1
|
Rufenacht KE, Asson AJ, Hossain K, Santoro SW. The influence of olfactory experience on the birthrates of olfactory sensory neurons with specific odorant receptor identities. Genesis 2024; 62:e23611. [PMID: 38888221 PMCID: PMC11189617 DOI: 10.1002/dvg.23611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Olfactory sensory neurons (OSNs) are one of a few neuron types that are generated continuously throughout life in mammals. The persistence of olfactory sensory neurogenesis beyond early development has long been thought to function simply to replace neurons that are lost or damaged through exposure to environmental insults. The possibility that olfactory sensory neurogenesis may also serve an adaptive function has received relatively little consideration, largely due to the assumption that the generation of new OSNs is stochastic with respect to OSN subtype, as defined by the single odorant receptor gene that each neural precursor stochastically chooses for expression out of hundreds of possibilities. Accordingly, the relative birthrates of different OSN subtypes are predicted to be constant and impervious to olfactory experience. This assumption has been called into question, however, by evidence that the birthrates of specific OSN subtypes can be selectively altered by manipulating olfactory experience through olfactory deprivation, enrichment, and conditioning paradigms. Moreover, studies of recovery of the OSN population following injury provide further evidence that olfactory sensory neurogenesis may not be strictly stochastic with respect to subtype. Here we review this evidence and consider mechanistic and functional implications of the prospect that specific olfactory experiences can regulate olfactory sensory neurogenesis rates in a subtype-selective manner.
Collapse
Affiliation(s)
- Karlin E Rufenacht
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexa J Asson
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kawsar Hossain
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Stephen W Santoro
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
2
|
Kanata E, Duffié R, Schulz EG. Establishment and maintenance of random monoallelic expression. Development 2024; 151:dev201741. [PMID: 38813842 PMCID: PMC11166465 DOI: 10.1242/dev.201741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
This Review elucidates the regulatory principles of random monoallelic expression by focusing on two well-studied examples: the X-chromosome inactivation regulator Xist and the olfactory receptor gene family. Although the choice of a single X chromosome or olfactory receptor occurs in different developmental contexts, common gene regulatory principles guide monoallelic expression in both systems. In both cases, an event breaks the symmetry between genetically and epigenetically identical copies of the gene, leading to the expression of one single random allele, stabilized through negative feedback control. Although many regulatory steps that govern the establishment and maintenance of monoallelic expression have been identified, key pieces of the puzzle are still missing. We provide an overview of the current knowledge and models for the monoallelic expression of Xist and olfactory receptors. We discuss their similarities and differences, and highlight open questions and approaches that could guide the study of other monoallelically expressed genes.
Collapse
Affiliation(s)
- Eleni Kanata
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Rachel Duffié
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Edda G. Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|
3
|
Abbas G, Vyas R, Noble JC, Lin B, Lane RP. Transformation of an olfactory placode-derived cell into one with stem cell characteristics by disrupting epigenetic barriers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592460. [PMID: 38746208 PMCID: PMC11092772 DOI: 10.1101/2024.05.03.592460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The mammalian olfactory neuronal lineage is regenerative, and accordingly, maintains a population of pluripotent cells that replenish olfactory sensory neurons and other olfactory cell types during the life of the animal. Moreover, in response to acute injury, the early transit amplifying cells along the olfactory sensory neuronal lineage are able to de-differentiate to shift resources in support of tissue restoration. In order to further explore plasticity of various cellular stages along the olfactory sensory neuronal lineage, we challenged the epigenetic stability of two olfactory placode-derived cell lines that model immature olfactory sensory neuronal stages. We found that perturbation of the Ehmt2 chromatin modifier transformed the growth properties, morphology, and gene expression profiles towards states with several stem cell characteristics. This transformation was dependent on continued expression of the large T-antigen, and was enhanced by Sox2 over-expression. These findings may provide momentum for exploring inherent cellular plasticity within early cell types of the olfactory lineage, as well as potentially add to our knowledge of cellular reprogramming. SUMMARY STATEMENT Discovering how epigenetic modifications influence olfactory neuronal lineage plasticity offers insights into regenerative potential and cellular reprogramming.
Collapse
|
4
|
Hossain K, Smith M, Santoro SW. A histological protocol for quantifying the birthrates of specific subtypes of olfactory sensory neurons in mice. STAR Protoc 2023; 4:102432. [PMID: 37436902 PMCID: PMC10511921 DOI: 10.1016/j.xpro.2023.102432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023] Open
Abstract
Mammals typically have hundreds of distinct olfactory sensory neuron subtypes, each defined by expression of a specific odorant receptor gene, which undergo neurogenesis throughout life at rates that can depend on olfactory experience. Here, we present a protocol to quantify the birthrates of specific neuron subtypes via the simultaneous detection of corresponding receptor mRNAs and 5-ethynyl-2'-deoxyuridine. For preparation prior to beginning the protocol, we detail procedures for generating odorant receptor-specific riboprobes and experimental mouse olfactory epithelial tissue sections. For complete details on the use and execution of this protocol, please refer to van der Linden et al. (2020).1.
Collapse
Affiliation(s)
- Kawsar Hossain
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Molecular and Cellular Life Sciences Program, University of Wyoming, Laramie, WY 82071, USA
| | - Madeline Smith
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Stephen W Santoro
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
5
|
Hamed SA. Post-COVID-19 persistent olfactory, gustatory, and trigeminal chemosensory disorders: Definitions, mechanisms, and potential treatments. World J Otorhinolaryngol 2023; 10:4-22. [DOI: 10.5319/wjo.v10.i2.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023] Open
Abstract
The nose and the oral cavities are the main sites for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry into the body. Smell and taste deficits are the most common acute viral manifestations. Persistent smell disorders are the most common and bothersome complications after SARS-CoV-2 infection, lasting for months to years. The mechanisms and treatment of persistent post-coronavirus disease 2019 (COVID-19) smell and taste disorders are still challenges. Information sources for the review are PubMed, Centers for Disease Control and Prevention, Ovid Medline, Embase, Scopus, Web of Science, International Prospective Register of Systematic Reviews, Cumulative Index to Nursing and Allied Health Literature, Elton Bryson Stephens Company, Cochrane Effective Practice and Organization of Care, Cooperation in Science and Technology, International Clinical Trials Registry Platform, World Health Organization, Randomized Controlled Trial Number Registry, and MediFind. This review summarizes the up-to-date information about the prevalence, patterns at onset, and prognoses of post-COVID-19 smell and taste disorders, evidence for the neurotropism of SARS-CoV-2 and the overlap between SARS-CoV-1, Middle East respiratory syndrome coronavirus, and SARS-CoV-2 in structure, molecular biology, mode of replication, and host pathogenicity, the suggested cellular and molecular mechanisms for these post-COVID19 chemosensory disorders, and the applied pharmacotherapies and interventions as trials to treat these disorders, and the recommendations for future research to improve understanding of predictors and mechanisms of these disorders. These are crucial for hopeful proper treatment strategies.
Collapse
Affiliation(s)
- Sherifa Ahmed Hamed
- Department of Neurology and Psychiatry, Assiut University, Faculty of Medicine, Assiut 71516, Egypt
| |
Collapse
|
6
|
Habif JC, Xie C, de Celis C, Ukhanov K, Green WW, Moretta JC, Zhang L, Campbell RJ, Martens JR. The role of a ciliary GTPase in the regulation of neuronal maturation of olfactory sensory neurons. Development 2023; 150:286702. [PMID: 36661357 PMCID: PMC10110495 DOI: 10.1242/dev.201116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023]
Abstract
Olfactory sensory neurons (OSNs) form embryonically and mature perinatally, innervating glomeruli and extending dendrites with multiple cilia. This process and its timing are crucial for odor detection and perception and continues throughout life. In the olfactory epithelium (OE), differentiated OSNs proceed from an immature (iOSN) to a mature (mOSN) state through well-defined sequential morphological and molecular transitions, but the precise mechanisms controlling OSN maturation remain largely unknown. We have identified that a GTPase, ARL13B, has a transient and maturation state-dependent expression in OSNs marking the emergence of a primary cilium. Utilizing an iOSN-specific Arl13b-null murine model, we examined the role of ARL13B in the maturation of OSNs. The loss of Arl13b in iOSNs caused a profound dysregulation of the cellular homeostasis and development of the OE. Importantly, Arl13b null OSNs demonstrated a delay in the timing of their maturation. Finally, the loss of Arl13b resulted in severe deformation in the structure and innervation of glomeruli. Our findings demonstrate a previously unknown role of ARL13B in the maturation of OSNs and development of the OE.
Collapse
Affiliation(s)
- Julien C Habif
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Chao Xie
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Carlos de Celis
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Kirill Ukhanov
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Warren W Green
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Jordan C Moretta
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Lian Zhang
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Robert J Campbell
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Butowt R, Bilinska K, von Bartheld CS. Olfactory dysfunction in COVID-19: new insights into the underlying mechanisms. Trends Neurosci 2023; 46:75-90. [PMID: 36470705 PMCID: PMC9666374 DOI: 10.1016/j.tins.2022.11.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
The mechanisms of olfactory dysfunction in COVID-19 are still unclear. In this review, we examine potential mechanisms that may explain why the sense of smell is lost or altered. Among the current hypotheses, the most plausible is that death of infected support cells in the olfactory epithelium causes, besides altered composition of the mucus, retraction of the cilia on olfactory receptor neurons, possibly because of the lack of support cell-derived glucose in the mucus, which powers olfactory signal transduction within the cilia. This mechanism is consistent with the rapid loss of smell with COVID-19, and its rapid recovery after the regeneration of support cells. Host immune responses that cause downregulation of genes involved in olfactory signal transduction occur too late to trigger anosmia, but may contribute to the duration of the olfactory dysfunction.
Collapse
Affiliation(s)
- Rafal Butowt
- Global Consortium of Chemosensory Research - Poland, Przybory Str 3/2, 85-791 Bydgoszcz, Poland
| | - Katarzyna Bilinska
- Department of Molecular Cell Genetics, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, uI. Curie Sklodowskiej 9, 85-94, Bydgoszcz, Poland.
| | - Christopher S von Bartheld
- Center of Biomedical Research Excellence in Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0352, USA; Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0352, USA.
| |
Collapse
|
8
|
Huang JS, Kunkhyen T, Rangel AN, Brechbill TR, Gregory JD, Winson-Bushby ED, Liu B, Avon JT, Muggleton RJ, Cheetham CEJ. Immature olfactory sensory neurons provide behaviourally relevant sensory input to the olfactory bulb. Nat Commun 2022; 13:6194. [PMID: 36261441 PMCID: PMC9582225 DOI: 10.1038/s41467-022-33967-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 10/07/2022] [Indexed: 01/12/2023] Open
Abstract
Postnatal neurogenesis provides an opportunity to understand how newborn neurons integrate into circuits to restore function. Newborn olfactory sensory neurons (OSNs) wire into highly organized olfactory bulb (OB) circuits throughout life, enabling lifelong plasticity and regeneration. Immature OSNs form functional synapses capable of evoking firing in OB projection neurons but what contribution, if any, they make to odor processing is unknown. Here, we show that immature OSNs provide odor input to the mouse OB, where they form monosynaptic connections with excitatory neurons. Importantly, immature OSNs respond as selectively to odorants as mature OSNs and exhibit graded responses across a wider range of odorant concentrations than mature OSNs, suggesting that immature and mature OSNs provide distinct odor input streams. Furthermore, mice can successfully perform odor detection and discrimination tasks using sensory input from immature OSNs alone. Together, our findings suggest that immature OSNs play a previously unappreciated role in olfactory-guided behavior.
Collapse
Affiliation(s)
- Jane S Huang
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15232, USA
| | - Tenzin Kunkhyen
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15232, USA
| | - Alexander N Rangel
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15232, USA
| | - Taryn R Brechbill
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15232, USA
| | - Jordan D Gregory
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15232, USA
| | - Emily D Winson-Bushby
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15232, USA
| | - Beichen Liu
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15232, USA
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Jonathan T Avon
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15232, USA
| | - Ryan J Muggleton
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15232, USA
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Claire E J Cheetham
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15232, USA.
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
9
|
Avaro V, Hummel T, Calegari F. Scent of stem cells: How can neurogenesis make us smell better? Front Neurosci 2022; 16:964395. [PMID: 35992908 PMCID: PMC9381839 DOI: 10.3389/fnins.2022.964395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022] Open
Abstract
Throughout the animal kingdom, olfaction underlies the ability to perceive chemicals in the environment as a fundamental adaptation with a plethora of functions. Unique among senses, olfaction is characterized by the integration of adult born neurons at the level of both the peripheral and central nervous systems. In fact, over the course of life, Neural Stem Cells (NSCs) reside within the peripheral Olfactory Epithelium (OE) and the brain’s subventricular zone that generate Olfactory Sensory Neurons (OSNs) and interneurons of the Olfactory Bulb (OB), respectively. Despite this unique hallmark, the role(s) of adult neurogenesis in olfactory function remains elusive. Notably, while the molecular signature and lineage of both peripheral and central NSC are being described with increasing detail and resolution, conflicting evidence about the role of adult born neurons in olfactory sensitivity, discrimination and memory remains. With a currently increasing prevalence in olfactory dysfunctions due to aging populations and infections such as COVID-19, these limited and partly controversial reports highlight the need of a better understanding and more systematic study of this fascinating sensory system. Specifically, here we will address three fundamental questions: What is the role of peripheral adult neurogenesis in sustaining olfactory sensitivity? How can newborn neurons in the brain promote olfactory discrimination and/or memory? And what can we learn from fundamental studies on the biology of olfaction that can be used in the clinical treatment of olfactory dysfunctions?
Collapse
Affiliation(s)
- Vittoria Avaro
- Centre for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Thomas Hummel
- Department of Otorhinolaryngology, Smell and Taste Clinic, Technische Universität Dresden, Dresden, Germany
| | - Federico Calegari
- Centre for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- *Correspondence: Federico Calegari,
| |
Collapse
|
10
|
Gaun V, Martens JR, Schwob JE. Lifespan of mature olfactory sensory neurons varies with location in the mouse olfactory epithelium and age of the animal. J Comp Neurol 2022; 530:2238-2251. [PMID: 35434783 PMCID: PMC9233066 DOI: 10.1002/cne.25330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 08/03/2023]
Abstract
The olfactory sensory neurons (OSNs) of the olfactory epithelium (OE) exhibit a remarkable regenerative capability, which protects the population against environmental insult and enables adjustment to new odors. The lifespan of OSNs is still open to question, with estimates ranging from 1 month to at least 1 year. However, the estimates come with some caveats, including low labeling efficiency and a focus solely on newborn neurons. We revisited the issue via the use of OMP-tTA; TetO-Cre; Rosa26-fl(stop)-Tdtomato (OMP-tTA;TdT) mice, which allowed us to selectively label ∼95% of the OMP(+) OSN population that reach maturity by a given time and, by switching to doxycycline chow, to "chase" this preexisting OSN population. Two loading protocols were used: conception to 2 months old and conception to 4.5 months old. Surviving OSNs were common up to 6 months chase time in both groups, but more neurons survived when loading for 4.5 months as compared with 2 months. A spatial difference was evident: higher percentages of OSNs survived in the dorsomedial OE as compared with ventrolateral and in posterior versus anterior OE regions. Finally, proliferation rates anticorrelated with the spatial differences in OSN survival; higher proliferation rates were observed ventrally. Together, these results demonstrate spatial and temporal differences in OSN survival, highlighting it as a dynamic system that can be studied for factors affecting neuronal survival.
Collapse
Affiliation(s)
- Vera Gaun
- Program in Cellular, Molecular and Developmental Biology, Graduate School of Biomedical Sciences and Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA
| | - Jeffrey R. Martens
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine and Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL
| | - James E. Schwob
- Program in Cellular, Molecular and Developmental Biology, Graduate School of Biomedical Sciences and Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA
| |
Collapse
|
11
|
Comparative lectin histochemistry on the murine respiratory tract and primary olfactory pathway using a fully automated staining procedure. Acta Histochem 2022; 124:151877. [PMID: 35303511 DOI: 10.1016/j.acthis.2022.151877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/07/2023]
Abstract
Lectins are naturally occurring molecules which bind to specific carbohydrates of glycoconjugates. The binding specificity of lectins can therefore be used to specifically elucidate the glycosylation pattern in various tissues. While lectin histochemistry is usually carried out manually on single slides, a fully automated immunostaining system offers an easy, standardized, and high throughput system. In this study lectin histochemistry was implemented and optimized on a fully automated immunostaining system to investigate glycosylation patterns in the murine respiratory tract and the primary olfactory pathway. We tested 22 commercially available biotinylated lectins for their labelling-profiles to specifically identify morphologic structures. The results showed that lectin staining profiles using the implemented protocol on the automated system were constant and suitable for high throughput morphological studies. Further, the morphological evaluation of the stained slides revealed a complete characterization of the murine respiratory tract and primary olfactory pathway including the lectin binding profiles for the olfactory bulb, the vomeronasal organ and the nasal-associated lymphoid tissue.
Collapse
|
12
|
de Mera-Rodríguez JA, Álvarez-Hernán G, Gañán Y, Santos-Almeida A, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Endogenous pH 6.0 β-Galactosidase Activity Is Linked to Neuronal Differentiation in the Olfactory Epithelium. Cells 2022; 11:cells11020298. [PMID: 35053414 PMCID: PMC8774403 DOI: 10.3390/cells11020298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
The histochemical detection of β-galactosidase enzymatic activity at pH 6.0 (β-gal-pH6) is a widely used biomarker of cellular senescence in aging tissues. This histochemical assay also detects the presence of programmed cell senescence during specific time windows in degenerating structures of vertebrate embryos. However, it has recently been shown that this enzymatic activity is also enhanced in subpopulations of differentiating neurons in the developing central nervous system in vertebrates. The present study addressed the histochemical detection of β-gal-pH6 enzymatic activity in the developing postnatal olfactory epithelium in the mouse. This activity was detected in the intermediate layer of the olfactory epithelium. As development progressed, the band of β-gal-pH6 labeling in this layer increased in width. Immunohistochemistry and lectin histochemistry showed the β-gal-pH6 staining to be strongly correlated with the immunolabeling of the olfactory marker protein (OMP) that identifies mature olfactory sensory neurons. The cell somata of a subpopulation of differentiated olfactory neurons that were recognized with the Dolichos biflorus agglutinin (DBA) were always located inside this band of β-gal-pH6 staining. However, the β-gal-pH6 histochemical signal was always absent from the apical region where the cytokeratin-8 positive supporting cells were located. Furthermore, no β-gal-pH6 staining was found in the basal region of the olfactory epithelium where PCNA/pHisH3 immunoreactive proliferating progenitor cells, GAP43 positive immature neurons, and cytokeratin-5 positive horizontal basal cells were located. Therefore, β-gal-pH6 seems to be linked to neuronal differentiation and cannot be regarded as a biomarker of cellular senescence during olfactory epithelium development in mice.
Collapse
Affiliation(s)
- José Antonio de Mera-Rodríguez
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (J.A.d.M.-R.); (G.Á.-H.); (A.S.-A.); (G.M.-P.)
| | - Guadalupe Álvarez-Hernán
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (J.A.d.M.-R.); (G.Á.-H.); (A.S.-A.); (G.M.-P.)
| | - Yolanda Gañán
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Ana Santos-Almeida
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (J.A.d.M.-R.); (G.Á.-H.); (A.S.-A.); (G.M.-P.)
| | - Gervasio Martín-Partido
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (J.A.d.M.-R.); (G.Á.-H.); (A.S.-A.); (G.M.-P.)
| | - Joaquín Rodríguez-León
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006 Badajoz, Spain;
- Correspondence: (J.R.-L.); (J.F.-M.)
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (J.A.d.M.-R.); (G.Á.-H.); (A.S.-A.); (G.M.-P.)
- Correspondence: (J.R.-L.); (J.F.-M.)
| |
Collapse
|
13
|
Miah M, Ferretti P, Choi D. Considering the Cellular Composition of Olfactory Ensheathing Cell Transplants for Spinal Cord Injury Repair: A Review of the Literature. Front Cell Neurosci 2021; 15:781489. [PMID: 34867207 PMCID: PMC8635789 DOI: 10.3389/fncel.2021.781489] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
Olfactory ensheathing cells (OECs) are specialized glia cells of the olfactory system that support the continual regeneration of olfactory neurons throughout adulthood. Owing to their pro-regenerative properties, OECs have been transplanted in animal models of spinal cord injuries (SCI) and trialed in clinical studies on SCI patients. Although these studies have provided convincing evidence to support the continued development of OEC transplantation as a treatment option for the repair of SCI, discrepancies in the reported outcome has shown that OEC transplantation requires further improvement. Much of the variability in the reparative potential of OEC transplants is due to the variations in the cell composition of transplants between studies. As a result, the optimal cell preparation is currently a subject of debate. Here we review, the characterization as well as the effect of the cell composition of olfactory cell transplantation on therapeutic outcome in SCI. Firstly, we summarize and review the cell composition of olfactory cell preparations across the different species studied prior to transplantation. Since the purity of cells in olfactory transplants might affect the study outcome we also examine the effect of the proportions of OECs and the different cell types identified in the transplant on neuroregeneration. Finally, we consider the effect of the yield of cells on neuroregeneration by assessing the cell dose of transplants on therapeutic outcome.
Collapse
Affiliation(s)
- Mahjabeen Miah
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Patrizia Ferretti
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David Choi
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
14
|
Olfactory Stimulation Regulates the Birth of Neurons That Express Specific Odorant Receptors. Cell Rep 2021; 33:108210. [PMID: 33027656 PMCID: PMC7569022 DOI: 10.1016/j.celrep.2020.108210] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 07/03/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022] Open
Abstract
In mammals, olfactory sensory neurons (OSNs) are born throughout life, ostensibly solely to replace damaged OSNs. During differentiation, each OSN precursor “chooses,” out of hundreds of possibilities, a single odorant receptor (OR) gene, which defines the identity of the mature OSN. The relative neurogenesis rates of the hundreds of distinct OSN “subtypes” are thought to be constant, as they are determined by a stochastic process in which each OR is chosen with a fixed probability. Here, using histological, single-cell, and targeted affinity purification approaches, we show that closing one nostril in mice selectively reduces the number of newly generated OSNs of specific subtypes. Moreover, these reductions depend on an animal’s age and/or environment. Stimulation-dependent changes in the number of new OSNs are not attributable to altered rates of cell survival but rather production. Our findings indicate that the relative birth rates of distinct OSN subtypes depend on olfactory experience. In mammals, the odorant receptor identities of newly generated olfactory sensory neurons are thought to be determined by each progenitor cell’s random choice of a single receptor. Here, van der Linden et al. show that, in mice, the birth rates of neurons expressing a subset of receptors depend on olfactory stimulation.
Collapse
|
15
|
Koyama S, Kondo K, Ueha R, Kashiwadani H, Heinbockel T. Possible Use of Phytochemicals for Recovery from COVID-19-Induced Anosmia and Ageusia. Int J Mol Sci 2021; 22:8912. [PMID: 34445619 PMCID: PMC8396277 DOI: 10.3390/ijms22168912] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
The year 2020 became the year of the outbreak of coronavirus, SARS-CoV-2, which escalated into a worldwide pandemic and continued into 2021. One of the unique symptoms of the SARS-CoV-2 disease, COVID-19, is the loss of chemical senses, i.e., smell and taste. Smell training is one of the methods used in facilitating recovery of the olfactory sense, and it uses essential oils of lemon, rose, clove, and eucalyptus. These essential oils were not selected based on their chemical constituents. Although scientific studies have shown that they improve recovery, there may be better combinations for facilitating recovery. Many phytochemicals have bioactive properties with anti-inflammatory and anti-viral effects. In this review, we describe the chemical compounds with anti- inflammatory and anti-viral effects, and we list the plants that contain these chemical compounds. We expand the review from terpenes to the less volatile flavonoids in order to propose a combination of essential oils and diets that can be used to develop a new taste training method, as there has been no taste training so far. Finally, we discuss the possible use of these in clinical settings.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Kenji Kondo
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
| | - Rumi Ueha
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
- Swallowing Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Hideki Kashiwadani
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
16
|
Kaneda M, Yagi-Nakanishi S, Ozaki F, Kondo S, Mizuguchi K, Kawano M, Malissen M, Malissen B, Yamada K, Yoshizaki T. Olfactory dysfunction in LATY136F knock-in mice. Auris Nasus Larynx 2021; 49:209-214. [PMID: 34348847 DOI: 10.1016/j.anl.2021.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/26/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE This study examined olfactory dysfunction in LATY136F knock-in mice and its pathogenic mechanism. METHODS The olfactory function of LATY136F knock-in mice was assessed by a behavioral test using cycloheximide solution, which has been used as a mice repellant because of its peculiar smell and unpleasant taste. The tests were administered to each group of LATY136F knock-in mice and WT mice at 8, 12, 16, 20, and 24 weeks of age. After the behavioral tests to evaluate olfactory function, the mice were sacrificed for evaluations by immunohistochemistry. RESULTS Behavioral tests to evaluate olfactory function showed that the LATY136F knock-in mice had a statistically significant level of olfactory dysfunction (P < 0.05). Histological analysis showed that the thickness of the olfactory epithelium in these mice was thinner than that in the age-matched wild type mice. There was no IgG4-RD like lesion in the olfactory epithelium of LATY136F knock-in mice. Olfactory marker protein and growth-associated protein 43 expressions in the olfactory epithelium of the LATY136F knock-in mice were markedly lesser than those in the wild type mice (P < 0.05). CONCLUSION The present study demonstrated that olfactory disturbances occurred in LATY136F knock-in mice. Furthermore, the mechanism was suggested to be reduced regeneration of the olfactory epithelium.
Collapse
Affiliation(s)
- Misako Kaneda
- Division of Otolaryngology, Head and Neck Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-Machi, Kanazawa, Ishikawa 920-8641, Japan.
| | - Sayaka Yagi-Nakanishi
- Division of Otolaryngology, Head and Neck Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-Machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Fumi Ozaki
- Division of Otolaryngology, Head and Neck Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-Machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Satoru Kondo
- Division of Otolaryngology, Head and Neck Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-Machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Keishi Mizuguchi
- Division of Rheumatology, Department of Internal medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-Machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Mitsuhiro Kawano
- Division of Rheumatology, Department of Internal medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-Machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille 13288, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille 13288, France
| | - Kazunori Yamada
- Division of Hematology and Immunology, Kanazawa Medical University, 1-1, Uchinada-Machidaigaku, Kahoku, Ishikawa 920-0293, Japan
| | - Tomokazu Yoshizaki
- Division of Otolaryngology, Head and Neck Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-Machi, Kanazawa, Ishikawa 920-8641, Japan
| |
Collapse
|
17
|
Butowt R, Meunier N, Bryche B, von Bartheld CS. The olfactory nerve is not a likely route to brain infection in COVID-19: a critical review of data from humans and animal models. Acta Neuropathol 2021; 141:809-822. [PMID: 33903954 PMCID: PMC8075028 DOI: 10.1007/s00401-021-02314-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022]
Abstract
One of the most frequent symptoms of COVID-19 is the loss of smell and taste. Based on the lack of expression of the virus entry proteins in olfactory receptor neurons, it was originally assumed that the new coronavirus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) does not infect olfactory neurons. Recent studies have reported otherwise, opening the possibility that the virus can directly infect the brain by traveling along the olfactory nerve. Multiple animal models have been employed to assess mechanisms and routes of brain infection of SARS-CoV-2, often with conflicting results. We here review the current evidence for an olfactory route to brain infection and conclude that the case for infection of olfactory neurons is weak, based on animal and human studies. Consistent brain infection after SARS-CoV-2 inoculation in mouse models is only seen when the virus entry proteins are expressed abnormally, and the timeline and progression of rare neuro-invasion in these and in other animal models points to alternative routes to the brain, other than along the olfactory projections. COVID-19 patients can be assured that loss of smell does not necessarily mean that the SARS-CoV-2 virus has gained access to and has infected their brains.
Collapse
Affiliation(s)
- Rafal Butowt
- L. Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-094, Bydgoszcz, Poland.
| | - Nicolas Meunier
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Bertrand Bryche
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Christopher S von Bartheld
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno, NV, 89557, USA.
| |
Collapse
|
18
|
Bloom ML, Johnston LB, Datta SR. Renewal and Differentiation of GCD Necklace Olfactory Sensory Neurons. Chem Senses 2021; 45:333-346. [PMID: 32333759 DOI: 10.1093/chemse/bjaa027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Both canonical olfactory sensory neurons (OSNs) and sensory neurons belonging to the guanylate cyclase D (GCD) "necklace" subsystem are housed in the main olfactory epithelium, which is continuously bombarded by toxins, pathogens, and debris from the outside world. Canonical OSNs address this challenge, in part, by undergoing renewal through neurogenesis; however, it is not clear whether GCD OSNs also continuously regenerate and, if so, whether newborn GCD precursors follow a similar developmental trajectory to that taken by canonical OSNs. Here, we demonstrate that GCD OSNs are born throughout adulthood and can persist in the epithelium for several months. Phosphodiesterase 2A is upregulated early in the differentiation process, followed by the sequential downregulation of β-tubulin and the upregulation of CART protein. The GCD and MS4A receptors that confer sensory responses upon GCD neurons are initially expressed midway through this process but become most highly expressed once CART levels are maximal late in GCD OSN development. GCD OSN maturation is accompanied by a horizontal migration of neurons toward the central, curved portions of the cul-de-sac regions where necklace cells are concentrated. These findings demonstrate that-like their canonical counterparts-GCD OSNs undergo continuous renewal and define a GCD-specific developmental trajectory linking neurogenesis, maturation, and migration.
Collapse
|
19
|
Håglin S, Bohm S, Berghard A. Single or Repeated Ablation of Mouse Olfactory Epithelium by Methimazole. Bio Protoc 2021; 11:e3983. [PMID: 34124287 DOI: 10.21769/bioprotoc.3983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 11/02/2022] Open
Abstract
Odor-detecting olfactory sensory neurons residing in the nasal olfactory epithelium (OE) are the only neurons in direct contact with the external environment. As a result, these neurons are subjected to chemical, physical, and infectious insults, which may be the underlying reason why neurogenesis occurs in the OE of adult mammals. This feature makes the OE a useful model for studying neurogenesis and neuronal differentiation, with the possibility for systemic as well as local administration of various compounds and infectious agents that may interfere with these cellular processes. Several different chemical compounds have been shown to cause toxic injury to the OE, which can be used for OE ablation. We, and others, have found that the systemic administration of the hyperthyroid drug, methimazole, reliably causes olfactotoxicity as a side effect. Here, we outline an OE lesioning protocol for single or repeated ablation by methimazole. A single methimazole administration can be used to study neuroepithelial regeneration and stem cell activation, while repeated ablation and regeneration of OE enable the study of tissue stem cell exhaustion and generation of tissue metaplasia.
Collapse
Affiliation(s)
- Sofia Håglin
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Staffan Bohm
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Anna Berghard
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
20
|
Meunier N, Briand L, Jacquin-Piques A, Brondel L, Pénicaud L. COVID 19-Induced Smell and Taste Impairments: Putative Impact on Physiology. Front Physiol 2021; 11:625110. [PMID: 33574768 PMCID: PMC7870487 DOI: 10.3389/fphys.2020.625110] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/31/2020] [Indexed: 12/18/2022] Open
Abstract
Smell and taste impairments are recognized as common symptoms in COVID 19 patients even in an asymptomatic phase. Indeed, depending on the country, in up to 85-90% of cases anosmia and dysgeusia are reported. We will review briefly the main mechanisms involved in the physiology of olfaction and taste focusing on receptors and transduction as well as the main neuroanatomical pathways. Then we will examine the current evidences, even if still fragmented and unsystematic, explaining the disturbances and mode of action of the virus at the level of the nasal and oral cavities. We will focus on its impact on the peripheral and central nervous system. Finally, considering the role of smell and taste in numerous physiological functions, especially in ingestive behavior, we will discuss the consequences on the physiology of the patients as well as management regarding food intake.
Collapse
Affiliation(s)
- Nicolas Meunier
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Loïc Briand
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS UMR6265, INRAE UMR 1324, Université de Bourgogne Franche Comté, Dijon, France
| | - Agnès Jacquin-Piques
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS UMR6265, INRAE UMR 1324, Université de Bourgogne Franche Comté, Dijon, France
- Department of Clinical Neurophysiology, University Hospital, Dijon, France
| | - Laurent Brondel
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS UMR6265, INRAE UMR 1324, Université de Bourgogne Franche Comté, Dijon, France
| | - Luc Pénicaud
- STROMALab, Université de Toulouse, CNRS ERL 5311, Inserm U1031, Université Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
21
|
Wang-Eckhardt L, Bastian A, Bruegmann T, Sasse P, Eckhardt M. Carnosine synthase deficiency is compatible with normal skeletal muscle and olfactory function but causes reduced olfactory sensitivity in aging mice. J Biol Chem 2020; 295:17100-17113. [PMID: 33040025 PMCID: PMC7863879 DOI: 10.1074/jbc.ra120.014188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Carnosine (β-alanyl-l-histidine) and anserine (β-alanyl-3-methyl-l-histidine) are abundant peptides in the nervous system and skeletal muscle of many vertebrates. Many in vitro and in vivo studies demonstrated that exogenously added carnosine can improve muscle contraction, has antioxidant activity, and can quench various reactive aldehydes. Some of these functions likely contribute to the proposed anti-aging activity of carnosine. However, the physiological role of carnosine and related histidine-containing dipeptides (HCDs) is not clear. In this study, we generated a mouse line deficient in carnosine synthase (Carns1). HCDs were undetectable in the primary olfactory system and skeletal muscle of Carns1-deficient mice. Skeletal muscle contraction in these mice, however, was unaltered, and there was no evidence for reduced pH-buffering capacity in the skeletal muscle. Olfactory tests did not reveal any deterioration in 8-month-old mice lacking carnosine. In contrast, aging (18-24-month-old) Carns1-deficient mice exhibited olfactory sensitivity impairments that correlated with an age-dependent reduction in the number of olfactory receptor neurons. Whereas we found no evidence for elevated levels of lipoxidation and glycation end products in the primary olfactory system, protein carbonylation was increased in the olfactory bulb of aged Carns1-deficient mice. Taken together, these results suggest that carnosine in the olfactory system is not essential for information processing in the olfactory signaling pathway but does have a role in the long-term protection of olfactory receptor neurons, possibly through its antioxidant activity.
Collapse
Affiliation(s)
- Lihua Wang-Eckhardt
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Asisa Bastian
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Tobias Bruegmann
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany.
| |
Collapse
|
22
|
Abstract
Olfactory sensory neurons (OSNs) are bipolar neurons, unusual because they turn over continuously and have a multiciliated dendrite. The extensive changes in gene expression accompanying OSN differentiation in mice are largely known, especially the transcriptional regulators responsible for altering gene expression, revealing much about how differentiation proceeds. Basal progenitor cells of the olfactory epithelium transition into nascent OSNs marked by Cxcr4 expression and the initial extension of basal and apical neurites. Nascent OSNs become immature OSNs within 24-48 h. Immature OSN differentiation requires about a week and at least 2 stages. Early-stage immature OSNs initiate expression of genes encoding key transcriptional regulators and structural proteins necessary for further neuritogenesis. Late-stage immature OSNs begin expressing genes encoding proteins important for energy production and neuronal homeostasis that carry over into mature OSNs. The transition to maturity depends on massive expression of one allele of one odorant receptor gene, and this results in expression of the last 8% of genes expressed by mature OSNs. Many of these genes encode proteins necessary for mature function of axons and synapses or for completing the elaboration of non-motile cilia, which began extending from the newly formed dendritic knobs of immature OSNs. The cilia from adjoining OSNs form a meshwork in the olfactory mucus and are the site of olfactory transduction. Immature OSNs also have a primary cilium, but its role is unknown, unlike the critical role in proliferation and differentiation played by the primary cilium of the olfactory epithelium's horizontal basal cell.
Collapse
Affiliation(s)
- Timothy S McClintock
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Correspondence to be sent to: Timothy S. McClintock, Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA. e-mail:
| | - Naazneen Khan
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Chao Xie
- Department of Pharmacology and Therapeutics, and Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, and Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
23
|
Parrie LE, Crowell JA, Moreno JA, Suinn SS, Telling GC, Bessen RA. The cellular prion protein promotes neuronal regeneration after acute nasotoxic injury. Prion 2020; 14:31-41. [PMID: 31950869 PMCID: PMC6984647 DOI: 10.1080/19336896.2020.1714373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/03/2022] Open
Abstract
Adult neurogenesis, analogous to early development, is comprised of several, often concomitant, processes including proliferation, differentiation, and formation of synaptic connections. However, due to continual, asynchronous turn-over, newly-born adult olfactory sensory neurons (OSNs) must integrate into existing circuitry. Additionally, OSNs express high levels of cellular prion protein (PrPC), particularly in the axon, which implies a role in this cell type. The cellular prion has been shown to be important for proper adult OSN neurogenesis primarily by stabilizing mature olfactory neurons within this circuitry. However, the role of PrPC on each specific adult neurogenic processes remains to be investigated in detail. To tease out the subtle effects of prion protein expression level, a large population of regenerating neurons must be investigated. The thyroid drug methimazole (MTZ) causes nearly complete OSN loss in rodents and is used as a model of acute olfactory injury, providing a mechanism to induce synchronized OSN regeneration. This study investigated the effect of PrPC on adult neurogenesis after acute nasotoxic injury. Altered PrPC levels affected olfactory sensory epithelial (OSE) regeneration, cell proliferation, and differentiation. Attempts to investigate the role of PrPC level on axon regeneration did not support previous studies, and glomerular targeting did not recover to vehicle-treated levels, even by 20 weeks. Together, these studies demonstrate that the cellular prion protein is critical for regeneration of neurons, whereby increased PrPC levels promote early neurogenesis, and that lack of PrPC delays the regeneration of this tissue after acute injury.
Collapse
Affiliation(s)
- Lindsay E. Parrie
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jenna A.E. Crowell
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Julie A. Moreno
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Stephanie S. Suinn
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Glenn C. Telling
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Richard A. Bessen
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
24
|
Diving into the streams and waves of constitutive and regenerative olfactory neurogenesis: insights from zebrafish. Cell Tissue Res 2020; 383:227-253. [PMID: 33245413 DOI: 10.1007/s00441-020-03334-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
The olfactory system is renowned for its functional and structural plasticity, with both peripheral and central structures displaying persistent neurogenesis throughout life and exhibiting remarkable capacity for regenerative neurogenesis after damage. In general, fish are known for their extensive neurogenic ability, and the zebrafish in particular presents an attractive model to study plasticity and adult neurogenesis in the olfactory system because of its conserved structure, relative simplicity, rapid cell turnover, and preponderance of neurogenic niches. In this review, we present an overview of the anatomy of zebrafish olfactory structures, with a focus on the neurogenic niches in the olfactory epithelium, olfactory bulb, and ventral telencephalon. Constitutive and regenerative neurogenesis in both the peripheral olfactory organ and central olfactory bulb of zebrafish is reviewed in detail, and a summary of current knowledge about the cellular origin and molecular signals involved in regulating these processes is presented. While some features of physiologic and injury-induced neurogenic responses are similar, there are differences that indicate that regeneration is not simply a reiteration of the constitutive proliferation process. We provide comparisons to mammalian neurogenesis that reveal similarities and differences between species. Finally, we present a number of open questions that remain to be answered.
Collapse
|
25
|
Kondo K, Kikuta S, Ueha R, Suzukawa K, Yamasoba T. Age-Related Olfactory Dysfunction: Epidemiology, Pathophysiology, and Clinical Management. Front Aging Neurosci 2020; 12:208. [PMID: 32733233 PMCID: PMC7358644 DOI: 10.3389/fnagi.2020.00208] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022] Open
Abstract
Like other sensory systems, olfactory function deteriorates with age. Epidemiological studies have revealed that the incidence of olfactory dysfunction increases at the age of 60 and older and males are more affected than females. Moreover, smoking, heavy alcohol use, sinonasal diseases, and Down’s syndrome are associated with an increased incidence of olfactory dysfunction. Although the pathophysiology of olfactory dysfunction in humans remains largely unknown, studies in laboratory animals have demonstrated that both the peripheral and central olfactory nervous systems are affected by aging. Aged olfactory neuroepithelium in the nasal cavity shows the loss of mature olfactory neurons, replacement of olfactory neuroepithelium by respiratory epithelium, and a decrease in basal cell proliferation both in the normal state and after injury. In the central olfactory pathway, a decrease in the turnover of interneurons in the olfactory bulb (OB) and reduced activity in the olfactory cortex under olfactory stimulation is observed. Recently, the association between olfactory impairment and neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), has gained attention. Evidence-based pharmacotherapy to suppress or improve age-related olfactory dysfunction has not yet been established, but preliminary results suggest that olfactory training using odorants may be useful to improve some aspects of age-related olfactory impairment.
Collapse
Affiliation(s)
- Kenji Kondo
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shu Kikuta
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rumi Ueha
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keigo Suzukawa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Dibattista M, Pifferi S, Menini A, Reisert J. Alzheimer's Disease: What Can We Learn From the Peripheral Olfactory System? Front Neurosci 2020; 14:440. [PMID: 32508565 PMCID: PMC7248389 DOI: 10.3389/fnins.2020.00440] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/09/2020] [Indexed: 01/01/2023] Open
Abstract
The sense of smell has been shown to deteriorate in patients with some neurodegenerative disorders. In Parkinson's disease (PD) and Alzheimer's disease (AD), decreased ability to smell is associated with early disease stages. Thus, olfactory neurons in the nose and olfactory bulb (OB) may provide a window into brain physiology and pathophysiology to address the pathogenesis of neurodegenerative diseases. Because nasal olfactory receptor neurons regenerate throughout life, the olfactory system offers a broad variety of cellular mechanisms that could be altered in AD, including odorant receptor expression, neurogenesis and neurodegeneration in the olfactory epithelium, axonal targeting to the OB, and synaptogenesis and neurogenesis in the OB. This review focuses on pathophysiological changes in the periphery of the olfactory system during the progression of AD in mice, highlighting how the olfactory epithelium and the OB are particularly sensitive to changes in proteins and enzymes involved in AD pathogenesis. Evidence reviewed here in the context of the emergence of other typical pathological changes in AD suggests that olfactory impairments could be used to understand the molecular mechanisms involved in the early phases of the pathology.
Collapse
Affiliation(s)
- Michele Dibattista
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari A. Moro, Bari, Italy
| | - Simone Pifferi
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Anna Menini
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | | |
Collapse
|
27
|
Camargo AP, Nakahara TS, Firmino LER, Netto PHM, do Nascimento JBP, Donnard ER, Galante PAF, Carazzolle MF, Malnic B, Papes F. Uncovering the mouse olfactory long non-coding transcriptome with a novel machine-learning model. DNA Res 2020; 26:365-378. [PMID: 31321403 PMCID: PMC6704403 DOI: 10.1093/dnares/dsz015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Very little is known about long non-coding RNAs (lncRNAs) in the mammalian olfactory sensory epithelia. Deciphering the non-coding transcriptome in olfaction is relevant because these RNAs have been shown to play a role in chromatin modification and nuclear architecture reorganization, processes that accompany olfactory differentiation and olfactory receptor gene choice, one of the most poorly understood gene regulatory processes in mammals. In this study, we used a combination of in silico and ex vivo approaches to uncover a comprehensive catalogue of olfactory lncRNAs and to investigate their expression in the mouse olfactory organs. Initially, we used a novel machine-learning lncRNA classifier to discover hundreds of annotated and unannotated lncRNAs, some of which were predicted to be preferentially expressed in the main olfactory epithelium and the vomeronasal organ, the most important olfactory structures in the mouse. Moreover, we used whole-tissue and single-cell RNA sequencing data to discover lncRNAs expressed in mature sensory neurons of the main epithelium. Candidate lncRNAs were further validated by in situ hybridization and RT-PCR, leading to the identification of lncRNAs found throughout the olfactory epithelia, as well as others exquisitely expressed in subsets of mature olfactory neurons or progenitor cells.
Collapse
Affiliation(s)
- Antonio P Camargo
- Department of Genetics and Evolution, Institute of Biology, University of Campinas, Campinas, SP, Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Thiago S Nakahara
- Department of Genetics and Evolution, Institute of Biology, University of Campinas, Campinas, SP, Brazil.,Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Luiz E R Firmino
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Paulo H M Netto
- Department of Genetics and Evolution, Institute of Biology, University of Campinas, Campinas, SP, Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - João B P do Nascimento
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Elisa R Donnard
- Molecular Oncology Center, Hospital Sirio-Libanes, Sao Paulo, SP, Brazil
| | - Pedro A F Galante
- Molecular Oncology Center, Hospital Sirio-Libanes, Sao Paulo, SP, Brazil
| | - Marcelo F Carazzolle
- Department of Genetics and Evolution, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Bettina Malnic
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Fabio Papes
- Department of Genetics and Evolution, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
28
|
Sequential Maturation of Olfactory Sensory Neurons in the Mature Olfactory Epithelium. eNeuro 2019; 6:ENEURO.0266-19.2019. [PMID: 31554664 PMCID: PMC6795559 DOI: 10.1523/eneuro.0266-19.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
The formation of the olfactory nerve and olfactory bulb (OB) glomeruli begins embryonically in mice. However, the development of the olfactory system continues throughout life with the addition of new olfactory sensory neurons (OSNs) in the olfactory epithelium (OE). Much attention has been given to the perinatal innervation of the OB by OSN axons, but in the young adult the process of OSN maturation and axon targeting to the OB remains controversial. To address this gap in understanding, we used BrdU to label late-born OSNs in young adult mice at postnatal day 25 (P25-born OSNs) and timed their molecular maturation following basal cell division. We show that OSNs in young adults undergo a sequential molecular development with the expression of GAP 43 (growth-associated protein 43) > AC3 (adenylyl cyclase 3) > OMP (olfactory marker protein), consecutively, in a time frame of ∼8 d. To assess OSN axon development, we implemented an in vivo fate-mapping strategy to label P25-born OSNs with ZsGreen. Using sampling intervals of 24 h, we demonstrate the progressive extension of OSN axons in the OE, through the foramen of the cribriform plate, and onto the surface of the OB. OSN axons reached the OB and began to target and robustly innervate specific glomeruli ∼10 d following basal cell division, a time point at which OMP expression becomes evident. Our data demonstrate a sequential process of correlated axon extension and molecular maturation that is similar to that seen in the neonate, but on a slightly longer timescale and with regional differences in the OE.
Collapse
|
29
|
Abstract
The formation of the olfactory nerve and olfactory bulb (OB) glomeruli begins embryonically in mice. However, the development of the olfactory system continues throughout life with the addition of new olfactory sensory neurons (OSNs) in the olfactory epithelium (OE). Much attention has been given to the perinatal innervation of the OB by OSN axons, but in the young adult the process of OSN maturation and axon targeting to the OB remains controversial. To address this gap in understanding, we used BrdU to label late-born OSNs in young adult mice at postnatal day 25 (P25-born OSNs) and timed their molecular maturation following basal cell division. We show that OSNs in young adults undergo a sequential molecular development with the expression of GAP 43 (growth-associated protein 43) > AC3 (adenylyl cyclase 3) > OMP (olfactory marker protein), consecutively, in a time frame of ∼8 d. To assess OSN axon development, we implemented an in vivo fate-mapping strategy to label P25-born OSNs with ZsGreen. Using sampling intervals of 24 h, we demonstrate the progressive extension of OSN axons in the OE, through the foramen of the cribriform plate, and onto the surface of the OB. OSN axons reached the OB and began to target and robustly innervate specific glomeruli ∼10 d following basal cell division, a time point at which OMP expression becomes evident. Our data demonstrate a sequential process of correlated axon extension and molecular maturation that is similar to that seen in the neonate, but on a slightly longer timescale and with regional differences in the OE.
Collapse
|
30
|
Iwamura H, Kondo K, Kikuta S, Nishijima H, Kagoya R, Suzukawa K, Ando M, Fujimoto C, Toma-Hirano M, Yamasoba T. Caloric restriction reduces basal cell proliferation and results in the deterioration of neuroepithelial regeneration following olfactotoxic mucosal damage in mouse olfactory mucosa. Cell Tissue Res 2019; 378:175-193. [PMID: 31168693 DOI: 10.1007/s00441-019-03047-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/10/2019] [Indexed: 01/18/2023]
Abstract
The effects of caloric restriction (CR) on cell dynamics and gene expression in the mouse olfactory neuroepithelium are evaluated. Eight-week-old male C57BL/6 mice were fed either control pellets (104 kcal/week) or CR pellets (67 kcal/week). The cytoarchitecture of the olfactory neuroepithelium in the uninjured condition and its regeneration after injury by an olfactotoxic chemical, methimazole, were compared between mice fed with the control and CR diets. In the uninjured condition, there were significantly fewer olfactory marker protein (OMP)-positive olfactory receptor neurons and Ki67-positive proliferating basal cells at 3 months in the CR group than in the control group. The number of Ki67-positive basal cells increased after methimazole-induced mucosal injury in both the control and the CR groups, but the increase was less robust in the CR group. The recovery of the neuroepithelium at 2 months after methimazole administration was less complete in the CR group than in the control group. These histological changes were region-specific. The decrease in the OMP-positive neurons was prominent in the anterior region of the olfactory mucosa. Gene expression analysis using a DNA microarray and quantitative real-time polymerase chain reaction demonstrated that the expression levels of two inflammatory cytokines, interleukin-6 and chemokine ligand 1, were elevated in the olfactory mucosa of the CR group compared with the control group. These findings suggest that CR may be disadvantageous to the maintenance of the olfactory neuroepithelium, especially when it is injured.
Collapse
Affiliation(s)
- Hitoshi Iwamura
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kenji Kondo
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Shu Kikuta
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hironobu Nishijima
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Ryoji Kagoya
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Keigo Suzukawa
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mizuo Ando
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Chisato Fujimoto
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Makiko Toma-Hirano
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
31
|
Dennis JC, Stilwell NK, Smith TD, Park TJ, Bhatnagar KP, Morrison EE. Is the Mole Rat Vomeronasal Organ Functional? Anat Rec (Hoboken) 2019; 303:318-329. [DOI: 10.1002/ar.24060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 11/02/2018] [Accepted: 12/13/2018] [Indexed: 11/06/2022]
Affiliation(s)
- John C. Dennis
- Department of Anatomy, Physiology, and Pharmacology Auburn University Auburn Alabama
| | | | - Timothy D. Smith
- School of Physical Therapy Slippery Rock University Slippery Rock Pennsylvania
- Department of Anthropology University of Pittsburgh Pittsburgh Pennsylvania
| | - Thomas J. Park
- Department of Biological Sciences University of Illinois at Chicago Chicago Illinois
| | - Kunwar P. Bhatnagar
- Department of Anatomical Sciences and Neurobiology University of Louisville School of Medicine Louisville Kentucky
| | - Edward E. Morrison
- Department of Anatomy, Physiology, and Pharmacology Auburn University Auburn Alabama
| |
Collapse
|
32
|
Abstract
Olfaction plays a critical role in several aspects of life. Olfactory disorders are very common in the general population, and can lead to malnutrition, weight loss, food poisoning, depression, and other disturbances. Odorants are first detected in the upper region of the nose by the main olfactory epithelium (OE). In this region, millions of olfactory sensory neurons (OSNs) interact with odor molecules through the odorant receptors (ORs), which belong to the superfamily of G protein-coupled receptors. The binding of odors to the ORs initiates an electrical signal that travels along the axons to the main olfactory bulb of the brain. The information is then transmitted to other regions of the brain, leading to odorant perception and emotional and behavioral responses. In the OE, OSNs die and are continuously replaced from stem cells localized in the epithelium's basal region. Damage to this epithelium can be caused by multiple factors, leading to anosmia (smell loss). In this chapter, we introduce the basic organization of the OE and focus on the molecular mechanisms involved in odorant perception. We also describe recent experiments that address the mechanisms of OSNs regeneration in response to neuronal injury.
Collapse
Affiliation(s)
- Isaías Glezer
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bettina Malnic
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
33
|
Salazar I, Sanchez-Quinteiro P, Barrios AW, López Amado M, Vega JA. Anatomy of the olfactory mucosa. HANDBOOK OF CLINICAL NEUROLOGY 2019; 164:47-65. [PMID: 31604563 DOI: 10.1016/b978-0-444-63855-7.00004-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The classic notion that humans are microsmatic animals was born from comparative anatomy studies showing the reduction in the size of both the olfactory bulbs and the limbic brain relative to the whole brain. However, the human olfactory system contains a number of neurons comparable to that of most other mammals, and humans have exquisite olfactory abilities. Major advances in molecular and genetic research have resulted in the identification of extremely large gene families that express receptors for sensing odors. Such advances have led to a renaissance of studies focused on both human and nonhuman aspects of olfactory physiology and function. Evidence that olfactory dysfunction is among the earliest signs of a number of neurodegenerative and neuropsychiatric disorders has led to considerable interest in the use of olfactory epithelial biopsies for potentially identifying such disorders. Moreover, the unique features of the olfactory ensheathing cells have made the olfactory mucosa a promising and unexpected source of cells for treating spinal cord injuries and other neural injuries in which cell guidance is critical. The olfactory system of humans and other primates differs in many ways from that of other species. In this chapter we provide an overview of the anatomy of not only the human olfactory mucosa but of mucosae from a range of mammals from which more detailed information is available. Basic information regarding the general organization of the olfactory mucosa, including its receptor cells and the large number of other cell types critical for their maintenance and function, is provided. Cross-species comparisons are made when appropriate. The polemic issue of the human vomeronasal organ in both the adult and fetus is discussed, along with recent findings regarding olfactory subsystems within the nose of a number of mammals (e.g., the septal organ and Grüneberg ganglion).
Collapse
Affiliation(s)
- Ignacio Salazar
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Unit of Anatomy and Embryology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain.
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Unit of Anatomy and Embryology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Arthur W Barrios
- Laboratory of Histology, Embryology and Animal Pathology, Faculty of Veterinary Medicine, University Nacional Mayor of San Marcos, Lima, Peru
| | - Manuel López Amado
- Department of Otorhinolaryngology, University Hospital La Coruña, La Coruña, Spain
| | - José A Vega
- Unit of Anatomy, Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| |
Collapse
|
34
|
Schreiber S, Petrasch-Parwez E, Porrmann-Kelterbaum E, Förster E, Epplen JT, Gerding WM. Neurodegeneration in the olfactory bulb and olfactory deficits in the Ccdc66 -/- mouse model for retinal degeneration. IBRO Rep 2018; 5:43-53. [PMID: 30211337 PMCID: PMC6132079 DOI: 10.1016/j.ibror.2018.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022] Open
Abstract
The Ccdc66-deficient (Ccdc66 -/-) mouse model exhibits slow progressive retinal degeneration. It is unclear whether CCDC66 protein also plays a role in the wildtype (WT; Ccdc66 +/+) mouse brain and whether the lack of Ccdc66 gene expression in the Ccdc66 -/- mouse brain may result in morphological and behavioral alterations. CCDC66 protein expression in different brain regions of the adult WT mouse and in whole brain during postnatal development was quantified by SDS-PAGE and Western blot. Ccdc66 reporter gene expression was visualized by X-gal staining. Selected brain regions were further analyzed by light and electron microscopy. In order to correlate anatomical with behavioral data, an olfactory habituation/dishabituation test was performed. CCDC66 protein was expressed throughout the early postnatal development in the WT mouse brain. In adult mice, the main olfactory bulb exhibited high CCDC66 protein levels comparable to the expression in the retina. Additionally, the Ccdc66 -/- mouse brain showed robust Ccdc66 reporter gene expression especially in adult olfactory bulb glomeruli, the olfactory nerve layer and the olfactory epithelium. Degeneration was detected in the Ccdc66 -/- olfactory bulb glomeruli at advanced age. This degeneration was also reflected in behavioral alterations; compared to the WT, Ccdc66 -/- mice spent significantly less time sniffing at the initial presentation of unknown, neutral odors and barely responded to social odors. Ccdc66 -/- mice develop substantial olfactory nerve fiber degeneration and alteration of olfaction-related behavior at advanced age. Thus, the Ccdc66 -/- mouse model for retinal degeneration adds the possibility to study mechanisms of central nervous system degeneration.
Collapse
Key Words
- AG, astroglia
- CTX, cortex
- Ccdc66
- Ccdc66 +/+, WT, wildtype
- Ccdc66 -/-, Ccdc66-deficient
- De, dendrite
- EPL, external plexiform layer
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GL, glomerular layer
- IPL, internal plexiform layer
- M, mitochondrion
- ML, mitral cell layer
- MOB, main olfactory bulb
- Mouse model
- Neurodegeneration
- OE, olfactory epithelium
- ONF, olfactory nerve fibers
- ONL, olfactory nerve layer
- ORN, olfactory receptor neuron(s)
- Olfactory bulb
- P, postnatal day
- PBS, phosphate-buffered saline
- PG, periglomerular cells
- RIPA, radioimmunoprecipitation assay
- RMS, rostral migratory stream
- RP, retinitis pigmentosa
- Retinitis pigmentosa
- SC, supporting cell
- SEZ, subependymal zone
- SVZ, subventricular zone
- gPRA, generalized progressive retinal atrophy
- ioD, integrated optic density
- m, month/s
Collapse
Affiliation(s)
- Sabrina Schreiber
- Department of Human Genetics, Ruhr-University, 44780 Bochum, Germany
| | | | | | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University, 44780 Bochum, Germany
| | - Jörg T. Epplen
- Department of Human Genetics, Ruhr-University, 44780 Bochum, Germany
- Department of Biochemistry and Molecular Medicine, University of Witten-Herdecke, ZBAF, 58453 Witten, Germany
| | - Wanda M. Gerding
- Department of Human Genetics, Ruhr-University, 44780 Bochum, Germany
| |
Collapse
|
35
|
Nkomozepi P, Mazengenya P, Ihunwo AO. Age-related changes in Ki-67 and DCX expression in the BALB/ c mouse (Mus Musculus) brain. Int J Dev Neurosci 2018; 72:36-47. [PMID: 30472241 DOI: 10.1016/j.ijdevneu.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/02/2018] [Accepted: 11/19/2018] [Indexed: 01/15/2023] Open
Abstract
Several studies have identified age as one of the strongest regulators of neurogenesis in the mammalian brain. However, previous age-related studies focused mainly on changes in neurogenesis during different stages of adulthood and did not describe changes in neurogenesis through the different life history stages of the animal. The aim of this study was therefore to determine time course changes in neurogenesis in the male BALB/c mouse brain at postnatal ages 1 week to 12 weeks, spanning juvenile, sub adult and adult life history stages. To achieve this, Ki-67 and DCX immunohistochemistry was used to assess changes in cell proliferation and neuronal incorporation respectively. Ki-67 expression was mainly observed in the olfactory bulb, rostral migratory stream, sub ventricular zone of lateral ventricle and the sub granular zone of the dentate gyrus. In addition, fewer Ki-67 positive cells were also observed in the neocortex, cerebellum and tectum. DCX was expressed in similar regions as Ki-67 except for the cerebellum and tectum. Expression of both Ki-67 and DCX sharply decreased with advancing age or life history stages in the sub ventricular zone, rostral migratory stream and sub granular zone of the BALB/c mouse brain. Neurogenesis therefore persists throughout all life history stages in the BALB/c mouse brain although it decreases with age.
Collapse
Affiliation(s)
- Pilani Nkomozepi
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2190, South Africa; Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Cnr Siemert and Beit Streets, Doornfontein, 2094, Johannesburg, South Africa
| | - Pedzisai Mazengenya
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2190, South Africa
| | - Amadi O Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2190, South Africa.
| |
Collapse
|
36
|
Wu Y, Ma L, Duyck K, Long CC, Moran A, Scheerer H, Blanck J, Peak A, Box A, Perera A, Yu CR. A Population of Navigator Neurons Is Essential for Olfactory Map Formation during the Critical Period. Neuron 2018; 100:1066-1082.e6. [PMID: 30482691 DOI: 10.1016/j.neuron.2018.09.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/10/2018] [Accepted: 09/27/2018] [Indexed: 11/29/2022]
Abstract
In the developing brain, heightened plasticity during the critical period enables the proper formation of neural circuits. Here, we identify the "navigator" neurons, a group of perinatally born olfactory sensory neurons, as playing an essential role in establishing the olfactory map during the critical period. The navigator axons project circuitously in the olfactory bulb and traverse multiple glomeruli before terminating in perspective glomeruli. These neurons undergo a phase of exuberant axon growth and exhibit a shortened lifespan. Single-cell transcriptome analyses reveal distinct molecular signatures for the navigators. Extending their lifespan prolongs the period of exuberant growth and perturbs axon convergence. Conversely, a genetic ablation experiment indicates that, despite postnatal neurogenesis, only the navigators are endowed with the ability to establish a convergent map. The presence and the proper removal of the navigator neurons are both required to establish tight axon convergence into the glomeruli.
Collapse
Affiliation(s)
- Yunming Wu
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Limei Ma
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Kyle Duyck
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Carter C Long
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Andrea Moran
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Hayley Scheerer
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Jillian Blanck
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Allison Peak
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Andrew Box
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Anoja Perera
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - C Ron Yu
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
37
|
Savya SP, Kunkhyen T, Cheetham CEJ. Low survival rate of young adult-born olfactory sensory neurons in the undamaged mouse olfactory epithelium. J Bioenerg Biomembr 2018; 51:41-51. [PMID: 30302619 DOI: 10.1007/s10863-018-9774-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/02/2018] [Indexed: 01/24/2023]
Abstract
Olfactory sensory neurons (OSNs) are generated throughout life from progenitor cells in the olfactory epithelium. OSN axons project in an odorant receptor-specific manner to the olfactory bulb (OB), forming an ordered array of glomeruli where they provide sensory input to OB neurons. The tetracycline transactivator (tTA) system permits developmental stage-specific expression of reporter genes in OSNs and has been widely used for structural and functional studies of the development and plasticity of the mouse olfactory system. However, the cellular ages at which OSNs stop expressing reporters driven by the immature OSN-specific Gγ8-tTA driver line and begin to express reporters driven by the mature OSN-specific OMP-tTA driver line have not been directly determined. We pulse-labeled terminally dividing cells in the olfactory epithelium of 28-day-old (P28) mice with EdU and analyzed EdU labeling in OSNs expressing fluorescent reporter proteins under control of either the Gγ8-tTA or OMP-tTA driver line 5-14 days later. Expression of OMP-tTA-driven reporters began in 6-day-old OSNs, while the vast majority of newborn OSNs did not express Gγ8-tTA-driven fluorescent proteins beyond 8 days of cellular age. Surprisingly, we also found a low survival rate for P28-born OSNs, very few of which survived for more than 14 days. We propose that OSN survival requires the formation of stable synaptic connections and hence may be dependent on organismal age.
Collapse
Affiliation(s)
- Sajishnu P Savya
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St., BST E1456, Pittsburgh, PA, 15213, USA.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Tenzin Kunkhyen
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St., BST E1456, Pittsburgh, PA, 15213, USA
| | - Claire E J Cheetham
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St., BST E1456, Pittsburgh, PA, 15213, USA. .,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
38
|
The Neuroregenerative Capacity of Olfactory Stem Cells Is Not Limitless: Implications for Aging. J Neurosci 2018; 38:6806-6824. [PMID: 29934351 DOI: 10.1523/jneurosci.3261-17.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 11/21/2022] Open
Abstract
The olfactory epithelium (OE) of vertebrates is a highly regenerative neuroepithelium that is maintained under normal conditions by a population of stem and progenitor cells, globose basal cells (GBCs), which also contribute to epithelial reconstitution after injury. However, aging of the OE often leads to neurogenic exhaustion, the disappearance of both GBCs and olfactory sensory neurons (OSNs). Aneuronal tissue may remain as olfactory, with an uninterrupted sheet of apically arrayed microvillar-capped sustentacular cell, or may undergo respiratory metaplasia. We have generated a transgenic mouse model for neurogenic exhaustion using olfactory marker protein-driven Tet-off regulation of the A subunit of Diphtheria toxin such that the death of mature OSNs is accelerated. At as early as 2 months of age, the epithelium of transgenic mice, regardless of sex, recapitulates what is seen in the aged OE of humans and rodents. Areas of the epithelium completely lack neurons and GBCs; whereas the horizontal basal cells, a reserve stem cell population, show no evidence of activation. Surprisingly, other areas that were olfactory undergo respiratory metaplasia. The impact of accelerated neuronal death and reduced innervation on the olfactory bulb (OB) was also examined. Constant neuronal turnover leaves glomeruli shrunken and affects the dopaminergic interneurons in the periglomerular layer. Moreover, the acceleration of OSN death can be reversed in those areas where some GBCs persist. However, the projection onto the OB recovers incompletely and the reinnervated glomeruli are markedly altered. Therefore, the capacity for OE regeneration is tempered when GBCs disappear.SIGNIFICANCE STATEMENT A large percentage of humans lose or suffer a significant decline in olfactory function as they age. Therefore, quality of life suffers and safety and nutritional status are put at risk. With age, the OE apparently becomes incapable of fully maintaining the neuronal population of the epithelium despite its well known capacity for recovering from most forms of injury when younger. Efforts to identify the mechanism by which olfactory neurogenesis becomes exhausted with age require a powerful model for accelerating age-related tissue pathology. The current OMP-tTA;TetO-DTA transgenic mouse model, in which olfactory neurons die when they reach maturity and accelerated death can be aborted to assess the capacity for structural recovery, satisfies that need.
Collapse
|
39
|
Parrie LE, Crowell JAE, Telling GC, Bessen RA. The cellular prion protein promotes olfactory sensory neuron survival and axon targeting during adult neurogenesis. Dev Biol 2018; 438:23-32. [PMID: 29577883 DOI: 10.1016/j.ydbio.2018.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 11/19/2022]
Abstract
The cellular prion protein (PrPC) has been associated with diverse biological processes including cell signaling, neurogenesis, and neuroprotection, but its physiological function(s) remain ambiguous. Here we determine the role of PrPC in adult neurogenesis using the olfactory system model in transgenic mice. Olfactory sensory neurons (OSNs) within the olfactory sensory epithelium (OSE) undergo neurogenesis, integration, and turnover even into adulthood. The neurogenic processes of proliferation, differentiation/maturation, and axon targeting were evaluated in wild type, PrP-overexpressing, and PrP-null transgenic mice. Our results indicate that PrPC plays a role in maintaining mature OSNs within the epithelium: overexpression of PrPC resulted in greater survival of mitotically active cells within the OSE, whereas absence of prion protein resulted in fewer cells being maintained over time. These results are supported by both quantitative PCR analysis of gene expression and protein analysis characteristic of OSN differentiation. Finally, evaluation of axon migration determined that OSN axon targeting in the olfactory bulb is PrPC dose-dependent. Together, these findings provide new mechanistic insight into the neuroprotective role for PrPC in adult OSE neurogenesis, whereby more mature neurons are stably maintained in animals expressing PrPC.
Collapse
Affiliation(s)
- Lindsay E Parrie
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States.
| | - Jenna A E Crowell
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Glenn C Telling
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States.
| | - Richard A Bessen
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
40
|
Age-dependent decrease in glomeruli and receptor cells containing α1-2 fucose glycan in the mouse main olfactory system but not in the vomeronasal system. Cell Tissue Res 2018; 373:361-366. [PMID: 29552725 DOI: 10.1007/s00441-018-2819-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
Abstract
Receptor cells of the olfactory epithelium (OE) and vomeronasal organ (VNO) project axons to glomeruli in the main olfactory bulb (MOB) and accessory olfactory bulb (AOB), respectively and undergo continuous turnover throughout life. Alpha1-2 fucose (α1-2Fuc) glycan mediates neurite outgrowth and synaptic plasticity and plays important roles in the formation of the olfactory system during development. We previously confirmed the localization of α1-2Fuc glycan in the olfactory system of 3- to 4-month-old mice but whether such localization persists throughout life remains unknown. Here, the MOB, AOB, OE and VNO of 1-, 3- and 8-month-old mice were histochemically examined using Ulex europaeus agglutinin-I (UEA-I) that specifically binds to α1-2Fuc glycan. Binding sites for UEA-I in the MOB were similar among all age groups but the ratio of UEA-I-positive glomeruli significantly decreased with aging. The frequency of UEA-I-positive receptor cells in the OE of the two older groups was also significantly lower than that of 1-month-old mice. On the other hand, UEA-I binding in the AOB and VNO did not significantly differ among all three groups. These findings suggest that the primary pathway of the main olfactory system requires the role of α1-2Fuc glycan in young mice rather than old mice, while the vomeronasal pathway equally requires this glycan in both young and old mice.
Collapse
|
41
|
Omais S, Jaafar C, Ghanem N. "Till Death Do Us Part": A Potential Irreversible Link Between Aberrant Cell Cycle Control and Neurodegeneration in the Adult Olfactory Bulb. Front Neurosci 2018; 12:144. [PMID: 29593485 PMCID: PMC5854681 DOI: 10.3389/fnins.2018.00144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis (AN) is an ongoing developmental process that generates newborn neurons in the olfactory bulb (OB) and the hippocampus (Hi) throughout life and significantly contributes to brain plasticity. Adult neural stem and progenitor cells (aNSPCs) are relatively limited in number and fate and are spatially restricted to the subventricular zone (SVZ) and the subgranular zone (SGZ). During AN, the distinct roles played by cell cycle proteins extend beyond cell cycle control and constitute key regulatory mechanisms involved in neuronal maturation and survival. Importantly, aberrant cell cycle re-entry (CCE) in post-mitotic neurons has been strongly linked to the abnormal pathophysiology in rodent models of neurodegenerative diseases with potential implications on the etiology and progression of such diseases in humans. Here, we present an overview of AN in the SVZ-OB and olfactory epithelium (OE) in mice and humans followed by a comprehensive update of the distinct roles played by cell cycle proteins including major tumors suppressor genes in various steps during neurogenesis. We also discuss accumulating evidence underlining a strong link between abnormal cell cycle control, olfactory dysfunction and neurodegeneration in the adult and aging brain. We emphasize that: (1) CCE in post-mitotic neurons due to loss of cell cycle suppression and/or age-related insults as well as DNA damage can anticipate the development of neurodegenerative lesions and protein aggregates, (2) the age-related decline in SVZ and OE neurogenesis is associated with compensatory pro-survival mechanisms in the aging OB which are interestingly similar to those detected in Alzheimer's disease and Parkinson's disease in humans, and (3) the OB represents a well suitable model to study the early manifestation of age-related defects that may eventually progress into the formation of neurodegenerative lesions and, possibly, spread to the rest of the brain. Such findings may provide a novel approach to the modeling of neurodegenerative diseases in humans from early detection to progression and treatment as well.
Collapse
Affiliation(s)
- Saad Omais
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Carine Jaafar
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Noël Ghanem
- Department of Biology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
42
|
Boesveldt S, Postma EM, Boak D, Welge-Luessen A, Schöpf V, Mainland JD, Martens J, Ngai J, Duffy VB. Anosmia-A Clinical Review. Chem Senses 2017; 42:513-523. [PMID: 28531300 PMCID: PMC5863566 DOI: 10.1093/chemse/bjx025] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Anosmia and hyposmia, the inability or decreased ability to smell, is estimated to afflict 3-20% of the population. Risk of olfactory dysfunction increases with old age and may also result from chronic sinonasal diseases, severe head trauma, and upper respiratory infections, or neurodegenerative diseases. These disorders impair the ability to sense warning odors in foods and the environment, as well as hinder the quality of life related to social interactions, eating, and feelings of well-being. This article reports and extends on a clinical update commencing at the 2016 Association for Chemoreception Sciences annual meeting. Included were reports from: a patient perspective on losing the sense of smell with information on Fifth Sense, a nonprofit advocacy organization for patients with olfactory disorders; an otolaryngologist's review of clinical evaluation, diagnosis, and management/treatment of anosmia; and researchers' review of recent advances in potential anosmia treatments from fundamental science, in animal, cellular, or genetic models. As limited evidence-based treatments exist for anosmia, dissemination of information on anosmia-related health risks is needed. This could include feasible and useful screening measures for olfactory dysfunction, appropriate clinical evaluation, and patient counseling to avoid harm as well as manage health and quality of life with anosmia.
Collapse
Affiliation(s)
- Sanne Boesveldt
- Division of Human Nutrition, Wageningen University & Research, Wageningen, The Netherlands
| | - Elbrich M Postma
- Division of Human Nutrition, Wageningen University & Research, Wageningen, The Netherlands
- Smell and Taste Centre, Hospital Gelderse Vallei, PO Box 9025, 6710 HN Ede, The Netherlands
| | - Duncan Boak
- Fifth Sense, Sanderum House, 38 Oakley Road, Chino OX39 4TW, UK
| | - Antje Welge-Luessen
- Department of Otorhinolaryngology, University Hospital Basel, Petersgraben 4CH-4031 Basel, Switzerland
| | - Veronika Schöpf
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Joel D Mainland
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
- Department of Neuroscience, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Jeffrey Martens
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, USA
| | - John Ngai
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | - Valerie B Duffy
- Department of Allied Health Sciences, University of Connecticut, 358 Mansfield Road, Box U-101 Storrs, CT 06269-2101, USA
| |
Collapse
|
43
|
Gigante CM, Dibattista M, Dong FN, Zheng X, Yue S, Young SG, Reisert J, Zheng Y, Zhao H. Lamin B1 is required for mature neuron-specific gene expression during olfactory sensory neuron differentiation. Nat Commun 2017; 8:15098. [PMID: 28425486 PMCID: PMC5411488 DOI: 10.1038/ncomms15098] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/28/2017] [Indexed: 01/29/2023] Open
Abstract
B-type lamins are major constituents of the nuclear lamina in all metazoan cells, yet have specific roles in the development of certain cell types. Although they are speculated to regulate gene expression in developmental contexts, a direct link between B-type lamins and developmental gene expression in an in vivo system is currently lacking. Here, we identify lamin B1 as a key regulator of gene expression required for the formation of functional olfactory sensory neurons. By using targeted knockout in olfactory epithelial stem cells in adult mice, we show that lamin B1 deficient neurons exhibit attenuated response to odour stimulation. This deficit can be explained by decreased expression of genes involved in mature neuron function, along with increased expression of genes atypical of the olfactory lineage. These results support that the broadly expressed lamin B1 regulates expression of a subset of genes involved in the differentiation of a specific cell type.
Collapse
Affiliation(s)
- Crystal M. Gigante
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Michele Dibattista
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104, USA
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari ‘A. Moro', Bari 70121, Italy
| | - Frederick N. Dong
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Xiaobin Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Sibiao Yue
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Stephen G. Young
- Department of Medicine, Molecular Biology Institute and Department of Human Genetics, University of California, Los Angeles, California 90095, USA
| | - Johannes Reisert
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104, USA
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Haiqing Zhao
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
44
|
Zhang Z, Yang D, Zhang M, Zhu N, Zhou Y, Storm DR, Wang Z. Deletion of Type 3 Adenylyl Cyclase Perturbs the Postnatal Maturation of Olfactory Sensory Neurons and Olfactory Cilium Ultrastructure in Mice. Front Cell Neurosci 2017; 11:1. [PMID: 28154525 PMCID: PMC5243839 DOI: 10.3389/fncel.2017.00001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/04/2017] [Indexed: 01/08/2023] Open
Abstract
Type 3 adenylyl cyclase (Adcy3) is localized to the cilia of olfactory sensory neurons (OSNs) and is an essential component of the olfactory cyclic adenosine monophosphate (cAMP) signaling pathway. Although the role of this enzyme in odor detection and axonal projection in OSNs was previously characterized, researchers will still have to determine its function in the maturation of postnatal OSNs and olfactory cilium ultrastructure. Previous studies on newborns showed that the anatomic structure of the main olfactory epithelium (MOE) of Adcy3 knockout mice (Adcy3-/-) is indistinguishable from that of their wild-type littermates (Adcy3+/+), whereas the architecture and associated composition of MOE are relatively underdeveloped at this early age. The full effects of sensory deprivation on OSNs may not also be exhibited in such age. In the present study, following a comparison of postnatal OSNs in seven-, 30-, and 90-day-old Adcy3-/- mice and wild-type controls (Adcy3+/+), we observed that the absence of Adcy3 leads to cumulative defects in the maturation of OSNs. Upon aging, Adcy3-/- OSNs exhibited increase in immature cells and reduction in mature cells along with elevated apoptosis levels. The density and ultrastructure of Adcy3-/- cilia were also disrupted in mice upon aging. Collectively, our results reveal an indispensable role of Adcy3 in postnatal maturation of OSNs and maintenance of olfactory cilium ultrastructure in mice through adulthood.
Collapse
Affiliation(s)
- Zhe Zhang
- College of Life Science, Hebei UniversityBaoding, China; Medical College, Hebei UniversityBaoding, China
| | - Dong Yang
- College of Life Science, Hebei University Baoding, China
| | - Mengdi Zhang
- College of Life Science, Hebei University Baoding, China
| | - Ning Zhu
- Department of Cardiology, Baoding First Center Hospital Baoding, China
| | - Yanfen Zhou
- College of Life Science, Hebei University Baoding, China
| | - Daniel R Storm
- Department of Pharmacology, University of Washington, Seattle WA, USA
| | - Zhenshan Wang
- College of Life Science, Hebei University Baoding, China
| |
Collapse
|
45
|
Canonical Wnt Signaling Drives Tumor-Like Lesions from Sox2-Positive Precursors of the Murine Olfactory Epithelium. PLoS One 2016; 11:e0166690. [PMID: 27902722 PMCID: PMC5130221 DOI: 10.1371/journal.pone.0166690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023] Open
Abstract
Canonical Wnt signaling is known to promote proliferation of olfactory stem cells. In order to investigate the effects of a constitutive activation of Wnt signaling in Sox2-positive precursor cells of the olfactory epithelium, we used transgenic mice that allowed an inducible deletion of exon 3 of the Ctnnb1 gene, which is responsible for the phosphorylation and degradation of Ctnnb1 protein. After induction of aberrant Wnt activation by Ctnnb1 deletion at embryonic day 14, such mice developed tumor-like lesions in upper parts of the nasal cavity. We still observed areas of epithelial hyperplasia within the olfactory epithelium following early postnatal Wnt activation, but the olfactory epithelial architecture remained unaffected in most parts when Wnt was activated at postnatal day 21 or later. In summary, our results suggest an age-dependent tumorigenic potential of aberrant Wnt signaling in the olfactory epithelium of mice.
Collapse
|
46
|
Schwob JE, Jang W, Holbrook EH, Lin B, Herrick DB, Peterson JN, Hewitt Coleman J. Stem and progenitor cells of the mammalian olfactory epithelium: Taking poietic license. J Comp Neurol 2016; 525:1034-1054. [PMID: 27560601 DOI: 10.1002/cne.24105] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 12/15/2022]
Abstract
The capacity of the olfactory epithelium (OE) for lifelong neurogenesis and regeneration depends on the persistence of neurocompetent stem cells, which self-renew as well as generating all of the cell types found within the nasal epithelium. This Review focuses on the types of stem and progenitor cells in the epithelium and their regulation. Both horizontal basal cells (HBCs) and some among the population of globose basal cells (GBCs) are stem cells, but the two types plays vastly different roles. The GBC population includes the basal cells that proliferate in the uninjured OE and is heterogeneous with respect to transcription factor expression. From upstream in the hierarchy to downstream, GBCs encompass 1) Sox2+ /Pax6+ stem-like cells that are totipotent and self-renew over the long term, 2) Ascl1+ transit-amplifying progenitors with a limited capacity for expansive proliferation, and 3) Neurog1+ /NeuroD1+ immediate precursor cells that make neurons directly. In contrast, the normally quiescent HBCs are activated to multipotency and proliferate when sustentacular cells are killed, but not when only OSNs die, indicating that HBCs are reserve stem cells that respond to severe epithelial injury. The master regulator of HBC activation is the ΔN isoform of the transcription factor p63; eliminating ΔNp63 unleashes HBC multipotency. Notch signaling, via Jagged1 ligand on Sus cells and Notch1 and Notch2 receptors on HBCs, is likely to play a major role in setting the level of p63 expression. Thus, ΔNp63 becomes a potential therapeutic target for reversing the neurogenic exhaustion characteristic of the aged OE. J. Comp. Neurol. 525:1034-1054, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James E Schwob
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Woochan Jang
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Eric H Holbrook
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Brian Lin
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Daniel B Herrick
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Jesse N Peterson
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Julie Hewitt Coleman
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| |
Collapse
|
47
|
Parrilla M, Chang I, Degl'Innocenti A, Omura M. Expression of homeobox genes in the mouse olfactory epithelium. J Comp Neurol 2016; 524:2713-39. [PMID: 27243442 DOI: 10.1002/cne.24051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/16/2015] [Accepted: 05/25/2016] [Indexed: 01/22/2023]
Abstract
Homeobox genes constitute a large family of genes widely studied because of their role in the establishment of the body pattern. However, they are also involved in many other events during development and adulthood. The main olfactory epithelium (MOE) is an excellent model to study neurogenesis in the adult nervous system. Analyses of homeobox genes during development show that some of these genes are involved in the formation and establishment of cell diversity in the MOE. Moreover, the mechanisms of expression of odorant receptors (ORs) constitute one of the biggest enigmas in the field. Analyses of OR promoters revealed the presence of homeodomain binding sites in their sequences. Here we characterize the expression patterns of a set of 49 homeobox genes in the MOE with in situ hybridization. We found that seven of them (Dlx3, Dlx5, Dlx6, Msx1, Meis1, Isl1, and Pitx1) are zonally expressed. The homeobox gene Emx1 is expressed in three guanylate cyclase(+) populations, two located in the MOE and the third one in an olfactory subsystem known as Grüneberg ganglion located at the entrance of the nasal cavity. The homeobox gene Tshz1 is expressed in a unique patchy pattern across the MOE. Our findings provide new insights to guide functional studies that aim to understand the complexity of transcription factor expression and gene regulation in the MOE. J. Comp. Neurol. 524:2713-2739, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marta Parrilla
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany
| | - Isabelle Chang
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany
| | - Andrea Degl'Innocenti
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany.,Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Masayo Omura
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany
| |
Collapse
|
48
|
Cheetham CEJ, Park U, Belluscio L. Rapid and continuous activity-dependent plasticity of olfactory sensory input. Nat Commun 2016; 7:10729. [PMID: 26898529 PMCID: PMC4764868 DOI: 10.1038/ncomms10729] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/15/2016] [Indexed: 02/01/2023] Open
Abstract
Incorporation of new neurons enables plasticity and repair of circuits in the adult brain. Adult neurogenesis is a key feature of the mammalian olfactory system, with new olfactory sensory neurons (OSNs) wiring into highly organized olfactory bulb (OB) circuits throughout life. However, neither when new postnatally generated OSNs first form synapses nor whether OSNs retain the capacity for synaptogenesis once mature, is known. Therefore, how integration of adult-born OSNs may contribute to lifelong OB plasticity is unclear. Here, we use a combination of electron microscopy, optogenetic activation and in vivo time-lapse imaging to show that newly generated OSNs form highly dynamic synapses and are capable of eliciting robust stimulus-locked firing of neurons in the mouse OB. Furthermore, we demonstrate that mature OSN axons undergo continuous activity-dependent synaptic remodelling that persists into adulthood. OSN synaptogenesis, therefore, provides a sustained potential for OB plasticity and repair that is much faster than OSN replacement alone.
Collapse
Affiliation(s)
- Claire E. J. Cheetham
- Developmental Neural Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, Maryland 20892, USA
| | - Una Park
- Developmental Neural Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, Maryland 20892, USA
| | - Leonardo Belluscio
- Developmental Neural Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, Maryland 20892, USA
| |
Collapse
|
49
|
Brann JH, Ellis DP, Ku BS, Spinazzi EF, Firestein S. Injury in aged animals robustly activates quiescent olfactory neural stem cells. Front Neurosci 2015; 9:367. [PMID: 26500487 PMCID: PMC4596941 DOI: 10.3389/fnins.2015.00367] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022] Open
Abstract
While the capacity of the olfactory epithelium (OE) to generate sensory neurons continues into middle age in mice, it is presumed that this regenerative potential is present throughout all developmental stages. However, little experimental evidence exists to support the idea that this regenerative capacity remains in late adulthood, and questions about the functionality of neurons born at these late stages remain unanswered. Here, we extend our previous work in the VNO to investigate basal rates of proliferation in the OE, as well as after olfactory bulbectomy (OBX), a commonly used surgical lesion. In addition, we show that the neural stem cell retains its capacity to generate mature olfactory sensory neurons in aged animals. Finally, we demonstrate that regardless of age, a stem cell in the OE, the horizontal basal cell (HBC), exhibits a morphological switch from a flattened, quiescent phenotype to a pyramidal, proliferative phenotype following chemical lesion in aged animals. These findings provide new insights into determining whether an HBC is active or quiescent based on a structural feature as opposed to a biochemical one. More importantly, it suggests that neural stem cells in aged mice are responsive to the same signals triggering proliferation as those observed in young mice.
Collapse
Affiliation(s)
- Jessica H Brann
- Department of Biology, Loyola University Chicago Chicago, IL, USA
| | - Deandrea P Ellis
- Department of Biological Sciences, Columbia University New York, NY, USA
| | - Benson S Ku
- Department of Biological Sciences, Columbia University New York, NY, USA
| | | | - Stuart Firestein
- Department of Biological Sciences, Columbia University New York, NY, USA
| |
Collapse
|
50
|
Abstract
The sense of smell collects vital information about the environment by detecting a multitude of chemical odorants. Breadth and sensitivity are provided by a huge number of chemosensory receptor proteins, including more than 1,400 olfactory receptors (ORs). Organizing the sensory information generated by these receptors so that it can be processed and evaluated by the central nervous system is a major challenge. This challenge is overcome by monogenic and monoallelic expression of OR genes. The single OR expressed by each olfactory sensory neuron determines the neuron's odor sensitivity and the axonal connections it will make to downstream neurons in the olfactory bulb. The expression of a single OR per neuron is accomplished by coupling a slow chromatin-mediated activation process to a fast negative-feedback signal that prevents activation of additional ORs. Singular OR activation is likely orchestrated by a network of interchromosomal enhancer interactions and large-scale changes in nuclear architecture.
Collapse
Affiliation(s)
- Kevin Monahan
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, and Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10032; ,
| | - Stavros Lomvardas
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, and Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10032; ,
| |
Collapse
|