1
|
Ku Y, Zhou Y. Crossmodal Associations and Working Memory in the Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1437:91-100. [PMID: 38270855 DOI: 10.1007/978-981-99-7611-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Crossmodal associations between stimuli from different sensory modalities could emerge in non-synesthetic people and be stored in working memory to guide goal-directed behaviors. This chapter reviews a plethora of studies in this field to summarize where, when, and how crossmodal associations and working memory are processed. It has been found that in those brain regions that are traditionally considered as unimodal primary sensory areas, neural activity could be influenced by crossmodal sensory signals at temporally very early stage of information processing. This phenomenon could not be due to feedback projections from higher level associative areas. Sequentially, neural processes would then occur in associative cortical areas including the posterior parietal cortex and prefrontal cortex. Neural oscillations in multiple frequency bands may reflect brain activity in crossmodal associations, and it is likely that neural synchrony is related to potential neural mechanisms underlying these processes. Primary sensory areas and associative areas coordinate together through neural synchrony to fulfil crossmodal associations and to guide working memory performance.
Collapse
Affiliation(s)
- Yixuan Ku
- Department of Psychology, Center for Brain and Mental Well-being, Sun Yat-sen University, Guangzhou, China.
- Peng Cheng Laboratory, Shenzhen, China.
| | - Yongdi Zhou
- School of Psychology, Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Passarelli L, Rosa MGP, Bakola S, Gamberini M, Worthy KH, Fattori P, Galletti C. Uniformity and Diversity of Cortical Projections to Precuneate Areas in the Macaque Monkey: What Defines Area PGm? Cereb Cortex 2019; 28:1700-1717. [PMID: 28369235 DOI: 10.1093/cercor/bhx067] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 03/01/2017] [Indexed: 12/12/2022] Open
Abstract
We report on the corticocortical connections of areas on the mesial surface of the macaque posterior parietal cortex, based on 10 retrograde tracer injections targeting different parts of the precuneate gyrus. Analysis of afferent connections supported the existence of two areas: PGm (also known as 7 m) and area 31. Both areas received major afferents from the V6A complex and from the external subdivision of area 23, but they differed in most other aspects. Area 31 showed greater emphasis on connections with premotor and parietal sensorimotor areas, whereas PGm received a greater proportion of its afferents from visuomotor structures involved in spatial cognition (including the lateral intraparietal cortex, inferior parietal lobule, and the putative visual areas in the ventral part of the precuneus). Medially, the anterior cingulate cortex (area 24) preferentially targeted area 31, whereas retrosplenial areas preferentially targeted PGm. These results indicate that earlier views on the connections of PGm were based on tracer injections that included parts of adjacent areas (including area 31), and prompt a reassessment of the limits of PGm. Our findings are compatible with a primary role of PGm in visuospatial cognition (including navigation), while supporting a role for area 31 in sensorimotor planning and coordination.
Collapse
Affiliation(s)
- Lauretta Passarelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Marcello G P Rosa
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Sophia Bakola
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy.,Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Michela Gamberini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Katrina H Worthy
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Patrizia Fattori
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Claudio Galletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
3
|
Chaplin TA, Rosa MGP, Lui LL. Auditory and Visual Motion Processing and Integration in the Primate Cerebral Cortex. Front Neural Circuits 2018; 12:93. [PMID: 30416431 PMCID: PMC6212655 DOI: 10.3389/fncir.2018.00093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/08/2018] [Indexed: 11/13/2022] Open
Abstract
The ability of animals to detect motion is critical for survival, and errors or even delays in motion perception may prove costly. In the natural world, moving objects in the visual field often produce concurrent sounds. Thus, it can highly advantageous to detect motion elicited from sensory signals of either modality, and to integrate them to produce more reliable motion perception. A great deal of progress has been made in understanding how visual motion perception is governed by the activity of single neurons in the primate cerebral cortex, but far less progress has been made in understanding both auditory motion and audiovisual motion integration. Here we, review the key cortical regions for motion processing, focussing on translational motion. We compare the representations of space and motion in the visual and auditory systems, and examine how single neurons in these two sensory systems encode the direction of motion. We also discuss the way in which humans integrate of audio and visual motion cues, and the regions of the cortex that may mediate this process.
Collapse
Affiliation(s)
- Tristan A Chaplin
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council (ARC) Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Marcello G P Rosa
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council (ARC) Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Leo L Lui
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council (ARC) Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| |
Collapse
|
4
|
Majka P, Rosa MGP, Bai S, Chan JM, Huo BX, Jermakow N, Lin MK, Takahashi YS, Wolkowicz IH, Worthy KH, Rajan R, Reser DH, Wójcik DK, Okano H, Mitra PP. Unidirectional monosynaptic connections from auditory areas to the primary visual cortex in the marmoset monkey. Brain Struct Funct 2018; 224:111-131. [PMID: 30288557 PMCID: PMC6373361 DOI: 10.1007/s00429-018-1764-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/27/2018] [Indexed: 11/26/2022]
Abstract
Until the late twentieth century, it was believed that different sensory modalities were processed by largely independent pathways in the primate cortex, with cross-modal integration only occurring in specialized polysensory areas. This model was challenged by the finding that the peripheral representation of the primary visual cortex (V1) receives monosynaptic connections from areas of the auditory cortex in the macaque. However, auditory projections to V1 have not been reported in other primates. We investigated the existence of direct interconnections between V1 and auditory areas in the marmoset, a New World monkey. Labelled neurons in auditory cortex were observed following 4 out of 10 retrograde tracer injections involving V1. These projections to V1 originated in the caudal subdivisions of auditory cortex (primary auditory cortex, caudal belt and parabelt areas), and targeted parts of V1 that represent parafoveal and peripheral vision. Injections near the representation of the vertical meridian of the visual field labelled few or no cells in auditory cortex. We also placed 8 retrograde tracer injections involving core, belt and parabelt auditory areas, none of which revealed direct projections from V1. These results confirm the existence of a direct, nonreciprocal projection from auditory areas to V1 in a different primate species, which has evolved separately from the macaque for over 30 million years. The essential similarity of these observations between marmoset and macaque indicate that early-stage audiovisual integration is a shared characteristic of primate sensory processing.
Collapse
Affiliation(s)
- Piotr Majka
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093, Warsaw, Poland
- Monash University Node, Australian Research Council, Centre of Excellence for Integrative Brain Function, Clayton, VIC, 3800, Australia
| | - Marcello G P Rosa
- Monash University Node, Australian Research Council, Centre of Excellence for Integrative Brain Function, Clayton, VIC, 3800, Australia.
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia.
| | - Shi Bai
- Monash University Node, Australian Research Council, Centre of Excellence for Integrative Brain Function, Clayton, VIC, 3800, Australia
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - Jonathan M Chan
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - Bing-Xing Huo
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, 351-0106, Japan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Natalia Jermakow
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093, Warsaw, Poland
| | - Meng K Lin
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, 351-0106, Japan
| | - Yeonsook S Takahashi
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, 351-0106, Japan
| | - Ianina H Wolkowicz
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - Katrina H Worthy
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - Ramesh Rajan
- Monash University Node, Australian Research Council, Centre of Excellence for Integrative Brain Function, Clayton, VIC, 3800, Australia
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - David H Reser
- School of Rural Health, Monash University, Churchill, VIC, 3842, Australia
| | - Daniel K Wójcik
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093, Warsaw, Poland
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, 351-0106, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Partha P Mitra
- Monash University Node, Australian Research Council, Centre of Excellence for Integrative Brain Function, Clayton, VIC, 3800, Australia.
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, 351-0106, Japan.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| |
Collapse
|
5
|
Wilson SM, Bautista A, McCarron A. Convergence of spoken and written language processing in the superior temporal sulcus. Neuroimage 2018; 171:62-74. [PMID: 29277646 PMCID: PMC5857434 DOI: 10.1016/j.neuroimage.2017.12.068] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022] Open
Abstract
Spoken and written language processing streams converge in the superior temporal sulcus (STS), but the functional and anatomical nature of this convergence is not clear. We used functional MRI to quantify neural responses to spoken and written language, along with unintelligible stimuli in each modality, and employed several strategies to segregate activations on the dorsal and ventral banks of the STS. We found that intelligible and unintelligible inputs in both modalities activated the dorsal bank of the STS. The posterior dorsal bank was able to discriminate between modalities based on distributed patterns of activity, pointing to a role in encoding of phonological and orthographic word forms. The anterior dorsal bank was agnostic to input modality, suggesting that this region represents abstract lexical nodes. In the ventral bank of the STS, responses to unintelligible inputs in both modalities were attenuated, while intelligible inputs continued to drive activation, indicative of higher level semantic and syntactic processing. Our results suggest that the processing of spoken and written language converges on the posterior dorsal bank of the STS, which is the first of a heterogeneous set of language regions within the STS, with distinct functions spanning a broad range of linguistic processes.
Collapse
Affiliation(s)
- Stephen M Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Alexa Bautista
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, AZ, USA
| | - Angelica McCarron
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
6
|
Beck Lidén C, Krüger O, Schwarz L, Erb M, Kardatzki B, Scheffler K, Ethofer T. Neurobiology of knowledge and misperception of lyrics. Neuroimage 2016; 134:12-21. [PMID: 27085504 DOI: 10.1016/j.neuroimage.2016.03.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 10/21/2022] Open
Abstract
We conducted two functional magnetic resonance imaging (fMRI) experiments to investigate the neural underpinnings of knowledge and misperception of lyrics. In fMRI experiment 1, a linear relationship between familiarity with lyrics and activation was found in left-hemispheric speech-related as well as bilateral striatal areas which is in line with previous research on generation of lyrics. In fMRI experiment 2, we employed so called Mondegreens and Soramimi to induce misperceptions of lyrics revealing a bilateral network including middle temporal and inferior frontal areas as well as anterior cingulate cortex (ACC) and mediodorsal thalamus. ACC activation also correlated with the extent to which misperceptions were judged as amusing corroborating previous neuroimaging results on the role of this area in mediating the pleasant experience of chills during music perception. Finally, we examined the areas engaged during misperception of lyrics using diffusion-weighted imaging (DWI) to determine their structural connectivity. These combined fMRI/DWI results could serve as a neurobiological model for future studies on other types of misunderstanding which are events with potentially strong impact on our social life.
Collapse
Affiliation(s)
- Claudia Beck Lidén
- Department of Biomedical Magnetic Resonance, University of Tübingen, Otfried-Müller-Str. 51, 72076 Tübingen, Germany
| | - Oliver Krüger
- Department of Biomedical Magnetic Resonance, University of Tübingen, Otfried-Müller-Str. 51, 72076 Tübingen, Germany
| | - Lena Schwarz
- Department of Biomedical Magnetic Resonance, University of Tübingen, Otfried-Müller-Str. 51, 72076 Tübingen, Germany; University Clinic for Psychiatry and Psychotherapy, University of Tübingen, Calwer Str. 14, 72076 Tübingen, Germany
| | - Michael Erb
- Department of Biomedical Magnetic Resonance, University of Tübingen, Otfried-Müller-Str. 51, 72076 Tübingen, Germany
| | - Bernd Kardatzki
- Department of Biomedical Magnetic Resonance, University of Tübingen, Otfried-Müller-Str. 51, 72076 Tübingen, Germany
| | - Klaus Scheffler
- Department of Biomedical Magnetic Resonance, University of Tübingen, Otfried-Müller-Str. 51, 72076 Tübingen, Germany; Max-Planck-Institute for Biological Cybernetics, Speemannstraße 38-40, 72076 Tübingen, Germany
| | - Thomas Ethofer
- Department of Biomedical Magnetic Resonance, University of Tübingen, Otfried-Müller-Str. 51, 72076 Tübingen, Germany; University Clinic for Psychiatry and Psychotherapy, University of Tübingen, Calwer Str. 14, 72076 Tübingen, Germany; Max-Planck-Institute for Biological Cybernetics, Speemannstraße 38-40, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Stepniewska I, Cerkevich CM, Kaas JH. Cortical Connections of the Caudal Portion of Posterior Parietal Cortex in Prosimian Galagos. Cereb Cortex 2015; 26:2753-77. [PMID: 26088972 DOI: 10.1093/cercor/bhv132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Posterior parietal cortex (PPC) of prosimian galagos includes a rostral portion (PPCr) where electrical stimulation evokes different classes of complex movements from different subregions, and a caudal portion (PPCc) where such stimulation fails to evoke movements in anesthetized preparations ( Stepniewska, Fang et al. 2009). We placed tracer injections into PPCc to reveal patterns of its cortical connections. There were widespread connections within PPCc as well as connections with PPCr and extrastriate visual areas, including V2 and V3. Weaker connections were with dorsal premotor cortex, and the frontal eye field. The connections of different parts of PPCc with visual areas were roughly retinotopic such that injections to dorsal PPCc labeled more neurons in the dorsal portions of visual areas, representing lower visual quadrant, and injections to ventral PPCc labeled more neurons in ventral portions of these visual areas, representing the upper visual quadrant. We conclude that much of the PPCc contains a crude representation of the contralateral visual hemifield, with inputs largely, but not exclusively, from higher-order visual areas that are considered part of the dorsal visuomotor processing stream. As in galagos, the caudal half of PPC was likely visual in early primates, with the rostral PPC half mediating sensorimotor functions.
Collapse
Affiliation(s)
- Iwona Stepniewska
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Christina M Cerkevich
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA Current address: System Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
8
|
Geranmayeh F, Leech R, Wise RJS. Semantic retrieval during overt picture description: Left anterior temporal or the parietal lobe? Neuropsychologia 2014; 76:125-35. [PMID: 25497693 PMCID: PMC4582804 DOI: 10.1016/j.neuropsychologia.2014.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 12/07/2014] [Accepted: 12/08/2014] [Indexed: 11/15/2022]
Abstract
Retrieval of semantic representations is a central process during overt speech production. There is an increasing consensus that an amodal semantic 'hub' must exist that draws together modality-specific representations of concepts. Based on the distribution of atrophy and the behavioral deficit of patients with the semantic variant of fronto-temporal lobar degeneration, it has been proposed that this hub is localized within both anterior temporal lobes (ATL), and is functionally connected with verbal 'output' systems via the left ATL. An alternative view, dating from Geschwind's proposal in 1965, is that the angular gyrus (AG) is central to object-based semantic representations. In this fMRI study we examined the connectivity of the left ATL and parietal lobe (PL) with whole brain networks known to be activated during overt picture description. We decomposed each of these two brain volumes into 15 regions of interest (ROIs), using independent component analysis. A dual regression analysis was used to establish the connectivity of each ROI with whole brain-networks. An ROI within the left anterior superior temporal sulcus (antSTS) was functionally connected to other parts of the left ATL, including anterior ventromedial left temporal cortex (partially attenuated by signal loss due to susceptibility artifact), a large left dorsolateral prefrontal region (including 'classic' Broca's area), extensive bilateral sensory-motor cortices, and the length of both superior temporal gyri. The time-course of this functionally connected network was associated with picture description but not with non-semantic baseline tasks. This system has the distribution expected for the production of overt speech with appropriate semantic content, and the auditory monitoring of the overt speech output. In contrast, the only left PL ROI that showed connectivity with brain systems most strongly activated by the picture-description task, was in the superior parietal lobe (supPL). This region showed connectivity with predominantly posterior cortical regions required for the visual processing of the pictorial stimuli, with additional connectivity to the dorsal left AG and a small component of the left inferior frontal gyrus. None of the other PL ROIs that included part of the left AG were activated by Speech alone. The best interpretation of these results is that the left antSTS connects the proposed semantic hub (specifically localized to ventral anterior temporal cortex based on clinical neuropsychological studies) to posterior frontal regions and sensory-motor cortices responsible for the overt production of speech.
Collapse
Affiliation(s)
- Fatemeh Geranmayeh
- Computational Cognitive and Clinical Neuroimaging Laboratory, Imperial College, Hammersmith Hospital, London W12 0NN, UK.
| | - Robert Leech
- Computational Cognitive and Clinical Neuroimaging Laboratory, Imperial College, Hammersmith Hospital, London W12 0NN, UK
| | - Richard J S Wise
- Computational Cognitive and Clinical Neuroimaging Laboratory, Imperial College, Hammersmith Hospital, London W12 0NN, UK
| |
Collapse
|
9
|
Hackett TA, de la Mothe LA, Camalier CR, Falchier A, Lakatos P, Kajikawa Y, Schroeder CE. Feedforward and feedback projections of caudal belt and parabelt areas of auditory cortex: refining the hierarchical model. Front Neurosci 2014; 8:72. [PMID: 24795550 PMCID: PMC4001064 DOI: 10.3389/fnins.2014.00072] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/25/2014] [Indexed: 12/21/2022] Open
Abstract
Our working model of the primate auditory cortex recognizes three major regions (core, belt, parabelt), subdivided into thirteen areas. The connections between areas are topographically ordered in a manner consistent with information flow along two major anatomical axes: core-belt-parabelt and caudal-rostral. Remarkably, most of the connections supporting this model were revealed using retrograde tracing techniques. Little is known about laminar circuitry, as anterograde tracing of axon terminations has rarely been used. The purpose of the present study was to examine the laminar projections of three areas of auditory cortex, pursuant to analysis of all areas. The selected areas were: middle lateral belt (ML); caudomedial belt (CM); and caudal parabelt (CPB). Injections of anterograde tracers yielded data consistent with major features of our model, and also new findings that compel modifications. Results supporting the model were: (1) feedforward projection from ML and CM terminated in CPB; (2) feedforward projections from ML and CPB terminated in rostral areas of the belt and parabelt; and (3) feedback projections typified inputs to the core region from belt and parabelt. At odds with the model was the convergence of feedforward inputs into rostral medial belt from ML and CPB. This was unexpected since CPB is at a higher stage of the processing hierarchy, with mainly feedback projections to all other belt areas. Lastly, extending the model, feedforward projections from CM, ML, and CPB overlapped in the temporal parietal occipital area (TPO) in the superior temporal sulcus, indicating significant auditory influence on sensory processing in this region. The combined results refine our working model and highlight the need to complete studies of the laminar inputs to all areas of auditory cortex. Their documentation is essential for developing informed hypotheses about the neurophysiological influences of inputs to each layer and area.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine Nashville, TN, USA
| | | | - Corrie R Camalier
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine Nashville, TN, USA ; Laboratory of Neuropsychology, National Institutes of Mental Health Bethesda, MD, USA
| | - Arnaud Falchier
- Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute Orangeburg, NY, USA ; Department of Psychiatry, Columbia University College of Physicians and Surgeons New York, NY, USA
| | - Peter Lakatos
- Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute Orangeburg, NY, USA ; Department of Psychiatry, Columbia University College of Physicians and Surgeons New York, NY, USA
| | - Yoshinao Kajikawa
- Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute Orangeburg, NY, USA ; Department of Psychiatry, Columbia University College of Physicians and Surgeons New York, NY, USA
| | - Charles E Schroeder
- Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute Orangeburg, NY, USA ; Department of Psychiatry, Columbia University College of Physicians and Surgeons New York, NY, USA
| |
Collapse
|
10
|
Watson R, Latinus M, Charest I, Crabbe F, Belin P. People-selectivity, audiovisual integration and heteromodality in the superior temporal sulcus. Cortex 2013; 50:125-36. [PMID: 23988132 PMCID: PMC3884128 DOI: 10.1016/j.cortex.2013.07.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 06/27/2013] [Accepted: 07/25/2013] [Indexed: 11/16/2022]
Abstract
The functional role of the superior temporal sulcus (STS) has been implicated in a number of studies, including those investigating face perception, voice perception, and face–voice integration. However, the nature of the STS preference for these ‘social stimuli’ remains unclear, as does the location within the STS for specific types of information processing. The aim of this study was to directly examine properties of the STS in terms of selective response to social stimuli. We used functional magnetic resonance imaging (fMRI) to scan participants whilst they were presented with auditory, visual, or audiovisual stimuli of people or objects, with the intention of localising areas preferring both faces and voices (i.e., ‘people-selective’ regions) and audiovisual regions designed to specifically integrate person-related information. Results highlighted a ‘people-selective, heteromodal’ region in the trunk of the right STS which was activated by both faces and voices, and a restricted portion of the right posterior STS (pSTS) with an integrative preference for information from people, as compared to objects. These results point towards the dedicated role of the STS as a ‘social-information processing’ centre.
Collapse
Affiliation(s)
- Rebecca Watson
- Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.
| | - Marianne Latinus
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK; Institut des Neurosciences de La Timone, UMR 7289, CNRS & Université Aix-Marseille, Marseille, France
| | - Ian Charest
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK; Medical Research Council-Cognition and Brain Sciences Unit (MRC-CBU), Cambridge, UK
| | - Frances Crabbe
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Pascal Belin
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK; Institut des Neurosciences de La Timone, UMR 7289, CNRS & Université Aix-Marseille, Marseille, France; International Laboratories for Brain, Music and Sound (BRAMS), Université de Montréal & McGill University, Montreal, Canada
| |
Collapse
|
11
|
Abstract
The conditions of everyday life are such that people often hear speech that has been degraded (e.g., by background noise or electronic transmission) or when they are distracted by other tasks. However, it remains unclear what role attention plays in processing speech that is difficult to understand. In the current study, we used functional magnetic resonance imaging to assess the degree to which spoken sentences were processed under distraction, and whether this depended on the acoustic quality (intelligibility) of the speech. On every trial, adult human participants attended to one of three simultaneously presented stimuli: a sentence (at one of four acoustic clarity levels), an auditory distracter, or a visual distracter. A postscan recognition test showed that clear speech was processed even when not attended, but that attention greatly enhanced the processing of degraded speech. Furthermore, speech-sensitive cortex could be parcellated according to how speech-evoked responses were modulated by attention. Responses in auditory cortex and areas along the superior temporal sulcus (STS) took the same form regardless of attention, although responses to distorted speech in portions of both posterior and anterior STS were enhanced under directed attention. In contrast, frontal regions, including left inferior frontal gyrus, were only engaged when listeners were attending to speech and these regions exhibited elevated responses to degraded, compared with clear, speech. We suggest this response is a neural marker of effortful listening. Together, our results suggest that attention enhances the processing of degraded speech by engaging higher-order mechanisms that modulate perceptual auditory processing.
Collapse
|
12
|
Tyll S, Bonath B, Schoenfeld MA, Heinze HJ, Ohl FW, Noesselt T. Neural basis of multisensory looming signals. Neuroimage 2013; 65:13-22. [DOI: 10.1016/j.neuroimage.2012.09.056] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/03/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022] Open
|
13
|
Cloutman LL, Lambon Ralph MA. Connectivity-based structural and functional parcellation of the human cortex using diffusion imaging and tractography. Front Neuroanat 2012; 6:34. [PMID: 22952459 PMCID: PMC3429885 DOI: 10.3389/fnana.2012.00034] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 07/28/2012] [Indexed: 01/17/2023] Open
Abstract
The parcellation of the cortex via its anatomical properties has been an important research endeavor for over a century. To date, however, a universally accepted parcellation scheme for the human brain still remains elusive. In the current review, we explore the use of in vivo diffusion imaging and white matter tractography as a non-invasive method for the structural and functional parcellation of the human cerebral cortex, discussing the strengths and limitations of the current approaches. Cortical parcellation via white matter connectivity is based on the premise that, as connectional anatomy determines functional organization, it should be possible to segregate functionally-distinct cortical regions by identifying similarities and differences in connectivity profiles. Recent studies have provided initial evidence in support of the efficacy of this connectional parcellation methodology. Such investigations have identified distinct cortical subregions which correlate strongly with functional regions identified via fMRI and meta-analyses. Furthermore, a strong parallel between the cortical regions defined via tractographic and more traditional cytoarchitectonic parcellation methods has been observed. However, the degree of correspondence and relative functional importance of cytoarchitectonic- versus connectivity-derived parcellations still remains unclear. Diffusion tractography remains one of the only methods capable of visualizing the structural networks of the brain in vivo. As such, it is of vital importance to continue to improve the accuracy of the methodology and to extend its potential applications in the study of cognition in neurological health and disease.
Collapse
Affiliation(s)
- Lauren L Cloutman
- Neuroscience and Aphasia Research Unit, School of Psychological Sciences, University of Manchester Manchester, UK
| | | |
Collapse
|
14
|
Noesselt T, Bergmann D, Heinze HJ, Münte T, Spence C. Coding of multisensory temporal patterns in human superior temporal sulcus. Front Integr Neurosci 2012; 6:64. [PMID: 22973202 PMCID: PMC3428803 DOI: 10.3389/fnint.2012.00064] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/07/2012] [Indexed: 11/20/2022] Open
Abstract
Philosophers, psychologists, and neuroscientists have long been interested in how the temporal aspects of perception are represented in the brain. In the present study, we investigated the neural basis of the temporal perception of synchrony/asynchrony for audiovisual speech stimuli using functional magnetic resonance imaging (fMRI). Subjects judged the temporal relation of (a)synchronous audiovisual speech streams, and indicated any changes in their perception of the stimuli over time. Differential hemodynamic responses for synchronous versus asynchronous stimuli were observed in the multisensory superior temporal sulcus complex (mSTS-c) and prefrontal cortex. Within mSTS-c we found adjacent regions expressing an enhanced BOLD-response to the different physical (a)synchrony conditions. These regions were further modulated by the subjects' perceptual state. By calculating the distances between the modulated regions within mSTS-c in single-subjects we demonstrate that the “auditory leading (AL)” and “visual leading (VL) areas” lie closer to “synchrony areas” than to each other. Moreover, analysis of interregional connectivity indicates a stronger functional connection between multisensory prefrontal cortex and mSTS-c during the perception of asynchrony. Taken together, these results therefore suggest the presence of distinct sub-regions within the human STS-c for the maintenance of temporal relations for audiovisual speech stimuli plus differential functional connectivity with prefrontal regions. The respective local activity in mSTS-c is dependent both upon the physical properties of the stimuli presented and upon the subjects' perception of (a)synchrony.
Collapse
Affiliation(s)
- Tömme Noesselt
- Department of Biological Psychology, Otto-von-Guericke-Universität Magdeburg Magdeburg, Germany
| | | | | | | | | |
Collapse
|
15
|
Li Y, Booth JR, Peng D, Zang Y, Li J, Yan C, Ding G. Altered intra- and inter-regional synchronization of superior temporal cortex in deaf people. ACTA ACUST UNITED AC 2012; 23:1988-96. [PMID: 22767633 DOI: 10.1093/cercor/bhs185] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Functional organization of the brain can be fundamentally altered by auditory deprivation. Previous studies found that the superior temporal cortex in deaf people is reorganized to process non-auditory stimuli, as revealed by the extrinsic task-induced brain activities. However, it is unknown how the intrinsic activities of this region are impacted by deafness. This study explored this issue using resting-state functional magnetic resonance imaging. We examined 60 congenitally deaf (CD) individuals, 39 acquired deaf (AD) individuals, and 38 hearing controls (HC), and focused on the effect of deafness on the intra- and inter-regional synchronization of different parts of superior temporal sulcus (STS). We found that intra-regional synchronization or regional homogeneity (ReHo) of the middle STS (mSTS) was decreased in AD compared with HC or CD, while the CD had preserved ReHo in mSTS. Greater connectivity was observed between mSTS and posterior STS in CD and HC than in AD, while both CD and AD had weaker connectivity of mSTS with the anterior STS (aSTS) compared with HC. Moreover, the connectivity of mSTS-aSTS in CD and AD was associated with their language skills. These findings confirmed our hypothesis that the intrinsic function of different parts of STS is distinctly impacted by deafness.
Collapse
Affiliation(s)
- Yanyan Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China
| | | | | | | | | | | | | |
Collapse
|
16
|
Wible CG. Hippocampal temporal-parietal junction interaction in the production of psychotic symptoms: a framework for understanding the schizophrenic syndrome. Front Hum Neurosci 2012; 6:180. [PMID: 22737114 PMCID: PMC3381447 DOI: 10.3389/fnhum.2012.00180] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/01/2012] [Indexed: 11/25/2022] Open
Abstract
A framework is described for understanding the schizophrenic syndrome at the brain systems level. It is hypothesized that over-activation of dynamic gesture and social perceptual processes in the temporal-parietal occipital junction (TPJ), posterior superior temporal sulcus (PSTS) and surrounding regions produce the syndrome (including positive and negative symptoms, their prevalence, prodromal signs, and cognitive deficits). Hippocampal system hyper-activity and atrophy have been consistently found in schizophrenia. Hippocampal activity is highly correlated with activity in the TPJ and may be a source of over-excitation of the TPJ and surrounding regions. Strong evidence for this comes from in-vivo recordings in humans during psychotic episodes. Many positive symptoms of schizophrenia can be reframed as the erroneous sense of a presence or other who is observing, acting, speaking, or controlling; these qualia are similar to those evoked during abnormal activation of the TPJ. The TPJ and PSTS play a key role in the perception (and production) of dynamic social, emotional, and attentional gestures for the self and others (e.g., body/face/eye gestures, audiovisual speech and prosody, and social attentional gestures such as eye gaze). The single cell representation of dynamic gestures is multimodal (auditory, visual, tactile), matching the predominant hallucinatory categories in schizophrenia. Inherent in the single cell perceptual signal of dynamic gesture representations is a computation of intention, agency, and anticipation or expectancy (for the self and others). Stimulation of the TPJ resulting in activation of the self representation has been shown to result a feeling of a presence or multiple presences (due to heautoscopy) and also bizarre tactile experiences. Neurons in the TPJ are also tuned, or biased to detect threat related emotions. Abnormal over-activation in this system could produce the conscious hallucination of a voice (audiovisual speech), a person or a touch. Over-activation could interfere with attentional/emotional gesture perception and production (negative symptoms). It could produce the unconscious feeling of being watched, followed, or of a social situation unfolding along with accompanying abnormal perception of intent and agency (delusions). Abnormal activity in the TPJ would also be predicted to create several cognitive disturbances that are characteristic of schizophrenia, including abnormalities in attention, predictive social processing, working memory, and a bias to erroneously perceive threat.
Collapse
Affiliation(s)
- Cynthia G Wible
- Laboratory for Neuroscience, Department of Psychiatry, Harvard Medical School, Brockton MA, USA
| |
Collapse
|
17
|
de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA. Cortical connections of auditory cortex in marmoset monkeys: lateral belt and parabelt regions. Anat Rec (Hoboken) 2012; 295:800-21. [PMID: 22461313 DOI: 10.1002/ar.22451] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 03/01/2012] [Indexed: 11/12/2022]
Abstract
The current working model of primate auditory cortex is constructed from a number of studies of both new and old world monkeys. It includes three levels of processing. A primary level, the core region, is surrounded both medially and laterally by a secondary belt region. A third level of processing, the parabelt region, is located lateral to the belt. The marmoset monkey (Callithrix jacchus jacchus) has become an important model system to study auditory processing, but its anatomical organization has not been fully established. In previous studies, we focused on the architecture and connections of the core and medial belt areas (de la Mothe et al., 2006a, J Comp Neurol 496:27-71; de la Mothe et al., 2006b, J Comp Neurol 496:72-96). In this study, the corticocortical connections of the lateral belt and parabelt were examined in the marmoset. Tracers were injected into both rostral and caudal portions of the lateral belt and parabelt. Both regions revealed topographic connections along the rostrocaudal axis, where caudal areas of injection had stronger connections with caudal areas, and rostral areas of injection with rostral areas. The lateral belt had strong connections with the core, belt, and parabelt, whereas the parabelt had strong connections with the belt but not the core. Label in the core from injections in the parabelt was significantly reduced or absent, consistent with the idea that the parabelt relies mainly on the belt for its cortical input. In addition, the present and previous studies indicate hierarchical principles of anatomical organization in the marmoset that are consistent with those observed in other primates.
Collapse
Affiliation(s)
- Lisa A de la Mothe
- Department of Psychology, Tennessee State University, Nashville, Tennessee 37209, USA
| | | | | | | |
Collapse
|
18
|
Inkster B, Rao AW, Ridler K, Nichols TE, Saemann PG, Auer DP, Holsboer F, Tozzi F, Muglia P, Merlo-Pich E, Matthews PM. Structural brain changes in patients with recurrent major depressive disorder presenting with anxiety symptoms. J Neuroimaging 2011; 21:375-82. [PMID: 20977527 DOI: 10.1111/j.1552-6569.2010.00515.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Major depressive disorder (MDD) presents with extensive clinical heterogeneity. In particular, overlap with anxiety symptoms is common during depressive episodes and as a comorbid disorder. The aim of this study was to test for morphological brain differences between patients having a history of recurrent MDD with, and without, anxiety symptoms (MDD+A and MDD-A). METHODS T1-weighted magnetic resonance images of age-, gender- and ethnically matched groups of MDD+A (n= 49) and MDD-A (n= 96) patients were available for voxel-based morphometry analysis of regional gray matter (GM) volume differences. Brain structural images were also contrasted with 183 age-, gender-, and ethnicity-matched healthy controls. RESULTS MDD+A patients had greater GM volume (P(FWE) = .002) than MDD-A patients in the right temporal cortex extending from the mid-posterior superior temporal gyrus into the posterior middle and inferior temporal gyrus. The MDD patients together showed lower GM volume than healthy controls in the superior parietal lobe. CONCLUSIONS Regional volume differences in patients are consistent with altered neuronal or glial microstructure. The temporolateral cortical differences distinguishing the 2 MDD groups suggest neurobiological differences related to the expression of anxiety symptoms in depression and provide further rationale for considering these groups independently for therapeutic outcomes studies.
Collapse
Affiliation(s)
- Becky Inkster
- GlaxoSmithKline Clinical Imaging Centre, Hammersmith Hospital, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gschwind M, Pourtois G, Schwartz S, Van De Ville D, Vuilleumier P. White-Matter Connectivity between Face-Responsive Regions in the Human Brain. Cereb Cortex 2011; 22:1564-76. [DOI: 10.1093/cercor/bhr226] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
20
|
Kajikawa Y, Falchier A, Musacchia G, Lakatos P, Schroeder C. Audiovisual Integration in Nonhuman Primates. Front Neurosci 2011. [DOI: 10.1201/9781439812174-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
21
|
Kajikawa Y, Falchier A, Musacchia G, Lakatos P, Schroeder C. Audiovisual Integration in Nonhuman Primates. Front Neurosci 2011. [DOI: 10.1201/b11092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
22
|
Ebisch SJH, Ferri F, Salone A, Perrucci MG, D'Amico L, Ferro FM, Romani GL, Gallese V. Differential Involvement of Somatosensory and Interoceptive Cortices during the Observation of Affective Touch. J Cogn Neurosci 2011; 23:1808-22. [PMID: 20666597 DOI: 10.1162/jocn.2010.21551] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Previous studies suggested that the observation of other individuals' somatosensory experiences also activates brain circuits processing one's own somatosensory experiences. However, it is unclear whether cortical regions involved with the elementary stages of touch processing are also involved in the automatic coding of the affective consequences of observed touch and to which extent they show overlapping activation for somatosensory experiences of self and others. In order to investigate these issues, in the present fMRI study, healthy participants either experienced touch or watched videos depicting other individuals' inanimate and animate/social touch experiences. Essentially, a distinction can be made between exteroceptive and interoceptive components of touch processing, involved with physical stimulus characteristics and internal feeling states, respectively. Consistent with this distinction, a specific negative modulation was found in the posterior insula by the mere visual perception of other individuals' social or affective cutaneous experiences, compared to neutral inanimate touch. On the other hand, activation in secondary somatosensory and posterior superior temporal regions, strongest for the most intense stimuli, seemed more dependent on the observed physical stimulus characteristics. In contrast to the detected vicarious activation in somatosensory regions, opposite activation patterns for the experience (positive modulation) and observation (negative modulation) of touch suggest that the posterior insula does not reflect a shared representation of self and others' experiences. Embedded in a distributed network of brain regions underpinning a sense of the bodily self, the posterior insula rather appears to differentiate between self and other conditions when affective experiences are implicated.
Collapse
Affiliation(s)
- Sjoerd J. H. Ebisch
- 1G. d'Annunzio University Chieti-Pescara, Chieti, Italy
- 3G. d'Annunzio Foundation, Chieti, Italy
| | | | | | - Mauro Gianni Perrucci
- 1G. d'Annunzio University Chieti-Pescara, Chieti, Italy
- 3G. d'Annunzio Foundation, Chieti, Italy
| | - Luigi D'Amico
- 1G. d'Annunzio University Chieti-Pescara, Chieti, Italy
| | | | - Gian Luca Romani
- 1G. d'Annunzio University Chieti-Pescara, Chieti, Italy
- 3G. d'Annunzio Foundation, Chieti, Italy
| | - Vittorio Gallese
- 2Parma University, Parma, Italy
- 4Brain Center for Social and Motor Cognition, Parma, Italy
| |
Collapse
|
23
|
Ethofer T, Bretscher J, Gschwind M, Kreifelts B, Wildgruber D, Vuilleumier P. Emotional Voice Areas: Anatomic Location, Functional Properties, and Structural Connections Revealed by Combined fMRI/DTI. Cereb Cortex 2011; 22:191-200. [PMID: 21625012 DOI: 10.1093/cercor/bhr113] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Thomas Ethofer
- Department of General Psychiatry, University of Tübingen, 72076 Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Markov NT, Misery P, Falchier A, Lamy C, Vezoli J, Quilodran R, Gariel MA, Giroud P, Ercsey-Ravasz M, Pilaz LJ, Huissoud C, Barone P, Dehay C, Toroczkai Z, Van Essen DC, Kennedy H, Knoblauch K. Weight consistency specifies regularities of macaque cortical networks. ACTA ACUST UNITED AC 2010; 21:1254-72. [PMID: 21045004 PMCID: PMC3097985 DOI: 10.1093/cercor/bhq201] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
To what extent cortical pathways show significant weight differences and whether these differences are consistent across animals (thereby comprising robust connectivity profiles) is an important and unresolved neuroanatomical issue. Here we report a quantitative retrograde tracer analysis in the cynomolgus macaque monkey of the weight consistency of the afferents of cortical areas across brains via calculation of a weight index (fraction of labeled neurons, FLN). Injection in 8 cortical areas (3 occipital plus 5 in the other lobes) revealed a consistent pattern: small subcortical input (1.3% cumulative FLN), high local intrinsic connectivity (80% FLN), high-input form neighboring areas (15% cumulative FLN), and weak long-range corticocortical connectivity (3% cumulative FLN). Corticocortical FLN values of projections to areas V1, V2, and V4 showed heavy-tailed, lognormal distributions spanning 5 orders of magnitude that were consistent, demonstrating significant connectivity profiles. These results indicate that 1) connection weight heterogeneity plays an important role in determining cortical network specificity, 2) high investment in local projections highlights the importance of local processing, and 3) transmission of information across multiple hierarchy levels mainly involves pathways having low FLN values.
Collapse
Affiliation(s)
- N T Markov
- Stem Cell and Brain Research Institute, Institut National de la Sante et de la Recherche Medicale U846, 18 avenue du Doyen Lepine, Bron, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Habas C, Guillevin R, Abanou A. Functional connectivity of the superior human temporal sulcus in the brain resting state at 3T. Neuroradiology 2010; 53:129-40. [PMID: 20924756 DOI: 10.1007/s00234-010-0775-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 09/21/2010] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The superior temporal sulcus (STS) constitutes a polymodal associative area providing higher-order visual representation of other's action and emotion, necessary for imitation, empathizing, and mentalizing. In monkeys, STS is connected with the cerebellum, which is also involved in motor, emotional, and cognitive functions. However, in humans, very few data are available concerning the functional connectivity of polymodal STS in general and its functional links with the cerebellum, in particular. This study was therefore designed to investigate the intrinsically connected network of STS during the brain resting state with possible involvement of the cerebellum. METHODS Data from 14 right-handed healthy volunteers were acquired at rest and analyzed by region of interest (ROI)-based functional connectivity. Blood-oxygen-level-dependent (BOLD) signal fluctuations of separate six ROIs located in the right and left posterior, medial, and anterior STS were successively used to identify significant temporal correlations with BOLD signal fluctuations of other brain regions. RESULTS Low-frequency BOLD signals of the right and left posterior, medial, and lateral STS share a common bilateral circuit encompassing the ventrolateral prefrontal, premotor/motor, insular, parietal temporal, occipital, and cerebellar cortices (lobules VI/VIIA), thalamus, and striatum. CONCLUSION The STS-centered network (1) is intrinsically connected during the brain resting, (2) encompasses the whole caudalmost two thirds of STS, (3) may partly represent the whole STS structural connectivity, and includes the motor and cognitive neocerebellum (lobules VI/VIIA).
Collapse
Affiliation(s)
- Christophe Habas
- Service de NeuroImagerie, CHNO des Quinze-Vingts, UPMC, Paris 6, 28, rue de Charenton, 75012 Paris, France.
| | | | | |
Collapse
|
26
|
Inkster B, Nichols TE, Saemann PG, Auer DP, Holsboer F, Muglia P, Matthews PM. Pathway-based approaches to imaging genetics association studies: Wnt signaling, GSK3beta substrates and major depression. Neuroimage 2010; 53:908-17. [PMID: 20219685 DOI: 10.1016/j.neuroimage.2010.02.065] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 02/23/2010] [Accepted: 02/23/2010] [Indexed: 01/05/2023] Open
Abstract
Several lines of evidence implicate glycogen synthase kinase 3 beta (GSK3beta) in mood disorders. We recently reported associations between GSK3beta polymorphisms and brain structural changes in patients with recurrent major depressive disorder (MDD). Here we provide supporting observations by showing that polymorphisms in additional genes encoding proteins directly related to GSK3beta biological functions are associated with similar regional grey matter (GM) volume changes in MDD patients. We tested specifically for associations with genetic variation in canonical Wnt signaling pathway genes and in genes that encode substrate proteins of GSK3beta. We applied a general linear model with non-stationary cluster-based inference to examine associations between polymorphisms and regional voxel-based morphometry GM volume differences in recurrent MDD patients (n=134) and in age-, gender-, and ethnicity-matched healthy controls (n=144) to test for genotype-by-MDD interactions. We observed associations for polymorphisms in 8/13 canonical Wnt pathway genes and 5/10 GSK3beta substrate genes, predominantly in the temporolateral and medial prefrontal cortices. Similar associations were not found for 100 unrelated polymorphisms tested. This work suggests that identifying SNPs related to genes that encode functionally-interacting proteins that modulate common anatomical regions offers a useful approach to increasing confidence in outcomes from imaging genetics association studies. This is of particular interest when replication datasets are not available. Our observations lend support to the hypothesis that polymorphisms in GSK3beta play a role in MDD susceptibility or expression, in part, by acting via the canonical Wnt signaling pathway and related substrates.
Collapse
Affiliation(s)
- Becky Inkster
- GlaxoSmithKline Clinical Imaging Centre, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Stepniewska I, Cerkevich CM, Fang PCY, Kaas JH. Organization of the posterior parietal cortex in galagos: II. Ipsilateral cortical connections of physiologically identified zones within anterior sensorimotor region. J Comp Neurol 2010; 517:783-807. [PMID: 19844952 DOI: 10.1002/cne.22190] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We studied cortical connections of functionally distinct movement zones of the posterior parietal cortex (PPC) in galagos identified by intracortical microstimulation with long stimulus trains ( approximately 500 msec). All these zones were in the anterior half of PPC, and each of them had a different pattern of connections with premotor (PM) and motor (M1) areas of the frontal lobe and with other areas of parietal and occipital cortex. The most rostral PPC zone has major connections with motor and visuomotor areas of frontal cortex as well as with somatosensory areas 3a and 1-2 and higher order somatosensory areas in the lateral sulcus. The dorsal part of anterior PPC region representing hand-to-mouth movements is connected mostly to the forelimb representation in PM, M1, 3a, 1-2, and somatosensory areas in the lateral sulcus and on the medial wall. The more posterior defensive and reaching zones have additional connections with nonprimary visual areas (V2, V3, DL, DM, MST). Ventral aggressive and defensive face zones have reciprocal connections with each other as well as connections with mostly face, but also forelimb representations of premotor areas and M1 as well as prefrontal cortex, FEF, and somatosensory areas in the lateral sulcus and areas on the medial surface of the hemisphere. Whereas the defensive face zone is additionally connected to nonprimary visual cortical areas, the aggressive face zone is not. These differences in connections are consistent with our functional parcellation of PPC based on intracortical long-train microstimulation, and they identify parts of cortical networks that mediate different motor behaviors.
Collapse
Affiliation(s)
- Iwona Stepniewska
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203, USA.
| | | | | | | |
Collapse
|
28
|
Binder JR, Desai RH, Graves WW, Conant LL. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 2009; 19:2767-96. [PMID: 19329570 PMCID: PMC2774390 DOI: 10.1093/cercor/bhp055] [Citation(s) in RCA: 2561] [Impact Index Per Article: 170.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Semantic memory refers to knowledge about people, objects, actions, relations, self, and culture acquired through experience. The neural systems that store and retrieve this information have been studied for many years, but a consensus regarding their identity has not been reached. Using strict inclusion criteria, we analyzed 120 functional neuroimaging studies focusing on semantic processing. Reliable areas of activation in these studies were identified using the activation likelihood estimate (ALE) technique. These activations formed a distinct, left-lateralized network comprised of 7 regions: posterior inferior parietal lobe, middle temporal gyrus, fusiform and parahippocampal gyri, dorsomedial prefrontal cortex, inferior frontal gyrus, ventromedial prefrontal cortex, and posterior cingulate gyrus. Secondary analyses showed specific subregions of this network associated with knowledge of actions, manipulable artifacts, abstract concepts, and concrete concepts. The cortical regions involved in semantic processing can be grouped into 3 broad categories: posterior multimodal and heteromodal association cortex, heteromodal prefrontal cortex, and medial limbic regions. The expansion of these regions in the human relative to the nonhuman primate brain may explain uniquely human capacities to use language productively, plan, solve problems, and create cultural and technological artifacts, all of which depend on the fluid and efficient retrieval and manipulation of semantic knowledge.
Collapse
Affiliation(s)
- Jeffrey R Binder
- Language Imaging Laboratory, Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | |
Collapse
|
29
|
Abstract
Neurons in sensory cortices are often topographically organized according to their response preferences. We here show that such an organization of response preferences also exists in multisensory association cortex. Using electrophysiological mappings, we probed the modality preference to auditory and visual stimuli of neurons in the superior temporal association cortex of nonhuman primates. We found that neurons preferring the same modality (auditory or visual) often co-occur in close spatial proximity or occur intermingled with bimodal neurons. Neurons preferring different modalities, in contrast, occur spatially separated. This organization at the scale of individual neurons leads to extended patches of same modality preference when analyzed at the scale of millimeters, revealing larger-scale regions that preferentially respond to the same modality. In addition, we find that neurons exhibiting signs of multisensory interactions, such as superadditive or subadditive response summation, also occur in spatial clusters. Together, these results reveal a spatial organization of modality preferences in a higher association cortex and lend support to the notion that topographical organizations might serve as a general principle of integrating information within and across the sensory modalities.
Collapse
|
30
|
Green A, Straube B, Weis S, Jansen A, Willmes K, Konrad K, Kircher T. Neural integration of iconic and unrelated coverbal gestures: a functional MRI study. Hum Brain Mapp 2009; 30:3309-24. [PMID: 19350562 PMCID: PMC6870774 DOI: 10.1002/hbm.20753] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 12/31/2008] [Accepted: 01/20/2009] [Indexed: 11/09/2022] Open
Abstract
Gestures are an important part of interpersonal communication, for example by illustrating physical properties of speech contents (e.g., "the ball is round"). The meaning of these so-called iconic gestures is strongly intertwined with speech. We investigated the neural correlates of the semantic integration for verbal and gestural information. Participants watched short videos of five speech and gesture conditions performed by an actor, including variation of language (familiar German vs. unfamiliar Russian), variation of gesture (iconic vs. unrelated), as well as isolated familiar language, while brain activation was measured using functional magnetic resonance imaging. For familiar speech with either of both gesture types contrasted to Russian speech-gesture pairs, activation increases were observed at the left temporo-occipital junction. Apart from this shared location, speech with iconic gestures exclusively engaged left occipital areas, whereas speech with unrelated gestures activated bilateral parietal and posterior temporal regions. Our results demonstrate that the processing of speech with speech-related versus speech-unrelated gestures occurs in two distinct but partly overlapping networks. The distinct processing streams (visual versus linguistic/spatial) are interpreted in terms of "auxiliary systems" allowing the integration of speech and gesture in the left temporo-occipital region.
Collapse
Affiliation(s)
- Antonia Green
- Department of Psychiatry and Psychotherapy-Section of Experimental Psychopathology, RWTH Aachen University, Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
31
|
Human functional magnetic resonance imaging reveals separation and integration of shape and motion cues in biological motion processing. J Neurosci 2009; 29:7315-29. [PMID: 19494153 DOI: 10.1523/jneurosci.4870-08.2009] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In a series of human functional magnetic resonance imaging experiments, we systematically manipulated point-light stimuli to identify the contributions of the various areas implicated in biological motion processing (for review, see Giese and Poggio, 2003). The first experiment consisted of a 2 x 2 factorial design with global shape and kinematics as factors. In two additional experiments, we investigated the contributions of local opponent motion, the complexity of the portrayed movement and a one-back task to the activation pattern. Experiment 1 revealed a clear separation between shape and motion processing, resulting in two branches of activation. A ventral region, extending from the lateral occipital sulcus to the posterior inferior temporal gyrus, showed a main effect of shape and its extension into the fusiform gyrus also an interaction. The dorsal region, including the posterior inferior temporal sulcus and the posterior superior temporal sulcus (pSTS), showed a main effect of kinematics together with an interaction. Region of interest analysis identified these interaction sites as the extrastriate and fusiform body areas (EBA and FBA). The local opponent motion cue yielded only little activation, limited to the ventral region (experiment 3). Our results suggest that the EBA and the FBA correspond to the initial stages in visual action analysis, in which the performed action is linked to the body of the actor. Moreover, experiment 2 indicates that the body areas are activated automatically even in the absence of a task, whereas other cortical areas like pSTS or frontal regions depend on the complexity of movements or task instructions for their activation.
Collapse
|
32
|
Kayser C, Logothetis NK. Directed Interactions Between Auditory and Superior Temporal Cortices and their Role in Sensory Integration. Front Integr Neurosci 2009; 3:7. [PMID: 19503750 PMCID: PMC2691153 DOI: 10.3389/neuro.07.007.2009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 04/16/2009] [Indexed: 11/29/2022] Open
Abstract
Recent studies using functional imaging and electrophysiology demonstrate that processes related to sensory integration are not restricted to higher association cortices but already occur in early sensory cortices, such as primary auditory cortex. While anatomical studies suggest the superior temporal sulcus (STS) as likely source of visual input to auditory cortex, little evidence exists to support this notion at the functional level. Here we tested this hypothesis by simultaneously recording from sites in auditory cortex and STS in alert animals stimulated with dynamic naturalistic audio–visual scenes. Using Granger causality and directed transfer functions we first quantified causal interactions at the level of field potentials, and subsequently determined those frequency bands that show effective interactions, i.e. interactions that are relevant for influencing neuronal firing at the target site. We found that effective interactions from auditory cortex to STS prevail below 20 Hz, while interactions from STS to auditory cortex prevail above 20 Hz. In addition, we found that directed interactions from STS to auditory cortex make a significant contribution to multisensory influences in auditory cortex: Sites in auditory cortex showing multisensory enhancement received stronger feed-back from STS during audio–visual than during auditory stimulation, while sites with multisensory suppression received weaker feed-back. These findings suggest that beta frequencies might be important for inter-areal coupling in the temporal lobe and demonstrate that superior temporal regions indeed provide one major source of visual influences to auditory cortex.
Collapse
Affiliation(s)
- Christoph Kayser
- Max Planck Institute for Biological Cybernetics Tübingen, Germany
| | | |
Collapse
|
33
|
Abstract
The superior temporal sulcus (STS) is the chameleon of the human brain. Several research areas claim the STS as the host brain region for their particular behavior of interest. Some see it as one of the core structures for theory of mind. For others, it is the main region for audiovisual integration. It plays an important role in biological motion perception, but is also claimed to be essential for speech processing and processing of faces. We review the foci of activations in the STS from multiple functional magnetic resonance imaging studies, focusing on theory of mind, audiovisual integration, motion processing, speech processing, and face processing. The results indicate a differentiation of the STS region in an anterior portion, mainly involved in speech processing, and a posterior portion recruited by cognitive demands of all these different research areas. The latter finding argues against a strict functional subdivision of the STS. In line with anatomical evidence from tracer studies, we propose that the function of the STS varies depending on the nature of network coactivations with different regions in the frontal cortex and medial-temporal lobe. This view is more in keeping with the notion that the same brain region can support different cognitive operations depending on task-dependent network connections, emphasizing the role of network connectivity analysis in neuroimaging.
Collapse
Affiliation(s)
- Grit Hein
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
34
|
Fairhall SL, Macaluso E. Spatial attention can modulate audiovisual integration at multiple cortical and subcortical sites. Eur J Neurosci 2009; 29:1247-57. [DOI: 10.1111/j.1460-9568.2009.06688.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Hubbard AL, Wilson SM, Callan DE, Dapretto M. Giving speech a hand: gesture modulates activity in auditory cortex during speech perception. Hum Brain Mapp 2009; 30:1028-37. [PMID: 18412134 PMCID: PMC2644740 DOI: 10.1002/hbm.20565] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 01/20/2008] [Accepted: 02/15/2008] [Indexed: 11/07/2022] Open
Abstract
Viewing hand gestures during face-to-face communication affects speech perception and comprehension. Despite the visible role played by gesture in social interactions, relatively little is known about how the brain integrates hand gestures with co-occurring speech. Here we used functional magnetic resonance imaging (fMRI) and an ecologically valid paradigm to investigate how beat gesture-a fundamental type of hand gesture that marks speech prosody-might impact speech perception at the neural level. Subjects underwent fMRI while listening to spontaneously-produced speech accompanied by beat gesture, nonsense hand movement, or a still body; as additional control conditions, subjects also viewed beat gesture, nonsense hand movement, or a still body all presented without speech. Validating behavioral evidence that gesture affects speech perception, bilateral nonprimary auditory cortex showed greater activity when speech was accompanied by beat gesture than when speech was presented alone. Further, the left superior temporal gyrus/sulcus showed stronger activity when speech was accompanied by beat gesture than when speech was accompanied by nonsense hand movement. Finally, the right planum temporale was identified as a putative multisensory integration site for beat gesture and speech (i.e., here activity in response to speech accompanied by beat gesture was greater than the summed responses to speech alone and beat gesture alone), indicating that this area may be pivotally involved in synthesizing the rhythmic aspects of both speech and gesture. Taken together, these findings suggest a common neural substrate for processing speech and gesture, likely reflecting their joint communicative role in social interactions.
Collapse
Affiliation(s)
- Amy L Hubbard
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, California 90095-7085, USA.
| | | | | | | |
Collapse
|
36
|
On perceived synchrony—neural dynamics of audiovisual illusions and suppressions. Brain Res 2008; 1220:132-41. [DOI: 10.1016/j.brainres.2007.09.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 09/17/2007] [Accepted: 09/17/2007] [Indexed: 11/19/2022]
|
37
|
Driver J, Noesselt T. Multisensory interplay reveals crossmodal influences on 'sensory-specific' brain regions, neural responses, and judgments. Neuron 2008; 57:11-23. [PMID: 18184561 PMCID: PMC2427054 DOI: 10.1016/j.neuron.2007.12.013] [Citation(s) in RCA: 629] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although much traditional sensory research has studied each sensory modality in isolation, there has been a recent explosion of interest in causal interplay between different senses. Various techniques have now identified numerous multisensory convergence zones in the brain. Some convergence may arise surprisingly close to low-level sensory-specific cortex, and some direct connections may exist even between primary sensory cortices. A variety of multisensory phenomena have now been reported in which sensory-specific brain responses and perceptual judgments concerning one sense can be affected by relations with other senses. We survey recent progress in this multisensory field, foregrounding human studies against the background of invasive animal work and highlighting possible underlying mechanisms. These include rapid feedforward integration, possible thalamic influences, and/or feedback from multisensory regions to sensory-specific brain areas. Multisensory interplay is more prevalent than classic modular approaches assumed, and new methods are now available to determine the underlying circuits.
Collapse
Affiliation(s)
- Jon Driver
- UCL Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, UK.
| | | |
Collapse
|
38
|
Touch, sound and vision in human superior temporal sulcus. Neuroimage 2008; 41:1011-20. [PMID: 18440831 DOI: 10.1016/j.neuroimage.2008.03.015] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 03/05/2008] [Accepted: 03/10/2008] [Indexed: 11/15/2022] Open
Abstract
Human superior temporal sulcus (STS) is thought to be a key brain area for multisensory integration. Many neuroimaging studies have reported integration of auditory and visual information in STS but less is known about the role of STS in integrating other sensory modalities. In macaque STS, the superior temporal polysensory area (STP) responds to somatosensory, auditory and visual stimulation. To determine if human STS contains a similar area, we measured brain responses to somatosensory, auditory and visual stimuli using blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI). An area in human posterior STS, STSms (multisensory), responded to stimulation in all three modalities. STSms responded during both active and passive presentation of unisensory somatosensory stimuli and showed larger responses for more intense vs. less intense tactile stimuli, hand vs. foot, and contralateral vs. ipsilateral tactile stimulation. STSms showed responses of similar magnitude for unisensory tactile and auditory stimulation, with an enhanced response to simultaneous auditory-tactile stimulation. We conclude that STSms is important for integrating information from the somatosensory as well as the auditory and visual modalities, and could be the human homolog of macaque STP.
Collapse
|
39
|
Smiley JF, Hackett TA, Ulbert I, Karmas G, Lakatos P, Javitt DC, Schroeder CE. Multisensory convergence in auditory cortex, I. Cortical connections of the caudal superior temporal plane in macaque monkeys. J Comp Neurol 2007; 502:894-923. [PMID: 17447261 DOI: 10.1002/cne.21325] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The caudal medial auditory area (CM) has anatomical and physiological features consistent with its role as a first-stage (or "belt") auditory association cortex. It is also a site of multisensory convergence, with robust somatosensory and auditory responses. In this study, we investigated the cerebral cortical sources of somatosensory and auditory inputs to CM by injecting retrograde tracers in macaque monkeys. A companion paper describes the thalamic connections of CM (Hackett et al., J. Comp. Neurol. [this issue]). The likely cortical sources of somatosensory input to CM were the adjacent retroinsular cortex (area Ri) and granular insula (Ig). In addition, CM had reliable connections with areas Tpt and TPO, which are sites of multisensory integration. CM also had topographic connections with other auditory areas. As expected, connections with adjacent caudal auditory areas were stronger than connections with rostral areas. Surprisingly, the connections with the core were concentrated along its medial side, suggesting that there may be a medial-lateral division of function within the core. Additional injections into caudal lateral auditory area (CL) and Tpt showed similar connections with Ri, Ig, and TPO. In contrast to CM injections, these lateral injections had inputs from parietal area 7a and had a preferential connection with the lateral (gyral) part of Tpt. Taken together, the findings indicate that CM may receive somatosensory input from nearby areas along the fundus of the lateral sulcus. The differential connections of CM compared with adjacent areas provide additional evidence for the functional specialization of the individual auditory belt areas.
Collapse
Affiliation(s)
- John F Smiley
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Kayser C, Petkov CI, Augath M, Logothetis NK. Functional imaging reveals visual modulation of specific fields in auditory cortex. J Neurosci 2007; 27:1824-35. [PMID: 17314280 PMCID: PMC6673538 DOI: 10.1523/jneurosci.4737-06.2007] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Merging the information from different senses is essential for successful interaction with real-life situations. Indeed, sensory integration can reduce perceptual ambiguity, speed reactions, or change the qualitative sensory experience. It is widely held that integration occurs at later processing stages and mostly in higher association cortices; however, recent studies suggest that sensory convergence can occur in primary sensory cortex. A good model for early convergence proved to be the auditory cortex, which can be modulated by visual and tactile stimulation; however, given the large number and small size of auditory fields, neither human imaging nor microelectrode recordings have systematically identified which fields are susceptible to multisensory influences. To reconcile findings from human imaging with anatomical knowledge from nonhuman primates, we exploited high-resolution imaging (functional magnetic resonance imaging) of the macaque monkey to study the modulation of auditory processing by visual stimulation. Using a functional parcellation of auditory cortex, we localized modulations to individual fields. Our results demonstrate that both primary (core) and nonprimary (belt) auditory fields can be activated by the mere presentation of visual scenes. Audiovisual convergence was restricted to caudal fields [prominently the core field (primary auditory cortex) and belt fields (caudomedial field, caudolateral field, and mediomedial field)] and continued in the auditory parabelt and the superior temporal sulcus. The same fields exhibited enhancement of auditory activation by visual stimulation and showed stronger enhancement for less effective stimuli, two characteristics of sensory integration. Together, these findings reveal multisensory modulation of auditory processing prominently in caudal fields but also at the lowest stages of auditory cortical processing.
Collapse
Affiliation(s)
- Christoph Kayser
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
41
|
Upadhyay J, Ducros M, Knaus TA, Lindgren KA, Silver A, Tager-Flusberg H, Kim DS. Function and connectivity in human primary auditory cortex: a combined fMRI and DTI study at 3 Tesla. ACTA ACUST UNITED AC 2006; 17:2420-32. [PMID: 17190967 DOI: 10.1093/cercor/bhl150] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human primary auditory cortex (PAC) is functionally organized in a tonotopic manner. Past studies have used neuroimaging to characterize tonotopic organization in PAC and found similar organization as that described in mammals. In contrast to what is known about PAC in primates and nonprimates, in humans, the structural connectivity within PAC has not been defined. In this study, stroboscopic event-related functional magnetic resonance imaging (fMRI) was utilized to reveal mirror symmetric tonotopic organization consisting of a high-low-high frequency gradient in PAC. Furthermore, diffusion tensor tractography and probabilistic mapping was used to study projection patterns within tonotopic areas. Based on earlier physiological and histological work in nonhuman PAC, we hypothesized the existence of cross-field isofrequency (homotopic) and within-field non-isofrequency (heterotopic)-specific axonal projections in human PAC. The presence of both projections types was found in all subjects. Specifically, the number of diffusion tensor imaging (DTI) reconstructed fibers projecting between high- and low-frequency regions was greater than those fibers projecting between 2 high-frequency areas, the latter of which are located in distinct auditory fields. The fMRI and DTI results indicate that functional and structural properties within early stages of the auditory processing stream are preserved across multiple mammalian species at distinct evolutionary levels.
Collapse
Affiliation(s)
- Jaymin Upadhyay
- Center for Biomedical Imaging, Department of Anatomy and Neurobiology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Spitsyna G, Warren JE, Scott SK, Turkheimer FE, Wise RJS. Converging language streams in the human temporal lobe. J Neurosci 2006; 26:7328-36. [PMID: 16837579 PMCID: PMC6674192 DOI: 10.1523/jneurosci.0559-06.2006] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
There is general agreement that, after initial processing in unimodal sensory cortex, the processing pathways for spoken and written language converge to access verbal meaning. However, the existing literature provides conflicting accounts of the cortical location of this convergence. Most aphasic stroke studies localize verbal comprehension to posterior temporal and inferior parietal cortex (Wernicke's area), whereas evidence from focal cortical neurodegenerative syndromes instead implicates anterior temporal cortex. Previous functional imaging studies in normal subjects have failed to reconcile these opposing positions. Using a functional imaging paradigm in normal subjects that used spoken and written narratives and multiple baselines, we demonstrated common activation during implicit comprehension of spoken and written language in inferior and lateral regions of the left anterior temporal cortex and at the junction of temporal, occipital, and parietal cortex. These results indicate that verbal comprehension uses unimodal processing streams that converge in both anterior and posterior heteromodal cortical regions in the left temporal lobe.
Collapse
|
43
|
Uppenkamp S, Johnsrude IS, Norris D, Marslen-Wilson W, Patterson RD. Locating the initial stages of speech-sound processing in human temporal cortex. Neuroimage 2006; 31:1284-96. [PMID: 16504540 DOI: 10.1016/j.neuroimage.2006.01.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 11/01/2005] [Accepted: 01/16/2006] [Indexed: 11/15/2022] Open
Abstract
It is commonly assumed that, in the cochlea and the brainstem, the auditory system processes speech sounds without differentiating them from any other sounds. At some stage, however, it must treat speech sounds and nonspeech sounds differently, since we perceive them as different. The purpose of this study was to delimit the first location in the auditory pathway that makes this distinction using functional MRI, by identifying regions that are differentially sensitive to the internal structure of speech sounds as opposed to closely matched control sounds. We analyzed data from nine right-handed volunteers who were scanned while listening to natural and synthetic vowels, or to nonspeech stimuli matched to the vowel sounds in terms of their long-term energy and both their spectral and temporal profiles. The vowels produced more activation than nonspeech sounds in a bilateral region of the superior temporal sulcus, lateral and inferior to regions of auditory cortex that were activated by both vowels and nonspeech stimuli. The results suggest that the perception of vowel sounds is compatible with a hierarchical model of primate auditory processing in which early cortical stages of processing respond indiscriminately to speech and nonspeech sounds, and only higher regions, beyond anatomically defined auditory cortex, show selectivity for speech sounds.
Collapse
Affiliation(s)
- Stefan Uppenkamp
- Centre for the Neural Basis of Hearing, Department of Physiology, University of Cambridge, Cambridge CB2 3EG, UK.
| | | | | | | | | |
Collapse
|
44
|
Tanabe HC, Honda M, Sadato N. Functionally segregated neural substrates for arbitrary audiovisual paired-association learning. J Neurosci 2006; 25:6409-18. [PMID: 16000632 PMCID: PMC6725270 DOI: 10.1523/jneurosci.0636-05.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To clarify the neural substrates and their dynamics during crossmodal association learning, we conducted functional magnetic resonance imaging (MRI) during audiovisual paired-association learning of delayed matching-to-sample tasks. Thirty subjects were involved in the study; 15 performed an audiovisual paired-association learning task, and the remainder completed a control visuo-visual task. Each trial consisted of the successive presentation of a pair of stimuli. Subjects were asked to identify predefined audiovisual or visuo-visual pairs by trial and error. Feedback for each trial was given regardless of whether the response was correct or incorrect. During the delay period, several areas showed an increase in the MRI signal as learning proceeded: crossmodal activity increased in unimodal areas corresponding to visual or auditory areas, and polymodal responses increased in the occipitotemporal junction and parahippocampal gyrus. This pattern was not observed in the visuo-visual intramodal paired-association learning task, suggesting that crossmodal associations might be formed by binding unimodal sensory areas via polymodal regions. In both the audiovisual and visuo-visual tasks, the MRI signal in the superior temporal sulcus (STS) in response to the second stimulus and feedback peaked during the early phase of learning and then decreased, indicating that the STS might be key to the creation of paired associations, regardless of stimulus type. In contrast to the activity changes in the regions discussed above, there was constant activity in the frontoparietal circuit during the delay period in both tasks, implying that the neural substrates for the formation and storage of paired associates are distinct from working memory circuits.
Collapse
Affiliation(s)
- Hiroki C Tanabe
- Division of Cerebral Integration, Department of Cerebral Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | | | | |
Collapse
|
45
|
Kayser C, Petkov CI, Augath M, Logothetis NK. Integration of touch and sound in auditory cortex. Neuron 2006; 48:373-84. [PMID: 16242415 DOI: 10.1016/j.neuron.2005.09.018] [Citation(s) in RCA: 261] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 08/02/2005] [Accepted: 09/15/2005] [Indexed: 11/25/2022]
Abstract
To form a coherent percept of the environment, our brain combines information from different senses. Such multisensory integration occurs in higher association cortices; but supposedly, it also occurs in early sensory areas. Confirming the latter hypothesis, we unequivocally demonstrate supra-additive integration of touch and sound stimulation at the second stage of the auditory cortex. Using high-resolution fMRI of the macaque monkey, we quantified the integration of auditory broad-band noise and tactile stimulation of hand and foot in anaesthetized animals. Integration was found posterior to and along the lateral side of the primary auditory cortex in the caudal auditory belt. Integration was stronger for temporally coincident stimuli and obeyed the principle of inverse effectiveness: greater enhancement for less effective stimuli. These findings demonstrates that multisensory integration occurs early and close to primary sensory areas and--because it occurs in anaesthetized animals--suggests that this integration is mediated by preattentive bottom-up mechanisms.
Collapse
Affiliation(s)
- Christoph Kayser
- Max Planck Institute for Biological Cybernetics, Spemannstrasse 38, 72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
46
|
Crinion JT, Warburton EA, Lambon-Ralph MA, Howard D, Wise RJS. Listening to Narrative Speech after Aphasic Stroke: the Role of the Left Anterior Temporal Lobe. Cereb Cortex 2005; 16:1116-25. [PMID: 16251507 DOI: 10.1093/cercor/bhj053] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The dorsal bank of the primate superior temporal sulcus (STS) is a polysensory area with rich connections to unimodal sensory association cortices. These include auditory projections that process complex acoustic information, including conspecific vocalizations. We investigated whether an extensive left posterior temporal (Wernicke's area) lesion, which included destruction of early auditory cortex, may contribute to impaired spoken narrative comprehension as a consequence of reduced function in the anterior STS, a region not included within the boundary of infarction. Listening to narratives in normal subjects activated the posterior-anterior extent of the left STS, as far forward as the temporal pole. The presence of a Wernicke's area lesion was associated with both impaired sentence comprehension and a reduced physiological response to heard narratives in the intact anterior left STS when compared to aphasic patients without temporal lobe damage and normal controls. Thus, in addition to the loss of language function in left posterior temporal cortex as the direct result of infarction, posterior ablation that includes primary and early association auditory cortex impairs language function in the intact anterior left temporal lobe. The implication is that clinical studies of language on stroke patients have underestimated the role of left anterior temporal cortex in comprehension of narrative speech.
Collapse
Affiliation(s)
- Jennifer T Crinion
- Division of Neurosciences and Mental Health and MRC Clinical Sciences Centre, Imperial, Hammersmith Hospital, London W12 0NN, UK
| | | | | | | | | |
Collapse
|
47
|
Beauchamp MS. See me, hear me, touch me: multisensory integration in lateral occipital-temporal cortex. Curr Opin Neurobiol 2005; 15:145-53. [PMID: 15831395 DOI: 10.1016/j.conb.2005.03.011] [Citation(s) in RCA: 291] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Our understanding of multisensory integration has advanced because of recent functional neuroimaging studies of three areas in human lateral occipito-temporal cortex: superior temporal sulcus, area LO and area MT (V5). Superior temporal sulcus is activated strongly in response to meaningful auditory and visual stimuli, but responses to tactile stimuli have not been well studied. Area LO shows strong activation in response to both visual and tactile shape information, but not to auditory representations of objects. Area MT, an important region for processing visual motion, also shows weak activation in response to tactile motion, and a signal that drops below resting baseline in response to auditory motion. Within superior temporal sulcus, a patchy organization of regions is activated in response to auditory, visual and multisensory stimuli. This organization appears similar to that observed in polysensory areas in macaque superior temporal sulcus, suggesting that it is an anatomical substrate for multisensory integration. A patchy organization might also be a neural mechanism for integrating disparate representations within individual sensory modalities, such as representations of visual form and visual motion.
Collapse
Affiliation(s)
- Michael S Beauchamp
- Laboratory of Brain and Cognition, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA.
| |
Collapse
|
48
|
Rosa MGP, Tweedale R. Brain maps, great and small: lessons from comparative studies of primate visual cortical organization. Philos Trans R Soc Lond B Biol Sci 2005; 360:665-91. [PMID: 15937007 PMCID: PMC1874231 DOI: 10.1098/rstb.2005.1626] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this paper, we review evidence from comparative studies of primate cortical organization, highlighting recent findings and hypotheses that may help us to understand the rules governing evolutionary changes of the cortical map and the process of formation of areas during development. We argue that clear unequivocal views of cortical areas and their homologies are more likely to emerge for "core" fields, including the primary sensory areas, which are specified early in development by precise molecular identification steps. In primates, the middle temporal area is probably one of these primordial cortical fields. Areas that form at progressively later stages of development correspond to progressively more recent evolutionary events, their development being less firmly anchored in molecular specification. The certainty with which areal boundaries can be delimited, and likely homologies can be assigned, becomes increasingly blurred in parallel with this evolutionary/developmental sequence. For example, while current concepts for the definition of cortical areas have been vindicated in allowing a clarification of the organization of the New World monkey "third tier" visual cortex (the third and dorsomedial areas, V3 and DM), our analyses suggest that more flexible mapping criteria may be needed to unravel the organization of higher-order visual association and polysensory areas.
Collapse
Affiliation(s)
- Marcello G P Rosa
- Department of Physiology, Monash University Centre for Brain and Behaviour, Monash University, Clayton, VIC 3800, Australia.
| | | |
Collapse
|
49
|
Griffiths TD, Warren JD, Scott SK, Nelken I, King AJ. Cortical processing of complex sound: a way forward? Trends Neurosci 2004; 27:181-5. [PMID: 15046876 DOI: 10.1016/j.tins.2004.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The organization of the cortical auditory system remains controversial. In particular, the extent to which there is regional specialization in the cortical processing of complex sound is unclear. Here, we ask whether we are currently asking the right questions of auditory cortex, or using the appropriate techniques to do so. A key factor that will promote such understanding in the future will be increasing dialogue between workers using electrophysiological recording methods to assess the response properties of single neurons and those using imaging techniques to map regional organization. In the future, further insights will be obtained by efforts to test hypotheses developed on the basis of one approach by the use of the other. Imaging can tell the neurophysiologists where to look, and work on single neurons can constrain network models based on imaging. There is a crucial need for better understanding of the anatomy of the auditory cortex in different species and for comparative studies that will underpin both approaches.
Collapse
|