolic Health (COMET), Los Angeles, CA 90024, USA;
| | - Erik Dutson
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (Y.C.); (E.D.)
- UCLA Center for Obesity and METabolic Health (COMET), Los Angeles, CA 90024, USA;
| | - Emeran A. Mayer
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (T.S.D.); (A.G.); (J.P.J.); (V.L.); (E.A.M.)
- UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA 90095, USA; (E.G.); (R.R.B.); (P.V.); (V.O.); (J.S.)
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (Y.C.); (E.D.)
| | - Claudia Sanmiguel
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (T.S.D.); (A.G.); (J.P.J.); (V.L.); (E.A.M.)
- UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90025, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA 90095, USA; (E.G.); (R.R.B.); (P.V.); (V.O.); (J.S.)
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (Y.C.); (E.D.)
| |
Collapse
|
49
|
Cabré-Riera A, Marroun HE, Muetzel R, van Wel L, Liorni I, Thielens A, Birks LE, Pierotti L, Huss A, Joseph W, Wiart J, Capstick M, Hillegers M, Vermeulen R, Cardis E, Vrijheid M, White T, Röösli M, Tiemeier H, Guxens M. Estimated whole-brain and lobe-specific radiofrequency electromagnetic fields doses and brain volumes in preadolescents. ENVIRONMENT INTERNATIONAL 2020; 142:105808. [PMID: 32554140 DOI: 10.1016/j.envint.2020.105808] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To assess the association between estimated whole-brain and lobe-specific radiofrequency electromagnetic fields (RF-EMF) doses, using an improved integrated RF-EMF exposure model, and brain volumes in preadolescents at 9-12 years old. METHODS Cross-sectional analysis in preadolescents aged 9-12 years from the Generation R Study, a population-based birth cohort set up in Rotterdam, The Netherlands (n = 2592). An integrated exposure model was used to estimate whole-brain and lobe-specific RF-EMF doses (mJ/kg/day) from different RF-EMF sources including mobile and Digital Enhanced Cordless Telecommunications (DECT) phone calls, other mobile phone uses than calling, tablet use, laptop use, and far-field sources. Whole-brain and lobe-specific RF-EMF doses were estimated for all RF-EMF sources together (i.e. overall) and for three groups of RF-EMF sources that lead to a different pattern of RF-EMF exposure. Information on brain volumes was extracted from magnetic resonance imaging scans. RESULTS Estimated overall whole-brain RF-EMF dose was 84.3 mJ/kg/day. The highest overall lobe-specific dose was estimated in the temporal lobe (307.1 mJ/kg/day). Whole-brain and lobe-specific RF-EMF doses from all RF-EMF sources together, from mobile and DECT phone calls, and from far-field sources were not associated with global, cortical, or subcortical brain volumes. However, a higher whole-brain RF-EMF dose from mobile phone use for internet browsing, e-mailing, and text messaging, tablet use, and laptop use while wirelessly connected to the internet was associated with a smaller caudate volume. CONCLUSIONS Our results suggest that estimated whole-brain and lobe-specific RF-EMF doses were not related to brain volumes in preadolescents at 9-12 years old. Screen activities with mobile communication devices while wirelessly connected to the internet lead to low RF-EMF dose to the brain and our observed association may thus rather reflect effects of social or individual factors related to these specific uses of mobile communication devices. However, we cannot discard residual confounding, chance finding, or reverse causality. Further studies on mobile communication devices and their potential negative associations with brain development are warranted, regardless whether associations are due to RF-EMF exposure or to other factors related to their use.
Collapse
Affiliation(s)
- Alba Cabré-Riera
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Catalonia, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, University Medical Centre Rotterdam, Erasmus MC, the Netherlands
| | - Hanan El Marroun
- Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioral Sciences - Erasmus University Rotterdam, the Netherlands; Department of Pediatrics, Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry/Psychology, University Medical Centre Rotterdam, Erasmus MC, the Netherlands
| | - Ryan Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, University Medical Centre Rotterdam, Erasmus MC, the Netherlands; The Generation R Study Group, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Luuk van Wel
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | | | - Arno Thielens
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | - Laura Ellen Birks
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Catalonia, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Anke Huss
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Wout Joseph
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | - Joe Wiart
- LTCI, Telecom Paris, Chaire C2M, France
| | | | - Manon Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, University Medical Centre Rotterdam, Erasmus MC, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands; School of Public Health, Imperial College London, London, UK
| | - Elisabeth Cardis
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Catalonia, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Catalonia, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, University Medical Centre Rotterdam, Erasmus MC, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus University Medical Centre, Rotterdam, the Netherlands; Kinder Neuroimaging Centrum Rotterdam (KNICR), Rotterdam, the Netherlands
| | - Martin Röösli
- Departement of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel 4051, Switzerland; University of Basel, Basel, Switzerland
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, University Medical Centre Rotterdam, Erasmus MC, the Netherlands; The Generation R Study Group, Erasmus University Medical Centre, Rotterdam, the Netherlands; Department of Social and Behavioral Science, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Catalonia, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, University Medical Centre Rotterdam, Erasmus MC, the Netherlands.
| |
Collapse
|
50
|
Abstract
The development and persistence of laterality is a key feature of human motor behavior, with the asymmetry of hand use being the most prominent. The idea that asymmetrical functions of the hands reflect asymmetries in terms of structural and functional brain organization has been tested many times. However, despite advances in laterality research and increased understanding of this population-level bias, the neural basis of handedness remains elusive. Recent developments in diffusion magnetic resonance imaging enabled the exploration of lateralized motor behavior also in terms of white matter and connectional neuroanatomy. Despite incomplete and partly inconsistent evidence, structural connectivity of both intrahemispheric and interhemispheric white matter seems to differ between left and right-handers. Handedness was related to asymmetry of intrahemispheric pathways important for visuomotor and visuospatial processing (superior longitudinal fasciculus), but not to projection tracts supporting motor execution (corticospinal tract). Moreover, the interindividual variability of the main commissural pathway corpus callosum seems to be associated with handedness. The review highlights the importance of exploring new avenues for the study of handedness and presents the latest state of knowledge that can be used to guide future neuroscientific and genetic research.
Collapse
Affiliation(s)
- Sanja Budisavljevic
- Department of General Psychology, University of Padova, Padova, Italy.,The School of Medicine, University of St. Andrews, St. Andrews, UK
| | - Umberto Castiello
- Department of General Psychology, University of Padova, Padova, Italy
| | - Chiara Begliomini
- Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|