1
|
Chen Y, Gu Y, Wang B, Wei A, Dong N, Jiang Y, Liu X, Zhu L, Zhu F, Tan T, Jing Z, Mao F, Zhang Y, Yao J, Yang Y, Wang H, Wu H, Li H, Zheng C, Duan X, Huo J, Wu X, Hu S, Zhao A, Li Z, Cheng X, Qin Y, Song Q, Zhan S, Qu Q, Guan F, Xu H, Kang X, Wang C. Synaptotagmin-11 deficiency mediates schizophrenia-like behaviors in mice via dopamine over-transmission. Nat Commun 2024; 15:10571. [PMID: 39632880 PMCID: PMC11618495 DOI: 10.1038/s41467-024-54604-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
Schizophrenia is a severe neuropsychiatric disease, but the initiation mechanisms are unclear. Although antipsychotics are effective against positive symptoms, therapeutic interventions for negative symptoms are limited due to the lack of pathophysiological mechanisms. Here we identify synaptotagmin-11 (Syt11) as a potential genetic risk factor and dopamine over-transmission as a mechanism in the development of schizophrenia. Syt11 expression is reduced in individuals with schizophrenia but restored following the treatment with antipsychotics. Syt11 deficiency in dopamine neurons in early adolescence, but not in adults, leads to persistent social deficits and other schizophrenia-like behaviors by mediating dopamine over-transmission in mice. Accordingly, dopamine neuron over-excitation before late adolescence induces persistent schizophrenia-associated behavioral deficits, along with the structural and functional alternations in the mPFC. Notably, local intervention of D2R with clinical drugs presynaptically or postsynaptically exhibits both acute and long-lasting therapeutic effects on social deficits in schizophrenia mice models. These findings not only define Syt11 as a risk factor and DA over-transmission as a potential risk factor initiating schizophrenia, but also propose two D2R-targeting strategies for the comprehensive and long-term recovery of schizophrenia-associated social withdrawal.
Collapse
Affiliation(s)
- Yang Chen
- Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuhao Gu
- Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bianbian Wang
- Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Anqi Wei
- Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Nan Dong
- Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yong Jiang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoying Liu
- Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
- College of Life Sciences, Liaocheng University, Liaocheng, 252059, China
| | - Li Zhu
- Key Laboratory of National Health Commission for Forensic Sciences, College of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Feng Zhu
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tao Tan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zexin Jing
- Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fenghan Mao
- Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yichi Zhang
- Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingyu Yao
- Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuxin Yang
- Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- College of Life Sciences, Liaocheng University, Liaocheng, 252059, China
| | - Hongyan Wang
- College of Life Sciences, Liaocheng University, Liaocheng, 252059, China
| | - Hao Wu
- Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hua Li
- Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chaowen Zheng
- Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xueting Duan
- Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingxiao Huo
- Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xuanang Wu
- Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shaoqin Hu
- Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Anran Zhao
- Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ziyang Li
- Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xu Cheng
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Yuhao Qin
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Qian Song
- Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuqin Zhan
- Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiumin Qu
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fanglin Guan
- Key Laboratory of National Health Commission for Forensic Sciences, College of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Huadong Xu
- Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Xinjiang Kang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
- College of Life Sciences, Liaocheng University, Liaocheng, 252059, China.
| | - Changhe Wang
- Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
- Department of Psychology, Chengwu People's Hospital, Heze, 274200, China.
| |
Collapse
|
2
|
Higuchi K, Uyeda A, Quan L, Tanabe S, Kato Y, Kawahara Y, Muramatsu R. Synaptotagmin 4 Supports Spontaneous Axon Sprouting after Spinal Cord Injury. J Neurosci 2024; 44:e1593232024. [PMID: 39266302 PMCID: PMC11502230 DOI: 10.1523/jneurosci.1593-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
Injuries to the central nervous system (CNS) can cause severe neurological deficits. Axonal regrowth is a fundamental process for the reconstruction of compensatory neuronal networks after injury; however, it is extremely limited in the adult mammalian CNS. In this study, we conducted a loss-of-function genetic screen in cortical neurons, combined with a Web resource-based phenotypic screen, and identified synaptotagmin 4 (Syt4) as a novel regulator of axon elongation. Silencing Syt4 in primary cultured cortical neurons inhibits neurite elongation, with changes in gene expression involved in signaling pathways related to neuronal development. In a spinal cord injury model, inhibition of Syt4 expression in cortical neurons prevented axonal sprouting of the corticospinal tract, as well as neurological recovery after injury. These results provide a novel therapeutic approach to CNS injury by modulating Syt4 function.
Collapse
Affiliation(s)
- Kyoka Higuchi
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
- Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Akiko Uyeda
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Lili Quan
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Shogo Tanabe
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Yuki Kato
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Rieko Muramatsu
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| |
Collapse
|
3
|
Eriksson ANM, Dubiel J, Alcaraz AJ, Doering JA, Wiseman S. Far from Their Origins: A Transcriptomic Investigation on How 2,4-Di-tert-butyl-6-(5-chloro-2H-benzotriazol-2-yl) Phenol Affects Rainbow Trout Alevins. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2026-2038. [PMID: 38923588 DOI: 10.1002/etc.5943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/08/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are a group of widely used chemicals added to a variety of consumer (e.g., plastics) and industrial (e.g., metal coating) goods. Although detected globally as an environmentally persistent pollutant, BUVSs have received relatively little toxicological attention and only recently have been acknowledged to affect development and the endocrine system in vivo. In our previous study, altered behavior, indicative of potential neurotoxicity, was observed among rainbow trout alevins (day 14 posthatching) that were microinjected as embryos with a single environmentally relevant dose of 2,4-di-tert-butyl-6-(5-chloro-2H-benzotriazol-2-yl) phenol (UV-327). In the present follow-up study, we performed whole-transcriptome profiling (RNA sequencing) of newly hatched alevins from the same batch. The primary aim was to identify biomarkers related to behavior and neurology. Dose-specifically, 1 to 176 differentially expressed genes (DEGs) were identified. In the group presenting altered behavior (273.4 ng g-1), 176 DEGs were identified, yet only a fraction was related to neurological functions, including water, calcium, and potassium homeostasis; acetylcholine transmission and signaling; as well insulin and energy metabolism. The second objective was to estimate the transcriptomic point of departure (tPOD) and assess if point estimate(s) are protective of altered behavior. A tPOD was established at 35 to 94 ng UV-327 g-1 egg, making this tPOD protective of behavioral alterations. Holistically, these transcriptomic alterations provide a foundation for future research on how BUVSs can influence rainbow trout alevin development, while providing support to the hypothesis that UV-327 can influence neurogenesis and subsequent behavioral endpoints. The exact structural and functional changes caused by embryonic exposure to UV-327 remain enigmatic and will require extensive investigation before being deciphered and understood toxicologically. Environ Toxicol Chem 2024;43:2026-2038. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Andreas N M Eriksson
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Justin Dubiel
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Alper James Alcaraz
- National Institute of Environmental Health Sciences, Bethesda, Maryland, USA
| | - Jon A Doering
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
4
|
Mesnard CS, Hays CL, Townsend LE, Barta CL, Gurumurthy CB, Thoreson WB. SYNAPTOTAGMIN-9 IN MOUSE RETINA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.27.546758. [PMID: 37425946 PMCID: PMC10327071 DOI: 10.1101/2023.06.27.546758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Synaptotagmin-9 (Syt9) is a Ca2+ sensor mediating fast synaptic release expressed in various parts of the brain. The presence and role of Syt9 in retina is unknown. We found evidence for Syt9 expression throughout the retina and created mice to conditionally eliminate Syt9 in a cre-dependent manner. We crossed Syt9fl/fl mice with Rho-iCre, HRGP-Cre, and CMV-cre mice to generate mice in which Syt9 was eliminated from rods (rodSyt9CKO), cones (coneSyt9CKO), or whole animals (CMVSyt9). CMVSyt9 mice showed an increase in scotopic electroretinogram (ERG) b-waves evoked by bright flashes with no change in a-waves. Cone-driven photopic ERG b-waves were not significantly different in CMVSyt9 knockout mice and selective elimination of Syt9 from cones had no effect on ERGs. However, selective elimination from rods decreased scotopic and photopic b-waves as well as oscillatory potentials. These changes occurred only with bright flashes where cone responses contribute. Synaptic release was measured in individual rods by recording anion currents activated by glutamate binding to presynaptic glutamate transporters. Loss of Syt9 from rods had no effect on spontaneous or depolarization-evoked release. Our data show that Syt9 is acts at multiple sites in the retina and suggest that it may play a role in regulating transmission of cone signals by rods.
Collapse
Affiliation(s)
- Chris S. Mesnard
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Cassandra L. Hays
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Department of Medical Education, Creighton University, Omaha, NE 68178
| | - Lou E. Townsend
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Cody L. Barta
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | | | - Wallace B. Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68106, USA
| |
Collapse
|
5
|
Zhang F, Yang D, Li J, Du C, Sun X, Li W, Liu F, Yang Y, Li Y, Fu L, Li R, Zhang CX. Synaptotagmin-11 regulates immune functions of microglia in vivo. J Neurochem 2023; 167:680-695. [PMID: 37924268 DOI: 10.1111/jnc.16003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/28/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Membrane trafficking pathways mediate key microglial activities such as cell migration, cytokine secretion, and phagocytosis. However, the underlying molecular mechanism remains poorly understood. Previously, we found that synaptotagmin-11 (Syt11), a non-Ca2+ -binding Syt associated with Parkinson's disease (PD) and schizophrenia, inhibits cytokine release and phagocytosis in primary microglia. Here we reported the in vivo function of Syt11 in microglial immune responses using an inducible microglia-specific Syt11-conditional-knockout (cKO) mouse strain. Syt11-cKO resulted in activation of microglia and elevated mRNA levels of IL-6, TNF-α, IL-1β, and iNOS in various brain regions under both resting state and LPS-induced acute inflammation state in adult mice. In a PD mouse model generated by microinjection of preformed α-synuclein fibrils into the striatum, a reduced number of microglia migrated toward the injection sites and an enhanced phagocytosis of α-synuclein fibrils by microglia were found in Syt11-cKO mice. To understand the molecular mechanism of Syt11 function, we identified its direct binding proteins vps10p-tail-interactor-1a (vti1a) and vti1b. The linker domain of Syt11 interacted with both proteins and a peptide derived from it competitively inhibited the interaction of Syt11 with vti1a/vti1b in vitro and in cells. Importantly, application of this peptide induced more cytokine secretion in wild-type microglia upon LPS treatment, phenocopying defects in Syt11 knockdown cells. Altogether, we propose that Syt11 inhibits microglial activation in vivo and regulates cytokine secretion through interactions with vti1a and vti1b.
Collapse
Affiliation(s)
- Feifan Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Dong Yang
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Jingchen Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Cuilian Du
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xinran Sun
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Wanru Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Fengwei Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yiwei Yang
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yuhong Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Lei Fu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Rena Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital and Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Claire Xi Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
6
|
Wang Y, Zhu Y, Li W, Yan S, Li C, Ma K, Hu M, Du C, Fu L, Sun J, Zhang CX. Synaptotagmin-11 Inhibits Synaptic Vesicle Endocytosis via Endophilin A1. J Neurosci 2023; 43:6230-6248. [PMID: 37474308 PMCID: PMC10490507 DOI: 10.1523/jneurosci.1348-21.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 05/12/2023] [Accepted: 06/02/2023] [Indexed: 07/22/2023] Open
Abstract
Synaptic vesicle (SV) endocytosis is a critical and well-regulated process for the maintenance of neurotransmission. We previously reported that synaptotagmin-11 (Syt11), an essential non-Ca2+-binding Syt associated with brain diseases, inhibits neuronal endocytosis (Wang et al., 2016). Here, we found that Syt11 deficiency caused accelerated SV endocytosis and vesicle recycling under sustained stimulation and led to the abnormal membrane partition of synaptic proteins in mouse hippocampal boutons of either sex. Furthermore, our study revealed that Syt11 has direct but Ca2+-independent binding with endophilin A1 (EndoA1), a membrane curvature sensor and endocytic protein recruiter, with high affinity. EndoA1-knockdown significantly reversed Syt11-KO phenotype, identifying EndoA1 as a main inhibitory target of Syt11 during SV endocytosis. The N-terminus of EndoA1 and the C2B domain of Syt11 were responsible for this interaction. A peptide (amino acids 314-336) derived from the Syt11 C2B efficiently blocked Syt11-EndoA1 binding both in vitro and in vivo Application of this peptide inhibited SV endocytosis in WT hippocampal neurons but not in EndoA1-knockdown neurons. Moreover, intracellular application of this peptide in mouse calyx of Held terminals of either sex effectively hampered both fast and slow SV endocytosis at physiological temperature. We thus propose that Syt11 ensures the precision of protein retrieval during SV endocytosis by inhibiting EndoA1 function at neuronal terminals.SIGNIFICANCE STATEMENT Endocytosis is a key stage of synaptic vesicle (SV) recycling. SV endocytosis retrieves vesicular membrane and protein components precisely to support sustained neurotransmission. However, the molecular mechanisms underlying the regulation of SV endocytosis remain elusive. Here, we reported that Syt11-KO accelerated SV endocytosis and impaired membrane partition of synaptic proteins. EndoA1 was identified as a main inhibitory target of Syt11 during SV endocytosis. Our study reveals a novel inhibitory mechanism of SV endocytosis in preventing hyperactivation of endocytosis, potentially safeguarding the recycling of synaptic proteins during sustained neurotransmission.
Collapse
Affiliation(s)
- Yalong Wang
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; CAS Key Laboratory of Brain Connectome and Manipulation; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Ying Zhu
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wanru Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Shuxin Yan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Chao Li
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kunpeng Ma
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; CAS Key Laboratory of Brain Connectome and Manipulation; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
| | - Meiqin Hu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Cuilian Du
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Lei Fu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Jianyuan Sun
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; CAS Key Laboratory of Brain Connectome and Manipulation; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Claire Xi Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
7
|
Arévalo JC, Deogracias R. Mechanisms Controlling the Expression and Secretion of BDNF. Biomolecules 2023; 13:biom13050789. [PMID: 37238659 DOI: 10.3390/biom13050789] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Brain-derived nerve factor (BDNF), through TrkB receptor activation, is an important modulator for many different physiological and pathological functions in the nervous system. Among them, BDNF plays a crucial role in the development and correct maintenance of brain circuits and synaptic plasticity as well as in neurodegenerative diseases. The proper functioning of the central nervous system depends on the available BDNF concentrations, which are tightly regulated at transcriptional and translational levels but also by its regulated secretion. In this review we summarize the new advances regarding the molecular players involved in BDNF release. In addition, we will address how changes of their levels or function in these proteins have a great impact in those functions modulated by BDNF under physiological and pathological conditions.
Collapse
Affiliation(s)
- Juan Carlos Arévalo
- Department of Cell Biology and Pathology, Institute of Neurosciences of Castille and Leon (INCyL), University of Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Rubén Deogracias
- Department of Cell Biology and Pathology, Institute of Neurosciences of Castille and Leon (INCyL), University of Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
8
|
Synaptotagmin 9 Modulates Spontaneous Neurotransmitter Release in Striatal Neurons by Regulating Substance P Secretion. J Neurosci 2023; 43:1475-1491. [PMID: 36732068 PMCID: PMC9992334 DOI: 10.1523/jneurosci.1857-22.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
Synaptotagmin 9 (SYT9) is a tandem C2 domain Ca2+ sensor for exocytosis in neuroendocrine cells; its function in neurons remains unclear. Here, we show that, in mixed-sex cultures, SYT9 does not trigger rapid synaptic vesicle exocytosis in mouse cortical, hippocampal, or striatal neurons, unless it is massively overexpressed. In striatal neurons, loss of SYT9 reduced the frequency of spontaneous neurotransmitter release events (minis). We delved into the underlying mechanism and discovered that SYT9 was localized to dense-core vesicles that contain substance P (SP). Loss of SYT9 impaired SP release, causing the observed decrease in mini frequency. This model is further supported by loss of function mutants. Namely, Ca2+ binding to the C2A domain of SYT9 triggered membrane fusion in vitro, and mutations that disrupted this activity abolished the ability of SYT9 to regulate both SP release and mini frequency. We conclude that SYT9 indirectly regulates synaptic transmission in striatal neurons by controlling SP release.SIGNIFICANCE STATEMENT Synaptotagmin 9 (SYT9) has been described as a Ca2+ sensor for dense-core vesicle (DCV) exocytosis in neuroendocrine cells, but its role in neurons remains unclear, despite widespread expression in the brain. This article examines the role of SYT9 in synaptic transmission across cultured cortical, hippocampal, and striatal neuronal preparations. We found that SYT9 regulates spontaneous neurotransmitter release in striatal neurons by serving as a Ca2+ sensor for the release of the neuromodulator substance P from DCVs. This demonstrates a novel role for SYT9 in neurons and uncovers a new field of study into neuromodulation by SYT9, a protein that is widely expressed in the brain.
Collapse
|
9
|
Brunger AT, Leitz J. The Core Complex of the Ca 2+-Triggered Presynaptic Fusion Machinery. J Mol Biol 2023; 435:167853. [PMID: 36243149 PMCID: PMC10578080 DOI: 10.1016/j.jmb.2022.167853] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Synaptic neurotransmitter release is mediated by an orchestra of presynaptic proteins that precisely control and trigger fusion between synaptic vesicles and the neuron terminal at the active zone upon the arrival of an action potential. Critical to this process are the neuronal SNAREs (Soluble N-ethylmaleimide sensitive factor Attachment protein REceptor), the Ca2+-sensor synaptotagmin, the activator/regulator complexin, and other factors. Here, we review the interactions between the SNARE complex and synaptotagmin, with focus on the so-called primary interface between synaptotagmin and the SNARE complex that has been validated in terms of its physiological relevance. We discuss several other but less validated interfaces as well, including the so-called tripartite interface, and we discuss the pros and cons for these possible alternative interfaces. We also present new molecular dynamics simulations of the tripartite interface and new data of an inhibitor of the primary interface in a reconstituted system of synaptic vesicle fusion.
Collapse
Affiliation(s)
- Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States; Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States; Department of Structural Biology, Stanford University, Stanford, United States; Department of Photon Science, Stanford University, Stanford, United States; Howard Hughes Medical Institute, Stanford University, Stanford, United States.
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States; Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States; Department of Structural Biology, Stanford University, Stanford, United States; Department of Photon Science, Stanford University, Stanford, United States; Howard Hughes Medical Institute, Stanford University, Stanford, United States
| |
Collapse
|
10
|
MacLeod KM, Pandya S. Expression and Neurotransmitter Association of the Synaptic Calcium Sensor Synaptotagmin in the Avian Auditory Brain Stem. J Assoc Res Otolaryngol 2022; 23:701-720. [PMID: 35999323 PMCID: PMC9789253 DOI: 10.1007/s10162-022-00863-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 07/12/2022] [Indexed: 01/31/2023] Open
Abstract
In the avian auditory brain stem, acoustic timing and intensity cues are processed in separate, parallel pathways via the two divisions of the cochlear nucleus, nucleus angularis (NA) and nucleus magnocellularis (NM). Differences in excitatory and inhibitory synaptic properties, such as release probability and short-term plasticity, contribute to differential processing of the auditory nerve inputs. We investigated the distribution of synaptotagmin, a putative calcium sensor for exocytosis, via immunohistochemistry and double immunofluorescence in the embryonic and hatchling chick brain stem (Gallus gallus). We found that the two major isoforms, synaptotagmin 1 (Syt1) and synaptotagmin 2 (Syt2), showed differential expression. In the NM, anti-Syt2 label was strong and resembled the endbulb terminals of the auditory nerve inputs, while anti-Syt1 label was weaker and more punctate. In NA, both isoforms were intensely expressed throughout the neuropil. A third isoform, synaptotagmin 7 (Syt7), was largely absent from the cochlear nuclei. In nucleus laminaris (NL, the target nucleus of NM), anti-Syt2 and anti-Syt7 strongly labeled the dendritic lamina. These patterns were established by embryonic day 18 and persisted to postnatal day 7. Double-labeling immunofluorescence showed that Syt1 and Syt2 were associated with vesicular glutamate transporter 2 (VGluT2), but not vesicular GABA transporter (VGAT), suggesting that these Syt isoforms were localized to excitatory, but not inhibitory, terminals. These results suggest that Syt2 is the major calcium binding protein underlying excitatory neurotransmission in the timing pathway comprising NM and NL, while Syt2 and Syt1 regulate excitatory transmission in the parallel intensity pathway via cochlear nucleus NA.
Collapse
Affiliation(s)
- Katrina M MacLeod
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
| | - Sangeeta Pandya
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
11
|
Riggs E, Shakkour Z, Anderson CL, Carney PR. SYT1-Associated Neurodevelopmental Disorder: A Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1439. [PMID: 36291375 PMCID: PMC9601251 DOI: 10.3390/children9101439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022]
Abstract
Synaptic dysregulations often result in damaging effects on the central nervous system, resulting in a wide range of brain and neurodevelopment disorders that are caused by mutations disrupting synaptic proteins. SYT1, an identified synaptotagmin protein, plays an essential role in mediating the release of calcium-triggered neurotransmitters (NT) involved in regular synaptic vesicle exocytosis. Considering the significant role of SYT1 in the physiology of synaptic neurotransmission, dysfunction and degeneration of this protein can result in a severe neurological impairment. Genetic variants lead to a newly discovered rare disorder, known as SYT1-associated neurodevelopment disorder. In this review, we will discuss in depth the function of SYT1 in synapse and the underlying molecular mechanisms. We will highlight the genetic basis of SYT1-associated neurodevelopmental disorder along with known phenotypes, with possible interventions and direction of research.
Collapse
Affiliation(s)
- Edith Riggs
- College of Osteopathic Medicine, Kansas City University School of Medicine, Kansas City, MO 64106, USA
| | - Zaynab Shakkour
- School of Medicine, University of Missouri Child Health, Columbia, MO 65201, USA
| | | | - Paul R. Carney
- School of Medicine, University of Missouri Child Health, Columbia, MO 65201, USA
- Department of Engineering, University of Missouri Biomedical Engineering, Columbia, MO 65201, USA
| |
Collapse
|
12
|
Cui L, Li H, Xi Y, Hu Q, Liu H, Fan J, Xiang Y, Zhang X, Shui W, Lai Y. Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. MOLECULAR BIOMEDICINE 2022; 3:29. [PMID: 36129576 PMCID: PMC9492833 DOI: 10.1186/s43556-022-00090-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Intracellular vesicle trafficking is the fundamental process to maintain the homeostasis of membrane-enclosed organelles in eukaryotic cells. These organelles transport cargo from the donor membrane to the target membrane through the cargo containing vesicles. Vesicle trafficking pathway includes vesicle formation from the donor membrane, vesicle transport, and vesicle fusion with the target membrane. Coat protein mediated vesicle formation is a delicate membrane budding process for cargo molecules selection and package into vesicle carriers. Vesicle transport is a dynamic and specific process for the cargo containing vesicles translocation from the donor membrane to the target membrane. This process requires a group of conserved proteins such as Rab GTPases, motor adaptors, and motor proteins to ensure vesicle transport along cytoskeletal track. Soluble N-ethyl-maleimide-sensitive factor (NSF) attachment protein receptors (SNARE)-mediated vesicle fusion is the final process for vesicle unloading the cargo molecules at the target membrane. To ensure vesicle fusion occurring at a defined position and time pattern in eukaryotic cell, multiple fusogenic proteins, such as synaptotagmin (Syt), complexin (Cpx), Munc13, Munc18 and other tethering factors, cooperate together to precisely regulate the process of vesicle fusion. Dysfunctions of the fusogenic proteins in SNARE-mediated vesicle fusion are closely related to many diseases. Recent studies have suggested that stimulated membrane fusion can be manipulated pharmacologically via disruption the interface between the SNARE complex and Ca2+ sensor protein. Here, we summarize recent insights into the molecular mechanisms of vesicle trafficking, and implications for the development of new therapeutics based on the manipulation of vesicle fusion.
Collapse
|
13
|
Pillai AG, Nadkarni S. Amyloid pathology disrupts gliotransmitter release in astrocytes. PLoS Comput Biol 2022; 18:e1010334. [PMID: 35913987 PMCID: PMC9371304 DOI: 10.1371/journal.pcbi.1010334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/11/2022] [Accepted: 06/28/2022] [Indexed: 01/11/2023] Open
Abstract
Accumulation of amyloid-beta (Aβ) is associated with synaptic dysfunction and destabilization of astrocytic calcium homeostasis. A growing body of evidence support astrocytes as active modulators of synaptic transmission via calcium-mediated gliotransmission. However, the details of mechanisms linking Aβ signaling, astrocytic calcium dynamics, and gliotransmission are not known. We developed a biophysical model that describes calcium signaling and the ensuing gliotransmitter release from a single astrocytic process when stimulated by glutamate release from hippocampal neurons. The model accurately captures the temporal dynamics of microdomain calcium signaling and glutamate release via both kiss-and-run and full-fusion exocytosis. We investigate the roles of two crucial calcium regulating machineries affected by Aβ: plasma-membrane calcium pumps (PMCA) and metabotropic glutamate receptors (mGluRs). When we implemented these Aβ-affected molecular changes in our astrocyte model, it led to an increase in the rate and synchrony of calcium events. Our model also reproduces several previous findings of Aβ associated aberrant calcium activity, such as increased intracellular calcium level and increased spontaneous calcium activity, and synchronous calcium events. The study establishes a causal link between previous observations of hyperactive astrocytes in Alzheimer’s disease (AD) and Aβ-induced modifications in mGluR and PMCA functions. Analogous to neurotransmitter release, gliotransmitter exocytosis closely tracks calcium changes in astrocyte processes, thereby guaranteeing tight control of synaptic signaling by astrocytes. However, the downstream effects of AD-related calcium changes in astrocytes on gliotransmitter release are not known. Our results show that enhanced rate of exocytosis resulting from modified calcium signaling in astrocytes leads to a rapid depletion of docked vesicles that disrupts the crucial temporal correspondence between a calcium event and vesicular release. We propose that the loss of temporal correspondence between calcium events and gliotransmission in astrocytes pathologically alters astrocytic modulation of synaptic transmission in the presence of Aβ accumulation. Signaling by astrocytes is critical to information processing at synapses, and its aberration plays a central role in neurological diseases, especially Alzheimer’s disease (AD). A complete characterization of calcium signaling and the resulting pattern of gliotransmitter release from fine astrocytic processes are not accessible to current experimental tools. We developed a biophysical model that can quantitatively describe signaling by astrocytes in response to a wide range of synaptic activity. We show that AD-related molecular alterations disrupt the concurrence of calcium and gliotransmitter release events, a characterizing feature that enables astrocytes to influence synaptic signaling.
Collapse
Affiliation(s)
| | - Suhita Nadkarni
- Indian Institute of Science Education and Research Pune, Pune, India
- * E-mail:
| |
Collapse
|
14
|
Yang H, Yue B, Yang Y, Tang J, Yang S, Qi A, Qu K, Lan X, Lei C, Wei Z, Huang B, Chen H. Distribution of Copy Number Variation in SYT11 Gene and Its Association with Growth Conformation Traits in Chinese Cattle. BIOLOGY 2022; 11:biology11020223. [PMID: 35205089 PMCID: PMC8869484 DOI: 10.3390/biology11020223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/01/2022]
Abstract
Simple Summary It is known that many different breeds of cattle are widely distributed in China. However, due to a lengthy selection of draught direction, there are obvious shortcomings in Chinese cattle, such as less meat production, slow weight gain, poor meat quality, and a lack of specialized beef cattle breeds. Animal breeding heavily benefits from molecular technologies, among which molecular genetic markers were widely used to improve the economic traits of beef cattle. Because the copy number variation (CNV) involves a longer DNA sequence or even the entire functional gene, it may have a greater impact on the phenotype. Recent studies have indicated that CNVs are widespread in the Chinese cattle genome. By investigating the effects of CNVs on gene expression and cattle traits, we aim to find those genomic variations which could significantly affect cattle traits, and which could provide a basis for genetic selection and molecular breeding of local Chinese cattle. Abstract Currently, studies of the SYT11 gene mainly focus on neurological diseases such as schizophrenia and Parkinson’s disease. However, some studies have shown that the C2B domain of SYT11 can interact with RISC components and affect the gene regulation of miRNA, which is important for cell differentiation, proliferation, and apoptosis, and therefore has an impact on muscle growth and development in animals. The whole-genome resequencing data detected a CNV in the SYT11 gene, and this may affect cattle growth traits. In this study, CNV distribution of 672 individuals from four cattle breeds, Yunling, Pinan, Xianan, and Qinchuan, were detected by qPCR. The relationship between CNV, gene expression and growth traits was further investigated. The results showed that the proportion of multiple copy types was the largest in all cattle breeds, but there were some differences among different breeds. The normal type had higher gene expression than the abnormal copy type. The CNVs of the SYT11 gene were significantly correlated with body length, cannon circumference, chest depth, rump length, and forehead size of Yunling cattle, and was significantly correlated with the bodyweight of Xianan cattle, respectively. These data improve our understanding of the effects of CNV on cattle growth traits. Our results suggest that the CNV of SYT11 gene is a protentional molecular marker, which may be used to improve growth traits in Chinese cattle.
Collapse
Affiliation(s)
- Haiyan Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Binglin Yue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Yu Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Jia Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Shuling Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Ao Qi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong 675000, China;
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Zehui Wei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
- Correspondence: (Z.W.); (B.H.); (H.C.)
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China
- Correspondence: (Z.W.); (B.H.); (H.C.)
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
- Correspondence: (Z.W.); (B.H.); (H.C.)
| |
Collapse
|
15
|
Tarquis-Medina M, Scheibner K, González-García I, Bastidas-Ponce A, Sterr M, Jaki J, Schirge S, García-Cáceres C, Lickert H, Bakhti M. Synaptotagmin-13 Is a Neuroendocrine Marker in Brain, Intestine and Pancreas. Int J Mol Sci 2021; 22:ijms222212526. [PMID: 34830411 PMCID: PMC8620464 DOI: 10.3390/ijms222212526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Synaptotagmin-13 (Syt13) is an atypical member of the vesicle trafficking synaptotagmin protein family. The expression pattern and the biological function of this Ca2+-independent protein are not well resolved. Here, we have generated a novel Syt13-Venus fusion (Syt13-VF) fluorescence reporter allele to track and isolate tissues and cells expressing Syt13 protein. The reporter allele is regulated by endogenous cis-regulatory elements of Syt13 and the fusion protein follows an identical expression pattern of the endogenous Syt13 protein. The homozygous reporter mice are viable and fertile. We identify the expression of the Syt13-VF reporter in different regions of the brain with high expression in tyrosine hydroxylase (TH)-expressing and oxytocin-producing neuroendocrine cells. Moreover, Syt13-VF is highly restricted to all enteroendocrine cells in the adult intestine that can be traced in live imaging. Finally, Syt13-VF protein is expressed in the pancreatic endocrine lineage, allowing their specific isolation by flow sorting. These findings demonstrate high expression levels of Syt13 in the endocrine lineages in three major organs harboring these secretory cells. Collectively, the Syt13-VF reporter mouse line provides a unique and reliable tool to dissect the spatio-temporal expression pattern of Syt13 and enables isolation of Syt13-expressing cells that will aid in deciphering the molecular functions of this protein in the neuroendocrine system.
Collapse
Affiliation(s)
- Marta Tarquis-Medina
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (M.T.-M.); (K.S.); (A.B.-P.); (M.S.); (J.J.); (S.S.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (I.G.-G.); (C.G.-C.)
- School of Medicine, Technische Universität München, 81675 München, Germany
| | - Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (M.T.-M.); (K.S.); (A.B.-P.); (M.S.); (J.J.); (S.S.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (I.G.-G.); (C.G.-C.)
| | - Ismael González-García
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (I.G.-G.); (C.G.-C.)
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (M.T.-M.); (K.S.); (A.B.-P.); (M.S.); (J.J.); (S.S.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (I.G.-G.); (C.G.-C.)
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (M.T.-M.); (K.S.); (A.B.-P.); (M.S.); (J.J.); (S.S.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (I.G.-G.); (C.G.-C.)
| | - Jessica Jaki
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (M.T.-M.); (K.S.); (A.B.-P.); (M.S.); (J.J.); (S.S.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (I.G.-G.); (C.G.-C.)
| | - Silvia Schirge
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (M.T.-M.); (K.S.); (A.B.-P.); (M.S.); (J.J.); (S.S.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (I.G.-G.); (C.G.-C.)
| | - Cristina García-Cáceres
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (I.G.-G.); (C.G.-C.)
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (M.T.-M.); (K.S.); (A.B.-P.); (M.S.); (J.J.); (S.S.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (I.G.-G.); (C.G.-C.)
- School of Medicine, Technische Universität München, 81675 München, Germany
- Correspondence: (H.L.); (M.B.)
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (M.T.-M.); (K.S.); (A.B.-P.); (M.S.); (J.J.); (S.S.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (I.G.-G.); (C.G.-C.)
- Correspondence: (H.L.); (M.B.)
| |
Collapse
|
16
|
Mielnicka A, Michaluk P. Exocytosis in Astrocytes. Biomolecules 2021; 11:1367. [PMID: 34572580 PMCID: PMC8471187 DOI: 10.3390/biom11091367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
Until recently, astrocytes were thought to be a part of a simple "brain glue" providing only a supporting role for neurons. However, the discoveries of the last two decades have proven astrocytes to be dynamic partners participating in brain metabolism and actively influencing communication between neurons. The means of astrocyte-neuron communication are diverse, although regulated exocytosis has received the most attention but also caused the most debate. Similar to most of eukaryotic cells, astrocytes have a complex range of vesicular organelles which can undergo exocytosis as well as intricate molecular mechanisms that regulate this process. In this review, we focus on the components needed for regulated exocytosis to occur and summarise the knowledge about experimental evidence showing its presence in astrocytes.
Collapse
Affiliation(s)
| | - Piotr Michaluk
- BRAINCITY, Laboratory of Neurobiology, The Nencki Institute of Experimental Biology, PAS, 02-093 Warsaw, Poland;
| |
Collapse
|
17
|
van Westen R, Poppinga J, Díez Arazola R, Toonen RF, Verhage M. Neuromodulator release in neurons requires two functionally redundant calcium sensors. Proc Natl Acad Sci U S A 2021; 118:e2012137118. [PMID: 33903230 PMCID: PMC8106342 DOI: 10.1073/pnas.2012137118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuropeptides and neurotrophic factors secreted from dense core vesicles (DCVs) control many brain functions, but the calcium sensors that trigger their secretion remain unknown. Here, we show that in mouse hippocampal neurons, DCV fusion is strongly and equally reduced in synaptotagmin-1 (Syt1)- or Syt7-deficient neurons, but combined Syt1/Syt7 deficiency did not reduce fusion further. Cross-rescue, expression of Syt1 in Syt7-deficient neurons, or vice versa, completely restored fusion. Hence, both sensors are rate limiting, operating in a single pathway. Overexpression of either sensor in wild-type neurons confirmed this and increased fusion. Syt1 traveled with DCVs and was present on fusing DCVs, but Syt7 supported fusion largely from other locations. Finally, the duration of single DCV fusion events was reduced in Syt1-deficient but not Syt7-deficient neurons. In conclusion, two functionally redundant calcium sensors drive neuromodulator secretion in an expression-dependent manner. In addition, Syt1 has a unique role in regulating fusion pore duration.
Collapse
Affiliation(s)
- Rhodé van Westen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - Josse Poppinga
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Rocío Díez Arazola
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Department of Clinical Genetics, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
18
|
Li J, Deng S, He Q, Ke W, Shu Y. Asynchronous Glutamate Release at Autapses Regulates Spike Reliability and Precision in Mouse Neocortical Pyramidal Cells. Cereb Cortex 2021; 31:2278-2290. [PMID: 33279969 DOI: 10.1093/cercor/bhaa361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022] Open
Abstract
Autapses are self-synapses of a neuron. Inhibitory autapses in the neocortex release GABA in 2 modes, synchronous release and asynchronous release (AR), providing precise and prolonged self-inhibition, respectively. A subpopulation of neocortical pyramidal cells (PCs) also forms functional autapses, activation of which promotes burst firing by strong unitary autaptic response that reflects synchronous glutamate release. However, it remains unclear whether AR occurs at PC autapses and plays a role in neuronal signaling. We performed whole-cell recordings from layer-5 PCs in slices of mouse prefrontal cortex (PFC). In response to action potential (AP) burst, 63% of PCs showed robust long-lasting autaptic AR, much stronger than synaptic AR between neighboring PCs. The autaptic AR is mediated predominantly by P/Q-type Ca2+ channels, and its strength depends on the intensity of PC activity and the level of residual Ca2+. Further experiments revealed that autaptic AR enhances spiking activities but reduces the temporal precision of post-burst APs. Together, the results show the occurrence of AR at PC autapses, the delayed and persistent glutamate AR causes self-excitation in individual PCs but may desynchronize the autaptic PC population. Thus, glutamatergic autapses should be essential elements in PFC and contribute to cortical information processing.
Collapse
Affiliation(s)
- Junlong Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Suixin Deng
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Quansheng He
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Wei Ke
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yousheng Shu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
19
|
Li T, Hu J, Wang S, Zhang H. Super-variants identification for brain connectivity. Hum Brain Mapp 2020; 42:1304-1312. [PMID: 33236465 PMCID: PMC7927294 DOI: 10.1002/hbm.25294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/25/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Identifying genetic biomarkers for brain connectivity helps us understand genetic effects on brain function. The unique and important challenge in detecting associations between brain connectivity and genetic variants is that the phenotype is a matrix rather than a scalar. We study a new concept of super‐variant for genetic association detection. Similar to but different from the classic concept of gene, a super‐variant is a combination of alleles in multiple loci but contributing loci can be anywhere in the genome. We hypothesize that the super‐variants are easier to detect and more reliable to reproduce in their associations with brain connectivity. By applying a novel ranking and aggregation method to the UK Biobank databases, we discovered and verified several replicable super‐variants. Specifically, we investigate a discovery set with 16,421 subjects and a verification set with 2,882 subjects, where they are formed according to release date, and the verification set is used to validate the genetic associations from the discovery phase. We identified 12 replicable super‐variants on Chromosomes 1, 3, 7, 8, 9, 10, 12, 15, 16, 18, and 19. These verified super‐variants contain single nucleotide polymorphisms that locate in 14 genes which have been reported to have association with brain structure and function, and/or neurodevelopmental and neurodegenerative disorders in the literature. We also identified novel loci in genes RSPO2 and TMEM74 which may be upregulated in brain issues. These findings demonstrate the validity of the super‐variants and its capability of unifying existing results as well as discovering novel and replicable results.
Collapse
Affiliation(s)
- Ting Li
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Jianchang Hu
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Shiying Wang
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Heping Zhang
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
20
|
Wang Y, Yan S, Zhang F, Li J, Li R, Zhang CX. Parkin-dependent and -independent degradation of synaptotagmin-11 in neurons and astrocytes. Neurosci Lett 2020; 739:135402. [PMID: 32976921 DOI: 10.1016/j.neulet.2020.135402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/13/2020] [Accepted: 09/19/2020] [Indexed: 11/29/2022]
Abstract
Synaptotagmin-11 (Syt11) is associated with schizophrenia and Parkinson's disease (PD) and is a critical substrate of parkin, an E3 ubiquitin ligase linked to PD. Previously we reported that Syt11 regulates multiple membrane trafficking pathways in neurons and glia. However, the regulation of Syt11 degradation remains largely unknown. As the ubiquitin-proteasome pathway (UPP) plays crucial roles in protein degradation and quality control, we investigated UPP-dependent Syt11 degradation in this study. We found that Syt11 is a short-lived protein with a half-life of 1.49 h in the presence of a protein synthesis inhibitor cycloheximide and is mainly degraded by UPP in neurons. The degradation was further accelerated under sustained neuronal activity and was parkin-dependent. Interestingly, Syt11 had a faster turnover in astrocytes with a half-life of 0.58 h, and UPP partially contributed to its degradation. Mechanical stress applied on astrocytes by hypoosmotic treatment led to reduced Syt11 protein level but increased parkin level. However, the degradation of Syt11 was parkin-independent under both isoosmotic and hypoosmotic condition. Altogether, our results revealed active and distinct proteolytic regulation of Syt11 in neurons and astrocytes.
Collapse
Affiliation(s)
- Yalong Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Shuxin Yan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Feifan Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Jingchen Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Rena Li
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital and Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Claire Xi Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
21
|
Melland H, Carr EM, Gordon SL. Disorders of synaptic vesicle fusion machinery. J Neurochem 2020; 157:130-164. [PMID: 32916768 DOI: 10.1111/jnc.15181] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The revolution in genetic technology has ushered in a new age for our understanding of the underlying causes of neurodevelopmental, neuromuscular and neurodegenerative disorders, revealing that the presynaptic machinery governing synaptic vesicle fusion is compromised in many of these neurological disorders. This builds upon decades of research showing that disturbance to neurotransmitter release via toxins can cause acute neurological dysfunction. In this review, we focus on disorders of synaptic vesicle fusion caused either by toxic insult to the presynapse or alterations to genes encoding the key proteins that control and regulate fusion: the SNARE proteins (synaptobrevin, syntaxin-1 and SNAP-25), Munc18, Munc13, synaptotagmin, complexin, CSPα, α-synuclein, PRRT2 and tomosyn. We discuss the roles of these proteins and the cellular and molecular mechanisms underpinning neurological deficits in these disorders.
Collapse
Affiliation(s)
- Holly Melland
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Elysa M Carr
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Sarah L Gordon
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
22
|
Wolfes AC, Dean C. The diversity of synaptotagmin isoforms. Curr Opin Neurobiol 2020; 63:198-209. [PMID: 32663762 DOI: 10.1016/j.conb.2020.04.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022]
Abstract
The synaptotagmin family of molecules is known for regulating calcium-dependent membrane fusion events. Mice and humans express 17 synaptotagmin isoforms, where most studies have focused on isoforms 1, 2, and 7, which are involved in synaptic vesicle exocytosis. Recent work has highlighted how brain function relies on additional isoforms, with roles in postsynaptic receptor endocytosis, vesicle trafficking, membrane repair, synaptic plasticity, and protection against neurodegeneration, for example, in addition to the traditional concept of synaptotagmin-mediated neurotransmitter release - in neurons as well as glia, and at different timepoints. In fact, it is not uncommon for the same isoform to feature several splice isoforms, form homo- and heterodimers, and function in different subcellular locations and cell types. This review aims to highlight the diversity of synaptotagmins, offers a concise summary of key findings on all isoforms, and discusses different ways of grouping these.
Collapse
Affiliation(s)
- Anne C Wolfes
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK; UK Dementia Research Institute at Imperial College, London, UK
| | - Camin Dean
- German Center for Neurodegenerative Diseases, Charité University of Medicine - Berlin, 10117 Berlin, Germany.
| |
Collapse
|
23
|
Yan S, Wang Y, Zhang Y, Wang L, Zhao X, Du C, Gao P, Yan F, Liu F, Gong X, Guan Y, Cui X, Wang X, Xi Zhang C. Synaptotagmin-11 regulates the functions of caveolae and responds to mechanical stimuli in astrocytes. FASEB J 2019; 34:2609-2624. [PMID: 31908017 DOI: 10.1096/fj.201901715r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/04/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
Caveolae play crucial roles in intracellular membrane trafficking and mechanosensation. In this study, we report that synaptotagmin-11 (Syt11), a synaptotagmin isoform associated with Parkinson's disease and schizophrenia, regulates both caveolae-mediated endocytosis and the caveolar response to mechanical stimuli in astrocytes. Syt11-knockout (KO) accelerated caveolae-mediated endocytosis. Interestingly, the caveolar structures on the cell surface were markedly fewer in the absence of Syt11. Caveolar disassembly in response to hypoosmotic stimuli and astrocyte swelling were both impaired in Syt11-KO astrocytes. Live imaging revealed that Syt11 left caveolar structures before cavin1 during hypoosmotic stress and returned earlier than cavin1 after isoosmotic recovery. Chronic hypoosmotic stress led to proteasome-mediated Syt11 degradation. In addition, Syt11-KO increased the turnover of cavin1 and EH domain-containing protein 2 (EHD2), accompanied by compromised membrane integrity, suggesting a mechanoprotective role of Syt11. Direct interactions between Syt11 and cavin1 and EHD2, but not caveolin-1, are found. Altogether, we propose that Syt11 stabilizes caveolar structures on the cell surface of astrocytes and regulates caveolar functions under physiological and pathological conditions through cavin1 and EHD2.
Collapse
Affiliation(s)
- Shuxin Yan
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yalong Wang
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yujia Zhang
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Le Wang
- Department of Neurobiology, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Xiaofang Zhao
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Cuilian Du
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, Munich, Germany
| | - Pei Gao
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Feng Yan
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Fengwei Liu
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaoli Gong
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Yuan Guan
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Department of Anesthesiology, Huaxin Hospital, First Hospital of Tsinghua University, Beijing, China
| | - Xiuyu Cui
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaomin Wang
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurobiology, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Capital Medical University, Beijing, China.,Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Claire Xi Zhang
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Vardjan N, Parpura V, Verkhratsky A, Zorec R. Gliocrine System: Astroglia as Secretory Cells of the CNS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:93-115. [PMID: 31583585 DOI: 10.1007/978-981-13-9913-8_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Astrocytes are secretory cells, actively participating in cell-to-cell communication in the central nervous system (CNS). They sense signaling molecules in the extracellular space, around the nearby synapses and also those released at much farther locations in the CNS, by their cell surface receptors, get excited to then release their own signaling molecules. This contributes to the brain information processing, based on diffusion within the extracellular space around the synapses and on convection when locales relatively far away from the release sites are involved. These functions resemble secretion from endocrine cells, therefore astrocytes were termed to be a part of the gliocrine system in 2015. An important mechanism, by which astrocytes release signaling molecules is the merger of the vesicle membrane with the plasmalemma, i.e., exocytosis. Signaling molecules stored in astroglial secretory vesicles can be discharged into the extracellular space after the vesicle membrane fuses with the plasma membrane. This leads to a fusion pore formation, a channel that must widen to allow the exit of the Vesiclal cargo. Upon complete vesicle membrane fusion, this process also integrates other proteins, such as receptors, transporters and channels into the plasma membrane, determining astroglial surface signaling landscape. Vesiclal cargo, together with the whole vesicle can also exit astrocytes by the fusion of multivesicular bodies with the plasma membrane (exosomes) or by budding of vesicles (ectosomes) from the plasma membrane into the extracellular space. These astroglia-derived extracellular vesicles can later interact with various target cells. Here, the characteristics of four types of astroglial secretory vesicles: synaptic-like microvesicles, dense-core vesicles, secretory lysosomes, and extracellular vesicles, are discussed. Then machinery for vesicle-based exocytosis, second messenger regulation and the kinetics of exocytotic vesicle content discharge or release of extracellular vesicles are considered. In comparison to rapidly responsive, electrically excitable neurons, the receptor-mediated cytosolic excitability-mediated astroglial exocytotic vesicle-based transmitter release is a relatively slow process.
Collapse
Affiliation(s)
- Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, 1000, Ljubljana, Slovenia. .,Celica Biomedical, 1000, Ljubljana, Slovenia.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.,Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, 1000, Ljubljana, Slovenia. .,Celica Biomedical, 1000, Ljubljana, Slovenia.
| |
Collapse
|
25
|
Synaptotagmin 7 Mediates Both Facilitation and Asynchronous Release at Granule Cell Synapses. J Neurosci 2019; 38:3240-3251. [PMID: 29593071 DOI: 10.1523/jneurosci.3207-17.2018] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 01/17/2023] Open
Abstract
When an action potential invades a presynaptic terminal it evokes large, brief Ca2+ signals that trigger vesicle fusion within milliseconds that is followed by a small residual Ca2+ (Cares) signal. At many synapses Cares produces synaptic facilitation that lasts up to hundreds of milliseconds and, although less common, Cares can also evoke asynchronous release (AR) that persists for tens of milliseconds. The properties of facilitation and AR are very different, which suggests that they are mediated by distinct mechanisms. However, recently it has been shown that the slow calcium sensor synaptotagmin 7 (Syt7) mediates facilitation at many synapses where AR does not occur, and conversely Syt7 can mediate AR without mediating facilitation. Here we study cerebellar granule cell synapses onto stellate cells and Purkinje cells in mice of both sexes to assess the role of Syt7 in these phenomena at the same synapse. This is of particular interest at granule cell synapses where AR is much more calcium dependent and shorter-lived than facilitation. We find that Syt7 can mediate these two processes despite their divergent properties. In Syt7 knock-out animals, facilitation and AR are smaller and shorter lived than in wild-type animals, even though the initial probability of release and Cares signals are unchanged. Although there are short-lived Syt7-independent mechanisms that mediate facilitation and AR in Syt7 KO animals, we find that at granule cell synapses AR and facilitation are both mediated primarily by Syt7.SIGNIFICANCE STATEMENT At synapses made by cerebellar granule cells, presynaptic activity elevates calcium for tens of milliseconds, which in turn evokes both asynchronous release (AR) and synaptic facilitation. AR is more calcium sensitive and shorter-lived than facilitation at these synapses, suggesting that they are mediated by different mechanisms. However, we find that the slow calcium sensor synaptotagmin 7 mediates both of these phenomena. Small, rapidly decaying components of AR and facilitation are present in Syt7 KO animals, indicating that additional mechanisms can contribute to both AR and facilitation at these synapses.
Collapse
|
26
|
Multiple Lines of Evidence Indicate That Gliotransmission Does Not Occur under Physiological Conditions. J Neurosci 2019; 38:3-13. [PMID: 29298904 DOI: 10.1523/jneurosci.0016-17.2017] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/01/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022] Open
Abstract
A major controversy persists within the field of glial biology concerning whether or not, under physiological conditions, neuronal activity leads to Ca2+-dependent release of neurotransmitters from astrocytes, a phenomenon known as gliotransmission. Our perspective is that, while we and others can apply techniques to cause gliotransmission, there is considerable evidence gathered using astrocyte-specific and more physiological approaches which suggests that gliotransmission is a pharmacological phenomenon rather than a physiological process. Approaches providing evidence against gliotransmission include stimulation of Gq-GPCRs expressed only in astrocytes, as well as removal of the primary proposed source of astrocyte Ca2+ responsible for gliotransmission. These approaches contrast with those supportive of gliotransmission, which include mechanical stimulation, strong astrocytic depolarization using whole-cell patch-clamp or optogenetics, uncaging Ca2+ or IP3, chelating Ca2+ using BAPTA, and nonspecific bath application of agonists to receptors expressed by a multitude of cell types. These techniques are not subtle and therefore are not supportive of recent suggestions that gliotransmission requires very specific and delicate temporal and spatial requirements. Other evidence, including lack of propagating Ca2+ waves between astrocytes in healthy tissue, lack of expression of vesicular release machinery, and the demise of the d-serine gliotransmission hypothesis, provides additional evidence against gliotransmission. Overall, the data suggest that Ca2+-dependent release of neurotransmitters is the province of neurons, not astrocytes, in the intact brain under physiological conditions.Dual Perspectives Companion Paper: Gliotransmission: Beyond Black-and-White, by Iaroslav Savtchouk and Andrea Volterra.
Collapse
|
27
|
Turecek J, Regehr WG. Neuronal Regulation of Fast Synaptotagmin Isoforms Controls the Relative Contributions of Synchronous and Asynchronous Release. Neuron 2019; 101:938-949.e4. [PMID: 30733150 DOI: 10.1016/j.neuron.2019.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/30/2018] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
Neurotransmitter release can be synchronous and occur within milliseconds of action potential invasion, or asynchronous and persist for tens of milliseconds. The molecular determinants of release kinetics remain poorly understood. It has been hypothesized that asynchronous release dominates when fast Synaptotagmin isoforms are far from calcium channels or when specialized sensors, such as Synaptotagmin 7, are abundant. Here we test these hypotheses for GABAergic projections onto neurons of the inferior olive, where release in different subnuclei ranges from synchronous to asynchronous. Surprisingly, neither of the leading hypotheses accounts for release kinetics. Instead, we find that rapid Synaptotagmin isoforms are abundant in subnuclei with synchronous release but absent where release is asynchronous. Viral expression of Synaptotagmin 1 transforms asynchronous synapses into synchronous ones. Thus, the nervous system controls levels of fast Synaptotagmin isoforms to regulate release kinetics and thereby controls the ability of synapses to encode spike rates or precise timing.
Collapse
Affiliation(s)
- Josef Turecek
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
28
|
|
29
|
Abstract
This review summarizes current knowledge of synaptic proteins that are central to synaptic vesicle fusion in presynaptic active zones, including SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptors), synaptotagmin, complexin, Munc18 (mammalian uncoordinated-18), and Munc13 (mammalian uncoordinated-13), and highlights recent insights in the cooperation of these proteins for neurotransmitter release. Structural and functional studies of the synaptic fusion machinery suggest new molecular models of synaptic vesicle priming and Ca2+-triggered fusion. These studies will be a stepping-stone toward answering the question of how the synaptic vesicle fusion machinery achieves such high speed and sensitivity.
Collapse
Affiliation(s)
- Axel T Brunger
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Ucheor B Choi
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Ying Lai
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Qiangjun Zhou
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
30
|
Chen C, Arai I, Satterfield R, Young SM, Jonas P. Synaptotagmin 2 Is the Fast Ca 2+ Sensor at a Central Inhibitory Synapse. Cell Rep 2017; 18:723-736. [PMID: 28099850 PMCID: PMC5276807 DOI: 10.1016/j.celrep.2016.12.067] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/18/2016] [Accepted: 12/20/2016] [Indexed: 11/24/2022] Open
Abstract
GABAergic synapses in brain circuits generate inhibitory output signals with submillisecond latency and temporal precision. Whether the molecular identity of the release sensor contributes to these signaling properties remains unclear. Here, we examined the Ca2+ sensor of exocytosis at GABAergic basket cell (BC) to Purkinje cell (PC) synapses in cerebellum. Immunolabeling suggested that BC terminals selectively expressed synaptotagmin 2 (Syt2), whereas synaptotagmin 1 (Syt1) was enriched in excitatory terminals. Genetic elimination of Syt2 reduced action potential-evoked release to ∼10%, identifying Syt2 as the major Ca2+ sensor at BC-PC synapses. Differential adenovirus-mediated rescue revealed that Syt2 triggered release with shorter latency and higher temporal precision and mediated faster vesicle pool replenishment than Syt1. Furthermore, deletion of Syt2 severely reduced and delayed disynaptic inhibition following parallel fiber stimulation. Thus, the selective use of Syt2 as release sensor at BC-PC synapses ensures fast and efficient feedforward inhibition in cerebellar microcircuits. Syt2 is the Ca2+ sensor of fast transmitter release at a cerebellar GABAergic synapse Syt2 triggers transmitter release with faster time course than Syt1 Syt2 ensures faster replenishment of the readily releasable pool than Syt1 Syt2 is essential for fast feedforward inhibition in cerebellar microcircuits
Collapse
Affiliation(s)
- Chong Chen
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Itaru Arai
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Rachel Satterfield
- Max Planck Florida Institute for Neuroscience, Research Group Molecular Mechanisms of Synaptic Function, Jupiter, FL 33458, USA
| | - Samuel M Young
- Max Planck Florida Institute for Neuroscience, Research Group Molecular Mechanisms of Synaptic Function, Jupiter, FL 33458, USA
| | - Peter Jonas
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
31
|
Wang YL, Zhang CX. Putting a brake on synaptic vesicle endocytosis. Cell Mol Life Sci 2017; 74:2917-2927. [PMID: 28361181 PMCID: PMC11107501 DOI: 10.1007/s00018-017-2506-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/14/2017] [Accepted: 03/14/2017] [Indexed: 01/16/2023]
Abstract
In chemical synapses, action potentials evoke synaptic vesicle fusion with the presynaptic membrane at the active zone to release neurotransmitter. Synaptic vesicle endocytosis (SVE) then follows exocytosis to recapture vesicle proteins and lipid components for recycling and the maintenance of membrane homeostasis. Therefore, SVE plays an essential role during neurotransmission and is one of the most precisely regulated biological processes. Four modes of SVE have been characterized and both positive and negative regulators have been identified. However, our understanding of SVE regulation remains unclear, especially the identity of negative regulators and their mechanisms of action. Here, we review the current knowledge of proteins that function as inhibitors of SVE and their modes of action in different forms of endocytosis. We also propose possible physiological roles of such negative regulation. We believe that a better understanding of SVE regulation, especially the inhibitory mechanisms, will shed light on neurotransmission in health and disease.
Collapse
Affiliation(s)
- Ya-Long Wang
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Beijing, China
| | - Claire Xi Zhang
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Beijing, China.
| |
Collapse
|
32
|
Jackman SL, Regehr WG. The Mechanisms and Functions of Synaptic Facilitation. Neuron 2017; 94:447-464. [PMID: 28472650 DOI: 10.1016/j.neuron.2017.02.047] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 12/22/2022]
Abstract
The ability of the brain to store and process information relies on changing the strength of connections between neurons. Synaptic facilitation is a form of short-term plasticity that enhances synaptic transmission for less than a second. Facilitation is a ubiquitous phenomenon thought to play critical roles in information transfer and neural processing. Yet our understanding of the function of facilitation remains largely theoretical. Here we review proposed roles for facilitation and discuss how recent progress in uncovering the underlying molecular mechanisms could enable experiments that elucidate how facilitation, and short-term plasticity in general, contributes to circuit function and animal behavior.
Collapse
Affiliation(s)
- Skyler L Jackman
- Department of Neurobiology, Harvard Medical School, Boston, MA 02118, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA 02118, USA.
| |
Collapse
|
33
|
Hussain S, Egbenya DL, Lai YC, Dosa ZJ, Sørensen JB, Anderson AE, Davanger S. The calcium sensor synaptotagmin 1 is expressed and regulated in hippocampal postsynaptic spines. Hippocampus 2017; 27:1168-1177. [PMID: 28686803 DOI: 10.1002/hipo.22761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/31/2017] [Accepted: 06/29/2017] [Indexed: 11/07/2022]
Abstract
Synaptotagmin 1 is a presynaptic calcium sensor, regulating SNARE-mediated vesicle exocytosis of transmitter. Increasing evidence indicate roles of SNARE proteins in postsynaptic glutamate receptor trafficking. However, a possible postsynaptic expression of synaptotagmin 1 has not been demonstrated previously. Here, we used postembedding immunogold electron microscopy to determine the subsynaptic localization of synaptotagmin 1 in rat hippocampal CA1 Schaffer collateral synapses. We report for the first time that synaptotagmin 1 is present in rat hippocampal postsynaptic spines, both on cytoplasmic vesicles and at the postsynaptic density. We further investigated whether postsynaptic synaptotagmin 1 is regulated during synaptic plasticity. In a rat model of chronic temporal lobe epilepsy, we found that presynaptic and postsynaptic concentrations of the protein are reduced compared to control animals. This downregulation may possibly be an adaptive measure to decrease both presynaptic and postsynaptic calcium sensitivity in excitotoxic conditions.
Collapse
Affiliation(s)
- Suleman Hussain
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Daniel Lawer Egbenya
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Yi-Chen Lai
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Zita J Dosa
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, Denmark
| | - Jakob B Sørensen
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, Denmark
| | - Anne E Anderson
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Svend Davanger
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| |
Collapse
|
34
|
Du C, Wang Y, Zhang F, Yan S, Guan Y, Gong X, Zhang T, Cui X, Wang X, Zhang CX. Synaptotagmin-11 inhibits cytokine secretion and phagocytosis in microglia. Glia 2017; 65:1656-1667. [PMID: 28686317 DOI: 10.1002/glia.23186] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/18/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022]
Abstract
Cytokine secretion and phagocytosis are key functions of activated microglia. However, the molecular mechanisms underlying their regulation in microglia remain largely unknown. Here, we report that synaptotagmin-11 (Syt11), a non-Ca2+ -binding Syt implicated in Parkinson disease and schizophrenia, inhibits cytokine secretion and phagocytosis in microglia. We found Syt11 expression in microglia in brain slices and primary microglia. Interestingly, Syt11-knockdown (KD) increased cytokine secretion and NO release in primary microglia both in the absence and presence of lipopolysaccharide. NF-κB was activated in untreated KD microglia together with enhanced synthesis of IL-6, TNF-α, IL-1β, and iNOS. When the release capacity was assessed by the ratio of extracellular to intracellular levels, only the IL-6 and TNF-α secretion capacity was increased in Syt11-KD cells, suggesting that Syt11 specifically regulates conventional secretion. Consistently, Syt11 localized to the trans-Golgi network and recycling endosomes. In addition, Syt11 was recruited to phagosomes and its deficiency enhanced microglial phagocytosis. All the KD phenotypes were rescued by expression of an shRNA-resistant Syt11, while overexpression of Syt11 suppressed cytokine secretion and phagocytosis. Importantly, Syt11 also inhibited microglial phagocytosis of α-synuclein fibrils, supporting its association with Parkinson disease. Taken together, we propose that Syt11 suppresses microglial activation under both physiological and pathological conditions through the inhibition of cytokine secretion and phagocytosis.
Collapse
Affiliation(s)
- Cuilian Du
- Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurobiology, School of Basic Medical Science, Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Capital Medical University, Beijing, China
| | - Yalong Wang
- Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Feifan Zhang
- Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Shuxin Yan
- Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yuan Guan
- Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaoli Gong
- Department of Physiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Ting Zhang
- Department of Neurobiology, School of Basic Medical Science, Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Capital Medical University, Beijing, China
| | - Xiuyu Cui
- Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaomin Wang
- Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurobiology, School of Basic Medical Science, Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Capital Medical University, Beijing, China
| | - Claire Xi Zhang
- Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Bohmbach K, Schwarz MK, Schoch S, Henneberger C. The structural and functional evidence for vesicular release from astrocytes in situ. Brain Res Bull 2017; 136:65-75. [PMID: 28122264 DOI: 10.1016/j.brainresbull.2017.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/31/2022]
Abstract
The concept of the tripartite synapse states that bi-directional signalling between perisynaptic astrocyte processes, presynaptic axonal boutons and postsynaptic neuronal structures defines the properties of synaptic information processing. Ca2+-dependent vesicular release from astrocytes, as one of the mechanisms of astrocyte-neuron communication, has attracted particular attention but has also been the subject of intense debate. In neurons, regulated vesicular release is a strongly coordinated process. It requires a complex release machinery comprised of many individual components ranging from vesicular neurotransmitter transporters and soluble NSF attachment protein receptors (SNARE) proteins to Ca2+-sensors and the proteins that spatially and temporally control exocytosis of synaptic vesicles. If astrocytes employ similar mechanisms to release neurotransmitters is less well understood. The aim of this review is therefore to discuss recent experimental evidence that sheds light on the central structural components responsible for vesicular release from astrocytes in situ.
Collapse
Affiliation(s)
- Kirsten Bohmbach
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany.
| | - Martin K Schwarz
- Department of Epileptology, University of Bonn Medical School, Bonn, Germany
| | - Susanne Schoch
- Institute of Neuropathology, University of Bonn Medical School, Bonn, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
36
|
Wolfes AC, Ahmed S, Awasthi A, Stahlberg MA, Rajput A, Magruder DS, Bonn S, Dean C. A novel method for culturing stellate astrocytes reveals spatially distinct Ca2+ signaling and vesicle recycling in astrocytic processes. J Gen Physiol 2016; 149:149-170. [PMID: 27908976 PMCID: PMC5217085 DOI: 10.1085/jgp.201611607] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 12/20/2022] Open
Abstract
Communication between astrocytes and neurons has been difficult to study because cultured astrocytes do not resemble those in vivo. Wolfes et al. develop a stellate astrocyte monoculture with physiological characteristics and find that VAMP2 and SYT7 mark distinct vesicle populations in astrocytes. Interactions between astrocytes and neurons rely on the release and uptake of glial and neuronal molecules. But whether astrocytic vesicles exist and exocytose in a regulated or constitutive fashion is under debate. The majority of studies have relied on indirect methods or on astrocyte cultures that do not resemble stellate astrocytes found in vivo. Here, to investigate vesicle-associated proteins and exocytosis in stellate astrocytes specifically, we developed a simple, fast, and economical method for growing stellate astrocyte monocultures. This method is superior to other monocultures in terms of astrocyte morphology, mRNA expression profile, protein expression of cell maturity markers, and Ca2+ fluctuations: In astrocytes transduced with GFAP promoter–driven Lck-GCaMP3, spontaneous Ca2+ events in distinct domains (somata, branchlets, and microdomains) are similar to those in astrocytes co-cultured with other glia and neurons but unlike Ca2+ events in astrocytes prepared using the McCarthy and de Vellis (MD) method and immunopanned (IP) astrocytes. We identify two distinct populations of constitutively recycling vesicles (harboring either VAMP2 or SYT7) specifically in branchlets of cultured stellate astrocytes. SYT7 is developmentally regulated in these astrocytes, and we observe significantly fewer synapses in wild-type mouse neurons grown on Syt7−/− astrocytes. SYT7 may thus be involved in trafficking or releasing synaptogenic factors. In summary, our novel method yields stellate astrocyte monocultures that can be used to study Ca2+ signaling and vesicle recycling and dynamics in astrocytic processes.
Collapse
Affiliation(s)
- Anne C Wolfes
- Trans-Synaptic Signaling Group, European Neuroscience Institute Göttingen, 37077 Göttingen, Germany
| | - Saheeb Ahmed
- Trans-Synaptic Signaling Group, European Neuroscience Institute Göttingen, 37077 Göttingen, Germany
| | - Ankit Awasthi
- Trans-Synaptic Signaling Group, European Neuroscience Institute Göttingen, 37077 Göttingen, Germany
| | - Markus A Stahlberg
- Trans-Synaptic Signaling Group, European Neuroscience Institute Göttingen, 37077 Göttingen, Germany
| | - Ashish Rajput
- Research Group for Computational Systems Biology, German Center for Neurodegenerative Disease (DZNE), 37075 Göttingen, Germany
| | - Daniel S Magruder
- Research Group for Computational Systems Biology, German Center for Neurodegenerative Disease (DZNE), 37075 Göttingen, Germany
| | - Stefan Bonn
- Research Group for Computational Systems Biology, German Center for Neurodegenerative Disease (DZNE), 37075 Göttingen, Germany
| | - Camin Dean
- Trans-Synaptic Signaling Group, European Neuroscience Institute Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
37
|
Tratnjek L, Živin M, Glavan G. Synaptotagmin 7 and SYNCRIP proteins are ubiquitously expressed in the rat brain and co-localize in Purkinje neurons. J Chem Neuroanat 2016; 79:12-21. [PMID: 27771350 DOI: 10.1016/j.jchemneu.2016.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/03/2016] [Accepted: 10/18/2016] [Indexed: 11/17/2022]
Abstract
Synaptotagmin 7 (SYT7) is ubiquitously expressed calcium sensor, involved in neuronal membrane trafficking. Immunoprecipitation experiments demonstrated that SYT7 interacts with Synaptotagmin-binding, cytoplasmic RNA-interacting protein (SYNCRIP). SYNCRIP is a component of mRNA granules, which are transported to dendrites and are prerequisite for synaptic plasticity. Given the potential significance of SYT7 regulation in processes of neurodegeneration, which are characterized by high level of synaptic vulnerability, we aimed to analyse and compare the distribution of SYT7 and SYNCRIP proteins in the adult rat striatum, hippocampus, cerebral and cerebellar cortex. We investigated the degree of SYT7-SYNCRIP co-localization in order to examine possible functional interaction of these two proteins. We found that SYT7 is abundantly distributed in neuropil of all examined anatomical areas of the brain, most prominently in axons. On the contrary, SYNCRIP had cytoplasmic somatodendritic pattern of expression, which was most prominent in the hippocampus and cerebellum. In the striatum, hippocampus and cerebral cortex SYT7 and SYNCRIP immunofluorescent signals were mutually excluded, thus diminishing the probability for their physiological interaction. In somata of Purkinje neurons in the cerebellar cortex, both SYT7 and SYNCRIP were expressed and partially co-localized suggesting possible functional connection between SYT7 and SYNCRIP proteins in Purkinje neurons.
Collapse
Affiliation(s)
- Larisa Tratnjek
- University of Ljubljana, Medical Faculty, Institute of Pathophysiology, Brain Research Laboratory, Zaloška 4, 1000, Ljubljana, Slovenia.
| | - Marko Živin
- University of Ljubljana, Medical Faculty, Institute of Pathophysiology, Brain Research Laboratory, Zaloška 4, 1000, Ljubljana, Slovenia.
| | - Gordana Glavan
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|
38
|
Tratnjek L, Glavan G, Višnjar T, Živin M. Upregulation and axonal transport of synaptotagmin-IV in the direct-pathway medium spiny neurons in hemi-parkinsonian rats induced by dopamine D1 receptor stimulation. Eur J Neurosci 2016; 43:885-98. [PMID: 26750488 DOI: 10.1111/ejn.13161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/05/2015] [Accepted: 12/26/2015] [Indexed: 01/06/2023]
Abstract
Synaptotagmin-IV (Syt-IV) may function as a regulator of Ca(2+) -dependent synaptic transmission. In the hemi-parkinsonian rats with unilateral lesions of dopaminergic nigrostriatal neurons Syt-IV and substance-P (SP) mRNAs could be upregulated within the dopaminergically hypersensitive striatum of the lesioned brain hemisphere via the stimulation of striatal dopamine D1 (D1-R), but not D2 receptors. The hypersensitive D1-R-mediated transmission may be the culprit for the undesired expression of levodopa-induced dyskinesia, implying the involvement of Syt-IV and SP in the process. First, striatal cellular phenotypes expressing Syt-IV were determined. It was found to be expressed in all striatal neurons and a small population of astrocytes. Then it was examined, if the D1-R-mediated upregulation of Syt-IV mRNA may result in the upregulation of the translated protein. It was found that, after acute stimulation with a selective D1 agonist, (±)-6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF-82958), Syt-IV was elevated within the SP-expressing striatal neurons of the lesioned side. This was followed by the upregulation of Syt-IV, but not of its mRNA, within the ipsilateral target nuclei of the direct-pathway medium spiny neurons, indicating axonal transport of de novo synthesized protein to their SP-positive synaptic terminals. However, despite the striatal upregulation of SP and Syt-IV following a similar time-course, their subcellular co-localization within the axonal terminals was not found. It was therefore suggested that Syt-IV may regulate the hypersensitive striatal synaptic transmission, although via a SP-independent mechanism.
Collapse
Affiliation(s)
- Larisa Tratnjek
- Brain Research Laboratory, Medical Faculty, Institute of Pathophysiology, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Gordana Glavan
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Višnjar
- Institute of Cell Biology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Živin
- Brain Research Laboratory, Medical Faculty, Institute of Pathophysiology, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| |
Collapse
|
39
|
Verkhratsky A, Matteoli M, Parpura V, Mothet JP, Zorec R. Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. EMBO J 2016; 35:239-57. [PMID: 26758544 DOI: 10.15252/embj.201592705] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/01/2015] [Indexed: 11/09/2022] Open
Abstract
Astrocytes are housekeepers of the central nervous system (CNS) and are important for CNS development, homeostasis and defence. They communicate with neurones and other glial cells through the release of signalling molecules. Astrocytes secrete a wide array of classic neurotransmitters, neuromodulators and hormones, as well as metabolic, trophic and plastic factors, all of which contribute to the gliocrine system. The release of neuroactive substances from astrocytes occurs through several distinct pathways that include diffusion through plasmalemmal channels, translocation by multiple transporters and regulated exocytosis. As in other eukaryotic cells, exocytotic secretion from astrocytes involves divergent secretory organelles (synaptic-like microvesicles, dense-core vesicles, lysosomes, exosomes and ectosomes), which differ in size, origin, cargo, membrane composition, dynamics and functions. In this review, we summarize the features and functions of secretory organelles in astrocytes. We focus on the biogenesis and trafficking of secretory organelles and on the regulation of the exocytotic secretory system in the context of healthy and diseased astrocytes.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK Achucarro Center for Neuroscience, IKERBASQUE Basque Foundation for Science, Bilbao, Spain Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain University of Nizhny Novgorod, Nizhny Novgorod, Russia Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology University of Ljubljana, Ljubljana, Slovenia Celica BIOMEDICAL, Ljubljana, Slovenia
| | - Michela Matteoli
- CNR Institute of Neuroscience, Milano, Italy Humanitas Research Hospital, Rozzano, Italy
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy & Nanotechnology Laboratories University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jean-Pierre Mothet
- Team Gliotransmission & Synaptopathies, Aix-Marseille University CNRS, CRN2M UMR7286, Marseille, France
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology University of Ljubljana, Ljubljana, Slovenia Celica BIOMEDICAL, Ljubljana, Slovenia
| |
Collapse
|
40
|
Crawford DC, Kavalali ET. Molecular underpinnings of synaptic vesicle pool heterogeneity. Traffic 2015; 16:338-64. [PMID: 25620674 DOI: 10.1111/tra.12262] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/06/2015] [Indexed: 12/31/2022]
Abstract
Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling.
Collapse
Affiliation(s)
- Devon C Crawford
- Department of Neuroscience, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| | | |
Collapse
|
41
|
Wang C, Wang Y, Hu M, Chai Z, Wu Q, Huang R, Han W, Zhang CX, Zhou Z. Synaptotagmin-11 inhibits clathrin-mediated and bulk endocytosis. EMBO Rep 2015; 17:47-63. [PMID: 26589353 DOI: 10.15252/embr.201540689] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/21/2015] [Indexed: 11/09/2022] Open
Abstract
Precise and efficient endocytosis is essential for vesicle recycling during a sustained neurotransmission. The regulation of endocytosis has been extensively studied, but inhibitors have rarely been found. Here, we show that synaptotagmin-11 (Syt11), a non-Ca(2+)-binding Syt implicated in schizophrenia and Parkinson's disease, inhibits clathrin-mediated endocytosis (CME) and bulk endocytosis in dorsal root ganglion neurons. The frequency of both types of endocytic event increases in Syt11 knockdown neurons, while the sizes of endocytosed vesicles and the kinetics of individual bulk endocytotic events remain unaffected. Specifically, clathrin-coated pits and bulk endocytosis-like structures increase on the plasma membrane in Syt11-knockdown neurons. Structural-functional analysis reveals distinct domain requirements for Syt11 function in CME and bulk endocytosis. Importantly, Syt11 also inhibits endocytosis in hippocampal neurons, implying a general role of Syt11 in neurons. Taken together, we propose that Syt11 functions to ensure precision in vesicle retrieval, mainly by limiting the sites of membrane invagination at the early stage of endocytosis.
Collapse
Affiliation(s)
- Changhe Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China College of Life Sciences, Forestry and Agriculture, Qiqihar University, Qiqihar, China
| | - Yeshi Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Meiqin Hu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zuying Chai
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Qihui Wu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Rong Huang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore City, Singapore Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Claire Xi Zhang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
42
|
Sahlender DA, Savtchouk I, Volterra A. What do we know about gliotransmitter release from astrocytes? Philos Trans R Soc Lond B Biol Sci 2015; 369:20130592. [PMID: 25225086 PMCID: PMC4173278 DOI: 10.1098/rstb.2013.0592] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Astrocytes participate in information processing by actively modulating synaptic properties via gliotransmitter release. Various mechanisms of astrocytic release have been reported, including release from storage organelles via exocytosis and release from the cytosol via plasma membrane ion channels and pumps. It is still not fully clear which mechanisms operate under which conditions, but some of them, being Ca2+-regulated, may be physiologically relevant. The properties of Ca2+-dependent transmitter release via exocytosis or via ion channels are different and expected to produce different extracellular transmitter concentrations over time and to have distinct functional consequences. The molecular aspects of these two release pathways are still under active investigation. Here, we discuss the existing morphological and functional evidence in support of either of them. Transgenic mouse models, specific antagonists and localization studies have provided insight into regulated exocytosis, albeit not in a systematic fashion. Even more remains to be uncovered about the details of channel-mediated release. Better functional tools and improved ultrastructural approaches are needed in order fully to define specific modalities and effects of astrocytic gliotransmitter release pathways.
Collapse
Affiliation(s)
- Daniela A Sahlender
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, Lausanne 1005, Switzerland
| | - Iaroslav Savtchouk
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, Lausanne 1005, Switzerland
| | - Andrea Volterra
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, Lausanne 1005, Switzerland
| |
Collapse
|
43
|
Sreetama SC, Takano T, Nedergaard M, Simon SM, Jaiswal JK. Injured astrocytes are repaired by Synaptotagmin XI-regulated lysosome exocytosis. Cell Death Differ 2015; 23:596-607. [PMID: 26450452 DOI: 10.1038/cdd.2015.124] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 08/03/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022] Open
Abstract
Astrocytes are known to facilitate repair following brain injury; however, little is known about how injured astrocytes repair themselves. Repair of cell membrane injury requires Ca(2+)-triggered vesicle exocytosis. In astrocytes, lysosomes are the main Ca(2+)-regulated exocytic vesicles. Here we show that astrocyte cell membrane injury results in a large and rapid calcium increase. This triggers robust lysosome exocytosis where the fusing lysosomes release all luminal contents and merge fully with the plasma membrane. In contrast to this, receptor stimulation produces a small sustained calcium increase, which is associated with partial release of the lysosomal luminal content, and the lysosome membrane does not merge into the plasma membrane. In most cells, lysosomes express the synaptotagmin (Syt) isoform Syt VII; however, this isoform is not present on astrocyte lysosomes and exogenous expression of Syt VII on lysosome inhibits their exocytosis. Deletion of one of the most abundant Syt isoform in astrocyte--Syt XI--suppresses astrocyte lysosome exocytosis. This identifies lysosome as Syt XI-regulated exocytic vesicle in astrocytes. Further, inhibition of lysosome exocytosis (by Syt XI depletion or Syt VII expression) prevents repair of injured astrocytes. These results identify the lysosomes and Syt XI as the sub-cellular and molecular regulators, respectively of astrocyte cell membrane repair.
Collapse
Affiliation(s)
- S C Sreetama
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC, USA
| | - T Takano
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, USA
| | - M Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, USA
| | - S M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY, USA
| | - J K Jaiswal
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC, USA.,Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue NW, Washington, DC, USA
| |
Collapse
|
44
|
Yang QG, Chen GH, Wang F, Wang LH. Hippocampal synaptotagmin-4 is correlated with impaired spatial learning and memory in SAMP8 mice. Neurosci Lett 2015; 607:7-12. [DOI: 10.1016/j.neulet.2015.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/16/2015] [Accepted: 09/08/2015] [Indexed: 01/20/2023]
|
45
|
Vardjan N, Parpura V, Zorec R. Loose excitation-secretion coupling in astrocytes. Glia 2015; 64:655-67. [PMID: 26358496 DOI: 10.1002/glia.22920] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/26/2015] [Indexed: 12/19/2022]
Abstract
Astrocytes play an important housekeeping role in the central nervous system. Additionally, as secretory cells, they actively participate in cell-to-cell communication, which can be mediated by membrane-bound vesicles. The gliosignaling molecules stored in these vesicles are discharged into the extracellular space after the vesicle membrane fuses with the plasma membrane. This process is termed exocytosis, regulated by SNARE proteins, and triggered by elevations in cytosolic calcium levels, which are necessary and sufficient for exocytosis in astrocytes. For astrocytic exocytosis, calcium is sourced from the intracellular endoplasmic reticulum store, although its entry from the extracellular space contributes to cytosolic calcium dynamics in astrocytes. Here, we discuss calcium management in astrocytic exocytosis and the properties of the membrane-bound vesicles that store gliosignaling molecules, including the vesicle fusion machinery and kinetics of vesicle content discharge. In astrocytes, the delay between the increase in cytosolic calcium activity and the discharge of secretions from the vesicular lumen is orders of magnitude longer than that in neurons. This relatively loose excitation-secretion coupling is likely tailored to the participation of astrocytes in modulating neural network processing.
Collapse
Affiliation(s)
- Nina Vardjan
- Celica Biomedical, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy & Nanotechnology Laboratories, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | - Robert Zorec
- Celica Biomedical, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
46
|
Gautam V, D'Avanzo C, Berezovska O, Tanzi RE, Kovacs DM. Synaptotagmins interact with APP and promote Aβ generation. Mol Neurodegener 2015. [PMID: 26202512 PMCID: PMC4511450 DOI: 10.1186/s13024-015-0028-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Accumulation of the β-amyloid peptide (Aβ) is a major pathological hallmark of Alzheimer’s disease (AD). Recent studies have shown that synaptic Aβ toxicity may directly impair synaptic function. However, proteins regulating Aβ generation at the synapse have not been characterized. Here, we sought to identify synaptic proteins that interact with the extracellular domain of APP and regulate Aβ generation. Results Affinity purification-coupled mass spectrometry identified members of the Synaptotagmin (Syt) family as novel interacting proteins with the APP ectodomain in mouse brains. Syt-1, −2 and −9 interacted with APP in cells and in mouse brains in vivo. Using a GST pull-down approach, we have further demonstrated that the Syt interaction site lies in the 108 amino acids linker region between the E1 and KPI domains of APP. Stable overexpression of Syt-1 or Syt-9 with APP in CHO and rat pheochromocytoma cells (PC12) significantly increased APP-CTF and sAPP levels, with a 2 to 3 fold increase in secreted Aβ levels in PC12 cells. Moreover, using a stable knockdown approach to reduce the expression of endogenous Syt-1 in PC12 cells, we have observed a ~ 50 % reduction in secreted Aβ generation. APP processing also decreased in these cells, shown by lower CTF levels. Lentiviral-mediated knock down of endogenous Syt-1 in mouse primary neurons also led to a significant reduction in both Aβ40 and Aβ42 generation. As secreted sAPPβ levels were significantly reduced in PC12 cells lacking Syt-1 expression, our results suggest that Syt-1 regulates Aβ generation by modulating BACE1-mediated cleavage of APP. Conclusion Altogether, our data identify the synaptic vesicle proteins Syt-1 and 9 as novel APP-interacting proteins that promote Aβ generation and thus may play an important role in the pathogenesis of AD. Electronic supplementary material The online version of this article (doi:10.1186/s13024-015-0028-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vivek Gautam
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Carla D'Avanzo
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Oksana Berezovska
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Dora M Kovacs
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
47
|
Mo J, Kim CH, Lee D, Sun W, Lee HW, Kim H. Early growth response 1 (Egr-1) directly regulates GABAA receptor α2, α4, and θ subunits in the hippocampus. J Neurochem 2015; 133:489-500. [PMID: 25708312 DOI: 10.1111/jnc.13077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/10/2015] [Accepted: 02/17/2015] [Indexed: 11/28/2022]
Abstract
The homeostatic regulation of neuronal activity in glutamatergic and GABAergic synapses is critical for neural circuit development and synaptic plasticity. The induced expression of the transcription factor early growth response 1 (Egr-1) in neurons is tightly associated with many forms of neuronal activity, but the underlying target genes in the brain remained to be elucidated. This study uses a quantitative real-time PCR approach, in combination with in vivo chromatin immunoprecipitation, and reveals that GABAA receptor subunit, GABRA2 (α2), GABRA4 (α4), and GABRQ (θ) genes, are transcriptional targets of Egr-1. Transfection of a construct that over-expresses Egr-1 in neuroblastoma (Neuro2A) cells up-regulates the α2, α4, and θ subunits. Given that Egr-1 knockout mice display less GABRA2, GABRA4, and GRBRQ mRNA in the hippocampus, and that Egr-1 directly binds to their promoters and induces mRNA expression, the present findings support a role for Egr-1 as a major regulator for altered GABAA receptor composition in homeostatic plasticity, in a glutamatergic activity-dependent manner. The early growth response 1 (Egr-1) is an inducible transcription factor to mediate rapid gene expression by neuronal activity. However, its underlying molecular target genes and mechanisms are not fully understood. We suggest that GABAA receptor subunits, GABRA2 (α2), GABRA4 (α4), and GABRQ (θ) genes are transcriptional targets of Egr-1. Neuronal activity-dependent up-regulation of Egr-1 might lead to altered subtypes of GABAA receptors for the maintenance of homeostatic excitatory and inhibitory balance for the regulation of synaptic strength.
Collapse
Affiliation(s)
- Jiwon Mo
- Department of Anatomy and Division of Brain Korea 21 Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
48
|
Vardjan N, Zorec R. Excitable Astrocytes: Ca(2+)- and cAMP-Regulated Exocytosis. Neurochem Res 2015; 40:2414-24. [PMID: 25732760 DOI: 10.1007/s11064-015-1545-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/15/2015] [Accepted: 02/17/2015] [Indexed: 01/19/2023]
Abstract
During neural activity, neurotransmitters released at synapses reach neighbouring cells, such as astrocytes. These get excited via numerous mechanisms, including the G protein coupled receptors that regulate the cytosolic concentration of second messengers, such as Ca(2+) and cAMP. The stimulation of these pathways leads to feedback modulation of neuronal activity and the activity of other cells by the release of diverse substances, gliosignals that include classical neurotransmitters such as glutamate, ATP, or neuropeptides. Gliosignal molecules are released from astrocytes through several distinct molecular mechanisms, for example, by diffusion through membrane channels, by translocation via plasmalemmal transporters, or by vesicular exocytosis. Vesicular release regulated by a stimulus-mediated increase in cytosolic second messengers involves a SNARE-dependent merger of the vesicle membrane with the plasmalemma. The coupling between the stimulus and vesicular secretion of gliosignals in astrocytes is not as tight as in neurones. This is considered an adaptation to regulate homeostatic processes in a slow time domain as is the case in the endocrine system (slower than the nervous system), hence glial functions constitute the gliocrine system. This article provides an overview of the mechanisms of excitability, involving Ca(2+) and cAMP, where the former mediates phasic signalling and the latter tonic signalling. The molecular, anatomic, and physiologic properties of the vesicular apparatus mediating the release of gliosignals is presented.
Collapse
Affiliation(s)
- Nina Vardjan
- Celica Biomedical, 1000, Ljubljana, Slovenia.
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, 1000, Ljubljana, Slovenia.
| | - Robert Zorec
- Celica Biomedical, 1000, Ljubljana, Slovenia.
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, 1000, Ljubljana, Slovenia.
| |
Collapse
|
49
|
Montana V, Verkhratsky A, Parpura V. Pathological role for exocytotic glutamate release from astrocytes in hepatic encephalopathy. Curr Neuropharmacol 2014; 12:324-33. [PMID: 25342940 PMCID: PMC4207072 DOI: 10.2174/1570159x12666140903094700] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/18/2014] [Accepted: 05/25/2014] [Indexed: 12/30/2022] Open
Abstract
Liver failure can lead to generalized hyperammonemia, which is thought to be the underlying cause of hepatic encephalopathy. This neuropsychiatric syndrome is accompanied by functional changes of astrocytes. These glial cells enter ammonia-induced self-amplifying cycle characterized by brain oedema, oxidative and osmotic stress that causes modification of proteins and RNA. Consequently, protein expression and function are affected, including that of glutamine synthetase and plasmalemmal glutamate transporters, leading to glutamate excitotoxicity; Ca2+-dependent exocytotic glutamate release from astrocytes contributes to this extracellular glutamate overload.
Collapse
Affiliation(s)
- Vedrana Montana
- Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force Microscopy & Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL 35294, USA ; Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK ; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain ; University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force Microscopy & Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL 35294, USA ; Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
50
|
Tratnjek L, Zivin M, Glavan G. Up-regulation of Synaptotagmin IV within amyloid plaque-associated dystrophic neurons in Tg2576 mouse model of Alzheimer's disease. Croat Med J 2014; 54:419-28. [PMID: 24170720 PMCID: PMC3816566 DOI: 10.3325/cmj.2013.54.419] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIM To investigate the involvement of the vesicular membrane trafficking regulator Synaptotagmin IV (Syt IV) in Alzheimer's disease pathogenesis and to define the cell types containing increased levels of Syt IV in the β-amyloid plaque vicinity. METHODS Syt IV protein levels in wild type (WT) and Tg2576 mice cortex were determined by Western blot analysis and immunohistochemistry. Co-localization studies using double immunofluorescence staining for Syt IV and markers for astrocytes (glial fibrillary acidic protein), microglia (major histocompatibility complex class II), neurons (neuronal specific nuclear protein), and neurites (neurofilaments) were performed in WT and Tg2576 mouse cerebral cortex. RESULTS Western blot analysis showed higher Syt IV levels in Tg2576 mice cortex than in WT cortex. Syt IV was found only in neurons. In plaque vicinity, Syt IV was up-regulated in dystrophic neurons. The Syt IV signal was not up-regulated in the neurons of Tg2576 mice cortex without plaques (resembling the pre-symptomatic conditions). CONCLUSIONS Syt IV up-regulation within dystrophic neurons probably reflects disrupted vesicular transport or/and impaired protein degradation occurring in Alzheimer's disease and is probably a consequence but not the cause of neuronal degeneration. Hence, Syt IV up-regulation and/or its accumulation in dystrophic neurons may have adverse effects on the survival of the affected neuron.
Collapse
Affiliation(s)
- Larisa Tratnjek
- Gordana Glavan, Laboratory for Brain Research, Institute of Pathophysiology, Medical Faculty, Zaloska 4, Ljubljana 1000, Slovenia,
| | | | | |
Collapse
|