1
|
Bercha S, Rathod S, Zavorotynska O, Chavan SM. Probing Ce- and Zr-Fumarate Metal-Organic Framework Formation in Aqueous Solutions with In Situ Raman Spectroscopy and Synchrotron X-ray Diffraction. ACS OMEGA 2024; 9:44321-44335. [PMID: 39524665 PMCID: PMC11541789 DOI: 10.1021/acsomega.4c05125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
The synthesis of Ce-fumarate and Zr-fumarate metal-organic framework (MOF) is monitored for the first time with in situ Raman spectroscopy in custom-built solvothermal reactors. Several synthesis conditions were explored for Ce-fumarate at room temperature. The use of the method for high-temperature synthesis of Zr-fumarate is also demonstrated. In situ Raman monitoring provided insights into both the solution and crystalline phases of the reaction medium, revealing the dynamic interplay among precursors, modulators, and the forming MOF structure. The reaction kinetics was determined by following the characteristic peak at 1666 cm-1. The conversion was in good agreement with the reaction kinetics determined via in situ synchrotron powder diffraction. The resulting MOF products were further characterized using ex situ X-ray powder diffraction, scanning electron microscopy, thermogravimetry, and surface area measurements. This study demonstrates a simple and industrially scalable method for monitoring MOF synthesis in situ, which can provide insights into the stages and mechanisms of formation of MOFs and other compounds.
Collapse
Affiliation(s)
- Sofiia Bercha
- Department
of Mathematics and Physics, University of
Stavanger, P.O. Box 8600, Stavanger NO-4036, Norway
| | - Simmy Rathod
- Department
of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, P.O. Box 8600, Stavanger NO-4036, Norway
| | - Olena Zavorotynska
- Department
of Mathematics and Physics, University of
Stavanger, P.O. Box 8600, Stavanger NO-4036, Norway
| | - Sachin Maruti Chavan
- Department
of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, P.O. Box 8600, Stavanger NO-4036, Norway
| |
Collapse
|
2
|
Zavorotynska O, Åsland AC, Dietzel PDC, Chavan SM. Exploring cluster formation in Zr-MOF synthesis in situ using X-ray absorption spectroscopy. Phys Chem Chem Phys 2024; 26:27019-27033. [PMID: 39428857 DOI: 10.1039/d4cp01979b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Metal-organic frameworks (MOFs) with a Zr-oxo cluster [(Zr6O4(OH)4)]12- are exceptionally stable and offer vast potential for a wide range of applications. Synthesis parameters strongly affect the quality, stability, morphology, etc., of the MOFs. In this study, we present an experimental set-up that allows following in situ element-specific chemical transformations during synthesis and the effect of various reaction parameters on the reaction products. Zr-fumarate formation was monitored using X-ray absorption spectroscopy (XAS) in ZrCl4-DMF-based solutions. We have studied (i) the local (∼2-5 Å) environment around Zr4+ ions in the early stages of the Zr-oxo cluster formation and MOF-synthesis reaction, (ii) kinetics of the synthesis reaction and its dependence on water and modulator concentrations, and (iii) the effect of the reaction parameters on MOF product quality. XAS data have provided direct evidence that the increased amounts of water and modulator accelerate the reaction. It has also confirmed that water is essential for MOF formation in DMF. Zr-cluster formation and the synthesis reaction were not observed in the absence of water in ZrCl4-DMF and ZrCl4-DMF-linker-modulator solutions. According to the EXAFS data, Zr4+ ions are octahedrally coordinated by chlorine atoms in anhydrous solutions with and without the linker. In contrast, the Zr-oxo clusters and MOFs were formed only in the presence of water. The results of the in situ experiments were correlated with post-synthetic characterization of the resultant MOF products.
Collapse
Affiliation(s)
- Olena Zavorotynska
- Department of Mathematics and Physics, University of Stavanger, Stavanger P.O. Box 8600, NO-4036 Forus, Norway.
| | - Anna Cecilie Åsland
- Department of Mathematics and Physics, University of Stavanger, Stavanger P.O. Box 8600, NO-4036 Forus, Norway.
| | - Pascal D C Dietzel
- Department of Chemistry, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway
| | - Sachin M Chavan
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger P.O. Box 8600, NO-4036 Forus, Norway.
| |
Collapse
|
3
|
Romero-Muñiz I, Loukopoulos E, Xiong Y, Zamora F, Platero-Prats AE. Exploring porous structures without crystals: advancements with pair distribution function in metal- and covalent organic frameworks. Chem Soc Rev 2024. [PMID: 39400325 DOI: 10.1039/d4cs00267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The pair distribution function (PDF) is a versatile characterisation tool in materials science, capable of retrieving atom-atom distances on a continuous scale (from a few angstroms to nanometres), without being restricted to crystalline samples. Typically, total scattering experiments are performed using high-energy synchrotron X-rays, neutrons or electrons to achieve a high atomic resolution in a short time. Recently, PDF analysis provides a powerful approach to target current characterisation challenges in the field of metal- and covalent organic frameworks. By identifying molecular interactions on the pore surfaces, tracking complex structural transformations involving disorder states, and elucidating nucleation and growth mechanisms, structural analysis using PDF has provided invaluable insights into these materials. This review article highlights the significance of PDF analysis in advancing our understanding of MOFs and COFs, paving the way for innovative applications and discoveries in porous materials research.
Collapse
Affiliation(s)
- Ignacio Romero-Muñiz
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Edward Loukopoulos
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Ying Xiong
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Félix Zamora
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ana E Platero-Prats
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
4
|
Balasubramanian S, Kulandaisamy AJ, Rayappan JBB. Engineering the defects of UiO-66 MOF for an improved catalytic detoxification of CWA simulant: methyl paraoxon. RSC Adv 2024; 14:31535-31548. [PMID: 39372052 PMCID: PMC11450554 DOI: 10.1039/d4ra04637d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024] Open
Abstract
Exigency in search of an ideal candidate for an effective detoxification of chemical warfare agents is still continuing. Zirconium-based Metal-organic Framework (MOF) UiO-66 has shown a significant detoxification of such toxic chemicals owing to its tunable physio-chemical properties and profuse catalytic sites. In this context, a series of UiO-66 MOFs synthesized by tuning the acidity constant (pK a) and concentration of the modulator, synthesis temperature and water molecules was tested for their detoxification efficiency against the simulant 'methyl-paraoxon' at room temperature. Amongst, HCl modulated UiO-66 across the considered synthesis temperature have shown competent catalytic performance in virtue of defects generation within its structure. In addition, the role of catalytic features of UiO-66 obtained by tailoring its defects in enhancing the degradation efficiency has been systematically investigated. The detoxification efficiency of 98.5% with a half-life time of 0.23 min has confirmed the effectiveness of engineered defects in enhancing the catalytic activity of UiO-66 in detoxifying the identified simulant.
Collapse
Affiliation(s)
- Selva Balasubramanian
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University Thanjavur Tamil Nadu - 613 401 India +91 4362 264 120 +91 4362 350 009. ext. 2255
- School of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University Thanjavur Tamil Nadu - 613 401 India
| | | | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University Thanjavur Tamil Nadu - 613 401 India +91 4362 264 120 +91 4362 350 009. ext. 2255
- School of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University Thanjavur Tamil Nadu - 613 401 India
| |
Collapse
|
5
|
Xing S, Ma X, Gu Q, Ma N, Zhang Z, Han G, Huang R, Feng X, Yang B, Duan C, Liu Y. Cluster-Cluster Co-Nucleation Induced Defective Polyoxometalate-Based Metal-Organic Frameworks for Efficient Tandem Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400410. [PMID: 38721986 DOI: 10.1002/smll.202400410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/29/2024] [Indexed: 10/01/2024]
Abstract
The construction of defective sites is one of the effective strategies to create high-activity Metal-Organic frameworks (MOFs) catalysts. However, traditional synthesis methods usually suffer from cumbersome synthesis steps and disordered defect structures. Herein, a cluster-cluster co-nucleation (CCCN) strategy is presented that involves the in situ introduction of size-matched functional polyoxometalates (H6P2W18O62, {P2W18}) to intervene the nucleation process of cluster-based MOFs (UiO-66), achieving one-step inducement of exposed defective sites without redundant post-processing. POM-induced UiO-66 ({P2W18}-0.1@UiO-66) exhibits a classical reo topology for well-defined cluster defects. Moreover, the defective sites and the interaction between POM and skeletal cluster nodes are directly observed by Integrated Differential Phase Contrast in Scanning Transmission Electron Microscopy (iDPC-STEM). Owing to the molecular-level proximity between defective sites and POM in the same nano-reaction space, {P2W18}-0.1@UiO-66 exhibits efficient tandem catalysis in the preparation of γ-valerolactone (γ-GVL) from laevulinic acid (LA) by the combination of Lewis and Brønsted acids with 11 times higher performance than defective UiO-66 formed by conventional coordination modulation strategy. The CCCN strategy is applicable to different POM and has the potential to be extended to other cluster-based MOFs, which will pave a new way for the construction of functional MOFs with multi-centered synergistic catalysis.
Collapse
Affiliation(s)
- Songzhu Xing
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xujiao Ma
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Qingqing Gu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Nana Ma
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Zhong Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Guoying Han
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Rui Huang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xiao Feng
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Bing Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chunying Duan
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yiwei Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
6
|
Gordon MN, Junkers LS, Googasian JS, Mathiesen JK, Zhan X, Morgan DG, Jensen KMØ, Skrabalak SE. Insights into the nucleation and growth of BiOCl nanoparticles by in situ X-ray pair distribution function analysis and in situ liquid cell TEM. NANOSCALE 2024; 16:15544-15557. [PMID: 39028007 DOI: 10.1039/d4nr01749h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The synthesis of bismuth oxyhalides as defined nanostructures is hindered by their fast nucleation and growth in aqueous solutions. Using our recently developed single-source precursor, the formation of bismuth oxychloride in such solutions can be slowed significantly. As reported herein, this advance enables BiOCl formation to be investigated by in situ X-ray total scattering and in situ liquid cell transmission electron microscopy. In situ pair distribution function analysis of X-ray total scattering data reveals the local order of atomic structures throughout the synthesis, while in situ liquid cell transmission electron microscopy allows for tracking the growth of individual nanoparticles. Through this work, the precursor complex is shown to give rise to BiOCl upon heating in solution without the observation of structurally distinct intermediates. The emerging nanoparticles have a widened interlayer spacing, which moderately decreases as the particles grow. Mechanistic insights into the formation of bismuth oxyhalide nanoparticles, including the absence of distinct intermediates within the available time resolution, will help facilitate future design of controlled BiOX nanostructures.
Collapse
Affiliation(s)
- Matthew N Gordon
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Laura S Junkers
- Department of Chemistry and Nanoscience Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Jack S Googasian
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Jette K Mathiesen
- Department of Chemistry and Nanoscience Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Xun Zhan
- Electron Microscopy Center, Indiana University, Bloomington, Indiana 47405, USA
| | - David Gene Morgan
- Electron Microscopy Center, Indiana University, Bloomington, Indiana 47405, USA
| | - Kirsten M Ø Jensen
- Department of Chemistry and Nanoscience Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Sara E Skrabalak
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
7
|
Shaw EV, Chester AM, Robertson GP, Castillo-Blas C, Bennett TD. Synthetic and analytical considerations for the preparation of amorphous metal-organic frameworks. Chem Sci 2024; 15:10689-10712. [PMID: 39027308 PMCID: PMC11253190 DOI: 10.1039/d4sc01433b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Metal-organic frameworks (MOFs) are hybrid porous materials presenting several tuneable properties, allowing them to be utilised for a wide range of applications. To date, focus has been on the preparation of novel crystalline MOFs for specific applications. Recently, interest in amorphous MOFs (aMOFs), defined by their lack of correlated long-range order, is growing. This is due to their potential favourable properties compared to their crystalline equivalents, including increased defect concentration, improved processability and gas separation ability. Direct synthesis of these disordered materials presents an alternative method of preparation to post-synthetic amorphisation of a crystalline framework, potentially allowing for the preparation of aMOFs with varying compositions and structures, and very different properties to crystalline MOFs. This perspective summarises current literature on directly synthesised aMOFs, and proposes methods that could be utilised to modify existing syntheses for crystalline MOFs to form their amorphous counterparts. It outlines parameters that could discourage the ordering of crystalline MOFs, before examining the potential properties that could emerge. Methodologies of structural characterisation are discussed, in addition to the necessary analyses required to define a topologically amorphous structure.
Collapse
Affiliation(s)
- Emily V Shaw
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Ashleigh M Chester
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Georgina P Robertson
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Celia Castillo-Blas
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Thomas D Bennett
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| |
Collapse
|
8
|
Broge NLN, Bertelsen AD, Nielsen IG, Kløve M, Roelsgaard M, Dippel AC, Jørgensen MRV, Iversen BB. Exploration of anion effects in solvothermal synthesis using in situ X-ray diffraction. Phys Chem Chem Phys 2024; 26:12121-12132. [PMID: 38587495 DOI: 10.1039/d4cp00541d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Solvothermal synthesis presents a facile and highly flexible approach to chemical processing and it is widely used for preparation of micro- and nanosized inorganic materials. The large number of synthesis parameters in combination with the richness of inorganic chemistry means that it is difficult to predict or design synthesis outcomes, and it is demanding to uncover the effect of different parameters due to the sealed and complex nature of solvothermal reactors along with the time demands related to reactor cleaning, sample purification, and characterization. This study explores the effect on formation of crystalline products of six common anions in solvothermal treatment of aqueous and ethanolic precursors. Three different cations are included in the study (Mn2+, Co2+, Cu2+) representing chemical affinities towards different regions of the periodic table with respect to the hard soft acid base (HSAB) classification and the Goldschmidt classification. They additionally belong to the commonly used 3d transition metals and display a suitable variety in solvothermal chemistry to highlight anion effects. The results of the solvothermal in situ experiments demonstrate a clear effect of the precursor anions, with respect to whether crystallization occurs or not and the characteristics of the formed phases. Additionally, some of the anions are shown to be redox active and to influence the formation temperature of certain phases which in turn relates to the observed average crystallite sizes.
Collapse
Affiliation(s)
- Nils Lau Nyborg Broge
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Andreas Dueholm Bertelsen
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, DK-8000 Aarhus C, Denmark.
| | | | - Magnus Kløve
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Martin Roelsgaard
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Ann-Christin Dippel
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Mads Ry Vogel Jørgensen
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, DK-8000 Aarhus C, Denmark.
- MAX IV Laboratory, Lund University, 224 84 Lund, Sweden
| | - Bo Brummerstedt Iversen
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
9
|
Boström HLB, Emmerling S, Heck F, Koschnick C, Jones AJ, Cliffe MJ, Al Natour R, Bonneau M, Guillerm V, Shekhah O, Eddaoudi M, Lopez-Cabrelles J, Furukawa S, Romero-Angel M, Martí-Gastaldo C, Yan M, Morris AJ, Romero-Muñiz I, Xiong Y, Platero-Prats AE, Roth J, Queen WL, Mertin KS, Schier DE, Champness NR, Yeung HHM, Lotsch BV. How Reproducible is the Synthesis of Zr-Porphyrin Metal-Organic Frameworks? An Interlaboratory Study. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304832. [PMID: 37669645 DOI: 10.1002/adma.202304832] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/17/2023] [Indexed: 09/07/2023]
Abstract
Metal-organic frameworks (MOFs) are a rapidly growing class of materials that offer great promise in various applications. However, the synthesis remains challenging: for example, a range of crystal structures can often be accessed from the same building blocks, which complicates the phase selectivity. Likewise, the high sensitivity to slight changes in synthesis conditions may cause reproducibility issues. This is crucial, as it hampers the research and commercialization of affected MOFs. Here, it presents the first-ever interlaboratory study of the synthetic reproducibility of two Zr-porphyrin MOFs, PCN-222 and PCN-224, to investigate the scope of this problem. For PCN-222, only one sample out of ten was phase pure and of the correct symmetry, while for PCN-224, three are phase pure, although none of these show the spatial linker order characteristic of PCN-224. Instead, these samples resemble dPCN-224 (disordered PCN-224), which has recently been reported. The variability in thermal behavior, defect content, and surface area of the synthesised samples are also studied. The results have important ramifications for field of metal-organic frameworks and their crystallization, by highlighting the synthetic challenges associated with a multi-variable synthesis space and flat energy landscapes characteristic of MOFs.
Collapse
Affiliation(s)
- Hanna L B Boström
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
- Present address: Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Sebastian Emmerling
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
| | - Fabian Heck
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
| | - Charlotte Koschnick
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
| | - Andrew J Jones
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Matthew J Cliffe
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Rawan Al Natour
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center (AMPM), Functional Materials Design, Discovery & Development Research Group (FMD3), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mickaële Bonneau
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center (AMPM), Functional Materials Design, Discovery & Development Research Group (FMD3), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Vincent Guillerm
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center (AMPM), Functional Materials Design, Discovery & Development Research Group (FMD3), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Osama Shekhah
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center (AMPM), Functional Materials Design, Discovery & Development Research Group (FMD3), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Eddaoudi
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center (AMPM), Functional Materials Design, Discovery & Development Research Group (FMD3), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Javier Lopez-Cabrelles
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - María Romero-Angel
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán-2, Paterna, 46980, Spain
| | - Carlos Martí-Gastaldo
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán-2, Paterna, 46980, Spain
| | - Minliang Yan
- Macromolecules innovation institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amanda J Morris
- Macromolecules innovation institute, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ignacio Romero-Muñiz
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Ying Xiong
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Ana E Platero-Prats
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Jocelyn Roth
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950, Switzerland
| | - Wendy L Queen
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950, Switzerland
| | - Kalle S Mertin
- Institute of Inorganic Chemistry, Christian-Albrechts-University Kiel, 24118, Kiel, Germany
| | - Danielle E Schier
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Neil R Champness
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hamish H-M Yeung
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Bettina V Lotsch
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
- Department of Chemistry, University of Munich (LMU), Butenandtstrasse 5-13, Haus D, 81377, Munich, Germany
| |
Collapse
|
10
|
Kløve M, Philippot G, Auxéméry A, Aymonier C, Iversen BB. Stabilizing tetragonal ZrO 2 nanocrystallites in solvothermal synthesis. NANOSCALE 2024; 16:3185-3190. [PMID: 38264770 DOI: 10.1039/d3nr05364d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Phase-pure tetragonal ZrO2 nanoparticles have been prepared under simple solvothermal synthesis conditions using different types of alcohols as solvents and studied using in situ X-ray scattering. The variation of tetragonal/monoclinic phase ratios within the produced powders was directly correlated with the amount of in situ generated water from solvent dehydration during the syntheses. By controlling the dehydration kinetics, either choosing primary alcohols of varying thermal stability or by changing synthesis temperatures, it is possible to selectively tune this tetragonal/monoclinic phase ratio.
Collapse
Affiliation(s)
- Magnus Kløve
- Center for Integrated Materials Research, Department of Chemistry and iNano, Aarhus University, Aarhus 8000, Denmark.
| | - Gilles Philippot
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France.
| | - Aimery Auxéméry
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France.
| | - Cyril Aymonier
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France.
| | - Bo Brummerstedt Iversen
- Center for Integrated Materials Research, Department of Chemistry and iNano, Aarhus University, Aarhus 8000, Denmark.
| |
Collapse
|
11
|
Semivrazhskaya OO, Salionov D, Clark AH, Casati NPM, Nachtegaal M, Ranocchiari M, Bjelić S, Verel R, van Bokhoven JA, Sushkevich VL. Deciphering the Mechanism of Crystallization of UiO-66 Metal-Organic Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305771. [PMID: 37635107 DOI: 10.1002/smll.202305771] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Indexed: 08/29/2023]
Abstract
Zirconium-containing metal-organic framework (MOF) with UiO-66 topology is an extremely versatile material, which finds applications beyond gas separation and catalysis. However, after more than 10 years after the first reports introducing this MOF, understanding of the molecular-level mechanism of its nucleation and growth is still lacking. By means of in situ time-resolved high-resolution mass spectrometry, Zr K-edge X-ray absorption spectroscopy, magic-angle spinning nuclear magnetic resonance spectroscopy, and X-ray diffraction it is showed that the nucleation of UiO-66 occurs via a solution-mediated hydrolysis of zirconium chloroterephthalates, whose formation appears to be autocatalytic. Zirconium-oxo nodes form directly and rapidly during the synthesis, the formation of pre-formed clusters and stable non-stoichiometric intermediates are not observed. The nuclei of UiO-66 possess identical to the crystals local environment, however, they lack long-range order, which is gained during the crystallization. Crystal growth is the rate-determining step, while fast nucleation controls the formation of the small crystals of UiO-66 with a narrow size distribution of about 200 nanometers.
Collapse
Affiliation(s)
- Olesya O Semivrazhskaya
- Laboratory for Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Daniil Salionov
- Bioenergy and Catalysis Laboratory, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Adam H Clark
- Operando Spectroscopy Group, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Nicola P M Casati
- Laboratory for Synchrotron Radiation-Condensed Matter, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Maarten Nachtegaal
- Operando Spectroscopy Group, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Marco Ranocchiari
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Saša Bjelić
- Bioenergy and Catalysis Laboratory, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - René Verel
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Jeroen A van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Vitaly L Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| |
Collapse
|
12
|
Wang T, Chen W, Liu Q, Wang W, Wang Y, Wu B, Shi W, Zhu Y, He P, Wang X. Self-Assembly of Polyoxometalate-Based Sub-1 nm Polyhedral Building Blocks into Rhombic Dodecahedral Superstructures. Angew Chem Int Ed Engl 2023:e202314045. [PMID: 37916968 DOI: 10.1002/anie.202314045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/03/2023]
Abstract
Self-assembly of subnanometer (sub-1 nm) scale polyhedral building blocks can yield some superstructures with novel and interesting morphology as well as potential functionalities. However, achieving the self-assembly of sub-1 nm polyhedral building blocks is still a great challenge. Herein, through encapsulating the titanium-substituted polyoxometalate (POM, K7 PTi2 W10 O40 ) with tetrabutylammonium cations (TBA+ ), we first synthesized a sub-1 nm rhombic dodecahedral building block by further tailoring the spatial distribution of TBA+ on the POM. Molecular dynamics (MD) simulations demonstrated the eight TBA+ cations interacted with the POM cluster and formed the sub-1 nm rhombic dodecahedron. As a result of anisotropy, the sub-1 nm building blocks have self-assembled into rhombic dodecahedral POM (RD-POM) assemblies at the microscale. Benefiting from the regular structure, Br- ions, and abundant active sites, the obtained RD-POM assemblies exhibit excellent catalytic performance in the cycloaddition of CO2 with epoxides without co-catalysts. This work provides a promising approach to tailor the symmetry and structure of sub-1 nm building blocks by tuning the spatial distribution of ligands, which may shed light on the fabrication of superstructures with novel properties by self-assembly.
Collapse
Affiliation(s)
- Tian Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Weichao Chen
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qingda Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wei Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yinming Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Biao Wu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yunqing Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Peilei He
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
13
|
Carpenter BP, Talosig AR, Rose B, Di Palma G, Patterson JP. Understanding and controlling the nucleation and growth of metal-organic frameworks. Chem Soc Rev 2023; 52:6918-6937. [PMID: 37796101 DOI: 10.1039/d3cs00312d] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Metal-organic frameworks offer a diverse landscape of building blocks to design high performance materials for implications in almost every major industry. With this diversity stems complex crystallization mechanisms with various pathways and intermediates. Crystallization studies have been key to the advancement of countless biological and synthetic systems, with MOFs being no exception. This review provides an overview of the current theories and fundamental chemistry used to decipher MOF crystallization. We then discuss how intrinsic and extrinsic synthetic parameters can be used as tools to modulate the crystallization pathway to produce MOF crystals with finely tuned physical and chemical properties. Experimental and computational methods are provided to guide the probing of MOF crystal formation on the molecular and bulk scale. Lastly, we summarize the recent major advances in the field and our outlook on the exciting future of MOF crystallization.
Collapse
Affiliation(s)
- Brooke P Carpenter
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - A Rain Talosig
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Ben Rose
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Giuseppe Di Palma
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| |
Collapse
|
14
|
Jerozal RT, Pitt TA, MacMillan SN, Milner PJ. High-Concentration Self-Assembly of Zirconium- and Hafnium-Based Metal-Organic Materials. J Am Chem Soc 2023; 145:13273-13283. [PMID: 37294975 PMCID: PMC10330885 DOI: 10.1021/jacs.3c02787] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs) are crystalline, porous solids constructed from organic linkers and inorganic nodes that are promising for applications in chemical separations, gas storage, and catalysis, among many others. However, a major roadblock to the widespread implementation of MOFs, including highly tunable and hydrolytically stable Zr- and Hf-based frameworks, is their benchtop-scalable synthesis, as MOFs are typically prepared under highly dilute (≤0.01 M) solvothermal conditions. This necessitates the use of liters of organic solvent to prepare only a few grams of MOF. Herein, we demonstrate that Zr- and Hf-based frameworks (eight examples) can self-assemble at much higher reaction concentrations than are typically utilized, up to 1.00 M in many cases. Combining stoichiometric amounts of Zr or Hf precursors with organic linkers at high concentrations yields highly crystalline and porous MOFs, as confirmed by powder X-ray diffraction (PXRD) and 77 K N2 surface area measurements. Furthermore, the use of well-defined pivalate-capped cluster precursors avoids the formation of ordered defects and impurities that arise from standard metal chloride salts. These clusters also introduce pivalate defects that increase the exterior hydrophobicity of several MOFs, as confirmed by water contact angle measurements. Overall, our findings challenge the standard assumption that MOFs must be prepared under highly dilute solvothermal conditions for optimal results, paving the way for their scalable and user-friendly synthesis in the laboratory.
Collapse
Affiliation(s)
- Ronald T. Jerozal
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| | - Tristan A. Pitt
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| |
Collapse
|
15
|
He X. Fundamental Perspectives on the Electrochemical Water Applications of Metal-Organic Frameworks. NANO-MICRO LETTERS 2023; 15:148. [PMID: 37286907 PMCID: PMC10247659 DOI: 10.1007/s40820-023-01124-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023]
Abstract
HIGHLIGHTS The recent development and implementation of metal-organic frameworks (MOFs) and MOF-based materials in electrochemical water applications are reviewed. The critical factors that affect the performances of MOFs in the electrochemical reactions, sensing, and separations are highlighted. Advanced tools, such as pair distribution function analysis, are playing critical roles in unraveling the functioning mechanisms, including local structures and nanoconfined interactions. Metal-organic frameworks (MOFs), a family of highly porous materials possessing huge surface areas and feasible chemical tunability, are emerging as critical functional materials to solve the growing challenges associated with energy-water systems, such as water scarcity issues. In this contribution, the roles of MOFs are highlighted in electrochemical-based water applications (i.e., reactions, sensing, and separations), where MOF-based functional materials exhibit outstanding performances in detecting/removing pollutants, recovering resources, and harvesting energies from different water sources. Compared with the pristine MOFs, the efficiency and/or selectivity can be further enhanced via rational structural modulation of MOFs (e.g., partial metal substitution) or integration of MOFs with other functional materials (e.g., metal clusters and reduced graphene oxide). Several key factors/properties that affect the performances of MOF-based materials are also reviewed, including electronic structures, nanoconfined effects, stability, conductivity, and atomic structures. The advancement in the fundamental understanding of these key factors is expected to shed light on the functioning mechanisms of MOFs (e.g., charge transfer pathways and guest-host interactions), which will subsequently accelerate the integration of precisely designed MOFs into electrochemical architectures to achieve highly effective water remediation with optimized selectivity and long-term stability.
Collapse
Affiliation(s)
- Xiang He
- Department of Mechanical and Civil Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA.
| |
Collapse
|
16
|
Roelsgaard M, Kløve M, Christensen R, Bertelsen AD, Broge NLN, Kantor I, Sørensen DR, Dippel AC, Banerjee S, Zimmermann MV, Glaevecke P, Gutowski O, Jørgensen MRV, Iversen BB. A reactor for time-resolved X-ray studies of nucleation and growth during solvothermal synthesis. J Appl Crystallogr 2023; 56:581-588. [PMID: 37284256 PMCID: PMC10241040 DOI: 10.1107/s1600576723002339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/09/2023] [Indexed: 06/08/2023] Open
Abstract
Understanding the nucleation and growth mechanisms of nanocrystals under hydro- and solvothermal conditions is key to tailoring functional nanomaterials. High-energy and high-flux synchrotron radiation is ideal for characterization by powder X-ray diffraction and X-ray total scattering in real time. Different versions of batch-type cell reactors have been employed in this work, exploiting the robustness of polyimide-coated fused quartz tubes with an inner diameter of 0.7 mm, as they can withstand pressures up to 250 bar and temperatures up to 723 K for several hours. Reported here are recent developments of the in situ setups available for general users on the P21.1 beamline at PETRA III and the DanMAX beamline at MAX IV to study nucleation and growth phenomena in solvothermal synthesis. It is shown that data suitable for both reciprocal-space Rietveld refinement and direct-space pair distribution function refinement can be obtained on a timescale of 4 ms.
Collapse
Affiliation(s)
- Martin Roelsgaard
- Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- MAX IV Laboratory, Lund University, 224 84 Lund, Sweden
| | - Magnus Kløve
- Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Rasmus Christensen
- Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Andreas D. Bertelsen
- Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Nils L. N. Broge
- Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Innokenty Kantor
- MAX IV Laboratory, Lund University, 224 84 Lund, Sweden
- Department of Physics, Technical University of Denmark, 2880 Kongens Lyngby, Denmark
| | - Daniel Risskov Sørensen
- Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- MAX IV Laboratory, Lund University, 224 84 Lund, Sweden
| | - Ann-Christin Dippel
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Soham Banerjee
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | | | - Philipp Glaevecke
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Olof Gutowski
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Mads Ry Vogel Jørgensen
- Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- MAX IV Laboratory, Lund University, 224 84 Lund, Sweden
| | - Bo Brummerstedt Iversen
- Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
17
|
Butova VV, Zdravkova VR, Burachevskaia OA, Tereshchenko AA, Shestakova PS, Hadjiivanov KI. In Situ FTIR Spectroscopy for Scanning Accessible Active Sites in Defect-Engineered UiO-66. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101675. [PMID: 37242091 DOI: 10.3390/nano13101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Three UiO-66 samples were prepared by solvothermal synthesis using the defect engineering approach with benzoic acid as a modulator. They were characterized by different techniques and their acidic properties were assessed by FTIR spectroscopy of adsorbed CO and CD3CN. All samples evacuated at room temperature contained bridging μ3-OH groups that interacted with both probe molecules. Evacuation at 250 °C leads to the dehydroxylation and disappearance of the μ3-OH groups. Modulator-free synthesis resulted in a material with open Zr sites. They were detected by low-temperature CO adsorption on a sample evacuated at 200 °C and by CD3CN even on a sample evacuated at RT. However, these sites were lacking in the two samples obtained with a modulator. IR and Raman spectra revealed that in these cases, the Zr4+ defect sites were saturated by benzoates, which prevented their interaction with probe molecules. Finally, the dehydroxylation of all samples produced another kind of bare Zr sites that did not interact with CO but formed complexes with acetonitrile, probably due to structural rearrangement. The results showed that FTIR spectroscopy is a powerful tool for investigating the presence and availability of acid sites in UiO-66, which is crucial for its application in adsorption and catalysis.
Collapse
Affiliation(s)
- Vera V Butova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- The Smart Materials Research Institute, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Videlina R Zdravkova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Olga A Burachevskaia
- The Smart Materials Research Institute, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Andrei A Tereshchenko
- The Smart Materials Research Institute, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Pavletta S Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Konstantin I Hadjiivanov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
18
|
Direct synthesis of amorphous coordination polymers and metal–organic frameworks. Nat Rev Chem 2023; 7:273-286. [PMID: 37117419 DOI: 10.1038/s41570-023-00474-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
Coordination polymers (CPs) and their subset, metal-organic frameworks (MOFs), can have porous structures and hybrid physicochemical properties that are useful for diverse applications. Although crystalline CPs and MOFs have received the most attention to date, their amorphous states are of growing interest as they can be directly synthesized under mild conditions. Directly synthesized amorphous CPs (aCPs) can be constructed from a wider range of metals and ligands than their crystalline and crystal-derived counterparts and demonstrate numerous unique material properties, such as higher mechanical robustness, increased stability and greater processability. This Review examines methods for the direct synthesis of aCPs and amorphous MOFs, as well as their properties and characterization routes, and offers a perspective on the opportunities for the widespread adoption of directly synthesized aCPs.
Collapse
|
19
|
Van den Eynden D, Pokratath R, Mathew JP, Goossens E, De Buysser K, De Roo J. Fatty acid capped, metal oxo clusters as the smallest conceivable nanocrystal prototypes. Chem Sci 2023; 14:573-585. [PMID: 36741516 PMCID: PMC9847641 DOI: 10.1039/d2sc05037d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022] Open
Abstract
Metal oxo clusters of the type M6O4(OH)4(OOCR)12 (M = Zr or Hf) are valuable building blocks for materials science. Here, we synthesize a series of zirconium and hafnium oxo clusters with ligands that are typically used to stabilize oxide nanocrystals (fatty acids with long and/or branched chains). The fatty acid capped oxo clusters have a high solubility but do not crystallize, precluding traditional purification and single-crystal XRD analysis. We thus develop alternative purification strategies and we use X-ray total scattering and Pair Distribution Function (PDF) analysis as our main method to elucidate the structure of the cluster core. We identify the correct structure from a series of possible clusters (Zr3, Zr4, Zr6, Zr12, Zr10, and Zr26). Excellent refinements are only obtained when the ligands are part of the structure model. Further evidence for the cluster composition is provided by nuclear magnetic resonance (NMR), infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), and mass spectrometry (MS). We find that hydrogen bonded carboxylic acid is an intrinsic part of the oxo cluster. Using our analytical tools, we elucidate the conversion from a Zr6 monomer to a Zr12 dimer (and vice versa), induced by carboxylate ligand exchange. Finally, we compare the catalytic performance of Zr12-oleate clusters with oleate capped, 5.5 nm zirconium oxide nanocrystals in the esterification of oleic acid with ethanol. The oxo clusters present a five times higher reaction rate, due to their higher surface area. Since the oxo clusters are the lower limit of downscaling oxide nanocrystals, we present them as appealing catalytic materials, and as atomically precise model systems. In addition, the lessons learned regarding PDF analysis are applicable to other areas of cluster science as well, from semiconductor and metal clusters, to polyoxometalates.
Collapse
Affiliation(s)
- Dietger Van den Eynden
- Department of Chemistry, University of BaselMattenstrasse 24a4058 BaselSwitzerland,Department of Chemistry, University of GhentKrijgslaan 2819000 GhentBelgium
| | - Rohan Pokratath
- Department of Chemistry, University of BaselMattenstrasse 24a4058 BaselSwitzerland
| | | | - Eline Goossens
- Department of Chemistry, University of BaselMattenstrasse 24a4058 BaselSwitzerland,Department of Chemistry, University of GhentKrijgslaan 2819000 GhentBelgium
| | | | - Jonathan De Roo
- Department of Chemistry, University of BaselMattenstrasse 24a4058 BaselSwitzerland
| |
Collapse
|
20
|
Zhang Y, Li Z, Gao F, Ma Z, Li W, Gao X, Fan G. Two amino acid Cu (II)-MOFs via one-pot method: Exhibiting good catalytic effect on the thermal decomposition of ammonium perchlorate and hexogen. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Laucirica G, Allegretto JA, Wagner MF, Toimil-Molares ME, Trautmann C, Rafti M, Marmisollé W, Azzaroni O. Switchable Ion Current Saturation Regimes Enabled via Heterostructured Nanofluidic Devices Based on Metal-Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207339. [PMID: 36239253 DOI: 10.1002/adma.202207339] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The use of track-etched membranes allows further fine-tuning of transport regimes and thus enables their use in (bio)sensing and energy-harvesting applications, among others. Recently, metal-organic frameworks (MOFs) have been combined with such membranes to further increase their potential. Herein, the creation of a single track-etched nanochannel modified with the UiO-66 MOF is proposed. By the interfacial growth method, UiO-66-confined synthesis fills the nanochannel completely and smoothly, yet its constructional porosity renders a heterostructure along the axial coordinate of the channel. The MOF heterostructure confers notorious changes in the transport regime of the nanofluidic device. In particular, the tortuosity provided by the micro- and mesostructure of UiO-66 added to its charged state leads to iontronic outputs characterized by an asymmetric ion current saturation for transmembrane voltages exceeding 0.3 V. Remarkably, this behavior can be easily and reversibly modulated by changing the pH of the media and it can also be maintained for a wide range of KCl concentrations. In addition, it is found that the modified-nanochannel functionality cannot be explained by considering just the intrinsic microporosity of UiO-66, but rather the constructional porosity that arises during the MOF growth process plays a central and dominant role.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| | - Juan A Allegretto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| | - Michael F Wagner
- GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
- Technische Universität Darmstadt, Materialwissenschaft, 64287, Darmstadt, Germany
| | - Matías Rafti
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| |
Collapse
|
22
|
Kløve M, Christensen RS, Nielsen IG, Sommer S, Jørgensen MRV, Dippel AC, Iversen BB. Zr 4+ solution structures from pair distribution function analysis. Chem Sci 2022; 13:12883-12891. [PMID: 36519061 PMCID: PMC9645415 DOI: 10.1039/d2sc04522b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/13/2022] [Indexed: 08/29/2023] Open
Abstract
The structures of metal ions in solution constitute essential information for obtaining chemical insight spanning from catalytic reaction mechanisms to formation of functional nanomaterials. Here, we explore Zr4+ solution structures using X-ray pair distribution function (PDF) analysis across pH (0-14), concentrations (0.1-1.5 M), solvents (water, methanol, ethanol, acetonitrile) and metal sources (ZrCl4, ZrOCl2·8H2O, ZrO(NO3)2·xH2O). In water, [Zr4(OH)8(OH2)16]8+-tetramers are predominant, while non-aqueous solvents contain monomeric complexes. The PDF analysis also reveals second sphere coordination of chloride counter ions to the aqueous tetramers. The results are reproducible across data measured at three different beamlines at the PETRA-III and MAX IV synchrotron light sources.
Collapse
Affiliation(s)
- Magnus Kløve
- Center for Integrated Materials Research, Department of Chemistry, Interdisciplinary Nanoscience Center (iNANO), Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Rasmus Stubkjær Christensen
- Center for Integrated Materials Research, Department of Chemistry, Interdisciplinary Nanoscience Center (iNANO), Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Ida Gjerlevsen Nielsen
- Center for Integrated Materials Research, Department of Chemistry, Interdisciplinary Nanoscience Center (iNANO), Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Sanna Sommer
- Center for Integrated Materials Research, Department of Chemistry, Interdisciplinary Nanoscience Center (iNANO), Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Mads Ry Vogel Jørgensen
- Center for Integrated Materials Research, Department of Chemistry, Interdisciplinary Nanoscience Center (iNANO), Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
- MAX IV Laboratory, Lund University Fotongatan 2 225 94 Lund Sweden
| | | | - Bo Brummerstedt Iversen
- Center for Integrated Materials Research, Department of Chemistry, Interdisciplinary Nanoscience Center (iNANO), Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
23
|
|
24
|
Tan TTY, Li X, Otake KI, Tan YC, Loh XJ, Kitagawa S, Lim JYC. UiO-66 metal organic frameworks with high contents of flexible adipic acid co-linkers. Chem Commun (Camb) 2022; 58:11402-11405. [PMID: 36129049 DOI: 10.1039/d2cc03285f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adipic acid, an industrially-important chemical that can be sustainably derived from biomass and post-consumer nylon, is traditionally overlooked as a linker for MOFs. Herein, we report the first direct one-pot method for synthesising UiO-66 MOFs with an unprecedented 69 mol% adipate content, as well as the feasibility of these materials for MOF defect engineering by rapid and selective adipate thermolysis.
Collapse
Affiliation(s)
- Tristan T Y Tan
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore.
| | - Xin Li
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore.
| | - Ken-Ichi Otake
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore. .,Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University (KUIAS), Yoshida Ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ying Chuan Tan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), A*STAR, 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Xian Jun Loh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore. .,Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Susumu Kitagawa
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore. .,Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University (KUIAS), Yoshida Ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jason Y C Lim
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore. .,Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
25
|
Tsymbarenko D, Grebenyuk D, Burlakova M, Zobel M. Quick and robust PDF data acquisition using a laboratory single-crystal X-ray diffractometer for study of polynuclear lanthanide complexes in solid form and in solution. J Appl Crystallogr 2022. [DOI: 10.1107/s1600576722005878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Self-assembled polynuclear lanthanide hydroxo complexes are important objects in the reticular chemistry approach to the design of various functional materials. Revealing their structure in the solid state and understanding the molecular mechanism of self-assembly in solution require a universal and reliable structural method. Pair distribution function (PDF) analysis is a powerful technique which enables structural insight for a wide range of crystalline and amorphous materials on the nanoscale, but commonly measurements are performed at synchrotron X-ray sources or on specially designed laboratory diffractometers. In the present paper, a standard Bruker D8 QUEST single-crystal X-ray diffractometer equipped with a micro-focus Mo tube and CMOS Photon III detector was adapted to measure PDF data of high quality with Q
max = 16.97 Å–1 for solid and liquid samples. An improved data collection strategy and the original data reduction software FormagiX enable calibration and azimuthal full-frame integration of 2D frames, delivering reliable PDFs up to 80 Å with instrumental parameters Q
damp = 0.018 Å−1 and Q
broad = 0.010 Å−1. The effectiveness of the developed approach was demonstrated with reference samples and real-case studies of tetranuclear lanthanide hydroxocarboxylates in solid form and in solution.
Collapse
|
26
|
Kollias L, Rousseau R, Glezakou VA, Salvalaglio M. Understanding Metal-Organic Framework Nucleation from a Solution with Evolving Graphs. J Am Chem Soc 2022; 144:11099-11109. [PMID: 35709413 DOI: 10.1021/jacs.1c13508] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A mechanistic understanding of metal-organic framework (MOF) synthesis and scale-up remains underexplored due to the complex nature of the interactions of their building blocks. In this work, we investigate the collective assembly of building units at the early stages of MOF nucleation, using MIL-101(Cr) as a prototypical example. Using large-scale molecular dynamics simulations, we observe that the choice of solvent (water and N,N-dimethylformamide), the introduction of ions (Na+ and F-) and the relative populations of MIL-101(Cr) half-secondary building unit (half-SBU) isomers have a strong influence on the cluster formation process. Additionally, the shape, size, nucleation and growth rates, crystallinity, and short and long-range order largely vary depending on the synthesis conditions. We evaluate these properties as they naturally emerge when interpreting the self-assembly of MOF nuclei as the time evolution of an undirected graph. Solution-induced conformational complexity and ionic concentration have a dramatic effect on the morphology of clusters emerging during assembly. While pure solvents lead to the rapid formation of a small number of large clusters, the presence of ions in aqueous solutions results in smaller clusters and slower nucleation. This diversity is captured by the key features of the graph representation. Principle component analysis on graph properties reveals that only a small number of molecular descriptors is needed to deconvolute MOF self-assembly. Descriptors such as the average coordination number between half-SBUs and fractal dimension are of particulalr interest as they can be can be followed experimentally by techniques like by time-resolved spectroscopy. Ultimately, graph theory emerges as an approach that can be used to understand complex processes revealing molecular descriptors accessible by both simulation and experiment.
Collapse
Affiliation(s)
- Loukas Kollias
- Basic and Applied Molecular Foundations, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Roger Rousseau
- Basic and Applied Molecular Foundations, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Vassiliki-Alexandra Glezakou
- Basic and Applied Molecular Foundations, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Matteo Salvalaglio
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| |
Collapse
|
27
|
Salionov D, Semivrazhskaya OO, Casati NPM, Ranocchiari M, Bjelić S, Verel R, van Bokhoven JA, Sushkevich VL. Unraveling the molecular mechanism of MIL-53(Al) crystallization. Nat Commun 2022; 13:3762. [PMID: 35768412 PMCID: PMC9243051 DOI: 10.1038/s41467-022-31294-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
The vast structural and chemical diversity of metal-organic frameworks (MOFs) provides the exciting possibility of material's design with tailored properties for gas separation, storage and catalysis. However, after more than twenty years after first reports introducing MOFs, the discovery and control of their synthesis remains extremely challenging due to the lack of understanding of mechanisms of their nucleation and growth. Progress in deciphering crystallization pathways depends on the possibility to follow conversion of initial reagents to products at the molecular level, which is a particular challenge under solvothermal conditions. The present work introduces a detailed molecular-level mechanism of the formation of MIL-53(Al), unraveled by combining in situ time-resolved high-resolution mass-spectrometry, magic angle spinning nuclear magnetic resonance spectroscopy and X-ray diffraction. In contrast to the general belief, the crystallization of MIL-53 occurs via a solid-solid transformation mechanism, associated with the spontaneous release of monomeric aluminum. The role of DMF hydrolysis products, formate and dimethylamine, is established. Our study emphasizes the complexity of MOF crystallization chemistry, which requires case-by-case investigation using a combination of advanced in situ methods for following the induction period, the nucleation and growth across the time domain.
Collapse
Affiliation(s)
- Daniil Salionov
- Bioenergy and Catalysis Laboratory, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Olesya O Semivrazhskaya
- Laboratory for Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Nicola P M Casati
- Laboratory for Synchrotron Radiation - Condensed Matter, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Marco Ranocchiari
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Saša Bjelić
- Bioenergy and Catalysis Laboratory, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - René Verel
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Jeroen A van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland.
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
| | - Vitaly L Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland.
| |
Collapse
|
28
|
Ceballos M, Cedrún-Morales M, Rodríguez-Pérez M, Funes-Hernando S, Vila-Fungueiriño JM, Zampini G, Navarro Poupard MF, Polo E, Del Pino P, Pelaz B. High-yield halide-assisted synthesis of metal-organic framework UiO-based nanocarriers. NANOSCALE 2022; 14:6789-6801. [PMID: 35467684 PMCID: PMC9109712 DOI: 10.1039/d1nr08305h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The synthesis of nanosized metal-organic frameworks (NMOFs) is requisite for their application as injectable drug delivery systems (DDSs) and other biorelevant purposes. Herein, we have critically examined the role of different synthetic parameters leading to the production of UiO-66 crystals smaller than 100 nm. Of note, we demonstrate the co-modulator role conferred by halide ions, not only to produce NMOFs with precise morphology and size, but also to significantly improve the reaction yield. The resulting NMOFs are highly crystalline and exhibit sustained colloidal stability in different biologically relevant media. As a proof of concept, these NMOFs were loaded with Rhodamine 6G (R6G), which remained trapped in most common biologically relevant media. When incubated with living mammalian cells, the R6G-loaded NMOFs were efficiently internalized and did not impair cell viability even at relatively high doses.
Collapse
Affiliation(s)
- Manuel Ceballos
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Manuela Cedrún-Morales
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Manuel Rodríguez-Pérez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Samuel Funes-Hernando
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José Manuel Vila-Fungueiriño
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Giulia Zampini
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria F Navarro Poupard
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ester Polo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Del Pino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
29
|
Aquatic arsenic removal with a Zr-MOF constructed via in situ nitroso coupling. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Sapnik AF, Bechis I, Bumstead AM, Johnson T, Chater PA, Keen DA, Jelfs KE, Bennett TD. Multivariate analysis of disorder in metal-organic frameworks. Nat Commun 2022; 13:2173. [PMID: 35449202 PMCID: PMC9023516 DOI: 10.1038/s41467-022-29849-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/30/2022] [Indexed: 12/04/2022] Open
Abstract
The rational design of disordered frameworks is an appealing route to target functional materials. However, intentional realisation of such materials relies on our ability to readily characterise and quantify structural disorder. Here, we use multivariate analysis of pair distribution functions to fingerprint and quantify the disorder within a series of compositionally identical metal–organic frameworks, possessing different crystalline, disordered, and amorphous structures. We find this approach can provide powerful insight into the kinetics and mechanism of structural collapse that links these materials. Our methodology is also extended to a very different system, namely the melting of a zeolitic imidazolate framework, to demonstrate the potential generality of this approach across many areas of disordered structural chemistry. Structural disorder in materials is challenging to characterise. Here, the authors use multivariate analysis of atomic pair distribution functions to study structural collapse and melting of metal–organic frameworks, revealing powerful mechanistic and kinetic insight.
Collapse
Affiliation(s)
- Adam F Sapnik
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Irene Bechis
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Alice M Bumstead
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Timothy Johnson
- Johnson Matthey Technology Centre, Blount's Court, Sonning Common, Reading, RG4 9NH, UK
| | - Philip A Chater
- Diamond Light Source Ltd, Diamond House, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - David A Keen
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Kim E Jelfs
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
| |
Collapse
|
31
|
Pascual-Colino J, Artetxe B, Beobide G, Castillo O, Fidalgo-Mayo ML, Isla-López A, Luque A, Mena-Gutiérrez S, Pérez-Yáñez S. The Chemistry of Zirconium/Carboxylate Clustering Process: Acidic Conditions to Promote Carboxylate-Unsaturated Octahedral Hexamers and Pentanuclear Species. Inorg Chem 2022; 61:4842-4851. [PMID: 35286083 PMCID: PMC9993394 DOI: 10.1021/acs.inorgchem.1c03466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Clustering chemistry is a key point in the design and synthesis of the secondary building units that comprise metal-organic frameworks (MOFs) based on group IV metals. In this work, the first stages of the zirconium-carboxylate clustering process in alcohol/water mixtures are studied in detail using the monocarboxylic benzoic and hydroxybenzoic acids to avoid the polymerization. Mass spectroscopy measurements performed on the reactions revealed the presence of hexa- and pentanuclear species even at low pH values and also evidenced the acid-base nature and pH dependence of the transformation between both species. The control on the chemistry governing the equilibria between these species has allowed us to isolate six new compounds in the solid state. The single-crystal X-ray diffraction analysis revealed that they are closely related to the well-known [Zr6(O)4(OH)4(OOC)12] secondary building unit found in many MOFs by removing carboxylic ligands in the case of the hexameric species ([Zr6(O)4(OH)4(OOC)8(H2O)8]4+) or by additionally removing one of the metal centers in the case of the pentameric entities ([Zr5(O)2(OH)6(OOC)4(H2O)11(alcohol)]6+). Going in detail, the unsaturated hexameric clusters exhibit different dispositions of their eight carboxylate ligands in such a way that the remaining four carboxylate-free positions are arranged according to a square planar or tetrahedral symmetry. It should be highlighted that the pentameric complexes imply an unprecedented core nuclearity in zirconium clusters and thus their isolation provides a novel building block for the design of metal-organic materials.
Collapse
Affiliation(s)
- Jon Pascual-Colino
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, Bilbao E-48080, Spain
| | - Beñat Artetxe
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, Bilbao E-48080, Spain
| | - Garikoitz Beobide
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, Bilbao E-48080, Spain.,BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa E-48940, Spain
| | - Oscar Castillo
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, Bilbao E-48080, Spain.,BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa E-48940, Spain
| | - Maria Luz Fidalgo-Mayo
- Departamento de Química Orgánica e Inorgánica, Facultad de Farmacia, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Vitoria-Gasteiz E-01006, Spain
| | - Ainhoa Isla-López
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, Bilbao E-48080, Spain
| | - Antonio Luque
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, Bilbao E-48080, Spain.,BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa E-48940, Spain
| | - Sandra Mena-Gutiérrez
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, Bilbao E-48080, Spain
| | - Sonia Pérez-Yáñez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa E-48940, Spain.,Departamento de Química Orgánica e Inorgánica, Facultad de Farmacia, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Vitoria-Gasteiz E-01006, Spain
| |
Collapse
|
32
|
Du Bois DR, Wright KR, Bellas MK, Wiesner N, Matzger AJ. Linker Deprotonation and Structural Evolution on the Pathway to MOF-74. Inorg Chem 2022; 61:4550-4554. [PMID: 35254060 DOI: 10.1021/acs.inorgchem.1c03988] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis of MOF-74 (MOF = metal-organic framework) proceeds first through the generation of chemically and topologically distinct materials, referred to as phases, displaying exclusively carboxylate coordination, followed by further deprotonation to enable oxo coordination and MOF-74 formation. The synthesis of Mg-MOF-74 at high concentrations of linker and metal enables the stabilization and characterization of the previously unobserved, exclusively carboxylate coordinating phases. Ex situ and in situ approaches are leveraged to provide the time-resolved observation of Mg-MOF-74 synthesis and the formation of phases that precede Mg-MOF-74 formation as well as metastable phase dissolution. These data support dissolution and redeposition as the mechanism of MOF-74 formation and provide insight into the formation mechanism of MOFs with multiple linker coordination types.
Collapse
|
33
|
Chen X, Li Y, Fu Q, Qin H, Lv J, Yang K, Zhang Q, Zhang H, Wang M. An efficient modulated synthesis of zirconium metal-organic framework UiO-66. RSC Adv 2022; 12:6083-6092. [PMID: 35424546 PMCID: PMC8981973 DOI: 10.1039/d1ra07848h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/10/2022] [Indexed: 11/21/2022] Open
Abstract
The use of large amounts of deleterious solvents in the synthesis of metal-organic frameworks (MOFs) is one of the important factors limiting their application in industry. Herein, we present a detailed study of the synthesis of UiO-66, which was conducted with hydrobromic (HBr) acid as a modulator for the first time, at a high concentration of precursor solution (ZrCl4 and H2BDC, both 0.2 mol L-1). Powder crystals with atypical cuboctahedron structure were obtained which indicated that the HBr acid modulator played roles by competitive coordination and deprotonation modulation, thereby controlling the processes of nucleation and crystal growth. The properties of the obtained materials were systematically characterized and compared with those of materials synthesized with hydrofluoric (HF) acid and hydrochloric (HCl) acid modulators. Despite the high concentration of defectivity, the UiO-66 material synthesized with the HBr acid additive has the characteristics of larger specific surface area, excellent thermal stability and higher porosity in the structure. Besides that, the present protocol has the advantages of high reaction mass efficiency (RME), and feasibility of scalable synthesis, providing a facile and sustainable route to diverse Zr-based MOFs.
Collapse
Affiliation(s)
- Xia Chen
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Yongjie Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Qiang Fu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Hongyun Qin
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Junnan Lv
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Kun Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Qicheng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Hui Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Ming Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| |
Collapse
|
34
|
Yang M, Yang H, Wang X, Lu Y, Yu X, Chen F, Gao J, Di N. Design, Synthesis and Characterization of 2‐Methylimidazole/Zeolitic Imidazolate Framework‐8 for Curing with Epoxy Resin. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202100384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Mengxiao Yang
- Institute of Functional Porous Materials, School of Materials Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Haiming Yang
- Institute of Functional Porous Materials, School of Materials Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Xue Wang
- Institute of Functional Porous Materials, School of Materials Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Yunfeng Lu
- Zhejiang Bofay Electric Co., LTD Haining 314400 China
| | - Xigao Yu
- Zhejiang Bofay Electric Co., LTD Haining 314400 China
| | - Fengfeng Chen
- Institute of Functional Porous Materials, School of Materials Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Junkuo Gao
- Institute of Functional Porous Materials, School of Materials Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang Bofay Electric Co., LTD Haining 314400 China
| | - Ningyu Di
- Zhejiang Bofay Electric Co., LTD Haining 314400 China
| |
Collapse
|
35
|
Terban MW, Billinge SJL. Structural Analysis of Molecular Materials Using the Pair Distribution Function. Chem Rev 2022; 122:1208-1272. [PMID: 34788012 PMCID: PMC8759070 DOI: 10.1021/acs.chemrev.1c00237] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/16/2022]
Abstract
This is a review of atomic pair distribution function (PDF) analysis as applied to the study of molecular materials. The PDF method is a powerful approach to study short- and intermediate-range order in materials on the nanoscale. It may be obtained from total scattering measurements using X-rays, neutrons, or electrons, and it provides structural details when defects, disorder, or structural ambiguities obscure their elucidation directly in reciprocal space. While its uses in the study of inorganic crystals, glasses, and nanomaterials have been recently highlighted, significant progress has also been made in its application to molecular materials such as carbons, pharmaceuticals, polymers, liquids, coordination compounds, composites, and more. Here, an overview of applications toward a wide variety of molecular compounds (organic and inorganic) and systems with molecular components is presented. We then present pedagogical descriptions and tips for further implementation. Successful utilization of the method requires an interdisciplinary consolidation of material preparation, high quality scattering experimentation, data processing, model formulation, and attentive scrutiny of the results. It is hoped that this article will provide a useful reference to practitioners for PDF applications in a wide realm of molecular sciences, and help new practitioners to get started with this technique.
Collapse
Affiliation(s)
- Maxwell W. Terban
- Max
Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Simon J. L. Billinge
- Department
of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
36
|
Firth FCN, Gaultois MW, Wu Y, Stratford JM, Keeble DS, Grey CP, Cliffe MJ. Exploring the Role of Cluster Formation in UiO Family Hf Metal-Organic Frameworks with in Situ X-ray Pair Distribution Function Analysis. J Am Chem Soc 2021; 143:19668-19683. [PMID: 34784470 DOI: 10.1021/jacs.1c06990] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structures of Zr and Hf metal-organic frameworks (MOFs) are very sensitive to small changes in synthetic conditions. One key difference affecting the structure of UiO MOF phases is the shape and nuclearity of Zr or Hf metal clusters acting as nodes in the framework; although these clusters are crucial, their evolution during MOF synthesis is not fully understood. In this paper, we explore the nature of Hf metal clusters that form in different reaction solutions, including in a mixture of DMF, formic acid, and water. We show that the choice of solvent and reaction temperature in UiO MOF syntheses determines the cluster identity and hence the MOF structure. Using in situ X-ray pair distribution function measurements, we demonstrate that the evolution of different Hf cluster species can be tracked during UiO MOF synthesis, from solution stages to the full crystalline framework, and use our understanding to propose a formation mechanism for the hcp UiO-66(Hf) MOF, in which first the metal clusters aggregate from the M6 cluster (as in fcu UiO-66) to the hcp-characteristic M12 double cluster and, following this, the crystalline hcp framework forms. These insights pave the way toward rationally designing syntheses of as-yet unknown MOF structures, via tuning the synthesis conditions to select different cluster species.
Collapse
Affiliation(s)
- Francesca C N Firth
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Michael W Gaultois
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Yue Wu
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Joshua M Stratford
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Dean S Keeble
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Clare P Grey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Cliffe
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
37
|
Stern RD, Kingsbury RS, Persson KA. Aqueous Stability of Zirconium Clusters, Including the Zr(IV) Hexanuclear Hydrolysis Complex [Zr 6O 4(OH) 4(H 2O) 24] 12+, from Density Functional Theory. Inorg Chem 2021; 60:15456-15466. [PMID: 34619971 DOI: 10.1021/acs.inorgchem.1c02078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Framework materials constitute a broad family of solids that range from zeolites and metal-organic frameworks (MOFs) to coordination polymers. The synthesis of such network structures typically rely on precursor molecular building blocks. As an example, the UiO-66 MOF series is constructed of hexanuclear [Zr6O4(OH)4(CO2)12] cluster nodes and linear carboxylate linkers. Unfortunately, these Zr MOF cluster nodes cannot currently be manufactured in a sustainable way, motivating a search for "green" alternative synthesis methods. Stabilizing the hexanuclear Zr(IV) cluster (i.e., the hexamer, {Zr612+}) without the use of organic ligation would enable the use of environmentally friendly solvents such as water. The Zr(IV) tetranuclear cluster (i.e., the tetramer, {Zr48+}) can be stabilized in solution with or without organic ligands, yet the hexamer has yet to be synthesized without supporting ligands. The reasons why certain zirconium clusters are favored in aqueous solution over others are not well understood. This study reports the relative thermodynamic instability of the hypothetical hexamer {Zr612+} compared to the ubiquitous {Zr48+} tetramer. Density functional theory calculations were performed to obtain the hydrolysis Gibbs free energy of these species and used to construct Zr Pourbaix diagrams that illustrate the effects of electrochemical potential, pH, and Zr(IV) concentration. It was found that the aqueous {Zr612+} hexamer is ∼17.8 kcal/mol less stable than the aqueous {Zr48+} tetramer at pH = 0, V = 0, and [Zr(IV)] = 1 M, which is an energy difference on the order of counterion interactions. Electronic structure analyses were used to explore trends in the highest occupied molecular orbital-lowest unoccupied molecular orbital gap, frontier molecular orbitals, and electrostatic potential distribution of these clusters. The evidence suggests that the aqueous {Zr612+} hexamer may be promoted with more strategic syntheses incorporating minimal ligands and counterions.
Collapse
Affiliation(s)
- Rebecca D Stern
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - Ryan S Kingsbury
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - Kristin A Persson
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, United States.,Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
38
|
Christensen RS, Kløve M, Roelsgaard M, Sommer S, Iversen BB. Unravelling the complex formation mechanism of HfO 2 nanocrystals using in situ pair distribution function analysis. NANOSCALE 2021; 13:12711-12719. [PMID: 34477621 DOI: 10.1039/d1nr03044b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hafnia, HfO2, which is a wide band gap semiconducting oxide, is much less studied than the chemically similar zirconia (ZrO2). Here, we study the formation of hafnia nanocrystals from hafnium tetrachloride in methanol under solvothermal conditions (248 bar, 225-450 °C) using complementary in situ powder X-ray diffraction (PXRD) and Pair Distribution Function (PDF) analysis. The main structural motif of the precursor solution (HfCl4 dissolved in methanol) is a Hf oxide trimer with very similar local structure to that of m-HfO2. Different measurements on precursor solutions show large intensity variation for the Hf-Cl correlations signifying different extents of HCl elimation. A few seconds of heating lead to a correlation appearing at 3.9 Å corresponding to corner-sharing Hf-polyhedra in a disordered solid matrix. During the next minutes (depending on temperature) the disordered structure rearranges and the nearest neighbour Hf-Hf distance contracts while the Hf-O coordination number increases. After approximately 90 seconds (at T = 250 °C) the structural rearrangement terminates and 1-2 nm nanocrystals of m-HfO2 nucleate. Initially the m-HfO2 nanocrystals have significant disorder as reflected in large Hf atomic displacement parameter (ADP) values, but as the nanocrystals grow to 5-6 nm in size during extended heating, the Hf ADPs decrease toward the values obtained for ordered bulk structures. The nanocrystal growth is not well modelled by the Johnson-Mehl-Avrami expression reflecting that multiple complex chemical processes occur during this highly nonclassical nanocrystal formation under solvothermal conditions.
Collapse
Affiliation(s)
- Rasmus S Christensen
- Center for Materials Crystallography, Department of Chemistry and iNano, Aarhus University, Denmark.
| | | | | | | | | |
Collapse
|
39
|
Sapnik AF, Bechis I, Collins SM, Johnstone DN, Divitini G, Smith AJ, Chater PA, Addicoat MA, Johnson T, Keen DA, Jelfs KE, Bennett TD. Mixed hierarchical local structure in a disordered metal-organic framework. Nat Commun 2021; 12:2062. [PMID: 33824324 PMCID: PMC8024318 DOI: 10.1038/s41467-021-22218-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/04/2021] [Indexed: 02/01/2023] Open
Abstract
Amorphous metal-organic frameworks (MOFs) are an emerging class of materials. However, their structural characterisation represents a significant challenge. Fe-BTC, and the commercial equivalent Basolite® F300, are MOFs with incredibly diverse catalytic ability, yet their disordered structures remain poorly understood. Here, we use advanced electron microscopy to identify a nanocomposite structure of Fe-BTC where nanocrystalline domains are embedded within an amorphous matrix, whilst synchrotron total scattering measurements reveal the extent of local atomic order within Fe-BTC. We use a polymerisation-based algorithm to generate an atomistic structure for Fe-BTC, the first example of this methodology applied to the amorphous MOF field outside the well-studied zeolitic imidazolate framework family. This demonstrates the applicability of this computational approach towards the modelling of other amorphous MOF systems with potential generality towards all MOF chemistries and connectivities. We find that the structures of Fe-BTC and Basolite® F300 can be represented by models containing a mixture of short- and medium-range order with a greater proportion of medium-range order in Basolite® F300 than in Fe-BTC. We conclude by discussing how our approach may allow for high-throughput computational discovery of functional, amorphous MOFs.
Collapse
Affiliation(s)
- Adam F Sapnik
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Irene Bechis
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, UK
| | - Sean M Collins
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
- School of Chemical and Process Engineering & School of Chemistry, University of Leeds, Leeds, UK
| | - Duncan N Johnstone
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Giorgio Divitini
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Andrew J Smith
- Diamond Light Source Ltd, Diamond House, Harwell Campus, Didcot, Oxfordshire, UK
| | - Philip A Chater
- Diamond Light Source Ltd, Diamond House, Harwell Campus, Didcot, Oxfordshire, UK
| | - Matthew A Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, UK
| | - Timothy Johnson
- Johnson Matthey Technology Centre, Blount's Court, Sonning Common, Reading, UK
| | - David A Keen
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, UK
| | - Kim E Jelfs
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, UK
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK.
| |
Collapse
|
40
|
Colliard I, Nyman M. Ce IV 70 Oxosulfate Rings, Frameworks, Supramolecular Assembly, and Redox Activity*. Angew Chem Int Ed Engl 2021; 60:7308-7315. [PMID: 33415775 DOI: 10.1002/anie.202016522] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Indexed: 12/18/2022]
Abstract
MIV molecular oxo-clusters (M=Zr, Hf, Ce, Th, U, Np, Pu) are prolific in bottoms-up material design, catalysis, and elucidating reaction pathways in nature and in synthesis. Here we introduce Ce70 , a wheel-shaped oxo-cluster, [CeIV 70 (OH)36 (O)64 (SO4 )60 (H2 O)10 ]4- . Ce70 crystallizes into intricate high pore volume frameworks with divalent transition metals and Ce-monomer linkers. Eight crystal-structures feature four framework types in which the Ce70 -rings are linked as propellers, in offset-stacks, in a tartan pattern, and as isolated rings. Small-angle X-ray scattering of Ce70 dissolved in butylamine, with and without added cations (CeIV , alkaline earths, MnII ), shows the metals' differentiating roles in ring linking, leading to supramolecular assemblies. The large acidic pores and abundant terminal sulfates provide ion-exchange behavior, demonstrated with UIV and NdIII . Frameworks featuring CeIII/IV -monomer linkers demonstrate both oxidation and reduction. This study opens the door to mixed-metal, highly porous framework catalysts, and new clusters for metal-organic framework design.
Collapse
Affiliation(s)
- Ian Colliard
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
41
|
Abstract
Metal-organic frameworks (MOFs) are crystalline nanoporous materials with great potential for a wide range of industrial applications. Understanding the nucleation and early growth stages of these materials from a solution is critical for their design and synthesis. Despite their importance, the pathways through which MOFs nucleate are largely unknown. Using a combination of in situ liquid-phase and cryogenic transmission electron microscopy, we show that zeolitic imidazolate framework-8 MOF nanocrystals nucleate from precursor solution via three distinct steps: 1) liquid-liquid phase separation into solute-rich and solute-poor regions, followed by 2) direct condensation of the solute-rich region into an amorphous aggregate and 3) crystallization of the aggregate into a MOF. The three-step pathway for MOF nucleation shown here cannot be accounted for by conventional nucleation models and provides direct evidence for the nonclassical nucleation pathways in open-framework materials, suggesting that a solute-rich phase is a common precursor for crystallization from a solution.
Collapse
|
42
|
Colliard I, Nyman M. Ce
IV
70
Oxosulfate Rings, Frameworks, Supramolecular Assembly, and Redox Activity**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ian Colliard
- Department of Chemistry Oregon State University Corvallis OR 97331 USA
| | - May Nyman
- Department of Chemistry Oregon State University Corvallis OR 97331 USA
| |
Collapse
|
43
|
Terban MW, Ghose SK, Plonka AM, Troya D, Juhás P, Dinnebier RE, Mahle JJ, Gordon WO, Frenkel AI. Atomic resolution tracking of nerve-agent simulant decomposition and host metal-organic framework response in real space. Commun Chem 2021; 4:2. [PMID: 36697507 PMCID: PMC9814582 DOI: 10.1038/s42004-020-00439-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/27/2020] [Indexed: 01/29/2023] Open
Abstract
Gas capture and sequestration are valuable properties of metal-organic frameworks (MOFs) driving tremendous interest in their use as filtration materials for chemical warfare agents. Recently, the Zr-based MOF UiO-67 was shown to effectively adsorb and decompose the nerve-agent simulant, dimethyl methylphosphonate (DMMP). Understanding mechanisms of MOF-agent interaction is challenging due to the need to distinguish between the roles of the MOF framework and its particular sites for the activation and sequestration process. Here, we demonstrate the quantitative tracking of both framework and binding component structures using in situ X-ray total scattering measurements of UiO-67 under DMMP exposure, pair distribution function analysis, and theoretical calculations. The sorption and desorption of DMMP within the pores, association with linker-deficient Zr6 cores, and decomposition to irreversibly bound methyl methylphosphonate were directly observed and analyzed with atomic resolution.
Collapse
Affiliation(s)
- Maxwell W. Terban
- grid.419552.e0000 0001 1015 6736Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Sanjit K. Ghose
- grid.202665.50000 0001 2188 4229National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, NY 11973 USA
| | - Anna M. Plonka
- grid.36425.360000 0001 2216 9681Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, NY 11794 USA
| | - Diego Troya
- grid.438526.e0000 0001 0694 4940Department of Chemistry, Virginia Tech, Blacksburg, VA 24061 USA
| | - Pavol Juhás
- grid.202665.50000 0001 2188 4229Computational Science Initiative, Brookhaven National Laboratory, Upton, New York, NY 11973 USA
| | - Robert E. Dinnebier
- grid.419552.e0000 0001 1015 6736Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - John J. Mahle
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD 21010 USA
| | - Wesley O. Gordon
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD 21010 USA
| | - Anatoly I. Frenkel
- grid.36425.360000 0001 2216 9681Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, NY 11794 USA ,grid.202665.50000 0001 2188 4229Chemistry Division, Brookhaven National Laboratory, Upton, New York, NY 11973 USA
| |
Collapse
|
44
|
Dai S, Nouar F, Zhang S, Tissot A, Serre C. One-Step Room-Temperature Synthesis of Metal(IV) Carboxylate Metal-Organic Frameworks. Angew Chem Int Ed Engl 2020; 60:4282-4288. [PMID: 33179846 DOI: 10.1002/anie.202014184] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Indexed: 11/08/2022]
Abstract
Room-temperature syntheses of metal-organic frameworks (MOFs) are of interest to meet the demand of the sustainable chemistry and are a pre-requisite for the incorporation of functional compounds in water-stable MOFs. However, only few routes under ambient conditions have been reported to produce metal(IV)-based MOFs. Reported here is a new versatile one-step synthesis of a series of highly porous M6 -oxocluster-based MOFs (M=Zr, Hf, Ce) at room temperature, including 8- or 12-connected micro/mesoporous solids with different functionalized organic ligands. The compounds show varying degrees of defects, particularly for 12-connected phases, while maintaining the chemical stability of the parent MOFs. Proposed here are first insights into in situ kinetics observations for efficient MOF preparation. Remarkably, the synthesis has a high space-time yield and also provides the possibility to tune the particle size, therefore paving the way for their practical use.
Collapse
Affiliation(s)
- Shan Dai
- Institut des Matériaux Poreux de Paris, UMR 8004 Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France.,State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 3663, North Zhongshan Road, Shanghai, 200062, China
| | - Farid Nouar
- Institut des Matériaux Poreux de Paris, UMR 8004 Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 3663, North Zhongshan Road, Shanghai, 200062, China
| | - Antoine Tissot
- Institut des Matériaux Poreux de Paris, UMR 8004 Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, UMR 8004 Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| |
Collapse
|
45
|
Dai S, Nouar F, Zhang S, Tissot A, Serre C. One‐Step Room‐Temperature Synthesis of Metal(IV) Carboxylate Metal—Organic Frameworks. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202014184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shan Dai
- Institut des Matériaux Poreux de Paris UMR 8004 Ecole Normale Supérieure ESPCI Paris CNRS PSL University 75005 Paris France
- State Key Laboratory of Precision Spectroscopy East China Normal University No. 3663, North Zhongshan Road Shanghai 200062 China
| | - Farid Nouar
- Institut des Matériaux Poreux de Paris UMR 8004 Ecole Normale Supérieure ESPCI Paris CNRS PSL University 75005 Paris France
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy East China Normal University No. 3663, North Zhongshan Road Shanghai 200062 China
| | - Antoine Tissot
- Institut des Matériaux Poreux de Paris UMR 8004 Ecole Normale Supérieure ESPCI Paris CNRS PSL University 75005 Paris France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris UMR 8004 Ecole Normale Supérieure ESPCI Paris CNRS PSL University 75005 Paris France
| |
Collapse
|
46
|
Castillo-Blas C, Romero-Muñiz I, Mavrandonakis A, Simonelli L, Platero-Prats AE. Unravelling the local structure of catalytic Fe-oxo clusters stabilized on the MOF-808 metal organic-framework. Chem Commun (Camb) 2020; 56:15615-15618. [PMID: 33290455 DOI: 10.1039/d0cc06134d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stabilizing catalytic iron-oxo-clusters within nanoporous metal-organic frameworks (MOFs) is a powerful strategy to prepare new active materials for the degradation of toxic chemicals, such as bisphenol A. Herein, we combine pair distribution function analysis of total X-ray scattering data and X-ray absorption spectroscopy, with computational modelling to understand the local structural nature of added redox-active iron-oxo clusters bridging neighbouring zirconia-nodes within MOF-808.
Collapse
Affiliation(s)
- Celia Castillo-Blas
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain.
| | | | | | | | | |
Collapse
|
47
|
Rani L, Kaushal J, Srivastav AL, Mahajan P. A critical review on recent developments in MOF adsorbents for the elimination of toxic heavy metals from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44771-44796. [PMID: 32975757 DOI: 10.1007/s11356-020-10738-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Effective and substantial remediation of contaminants especially heavy metals from water is still a big challenge in terms of both environmental and biological perspectives because of their adverse effects on the human health. Many techniques including adsorption, ion exchange, co-precipitation, chemical reduction, ultrafiltration, etc. are reported for eliminating heavy metal ions from the water. However, adsorption has preferred because of its simple and easy handlings. Several types of adsorbents are observed and documented well for the purpose. Recently, highly porous metal-organic frameworks (MOFs) were developed by incorporating metals and organic ligands together and claimed as potent adsorbents for the remediation of highly toxic heavy metals from the aqueous solutions due to their unique features like greater surface area, high chemical stability, green and reuse material, etc. In this review, the authors discussed systematically some recent developments about secure MOFs to eliminate the toxic metals such as arsenic (both arsenite and arsenate), chromium(VI), cadmium (Cd), mercury (Hg) and lead (Pb). MOFs are observed as the most efficient adsorbents with greater selectivity as well as high adsorption capacity for metallic contamination. Graphical abstract.
Collapse
Affiliation(s)
- Lata Rani
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
- Chitkara University School of Basic Sciences, Chitkara University, Baddi, Himachal Pradesh, India
| | - Jyotsna Kaushal
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India.
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Baddi, Himachal Pradesh, India
| | - Pooja Mahajan
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
48
|
Affiliation(s)
- Nicolas P. Martin
- Department of Chemistry Oregon State University Gilbert Hall Corvallis Oregon 97331 USA
| | - May Nyman
- Department of Chemistry Oregon State University Gilbert Hall Corvallis Oregon 97331 USA
| |
Collapse
|
49
|
Martin NP, Nyman M. Directional Bonding in Decaniobate Inorganic Frameworks. Angew Chem Int Ed Engl 2020; 60:954-960. [PMID: 32959487 DOI: 10.1002/anie.202010902] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Indexed: 12/28/2022]
Abstract
Metal-oxo clusters offer an opportunity to assemble inorganic and metal-organic frameworks (MOFs) by a controlled building-block approach, which led to the revolutionary discoveries of zeolites and MOFs. Polyoxometalate clusters are soluble in water, but more challenging to link into frameworks; the inert oxo-caps that provide solubility are resistant to replacement or further connectivity. We demonstrate how the unique directional bonding and varying basicity of the decaniobate ([Nb10 ]) oxo-caps can be exploited to build 1D, 2D, and 3D inorganic frameworks. In nine structures, A+ (A=Li, Na, K, Rb and Cs), AE2+ (AE=Ca, Sr, Ba) and Mn2+ demonstrate that the dimensionality of the obtained material is controlled by cation charge and size. Increased cation charge decreases selectivity for oxo-site bonding, leading to higher dimensional linking. Larger cation radii also decreases bonding selectivity, yielding higher dimensional materials. Ion-exchange studies of the A+ -Nb10 family shows exclusive selectivity for Cs+ over other alkalis, which is important for radioactive Cs removal and sequestration.
Collapse
Affiliation(s)
- Nicolas P Martin
- Department of Chemistry, Oregon State University, Gilbert Hall, Corvallis, Oregon, 97331, USA
| | - May Nyman
- Department of Chemistry, Oregon State University, Gilbert Hall, Corvallis, Oregon, 97331, USA
| |
Collapse
|
50
|
Kollias L, Cantu DC, Glezakou V, Rousseau R, Salvalaglio M. On the Role of Enthalpic and Entropic Contributions to the Conformational Free Energy Landscape of MIL‐101(Cr) Secondary Building Units. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Loukas Kollias
- Thomas Young Centre and Department of Chemical Engineering University College London London WC1E 7JE UK
| | - David C. Cantu
- Chemical and Materials Engineering Department University of Nevada Reno Reno NV 89557 USA
| | | | - Roger Rousseau
- Basic and Applied Molecular Foundations Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Matteo Salvalaglio
- Thomas Young Centre and Department of Chemical Engineering University College London London WC1E 7JE UK
| |
Collapse
|