1
|
Cararo-Lopes MM, Sadovnik R, Fu A, Suresh S, Gandu S, Firestein BL. Overexpression of α-Klotho isoforms promotes distinct Effects on BDNF-Induced Alterations in Dendritic Morphology. Mol Neurobiol 2024; 61:9155-9170. [PMID: 38589756 PMCID: PMC11496329 DOI: 10.1007/s12035-024-04171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
α-Klotho (α-Kl) is a modulator of aging, neuroprotection, and cognition. Transcription of the Klotho gene produces two splice variants-a membrane protein (mKl), which can be cleaved and released into the extracellular milieu, and a truncated secreted form (sKl). Despite mounting evidence supporting a role for α-Kl in brain function, the specific roles of α-Kl isoforms in neuronal development remain elusive. Here, we examined α-Kl protein levels in rat brain and observed region-specific expression in the adult that differs between isoforms. In the developing hippocampus, levels of isoforms decrease after the third postnatal week, marking the end of the critical period for development. We overexpressed α-Kl isoforms in primary cultures of rat cortical neurons and evaluated effects on brain-derived neurotrophic factor (BDNF) signaling. Overexpression of either isoform attenuated BDNF-mediated signaling and reduced intracellular Ca2+ levels, with mKl promoting a greater effect. mKl or sKl overexpression in hippocampal neurons resulted in a partially overlapping reduction in secondary dendrite branching. Moreover, mKl overexpression increased primary dendrite number. BDNF treatment of neurons overexpressing sKl resulted in a dendrite branching phenotype similar to control neurons. In neurons overexpressing mKl, BDNF treatment restored branching of secondary and higher order dendrites close, but not distal, to the soma. Taken together, the data presented support the idea that sKl and mKl play distinct roles in neuronal development, and specifically, in dendrite morphogenesis.
Collapse
Affiliation(s)
- Marina Minto Cararo-Lopes
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Cell and Developmental Biology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ratchell Sadovnik
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Allen Fu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Shradha Suresh
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Neuroscience Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Srinivasa Gandu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Cell and Developmental Biology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
2
|
Nist MD, Pickler RH, Shoben AB, Conley YP. DNA Methylation, Inflammation, and Neurobehavior in Preterm Infants. Biol Res Nurs 2024; 26:547-558. [PMID: 38840298 DOI: 10.1177/10998004241257664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Objectives: Inflammation contributes to disparate neurodevelopmental outcomes between preterm and term-born infants. In this context, DNA methylation may contribute to inflammation by affecting gene expression. Brain-derived neurotrophic factor (BDNF) and nuclear factor-kappa-B-inhibitor alpha (NFKBIA) are important genes for targeted DNA methylation analysis. The aims of this study were to (1) identify associations between inflammatory factors and BDNF and NFKBIA methylation, and (2) identify associations between BDNF and NFKBIA methylation and early neurobehavior in preterm infants. Methods: In a longitudinal cohort study of preterm infants born 28-31 weeks gestational age, blood samples were collected weekly for the quantification of inflammatory factors. We extracted DNA from saliva samples and quantified methylation of six BDNF cytosine-phosphate-guanine (CpG) sites and five NFKBIA CpG sites. Neurobehavior was assessed using the Neurobehavioral Assessment of the Preterm Infant. Results: Sixty-five infants were included in the analysis. In females, inflammatory factors were positively associated with BDNF methylation of most CpG sites. Interleukin-1 receptor antagonist was negatively associated with NFKBIA methylation at two CpG sites. In males, interleukin-6 was negatively associated with BDNF and NFKBIA methylation at most CpG sites. In females, BDNF methylation at two sites was inversely associated with motor performance. In males, NFKBIA methylation at one site was inversely associated with motor performance. Conclusion: This study provides evidence for the relationship between inflammation and neurobehavior in preterm infants, working mechanistically through DNA methylation. The finding of a difference between males and females suggests that female infants are potentially more vulnerable to inflammation and warrants future study.
Collapse
Affiliation(s)
| | - Rita H Pickler
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Abigail B Shoben
- College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Gao AYL, Inglebert Y, Shi R, Ilie A, Popic J, Mustian J, Sonenberg N, Orlowski J, McKinney RA. Impaired hippocampal plasticity associated with loss of recycling endosomal SLC9A6/NHE6 is ameliorated by the TrkB agonist 7,8-dihydroxyflavone. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167529. [PMID: 39341363 DOI: 10.1016/j.bbadis.2024.167529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/31/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Proper maintenance of intracellular vesicular pH is essential for cargo trafficking during synaptic function and plasticity. Mutations in the SLC9A6 gene encoding the recycling endosomal pH regulator (Na+, K+)/H+ exchanger isoform 6 (NHE6) are causal for Christianson syndrome (CS), a severe form of X-linked intellectual disability. NHE6 expression is also downregulated in other neurodevelopmental and neurodegenerative disorders, such as autism spectrum disorder and Alzheimer's disease, suggesting its dysfunction could contribute more broadly to the pathophysiology of other neurological conditions. To understand how ablation of NHE6 function leads to severe learning impairments, we assessed synaptic structure, function, and cellular mechanisms of learning in a novel line of Nhe6 knockout (KO) mice expressing a plasma membrane-tethered green fluorescent protein within hippocampal neurons. We uncovered significant reductions in dendritic spines density, AMPA receptor (AMPAR) expression, and AMPAR-mediated neurotransmission in CA1 pyramidal neurons. The neurons also failed to undergo functional and structural enhancement during long-term potentiation (LTP). Significantly, the selective TrkB agonist 7,8-dihydroxyflavone restored spine density as well as functional and structural LTP in KO neurons. TrkB activation thus may act as a potential clinical intervention to ameliorate cognitive deficits in CS and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Andy Y L Gao
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - Yanis Inglebert
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - Roy Shi
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - Alina Ilie
- Department of Physiology, McGill University, Montreal, Canada
| | - Jelena Popic
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Jamie Mustian
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, Canada
| | - John Orlowski
- Department of Physiology, McGill University, Montreal, Canada
| | - R Anne McKinney
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada.
| |
Collapse
|
4
|
Aksan B, Kenkel AK, Yan J, Sánchez Romero J, Missirlis D, Mauceri D. VEGFD signaling balances stability and activity-dependent structural plasticity of dendrites. Cell Mol Life Sci 2024; 81:354. [PMID: 39158743 PMCID: PMC11335284 DOI: 10.1007/s00018-024-05357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024]
Abstract
Mature neurons have stable dendritic architecture, which is essential for the nervous system to operate correctly. The ability to undergo structural plasticity, required to support adaptive processes like memory formation, is still present in mature neurons. It is unclear what molecular and cellular processes control this delicate balance between dendritic structural plasticity and stabilization. Failures in the preservation of optimal dendrite structure due to atrophy or maladaptive plasticity result in abnormal connectivity and are associated with various neurological diseases. Vascular endothelial growth factor D (VEGFD) is critical for the maintenance of mature dendritic trees. Here, we describe how VEGFD affects the neuronal cytoskeleton and demonstrate that VEGFD exerts its effects on dendrite stabilization by influencing the actin cortex and reducing microtubule dynamics. Further, we found that during synaptic activity-induced structural plasticity VEGFD is downregulated. Our findings revealed that VEGFD, acting on its cognate receptor VEGFR3, opposes structural changes by negatively regulating dendrite growth in cultured hippocampal neurons and in vivo in the adult mouse hippocampus with consequences on memory formation. A phosphoproteomic screening identified several regulatory proteins of the cytoskeleton modulated by VEGFD. Among the actin cortex-associated proteins, we found that VEGFD induces dephosphorylation of ezrin at tyrosine 478 via activation of the striatal-enriched protein tyrosine phosphatase (STEP). Activity-triggered structural plasticity of dendrites was impaired by expression of a phospho-deficient mutant ezrin in vitro and in vivo. Thus, VEGFD governs the equilibrium between stabilization and plasticity of dendrites by acting as a molecular brake of structural remodeling.
Collapse
Affiliation(s)
- Bahar Aksan
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Ann-Kristin Kenkel
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Jing Yan
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Javier Sánchez Romero
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Dimitris Missirlis
- Department of Cellular Biophysics, Max-Planck-Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany.
- Department Molecular and Cellular Neuroscience, Institute of Anatomy and Cell Biology, University of Marburg, Robert-Koch-Str. 8, 35032, Marburg, Germany.
| |
Collapse
|
5
|
Eckardt N, Sinke C, Bleich S, Lichtinghagen R, Zedler M. Investigation of the relationship between neuroplasticity and grapheme-color synesthesia. Front Neurosci 2024; 18:1434309. [PMID: 39224579 PMCID: PMC11366591 DOI: 10.3389/fnins.2024.1434309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Grapheme-color synesthesia is a normal and healthy variation of human perception. It is characterized by the association of letters or numbers with color perceptions. The etiology of synesthesia is not yet fully understood. Theories include hyperconnectivity in the brain, cross-activation of adjacent or functionally proximate sensory areas of the brain, or various models of lack of inhibitory function in the brain. The growth factor brain-derived neurotrophic (BDNF) plays an important role in the development of neurons, neuronal pathways, and synapses, as well as in the protection of existing neurons in both the central and peripheral nervous systems. ELISA methods were used to compare BDNF serum concentrations between healthy test subjects with and without grapheme-color synesthesia to establish a connection between concentration and the occurrence of synesthesia. The results showed that grapheme-color synesthetes had an increased BDNF serum level compared to the matched control group. Increased levels of BDNF can enhance the brain's ability to adapt to changing environmental conditions, injuries, or experiences, resulting in positive effects. It is discussed whether the integration of sensory information is associated with or results from increased neuroplasticity. The parallels between neurodegeneration and brain regeneration lead to the conclusion that synesthesia, in the sense of an advanced state of consciousness, is in some cases a more differentiated development of the brain rather than a relic of early childhood.
Collapse
Affiliation(s)
- Nadine Eckardt
- Department for Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Christopher Sinke
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Division of Clinical Psychology & Sexual Medicine, Hannover Medical School, Hanover, Germany
| | - Stefan Bleich
- Department for Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Ralf Lichtinghagen
- Institute of Clinical Chemistry, Hannover Medical School, Hanover, Germany
| | - Markus Zedler
- Department for Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| |
Collapse
|
6
|
Ceylan Hİ, Silva AF, Ramirez-Campillo R, Murawska-Ciałowicz E. Exploring the Effect of Acute and Regular Physical Exercise on Circulating Brain-Derived Neurotrophic Factor Levels in Individuals with Obesity: A Comprehensive Systematic Review and Meta-Analysis. BIOLOGY 2024; 13:323. [PMID: 38785805 PMCID: PMC11117522 DOI: 10.3390/biology13050323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Obesity is a major global health concern linked to cognitive impairment and neurological disorders. Circulating brain-derived neurotrophic factor (BDNF), a protein crucial for neuronal growth and survival, plays a vital role in brain function and plasticity. Notably, obese individuals tend to exhibit lower BDNF levels, potentially contributing to cognitive decline. Physical exercise offers health benefits, including improved circulating BDNF levels and cognitive function, but the specific impacts of acute versus regular exercise on circulating BDNF levels in obesity are unclear. Understanding this can guide interventions to enhance brain health and counter potential cognitive decline in obese individuals. Therefore, this study aimed to explore the impact of acute and regular physical exercise on circulating BDNF in individuals with obesity. The target population comprised individuals classified as overweight or obese, encompassing both acute and chronic protocols involving all training methods. A comprehensive search was conducted across computerized databases, including PubMed, Academic Search Complete, and Web of Science, in August 2022, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Initially, 98 studies were identified, from which 16 studies, comprising 23 trials, met the selection criteria. Substantial heterogeneity was observed for both acute (I2 = 80.4%) and long-term effects (I2 = 88.7%), but low risk of bias for the included studies. A single session of exercise increased circulating BDNF levels among obese patients compared to the control group (ES = 1.25, 95% CI = 0.19 to 2.30, p = 0.021). However, with extended periods of physical exercise, there was no significant increase in circulating BDNF levels when compared to the control group (ES = 0.49, 95% CI = -0.08 to 1.06, p = 0.089). These findings highlight the need to consider exercise duration and type when studying neurobiological responses in obesity and exercise research. The study's results have implications for exercise prescription in obesity management and highlight the need for tailored interventions to optimize neurotrophic responses. Future research should focus on elucidating the adaptive mechanisms and exploring novel strategies to enhance BDNF modulation through exercise in this population. However, further research is needed considering limitations such as the potential age-related confounding effects due to diverse participant ages, lack of sex-specific analyses, and insufficient exploration of how specific exercise parameters (e.g., duration, intensity, type) impact circulating BDNF.
Collapse
Affiliation(s)
- Halil İbrahim Ceylan
- Physical Education and Sports Teaching Department, Kazim Karabekir Faculty of Education, Ataturk University, 25240 Erzurum, Turkey
| | - Ana Filipa Silva
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), 4960-320 Melgaço, Portugal
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago de Chile 7591538, Chile;
| | - Eugenia Murawska-Ciałowicz
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, Wrocław University of Health and Sport Sciences, 51-612 Wrocław, Poland;
| |
Collapse
|
7
|
You S, Ma Z, Zhang P, Xu W, Zhan C, Sang N, Xu J, Wang F, Zhang J. Neuroprotective effects of the salidroside derivative SHPL-49 via the BDNF/TrkB/Gap43 pathway in rats with cerebral ischemia. Biomed Pharmacother 2024; 174:116460. [PMID: 38520864 DOI: 10.1016/j.biopha.2024.116460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
Ischemic stroke is a common intravascular disease and one of the leading causes of death and disability. The salidroside derivative SHPL-49, which we previously synthesized, significantly attenuates cerebral ischemic injury in a rat model of permanent middle cerebral artery occlusion. To explore the neuroprotective mechanism of SHPL-49, the effects of SHPL-49 on the expression levels of neurotrophic factors in neurons and microglia and the polarization of microglia were investigated in the present study. SHPL-49 activated the brain-derived neurotrophic factor (BDNF) pathway, decreased the number of degenerated neurons, and accelerated neurogenesis in rats with cerebral ischemia. In addition, SHPL-49 promoted the polarization of microglia toward the M2 phenotype to alleviate neuroinflammation. In BV2 cells, SHPL-49 upregulated CD206 mRNA and protein levels and inhibited CD86 mRNA and protein levels. SHPL-49 also increased neurotrophic factor secretion in BV2 cells, which indirectly promoted the survival of primary neurons after oxygen-glucose deprivation (OGD). Proteomics analysis revealed that SHPL-49 promoted growth-associated protein 43 (Gap43) expression. SHPL-49 enhanced synaptic plasticity and increased Gap43 protein levels via activation of the BDNF pathway in the OGD primary neuron model. These results indicate that SHPL-49 prevents cerebral ischemic injury by activating neurotrophic factor pathways and altering microglial polarization. Thus, SHPL-49 is a potential neuroprotective agent.
Collapse
Affiliation(s)
- Suxin You
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhouyun Ma
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pei Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenwen Xu
- Shanghai Hutchison Pharmaceuticals Co., Ltd, Shanghai 201203, China
| | - Changsen Zhan
- Shanghai Hutchison Pharmaceuticals Co., Ltd, Shanghai 201203, China
| | - Nina Sang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiazhen Xu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Feiyun Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
8
|
Moya-Alvarado G, Valero-Peña X, Aguirre-Soto A, Bustos FJ, Lazo OM, Bronfman FC. PLC-γ-Ca 2+ pathway regulates axonal TrkB endocytosis and is required for long-distance propagation of BDNF signaling. Front Mol Neurosci 2024; 17:1009404. [PMID: 38660384 PMCID: PMC11040097 DOI: 10.3389/fnmol.2024.1009404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its tropomyosin receptor kinase B (TrkB) are important signaling proteins that regulate dendritic growth and maintenance in the central nervous system (CNS). After binding of BDNF, TrkB is endocytosed into endosomes and continues signaling within the cell soma, dendrites, and axon. In previous studies, we showed that BDNF signaling initiated in axons triggers long-distance signaling, inducing dendritic arborization in a CREB-dependent manner in cell bodies, processes that depend on axonal dynein and TrkB activities. The binding of BDNF to TrkB triggers the activation of different signaling pathways, including the ERK, PLC-γ and PI3K-mTOR pathways, to induce dendritic growth and synaptic plasticity. How TrkB downstream pathways regulate long-distance signaling is unclear. Here, we studied the role of PLC-γ-Ca2+ in BDNF-induced long-distance signaling using compartmentalized microfluidic cultures. We found that dendritic branching and CREB phosphorylation induced by axonal BDNF stimulation require the activation of PLC-γ in the axons of cortical neurons. Locally, in axons, BDNF increases PLC-γ phosphorylation and induces intracellular Ca2+ waves in a PLC-γ-dependent manner. In parallel, we observed that BDNF-containing signaling endosomes transport to the cell body was dependent on PLC-γ activity and intracellular Ca2+ stores. Furthermore, the activity of PLC-γ is required for BDNF-dependent TrkB endocytosis, suggesting a role for the TrkB/PLC-γ signaling pathway in axonal signaling endosome formation.
Collapse
Affiliation(s)
- Guillermo Moya-Alvarado
- Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile (UC), Santiago, Chile
| | - Xavier Valero-Peña
- NeuroSignaling Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Alejandro Aguirre-Soto
- NeuroSignaling Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Fernando J. Bustos
- Constantin-Paton Research Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Oscar M. Lazo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Francisca C. Bronfman
- NeuroSignaling Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
9
|
Ichimura-Shimizu M, Kurrey K, Miyata M, Dezawa T, Tsuneyama K, Kojima M. Emerging Insights into the Role of BDNF on Health and Disease in Periphery. Biomolecules 2024; 14:444. [PMID: 38672461 PMCID: PMC11048455 DOI: 10.3390/biom14040444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/06/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a growth factor that promotes the survival and growth of developing neurons. It also enhances circuit formation to synaptic transmission for mature neurons in the brain. However, reduced BDNF expression and single nucleotide polymorphisms (SNP) are reported to be associated with functional deficit and disease development in the brain, suggesting that BDNF is a crucial molecule for brain health. Interestingly, BDNF is also expressed in the hypothalamus in appetite and energy metabolism. Previous reports demonstrated that BDNF knockout mice exhibited overeating and obesity phenotypes remarkably. Therefore, we could raise a hypothesis that the loss of function of BDNF may be associated with metabolic syndrome and peripheral diseases. In this review, we describe our recent finding that BDNF knockout mice develop metabolic dysfunction-associated steatohepatitis and recent reports demonstrating the role of one of the BDNF receptors, TrkB-T1, in some peripheral organ functions and diseases, and would provide an insight into the role of BDNF beyond the brain.
Collapse
Affiliation(s)
- Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.I.-S.); (K.T.)
| | - Khuleshwari Kurrey
- Department of Neuroscience, School of Medicine, Yale University, New Haven, CT 06520, USA;
| | - Misaki Miyata
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan 924-0838, Japan; (M.M.); (T.D.)
| | - Takuya Dezawa
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan 924-0838, Japan; (M.M.); (T.D.)
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.I.-S.); (K.T.)
| | - Masami Kojima
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan 924-0838, Japan; (M.M.); (T.D.)
| |
Collapse
|
10
|
da Silva BR, de Melo Reis RA, Ribeiro-Resende VT. A Comparative Investigation of Axon-Blood Vessel Growth Interaction in the Regenerating Sciatic and Optic Nerves in Adult Mice. Mol Neurobiol 2024; 61:2215-2227. [PMID: 37864766 DOI: 10.1007/s12035-023-03705-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
The vascular and the nervous systems share similarities in addition to their complex role in providing oxygen and nutrients to all cells. Both are highly branched networks that frequently grow close to one another during development. Vascular patterning and neural wiring share families of guidance cues and receptors. Most recently, this relationship has been investigated in terms of peripheral nervous system (PNS) regeneration, where nerves and blood vessels often run in parallel so endothelial cells guide the formation of the Büngner bands which support axonal regeneration. Here, we characterized the vascular response in regenerative models of the central and peripheral nervous system. After sciatic nerve crush, followed by axon regeneration, there was a significant increase in the blood vessel density 7 days after injury. In addition, the optic nerve crush model was used to evaluate intrinsic regenerative potential activated with a combined treatment that stimulated retinal ganglion cells (RGCs) regrowth. We observed that a 2-fold change in the total number of blood vessels occurred 7 days after optic nerve crush compared to the uncrushed nerve. The difference increased up to a 2.7-fold change 2 weeks after the crush. Interestingly, we did not observe differences in the total number of blood vessels 2 weeks after crush, compared to animals that had received combined treatment for regeneration and controls. Therefore, the vascular characterization showed that the increase in vascular density was not related to the efficiency of both peripheral and central axonal regeneration.
Collapse
Affiliation(s)
- Barbara Rangel da Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Ricardo A de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Victor Túlio Ribeiro-Resende
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus de Duque de Caxias Geraldo Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil.
| |
Collapse
|
11
|
Adonina S, Bazhenova E, Bazovkina D. Effect of Short Photoperiod on Behavior and Brain Plasticity in Mice Differing in Predisposition to Catalepsy: The Role of BDNF and Serotonin System. Int J Mol Sci 2024; 25:2469. [PMID: 38473717 DOI: 10.3390/ijms25052469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Seasonal affective disorder is characterized by depression during fall/winter as a result of shorter daylight. Catalepsy is a syndrome of some grave mental diseases. Both the neurotransmitter serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) are involved in the pathophysiological mechanisms underlying catalepsy and depressive disorders. The aim was to compare the response of behavior and brain plasticity to photoperiod alterations in catalepsy-resistant C57BL/6J and catalepsy-prone CBA/Lac male mice. Mice of both strains were exposed for six weeks to standard-day (14 h light/10 h darkness) or short-day (4 h light/20 h darkness) conditions. Short photoperiod increased depressive-like behavior in both strains. Only treated CBA/Lac mice demonstrated increased cataleptic immobility, decreased brain 5-HT level, and the expression of Tph2 gene encoding the key enzyme for 5-HT biosynthesis. Mice of both strains maintained under short-day conditions, compared to those under standard-day conditions, showed a region-specific decrease in the brain transcription of the Htr1a, Htr4, and Htr7 genes. After a short photoperiod exposure, the mRNA levels of the BDNF-related genes were reduced in CBA/Lac mice and were increased in the C57BL/6J mice. Thus, the predisposition to catalepsy considerably influences the photoperiodic changes in neuroplasticity, wherein both C57BL/6J and CBA/Lac mice can serve as a powerful tool for investigating the link between seasons and mood.
Collapse
Affiliation(s)
- Svetlana Adonina
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Lavrentieva 10, Novosibirsk 630090, Russia
| | - Ekaterina Bazhenova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Lavrentieva 10, Novosibirsk 630090, Russia
| | - Darya Bazovkina
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Lavrentieva 10, Novosibirsk 630090, Russia
| |
Collapse
|
12
|
Kim N, Parolin B, Renshaw D, Deb SK, Zariwala MG. Formulated Palmitoylethanolamide Supplementation Improves Parameters of Cognitive Function and BDNF Levels in Young, Healthy Adults: A Randomised Cross-Over Trial. Nutrients 2024; 16:489. [PMID: 38398813 PMCID: PMC10891801 DOI: 10.3390/nu16040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Palmitoylethanolamide (PEA) is an endocannabinoid-like lipid mediator which is naturally produced in the body and found in certain foods. The aim of this study was to assess the effect of a bioavailable formulated form of PEA (Levagen+®) on serum BDNF levels and parameters of cognitive function in healthy adults. METHODS A randomised double-blinded placebo-controlled cross-over trial was implemented to measure the effects of a 6-week 700 mg/day course of formulated PEA supplementation versus a placebo. Participants (n = 39) completed pre- and post-assessments of a lab-based cognitive test. Serum samples were collected to measure BDNF concentrations using an immunoassay. RESULTS A significant increase in serum BDNF levels was found following PEA supplementation compared with the placebo (p = 0. 0057, d = 0.62). The cognition test battery demonstrated improved memory with PEA supplementation through better first success (p = 0.142, d = 0.54) and fewer errors (p = 0.0287; d = -0.47) on the Paired Associates Learning test. CONCLUSION This was the first study to report a direct beneficial effect of Levagen+® PEA supplementation on memory improvement as well as corresponding increases in circulating neurotrophic marker levels. This suggests that formulated PEA holds promise as an innovative and practical intervention for cognitive health enhancement.
Collapse
Affiliation(s)
- Nadia Kim
- Centre for Nutraceuticals, University of Westminster, London W1W6 UW, UK (S.K.D.)
| | - Brenda Parolin
- Centre for Nutraceuticals, University of Westminster, London W1W6 UW, UK (S.K.D.)
| | - Derek Renshaw
- Centre for Health and Life Sciences (CHLS), Coventry University, Coventry CV1 5FB, UK;
| | - Sanjoy K. Deb
- Centre for Nutraceuticals, University of Westminster, London W1W6 UW, UK (S.K.D.)
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | | |
Collapse
|
13
|
Wei M, Wu T, Chen N. Bridging neurotrophic factors and bioactive peptides to Alzheimer's disease. Ageing Res Rev 2024; 94:102177. [PMID: 38142891 DOI: 10.1016/j.arr.2023.102177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder. As the demographic shifting towards an aging population, AD has emerged as a prominent public health concern. The pathogenesis of AD is complex, and there are no effective treatment methods for AD until now. In recent years, neurotrophic factors and bioactive peptides including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), irisin, melatonin, have been discovered to exert neuroprotective functions for AD. Bioactive peptides can be divided into two categories based on their sources: endogenous and exogenous. This review briefly elaborates on the pathogenesis of AD and analyzes the regulatory effects of endogenous and exogenous peptides on the pathogenesis of AD, thereby providing new therapeutic targets for AD and a theoretical basis for the application of bioactive peptides as adjunctive therapies for AD.
Collapse
Affiliation(s)
- Minhui Wei
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Tong Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
14
|
Akbari S, Haghani M, Ghobadi M, Hooshmandi E, Haghighi AB, Salehi MS, Pandamooz S, Azarpira N, Afshari A, Zabihi S, Nemati M, Bayat M. Combination Therapy with Platelet-Rich Plasma and Epidermal Neural Crest Stem Cells Increases Treatment Efficacy in Vascular Dementia. Stem Cells Int 2023; 2023:3784843. [PMID: 38146481 PMCID: PMC10749736 DOI: 10.1155/2023/3784843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023] Open
Abstract
This study aimed to evaluate the efficacy and treatment mechanism of platelet-rich plasma (PRP) and neural crest-derived epidermal stem cells (ESCs) in their administration alone and combination in vascular dementia (VaD) model by two-vessel occlusion (2VO). Methods. Sixty-six rats were divided into six groups: the control, sham, 2VO + vehicle, 2VO + PRP, 2VO + ESC, and 2VO + ESC + PRP. The treated groups received 1 million cells on days 4, 14, and 21 with or without 500 µl PRP (twice a week) after 2VO. The memory performance and anxiety were evaluated by behavioral tests including open field, passive avoidance, and Morris water maze. The basal-synaptic transmission (BST) and long-term potentiation (LTP) were assessed through field-potential recordings of the CA1. The mRNA expression levels of IGF-1, TGF-β1, PSD-95, and GSk-3β were measured in the rat hippocampus by quantitative reverse transcription polymerase chain reaction. Results. The results demonstrated impaired learning, memory, and synaptic plasticity in the 2VO rats, along with a significant decrease in the expression of IGF-1, TGF-β1, PSD-95, and upregulation of GSK-3β. Treatment with ESC alone and ESC + PRP showed similar improvements in spatial memory and LTP induction, with associated upregulation of PSD-95 and downregulation of GSK-3β. However, only the ESC + PRP group showed recovery in BST. Furthermore, combination therapy was more effective than PRP monotherapy for LTP and memory. Conclusions. The transplantation of ESC showed better effects than PRP alone, and combination therapy increased the treatment efficacy with the recovery of BST. This finding may be a clue for the combination therapy of ESC and PRP for VaD.
Collapse
Affiliation(s)
- Somayeh Akbari
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Haghani
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Ghobadi
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Saied Salehi
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Shiraz Institute of Stem Cell and Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrbanoo Zabihi
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Nemati
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Hamad MIK, Emerald BS, Kumar KK, Ibrahim MF, Ali BR, Bataineh MF. Extracellular molecular signals shaping dendrite architecture during brain development. Front Cell Dev Biol 2023; 11:1254589. [PMID: 38155836 PMCID: PMC10754048 DOI: 10.3389/fcell.2023.1254589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Proper growth and branching of dendrites are crucial for adequate central nervous system (CNS) functioning. The neuronal dendritic geometry determines the mode and quality of information processing. Any defects in dendrite development will disrupt neuronal circuit formation, affecting brain function. Besides cell-intrinsic programmes, extrinsic factors regulate various aspects of dendritic development. Among these extrinsic factors are extracellular molecular signals which can shape the dendrite architecture during early development. This review will focus on extrinsic factors regulating dendritic growth during early neuronal development, including neurotransmitters, neurotrophins, extracellular matrix proteins, contact-mediated ligands, and secreted and diffusible cues. How these extracellular molecular signals contribute to dendritic growth has been investigated in developing nervous systems using different species, different areas within the CNS, and different neuronal types. The response of the dendritic tree to these extracellular molecular signals can result in growth-promoting or growth-limiting effects, and it depends on the receptor subtype, receptor quantity, receptor efficiency, the animal model used, the developmental time windows, and finally, the targeted signal cascade. This article reviews our current understanding of the role of various extracellular signals in the establishment of the architecture of the dendrites.
Collapse
Affiliation(s)
- Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kukkala K. Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Marwa F. Ibrahim
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mo’ath F. Bataineh
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
16
|
Mousavi SL, Rezayof A, Alijanpour S, Delphi L, Hosseinzadeh Sahafi O. Activation of mediodorsal thalamic dopamine receptors inhibited nicotine-induced anxiety in rats: A possible role of corticolimbic NMDA neurotransmission and BDNF expression. Pharmacol Biochem Behav 2023; 232:173650. [PMID: 37778541 DOI: 10.1016/j.pbb.2023.173650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
The present study aimed to evaluate the functional interaction between the dopaminergic and glutamatergic systems of the mediodorsal thalamus (MD), the ventral hippocampus (VH), and the prefrontal cortex (PFC) in nicotine-induced anxiogenic-like behaviors. Brain-derived neurotrophic factor (BDNF) level changes were measured in the targeted brain areas following the drug treatments. The percentage of time spent in the open arm (% OAT) and open arm entry (% OAE) were calculated in the elevated plus maze (EPM) to measure anxiety-related behaviors in adult male Wistar rats. Systemic administration of nicotine at a dose of 0.5 mg/kg induced an anxiogenic-like response associated with decreased BDNF levels in the hippocampus and the PFC. Intra-MD microinjection of apomorphine (0.1-0.3 μg/rat) induced an anxiogenic-like response, while apomorphine inhibited nicotine-induced anxiogenic-like behaviors associated with increased hippocampal and PFC BDNF expression levels. Interestingly, the blockade of the VH or the PFC NMDA receptors via the microinjection of D-AP5 (0.3-0.5 μg/rat) into the targeted sites reversed the inhibitory effect of apomorphine (0.5 μg/rat, intra-MD) on the nicotine response and led to the decrease of BDNF levels in the hippocampus and the PFC. Also, the microinjection of a higher dose of D-AP5 (0.5 μg/rat, intra-PFC) alone produced an anxiogenic effect. These findings suggest that the functional interaction between the MD dopaminergic D1/D2-like and the VH/PFC glutamatergic NMDA receptors may be partially involved in the anxiogenic-like effects of nicotine, likely via the alteration of BDNF levels in the hippocampus and the PFC.
Collapse
Affiliation(s)
- Seyedeh Leila Mousavi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Sakineh Alijanpour
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Ladan Delphi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Oveis Hosseinzadeh Sahafi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
17
|
Anyachor CP, Orish CN, Ezejiofor AN, Cirovic A, Cirovic A, Ezealisiji KM, Orisakwe OE. Nickel and aluminium mixture elicit memory impairment by activation of oxidative stress, COX-2, and diminution of AChE, BDNF and NGF levels in cerebral cortex and hippocampus of male albino rats. Curr Res Toxicol 2023; 5:100129. [PMID: 37841055 PMCID: PMC10569962 DOI: 10.1016/j.crtox.2023.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023] Open
Abstract
This study evaluated nickel and aluminium-induced neurotoxicity, as a binary metal mixture. Twenty-eight male Sprague Dawley albino rats were weight-matched and divided into four groups. Group 1 (control) received deionized water. Group 2 and 3 received Aluminium (1 mg/kg) and Nickel (0.2 mg/kg) respectively, while Group 4 received Ni and Al mixture HMM three times a week orally for 90 days. Barnes maze tests was performed. Rats were sacrificed under pentobarbital anaesthesia, cerebral cortex and hippocampus were separated, and metal levels were measured using Atomic Absorption Spectroscopy (AAS). Malondialdehyde (MDA), catalase (CAT), glutathione content (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), Brain Derived Neurotrophic Factor (BDNF), Nerve growth factor NGF, cyclo-oxygenase COX-2 and Acetylcholinesterase (AChE) were assayed using ELISA kits. Ni/Al binary mixture exposed rats showed a shorter latency period (though not significant) of 3.21 ± 1.40 s in comparison to 3.77 ± 1.11 (Ni only) and 3.99 ± 1.16(Al only). Ni/Al mixture gp had the lowest levels of Mg in both the hippocampus and frontal cortex when compared with the individual metals. In the hippocampus Al only exposed rats significantly showed p < 0.05 higher iron and Ca levels in comparison to Ni/Al mixture. Al alone significantly showed p < 0.05 lower levels of Fe but higher Ca than the Ni/Al mixture group. Exposure to Al only showed lower levels of BDNF in comparison to Ni/Al combination, whereas Ni/Al mixture gp had lower levels of NGF in comparison to the individual metals in the hippocampus. In the frontal cortex Ni only, group showed significantly lower BDNF in comparison to Ni/Al mixture whereas the mixture showed significantly lower NGF when compared with Al only group. There were higher levels of COX-2 in the Ni/Al mixture than individual metal treated rats in both hippocampus and frontal cortex. AChE levels in the Ni/Al mixture group was higher than Ni or Al only gps in the hippocampus whereas in the frontal cortex, Ni/Al exposed rats showed significantly lower AChE levels in comparison to Al only group. Ni, Al and Ni/Al mixture exhibited memory impairment by activation of oxidative stress, COX-2, and diminution of AChE, BDNF and NGF levels in cerebral cortex and hippocampus. The BDNF-COX-2 AChE signalling pathway may be involved in the neurotoxicity of Ni and Al.
Collapse
Affiliation(s)
- Chidinma P. Anyachor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Chinna N. Orish
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Anthonet N. Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Kenneth M. Ezealisiji
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Orish E. Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| |
Collapse
|
18
|
Velásquez MM, Lattig MC, Chitiva LC, Costa GM, Sutachan JJ, Albarracin SL. Dendritogenic Potential of the Ethanol Extract from Lippia alba Leaves in Rat Cortical Neurons. Molecules 2023; 28:6666. [PMID: 37764442 PMCID: PMC10537230 DOI: 10.3390/molecules28186666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
A reduced dendritic complexity, especially in regions such as the hippocampus and the prefrontal cortex, has been linked to the pathophysiology of some neuropsychiatric disorders, in which synaptic plasticity and functions such as emotional and cognitive processing are compromised. For this reason, the identification of new therapeutic strategies would be enriched by the search for metabolites that promote structural plasticity. The present study evaluated the dendritogenic potential of the ethanol extract of Lippia alba, an aromatic plant rich in flavonoids and terpenes, which has been widely used in traditional medicine for its presumed analgesic, anxiolytic, and antidepressant potential. An in vitro model of rat cortical neurons was used to determine the kinetics of the plant's effect at different time intervals. Changes in morphological parameters of the neurons were determined, as well as the dendritic complexity, by Sholl analysis. The extract promotes the outgrowth of dendritic branching in a rapid and sustained fashion, without being cytotoxic to the cells. We found that this effect could be mediated by the phosphatidylinositol 3-kinase pathway, which is involved in mechanisms of neuronal plasticity, differentiation, and survival. The evidence presented in this study provides a basis for further research that, through in vivo models, can delve into the plant's therapeutic potential.
Collapse
Affiliation(s)
- María Marcela Velásquez
- Instituto de Genética Humana, Facultad de Medicina, Pontifica Universidad Javeriana, Bogotá 110911, Colombia
| | | | - Luis Carlos Chitiva
- Departamento de Química, Pontificia Universidad Javeriana, Bogotá 110911, Colombia
| | - Geison M. Costa
- Departamento de Química, Pontificia Universidad Javeriana, Bogotá 110911, Colombia
| | - Jhon Jairo Sutachan
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110911, Colombia
| | - Sonia Luz Albarracin
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110911, Colombia
| |
Collapse
|
19
|
Numakawa T, Kajihara R. Involvement of brain-derived neurotrophic factor signaling in the pathogenesis of stress-related brain diseases. Front Mol Neurosci 2023; 16:1247422. [PMID: 37781095 PMCID: PMC10537938 DOI: 10.3389/fnmol.2023.1247422] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Neurotrophins including brain-derived neurotrophic factor, BDNF, have critical roles in neuronal differentiation, cell survival, and synaptic function in the peripheral and central nervous system. It is well known that a variety of intracellular signaling stimulated by TrkB, a high-affinity receptor for BDNF, is involved in the physiological and pathological neuronal aspects via affecting cell viability, synaptic function, neurogenesis, and cognitive function. As expected, an alteration of the BDNF/TrkB system is suspected to be one of the molecular mechanisms underlying cognitive decline in cognitive diseases and mental disorders. Recent evidence has also highlighted a possible link between the alteration of TrkB signaling and chronic stress. Furthermore, it has been demonstrated that downregulation of the BDNF/TrkB system and chronic stress have a role in the pathogenesis of Alzheimer's disease (AD) and mental disorders. In this review, we introduce current evidence showing a close relationship between the BDNF/TrkB system and the development of cognition impairment in stress-related disorders, and the possible contribution of the upregulation of the BDNF/TrkB system in a therapeutic approach against these brain diseases.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Ryutaro Kajihara
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
20
|
Çerçi B, Gök A, Akyol A. Brain-derived neurotrophic factor: Its role in energy balance and cancer cachexia. Cytokine Growth Factor Rev 2023; 71-72:105-116. [PMID: 37500391 DOI: 10.1016/j.cytogfr.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in the development of the central and peripheral nervous system during embryogenesis. In the mature central nervous system, BDNF is required for the maintenance and enhancement of synaptic transmissions and the survival of neurons. Particularly, it is involved in the modulation of neurocircuits that control energy balance through food intake, energy expenditure, and locomotion. Regulation of BDNF in the central nervous system is complex and environmental factors affect its expression in murine models which may reflect to phenotype dramatically. Furthermore, BDNF and its high-affinity receptor tropomyosin receptor kinase B (TrkB), as well as pan-neurotrophin receptor (p75NTR) is expressed in peripheral tissues in adulthood and their signaling is associated with regulation of energy balance. BDNF/TrkB signaling is exploited by cancer cells as well and BDNF expression is increased in tumors. Intriguingly, previously demonstrated roles of BDNF in regulation of food intake, adipose tissue and muscle overlap with derangements observed in cancer cachexia. However, data about the involvement of BDNF in cachectic cancer patients and murine models are scarce and inconclusive. In the future, knock-in and/or knock-out experiments with murine cancer models could be helpful to explore potential new roles for BDNF in the development of cancer cachexia.
Collapse
Affiliation(s)
- Barış Çerçi
- Medical School, Hacettepe University, Ankara, Turkey.
| | - Ayşenur Gök
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey; Hacettepe University Transgenic Animal Technologies Research and Application Center, Sıhhiye, Ankara 06100, Turkey
| | - Aytekin Akyol
- Departmant of Pathology, Medical School, Hacettepe University, Ankara, Turkey; Hacettepe University Transgenic Animal Technologies Research and Application Center, Sıhhiye, Ankara 06100, Turkey
| |
Collapse
|
21
|
Granitzer S, Widhalm R, Atteneder S, Fernandez MF, Mustieles V, Zeisler H, Hengstschläger M, Gundacker C. BDNF and KISS-1 Levels in Maternal Serum, Umbilical Cord, and Placenta: The Potential Role of Maternal Levels as Effect Biomarker. EXPOSURE AND HEALTH 2023:1-17. [PMID: 37360514 PMCID: PMC10225291 DOI: 10.1007/s12403-023-00565-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) and kisspeptin-1 (KISS-1) regulate placental development and fetal growth. The predictive value of maternal serum BDNF and KISS-1 concentrations for placental and umbilical cord levels has not yet been explored. The influence of prenatal lead (Pb) and cadmium (Cd) exposure and maternal iron status on BDNF and KISS-1 levels is also unclarified and of concern. In a pilot cross-sectional study with 65 mother-newborn pairs, we analyzed maternal and cord serum levels of pro-BDNF, mature BDNF, and KISS-1, BDNF, and KISS-1 gene expression in placenta, Pb and Cd in maternal and umbilical cord blood (erythrocytes), and placenta. We conducted a series of in vitro experiments using human primary trophoblast cells (hTCs) and BeWo cells to verify main findings of the epidemiological analysis. Strong and consistent correlations were observed between maternal serum levels of pro-BDNF, mature BDNF, and KISS-1 and corresponding levels in umbilical serum and placental tissue. Maternal red blood cell Pb levels were inversely correlated with serum and placental KISS-1 levels. Lower expression and release of KISS-1 was also observed in Pb-exposed BeWo cells. In vitro Pb exposure also reduced cellular BDNF levels. Cd-treated BeWo cells showed increased pro-BDNF levels. Low maternal iron status was positively associated with low BDNF levels. Iron-deficient hTCs and BeWo cells showed a consistent decrease in the release of mature BDNF. The correlations between maternal BDNF and KISS-1 levels, placental gene expression, and umbilical cord serum levels, respectively, indicate the strong potential of maternal serum as predictive matrix for BDNF and KISS-1 levels in placentas and fetal sera. Pb exposure and iron status modulate BDNF and KISS-1 levels, but a clear direction of modulations was not evident. The associations need to be confirmed in a larger sample and validated in terms of placental and neurodevelopmental function. Supplementary Information The online version contains supplementary material available at 10.1007/s12403-023-00565-w.
Collapse
Affiliation(s)
- Sebastian Granitzer
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090 Vienna, Austria
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Vienna, Austria
| | - Raimund Widhalm
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090 Vienna, Austria
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Vienna, Austria
| | - Simon Atteneder
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090 Vienna, Austria
| | - Mariana F. Fernandez
- Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (Ibs.GRANADA), Granada, Spain
- Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (Ibs.GRANADA), Granada, Spain
- Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Harald Zeisler
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090 Vienna, Austria
| | - Claudia Gundacker
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090 Vienna, Austria
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Vienna, Austria
| |
Collapse
|
22
|
Timalsina B, Haque MN, Dash R, Choi HJ, Ghimire N, Moon IS. Neuronal Differentiation and Outgrowth Effect of Thymol in Trachyspermum ammi Seed Extract via BDNF/TrkB Signaling Pathway in Prenatal Maternal Supplementation and Primary Hippocampal Culture. Int J Mol Sci 2023; 24:ijms24108565. [PMID: 37239909 DOI: 10.3390/ijms24108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Reviving the neuronal functions in neurodegenerative disorders requires the promotion of neurite outgrowth. Thymol, which is a principal component of Trachyspermum ammi seed extract (TASE), is reported to have neuroprotective effects. However, the effects of thymol and TASE on neuronal differentiation and outgrowth are yet to be studied. This study is the first report investigating the neuronal growth and maturation effects of TASE and thymol. Pregnant mice were orally supplemented with TASE (250 and 500 mg/kg), thymol (50 and 100 mg/kg), vehicle, and positive controls. The supplementation significantly upregulated the expression of brain-derived neurotrophic factor (BDNF) and early neuritogenesis markers in the pups' brains at post-natal day 1 (P1). Similarly, the BDNF level was significantly upregulated in the P12 pups' brains. Furthermore, TASE (75 and 100 µg/mL) and thymol (10 and 20 µM) enhanced the neuronal polarity, early neurite arborization, and maturation of hippocampal neurons in a dose-dependent manner in primary hippocampal cultures. The stimulatory activities of TASE and thymol on neurite extension involved TrkB signaling, as evidenced by attenuation via ANA-12 (5 µM), which is a specific TrkB inhibitor. Moreover, TASE and thymol rescued the nocodazole-induced blunted neurite extension in primary hippocampal cultures, suggesting their role as a potent microtubule stabilizing agent. These findings demonstrate the potent capacities of TASE and thymol in promoting neuronal development and reconstruction of neuronal circuitry, which are often compromised in neurodegenerative diseases and acute brain injuries.
Collapse
Affiliation(s)
- Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Md Nazmul Haque
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Nisha Ghimire
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| |
Collapse
|
23
|
Kumar P, Osahon OW, Sekhar RV. GlyNAC (Glycine and N-Acetylcysteine) Supplementation in Old Mice Improves Brain Glutathione Deficiency, Oxidative Stress, Glucose Uptake, Mitochondrial Dysfunction, Genomic Damage, Inflammation and Neurotrophic Factors to Reverse Age-Associated Cognitive Decline: Implications for Improving Brain Health in Aging. Antioxidants (Basel) 2023; 12:antiox12051042. [PMID: 37237908 DOI: 10.3390/antiox12051042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Cognitive decline frequently occurs with increasing age, but mechanisms contributing to age-associated cognitive decline (ACD) are not well understood and solutions are lacking. Understanding and reversing mechanisms contributing to ACD are important because increased age is identified as the single most important risk factor for dementia. We reported earlier that ACD in older humans is associated with glutathione (GSH) deficiency, oxidative stress (OxS), mitochondrial dysfunction, glucose dysmetabolism and inflammation, and that supplementing GlyNAC (glycine and N-acetylcysteine) improved these defects. To test whether these defects occur in the brain in association with ACD, and could be improved/reversed with GlyNAC supplementation, we studied young (20-week) and old (90-week) C57BL/6J mice. Old mice received either regular or GlyNAC supplemented diets for 8 weeks, while young mice received the regular diet. Cognition and brain outcomes (GSH, OxS, mitochondrial energetics, autophagy/mitophagy, glucose transporters, inflammation, genomic damage and neurotrophic factors) were measured. Compared to young mice, the old-control mice had significant cognitive impairment and multiple brain defects. GlyNAC supplementation improved/corrected the brain defects and reversed ACD. This study finds that naturally-occurring ACD is associated with multiple abnormalities in the brain, and provides proof-of-concept that GlyNAC supplementation corrects these defects and improves cognitive function in aging.
Collapse
Affiliation(s)
- Premranjan Kumar
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ob W Osahon
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rajagopal V Sekhar
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
24
|
Munni YA, Dash R, Mitra S, Dash N, Shima M, Moon IS. Mechanistic study of Coriandrum sativum on neuritogenesis and synaptogenesis based on computationally guided in vitro analyses. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116165. [PMID: 36641106 DOI: 10.1016/j.jep.2023.116165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acceleration of neurite outgrowth and halting neurodegeneration are the most critical factors that are negatively regulated in various neurodegenerative diseases or injuries in the central nervous system (CNS). Functional foods or nutrients are considered alternative sources of bioactive components to alleviate various CNS injuries by promoting neuritogenesis and synaptogenesis, while their exact molecular mechanism remains unexplored. AIM OF THE STUDY Coriandrum sativum L. (CS) is one of the popular herbs in the Apiaceae family, of which CNS modulating action is a well-documented traditionally but detailed study on memory boosting function yet remains unexplored. Consequently, this study aims to analyze the neurogenic and synaptogenic modulation of CS aqueous ethanol (CSAE) extract in the primary hippocampal neurons. MATERIALS AND METHODS Primary hippocampal neurons were cultured and allowed to incubate with CSAE or vehicle. To observe the early neuronal differentiation, axonal and dendritic arborization, and synapse formation, neurons were immune-stained against indicated antibodies or stained directly with a lipophilic dye (1, 1'-dioctadecyl-3, 3, 3', 3'-tetramethyl indocarbocyanine perchlorate, DiL). Meanwhile, western blot was used to validate the synaptogenesis effect of CSAE compared to vehicle. Additionally, molecular docking and system pharmacology approaches were applied to confirm the possible secondary metabolites and pathways by which CSAE promotes neuritogenesis. RESULTS Results show that CSAE can induce neuritogenesis and synaptogenesis at 30 μg/mL concentration. The treatment impacts early neuronal polarization, axonal and dendritic arborization, synaptogenesis, and synaptic plasticity via NMDARs expressions in primary neurons. In silico network pharmacology of CS metabolites show that the CSAE-mediated neurogenic effect is likely dependent on the NTRK2 (TrkB) mediated neurotrophin signaling pathway. Indeed, the observed neurogenic activity of CSAE is markedly reduced upon the co-treatment with a TrkB-specific inhibitor. Furthermore, molecular docking following binding energy calculation shows that one of the CS metabolites, scoparone, has a high affinity to bind in the BDNF mimetic binding site of TrkB, suggesting its role in TrkB activation. Scoparone was found to enhance neuritogenesis, but not to the same extent as CSAE. Moreover, the expression of TrkB signaling-related proteins (BCL2, CASP3, GSK3, and BDNF), which was found to be modulated by scoparone, was significantly affected by the co-treatment of TrkB inhibitor (ANA-12). These results further suggest that the modulation of neuritogenesis by scoparone is TrkB-dependent. CONCLUSIONS This study provides deeper insights into the molecular mechanism of CS in boosting neuronal growth and memory function, which might implicate the prevention of many neurological disorders.
Collapse
Affiliation(s)
- Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea; Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Nayan Dash
- Department of Computer Science and Engineering, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Mutakabrun Shima
- Department of Clinical Pharmacy and Molecular Pharmacology, East West University, Dhaka, 1212, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
25
|
Yin F, Liu Z, Zhang D, Shen Z, Niu Z, Guo L. Identification of key genes involved in neural regeneration and the repairing effect of BDNF-overexpressed BMSCs on spinal cord ischemia-reperfusion injury in rats. Biomed Pharmacother 2023; 160:114293. [PMID: 36736275 DOI: 10.1016/j.biopha.2023.114293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) can repair spinal cord ischemia-reperfusion injury (SCII); however, only a few BMSCs are usually located in the injured spinal cord. Since the brain-derived neurotrophic factor (BDNF) can promote neural development and maturation, we hypothesised that BDNF-overexpressed BMSCs can ameliorate SCII more effectively than BMSCs alone. To determine the effect of BDNF overexpression on SCII repair, BDNF-overexpressed BMSCs and BMSCs were transplanted into SCII rats. Our results revealed that BDNF-overexpressed BMSCs can better promote the recovery of damaged spinal cords than BMSCs alone. Gene chip detection of spinal cord tissues showed 803 differentially expressed genes in all groups. BTG anti-proliferation factor 2 (Btg2), FOS like 2 (Fosl2), early growth response protein 1 (Egr1), and serpin family E member 1 (Serpine1) were identified as key interrelated genes based on their expression trends, as validated via quantitative PCR and protein-protein interaction network analysis. A co-expression network was constructed to further explore the role of the candidate key genes using Pearson correlation analysis. Cluster 5 was identified as the key cluster using community discovery algorithms. Functional analysis of Cluster 5 genes revealed that this cluster was mainly involved in the stress-activated MAPK cascade, p38MAPK cascade, and apoptosis. Notably, Egr1 may play an important role in SCII repair as the top hub gene in Cluster 5. Therefore, the repair activity of transplanted BDNF-overexpressed BMSCs in SCII rats is better than that of BMSCs alone, which may be regulated by the interactions between Btg2, Fosl2, Egr1, Serpine1, and BDNF.
Collapse
Affiliation(s)
- Fei Yin
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, NO.126 Xiantai Street, Changchun, Jilin 130033, China
| | - Zhiming Liu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, NO.126 Xiantai Street, Changchun, Jilin 130033, China
| | - Ding Zhang
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, NO.126 Xiantai Street, Changchun, Jilin 130033, China
| | - Zhubin Shen
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, NO.126 Xiantai Street, Changchun, Jilin 130033, China
| | - Zefeng Niu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, NO.126 Xiantai Street, Changchun, Jilin 130033, China
| | - Li Guo
- Department of Toxicology, School of Public Health, Jilin University, NO.1163 Xinmin Street, Changchun, Jilin 130021, China.
| |
Collapse
|
26
|
Kovacs-Balint ZA, Raper J, Richardson R, Gopakumar A, Kettimuthu KP, Higgins M, Feczko E, Earl E, Ethun KF, Li L, Styner M, Fair D, Bachevalier J, Sanchez MM. The role of puberty on physical and brain development: A longitudinal study in male Rhesus Macaques. Dev Cogn Neurosci 2023; 60:101237. [PMID: 37031512 PMCID: PMC10114189 DOI: 10.1016/j.dcn.2023.101237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/20/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
This study examined the role of male pubertal maturation on physical growth and development of neurocircuits that regulate stress, emotional and cognitive control using a translational nonhuman primate model. We collected longitudinal data from male macaques between pre- and peri-puberty, including measures of physical growth, pubertal maturation (testicular volume, blood testosterone -T- concentrations) and brain structural and resting-state functional MRI scans to examine developmental changes in amygdala (AMY), hippocampus (HIPPO), prefrontal cortex (PFC), as well as functional connectivity (FC) between those regions. Physical growth and pubertal measures increased from pre- to peri-puberty. The indexes of pubertal maturation -testicular size and T- were correlated at peri-puberty, but not at pre-puberty (23 months). Our findings also showed ICV, AMY, HIPPO and total PFC volumetric growth, but with region-specific changes in PFC. Surprisingly, FC in these neural circuits only showed developmental changes from pre- to peri-puberty for HIPPO-orbitofrontal FC. Finally, testicular size was a better predictor of brain structural maturation than T levels -suggesting gonadal hormones-independent mechanisms-, whereas T was a strong predictor of functional connectivity development. We expect that these neural circuits will show more drastic pubertal-dependent maturation, including stronger associations with pubertal measures later, during and after male puberty.
Collapse
Affiliation(s)
- Z A Kovacs-Balint
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - J Raper
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Dept. of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - R Richardson
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - A Gopakumar
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - K P Kettimuthu
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - M Higgins
- Office of Nursing Research, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA
| | - E Feczko
- Dept. of Pediatrics, University of Minnesota, Minneapolis, MN 55414, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414, USA
| | - E Earl
- Dept. of Behavioral Neuroscience, Oregon Health & Sciences University, Portland, OR 97239, USA
| | - K F Ethun
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - L Li
- Dept. of Pediatrics, Emory University, Atlanta, GA 30322, USA; Marcus Autism Center; Children's Healthcare of Atlanta, GA, USA
| | - M Styner
- Dept. of Psychiatry, University of North Carolina, Chapel Hill, NC 27514, USA
| | - D Fair
- Dept. of Pediatrics, University of Minnesota, Minneapolis, MN 55414, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414, USA
| | - J Bachevalier
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - M M Sanchez
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Dept. of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
27
|
Ritchie FD, Lizarraga SB. The role of histone methyltransferases in neurocognitive disorders associated with brain size abnormalities. Front Neurosci 2023; 17:989109. [PMID: 36845425 PMCID: PMC9950662 DOI: 10.3389/fnins.2023.989109] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Brain size is controlled by several factors during neuronal development, including neural progenitor proliferation, neuronal arborization, gliogenesis, cell death, and synaptogenesis. Multiple neurodevelopmental disorders have co-morbid brain size abnormalities, such as microcephaly and macrocephaly. Mutations in histone methyltransferases that modify histone H3 on Lysine 36 and Lysine 4 (H3K36 and H3K4) have been identified in neurodevelopmental disorders involving both microcephaly and macrocephaly. H3K36 and H3K4 methylation are both associated with transcriptional activation and are proposed to sterically hinder the repressive activity of the Polycomb Repressor Complex 2 (PRC2). During neuronal development, tri-methylation of H3K27 (H3K27me3) by PRC2 leads to genome wide transcriptional repression of genes that regulate cell fate transitions and neuronal arborization. Here we provide a review of neurodevelopmental processes and disorders associated with H3K36 and H3K4 histone methyltransferases, with emphasis on processes that contribute to brain size abnormalities. Additionally, we discuss how the counteracting activities of H3K36 and H3K4 modifying enzymes vs. PRC2 could contribute to brain size abnormalities which is an underexplored mechanism in relation to brain size control.
Collapse
|
28
|
Ballesio A, Zagaria A, Curti DG, Moran R, Goadsby PJ, Rosenzweig I, Lombardo C. Peripheral brain-derived neurotrophic factor (BDNF) in insomnia: A systematic review and meta-analysis. Sleep Med Rev 2023; 67:101738. [PMID: 36577338 DOI: 10.1016/j.smrv.2022.101738] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The brain-derived neurotrophic factor (BDNF) is associated with emotional and cognitive functioning, and it is considered a transdiagnostic biomarker for mental disorders. Literature on insomnia related BDNF changes yielded contrasting results and it has never been synthetized using meta-analysis. To fill this gap, we conducted a systematic review and meta-analysis of case-control studies examining the levels of peripheric BDNF in individuals with insomnia and healthy controls using the PRISMA guidelines. PubMed, Scopus, Medline, PsycINFO and CINAHL were searched up to Nov 2022. Nine studies met the inclusion criteria and were assessed using the Newcastle-Ottawa Scale. Eight studies reported sufficient data for meta-analysis. Random-effects models showed lower BDNF in subjects with insomnia (n = 446) than in controls (n = 706) (Hedge's g = -0.86, 95% CI: -1.39 to -0.32, p = .002). Leave-one-out sensitivity analysis confirmed that the pooled effect size was robust and not driven by any single study. However, given the small sample size, the cross-sectional nature of the measurement, and the high heterogeneity of included data, the results should be cautiously interpreted. Progress in the study of BDNF in insomnia is clinically relevant to better understand the mechanisms that may explain the relationship between disturbed sleep and mental disorders.
Collapse
Affiliation(s)
- Andrea Ballesio
- Department of Psychology, Sapienza University of Rome, Italy.
| | - Andrea Zagaria
- Department of Psychology, Sapienza University of Rome, Italy
| | | | - Rosalyn Moran
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, UK
| | - Peter J Goadsby
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College London UK
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK; Sleep Disorders Centre, Guy's and St Thomas' National Health Service Foundation Trust, London, UK
| | | |
Collapse
|
29
|
c-Abl Tyrosine Kinase Is Required for BDNF-Induced Dendritic Branching and Growth. Int J Mol Sci 2023; 24:ijms24031944. [PMID: 36768268 PMCID: PMC9916151 DOI: 10.3390/ijms24031944] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) induces activation of the TrkB receptor and several downstream pathways (MAPK, PI3K, PLC-γ), leading to neuronal survival, growth, and plasticity. It has been well established that TrkB signaling regulation is required for neurite formation and dendritic arborization, but the specific mechanism is not fully understood. The non-receptor tyrosine kinase c-Abl is a possible candidate regulator of this process, as it has been implicated in tyrosine kinase receptors' signaling and trafficking, as well as regulation of neuronal morphogenesis. To assess the role of c-Abl in BDNF-induced dendritic arborization, wild-type and c-Abl-KO neurons were stimulated with BDNF, and diverse strategies were employed to probe the function of c-Abl, including the use of pharmacological inhibitors, an allosteric c-Abl activator, and shRNA to downregulates c-Abl expression. Surprisingly, BDNF promoted c-Abl activation and interaction with TrkB receptors. Furthermore, pharmacological c-Abl inhibition and genetic ablation abolished BDNF-induced dendritic arborization and increased the availability of TrkB in the cell membrane. Interestingly, inhibition or genetic ablation of c-Abl had no effect on the classic TrkB downstream pathways. Together, our results suggest that BDNF/TrkB-dependent c-Abl activation is a novel and essential mechanism in TrkB signaling.
Collapse
|
30
|
Olivas-Martinez A, Suarez B, Salamanca-Fernandez E, Reina-Perez I, Rodriguez-Carrillo A, Mustieles V, Olea N, Freire C, Fernández MF. Development and validation of brain-derived neurotrophic factor measurement in human urine samples as a non-invasive effect biomarker. Front Mol Neurosci 2023; 15:1075613. [PMID: 36710936 PMCID: PMC9878568 DOI: 10.3389/fnmol.2022.1075613] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
Background Brain-derived neurotrophic factor (BDNF), a neurotrophic growth factor mainly expressed in the brain, has been proposed as a potential effect biomarker; that is, as a measurable biomarker whose values could be associated with several diseases, including neurological impairments. The European Human Biomonitoring Initiative (HBM4EU) has also recognized effect biomarkers as a useful tool for establishing link between exposure to environmental pollutants and human health. Despite the well-establish protocol for measuring serum BDNF, there is a need to validate its assessment in urine, a non-invasive sample that can be easily repeated over time. The aim of this study was to develop, standardize and validate a methodology to quantify BDNF protein levels in urine samples before its implementation in biomonitoring studies. Methods Different experimental conditions and non-competitive commercial enzyme-linked immunosorbent assay (ELISA) kits were tested to determine the optimal analytical procedure, trying to minimize the shortcomings of ELISA kits. The fine-tune protocol was validated in a pilot study using both upon awakening (n = 150) and prior to sleeping (n = 106) urine samples from the same Spanish adolescent males in a well-characterized study population (the Spanish INMA-Granada cohort). Results The best results were obtained in 0.6 ml of urine after the acidification and extraction (pre-concentration) of samples. The highest reproducibility was obtained with the ELISA kit from Raybiotech. Urinary BDNF concentrations of adolescent males were within the previously reported range (morning = 0.047-6.801 ng/ml and night = 0.047-7.404 ng/ml). Urinary BDNF levels in the awakening and pre-sleep samples did not follow a normal distribution and were not correlated. Conclusion The developed methodology offers good sensitivity and reproducibility. Having reliable markers in urine may facilitate both diagnosis and monitoring possible diseases (and treatment). Further studies are needed to implement urinary BDNF in biomonitoring studies to further elucidate its usefulness and biological significance for neurological impairments.
Collapse
Affiliation(s)
- Alicia Olivas-Martinez
- Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain,Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - Beatriz Suarez
- Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Elena Salamanca-Fernandez
- Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain,Department of Radiology and Physical Medicine, School of Medicine, University of Granada, Granada, Spain
| | - Iris Reina-Perez
- Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain,Department of Radiology and Physical Medicine, School of Medicine, University of Granada, Granada, Spain
| | - Andrea Rodriguez-Carrillo
- Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain,Department of Radiology and Physical Medicine, School of Medicine, University of Granada, Granada, Spain
| | - Vicente Mustieles
- Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain,Instituto de Investigación Biosanitaria de Granada, Granada, Spain,Department of Radiology and Physical Medicine, School of Medicine, University of Granada, Granada, Spain,Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
| | - Nicolás Olea
- Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain,Instituto de Investigación Biosanitaria de Granada, Granada, Spain,Department of Radiology and Physical Medicine, School of Medicine, University of Granada, Granada, Spain,Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
| | - Carmen Freire
- Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain,Instituto de Investigación Biosanitaria de Granada, Granada, Spain,Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
| | - Mariana F. Fernández
- Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain,Instituto de Investigación Biosanitaria de Granada, Granada, Spain,Department of Radiology and Physical Medicine, School of Medicine, University of Granada, Granada, Spain,Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain,*Correspondence: Mariana F. Fernández,
| |
Collapse
|
31
|
de Assis GG, Hoffman JR. The BDNF Val66Met Polymorphism is a Relevant, But not Determinant, Risk Factor in the Etiology of Neuropsychiatric Disorders - Current Advances in Human Studies: A Systematic Review. Brain Plast 2022; 8:133-142. [PMID: 36721394 PMCID: PMC9837733 DOI: 10.3233/bpl-210132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 02/03/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is the brain's most-produced neurotrophin during the lifespan, essentially involved in multiple mechanisms of nervous system development and function. The production/release of BDNF requires multi-stage processing that appears to be regulated at various stages in which the presence of a polymorphism "Val66Met" can exert a critical influence. Aim To synthesize the knowledge on the BDNF Val66Met polymorphism on intracellular processing and function of BDNF. Methods We performed a systematic review and collected all available studies on the post-translation processes of BDNF, regarding the Val66Met polymorphism. Searches were performed up to 21st March 2021. Results Out of 129 eligible papers, 18 studies addressed or had findings relating to BDNF post-translation processes and were included in this review. Discussion Compilation of experimental findings reveals that the Val66Met polymorphism affects BDNF function by slightly altering the processing, distribution, and regulated release of BDNF. Regarding the critical role of pro-BDNF as a pro-apoptotic factor, such alteration might represent a risk for the development of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gilmara Gomes de Assis
- Laboratory of Endocrinology, Brain Institute, Federal University of Rio Grande do Norte, Brazil
- Gdansk University of Physical Education and Sports, Faculty of Physical Education, Gdansk, Poland
| | - Jay R. Hoffman
- Department of Physical Therapy, Ariel University, Ariel, Israel
| |
Collapse
|
32
|
Li Y, Li F, Qin D, Chen H, Wang J, Wang J, Song S, Wang C, Wang Y, Liu S, Gao D, Wang ZH. The role of brain derived neurotrophic factor in central nervous system. Front Aging Neurosci 2022; 14:986443. [PMID: 36158555 PMCID: PMC9493475 DOI: 10.3389/fnagi.2022.986443] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022] Open
Abstract
Brain derived neurotrophic factor (BDNF) has multiple biological functions which are mediated by the activation of two receptors, tropomyosin receptor kinase B (TrkB) receptor and the p75 neurotrophin receptor, involving in physiological and pathological processes throughout life. The diverse presence and activity of BDNF indicate its potential role in the pathogenesis, progression and treatment of both neurological and psychiatric disorders. This review is to provide a comprehensive assessment of the current knowledge and future directions in BDNF-associated research in the central nervous system (CNS), with an emphasis on the physiological and pathological functions of BDNF as well as its potential treatment effects in CNS diseases, including depression, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, multiple sclerosis, and cerebral ischemic stroke.
Collapse
Affiliation(s)
- Yiyi Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongdong Qin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongyu Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianhao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiabei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shafei Song
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yamei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songyan Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dandan Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Hao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Zhi-Hao Wang,
| |
Collapse
|
33
|
Szarowicz CA, Steece-Collier K, Caulfield ME. New Frontiers in Neurodegeneration and Regeneration Associated with Brain-Derived Neurotrophic Factor and the rs6265 Single Nucleotide Polymorphism. Int J Mol Sci 2022; 23:ijms23148011. [PMID: 35887357 PMCID: PMC9319713 DOI: 10.3390/ijms23148011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022] Open
Abstract
Brain-derived neurotrophic factor is an extensively studied neurotrophin implicated in the pathology of multiple neurodegenerative and psychiatric disorders including, but not limited to, Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, traumatic brain injury, major de-pressive disorder, and schizophrenia. Here we provide a brief summary of current knowledge on the role of BDNF and the common human single nucleotide polymorphism, rs6265, in driving the pathogenesis and rehabilitation in these disorders, as well as the status of BDNF-targeted therapies. A common trend has emerged correlating low BDNF levels, either detected within the central nervous system or peripherally, to disease states, suggesting that BDNF replacement therapies may hold clinical promise. In addition, we introduce evidence for a distinct role of the BDNF pro-peptide as a biologically active ligand and the need for continuing studies on its neurological function outside of that as a molecular chaperone. Finally, we highlight the latest research describing the role of rs6265 expression in mechanisms of neurodegeneration as well as paradoxical advances in the understanding of this genetic variant in neuroregeneration. All of this is discussed in the context of personalized medicine, acknowledging there is no “one size fits all” therapy for neurodegenerative or psychiatric disorders and that continued study of the multiple BDNF isoforms and genetic variants represents an avenue for discovery ripe with therapeutic potential.
Collapse
Affiliation(s)
- Carlye A. Szarowicz
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (C.A.S.); (K.S.-C.)
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (C.A.S.); (K.S.-C.)
| | - Margaret E. Caulfield
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (C.A.S.); (K.S.-C.)
- Correspondence: ; Tel.: +1-616-234-0969; Fax: +1- 616-234-0991
| |
Collapse
|
34
|
Hao LS, Du Y, Chen L, Jiao YG, Cheng Y. Brain-derived neurotrophic factor as a biomarker for obsessive-compulsive disorder: A meta-analysis. J Psychiatr Res 2022; 151:676-682. [PMID: 35667336 DOI: 10.1016/j.jpsychires.2022.05.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is a growth factor that plays many critical functions in the central nervous system (CNS) and may be involved in the development of a range of psychopathologies, including depression, dementia, and neurodegenerative disorders. METHODS In the present study, we performed the first systematic review with a meta-analysis to quantitatively compare the peripheral blood BDNF levels between patients with obsessive-compulsive disorder (OCD) and healthy controls (HCs). A systematic search was conducted using PubMed and Web of Science databases to identify the relevant articles. RESULTS Nine studies encompassing 474 adults with OCD and 436 HCs were included in this meta-analysis. A random-effects meta-analysis showed that patients with OCD had significantly decreased peripheral blood levels of Brain-derived neurotrophic factor (BDNF) when compared with the HCs (Hedges' g = -0.722, 95% confidence interval [CI] = -1.152 to -0.292, P = 0.001). Subgroup analyses revealed decreased BDNF levels in plasma of patients (Hedges' g = -1.137, 95% CI = -1.463 to -0.810, P = 0.000) and drug-free patients (Hedges' g = -1.269, 95% CI = -1.974 to -0.564, P = 0.000) as compared to patients on active drug therapy and HCs. Meta-regression analyses showed that age, sex, sample size, Y-BOS total score, and publication year had no moderating effects on the outcome. CONCLUSION Although the relationship between our findings and the pathophysiology of OCD and the role BDNF plays in the development of the disease remains to be determined, the outcomes suggest that BDNF may serve as a potential biomarker of OCD.
Collapse
Affiliation(s)
- Lin-Shuai Hao
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, China
| | - Yang Du
- Key Laboratory of Ethnomedicine for Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine for Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yu-Guo Jiao
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, China.
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, China.
| |
Collapse
|
35
|
Azman KF, Zakaria R. Recent Advances on the Role of Brain-Derived Neurotrophic Factor (BDNF) in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:6827. [PMID: 35743271 PMCID: PMC9224343 DOI: 10.3390/ijms23126827] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Neurotrophins, such as brain-derived neurotrophic factor (BDNF), are essential for neuronal survival and growth. The signaling cascades initiated by BDNF and its receptor are the key regulators of synaptic plasticity, which plays important role in learning and memory formation. Changes in BDNF levels and signaling pathways have been identified in several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, and have been linked with the symptoms and course of these diseases. This review summarizes the current understanding of the role of BDNF in several neurodegenerative diseases, as well as the underlying molecular mechanism. The therapeutic potential of BDNF treatment is also discussed, in the hope of discovering new avenues for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Khairunnuur Fairuz Azman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | | |
Collapse
|
36
|
Mehterov N, Minchev D, Gevezova M, Sarafian V, Maes M. Interactions Among Brain-Derived Neurotrophic Factor and Neuroimmune Pathways Are Key Components of the Major Psychiatric Disorders. Mol Neurobiol 2022; 59:4926-4952. [PMID: 35657457 DOI: 10.1007/s12035-022-02889-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/17/2022] [Indexed: 10/25/2022]
Abstract
The purpose of this review is to summarize the current knowledge regarding the reciprocal associations between brain-derived neurotrophic factor (BDNF) and immune-inflammatory pathways and how these links may explain the involvement of this neurotrophin in the immune pathophysiology of mood disorders and schizophrenia. Toward this end, we delineated the protein-protein interaction (PPI) network centered around BDNF and searched PubMed, Scopus, Google Scholar, and Science Direct for papers dealing with the involvement of BDNF in the major psychosis, neurodevelopment, neuronal functions, and immune-inflammatory and related pathways. The PPI network was built based on the significant interactions of BDNF with neurotrophic (NTRK2, NTF4, and NGFR), immune (cytokines, STAT3, TRAF6), and cell-cell junction (CTNNB, CDH1) DEPs (differentially expressed proteins). Enrichment analysis shows that the most significant terms associated with this PPI network are the tyrosine kinase receptor (TRKR) and Src homology region two domain-containing phosphatase-2 (SHP2) pathways, tyrosine kinase receptor signaling pathways, positive regulation of kinase and transferase activity, cytokine signaling, and negative regulation of the immune response. The participation of BDNF in the immune response and its interactions with neuroprotective and cell-cell adhesion DEPs is probably a conserved regulatory process which protects against the many detrimental effects of immune activation and hyperinflammation including neurotoxicity. Lowered BDNF levels in mood disorders and schizophrenia (a) are associated with disruptions in neurotrophic signaling and activated immune-inflammatory pathways leading to neurotoxicity and (b) may interact with the reduced expression of other DEPs (CTNNB1, CDH1, or DISC1) leading to multiple aberrations in synapse and axonal functions.
Collapse
Affiliation(s)
- Nikolay Mehterov
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Institute at Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Danail Minchev
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Institute at Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Maria Gevezova
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Institute at Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Institute at Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Michael Maes
- Faculty of Medicine, Department of Psychiatry, Chulalongkorn University, Bangkok, 10330, Thailand. .,Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria. .,Department of Psychiatry, IMPACT Strategic Research Centre, Deakin University, Geelong, VIC, Australia.
| |
Collapse
|
37
|
Li S, Liu Y, Liu B, Hu YQ, Ding YQ, Zhang J, Feng L. Maternal urban particulate matter exposure and signaling pathways in fetal brains and neurobehavioral development in offspring. Toxicology 2022; 474:153225. [PMID: 35659516 DOI: 10.1016/j.tox.2022.153225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 11/08/2022]
Abstract
It is well understood that exposure to particulate matter (PM) can have adverse effects on the nervous system. When pregnant women are exposed to PM, their fetuses are also affected through the placenta. However, the mechanisms by which fetal brain development is regulated between mother and fetus remain unclear. C57BL/6J pregnant mice were exposed to PM at embryonic day (E) 2.5, 5.5, 8.5, 11.5, 14.5, and 17.5 via nasal drip at three doses (3, 6, 12 mg/kg of body weight) or PBS control. Neurobehavioral changes in the offspring were examined at 5-6-week-old by open field test (OFT) and elevated plus maze (EPM). The maternal and fetal brain and placenta were collected at E18.5, and molecular signal changes were explored using transcriptome analysis. We found that both male and female low-dose pups and male middle-dose pups traveled a significantly longer distance than controls in EPM tests. Both male and female low-dose pups showed a higher frequency of entering the center area and female low-dose pups exhibited a higher percentage of distance moved in the center area than controls in OFT tests. Gene expression in the maternal brain, fetal brain, and placenta at E18.5 was altered. Differentially expressed genes were enriched in the neuroactive ligand-receptor interaction pathway in all three tissue types. Pathway analysis revealed that the PI3K-Akt and PKC signaling was dysregulated in the fetal brain in the high-dose group compared with the control group. The pathways play a role in neuronal survival and apoptosis. Furthermore, there is a dose-dependent increase in Caspase-6, neuronal apoptosis and neurodegeneration biomarker, levels in E18.5 fetal brain (P = 0.06). In conclusion, our study demonstrated that prenatal PM exposure enhanced exploration and locomotor activity in adolescent offspring and altered molecular events in maternal brain, fetal brain, and placenta. The connections of these changes warrant further investigations.
Collapse
Affiliation(s)
- Shuman Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yongjie Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Bin Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yun-Qing Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Yu-Qiang Ding
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, No.130 Dong'an Road, Shanghai 200032, China; Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Liping Feng
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China; Department of Obstetrics and Gynecology, Duke University, Durham, NC, USA.
| |
Collapse
|
38
|
BDNF and Pro-BDNF in Amyotrophic Lateral Sclerosis: A New Perspective for Biomarkers of Neurodegeneration. Brain Sci 2022; 12:brainsci12050617. [PMID: 35625004 PMCID: PMC9139087 DOI: 10.3390/brainsci12050617] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is characterized by the progressive degeneration of upper or lower motor neurons, leading to muscle wasting and paralysis, resulting in respiratory failure and death. The precise ALS aetiology is poorly understood, mainly due to clinical and genetic heterogeneity. Thus, the identification of reliable biomarkers of disease could be helpful in clinical practice. In this study, we investigated whether the levels of brain-derived neurotrophic factor (BDNF) and its precursor Pro-BDNF in serum and cerebrospinal fluid (CSF) may reflect the pathological changes related to ALS. We found higher BDNF and lower Pro-BDNF levels in ALS sera compared to healthy controls. BDNF/Pro-BDNF ratio turned out to be accurate in distinguishing ALS patients from controls. Then, the correlations of these markers with several ALS clinical variables were evaluated. This analysis revealed three statistically significant associations: (1) Patients carrying the C9orf72 expansion significantly differed from non-carrier patients and showed serum BDNF levels comparable to control subjects; (2) BDNF levels in CSF were significantly higher in ALS patients with faster disease progression; (3) lower serum levels of Pro-BDNF were associated with a shorter survival. Therefore, we suggest that BDNF and Pro-BDNF, alone or in combination, might be used as ALS prognostic biomarkers.
Collapse
|
39
|
Shen Q, Xie B, Galaj E, Yu H, Li X, Lu Y, Zhang M, Wen D, Ma C. CircTmeff-1 in the nucleus accumbens regulates the reconsolidation of cocaine-associated memory. Brain Res Bull 2022; 185:64-73. [PMID: 35489671 DOI: 10.1016/j.brainresbull.2022.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 12/27/2022]
Abstract
Reconsolidation of drug memories is the process of restoring unstable memories after unconditioned (UCS; e.g., drugs) or conditioned stimulus (CS; e.g., drug-paired contexts), and provides promise for prevention of drug relapse. Circular RNAs (circRNAs) have important effects on the transcription and post-transcriptional regulation of gene expression. However, the role of circRNAs in the reconsolidation of drug memories is unclear. Here, we observed that cocaine-induced memory retrieval significantly increased circTmeff-1 level in the nucleus accumbens (NAc) core but not shell. Importantly, the disrupted expression of circTmeff-1 using virus in the NAc core damaged the reconsolidation of cocaine-associated memories. The knockdown of circTmeff-1 in the NAc shell or without UCS retrieval or 9 h after UCS retrieval had no such effects. Mechanistically, using bioinformatic analysis and loss- or gain- of function assays, we revealed that antagomiR-206 reversed the inhibitory effect of circTmeff-1 knockdown on the expression of brain-derived neurotrophic factor (BDNF) during the reconsolidation of cocaine-associated memories. Taken together, these results demonstrate the role of circTmeff-1 in the reconsolidation of cocaine-associated memory and that circTmeff-1 may function as a decoy for miR-206 to regulate the expression of BDNF.
Collapse
Affiliation(s)
- Qianchao Shen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, Hebei, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, Hebei, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Ewa Galaj
- Department of Psychological and Brain Sciences, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Hailei Yu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, Hebei, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Xiaojie Li
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, Hebei, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Yun Lu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, Hebei, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Minglong Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, Hebei, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, Hebei, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China.
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, Hebei, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China.
| |
Collapse
|
40
|
Cheon S, Culver AM, Bagnell AM, Ritchie FD, Vacharasin JM, McCord MM, Papendorp CM, Chukwurah E, Smith AJ, Cowen MH, Moreland TA, Ghate PS, Davis SW, Liu JS, Lizarraga SB. Counteracting epigenetic mechanisms regulate the structural development of neuronal circuitry in human neurons. Mol Psychiatry 2022; 27:2291-2303. [PMID: 35210569 PMCID: PMC9133078 DOI: 10.1038/s41380-022-01474-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/02/2022] [Indexed: 01/23/2023]
Abstract
Autism spectrum disorders (ASD) are associated with defects in neuronal connectivity and are highly heritable. Genetic findings suggest that there is an overrepresentation of chromatin regulatory genes among the genes associated with ASD. ASH1 like histone lysine methyltransferase (ASH1L) was identified as a major risk factor for ASD. ASH1L methylates Histone H3 on Lysine 36, which is proposed to result primarily in transcriptional activation. However, how mutations in ASH1L lead to deficits in neuronal connectivity associated with ASD pathogenesis is not known. We report that ASH1L regulates neuronal morphogenesis by counteracting the catalytic activity of Polycomb Repressive complex 2 group (PRC2) in stem cell-derived human neurons. Depletion of ASH1L decreases neurite outgrowth and decreases expression of the gene encoding the neurotrophin receptor TrkB whose signaling pathway is linked to neuronal morphogenesis. The neuronal morphogenesis defect is overcome by inhibition of PRC2 activity, indicating that a balance between the Trithorax group protein ASH1L and PRC2 activity determines neuronal morphology. Thus, our work suggests that ASH1L may epigenetically regulate neuronal morphogenesis by modulating pathways like the BDNF-TrkB signaling pathway. Defects in neuronal morphogenesis could potentially impair the establishment of neuronal connections which could contribute to the neurodevelopmental pathogenesis associated with ASD in patients with ASH1L mutations.
Collapse
Affiliation(s)
- Seonhye Cheon
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Allison M Culver
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Anna M Bagnell
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Foster D Ritchie
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Janay M Vacharasin
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Mikayla M McCord
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Carin M Papendorp
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Evelyn Chukwurah
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Austin J Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Mara H Cowen
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Trevor A Moreland
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Pankaj S Ghate
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Judy S Liu
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, USA
- Department of Neurology, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Sofia B Lizarraga
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
41
|
Yan D, Wang N, Yao J, Wu X, Yuan J, Yan H. Curcumin Attenuates the PERK-eIF2α Signaling to Relieve Acrylamide-Induced Neurotoxicity in SH‑SY5Y Neuroblastoma Cells. Neurochem Res 2022; 47:1037-1048. [PMID: 35037165 DOI: 10.1007/s11064-021-03504-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 02/06/2023]
Abstract
Curcumin is a natural polyphenolic compound with neuroprotective and antioxidant properties. Acrylamide (ACR) is a by-product of food processing that produces neurotoxicity in humans and animals. The pancreatic endoplasmic reticulum kinase (PERK)-eukaryotic initiation factor-2α (eIF2α) signaling is involved in the occurrence of neurotoxicities. This study is aimed to investigate the protective effect of curcumin on ACR-induced cytotoxicity and explore the role of PERK-eIF2α signaling in this process. ACR exposure at 2.5 mM for 24 h caused oxidative stress as revealed by the distinct increase in cellular reactive oxygen species (ROS) and malondialdehyde (MDA) level, and a significant decrease in glutathione (GSH) content. ACR induced phosphorylated tau aggregation, phosphorylated cAMP response elements binding protein (CREB) reduction, and Bax/Bcl-2 ratio up-regulation in SH-SY5Y cells. ACR also activated the PERK-eIF2α signaling in SH-SY5Y cells and triggered the activation of glycogen synthase kinase-3β (GSK-3β), up-regulated activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP). Curcumin pretreatment significantly attenuated ACR-induced neuronal toxicity as revealed by the ameliorated cell viability, mitigated intracellular ROS and MDA level, and elevated GSH content. Moreover, curcumin pretreatment inhibited PERK-dependent eIF2α phosphorylation, further suppressed GSK-3β and ATF4 function, and abolished abnormal tau phosphorylation, P-CREB reduction, and CHOP-induced apoptosis in SH-SY5Y cells. These results provided empirical evidence between curcumin and PERK-eIF2α signaling in ACR-induced neurotoxicity.
Collapse
Affiliation(s)
- Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, China
| | - Na Wang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, China
| | - Jianling Yao
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, China
| | - Xu Wu
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, China.
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, China.
| |
Collapse
|
42
|
Naletova I, Greco V, Sciuto S, Attanasio F, Rizzarelli E. Ionophore Ability of Carnosine and Its Trehalose Conjugate Assists Copper Signal in Triggering Brain-Derived Neurotrophic Factor and Vascular Endothelial Growth Factor Activation In Vitro. Int J Mol Sci 2021; 22:13504. [PMID: 34948299 PMCID: PMC8706131 DOI: 10.3390/ijms222413504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
l-carnosine (β-alanyl-l-histidine) (Car hereafter) is a natural dipeptide widely distributed in mammalian tissues and reaching high concentrations (0.7-2.0 mM) in the brain. The molecular features of the dipeptide underlie the antioxidant, anti-aggregating and metal chelating ability showed in a large number of physiological effects, while the biological mechanisms involved in the protective role found against several diseases cannot be explained on the basis of the above-mentioned properties alone, requiring further research efforts. It has been reported that l-carnosine increases the secretion and expression of various neurotrophic factors and affects copper homeostasis in nervous cells inducing Cu cellular uptake in keeping with the key metal-sensing system. Having in mind this l-carnosine ability, here we report the copper-binding and ionophore ability of l-carnosine to activate tyrosine kinase cascade pathways in PC12 cells and stimulate the expression of BDNF. Furthermore, the study was extended to verify the ability of the dipeptide to favor copper signaling inducing the expression of VEGF. Being aware that the potential protective action of l-carnosine is drastically hampered by its hydrolysis, we also report on the behavior of a conjugate of l-carnosine with trehalose that blocks the carnosinase degradative activity. Overall, our findings describe a copper tuning effect on the ability of l-carnosine and, particularly its conjugate, to activate tyrosine kinase cascade pathways.
Collapse
Affiliation(s)
- Irina Naletova
- Institute of Crystallography, National Council of Research—CNR, Via Paolo Gaifami 18, 95126 Catania, Italy;
- National Inter-University Consortium Metals Chemistry in Biological Systems (CIRCMSB), Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Valentina Greco
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Sebastiano Sciuto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Francesco Attanasio
- Institute of Crystallography, National Council of Research—CNR, Via Paolo Gaifami 18, 95126 Catania, Italy;
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research—CNR, Via Paolo Gaifami 18, 95126 Catania, Italy;
- National Inter-University Consortium Metals Chemistry in Biological Systems (CIRCMSB), Via Celso Ulpiani 27, 70126 Bari, Italy
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| |
Collapse
|
43
|
Akbari S, Hooshmandi E, Bayat M, Borhani Haghighi A, Salehi MS, Pandamooz S, Yousefi Nejad A, Haghani M. The neuroprotective properties and therapeutic potential of epidermal neural crest stem cells transplantation in a rat model of vascular dementia. Brain Res 2021; 1776:147750. [PMID: 34896332 DOI: 10.1016/j.brainres.2021.147750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The incidence rate of senile dementia is rising, and there is no definite cure for it yet. Cell therapy, as a new investigational approach, has shown promising results. Hair bulges with abundant easily accessible neural stem cells permit autologous implantation in irreversible neurodegenerative disorders. METHODS Fifty rats were randomly divided into 5 groups of control, sham-operation, two-common carotid vessel-occlusion rats that received vehicle (2VO + V), 2VO rats that received 1 × 106 epidermal stem cells (2VO + ESC1), and 2VO rats that received 2.5 × 106 epidermal stem cells (2VO + ESC2) in 300 µl PBS intravenously on days 4, 9, and 14 after surgery. The epidermal neural crest stem cells (EPI-NCSCs) were isolated from hair follicles of rat whiskers. The open-field, passive avoidance, and Morris water maze were used as behavioral tests. The basal-synaptic transmission, long-term potentiation (LTP), and short-term synaptic plasticity were evaluated by field-potential recording of the CA1 hippocampal area. RESULTS 30 days after the first transplantation in the 2VO + ESC1 group, functional recovery was prominent in anxiety and fear memory compared to the 2VO + ESC2 group, while LTP induction was recovered in both groups of grafted animals without improvement in basal synaptic transmission. These positive recoveries may be related to the release of different neurotrophic factors from grafted cells that can stimulate endogenous neurogenesis and synaptic plasticity. CONCLUSIONS Our results showed that EPI-NCSCs implantation could rescue LTP and cognitive disability in 2VO rats, while transplantation of 1 million cells showed better performance relative to 2.5 million cells.
Collapse
Affiliation(s)
- Somayeh Akbari
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Saied Salehi
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Yousefi Nejad
- Department of Veterinary Medicine, Faculty of Veterinary Medicine. Islamic Azad University of Kazeroon, Shiraz, Iran
| | - Masoud Haghani
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran; Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
44
|
Resistance Exercise Improves Spatial Learning Ability Through Phosphorylation of 5'-Adenosine Monophosphate-Activated Protein Kinase in Parkinson Disease Mice. Int Neurourol J 2021; 25:S55-62. [PMID: 34844387 PMCID: PMC8654314 DOI: 10.5213/inj.2142336.168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022] Open
Abstract
Purpose Exercise is a representative noninvasive treatment that can be applied to various diseases. We studied the effect of resistance exercise on motor function and spatial learning ability in Parkinson disease (PD) mice. Methods The rotarod test and beam walking test were conducted to evaluate the effect of resistance exercise on motor function, and the Morris water maze test was conducted to examine the effect of resistance exercise on spatial learning ability. The effect of resistance exercise on brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) expression and 5’-adenosine monophosphate-activated protein kinase (AMPK) phosphorylation was investigated by Western blot analysis. New cell generation was confirmed by immunohistochemistry for 5-bromo-2’-deoxyuridine. Results Resistance exercise improved coordination, balance, and spatial learning ability in PD mice. Resistance exercise enhanced new cell production, BDNF and TrkB expression, and AMPK phosphorylation in PD mice. The effect of such resistance exercise was similar to that of levodopa application. Conclusions In PD-induced mice, resistance exercise enhanced AMPK phosphorylation to increase BDNF expression and new neuron generation, thereby improving spatial learning ability. Resistance exercise is believed to help improve symptoms of PD.
Collapse
|
45
|
Molecular and Cellular Mechanisms of Perineural Invasion in Oral Squamous Cell Carcinoma: Potential Targets for Therapeutic Intervention. Cancers (Basel) 2021; 13:cancers13236011. [PMID: 34885121 PMCID: PMC8656475 DOI: 10.3390/cancers13236011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Squamous cell carcinoma is the most common type of oral cavity cancer. It can spread along and invade nerves in a process called perineural invasion. Perineural invasion can increase the chances of tumor recurrence and reduce survival in patients with oral cancer. Understanding how oral cancer interacts with nerves to facilitate perineural invasion is an important area of research. Targeting key events that contribute to perineural invasion in oral cavity cancer may reduce tumor recurrence and improve survival. In this review, we describe the impact of perineural invasion in oral cancer and the mechanisms that contribute to perineural invasion. Highlighting the key events of perineural invasion is important for the identification and testing of novel therapies for oral cancer with perineural invasion. Abstract The most common oral cavity cancer is squamous cell carcinoma (SCC), of which perineural invasion (PNI) is a significant prognostic factor associated with decreased survival and an increased rate of locoregional recurrence. In the classical theory of PNI, cancer was believed to invade nerves directly through the path of least resistance in the perineural space; however, more recent evidence suggests that PNI requires reciprocal signaling interactions between tumor cells and nerve components, particularly Schwann cells. Specifically, head and neck SCC can express neurotrophins and neurotrophin receptors that may contribute to cancer migration towards nerves, PNI, and neuritogenesis towards cancer. Through reciprocal signaling, recent studies also suggest that Schwann cells may play an important role in promoting PNI by migrating toward cancer cells, intercalating, and dispersing cancer, and facilitating cancer migration toward nerves. The interactions of neurotrophins with their high affinity receptors is a new area of interest in the development of pharmaceutical therapies for many types of cancer. In this comprehensive review, we discuss diagnosis and treatment of oral cavity SCC, how PNI affects locoregional recurrence and survival, and the impact of adjuvant therapies on tumors with PNI. We also describe the molecular and cellular mechanisms associated with PNI, including the expression of neurotrophins and their receptors, and highlight potential targets for therapeutic intervention for PNI in oral SCC.
Collapse
|
46
|
Ikram M, Jo MH, Choe K, Khan A, Ahmad S, Saeed K, Kim MW, Kim MO. Cycloastragenol, a Triterpenoid Saponin, Regulates Oxidative Stress, Neurotrophic Dysfunctions, Neuroinflammation and Apoptotic Cell Death in Neurodegenerative Conditions. Cells 2021; 10:2719. [PMID: 34685699 PMCID: PMC8534642 DOI: 10.3390/cells10102719] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Here, we have unveiled the effects of cycloastragenol against Aβ (Amyloid-beta)-induced oxidative stress, neurogenic dysfunction, activated mitogen-activated protein (MAP) kinases, and mitochondrial apoptosis in an Aβ-induced mouse model of Alzheimer's disease (AD). The Aβ-induced mouse model was developed by the stereotaxic injection of amyloid-beta (5 μg/mouse/intracerebroventricular), and cycloastragenol was given at a dose of 20 mg/kg/day/p.o for 6 weeks daily. For the biochemical analysis, we used immunofluorescence and Western blotting. Our findings showed that the injection of Aβ elevated oxidative stress and reduced the expression of neurogenic markers, as shown by the reduced expression of brain-derived neurotrophic factor (BDNF) and the phosphorylation of its specific receptor tropomyosin receptor kinase B (p-TrKB). In addition, there was a marked reduction in the expression of NeuN (neuronal nuclear protein) in the Aβ-injected mice brains (cortex and hippocampus). Interestingly, the expression of Nrf2 (nuclear factor erythroid 2-related factor 2), HO-1 (heme oxygenase-1), p-TrKB, BDNF, and NeuN was markedly enhanced in the Aβ + Cycloastragenol co-treated mice brains. We have also evaluated the expressions of MAP kinases such as phospho c-Jun-N-terminal kinase (p-JNK), p-38, and phospho-extracellular signal-related kinase (ERK1/2) in the experimental groups, which suggested that the expression of p-JNK, p-P-38, and p-Erk were significantly upregulated in the Aβ-injected mice brains; interestingly, these markers were downregulated in the Aβ + Cycloastragenol co-treated mice brains. We also checked the expression of activated microglia and inflammatory cytokines, which showed that cycloastragenol reduced the activated microglia and inflammatory cytokines. Moreover, we evaluated the effects of cycloastragenol against mitochondrial apoptosis and memory dysfunctions in the experimental groups. The findings showed significant regulatory effects against apoptosis and memory dysfunction as revealed by the Morris water maze (MWM) test. Collectively, the findings suggested that cycloastragenol regulates oxidative stress, neurotrophic processes, neuroinflammation, apoptotic cell death, and memory impairment in the mouse model of AD.
Collapse
Affiliation(s)
- Muhammad Ikram
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (M.H.J.); (A.K.); (S.A.); (K.S.); (M.W.K.)
| | - Myeung Hoon Jo
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (M.H.J.); (A.K.); (S.A.); (K.S.); (M.W.K.)
| | - Kyonghwan Choe
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6211 LK Maastricht, The Netherlands;
| | - Amjad Khan
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (M.H.J.); (A.K.); (S.A.); (K.S.); (M.W.K.)
| | - Sareer Ahmad
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (M.H.J.); (A.K.); (S.A.); (K.S.); (M.W.K.)
| | - Kamran Saeed
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (M.H.J.); (A.K.); (S.A.); (K.S.); (M.W.K.)
| | - Min Woo Kim
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (M.H.J.); (A.K.); (S.A.); (K.S.); (M.W.K.)
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (M.H.J.); (A.K.); (S.A.); (K.S.); (M.W.K.)
- Alz-Dementia Korea Co., Jinju 52828, Korea
| |
Collapse
|
47
|
Galindo-Romero C, Vidal-Villegas B, Asís-Martínez J, Lucas-Ruiz F, Gallego-Ortega A, Vidal-Sanz M. 7,8-Dihydroxiflavone Protects Adult Rat Axotomized Retinal Ganglion Cells through MAPK/ERK and PI3K/AKT Activation. Int J Mol Sci 2021; 22:ijms221910896. [PMID: 34639236 PMCID: PMC8509499 DOI: 10.3390/ijms221910896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022] Open
Abstract
We analyze the 7,8-dihydroxyflavone (DHF)/TrkB signaling activation of two main intracellular pathways, mitogen-activated protein kinase (MAPK)/ERK and phosphatidylinositol 3 kinase (PI3K)/AKT, in the neuroprotection of axotomized retinal ganglion cells (RGCs). Methods: Adult albino Sprague-Dawley rats received left intraorbital optic nerve transection (IONT) and were divided in two groups. One group received daily intraperitoneal DHF (5 mg/kg) and another vehicle (1%DMSO in 0.9%NaCl) from one day before IONT until processing. Additional intact rats were employed as control (n = 4). At 1, 3 or 7 days (d) after IONT, phosphorylated (p)AKT, p-MAPK, and non-phosphorylated AKT and MAPK expression levels were analyzed in the retina by Western blotting (n = 4/group). Radial sections were also immunodetected for the above-mentioned proteins, and for Brn3a and vimentin to identify RGCs and Müller cells (MCs), respectively (n = 3/group). Results: IONT induced increased levels of p-MAPK and MAPK at 3d in DHF- or vehicle-treated retinas and at 7d in DHF-treated retinas. IONT induced a fast decrease in AKT in retinas treated with DHF or vehicle, with higher levels of phosphorylation in DHF-treated retinas at 7d. In intact retinas and vehicle-treated groups, no p-MAPK or MAPK expression in RGCs was observed. In DHF- treated retinas p-MAPK and MAPK were expressed in the ganglion cell layer and in the RGC nuclei 3 and 7d after IONT. AKT was observed in intact and axotomized RGCs, but the signal intensity of p-AKT was stronger in DHF-treated retinas. Finally, MCs expressed higher quantities of both MAPK and AKT at 3d in both DHF- and vehicle-treated retinas, and at 7d the phosphorylation of p-MAPK was higher in DHF-treated groups. Conclusions: Phosphorylation and increased levels of AKT and MAPK through MCs and RGCs in retinas after DHF-treatment may be responsible for the increased and long-lasting RGC protection afforded by DHF after IONT.
Collapse
Affiliation(s)
- Caridad Galindo-Romero
- Departamento de Oftalmología, Campus de CC de la Salud, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain; (B.V.-V.); (J.A.-M.); (F.L.-R.); (A.G.-O.); (M.V.-S.)
- Correspondence: ; Tel.: +34-8-688-893-09
| | - Beatriz Vidal-Villegas
- Departamento de Oftalmología, Campus de CC de la Salud, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain; (B.V.-V.); (J.A.-M.); (F.L.-R.); (A.G.-O.); (M.V.-S.)
- Servicio de Oftalmología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Javier Asís-Martínez
- Departamento de Oftalmología, Campus de CC de la Salud, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain; (B.V.-V.); (J.A.-M.); (F.L.-R.); (A.G.-O.); (M.V.-S.)
| | - Fernando Lucas-Ruiz
- Departamento de Oftalmología, Campus de CC de la Salud, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain; (B.V.-V.); (J.A.-M.); (F.L.-R.); (A.G.-O.); (M.V.-S.)
| | - Alejandro Gallego-Ortega
- Departamento de Oftalmología, Campus de CC de la Salud, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain; (B.V.-V.); (J.A.-M.); (F.L.-R.); (A.G.-O.); (M.V.-S.)
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Campus de CC de la Salud, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain; (B.V.-V.); (J.A.-M.); (F.L.-R.); (A.G.-O.); (M.V.-S.)
| |
Collapse
|
48
|
Teng Z, Wang L, Li S, Tan Y, Qiu Y, Wu C, Jin K, Chen J, Huang J, Tang H, Xiang H, Wang B, Yuan H, Wu H. Low BDNF levels in serum are associated with cognitive impairments in medication-naïve patients with current depressive episode in BD II and MDD. J Affect Disord 2021; 293:90-96. [PMID: 34175594 DOI: 10.1016/j.jad.2021.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/09/2021] [Accepted: 06/13/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE This study aimed to investigate the role of Brain-derived neurotrophic factor (BDNF) in clinical and cognitive outcomes in medication-naïve patients with Bipolar type II disorder (BD II) and Major depressive disorder (MDD). METHODS 45 outpatients with BD II, 40 outpatients with MDD and 40 healthy controls (HCs) were recruited, and sociodemographic and clinical data were collected. Their BDNF serum levels were measured and analyzed with the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). RESULTS BDNF levels were significantly lower in BD II patients than in MDD patients and HCs (p = 0.001). BD II and MDD patients had similar cognitive performance deficits shown on Attention (p = 0.001), Delayed memory (p = 0.001), and RBANS total score (p = 0.001). BDNF levels were positively associated with Visuospatial / constructional and Stroop color-word in BD II group, and with language in MDD group. The area under the curve (AUC) of the ROC analysis in BD II vs. MDD was 0.664, therefore, BDNF levels could not distinguish BD II from MDD. CONCLUSION Our study showed the decreased serum BDNF in MDD and BD II patients, suggesting BDNF may be involved in the pathophysiology of MDD and BD II. BDNF and cognitive deficits are both of low efficiency in distinguishing BD II from MDD. Decrease of BDNF may potentially indicate cognitive dysfunction in BD II and MDD patients with a current depressive episode.
Collapse
Affiliation(s)
- Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Lu Wang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Sujuan Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yuxi Tan
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yan Qiu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Chujun Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Kun Jin
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Tang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Xiang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Yuan
- Department of Ultrasound Dltrasound Diagnosis, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
49
|
Parrott JM, Porter GA, Redus L, O'Connor JC. Brain derived neurotrophic factor deficiency exacerbates inflammation-induced anhedonia in mice. Psychoneuroendocrinology 2021; 134:105404. [PMID: 34601342 PMCID: PMC8934305 DOI: 10.1016/j.psyneuen.2021.105404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/11/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is implicated in the pathology of major depression and influences the inflammatory response. Prolonged immune system activation can cause depression symptoms, and individuals with low BDNF expression may be vulnerable to inflammation-induced depression. We tested the hypothesis that BDNF deficient mice are vulnerable to the induction of depressive-like behavior following peripheral immune challenge. BDNF heterozygous (BDNF+/-) or wild-type (BDNF+/+) littermate mice were injected intraperitoneally (i.p.) with endotoxin (lipopolysaccharide, LPS) to trigger an acute pro-inflammatory response. After resolution of the acute sickness response, central expression of inflammatory genes, kynurenine metabolites, and depressive-like behaviors across multiple dimensions (symptoms) were measured. BDNF+/- mice displayed an exaggerated neuroinflammatory response following peripheral immune challenge. Pro-inflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) were overexpressed in BDNF+/- mice relative to BDNF+/+ littermate control mice. While behavioral despair and anxiety-like behavior was not different between genotypes, LPS-induced anhedonia-like behavior was significantly more pronounced in BDNF+/- mice relative to BDNF+/+ mice. The kynurenine pathway mediates the many depressive-like behavioral effects of peripheral LPS, and similar to pro-inflammatory cytokine gene expression, indoleamine 2,3-dioxygenase (IDO) expression and kynurenine metabolism was exaggerated in BDNF+/- mice. Genetic BDNF deficiency results in a dysregulated neuroinflammatory and metabolic response to peripheral immune challenge and in a specific vulnerability to the development of inflammation-induced anhedonia.
Collapse
Affiliation(s)
- Jennifer M Parrott
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States; Center for Biomedical Neuroscience and School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States
| | - Grace A Porter
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States; Center for Biomedical Neuroscience and School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States
| | - Laney Redus
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States
| | - Jason C O'Connor
- Audie L. Murphy VA Hospital, South Texas Veterans Heath System, San Antonio, TX 78229-4404, United States; Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States; Center for Biomedical Neuroscience and School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States; Mood Disorders Translational Research Core, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States.
| |
Collapse
|
50
|
Woo E, Sansing LH, Arnsten AFT, Datta D. Chronic Stress Weakens Connectivity in the Prefrontal Cortex: Architectural and Molecular Changes. CHRONIC STRESS 2021; 5:24705470211029254. [PMID: 34485797 PMCID: PMC8408896 DOI: 10.1177/24705470211029254] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022]
Abstract
Chronic exposure to uncontrollable stress causes loss of spines and dendrites in the prefrontal cortex (PFC), a recently evolved brain region that provides top-down regulation of thought, action, and emotion. PFC neurons generate top-down goals through recurrent excitatory connections on spines. This persistent firing is the foundation for higher cognition, including working memory, and abstract thought. However, exposure to acute uncontrollable stress drives high levels of catecholamine release in the PFC, which activates feedforward calcium-cAMP signaling pathways to open nearby potassium channels, rapidly weakening synaptic connectivity to reduce persistent firing. Chronic stress exposures can further exacerbate these signaling events leading to loss of spines and resulting in marked cognitive impairment. In this review, we discuss how stress signaling mechanisms can lead to spine loss, including changes to BDNF-mTORC1 signaling, calcium homeostasis, actin dynamics, and mitochondrial actions that engage glial removal of spines through inflammatory signaling. Stress signaling events may be amplified in PFC spines due to cAMP magnification of internal calcium release. As PFC dendritic spine loss is a feature of many cognitive disorders, understanding how stress affects the structure and function of the PFC will help to inform strategies for treatment and prevention.
Collapse
Affiliation(s)
- Elizabeth Woo
- Department of Neuroscience, Yale Medical School, New Haven, CT, USA.,Department of Neurology, Yale Medical School, New Haven, CT, USA
| | - Lauren H Sansing
- Department of Neurology, Yale Medical School, New Haven, CT, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale Medical School, New Haven, CT, USA
| | - Dibyadeep Datta
- Department of Neuroscience, Yale Medical School, New Haven, CT, USA
| |
Collapse
|