1
|
Goodus MT, Alfredo AN, Carson KE, Dey P, Pukos N, Schwab JM, Popovich PG, Gao J, Mo X, Bruno RS, McTigue DM. Spinal cord injury-induced metabolic impairment and steatohepatitis develops in non-obese rats and is exacerbated by premorbid obesity. Exp Neurol 2024; 379:114847. [PMID: 38852834 DOI: 10.1016/j.expneurol.2024.114847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Impaired sensorimotor functions are prominent complications of spinal cord injury (SCI). A clinically important but less obvious consequence is development of metabolic syndrome (MetS), including increased adiposity, hyperglycemia/insulin resistance, and hyperlipidemia. MetS predisposes SCI individuals to earlier and more severe diabetes and cardiovascular disease compared to the general population, which trigger life-threatening complications (e.g., stroke, myocardial infarcts). Although each comorbidity is known to be a risk factor for diabetes and other health problems in obese individuals, their relative contribution or perceived importance in propagating systemic pathology after SCI has received less attention. This could be explained by an incomplete understanding of MetS promoted by SCI compared with that from the canonical trigger diet-induced obesity (DIO). Thus, here we compared metabolic-related outcomes after SCI in lean rats to those of uninjured rats with DIO. Surprisingly, SCI-induced MetS features were equal to or greater than those in obese uninjured rats, including insulin resistance, endotoxemia, hyperlipidemia, liver inflammation and steatosis. Considering the endemic nature of obesity, we also evaluated the effect of premorbid obesity in rats receiving SCI; the combination of DIO + SCI exacerbated MetS and liver pathology compared to either alone, suggesting that obese individuals that sustain a SCI are especially vulnerable to metabolic dysfunction. Notably, premorbid obesity also exacerbated intraspinal lesion pathology and worsened locomotor recovery after SCI. Overall, these results highlight that normal metabolic function requires intact spinal circuitry and that SCI is not just a sensory-motor disorder, but also has significant metabolic consequences.
Collapse
Affiliation(s)
- Matthew T Goodus
- The Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Anthony N Alfredo
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Kaitlin E Carson
- The Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Nicole Pukos
- The Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Jan M Schwab
- The Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Phillip G Popovich
- The Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jie Gao
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Richard S Bruno
- Human Nutrition Program, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| | - Dana M McTigue
- The Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Pollard S, De Silva AO, Simmons DBD. Metabolic, neurotoxic and immunotoxic effects of PFAAs and their mixtures on the proteome of the head kidney and plasma from rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172389. [PMID: 38615763 DOI: 10.1016/j.scitotenv.2024.172389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
PFAAs (Perfluoroalkyl acids) are a class of bioaccumulative, persistent and ubiquitous environmental contaminants which primarily occupy the hydrosphere and its sediments. Currently, a paucity of toxicological information exists for short chain PFAAs and complex mixtures. In order to address these knowledge gaps, we performed a 3-week, aqueous exposure of rainbow trout to 3 different concentrations of a PFAA mixture (50, 100 and 500 ng/L) modeled after the composition determined in Lake Ontario. We conducted an additional set of exposures to individual PFAAs (25 nM each of PFOS (12,500 ng/L), PFOA (10,300 ng/L), PFBS (7500 ng/L) or PFBA (5300 ng/L) to evaluate differences in biological response across PFAA congeners. Untargeted proteomics and phosphorylated metabolomics were conducted on the blood plasma and head kidney tissue to evaluate biological response. Plasma proteomic responses to the mixtures revealed several unexpected outcomes including Similar proteomic profiles and biological processes as the PFOS exposure regime while being orders of magnitude lower in concentration and an atypical dose response in terms of the number of significantly altered proteins (FDR < 0.1). Biological pathway analysis revealed the low mixture, medium mixture and PFOS to significantly alter (FDR < 0.05) a number of processes including those involved in lipid metabolism, oxidative stress and the nervous system. We implicate plasma increases in PPARD and PPARG as being directly related to these biological processes as they are known to be important regulators in all 3 processes. In contrast to the blood plasma, the high mixture and PFOA exposure regimes caused the greatest change to the head kidney proteome, altering many proteins being involved in lipid metabolism, oxidative stress and inflammation. Our findings support the pleiotropic effect PFAAs have on aquatic organisms at environmentally relevant doses including those on PPAR signaling, metabolic dysregulation, immunotoxicity and neurotoxicity.
Collapse
Affiliation(s)
- Simon Pollard
- Faculty of Science, Ontario Tech University, Ontario, Canada
| | - Amila O De Silva
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | | |
Collapse
|
3
|
Goyal A, Dubey N, Verma A, Agrawal A. Erucic Acid: A Possible Therapeutic Agent for Neurodegenerative Diseases. Curr Mol Med 2024; 24:419-427. [PMID: 37165502 DOI: 10.2174/1566524023666230509123536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
Neurodegenerative disorders are among the most common life-threatening disorders among the elderly worldwide and are marked by neuronal death in the brain and spinal cord. Several studies have demonstrated the beneficial role of dietary fatty acids in different brain disorders. This is due to their neurotrophic, antioxidant, and anti-inflammatory properties. Furthermore, extensive evidence shows that an unbalanced intake of certain dietary fatty acids increases the risk of neuropsychiatric diseases. Several research has been done on erucic acid, an ingestible omega-9 fatty acid that is found in Lorenzo's oil. Erucic acid was previously thought to be a natural toxin because of its negative effects on heart muscle function and hepatic steatosis, but it has been discovered that erucic acid is regularly consumed in Asian countries through the consumption of cruciferous vegetables like mustard and rapeseed oil with no evidence of cardiac harm. Erucic acid can also be transformed into nervonic acid, a crucial element of myelin. Therefore, erucic acid may have remyelinating effects, which may be crucial for treating different demyelinating conditions. Also, erucic acid exerts antioxidant and anti-inflammatory effects, suggesting its possible therapeutic role in different neurodegenerative disorders. Considering the fruitful effects of this compound, this article reviews the probable role of erucic acid as a pharmacological agent for treating and managing different neurodegenerative disorders.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anant Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
4
|
Barnes-Vélez JA, Aksoy Yasar FB, Hu J. Myelin lipid metabolism and its role in myelination and myelin maintenance. Innovation (N Y) 2023; 4:100360. [PMID: 36588745 PMCID: PMC9800635 DOI: 10.1016/j.xinn.2022.100360] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Myelin is a specialized cell membrane indispensable for rapid nerve conduction. The high abundance of membrane lipids is one of myelin's salient features that contribute to its unique role as an insulator that electrically isolates nerve fibers across their myelinated surface. The most abundant lipids in myelin include cholesterol, glycosphingolipids, and plasmalogens, each playing critical roles in myelin development as well as function. This review serves to summarize the role of lipid metabolism in myelination and myelin maintenance, as well as the molecular determinants of myelin lipid homeostasis, with an emphasis on findings from genetic models. In addition, the implications of myelin lipid dysmetabolism in human diseases are highlighted in the context of hereditary leukodystrophies and neuropathies as well as acquired disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Joseph A. Barnes-Vélez
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054-1901, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Science, Houston, TX 77225-0334, USA
- University of Puerto Rico Medical Sciences Campus, School of Medicine, San Juan, PR 00936-5067, USA
| | - Fatma Betul Aksoy Yasar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054-1901, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Science, Houston, TX 77225-0334, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054-1901, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Science, Houston, TX 77225-0334, USA
| |
Collapse
|
5
|
Alpha-synuclein increases in rodent and human spinal cord injury and promotes inflammation and tissue loss. Sci Rep 2021; 11:11720. [PMID: 34083630 PMCID: PMC8175699 DOI: 10.1038/s41598-021-91116-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/17/2021] [Indexed: 12/27/2022] Open
Abstract
Synucleinopathies are neurodegenerative diseases in which α-synuclein protein accumulates in neurons and glia. In these diseases, α-synuclein forms dense intracellular aggregates that are disease hallmarks and actively contribute to tissue pathology. Interestingly, many pathological mechanisms, including iron accumulation and lipid peroxidation, are shared between classical synucleinopathies such as Alzheimer’s disease, Parkinson’s disease and traumatic spinal cord injury (SCI). However, to date, no studies have determined if α-synuclein accumulation occurs after human SCI. To examine this, cross-sections from injured and non-injured human spinal cords were immunolabeled for α-synuclein. This showed robust α-synuclein accumulation in profiles resembling axons and astrocytes in tissue surrounding the injury, revealing that α-synuclein markedly aggregates in traumatically injured human spinal cords. We also detected significant iron deposition in the injury site, a known catalyst for α-synuclein aggregation. Next a rodent SCI model mimicking the histological features of human SCI revealed aggregates and structurally altered monomers of α-synuclein are present after SCI. To determine if α-synuclein exacerbates SCI pathology, α-synuclein knockout mice were tested. Compared to wild type mice, α-synuclein knockout mice had significantly more spared axons and neurons and lower pro-inflammatory mediators, macrophage accumulation, and iron deposition in the injured spinal cord. Interestingly, locomotor analysis revealed that α-synuclein may be essential for dopamine-mediated hindlimb function after SCI. Collectively, the marked upregulation and long-lasting accumulation of α-synuclein and iron suggests that SCI may fit within the family of synucleinopathies and offer new therapeutic targets for promoting neuron preservation and improving function after spinal trauma.
Collapse
|
6
|
Spaas J, van Veggel L, Schepers M, Tiane A, van Horssen J, Wilson DM, Moya PR, Piccart E, Hellings N, Eijnde BO, Derave W, Schreiber R, Vanmierlo T. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol Life Sci 2021; 78:4615-4637. [PMID: 33751149 PMCID: PMC8195802 DOI: 10.1007/s00018-021-03802-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) account for 5% of the resident parenchymal central nervous system glial cells. OPCs are not only a back-up for the loss of oligodendrocytes that occurs due to brain injury or inflammation-induced demyelination (remyelination) but are also pivotal in plastic processes such as learning and memory (adaptive myelination). OPC differentiation into mature myelinating oligodendrocytes is controlled by a complex transcriptional network and depends on high metabolic and mitochondrial demand. Mounting evidence shows that OPC dysfunction, culminating in the lack of OPC differentiation, mediates the progression of neurodegenerative disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Importantly, neurodegeneration is characterised by oxidative and carbonyl stress, which may primarily affect OPC plasticity due to the high metabolic demand and a limited antioxidant capacity associated with this cell type. The underlying mechanisms of how oxidative/carbonyl stress disrupt OPC differentiation remain enigmatic and a focus of current research efforts. This review proposes a role for oxidative/carbonyl stress in interfering with the transcriptional and metabolic changes required for OPC differentiation. In particular, oligodendrocyte (epi)genetics, cellular defence and repair responses, mitochondrial signalling and respiration, and lipid metabolism represent key mechanisms how oxidative/carbonyl stress may hamper OPC differentiation in neurodegenerative disorders. Understanding how oxidative/carbonyl stress impacts OPC function may pave the way for future OPC-targeted treatment strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jan Spaas
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lieve van Veggel
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Melissa Schepers
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Assia Tiane
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jack van Horssen
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - David M Wilson
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Pablo R Moya
- Facultad de Ciencias, Instituto de Fisiología, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Elisabeth Piccart
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Niels Hellings
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Bert O Eijnde
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Faculty of Medicine and Life Sciences, SMRC-Sportsmedical Research Center, BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Rudy Schreiber
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Tim Vanmierlo
- University MS Center (UMSC), Hasselt-Pelt, Belgium.
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
7
|
Goodus MT, Carson KE, Sauerbeck AD, Dey P, Alfredo AN, Popovich PG, Bruno RS, McTigue DM. Liver inflammation at the time of spinal cord injury enhances intraspinal pathology, liver injury, metabolic syndrome and locomotor deficits. Exp Neurol 2021; 342:113725. [PMID: 33933462 DOI: 10.1016/j.expneurol.2021.113725] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/08/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
The current high obesity rates mean that neurological injuries are increasingly sustained on a background of systemic pathology, including liver inflammation, which likely has a negative impact on outcomes. Because obesity involves complex pathology, the effect of hepatic inflammation alone on neurological recovery is unknown. Thus, here we used a gain-of-function model to test if liver inflammation worsens outcome from spinal cord injury (SCI) in rats. Results show liver inflammation concomitant with SCI exacerbated intraspinal pathology and impaired locomotor recovery. Hepatic inflammation also potentiated SCI-induced non-alcoholic steatohepatitis (NASH), endotoxemia and insulin resistance. Circulating and cerebrospinal levels of the liver-derived protein Fetuin-A were higher in SCI rats with liver inflammation, and, when microinjected into intact spinal cords, Fetuin-A caused macrophage activation and neuron loss. Thus, liver inflammation functions as a disease modifying factor to impair recovery from SCI, and Fetuin-A is a potential neuropathological mediator. Since SCI alone induces acute liver inflammation, the liver may be a novel clinical target for improving recovery from SCI.
Collapse
Affiliation(s)
- Matthew T Goodus
- The Belford Center for Spinal Cord Injury, Ohio State University, Columbus, OH, USA; Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Kaitlin E Carson
- The Belford Center for Spinal Cord Injury, Ohio State University, Columbus, OH, USA; Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Andrew D Sauerbeck
- The Belford Center for Spinal Cord Injury, Ohio State University, Columbus, OH, USA; Department of Neurology, Washington University in St. Louis, Missouri, USA
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Anthony N Alfredo
- The Belford Center for Spinal Cord Injury, Ohio State University, Columbus, OH, USA; Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Phillip G Popovich
- The Belford Center for Spinal Cord Injury, Ohio State University, Columbus, OH, USA; Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Richard S Bruno
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| | - Dana M McTigue
- The Belford Center for Spinal Cord Injury, Ohio State University, Columbus, OH, USA; Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Altinoz MA, Elmaci İ, Hacimuftuoglu A, Ozpinar A, Hacker E, Ozpinar A. PPARδ and its ligand erucic acid may act anti-tumoral, neuroprotective, and myelin protective in neuroblastoma, glioblastoma, and Parkinson's disease. Mol Aspects Med 2020; 78:100871. [PMID: 32703610 DOI: 10.1016/j.mam.2020.100871] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 10/23/2022]
Abstract
In this review study, we focus on potential benefits of the transcription factor PPARδ and its ligand erucic acid (EA) in management of neuroectodermal tumors and Parkinson's Disease. PPARδ is a nuclear receptor and transcription factor that induces myelination, promotes oligodendroglial and neuronal differentiation, and possess anti-neuroinflammatory properties. While both pro-tumorigenic and anti-tumorigenic effects have been described for PPARδ, we propose that PPARδ may perform a predominantly anticancer role in tumors originating from the neuroectoderm. PPARδ ligand-activation via oleic acid and GW501516, or overexpression of PPARδ, elicits profound antitumor actions in neuroblastoma and melanoma. In glioblastomas, there is evidence indicating a differentiation failure of O2A (oligodendroglial-astrocytic biprogenitor) cells and it has been shown that EA reduced DNA synthesis in C6 rat glioblastoma spheroid cultures in clinically achievable concentrations. EA is a ω9 fatty acid which is being used in the treatment of adrenoleukodystrophy. EA is widely consumed in Asian countries via ingestion of cruciferous vegetables including mustard and rapeseed oil. EA also exerts antioxidant and anti-inflammatory activities. Recent studies of Parkinson's Disease (PD) have implicated demyelination, white matter pathology, oligodendroglial injury, and neural inflammation in the underlying pathophysiology. In the rotenone PD model in rats, PPARδ ligand GW501516 saves dopaminergic neurons during injury induced by chemical toxins and improves behavioral functioning in PD via alleviation of endoplasmic reticulum stress. PPARδ agonists also reduce the NLRP3 inflammasome-associated neural inflammation in the MPTP PD model in mice. Herein, we propose that PPARδ and its ligand EA highly deserve to be studied in animal models of neuroblastoma, glioblastoma, and PD.
Collapse
Affiliation(s)
- Meric A Altinoz
- Department of Biochemistry, Acibadem University, Istanbul, Turkey.
| | - İlhan Elmaci
- Department of Neurosurgery, Acibadem Hospital, Maslak, Istanbul, Turkey
| | | | - Alp Ozpinar
- Department of Neurosurgery, Pittsburgh University, United States
| | - Emily Hacker
- Department of Neurosurgery, Pittsburgh University, United States
| | - Aysel Ozpinar
- Department of Biochemistry, Acibadem University, Istanbul, Turkey
| |
Collapse
|
9
|
Altinoz MA, Ozpinar A, Ozpinar A, Hacker E. Erucic acid, a nutritional PPARδ-ligand may influence Huntington's disease pathogenesis. Metab Brain Dis 2020; 35:1-9. [PMID: 31625071 DOI: 10.1007/s11011-019-00500-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022]
Abstract
Increasing recent evidence suggests a key role of oligodendroglial injury and demyelination in the pathophysiology of Huntington's Disease (HD) and the transcription factor PPARδ is critical for oligodendroglial regeneration and myelination. PPARδ directly involves in the pathogenesis of HD and treatment with a brain-permeable PPARδ-agonist (KD3010) alleviates its severity in mice. Erucic acid (EA) is also a PPARδ-ligand ω9 fatty acid which is highly consumed in Asian countries through ingesting cruciferous vegetables such as rapeseed (Brassica napus) and indian mustard (Brassica juncea). EA is also an ingredient of Lorenzo's oil employed in the medical treatment of adrenoleukodystrophy and can be converted to nervonic acid, a component of myelin. HD pathogenesis also involves oxidative and inflammatory injury and EA exerts antioxidative and antiinflammatory efficacies including inhibition of thrombin and elastase. Consumption of rapeseed, indian mustard, and Canola oils (containing EA) improves cognitive parameters in animal models, as well as treatment with pure EA. Moreover, erucamide, an endogenous EA-amide derivative regulating angiogenesis and water balance, exerts antidepressive and anxiolytic effects in mice. Hitherto, no study has investigated the therapeutic potential of EA in HD and we believe that it strongly merits to be studied in animal models of HD as a potential therapeutic.
Collapse
Affiliation(s)
- Meric A Altinoz
- Department of Biochemistry, Acibadem (Mehmet Ali Aydinlar) University, Istanbul, Turkey.
- Department of Psychiatry, Maastricht University, Maastricht, Netherlands.
| | - Aysel Ozpinar
- Department of Biochemistry, Acibadem (Mehmet Ali Aydinlar) University, Istanbul, Turkey
| | - Alp Ozpinar
- Department of Neurosurgery, Pittsburgh University, Pittsburgh, PA, USA
| | - Emily Hacker
- Department of Neurosurgery, Pittsburgh University, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Pukos N, Goodus MT, Sahinkaya FR, McTigue DM. Myelin status and oligodendrocyte lineage cells over time after spinal cord injury: What do we know and what still needs to be unwrapped? Glia 2019; 67:2178-2202. [PMID: 31444938 DOI: 10.1002/glia.23702] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/04/2023]
Abstract
Spinal cord injury (SCI) affects over 17,000 individuals in the United States per year, resulting in sudden motor, sensory and autonomic impairments below the level of injury. These deficits may be due at least in part to the loss of oligodendrocytes and demyelination of spared axons as it leads to slowed or blocked conduction through the lesion site. It has long been accepted that progenitor cells form new oligodendrocytes after SCI, resulting in the acute formation of new myelin on demyelinated axons. However, the chronicity of demyelination and the functional significance of remyelination remain contentious. Here we review work examining demyelination and remyelination after SCI as well as the current understanding of oligodendrocyte lineage cell responses to spinal trauma, including the surprisingly long-lasting response of NG2+ oligodendrocyte progenitor cells (OPCs) to proliferate and differentiate into new myelinating oligodendrocytes for months after SCI. OPCs are highly sensitive to microenvironmental changes, and therefore respond to the ever-changing post-SCI milieu, including influx of blood, monocytes and neutrophils; activation of microglia and macrophages; changes in cytokines, chemokines and growth factors such as ciliary neurotrophic factor and fibroblast growth factor-2; glutamate excitotoxicity; and axon degeneration and sprouting. We discuss how these changes relate to spontaneous oligodendrogenesis and remyelination, the evidence for and against demyelination being an important clinical problem and if remyelination contributes to motor recovery.
Collapse
Affiliation(s)
- Nicole Pukos
- Neuroscience Graduate Program, Ohio State University, Columbus, Ohio.,Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio
| | - Matthew T Goodus
- Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio.,Department of Neuroscience, Wexner Medical Center, Ohio State University, Columbus, Ohio
| | - Fatma R Sahinkaya
- Neuroscience Graduate Program, Ohio State University, Columbus, Ohio
| | - Dana M McTigue
- Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio.,Department of Neuroscience, Wexner Medical Center, Ohio State University, Columbus, Ohio
| |
Collapse
|
11
|
Kim Y, Park KW, Oh J, Kim J, Yoon YW. Alterations in protein expression patterns of spinal peroxisome proliferator-activated receptors after spinal cord injury. Neurol Res 2019; 41:883-892. [DOI: 10.1080/01616412.2019.1629081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Youngkyung Kim
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Won Park
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jeonghwa Oh
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Junesun Kim
- BK21 PLUS Program, Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Young Wook Yoon
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Altinoz MA, Ozpinar A. PPAR-δ and erucic acid in multiple sclerosis and Alzheimer's Disease. Likely benefits in terms of immunity and metabolism. Int Immunopharmacol 2019; 69:245-256. [DOI: 10.1016/j.intimp.2019.01.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/09/2019] [Accepted: 01/31/2019] [Indexed: 12/17/2022]
|
13
|
Altinoz MA, Bilir A, Elmaci İ. Erucic acid, a component of Lorenzo's oil and PPAR-δ ligand modifies C6 glioma growth and toxicity of doxorubicin. Experimental data and a comprehensive literature analysis. Chem Biol Interact 2018; 294:107-117. [DOI: 10.1016/j.cbi.2018.08.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 01/21/2023]
|
14
|
To Be or Not to Be: Environmental Factors that Drive Myelin Formation during Development and after CNS Trauma. ACTA ACUST UNITED AC 2018. [DOI: 10.3390/neuroglia1010007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oligodendrocytes are specialized glial cells that myelinate central nervous system (CNS) axons. Historically, it was believed that the primary role of myelin was to compactly ensheath axons, providing the insulation necessary for rapid signal conduction. However, mounting evidence demonstrates the dynamic importance of myelin and oligodendrocytes, including providing metabolic support to neurons and regulating axon protein distribution. As such, the development and maintenance of oligodendrocytes and myelin are integral to preserving CNS homeostasis and supporting proper functioning of widespread neural networks. Environmental signals are critical for proper oligodendrocyte lineage cell progression and their capacity to form functional compact myelin; these signals are markedly disturbed by injury to the CNS, which may compromise endogenous myelin repair capabilities. This review outlines some key environmental factors that drive myelin formation during development and compares that to the primary factors that define a CNS injury milieu. We aim to identify developmental factors disrupted after CNS trauma as well as pathogenic factors that negatively impact oligodendrocyte lineage cells, as these are potential therapeutic targets to promote myelin repair after injury or disease.
Collapse
|
15
|
Cong L, Chen W. Neuroprotective Effect of Ginsenoside Rd in Spinal Cord Injury Rats. Basic Clin Pharmacol Toxicol 2016; 119:193-201. [PMID: 26833867 DOI: 10.1111/bcpt.12562] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/26/2016] [Indexed: 12/16/2022]
Abstract
In this study, the neuroprotective effects of ginsenoside Rd (GS Rd) were evaluated in a rat model of spinal cord injury (SCI). Rats in SCI groups received a T8 laminectomy and a spinal contusion injury. GS Rd 12.5, 25 and 50 mg/kg were administered intraperitoneally 1 hr before the surgery and once daily for 14 days. Dexamethasone 1 mg/kg was administered as a positive control. Locomotor function was evaluated using the BBB score system. H&E staining and Nissl staining were performed to observe the histological changes in the spinal cord. The levels of MDA and GSH and the activity of SOD were assessed to reflect the oxidative stress state. The production of TNF-α, IL-1β and IL-1 was assessed using ELISA kits to examine the inflammatory responses in the spinal cord. TUNEL staining was used to detect the cell apoptosis in the spinal cord. Western blot analysis was used to examine the expression of apoptosis-associated proteins and MAPK proteins. The results demonstrated that GS Rd 25 and 50 mg/kg significantly improved the locomotor function of rats after SCI, reduced tissue injury and increased neuron survival in the spinal cord. Mechanically, GS Rd decreased MDA level, increased GSH level and SOD activity, reduced the production of pro-inflammatory cytokines and prevented cell apoptosis. The effects were equivalent to those of dexamethasone. In addition, GS Rd effectively inhibited the activation of MAPK signalling pathway induced by SCI, which might be involved in the protective effects of GS Rd against SCI. In conclusion, GS Rd attenuates SCI-induced secondary injury through reversing the redox-state imbalance, inhibiting the inflammatory response and apoptosis in the spinal cord tissue.
Collapse
Affiliation(s)
- Lin Cong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenting Chen
- Disease Control and Prevention Center of Shenyang Railway Bureau, Shenyang, China
| |
Collapse
|
16
|
Intracellular Protein Shuttling: A Mechanism Relevant for Myelin Repair in Multiple Sclerosis? Int J Mol Sci 2015; 16:15057-85. [PMID: 26151843 PMCID: PMC4519887 DOI: 10.3390/ijms160715057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 12/15/2022] Open
Abstract
A prominent feature of demyelinating diseases such as multiple sclerosis (MS) is the degeneration and loss of previously established functional myelin sheaths, which results in impaired signal propagation and axonal damage. However, at least in early disease stages, partial replacement of lost oligodendrocytes and thus remyelination occur as a result of resident oligodendroglial precursor cell (OPC) activation. These cells represent a widespread cell population within the adult central nervous system (CNS) that can differentiate into functional myelinating glial cells to restore axonal functions. Nevertheless, the spontaneous remyelination capacity in the adult CNS is inefficient because OPCs often fail to generate new oligodendrocytes due to the lack of stimulatory cues and the presence of inhibitory factors. Recent studies have provided evidence that regulated intracellular protein shuttling is functionally involved in oligodendroglial differentiation and remyelination activities. In this review we shed light on the role of the subcellular localization of differentiation-associated factors within oligodendroglial cells and show that regulation of intracellular localization of regulatory factors represents a crucial process to modulate oligodendroglial maturation and myelin repair in the CNS.
Collapse
|
17
|
Sauerbeck AD, Laws JL, Bandaru VVR, Popovich PG, Haughey NJ, McTigue DM. Spinal cord injury causes chronic liver pathology in rats. J Neurotrauma 2014; 32:159-69. [PMID: 25036371 DOI: 10.1089/neu.2014.3497] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Traumatic spinal cord injury (SCI) causes major disruption to peripheral organ innervation and regulation. Relatively little work has investigated these post-SCI systemic changes, however, despite considerable evidence that multiple organ system dysfunction contributes to chronic impairments in health. Because metabolic dysfunction is common after SCI and the liver is a pivotal site for metabolic homeostasis, we sought to determine if liver pathology occurs as a result of SCI in a rat spinal contusion model. Histologic evidence showed excess lipid accumulation in the liver for at least 21 days post-injury after cervical or midthoracic SCI. Lipidomic analysis revealed an acute increase in hepatic ceramides as well as chronically elevated lactosylceramide. Post-SCI hepatic changes also included increased proinflammatory gene expression, including interleukin (IL)-1α, IL-1β, chemokine ligand-2, and tumor necrosis factor-α mRNA. These were coincident with increased CD68+ macrophages in the liver through 21 days post-injury. Serum alanine transaminase, used clinically to detect liver damage, was significantly increased at 21 days post-injury, suggesting that early metabolic and inflammatory damage preceded overt liver pathology. Surprisingly, liver inflammation was even detected after lumbar SCI. Collectively, these results suggest that SCI produces chronic liver injury with symptoms strikingly similar to those of nonalcoholic steatohepatitis (fatty liver disease). These clinically significant hepatic changes after SCI are known to contribute to systemic inflammation, cardiovascular disease, and metabolic syndrome, all of which are more prevalent in persons with SCI. Targeting acute and prolonged hepatic pathology may improve recovery and reduce long-term complications after SCI.
Collapse
Affiliation(s)
- Andrew D Sauerbeck
- 1 Department of Neuroscience, The Ohio State University , Columbus, Ohio
| | | | | | | | | | | |
Collapse
|
18
|
Decrease of PPARδ in Type-1-Like Diabetic Rat for Higher Mortality after Spinal Cord Injury. PPAR Res 2014; 2014:456386. [PMID: 24817882 PMCID: PMC4003751 DOI: 10.1155/2014/456386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/16/2014] [Accepted: 03/17/2014] [Indexed: 12/24/2022] Open
Abstract
Changes in the peroxisome proliferator-activated receptors-δ (PPARδ) expression in rats after spinal cord injury (SCI) have been previously reported. Diabetic animals show a higher mortality after SCI. However, the relationship between the progress of diabetes and PPARδ in SCI remains unknown. In the present study, we used compressive SCI in streptozotocin-(STZ-) induced diabetic rats. GW0742, a PPARδ agonist, was used to evaluate its merit in STZ rats after SCI. Changes in PPARδ expression were detected by Western blot. Survival rates were also estimated. A lower expression of PPARδ in spinal cords of STZ-diabetic rats was observed. In addition, the survival times in two-week induction diabetes were longer than those in eight-week induction group, which is consistent with the expression of PPARδ in the spinal cord. Moreover, GW0742 significantly increased the survival time of STZ rats. Furthermore, their motor function and pain response were attenuated by GSK0660, a selective PPARδ antagonist, but were enhanced by GW0742. In conclusion, the data suggest that higher mortality rate in STZ-diabetic rats with SCI is associated with the decrease of PPARδ expression. Thus, change of PPARδ expression with the progress of diabetes seems responsible for the higher mortality rate after SCI.
Collapse
|
19
|
Sahinkaya FR, Milich LM, McTigue DM. Changes in NG2 cells and oligodendrocytes in a new model of intraspinal hemorrhage. Exp Neurol 2014; 255:113-26. [PMID: 24631375 DOI: 10.1016/j.expneurol.2014.02.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/18/2014] [Accepted: 02/22/2014] [Indexed: 02/04/2023]
Abstract
Spinal cord injury (SCI) evokes rapid deleterious and reparative glial reactions. Understanding the triggers for these responses is necessary for designing strategies to maximize repair. This study examined lesion formation and glial responses to vascular disruption and hemorrhage, a prominent feature of acute SCI. The specific role of hemorrhage is difficult to evaluate in trauma-induced lesions, because mechanical injury initiates many downstream responses. To isolate vascular disruption from trauma-induced effects, we created a novel and reproducible model of collagenase-induced intraspinal hemorrhage (ISH) and compared glial reactions between unilateral ISH and a hemi-contusion injury. Similar to contusion injuries, ISH lesions caused loss of myelin and axons and became filled with iron-laden macrophages. We hypothesized that intraspinal hemorrhage would also initiate reparative cellular responses including NG2+ oligodendrocyte progenitor cell (OPC) proliferation and oligodendrocyte genesis. Indeed, ISH induced OPC proliferation within 1d post-injury (dpi), which continued throughout the first week and resulted in a sustained elevation of NG2+ OPCs. ISH also caused oligodendrocyte loss within 4h that was sustained through 3d post-ISH. However, oligodendrogenesis, as determined by bromo-deoxyuridine (BrdU) positive oligodendrocytes, restored oligodendrocyte numbers by 7dpi, revealing that proliferating OPCs differentiated into new oligodendrocytes after ISH. The signaling molecules pERK1/2 and pSTAT3 were robustly increased acutely after ISH, with pSTAT3 being expressed in a portion of OPCs, suggesting that activators of this signaling cascade may initiate OPC responses. Aside from subtle differences in timing of OPC responses, changes in ISH tissue closely mimicked those in hemi-contusion tissue. These results are important for elucidating the contribution of hemorrhage to lesion formation and endogenous cell-mediated repair, and will provide the foundation for future studies geared toward identifying the role of specific blood components on injury and repair mechanisms. This understanding may provide new clinical targets for SCI and other devastating conditions such as intracerebral hemorrhage.
Collapse
Affiliation(s)
- F Rezan Sahinkaya
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA; Neuroscience Graduate Studies Program, Ohio State University, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, OH 43210, USA
| | - Lindsay M Milich
- Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, OH 43210, USA
| | - Dana M McTigue
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
20
|
Abstract
Traumatic injury or disease of the spinal cord and brain elicits multiple cellular and biochemical reactions that together cause or are associated with neuropathology. Specifically, injury or disease elicits acute infiltration and activation of immune cells, death of neurons and glia, mitochondrial dysfunction, and the secretion of substrates that inhibit axon regeneration. In some diseases, inflammation is chronic or non-resolving. Ligands that target PPARs (peroxisome proliferator-activated receptors), a group of ligand-activated transcription factors, are promising therapeutics for neurologic disease and CNS injury because their activation affects many, if not all, of these interrelated pathologic mechanisms. PPAR activation can simultaneously weaken or reprogram the immune response, stimulate metabolic and mitochondrial function, promote axon growth and induce progenitor cells to differentiate into myelinating oligodendrocytes. PPAR activation has beneficial effects in many pre-clinical models of neurodegenerative diseases and CNS injury; however, the mechanisms through which PPARs exert these effects have yet to be fully elucidated. In this review we discuss current literature supporting the role of PPAR activation as a therapeutic target for treating traumatic injury and degenerative diseases of the CNS.
Collapse
|
21
|
Promoting return of function in multiple sclerosis: An integrated approach. Mult Scler Relat Disord 2013; 2:S2211-0348(13)00044-8. [PMID: 24363985 DOI: 10.1016/j.msard.2013.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis is a disease characterized by inflammatory demyelination, axonal degeneration and progressive brain atrophy. Most of the currently available disease modifying agents proved to be very effective in managing the relapse rate, however progressive neuronal damage continues to occur and leads to progressive accumulation of irreversible disability. For this reason, any therapeutic strategy aimed at restoration of function must take into account not only immunomodulation, but also axonal protection and new myelin formation. We further highlight the importance of an holistic approach, which considers the variability of therapeutic responsiveness as the result of the interplay between genetic differences and the epigenome, which is in turn affected by gender, age and differences in life style including diet, exercise, smoking and social interaction.
Collapse
|
22
|
Peroxisome proliferator-activated receptor (PPAR)β/δ, a possible nexus of PPARα- and PPARγ-dependent molecular pathways in neurodegenerative diseases: Review and novel hypotheses. Neurochem Int 2013; 63:322-30. [PMID: 23811400 DOI: 10.1016/j.neuint.2013.06.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 06/11/2013] [Accepted: 06/15/2013] [Indexed: 01/03/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARα, -β/δ and -γ) are lipid-activated transcription factors. Synthetic PPARα and PPARγ ligands have neuroprotective properties. Recently, PPARβ/δ activation emerged as the focus of a novel approach for the treatment of a wide range of neurodegenerative diseases. To fill the gap of knowledge about the role of PPARβ/δ in brain, new hypotheses about PPARβ/δ involvement in neuropathological processes are requested. In this paper, we describe a novel hypothesis, claiming the existence of tight interactions between the three PPAR isotypes, which we designate the "PPAR triad". We propose that PPARβ/δ has a central control of the PPAR triad. The majority of studies analyze the regulation only by one of the PPAR isotypes. A few reports describe the mutual regulation of expression levels of all three PPAR isotypes by PPAR agonists. Analysis of these studies where pairwise interactions of PPARs were described allows us to support the existence of the PPAR triad with central role for PPARβ/δ. In the present review, we propose the hypothesis that in a wide range of brain disorders, PPARβ/δ plays a central role between PPARα and PPARγ. Finally, we prove the advantages of the PPAR triad concept by describing hypotheses of PPARβ/δ involvement in the regulation of myelination, glutamate-induced neurotoxicity, and signaling pathways of reactive oxygen species/NO/Ca(2+).
Collapse
|
23
|
Sauerbeck A, Schonberg DL, Laws JL, McTigue DM. Systemic iron chelation results in limited functional and histological recovery after traumatic spinal cord injury in rats. Exp Neurol 2013; 248:53-61. [PMID: 23712107 DOI: 10.1016/j.expneurol.2013.05.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/13/2013] [Accepted: 05/17/2013] [Indexed: 12/15/2022]
Abstract
Excess iron accumulation within the spinal cord is thought to exacerbate tissue damage and limit functional recovery after traumatic spinal cord injury (SCI). An optimal treatment to reverse or prevent damage would be to deliver an iron chelator systemically. Thus, we tested oral delivery of deferasirox (Exjade) in multiple studies using a rat model of mid-thoracic spinal contusion. Female Sprague-Dawley rats received a moderate contusion at vertebral level T8 and were given daily deferasirox for the first 7 or 14 days post-injury. The first two studies showed modest improvements in hindlimb function with limited improvement in tissue sparing. Two subsequent experiments to assess chronic functional changes and test longer-duration treatments failed to produce significant improvements. Testing a 2-fold higher deferasirox dose resulted in toxic side effects. To verify iron chelation treatment was effective, hepatic iron levels were measured which revealed that deferasirox robustly and significantly reduced systemic iron levels. Overall, this study suggests that oral iron chelation with deferasirox may lead to small but significant improvements in locomotor recovery or tissue sparing. However, given the lack of robust beneficial effects combined with potentially detrimental side effects such as exacerbated systemic anemia, oral administration of iron chelators may not be ideal for minimizing intraspinal iron-mediated pathology after SCI.
Collapse
Affiliation(s)
- Andrew Sauerbeck
- The Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | | | | | | |
Collapse
|
24
|
Management strategies for acute spinal cord injury: current options and future perspectives. Curr Opin Crit Care 2013; 18:651-60. [PMID: 23104069 DOI: 10.1097/mcc.0b013e32835a0e54] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Spinal cord injury is a devastating acute neurological condition with loss of function and poor long-term prognosis. This review summarizes current management strategies and innovative concepts on the horizon. RECENT FINDINGS The routine use of steroids in patients with spinal cord injuries has been largely abandoned and considered a 'harmful standard of care'. Prospective trials have shown that early spine stabilization within 24 h results in decreased secondary complication rates. Neuronal plasticity and axonal regeneration in the adult spinal cord are limited due to myelin-associated inhibitory molecules, such as Nogo-A. The experimental inhibition of Nogo-A ameliorates axonal sprouting and functional recovery in animal models. SUMMARY General management strategies for acute spinal cord injury consist of protection of airway, breathing, oxygenation and control of blood loss with maintenance of blood pressure. Unstable spine fractures should be stabilized early to allow unrestricted mobilization of patients with spinal cord injuries and to decrease preventable complications. Steroids are largely considered obsolete and have been abandoned in clinical guidelines. Nogo-A represents a promising new pharmacological target to promote sprouting of injured axons and restore function. Prospective clinical trials of Nogo-A inhibition in patients with spinal cord injuries are currently under way.
Collapse
|
25
|
Wan Ibrahim WN, Tofighi R, Onishchenko N, Rebellato P, Bose R, Uhlén P, Ceccatelli S. Perfluorooctane sulfonate induces neuronal and oligodendrocytic differentiation in neural stem cells and alters the expression of PPARγ in vitro and in vivo. Toxicol Appl Pharmacol 2013; 269:51-60. [PMID: 23500012 DOI: 10.1016/j.taap.2013.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/20/2013] [Accepted: 03/05/2013] [Indexed: 01/25/2023]
Abstract
Perfluorinated compounds are ubiquitous chemicals of major concern for their potential adverse effects on the human population. We have used primary rat embryonic neural stem cells (NSCs) to study the effects of perfluorooctane sulfonate (PFOS) on the process of NSC spontaneous differentiation. Upon removal of basic fibroblast growth factor, NSCs were exposed to nanomolar concentrations of PFOS for 48 h, and then allowed to differentiate for additional 5 days. Exposure to 25 or 50 nM concentration resulted in a lower number of proliferating cells and a higher number of neurite-bearing TuJ1-positive cells, indicating an increase in neuronal differentiation. Exposure to 50 nM also significantly increased the number of CNPase-positive cells, pointing to facilitation of oligodendrocytic differentiation. PPAR genes have been shown to be involved in PFOS toxicity. By q-PCR we detected an upregulation of PPARγ with no changes in PPARα or PPARδ genes. One of the downstream targets of PPARs, the mitochondrial uncoupling protein 2 (UCP2) was also upregulated. The number of TuJ1- and CNPase-positive cells increased after exposure to PPARγ agonist rosiglitazone (RGZ, 3 μM) and decreased after pre-incubation with the PPARγ antagonist GW9662 (5 μM). RGZ also upregulated the expression of PPARγ and UCP2 genes. Meanwhile GW9662 abolished the UCP2 upregulation and decreased Ca²⁺ activity induced by PFOS. Interestingly, a significantly higher expression of PPARγ and UCP3 genes was also detected in mouse neonatal brain after prenatal exposure to PFOS. These data suggest that PPARγ plays a role in the alteration of spontaneous differentiation of NSCs induced by nanomolar concentrations of PFOS.
Collapse
|
26
|
Flygt J, Djupsjö A, Lenne F, Marklund N. Myelin loss and oligodendrocyte pathology in white matter tracts following traumatic brain injury in the rat. Eur J Neurosci 2013; 38:2153-65. [PMID: 23458840 DOI: 10.1111/ejn.12179] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/29/2013] [Accepted: 02/05/2013] [Indexed: 12/11/2022]
Abstract
Axonal injury is an important contributor to the behavioral deficits observed following traumatic brain injury (TBI). Additionally, loss of myelin and/or oligodendrocytes can negatively influence signal transduction and axon integrity. Apoptotic oligodendrocytes, changes in the oligodendrocyte progenitor cell (OPC) population and loss of myelin were evaluated at 2, 7 and 21 days following TBI. We used the central fluid percussion injury model (n = 18 and three controls) and the lateral fluid percussion injury model (n = 15 and three controls). The external capsule, fimbriae and corpus callosum were analysed. With Luxol Fast Blue and RIP staining, myelin loss was observed in both models, in all evaluated regions and at all post-injury time points, as compared with sham-injured controls (P ≤ 0.05). Accumulation of β-amyloid precursor protein was observed in white matter tracts in both models in areas with preserved and reduced myelin staining. White matter microglial/macrophage activation, evaluated by isolectin B4 immunostaining, was marked at the early time points. In contrast, the glial scar, evaluated by glial fibrillary acidic protein staining, showed its highest intensity 21 days post-injury in both models. The number of apoptotic oligodendrocytes, detected by CC1/caspase-3 co-labeling, was increased in both models in all evaluated regions. Finally, the numbers of OPCs, evaluated with the markers Tcf4 and Olig2, were increased from day 2 (Olig2) or day 7 (Tcf4) post-injury (P ≤ 0.05). Our results indicate that TBI induces oligodendrocyte apoptosis and widespread myelin loss, followed by a concomitant increase in the number of OPCs. Prevention of myelin loss and oligodendrocyte death may represent novel therapeutic targets for TBI.
Collapse
Affiliation(s)
- J Flygt
- Department of Neurosurgery, Uppsala University Hospital, Uppsala SE-751 85, Sweden
| | | | | | | |
Collapse
|
27
|
Androutsellis-Theotokis A, Chrousos GP, McKay RD, DeCherney AH, Kino T. Expression profiles of the nuclear receptors and their transcriptional coregulators during differentiation of neural stem cells. Horm Metab Res 2013; 45:159-68. [PMID: 22990992 PMCID: PMC3781591 DOI: 10.1055/s-0032-1321789] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Neural stem cells (NSCs) are pluripotent precursors with the ability to proliferate and differentiate into 3 neural cell lineages, neurons, astrocytes and oligodendrocytes. Elucidation of the mechanisms underlying these biologic processes is essential for understanding both physiologic and pathologic neural development and regeneration after injury. Nuclear hormone receptors (NRs) and their transcriptional coregulators also play crucial roles in neural development, functions and fate. To identify key NRs and their transcriptional regulators in NSC differentiation, we examined mRNA expression of 49 NRs and many of their coregulators during differentiation (0-5 days) of mouse embryonic NSCs induced by withdrawal of fibroblast growth factor-2 (FGF2). 37 out of 49 NRs were expressed in NSCs before induction of differentiation, while receptors known to play major roles in neural development, such as THRα, RXRs, RORs, TRs, and COUP-TFs, were highly expressed. CAR, which plays important roles in xenobiotic metabolism, was also highly expressed. FGF2 withdrawal induced mRNA expression of RORγ, RXRγ, and MR by over 20-fold. Most of the transcriptional coregulators examined were expressed basally and throughout differentiation without major changes, while FGF2 withdrawal strongly induced mRNA expression of several histone deacetylases (HDACs), including HDAC11. Dexamethasone and aldosterone, respectively a synthetic glucocorticoid and natural mineralocorticoid, increased NSC numbers and induced differentiation into neurons and astrocytes. These results indicate that the NRs and their coregulators are present and/or change their expression during NSC differentiation, suggesting that they may influence development of the central nervous system in the absence or presence of their ligands.
Collapse
Affiliation(s)
- A. Androutsellis-Theotokis
- Department of Medicine, University of Dresden and Center for Regenerative Therapies-Dresden, Dresden, Germany
| | - G. P. Chrousos
- First Department of Pediatrics, Athens University Medical School, Athens, Greece
| | - R. D. McKay
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - A. H. DeCherney
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - T. Kino
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
28
|
Alexander JK, Cox GM, Tian JB, Zha AM, Wei P, Kigerl KA, Reddy MK, Dagia NM, Sielecki T, Zhu MX, Satoskar AR, McTigue DM, Whitacre CC, Popovich PG. Macrophage migration inhibitory factor (MIF) is essential for inflammatory and neuropathic pain and enhances pain in response to stress. Exp Neurol 2012; 236:351-62. [PMID: 22575600 DOI: 10.1016/j.expneurol.2012.04.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 04/19/2012] [Accepted: 04/23/2012] [Indexed: 01/27/2023]
Abstract
Stress and glucocorticoids exacerbate pain via undefined mechanisms. Macrophage migration inhibitory factor (MIF) is a constitutively expressed protein that is secreted to maintain immune function when glucocorticoids are elevated by trauma or stress. Here we show that MIF is essential for the development of neuropathic and inflammatory pain, and for stress-induced enhancement of neuropathic pain. Mif null mutant mice fail to develop pain-like behaviors in response to inflammatory stimuli or nerve injury. Pharmacological inhibition of MIF attenuates pain-like behaviors caused by nerve injury and prevents sensitization of these behaviors by stress. Conversely, injection of recombinant MIF into naïve mice produces dose-dependent mechanical sensitivity that is exacerbated by stress. MIF elicits pro-inflammatory signaling in microglia and activates sensory neurons, mechanisms that underlie pain. These data implicate MIF as a key regulator of pain and provide a mechanism whereby stressors exacerbate pain. MIF inhibitors warrant clinical investigation for the treatment of chronic pain.
Collapse
Affiliation(s)
- Jessica K Alexander
- Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fernández-Martos CM, González P, Rodriguez FJ. Acute leptin treatment enhances functional recovery after spinal cord injury. PLoS One 2012; 7:e35594. [PMID: 22536415 PMCID: PMC3334982 DOI: 10.1371/journal.pone.0035594] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/19/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Spinal cord injury is a major cause of long-term disability and has no current clinically accepted treatment. Leptin, an adipocyte-derived hormone, is best known as a regulator of food intake and energy expenditure. Interestingly, several studies have demonstrated that leptin has significant effects on proliferation and cell survival in different neuropathologies. Here, we sought to evaluate the role of leptin after spinal cord injury. FINDINGS Based on its proposed neuroprotective role, we have evaluated the effects of a single, acute intraparenchymal injection of leptin in a clinically relevant animal model of spinal cord injury. As determined by quantitative Real Time-PCR, endogenous leptin and the long isoform of the leptin receptor genes show time-dependent variations in their expression in the healthy and injured adult spinal cord. Immunohistochemical analysis of post-injury tissue showed the long isoform of the leptin receptor expression in oligodendrocytes and, to a lesser extent, in astrocytes, microglia/macrophages and neurons. Moreover, leptin administered after spinal cord injury increased the expression of neuroprotective genes, reduced caspase-3 activity and decreased the expression of pro-inflammatory molecules. In addition, histological analysis performed at the completion of the study showed that leptin treatment reduced microglial reactivity and increased caudal myelin preservation, but it did not modulate astroglial reactivity. Consequently, leptin improved the recovery of sensory and locomotor functioning. CONCLUSIONS Our data suggest that leptin has a prominent neuroprotective and anti-inflammatory role in spinal cord damage and highlights leptin as a promising therapeutic agent.
Collapse
|
30
|
Peters JM, Foreman JE, Gonzalez FJ. Dissecting the role of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in colon, breast, and lung carcinogenesis. Cancer Metastasis Rev 2012; 30:619-40. [PMID: 22037942 DOI: 10.1007/s10555-011-9320-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) is a promising drug target since its agonists increase serum high-density lipoprotein; decrease low-density lipoprotein, triglycerides, and insulin associated with metabolic syndrome; improve insulin sensitivity; and decrease high fat diet-induced obesity. PPARβ/δ agonists also promote terminal differentiation and elicit anti-inflammatory activities in many cell types. However, it remains to be determined whether PPARβ/δ agonists can be developed as therapeutics because there are reports showing either pro- or anti-carcinogenic effects of PPARβ/δ in cancer models. This review examines studies reporting the role of PPARβ/δ in colon, breast, and lung cancers. The prevailing evidence would suggest that targeting PPARβ/δ is not only safe but could have anti-carcinogenic protective effects.
Collapse
Affiliation(s)
- Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
31
|
New insights into the role of peroxisome proliferator-activated receptors in regulating the inflammatory response after tissue injury. PPAR Res 2012; 2012:728461. [PMID: 22481914 PMCID: PMC3317007 DOI: 10.1155/2012/728461] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 11/04/2011] [Indexed: 01/01/2023] Open
Abstract
Major trauma results in a strong inflammatory response in injured tissue. This posttraumatic hyperinflammation has been implied in the adverse events leading to a breakdown of host defense mechanisms and ultimately to delayed organ failure. Ligands to peroxisome proliferator-activated receptors (PPARs) have recently been identified as potent modulators of inflammation in various acute and chronic inflammatory conditions. The main mechanism of action mediated by ligand binding to PPARs is the inhibition of the nuclear transcription factor NF-κB, leading to downregulation of downstream gene transcription, such as for genes encoding proinflammatory cytokines. Pharmacological PPAR agonists exert strong anti-inflammatory properties in various animal models of tissue injury, including central nervous system trauma, ischemia/reperfusion injury, sepsis, and shock. In addition, PPAR agonists have been shown to induce wound healing process after tissue trauma. The present review was designed to provide an up-to-date overview on the current understanding of the role of PPARs in the pathophysiology of the inflammatory response after major trauma. Therapeutic options for using recombinant PPAR agonists as pharmacological agents in the management of posttraumatic inflammation will be discussed.
Collapse
|
32
|
Lv H, Yang J, Liao Z, Zhao Y, Huang Y. NG2 expression in rats with acute T10 spinal cord injury. Neural Regen Res 2012; 7:359-62. [PMID: 25774175 PMCID: PMC4350118 DOI: 10.3969/j.issn.1673-5374.2012.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 12/12/2011] [Indexed: 12/03/2022] Open
Abstract
Rat models of T10 spinal cord injury were established with a clamp method. NG2 expression was detected with immunohistochemical staining and western blot. Ten days after spinal cord injury, the number of NG2-positive cells in the damaged areas and NG2 absorbance were both significantly increased. The findings indicate that acute T10 spinal cord injury in rats can lead to upregulation of NG2 protein expression in damaged areas.
Collapse
Affiliation(s)
- Haoran Lv
- Department of Orthopedic Surgery, Second Affiliated Hospital of Guangzhou Medical College, Guangzhou 510260, Guangdong Province, China
| | - Jinshun Yang
- Department of Orthopedic Surgery, Second Affiliated Hospital of Guangzhou Medical College, Guangzhou 510260, Guangdong Province, China
| | - Zhuangwen Liao
- Department of Orthopedic Surgery, Second Affiliated Hospital of Guangzhou Medical College, Guangzhou 510260, Guangdong Province, China
| | - Yu Zhao
- Department of Orthopedic Surgery, Second Affiliated Hospital of Guangzhou Medical College, Guangzhou 510260, Guangdong Province, China
| | - Yan Huang
- Department of Orthopedic Surgery, Second Affiliated Hospital of Guangzhou Medical College, Guangzhou 510260, Guangdong Province, China
| |
Collapse
|
33
|
Schnegg CI, Robbins ME. Neuroprotective Mechanisms of PPARδ: Modulation of Oxidative Stress and Inflammatory Processes. PPAR Res 2011; 2011:373560. [PMID: 22135673 PMCID: PMC3205692 DOI: 10.1155/2011/373560] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/25/2011] [Indexed: 12/26/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARα, δ, and γ) are ligand-activated transcription factors that regulate a wide range of cellular processes, including inflammation, proliferation, differentiation, metabolism, and energy homeostasis. All three PPAR subtypes have been identified in the central nervous system (CNS) of rodents. While PPARα and PPARγ are expressed in more restricted areas of the CNS, PPARδ is ubiquitously expressed and is the predominant subtype. Although data regarding PPARδ are limited, studies have demonstrated that administration of PPARδ agonists confers neuroprotection following various acute and chronic injuries to the CNS, such as stroke, multiple sclerosis, and Alzheimer's disease. The antioxidant and anti-inflammatory properties of PPARδ agonists are thought to underly their neuroprotective efficacy. This review will focus on the putative neuroprotective benefits of therapeutically targeting PPARδ in the CNS, and specifically, highlight the antioxidant and anti-inflammatory functions of PPARδ agonists.
Collapse
Affiliation(s)
- Caroline I. Schnegg
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Brain Tumor Center of Excellence, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Mike E. Robbins
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Brain Tumor Center of Excellence, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Department of Radiation Oncology, Comprehensive Cancer Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| |
Collapse
|
34
|
Esposito E, Cuzzocrea S. Targeting the peroxisome proliferator-activated receptors (PPARs) in spinal cord injury. Expert Opin Ther Targets 2011; 15:943-59. [DOI: 10.1517/14728222.2011.581231] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Abstract
Oligodendrocytes (OLs) are particularly susceptible to the toxicity of the acute lesion environment after spinal cord injury (SCI). They undergo both necrosis and apoptosis acutely, with apoptosis continuing at chronic time points. Loss of OLs causes demyelination and impairs axon function and survival. In parallel, a rapid and protracted OL progenitor cell proliferative response occurs, especially at the lesion borders. Proliferating and migrating OL progenitor cells differentiate into myelinating OLs, which remyelinate demyelinated axons starting at 2 weeks post-injury. The progression of OL lineage cells into mature OLs in the adult after injury recapitulates development to some degree, owing to the plethora of factors within the injury milieu. Although robust, this endogenous oligogenic response is insufficient against OL loss and demyelination. First, in this review we analyze the major spatial-temporal mechanisms of OL loss, replacement, and myelination, with the purpose of highlighting potential areas of intervention after SCI. We then discuss studies on OL protection and replacement. Growth factors have been used both to boost the endogenous progenitor response, and in conjunction with progenitor transplantation to facilitate survival and OL fate. Considerable progress has been made with embryonic stem cell-derived cells and adult neural progenitor cells. For therapies targeting oligogenesis to be successful, endogenous responses and the effects of the acute and chronic lesion environment on OL lineage cells must be understood in detail, and in relation, the optimal therapeutic window for such strategies must also be determined.
Collapse
Affiliation(s)
- Akshata Almad
- Neuroscience Graduate Studies Program, Ohio State University, Columbus, Ohio 43210 USA
- Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, Ohio 43210 USA
| | - F. Rezan Sahinkaya
- Neuroscience Graduate Studies Program, Ohio State University, Columbus, Ohio 43210 USA
- Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, Ohio 43210 USA
| | - Dana M. McTigue
- Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, Ohio 43210 USA
- Department of Neuroscience, Ohio State University, 788 Biomedical Research Tower, 460 W. 12th Ave, Columbus, Ohio 43210 USA
| |
Collapse
|
36
|
Huang JK, Jarjour AA, Nait Oumesmar B, Kerninon C, Williams A, Krezel W, Kagechika H, Bauer J, Zhao C, Baron-Van Evercooren A, Chambon P, Ffrench-Constant C, Franklin RJM. Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat Neurosci 2011; 14:45-53. [PMID: 21131950 PMCID: PMC4013508 DOI: 10.1038/nn.2702] [Citation(s) in RCA: 412] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 10/21/2010] [Indexed: 12/14/2022]
Abstract
The molecular basis of CNS myelin regeneration (remyelination) is poorly understood. We generated a comprehensive transcriptional profile of the separate stages of spontaneous remyelination that follow focal demyelination in the rat CNS and found that transcripts that encode the retinoid acid receptor RXR-γ were differentially expressed during remyelination. Cells of the oligodendrocyte lineage expressed RXR-γ in rat tissues that were undergoing remyelination and in active and remyelinated multiple sclerosis lesions. Knockdown of RXR-γ by RNA interference or RXR-specific antagonists severely inhibited oligodendrocyte differentiation in culture. In mice that lacked RXR-γ, adult oligodendrocyte precursor cells efficiently repopulated lesions after demyelination, but showed delayed differentiation into mature oligodendrocytes. Administration of the RXR agonist 9-cis-retinoic acid to demyelinated cerebellar slice cultures and to aged rats after demyelination caused an increase in remyelinated axons. Our results indicate that RXR-γ is a positive regulator of endogenous oligodendrocyte precursor cell differentiation and remyelination and might be a pharmacological target for regenerative therapy in the CNS.
Collapse
Affiliation(s)
- Jeffrey K Huang
- MRC Centre for Stem Cell Biology and Regenerative Medicine and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Andrew A Jarjour
- MRC Centre for Regenerative Medicine and Multiple Sclerosis Society/University of Edinburgh Centre for Translational Research, Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh, UK
| | - Brahim Nait Oumesmar
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, Inserm U.975; Université Pierre et Marie Curie-Paris 6 UMR-S975; Cnrs UMR 7225; and AP-HP Groupe Hospitalier Pitié-Salpêtrière, Fédération de Neurologie, Paris cedex 13, France
| | - Christophe Kerninon
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, Inserm U.975; Université Pierre et Marie Curie-Paris 6 UMR-S975; Cnrs UMR 7225; and AP-HP Groupe Hospitalier Pitié-Salpêtrière, Fédération de Neurologie, Paris cedex 13, France
| | - Anna Williams
- MRC Centre for Regenerative Medicine and Multiple Sclerosis Society/University of Edinburgh Centre for Translational Research, Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh, UK
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Cell Biology and Development, Illkirch, France
| | - Hiroyuki Kagechika
- Graduate School of Biomedical Science, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | - Julien Bauer
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Chao Zhao
- MRC Centre for Stem Cell Biology and Regenerative Medicine and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Anne Baron-Van Evercooren
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, Inserm U.975; Université Pierre et Marie Curie-Paris 6 UMR-S975; Cnrs UMR 7225; and AP-HP Groupe Hospitalier Pitié-Salpêtrière, Fédération de Neurologie, Paris cedex 13, France
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Cell Biology and Development, Illkirch, France
| | - Charles Ffrench-Constant
- MRC Centre for Regenerative Medicine and Multiple Sclerosis Society/University of Edinburgh Centre for Translational Research, Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh, UK
| | - Robin J M Franklin
- MRC Centre for Stem Cell Biology and Regenerative Medicine and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|