1
|
Lee TH, Nicolas JC, Quarta C. Molecular and functional mapping of the neuroendocrine hypothalamus: a new era begins. J Endocrinol Invest 2024; 47:2627-2648. [PMID: 38878127 DOI: 10.1007/s40618-024-02411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/08/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Recent advances in neuroscience tools for single-cell molecular profiling of brain neurons have revealed an enormous spectrum of neuronal subpopulations within the neuroendocrine hypothalamus, highlighting the remarkable molecular and cellular heterogeneity of this brain area. RATIONALE Neuronal diversity in the hypothalamus reflects the high functional plasticity of this brain area, where multiple neuronal populations flexibly integrate a variety of physiological outputs, including energy balance, stress and fertility, through crosstalk mechanisms with peripheral hormones. Intrinsic functional heterogeneity is also observed within classically 'defined' subpopulations of neuroendocrine neurons, including subtypes with distinct neurochemical signatures, spatial organisation and responsiveness to hormonal cues. AIM The aim of this review is to critically evaluate past and current research on the functional diversity of hypothalamic neuroendocrine neurons and their plasticity. It focuses on how this neuronal plasticity in this brain area relates to metabolic control, feeding regulation and interactions with stress and fertility-related neural circuits. CONCLUSION Our analysis provides an original framework for improving our understanding of the hypothalamic regulation of hormone function and the development of neuroendocrine diseases.
Collapse
Affiliation(s)
- T H Lee
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - J-C Nicolas
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - C Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France.
| |
Collapse
|
2
|
Wang J, O'Reilly M, Cooper IA, Chehrehasa F, Moody H, Beecher K. Mapping GABAergic projections that mediate feeding. Neurosci Biobehav Rev 2024; 163:105743. [PMID: 38821151 DOI: 10.1016/j.neubiorev.2024.105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Neuroscience offers important insights into the pathogenesis and treatment of obesity by investigating neural circuits underpinning appetite and feeding. Gamma-aminobutyric acid (GABA), one of the most abundant neurotransmitters in the brain, and its associated receptors represent an array of pharmacologically targetable mediators of appetite signalling. Targeting the GABAergic system is therefore an increasingly investigated approach to obesity treatment. However, the many GABAergic projections that control feeding have yet to be collectively analysed. This review provides a comprehensive analysis of the relationship between GABAergic signalling and appetite by examining both foundational studies and the results of newly emerging chemogenetic/optogenetic experiments. A current snapshot of these efforts to map GABAergic projections influencing appetite is provided, and potential avenues for further investigation are provided.
Collapse
Affiliation(s)
- Joshua Wang
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia.
| | - Max O'Reilly
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston 4029, QLD, Australia
| | | | - Fatemeh Chehrehasa
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia
| | - Hayley Moody
- Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia
| | - Kate Beecher
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston 4029, QLD, Australia
| |
Collapse
|
3
|
Al-Sayyar A, Hammad MM, Williams MR, Al-Onaizi M, Abubaker J, Alzaid F. Neurotransmitters in Type 2 Diabetes and the Control of Systemic and Central Energy Balance. Metabolites 2023; 13:384. [PMID: 36984824 PMCID: PMC10058084 DOI: 10.3390/metabo13030384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Efficient signal transduction is important in maintaining the function of the nervous system across tissues. An intact neurotransmission process can regulate energy balance through proper communication between neurons and peripheral organs. This ensures that the right neural circuits are activated in the brain to modulate cellular energy homeostasis and systemic metabolic function. Alterations in neurotransmitters secretion can lead to imbalances in appetite, glucose metabolism, sleep, and thermogenesis. Dysregulation in dietary intake is also associated with disruption in neurotransmission and can trigger the onset of type 2 diabetes (T2D) and obesity. In this review, we highlight the various roles of neurotransmitters in regulating energy balance at the systemic level and in the central nervous system. We also address the link between neurotransmission imbalance and the development of T2D as well as perspectives across the fields of neuroscience and metabolism research.
Collapse
Affiliation(s)
| | | | | | - Mohammed Al-Onaizi
- Dasman Diabetes Institute, Kuwait City 15462, Kuwait
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| | | | - Fawaz Alzaid
- Dasman Diabetes Institute, Kuwait City 15462, Kuwait
- Institut Necker Enfants Malades-INEM, Université Paris Cité, CNRS, INSERM, F-75015 Paris, France
| |
Collapse
|
4
|
Taurine Promotes Differentiation and Maturation of Neural Stem/Progenitor Cells from the Subventricular Zone via Activation of GABA A Receptors. Neurochem Res 2023; 48:2206-2219. [PMID: 36862323 PMCID: PMC10181976 DOI: 10.1007/s11064-023-03883-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/27/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023]
Abstract
Neurogenesis, the formation of new neurons in the brain, occurs throughout the lifespan in the subgranular zone of the dentate gyrus and subventricular zone (SVZ) lining the lateral ventricles of the mammal brain. In this process, gamma-aminobutyric acid (GABA) and its ionotropic receptor, the GABAA receptor (GABAAR), play a critical role in the proliferation, differentiation, and migration process of neural stem/progenitor cells (NPC). Taurine, a non-essential amino acid widely distributed throughout the central nervous system, increases the proliferation of SVZ progenitor cells by a mechanism that may involve GABAAR activation. Therefore, we characterized the effects of taurine on the differentiation process of NPC expressing GABAAR. Preincubation of NPC-SVZ with taurine increased microtubule-stabilizing proteins assessed with the doublecortin assay. Taurine, like GABA, stimulated a neuronal-like morphology of NPC-SVZ and increased the number and length of primary, secondary, and tertiary neurites compared with control NPC of the SVZ. Furthermore, neurite outgrowth was prevented when simultaneously incubating cells with taurine or GABA and the GABAAR blocker, picrotoxin. Patch-clamp recordings revealed a series of modifications in the NPCs' passive and active electrophysiological properties exposed to taurine, including regenerative spikes with kinetic properties similar to the action potentials of functional neurons.
Collapse
|
5
|
Patra PH, Tench B, Hitrec T, Holmes F, Drake R, Cerritelli S, Spanswick D, Pickering AE. Pro-Opiomelanocortin (POMC) neurons in the nucleus of the solitary tract mediate endorphinergic endogenous analgesia in mice. Pain 2022; 164:1051-1066. [PMID: 36448978 DOI: 10.1097/j.pain.0000000000002802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 09/27/2022] [Indexed: 12/02/2022]
Abstract
ABSTRACT The nucleus of the solitary tract (NTS) contains pro-opiomelanocortin (POMC) neurons which are one of the two major sources of β-endorphin in the brain. The functional role of these NTS POMC neurons in nociceptive and cardiorespiratory function is debated. We have shown that NTS POMC optogenetic activation produces bradycardia and transient apnoea in a working heart brainstem preparation and chemogenetic activation with an engineered ion channel (PSAM) produced opioidergic analgesia in vivo . To better define the role of the NTS POMC neurons in behaving animals, we adopted in vivo optogenetics (ChrimsonR) and excitatory/inhibitory chemogenetic DREADD (hM3Dq/hM4Di) strategies in POMC-Cre mice. We show that optogenetic activation of NTS POMC neurons produces time-locked, graded, transient bradycardia and bradypnoea in anaesthetised mice which is naloxone sensitive (1 mg/kg, i.p) suggesting a role of β-endorphin. Both optogenetic and chemogenetic activation of NTS POMC neurons produces sustained thermal analgesia in behaving mice which can be blocked by naloxone. It also produced analgesia in inflammatory pain (carrageenan) but not in a neuropathic pain model (tibial nerve transection). Inhibiting NTS POMC neurons does not produce any effect on basal nociception but inhibits stress-induced analgesia (unlike inhibition of arcuate POMC neurons). Activation of NTS POMC neuronal populations in conscious mice did not cause respiratory depression, anxiety or locomotor deficit (in open field) nor affective preference. These findings indicate that NTS POMC neurons play a key role in the generation of endorphinergic endogenous analgesia and can also regulate cardiorespiratory function.
Collapse
Affiliation(s)
- Pabitra Hriday Patra
- Anaesthesia, Pain & Critical Care Research, School of Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, UK
| | - Becks Tench
- Anaesthesia, Pain & Critical Care Research, School of Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, UK
| | - Timna Hitrec
- Anaesthesia, Pain & Critical Care Research, School of Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, UK
| | - Fiona Holmes
- Anaesthesia, Pain & Critical Care Research, School of Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, UK
| | - Robert Drake
- Anaesthesia, Pain & Critical Care Research, School of Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, UK
| | - Serena Cerritelli
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - David Spanswick
- Neurosolutions, University of Warwick, Gibbet Hill Road, Coventry, West Midlands, CV4 7AL, UK
| | - Anthony Edward Pickering
- Anaesthesia, Pain & Critical Care Research, School of Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, UK
| |
Collapse
|
6
|
Liu T, Xu Y, Yi CX, Tong Q, Cai D. The hypothalamus for whole-body physiology: from metabolism to aging. Protein Cell 2022; 13:394-421. [PMID: 33826123 PMCID: PMC9095790 DOI: 10.1007/s13238-021-00834-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/01/2021] [Indexed: 01/05/2023] Open
Abstract
Obesity and aging are two important epidemic factors for metabolic syndrome and many other health issues, which contribute to devastating diseases such as cardiovascular diseases, stroke and cancers. The brain plays a central role in controlling metabolic physiology in that it integrates information from other metabolic organs, sends regulatory projections and orchestrates the whole-body function. Emerging studies suggest that brain dysfunction in sensing various internal cues or processing external cues may have profound effects on metabolic and other physiological functions. This review highlights brain dysfunction linked to genetic mutations, sex, brain inflammation, microbiota, stress as causes for whole-body pathophysiology, arguing brain dysfunction as a root cause for the epidemic of aging and obesity-related disorders. We also speculate key issues that need to be addressed on how to reveal relevant brain dysfunction that underlines the development of these disorders and diseases in order to develop new treatment strategies against these health problems.
Collapse
Affiliation(s)
- Tiemin Liu
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Institute of Metabolism and Integrative Biology, Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yong Xu
- grid.39382.330000 0001 2160 926XChildren’s Nutrition Research Center, Department of Pediatrics, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Chun-Xia Yi
- grid.7177.60000000084992262Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| | - Qingchun Tong
- grid.453726.10000 0004 5906 7293Brown Foundation Institute of Molecular Medicine, Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Graduate Program in Neuroscience of MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030 USA
| | - Dongsheng Cai
- grid.251993.50000000121791997Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 USA
| |
Collapse
|
7
|
Jais A, Brüning JC. Arcuate Nucleus-Dependent Regulation of Metabolism-Pathways to Obesity and Diabetes Mellitus. Endocr Rev 2022; 43:314-328. [PMID: 34490882 PMCID: PMC8905335 DOI: 10.1210/endrev/bnab025] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 01/12/2023]
Abstract
The central nervous system (CNS) receives information from afferent neurons, circulating hormones, and absorbed nutrients and integrates this information to orchestrate the actions of the neuroendocrine and autonomic nervous systems in maintaining systemic metabolic homeostasis. Particularly the arcuate nucleus of the hypothalamus (ARC) is of pivotal importance for primary sensing of adiposity signals, such as leptin and insulin, and circulating nutrients, such as glucose. Importantly, energy state-sensing neurons in the ARC not only regulate feeding but at the same time control multiple physiological functions, such as glucose homeostasis, blood pressure, and innate immune responses. These findings have defined them as master regulators, which adapt integrative physiology to the energy state of the organism. The disruption of this fine-tuned control leads to an imbalance between energy intake and expenditure as well as deregulation of peripheral metabolism. Improving our understanding of the cellular, molecular, and functional basis of this regulatory principle in the CNS could set the stage for developing novel therapeutic strategies for the treatment of obesity and metabolic syndrome. In this review, we summarize novel insights with a particular emphasis on ARC neurocircuitries regulating food intake and glucose homeostasis and sensing factors that inform the brain of the organismal energy status.
Collapse
Affiliation(s)
- Alexander Jais
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,National Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
8
|
Hood LE, Nagy EK, Leyrer-Jackson JM, Olive MF. Ethanol consumption activates a subset of arcuate nucleus pro-opiomelanocortin (POMC)-producing neurons: a c-fos immunohistochemistry study. Physiol Rep 2022; 10:e15231. [PMID: 35312178 PMCID: PMC8935532 DOI: 10.14814/phy2.15231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Ethanol activates various opioid peptide-containing circuits within the brain that may underlie its motivational and rewarding effects. One component of this circuitry consists of neurons located in the arcuate nucleus (ArcN) of the hypothalamus which express pro-opiomelanocortin (POMC), an opioid precursor peptide that is cleaved to form bioactive fragments including β-endorphin and α-melanocyte stimulating hormone. In this study, we sought to determine if ethanol intake activates ArcN POMC neurons as measured by expression of the immediate early gene c-fos. Male and female POMC-EGFP mice underwent drinking-in-the-dark (DID) procedures for 3 consecutive days (2 h/day) and were allowed to consume either ethanol (20% v/v), saccharin (0.2% w/v), or water. On the fourth day of DID procedures, animals were allowed to consume their respective solutions for 20 min, and 1 h following the session brains were harvested and processed for c-fos immunohistochemistry and co-localization with EGFP. Our results indicate that ethanol intake activates a subset (~15-20%) of ArcN POMC neurons, whereas saccharin or water intake activates significantly fewer (~5-12%) of these neurons. The percent of activated POMC neurons did not correlate with blood ethanol levels at the time of tissue collection, and activation appeared to be distributed throughout the rostrocaudal axis of the ArcN. No sex differences were observed in the degree of neuronal activation across drinking solutions. These findings indicate a preferential activation of ArcN POMC neurons by ethanol consumption, strengthening the notion that ethanol activates endogenous opioid systems in the brain which may underlie its motivational properties.
Collapse
Affiliation(s)
- Lauren E Hood
- Department of Psychology, Arizona State University, Tempe, Arizona, 85281, USA
| | - Erin K Nagy
- Department of Psychology, Arizona State University, Tempe, Arizona, 85281, USA
| | | | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, Arizona, 85281, USA
| |
Collapse
|
9
|
Chaves T, Török B, Fazekas CL, Correia P, Sipos E, Várkonyi D, Hellinger Á, Erk D, Zelena D. Median raphe region GABAergic neurons contribute to social interest in mouse. Life Sci 2022; 289:120223. [PMID: 34896160 DOI: 10.1016/j.lfs.2021.120223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 10/19/2022]
Abstract
Gamma-aminobutyric acid (GABA) is a well-known inhibitory neurotransmitter implicated in numerous physiological and pathological behaviors including social interest. Dysregulation of the median raphe region (MRR), a main serotoninergic nucleus, is also characterized by increased social problems. As the majority of MRR cells are GABAergic, we aimed to reveal the social role of these cells. Chemogenetic techniques were used in vesicular GABA transporter Cre mice and with the help of adeno-associated virus vectors artificial receptors (DREADDs, stimulatory, inhibitory or control, containing only a fluorophore) were expressed in MRR GABAergic cells confirmed by immunohistochemistry. Four weeks after viral injection a behavioral test battery (sociability; social interaction; resident-intruder) was conducted. The artificial ligand (clozapine-N-oxide, 1 mg/10 ml/kg) was administrated 30 min before the tests. As possible confounding factors, locomotion (open field/OF), anxiety-like behavior (elevated plus maze/EPM), and short-term memory (Y-maze) were also evaluated. Stimulation of the GABAergic cells in MRR had no effect on locomotion or working and social memory; however, it increased social interest during sociability and social interaction but not in resident-intruder tests. Accordingly, c-Fos elevation in MRR-GABAergic cells was detected after sociability, but not resident-intruder tests. In the EPM test, the inhibitory group entered into the open arms later, suggesting an anxiogenic-like tendency. We confirmed the role of MRR-GABAergic cells in promoting social interest. However, different subpopulations (e.g. long vs short projecting, various neuropeptide containing) might have divergent roles, which might remain hidden and requires further studies.
Collapse
Affiliation(s)
- Tiago Chaves
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Bibiána Török
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Csilla Lea Fazekas
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Pedro Correia
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Eszter Sipos
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - Dorottya Várkonyi
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - Ákos Hellinger
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - Dogu Erk
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - Dóra Zelena
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary; Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
10
|
OUP accepted manuscript. Nutr Rev 2022; 80:2178-2197. [DOI: 10.1093/nutrit/nuac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Caron A, Jane Michael N. New Horizons: Is Obesity a Disorder of Neurotransmission? J Clin Endocrinol Metab 2021; 106:e4872-e4886. [PMID: 34117881 DOI: 10.1210/clinem/dgab421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 11/19/2022]
Abstract
Obesity is a disease of the nervous system. While some will view this statement as provocative, others will take it as obvious. Whatever our side is, the pharmacology tells us that targeting the nervous system works for promoting weight loss. It works, but at what cost? Is the nervous system a safe target for sustainable treatment of obesity? What have we learned-and unlearned-about the central control of energy balance in the last few years? Herein we provide a thought-provoking exploration of obesity as a disorder of neurotransmission. We discuss the state of knowledge on the brain pathways regulating energy homeostasis that are commonly targeted in anti-obesity therapy and explore how medications affecting neurotransmission such as atypical antipsychotics, antidepressants, and antihistamines relate to body weight. Our goal is to provide the endocrine community with a conceptual framework that will help expending our understanding of the pathophysiology of obesity, a disease of the nervous system.
Collapse
Affiliation(s)
- Alexandre Caron
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
- Montreal Diabetes Research Center, Montreal, QC, Canada
| | - Natalie Jane Michael
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| |
Collapse
|
12
|
Surbhi, Wittmann G, Low MJ, Lechan RM. Adult-born proopiomelanocortin neurons derived from Rax-expressing precursors mitigate the metabolic effects of congenital hypothalamic proopiomelanocortin deficiency. Mol Metab 2021; 53:101312. [PMID: 34329773 PMCID: PMC8383116 DOI: 10.1016/j.molmet.2021.101312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Proopiomelanocortin (POMC) neurons of the hypothalamic arcuate nucleus are essential regulators of energy balance. Selective loss of POMC production in these cells results in extreme obesity and metabolic comorbidities. Neurogenesis occurs in the adult hypothalamus, but it remains uncertain whether functional POMC neurons emerge in physiologically significant numbers during adulthood. Here, we tested whether Rax-expressing precursors generate POMC neurons in adult mice and rescue the metabolic phenotype caused by congenital hypothalamic POMC deficiency. METHODS Initially, we identified hypothalamic Rax-expressing cell types using wild-type and Rax-CreERT2:Ai34D mice. Then we generated compound Rax-CreERT2:ArcPomcloxTB/loxTB mice in which endogenous hypothalamic Pomc expression is silenced, but can be restored by tamoxifen administration selectively in neurons derived from Rax+ progenitors. The number of POMC neurons generated by Rax+ progenitors in adult mice and their axonal projections was determined. The metabolic effects of these neurons were assessed by measuring food intake, bodyweight, and body composition, along with glucose and insulin levels. RESULTS We found that Rax is expressed by tanycytes and a previously unrecognized cell type in the hypothalamic parenchyma of adult mice. Rax+ progenitors generated ~10% of the normal adult hypothalamic POMC neuron population within two weeks of tamoxifen treatment. The same rate and steady state of POMC neurogenesis persisted from young adult to aged mice. These new POMC neurons established terminal projections to brain regions that were involved in energy homeostasis. Mice with Rax+ progenitor-derived POMC neurons had reduced body fat mass, improved glucose tolerance, increased insulin sensitivity, and decreased bodyweight in proportion to the number of new POMC neurons. CONCLUSIONS These data demonstrate that Rax+ progenitors generate POMC neurons in sufficient numbers during adulthood to mitigate the metabolic abnormalities of hypothalamic POMC-deficient mice. The findings suggest that adult hypothalamic neurogenesis is a robust phenomenon in mice that can significantly impact energy homeostasis.
Collapse
Affiliation(s)
- Surbhi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA.
| | - Gábor Wittmann
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.
| | - Malcolm J Low
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA.
| | - Ronald M Lechan
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.
| |
Collapse
|
13
|
Generation of hiPSC-derived low threshold mechanoreceptors containing axonal termini resembling bulbous sensory nerve endings and expressing Piezo1 and Piezo2. Stem Cell Res 2021; 56:102535. [PMID: 34607262 DOI: 10.1016/j.scr.2021.102535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/18/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022] Open
Abstract
Somatosensory low threshold mechanoreceptors (LTMRs) sense innocuous mechanical forces, largely through specialized axon termini termed sensory nerve endings, where the mechanotransduction process initiates upon activation of mechanotransducers. In humans, a subset of sensory nerve endings is enlarged, forming bulb-like expansions, termed bulbous nerve endings. There is no in vitro human model to study these neuronal endings. Piezo2 is the main mechanotransducer found in LTMRs. Recent evidence shows that Piezo1, the other mechanotransducer considered absent in dorsal root ganglia (DRG), is expressed at low level in somatosensory neurons. We established a differentiation protocol to generate, from iPSC-derived neuronal precursor cells, human LTMR recapitulating bulbous sensory nerve endings and heterogeneous expression of Piezo1 and Piezo2. The derived neurons express LTMR-specific genes, convert mechanical stimuli into electrical signals and have specialized axon termini that morphologically resemble bulbous nerve endings. Piezo2 is concentrated within these enlarged axon termini. Some derived neurons express low level Piezo1, and a subset co-express both channels. Thus, we generated a unique, iPSCs-derived human model that can be used to investigate the physiology of bulbous sensory nerve endings, and the role of Piezo1 and 2 during mechanosensation.
Collapse
|
14
|
Cavalcanti-de-Albuquerque JP, Donato J. Rolling out physical exercise and energy homeostasis: Focus on hypothalamic circuitries. Front Neuroendocrinol 2021; 63:100944. [PMID: 34425188 DOI: 10.1016/j.yfrne.2021.100944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 01/17/2023]
Abstract
Energy balance is the fine regulation of energy expenditure and energy intake. Negative energy balance causes body weight loss, while positive energy balance promotes weight gain. Modern societies offer a maladapted way of life, where easy access to palatable foods and the lack of opportunities to perform physical activity are considered the roots of the obesity pandemic. Physical exercise increases energy expenditure and, consequently, is supposed to promote weight loss. Paradoxically, physical exercise acutely drives anorexigenic-like effects, but the mechanisms are still poorly understood. Using an evolutionary background, this review aims to highlight the potential involvement of the melanocortin system and other hypothalamic neural circuitries regulating energy balance during and after physical exercise. The physiological significance of these changes will be explored, and possible signalling agents will be addressed. The knowledge discussed here might be important for clarifying obesity aetiology as well as new therapeutic approaches for body weight loss.
Collapse
Affiliation(s)
| | - José Donato
- Department of Physiology and Biophysics, University of São Paulo, São Paulo 05508-900, Brazil.
| |
Collapse
|
15
|
The Structural and Electrophysiological Properties of Progesterone Receptor-Expressing Neurons Vary along the Anterior-Posterior Axis of the Ventromedial Hypothalamus and Undergo Local Changes across the Reproductive Cycle. eNeuro 2021; 8:ENEURO.0049-21.2021. [PMID: 33879568 PMCID: PMC8184219 DOI: 10.1523/eneuro.0049-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/02/2022] Open
Abstract
Sex hormone levels continuously fluctuate across the reproductive cycle, changing the activity of neuronal circuits to coordinate female behavior and reproductive capacity. The ventrolateral division of the ventromedial hypothalamus (VMHvl) contains neurons expressing receptors for sex hormones and its function is intimately linked to female sexual receptivity. However, recent findings suggest that the VMHvl is functionally heterogeneous. Here, we used whole recordings and intracellular labeling to characterize the electrophysiological and morphologic properties of individual VMHvl neurons in naturally cycling females and report the existence of multiple electrophysiological phenotypes within the VMHvl. We found that the properties of progesterone receptor expressing (PR+) neurons, but not PR– neurons, depended systematically on the neuron’s location along the anterior-posterior (AP) axis of the VMHvl and the phase within the reproductive cycle. Prominent among this, the resting membrane potential of anterior PR+ neurons decreased during the receptive phase, while the excitability of medial PR+ neurons increased during the non-receptive phase. During the receptive phase of the cycle, posterior PR+ neurons simultaneously showed an increase in dendritic complexity and a decrease in spine density. These findings reveal an extensive diversity of local rules driving structural and physiological changes in response to fluctuating levels of sex hormones, supporting the anatomic and functional subdivision of the VMHvl and its possible role in the orchestration of different aspects of female socio-sexual behavior.
Collapse
|
16
|
Quarta C, Claret M, Zeltser LM, Williams KW, Yeo GSH, Tschöp MH, Diano S, Brüning JC, Cota D. POMC neuronal heterogeneity in energy balance and beyond: an integrated view. Nat Metab 2021; 3:299-308. [PMID: 33633406 PMCID: PMC8085907 DOI: 10.1038/s42255-021-00345-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/13/2021] [Indexed: 01/31/2023]
Abstract
Hypothalamic AgRP and POMC neurons are conventionally viewed as the yin and yang of the body's energy status, since they act in an opposite manner to modulate appetite and systemic energy metabolism. However, although AgRP neurons' functions are comparatively well understood, a unifying theory of how POMC neuronal cells operate has remained elusive, probably due to their high level of heterogeneity, which suggests that their physiological roles might be more complex than initially thought. In this Perspective, we propose a conceptual framework that integrates POMC neuronal heterogeneity with appetite regulation, whole-body metabolic physiology and the development of obesity. We highlight emerging evidence indicating that POMC neurons respond to distinct combinations of interoceptive signals and food-related cues to fine-tune divergent metabolic pathways and behaviours necessary for survival. The new framework we propose reflects the high degree of developmental plasticity of this neuronal population and may enable progress towards understanding of both the aetiology and treatment of metabolic disorders.
Collapse
Affiliation(s)
- Carmelo Quarta
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, INSERM U1215, Bordeaux, France
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER), Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Lori M Zeltser
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität, Munich, Germany
| | - Sabrina Diano
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- National Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Daniela Cota
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, INSERM U1215, Bordeaux, France.
| |
Collapse
|
17
|
Rau AR, Hentges ST. Energy state alters regulation of proopiomelanocortin neurons by glutamatergic ventromedial hypothalamus neurons: pre- and postsynaptic mechanisms. J Neurophysiol 2021; 125:720-730. [PMID: 33441043 DOI: 10.1152/jn.00359.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To maintain metabolic homeostasis, motivated behaviors are driven by neuronal circuits that process information encoding the animal's energy state. Such circuits likely include ventromedial hypothalamus (VMH) glutamatergic neurons that project throughout the brain to drive food intake and energy expenditure. Targets of VMH glutamatergic neurons include proopiomelanocortin (POMC) neurons in the arcuate nucleus that, when activated, inhibit food intake. Although an energy-state-sensitive, glutamate circuit between the VMH and POMC neurons has been previously indicated, the significance and details of this circuit have not been fully elucidated. Thus, the goal of the present work was to add to the understanding of this circuit. Using a knockout strategy, the data show that the VMH glutamate→POMC neuron circuit is important for the inhibition of food intake. Conditional deletion of the vesicular glutamate transporter (VGLUT2) in the VMH results in increased bodyweight and increased food intake following a fast in both male and female mice. Additionally, the targeted blunting of glutamate release from the VMH resulted in an ∼32% reduction in excitatory inputs to POMC cells, suggesting that this circuit may respond to changes in energy state to affect POMC activity. Indeed, we found that glutamate release is increased at VMH-to-POMC synapses during feeding and POMC AMPA receptors switch from a calcium-permeable state to a calcium-impermeable state during fasting. Collectively, these data indicate that there is an energy-balance-sensitive VMH-to-POMC circuit conveying excitatory neuromodulation onto POMC cells at both pre- and postsynaptic levels, which may contribute to maintaining appropriate food intake and body mass.NEW & NOTEWORTHY Despite decades of research, the neurocircuitry underlying metabolic homeostasis remains incompletely understood. Specifically, the roles of amino acid transmitters, particularly glutamate, have received less attention than hormonal signals. Here, we characterize an energy-state-sensitive glutamate circuit from the ventromedial hypothalamus to anorexigenic proopiomelanocortin (POMC) neurons that responds to changes in energy state at both sides of the synapse, providing novel information about how variations in metabolic state affect excitatory drive onto POMC cells.
Collapse
Affiliation(s)
- Andrew R Rau
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Shane T Hentges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
18
|
Kwon E, Jo YH. Activation of the ARC POMC→MeA Projection Reduces Food Intake. Front Neural Circuits 2020; 14:595783. [PMID: 33250721 PMCID: PMC7674918 DOI: 10.3389/fncir.2020.595783] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/09/2020] [Indexed: 02/05/2023] Open
Abstract
Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC) plays an essential role in the control of food intake and energy expenditure. Melanocortin-4 receptors (MC4Rs) are expressed in key areas that are implicated in regulating energy homeostasis. Although the importance of MC4Rs in the paraventricular hypothalamus (PVH) has been well documented, the role of MC4Rs in the medial amygdala (MeA) on feeding remains controversial. In this study, we specifically examine the role of a novel ARCPOMC→MeA neural circuit in the regulation of short-term food intake. To map a local melanocortinergic neural circuit, we use monosynaptic anterograde as well as retrograde viral tracers and perform double immunohistochemistry to determine the identity of the neurons receiving synaptic input from POMC neurons in the ARC. To investigate the role of the ARCPOMC→MeA projection on feeding, we optogenetically stimulate channelrhodopsin-2 (ChR2)-expressing POMC fibers in the MeA. Anterograde viral tracing studies reveal that ARC POMC neurons send axonal projections to estrogen receptor-α (ER-α)- and MC4R-expressing neurons in the MeA. Retrograde viral tracing experiments show that the neurons projecting to the MeA is located mainly in the lateral part of the ARC. Optogenetic stimulation of the ARCPOMC→MeA pathway reduces short-term food intake. This anorectic effect is blocked by treatment with the MC4R antagonist SHU9119. In addition to the melanocortinergic local circuits within the hypothalamus, this extrahypothalamic ARCPOMC→MeA neural circuit would play a role in regulating short-term food intake.
Collapse
Affiliation(s)
- Eunjin Kwon
- The Fleischer Institute for Diabetes and Metabolism, Bronx, NY, United States
- Division of Endocrinology, Department of Medicine, Bronx, NY, United States
| | - Young-Hwan Jo
- The Fleischer Institute for Diabetes and Metabolism, Bronx, NY, United States
- Division of Endocrinology, Department of Medicine, Bronx, NY, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
19
|
Rau AR, King CM, Hentges ST. Disruption of GABA or glutamate release from POMC neurons in the adult mouse does not affect metabolic end points. Am J Physiol Regul Integr Comp Physiol 2020; 319:R592-R601. [PMID: 32936679 DOI: 10.1152/ajpregu.00180.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proopiomelanocortin (POMC) neurons contribute to the regulation of many physiological processes; the majority of which have been attributed to the release of peptides produced from the POMC prohormone such as α-MSH, which plays key roles in food intake and metabolism. However, it is now clear that POMC neurons also release amino acid transmitters that likely contribute to the overall function of POMC cells. Recent work indicates that constitutive deletion of these transmitters can affect metabolic phenotypes, but also that the expression of GABAergic or glutamatergic markers changes throughout development. The goal of the present study was to determine whether the release of glutamate or GABA from POMC neurons in the adult mouse contributes notably to energy balance regulation. Disturbed release of glutamate or GABA specifically from POMC neurons in adult mice was achieved using a tamoxifen-inducible Cre construct (Pomc-CreERT2) expressed in mice also carrying floxed versions of Slc17a6 (vGlut2) or Gad1 and Gad2, encoding the vesicular glutamate transporter type 2 and GAD67 and GAD65 proteins, respectively. All mice in the experiments received tamoxifen injections, but control mice lacked the tamoxifen-inducible Cre sequence. Body weight was unchanged in Gad1- and Gad2- or vGlut2-deleted female and male mice. Additionally, no significant differences in glucose tolerance or refeeding after an overnight fast were observed. These data collectively suggest that the release of GABA or glutamate from POMC neurons in adult mice does not significantly contribute to the metabolic parameters tested here. In light of prior work, the data also suggest that amino acid transmitter release from POMC cells may contribute to separate functions in the adult versus the developing mouse.
Collapse
Affiliation(s)
- Andrew R Rau
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Connie M King
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Shane T Hentges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
20
|
Marshall CJ, Prescott M, Campbell RE. Investigating the NPY/AgRP/GABA to GnRH Neuron Circuit in Prenatally Androgenized PCOS-Like Mice. J Endocr Soc 2020; 4:bvaa129. [PMID: 33094210 PMCID: PMC7566551 DOI: 10.1210/jendso/bvaa129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Polycystic ovary syndrome (PCOS), the most common form of anovulatory infertility, is associated with altered signaling within the hormone-sensitive neuronal network that regulates gonadotropin-releasing hormone (GnRH) neurons, leading to a pathological increase in GnRH secretion. Circuit remodeling is evident between GABAergic neurons in the arcuate nucleus (ARN) and GnRH neurons in a murine model of PCOS. One-third of ARN GABA neurons co-express neuropeptide Y (NPY), which has a known yet complex role in regulating GnRH neurons and reproductive function. Here, we investigated whether the NPY-expressing subpopulation (NPYARN) of ARN GABA neurons (GABAARN) is also affected in prenatally androgenized (PNA) PCOS-like NPYARN reporter mice [Agouti-related protein (AgRP)-Cre;τGFP]. PCOS-like mice and controls were generated by exposure to di-hydrotestosterone or vehicle (VEH) in late gestation. τGFP-expressing NPYARN neuron fiber appositions with GnRH neurons and gonadal steroid hormone receptor expression in τGFP-expressing NPYARN neurons were assessed using confocal microscopy. Although GnRH neurons received abundant close contacts from τGFP-expressing NPYARN neuron fibers, the number and density of putative inputs was not affected by prenatal androgen excess. NPYARN neurons did not co-express progesterone receptor or estrogen receptor α in either PNA or VEH mice. However, the proportion of NPYARN neurons co-expressing the androgen receptor was significantly elevated in PNA mice. Therefore, NPYARN neurons are not remodeled by prenatal androgen excess like the wider GABAARN population, indicating GABA-to-GnRH neuron circuit remodeling occurs in a presently unidentified non-NPY/AgRP population of GABAARN neurons. NPYARN neurons do, however, show independent changes in the form of elevated androgen sensitivity.
Collapse
Affiliation(s)
- Christopher J Marshall
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Melanie Prescott
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
21
|
Qu N, He Y, Wang C, Xu P, Yang Y, Cai X, Liu H, Yu K, Pei Z, Hyseni I, Sun Z, Fukuda M, Li Y, Tian Q, Xu Y. A POMC-originated circuit regulates stress-induced hypophagia, depression, and anhedonia. Mol Psychiatry 2020; 25:1006-1021. [PMID: 31485012 PMCID: PMC7056580 DOI: 10.1038/s41380-019-0506-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 06/01/2019] [Accepted: 07/17/2019] [Indexed: 01/27/2023]
Abstract
Chronic stress causes dysregulations of mood and energy homeostasis, but the neurocircuitry underlying these alterations remain to be fully elucidated. Here we demonstrate that chronic restraint stress in mice results in hyperactivity of pro-opiomelanocortin neurons in the arcuate nucleus of the hypothalamus (POMCARH neurons) associated with decreased neural activities of dopamine neurons in the ventral tegmental area (DAVTA neurons). We further revealed that POMCARH neurons project to the VTA and provide an inhibitory tone to DAVTA neurons via both direct and indirect neurotransmissions. Finally, we show that photoinhibition of the POMCARH→VTA circuit in mice increases body weight and food intake, and reduces depression-like behaviors and anhedonia in mice exposed to chronic restraint stress. Thus, our results identified a novel neurocircuitry regulating feeding and mood in response to stress.
Collapse
Affiliation(s)
- Na Qu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, 430012, Wuhan, China
| | - Yanlin He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Pingwen Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Xing Cai
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Hesong Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kaifan Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Zhou Pei
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ilirjana Hyseni
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Makoto Fukuda
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yi Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, 430012, Wuhan, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, 430074, Wuhan, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Institute for Brain Research, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Trotta M, Bello EP, Alsina R, Tavella MB, Ferrán JL, Rubinstein M, Bumaschny VF. Hypothalamic Pomc expression restricted to GABAergic neurons suppresses Npy overexpression and restores food intake in obese mice. Mol Metab 2020; 37:100985. [PMID: 32311511 PMCID: PMC7292867 DOI: 10.1016/j.molmet.2020.100985] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 12/28/2022] Open
Abstract
Objective Hypothalamic arcuate proopiomelanocortin (Arc-POMC) neurons are involved in different physiological processes such as the regulation of energy balance, glucose homeostasis, and stress-induced analgesia. Since these neurons heterogeneously express different biological markers and project to many hypothalamic and extrahypothalamic areas, it is proposed that Arc-POMC neurons could be classified into different subpopulations having diverse physiological roles. The aim of the present study was to characterize the contribution of the subpopulation of Arc-POMC neurons cosecreting gamma-aminobutyric acid (GABA) neurotransmitter in the control of energy balance. Methods Arc-Pomc expression restricted to GABAergic-POMC neurons was achieved by crossing a reversible Pomc-deficient mouse line (arcPomc−) with a tamoxifen-inducible Gad2-CreER transgenic line. Pomc expression was rescued in the compound arcPomc−/−:Gad2-CreER female and male mice by tamoxifen treatment at postnatal days 25 (P25) or 60 (P60), and body weight, daily food intake, fasting glycemia, and fasting-induced hyperphagia were measured. POMC recovery was quantified by immunohistochemistry and semiquantitative RT-PCR. Neuropeptide Y (NPY) and GABAergic neurons were identified by in situ hybridization. Arc-POMC neurons projecting to the dorsomedial hypothalamic nucleus (DMH) were studied by stereotactic intracerebral injection of fluorescent retrobeads into the DMH. Results Tamoxifen treatment of arcPomc−/−:Gad2-CreER mice at P60 resulted in Pomc expression in ∼23–25% of Arc-POMC neurons and ∼15–23% of Pomc mRNA levels, compared to Gad2-CreER control mice. Pomc rescue in GABAergic-POMC neurons at P60 normalized food intake, glycemia, and fasting-induced hyperphagia, while significantly reducing body weight. Energy balance was also improved in arcPomc−/−:Gad2-CreER mice treated with tamoxifen at P25. Distribution analysis of rescued POMC immunoreactive fibers revealed that the DMH is a major target site of GABAergic-POMC neurons. Further, the expression of the orexigenic neuropeptide Y (NPY) in the DMH was increased in arcPomc−/− obese mice but was completely restored after Pomc rescue in arcPomc−/−:Gad2-CreER mice. Finally, we found that ∼75% of Arc-POMC neurons projecting to the DMH are GABAergic. Conclusions In the present study, we show that the expression of Pomc in the subpopulation of Arc-GABAergic-POMC neurons is sufficient to maintain normal food intake. In addition, we found that DMH-NPY expression is negatively correlated with Pomc expression in GABAergic-POMC neurons, suggesting that food intake may be regulated by an Arc-GABAergic-POMC → DMH-NPY pathway. The subpopulation of arcuate GABAergic-POMC neurons is sufficient to maintain normal food intake. Overweight induced by Pomc deficiency is reduced by arcuate Pomc expression restricted to GABAergic-POMC neurons. DMH-Npy overexpression in POMC-deficient mice is restored by Pomc rescue restricted to GABAergic-POMC neurons. Arcuate POMC neurons projecting to the DMH are mainly GABAergic.
Collapse
Affiliation(s)
- Milagros Trotta
- Grupo de Neurociencia de Sistemas, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO HOUSSAY), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Paraguay 2155, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Estefanía Pilar Bello
- Grupo de Neurociencia de Sistemas, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO HOUSSAY), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Paraguay 2155, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Ramiro Alsina
- Grupo de Neurociencia de Sistemas, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO HOUSSAY), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Paraguay 2155, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina.
| | - María Belén Tavella
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Ciudad Autónoma de Buenos Aires, Argentina.
| | - José Luis Ferrán
- Department of Human Anatomy, School of Medicine, University of Murcia and IMIB-Arrixaca Institute, Carretera Buenavista s/n, 30120, El Palmar, Murcia, Spain.
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Viviana Florencia Bumaschny
- Grupo de Neurociencia de Sistemas, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO HOUSSAY), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Paraguay 2155, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Ciencias Fisiológicas, Facultad de Medicina. Universidad de Buenos Aires, Paraguay 2155, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
23
|
Abstract
The scientific community has searched for years for ways of examining neuronal tissue to track neural activity with reliable anatomical markers for stimulated neuronal activity. Existing studies that focused on hypothalamic systems offer a few options but do not always compare approaches or validate them for dependence on cell firing, leaving the reader uncertain of the benefits and limitations of each method. Thus, in this article, potential markers will be presented and, where possible, placed into perspective in terms of when and how these methods pertain to hypothalamic function. An example of each approach is included. In reviewing the approaches, one is guided through how neurons work, the consequences of their stimulation, and then the potential markers that could be applied to hypothalamic systems are discussed. Approaches will use features of neuronal glucose utilization, water/oxygen movement, changes in neuron-glial interactions, receptor translocation, cytoskeletal changes, stimulus-synthesis coupling that includes expression of the heteronuclear or mature mRNA for transmitters or the enzymes that make them, and changes in transcription factors (immediate early gene products, precursor buildup, use of promoter-driven surrogate proteins, and induced expression of added transmitters. This article includes discussion of methodological limitations and the power of combining approaches to understand neuronal function. © 2020 American Physiological Society. Compr Physiol 10:549-575, 2020.
Collapse
Affiliation(s)
- Gloria E. Hoffman
- Department of Biology, Morgan State University, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Romanov RA, Alpár A, Hökfelt T, Harkany T. Unified Classification of Molecular, Network, and Endocrine Features of Hypothalamic Neurons. Annu Rev Neurosci 2019; 42:1-26. [DOI: 10.1146/annurev-neuro-070918-050414] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peripheral endocrine output relies on either direct or feed-forward multi-order command from the hypothalamus. Efficient coding of endocrine responses is made possible by the many neuronal cell types that coexist in intercalated hypothalamic nuclei and communicate through extensive synaptic connectivity. Although general anatomical and neurochemical features of hypothalamic neurons were described during the past decades, they have yet to be reconciled with recently discovered molecular classifiers and neurogenetic function determination. By interrogating magnocellular as well as parvocellular dopamine, GABA, glutamate, and phenotypically mixed neurons, we integrate available information at the molecular, cellular, network, and endocrine output levels to propose a framework for the comprehensive classification of hypothalamic neurons. Simultaneously, we single out putative neuronal subclasses for which future research can fill in existing gaps of knowledge to rationalize cellular diversity through function-determinant molecular marks in the hypothalamus.
Collapse
Affiliation(s)
- Roman A. Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Alán Alpár
- Department of Anatomy, Histology, and Embryology, and SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Tomas Hökfelt
- Department of Neuroscience, Biomedicum, Karolinska Institutet, SE-17165 Stockholm, Sweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
- Department of Neuroscience, Biomedicum, Karolinska Institutet, SE-17165 Stockholm, Sweden
| |
Collapse
|
25
|
GABAergic Inputs to POMC Neurons Originating from the Dorsomedial Hypothalamus Are Regulated by Energy State. J Neurosci 2019; 39:6449-6459. [PMID: 31235650 DOI: 10.1523/jneurosci.3193-18.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/21/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
Neuronal circuits regulating hunger and satiety synthesize information encoding the energy state of the animal and translate those signals into motivated behaviors to meet homeostatic needs. Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus are activated by energy surfeits and inhibited by energy deficits. When activated, these cells inhibit food intake and facilitate weight loss. Conversely, decreased activity in POMC cells is associated with increased food intake and obesity. Circulating nutrients and hormones modulate the activity of POMC neurons over protracted periods of time. However, recent work indicates that calcium activity in POMC cells changes in response to food cues on times scales consistent with the rapid actions of amino acid transmitters. Indeed, the frequency of spontaneous IPSCs (sIPSCs) onto POMC neurons increases during caloric deficits. However, the afferent brain regions responsible for this inhibitory modulation are currently unknown. Here, through the use of brain region-specific deletion of GABA release in both male and female mice we show that neurons in the dorsomedial hypothalamus (DMH) are responsible for the majority of sIPSCs in POMC neurons as well as the fasting-induced increase in sIPSC frequency. Further, the readily releasable pool of GABA vesicles and the release probability of GABA is increased at DMH-to-POMC synapses following an overnight fast. Collectively these data provide evidence that DMH-to-POMC GABA circuitry conveys inhibitory neuromodulation onto POMC cells that is sensitive to the animal's energy state.SIGNIFICANCE STATEMENT Activation of proopiomelanocortin (POMC) cells signals satiety, whereas GABAergic cells in the dorsomedial hypothalamus (DMH) can increase food consumption. However, communication between these cells, particularly in response to changes in metabolic state, is unknown. Here, through targeted inhibition of DMH GABA release, we show that DMH neurons contribute a significant portion of spontaneously released GABA onto POMC cells and are responsible for increased GABAergic inhibition of POMC cells during fasting, likely mediated through increased release probability of GABA at DMH terminals. These data provide important information about inhibitory modulation of metabolic circuitry and provide a mechanism through which POMC neurons could be inhibited, or disinhibited, rapidly in response to food availability.
Collapse
|
26
|
Roberts BL, Bennett BJ, Bennett CM, Carroll JM, Dalbøge LS, Hall C, Hassouneh W, Heppner KM, Kirigiti MA, Lindsley SR, Tennant KG, True CA, Whittle A, Wolf AC, Roberts CT, Tang-Christensen M, Sleeman MW, Cowley MA, Grove KL, Kievit P. Reelin is modulated by diet-induced obesity and has direct actions on arcuate proopiomelanocortin neurons. Mol Metab 2019; 26:18-29. [PMID: 31230943 PMCID: PMC6667498 DOI: 10.1016/j.molmet.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/22/2019] [Accepted: 06/04/2019] [Indexed: 11/26/2022] Open
Abstract
Objective Reelin (RELN) is a large glycoprotein involved in synapse maturation and neuronal organization throughout development. Deficits in RELN signaling contribute to multiple psychological disorders, such as autism spectrum disorder, schizophrenia, and bipolar disorder. Nutritional stress alters RELN expression in brain regions associated with these disorders; however, the involvement of RELN in the neural circuits involved in energy metabolism is unknown. The RELN receptors apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor (VLDLR) are involved in lipid metabolism and expressed in the hypothalamus. Here we explored the involvement of RELN in hypothalamic signaling and the impact of diet-induced obesity (DIO) on this system. Methods Adult male mice were fed a chow diet or maintained on a high-fat diet (HFD) for 12–16 weeks. HFD-fed DIO mice exhibited decreased ApoER2 and VLDLR expression and increased RELN protein in the hypothalamus. Electrophysiology was used to determine the mechanism by which the central fragment of RELN (CF-RELN) acts on arcuate nucleus (ARH) satiety-promoting proopiomelanocortin (POMC) neurons and the impact of DIO on this circuitry. Results CF-RELN exhibited heterogeneous presynaptic actions on inhibitory inputs onto ARH-POMC-EGFP neurons and consistent postsynaptic actions. Additionally, central administration of CF-RELN caused a significant increase in ARH c-Fos expression and an acute decrease in food intake and body weight. Conclusions We conclude that RELN signaling is modulated by diet, that RELN is involved in synaptic signaling onto ARH-POMC neurons, and that altering central CF-RELN levels can impact food intake and body weight. Diet-induced obesity alters reelin protein levels and expression of ApoER2 and VLDLR. Reelin has direct, but divergent actions on GABAergic inputs onto POMC neurons. Central administration of reelin protein decreases food intake and body weight.
Collapse
Affiliation(s)
- Brandon L Roberts
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Baylin J Bennett
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Camdin M Bennett
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Julie M Carroll
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | | | - Colin Hall
- Obesity Research Center, Novo Nordisk, Seattle, WA, 98109, USA
| | - Wafa Hassouneh
- Obesity Research Center, Novo Nordisk, Seattle, WA, 98109, USA
| | | | - Melissa A Kirigiti
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Sarah R Lindsley
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Katherine G Tennant
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Cadence A True
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Andrew Whittle
- Obesity Research Center, Novo Nordisk, Seattle, WA, 98109, USA
| | - Anitra C Wolf
- Obesity Research Center, Novo Nordisk, Seattle, WA, 98109, USA
| | - Charles T Roberts
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | | | - Mark W Sleeman
- Department of Physiology, Monash University Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Michael A Cowley
- Department of Physiology, Monash University Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Kevin L Grove
- Obesity Research Center, Novo Nordisk, Seattle, WA, 98109, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA.
| |
Collapse
|
27
|
Hanson E, Armbruster M, Lau LA, Sommer ME, Klaft ZJ, Swanger SA, Traynelis SF, Moss SJ, Noubary F, Chadchankar J, Dulla CG. Tonic Activation of GluN2C/GluN2D-Containing NMDA Receptors by Ambient Glutamate Facilitates Cortical Interneuron Maturation. J Neurosci 2019; 39:3611-3626. [PMID: 30846615 PMCID: PMC6510335 DOI: 10.1523/jneurosci.1392-18.2019] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/29/2019] [Accepted: 02/26/2019] [Indexed: 02/03/2023] Open
Abstract
Developing cortical GABAergic interneurons rely on genetic programs, neuronal activity, and environmental cues to construct inhibitory circuits during early postnatal development. Disruption of these events can cause long-term changes in cortical inhibition and may be involved in neurological disorders associated with inhibitory circuit dysfunction. We hypothesized that tonic glutamate signaling in the neonatal cortex contributes to, and is necessary for, the maturation of cortical interneurons. To test this hypothesis, we used mice of both sexes to quantify extracellular glutamate concentrations in the cortex during development, measure ambient glutamate-mediated activation of developing cortical interneurons, and manipulate tonic glutamate signaling using subtype-specific NMDA receptor antagonists in vitro and in vivo We report that ambient glutamate levels are high (≈100 nm) in the neonatal cortex and decrease (to ≈50 nm) during the first weeks of life, coincident with increases in astrocytic glutamate uptake. Consistent with elevated ambient glutamate, putative parvalbumin-positive interneurons in the cortex (identified using G42:GAD1-eGFP reporter mice) exhibit a transient, tonic NMDA current at the end of the first postnatal week. GluN2C/GluN2D-containing NMDA receptors mediate the majority of this current and contribute to the resting membrane potential and intrinsic properties of developing putative parvalbumin interneurons. Pharmacological blockade of GluN2C/GluN2D-containing NMDA receptors in vivo during the period of tonic interneuron activation, but not later, leads to lasting decreases in interneuron morphological complexity and causes deficits in cortical inhibition later in life. These results demonstrate that dynamic ambient glutamate signaling contributes to cortical interneuron maturation via tonic activation of GluN2C/GluN2D-containing NMDA receptors.SIGNIFICANCE STATEMENT Inhibitory GABAergic interneurons make up 20% of cortical neurons and are critical to controlling cortical network activity. Dysfunction of cortical inhibition is associated with multiple neurological disorders, including epilepsy. Establishing inhibitory cortical networks requires in utero proliferation, differentiation, and migration of immature GABAergic interneurons, and subsequent postnatal morphological maturation and circuit integration. Here, we demonstrate that ambient glutamate provides tonic activation of immature, putative parvalbumin-positive GABAergic interneurons in the neonatal cortex via high-affinity NMDA receptors. When this activation is blocked, GABAergic interneuron maturation is disrupted, and cortical networks exhibit lasting abnormal hyperexcitability. We conclude that temporally precise activation of developing cortical interneurons by ambient glutamate is critically important for establishing normal cortical inhibition.
Collapse
Affiliation(s)
- Elizabeth Hanson
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Neuroscience Program, Tufts Sackler School of Biomedical Sciences, Boston, Massachusetts 02111
| | - Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Lauren A Lau
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Neuroscience Program, Tufts Sackler School of Biomedical Sciences, Boston, Massachusetts 02111
| | - Mary E Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Zin-Juan Klaft
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Sharon A Swanger
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, and
| | - Farzad Noubary
- Department of Health Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115
| | - Jayashree Chadchankar
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, and
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111,
| |
Collapse
|
28
|
Chowen JA, Frago LM, Fernández-Alfonso MS. Physiological and pathophysiological roles of hypothalamic astrocytes in metabolism. J Neuroendocrinol 2019; 31:e12671. [PMID: 30561077 DOI: 10.1111/jne.12671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/27/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022]
Abstract
The role of glial cells, including astrocytes, in metabolic control has received increasing attention in recent years. Although the original interest in these macroglial cells was a result of astrogliosis being observed in the hypothalamus of diet-induced obese subjects, studies have also focused on how they participate in the physiological control of appetite and energy expenditure. Astrocytes express receptors for numerous hormones, growth factors and neuropeptides. Some functions of astrocytes include transport of nutrients and hormones from the circulation to the brain, storage of glycogen, participation in glucose sensing, synaptic plasticity, uptake and metabolism of neurotransmitters, release of substances to modify neurotransmission, and cytokine production, amongst others. In the hypothalamus, these physiological glial functions impact on neuronal circuits that control systemic metabolism to modify their outputs. The initial response of astrocytes to poor dietary habits and obesity involves activation of neuroprotective mechanisms but, with chronic exposure to these situations, hypothalamic astrocytes participate in the development of some of the damaging secondary effects. The present review discusses not only some of the physiological functions of hypothalamic astrocytes in metabolism, but also their role in the secondary complications of obesity, such as insulin resistance and cardiovascular affectations.
Collapse
Affiliation(s)
- Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- CIBEROBN (Centro de Investigación Biomédica en Red sobre Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- CIBEROBN (Centro de Investigación Biomédica en Red sobre Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Soledad Fernández-Alfonso
- Instituto Pluridisciplinar UCM y Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| |
Collapse
|
29
|
Jones GL, Wittmann G, Yokosawa EB, Yu H, Mercer AJ, Lechan RM, Low MJ. Selective Restoration of Pomc Expression in Glutamatergic POMC Neurons: Evidence for a Dynamic Hypothalamic Neurotransmitter Network. eNeuro 2019; 6:ENEURO.0400-18.2019. [PMID: 30957016 PMCID: PMC6449166 DOI: 10.1523/eneuro.0400-18.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 01/19/2023] Open
Abstract
Hypothalamic POMC deficiency leads to obesity and metabolic deficiencies, largely due to the loss of melanocortin peptides. However, POMC neurons in the arcuate nucleus (ARC) are comprised of glutamatergic and GABAergic subpopulations. The developmental program, relative proportion and function of these two subpopulations are unresolved. To test whether glutamatergic POMC neurons serve a distinct role in maintaining energy homeostasis, we activated Pomc expression Cre- dependently in Vglut2-expressing neurons of mice with conditionally silenced Pomc alleles. The Vglut2-Pomc restored mice had normal ARC Pomc mRNA levels, POMC immunoreactivity, as well as body weight and body composition at age 12 weeks. Unexpectedly, the cumulative total of Vglut2+ glutamatergic- and Gad67+ GABAergic-Pomc neurons detected by in situ hybridization (ISH) exceeded 100% in both Vglut2- Pomc restored and control mice, indicating that a subpopulation of Pomc neurons must express both neuronal markers. Consistent with this hypothesis, triple ISH of C57BL/6J hypothalami revealed that 35% of ARC Pomc neurons were selectively Gad67+, 21% were selectively Vglut2+, and 38% expressed both Gad67 and Vglut2. The single Gad67+ and Vglut2+Pomc neurons were most prevalent in the rostral ARC, while the Vglut2/Gad67+ dual-phenotype cells predominated in the caudal ARC. A lineage trace using Ai9-tdTomato reporter mice to label fluorescently all Vglut2-expressing neurons showed equal numbers of tdTomato+ and tdTomato- POMC immunoreactive neurons. Together, these data suggest that POMC neurons exhibit developmental plasticity in their expression of glutamatergic and GABAergic markers, enabling re-establishment of normal energy homeostasis in the Vglut2-Pomc restored mice.
Collapse
Affiliation(s)
- Graham L. Jones
- Neuroscience Graduate Program
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Gábor Wittmann
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, MA 02111
| | - Eva B. Yokosawa
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Hui Yu
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Aaron J. Mercer
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Ronald M. Lechan
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, MA 02111
| | - Malcolm J. Low
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105
| |
Collapse
|
30
|
Abstract
Sex differences exist in the regulation of energy homeostasis. Better understanding of the underlying mechanisms for sexual dimorphism in energy balance may facilitate development of gender-specific therapies for human diseases, e.g. obesity. Multiple organs, including the brain, liver, fat and muscle, play important roles in the regulations of feeding behavior, energy expenditure and physical activity, which therefore contribute to the maintenance of energy balance. It has been increasingly appreciated that this multi-organ system is under different regulations in male vs. female animals. Much of effort has been focused on roles of sex hormones (including androgens, estrogens and progesterone) and sex chromosomes in this sex-specific regulation of energy balance. Emerging evidence also indicates that other factors (not sex hormones/receptors and not encoded by the sex chromosomes) exist to regulate energy homeostasis differentially in males vs. females. In this review, we summarize factors and signals that have been shown to regulate energy homeostasis in a sexually dimorphic fashion and propose a framework where these factors and signals may be integrated to mediate sex differences in energy homeostasis.
Collapse
Affiliation(s)
- Chunmei Wang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030
| | - Yong Xu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
31
|
The Astrocyte-Neuron Interface: An Overview on Molecular and Cellular Dynamics Controlling Formation and Maintenance of the Tripartite Synapse. Methods Mol Biol 2019; 1938:3-18. [PMID: 30617969 DOI: 10.1007/978-1-4939-9068-9_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Astrocytes are known to provide trophic support to neurons and were originally thought to be passive space-filling cells in the brain. However, recent advances in astrocyte development and functions have highlighted their active roles in controlling brain functions by modulating synaptic transmission. A bidirectional cross talk between astrocytic processes and neuronal synapses define the concept of tripartite synapse. Any change in astrocytic structure/function influences neuronal activity which could lead to neurodevelopmental and neurodegenerative disorders. In this chapter, we briefly overview the methodologies used in deciphering the mechanisms of dynamic interplay between astrocytes and neurons.
Collapse
|
32
|
Suyama S, Yada T. New insight into GABAergic neurons in the hypothalamic feeding regulation. J Physiol Sci 2018; 68:717-722. [PMID: 30003408 PMCID: PMC10717766 DOI: 10.1007/s12576-018-0622-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022]
Abstract
Several lines of study have suggested that GABA in the hypothalamic feeding center plays a role in promoting food intake. Recent studies revealed that not only NPY/AgRP neurons in the hypothalamic arcuate nucleus (ARC) that co-express GABA but also other GABAergic neurons act as an orexigenic. Here, we review the progress of studies on hypothalamic GABAergic neurons distributed in ARC, dorsomedial hypothalamus (DMH), and lateral hypothalamus (LH). Three advanced technologies have been applied and greatly contributed to the recent progress. Optogenetic (and chemogenetic) approaches map input and output pathways of particular subpopulations of GABAergic neurons. In vivo Ca2+ imaging using GRIN lens and GCaMP can correlate the activity of GABAergic neuron subpopulations with feeding behavior. Single-cell RNA-seq approach clarifies precise transcriptional profiles of GABAergic neuron subpopulations. These approaches have shown diversity of GABAergic neurons and the subpopulation-dependent role in feeding regulation.
Collapse
Affiliation(s)
- Shigetomo Suyama
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 320-0498, Japan.
| | - Toshihiko Yada
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 320-0498, Japan.
- Kansai Electric Power Medical Research Institute, 1-5-6 Minatojimaminamimachi, Chuou-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
33
|
Chianese R, Coccurello R, Viggiano A, Scafuro M, Fiore M, Coppola G, Operto FF, Fasano S, Laye S, Pierantoni R, Meccariello R. Impact of Dietary Fats on Brain Functions. Curr Neuropharmacol 2018; 16:1059-1085. [PMID: 29046155 PMCID: PMC6120115 DOI: 10.2174/1570159x15666171017102547] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 08/24/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Adequate dietary intake and nutritional status have important effects on brain functions and on brain health. Energy intake and specific nutrients excess or deficiency from diet differently affect cognitive processes, emotions, behaviour, neuroendocrine functions and synaptic plasticity with possible protective or detrimental effects on neuronal physiology. Lipids, in particular, play structural and functional roles in neurons. Here the importance of dietary fats and the need to understand the brain mechanisms activated by peripheral and central metabolic sensors. Thus, the manipulation of lifestyle factors such as dietary interventions may represent a successful therapeutic approach to maintain and preserve brain health along lifespan. METHODS This review aims at summarizing the impact of dietary fats on brain functions. RESULTS Starting from fat consumption, nutrient sensing and food-related reward, the impact of gut-brain communications will be discussed in brain health and disease. A specific focus will be on the impact of fats on the molecular pathways within the hypothalamus involved in the control of reproduction via the expression and the release of Gonadotropin-Releasing Hormone. Lastly, the effects of specific lipid classes such as polyunsaturated fatty acids and of the "fattest" of all diets, commonly known as "ketogenic diets", on brain functions will also be discussed. CONCLUSION Despite the knowledge of the molecular mechanisms is still a work in progress, the clinical relevance of the manipulation of dietary fats is well acknowledged and such manipulations are in fact currently in use for the treatment of brain diseases.
Collapse
Affiliation(s)
- Rosanna Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Roberto Coccurello
- Institute of Cell Biology and Neurobiology, National Research Council (C.N.R.), Rome, Italy.,Fondazione S. Lucia (FSL) IRCCS, Roma, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy
| | - Marika Scafuro
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marco Fiore
- Institute of Cell Biology and Neurobiology, National Research Council (C.N.R.), Rome, Italy.,Fondazione S. Lucia (FSL) IRCCS, Roma, Italy
| | - Giangennaro Coppola
- Department of Medicine, Surgery and Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy.,UO Child and Adolescent Neuropsychiatry, Medical School, University of Salerno, Salerno, Italy
| | | | - Silvia Fasano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sophie Laye
- INRA, Bordeaux University, Nutrition and Integrative Neurobiology, UMR, Bordeaux, France
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Meccariello
- Department of Movement and Wellness Sciences, Parthenope University of Naples, Naples, Italy
| |
Collapse
|
34
|
Mei-Ling Liu J, Fair SR, Kaya B, Zuniga JN, Mostafa HR, Alves MJ, Stephens JA, Jones M, Aslan MT, Czeisler C, Otero JJ. Development of a Novel FIJI-Based Method to Investigate Neuronal Circuitry in Neonatal Mice. Dev Neurobiol 2018; 78:1146-1167. [PMID: 30136762 DOI: 10.1002/dneu.22636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/04/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022]
Abstract
The emergence of systems neuroscience tools requires parallel generation of objective analytical workflows for experimental neuropathology. We developed an objective analytical workflow that we used to determine how specific autonomic neural lineages change during postnatal development. While a wealth of knowledge exists regarding postnatal alterations in respiratory neural function, how these neural circuits change and develop in the weeks following birth remains less clear. In this study, we developed our workflow by combining genetic mouse modeling and quantitative immunofluorescent confocal microscopy and used this to examine the postnatal development of neural circuits derived from the transcription factors NKX2.2 and OLIG3 into three medullary respiratory nuclei. Our automated FIJI-based image analysis workflow rapidly and objectively quantified synaptic puncta in user-defined anatomic regions. Using our objective workflow, we found that the density and estimated total number of Nkx2.2-derived afferents into the pre-Bötzinger Complex significantly decreased with postnatal age during the first three weeks of postnatal life. These data indicate that Nkx2.2-derived structures differentially influence pre-Bötzinger Complex respiratory oscillations at different stages of postnatal development.
Collapse
Affiliation(s)
- Jillian Mei-Ling Liu
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Summer Rose Fair
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Behiye Kaya
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Jessica Nabile Zuniga
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Hasnaa Rashad Mostafa
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Michele Joana Alves
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Julie A Stephens
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Mikayla Jones
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - M Tahir Aslan
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Catherine Czeisler
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - José Javier Otero
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
35
|
Neurobiological characteristics underlying metabolic differences between males and females. Prog Neurobiol 2018; 176:18-32. [PMID: 30194984 DOI: 10.1016/j.pneurobio.2018.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/22/2018] [Accepted: 09/01/2018] [Indexed: 12/24/2022]
Abstract
The hypothalamus is the main integrating center for metabolic control. Our understanding of how hypothalamic circuits function to control appetite and energy expenditure has increased dramatically in recent years, due to the rapid rise in the incidence of obesity and the search for effective treatments. Increasing evidence indicates that these treatments will most likely differ between males and females. Indeed, sex differences in metabolism have been demonstrated at various levels, including in two of the most studied neuronal populations involved in metabolic control: the anorexigenic proopiomelanocortin neurons and the orexigenic neuropeptide Y/Agouti-related protein neurons. Here we review what is known to date regarding the sex differences in these two neuronal populations, as well as other neuronal populations involved in metabolic control and glial cells.
Collapse
|
36
|
Rau AR, Hughes AR, Hentges ST. Various transgenic mouse lines to study proopiomelanocortin cells in the brain stem label disparate populations of GABAergic and glutamatergic neurons. Am J Physiol Regul Integr Comp Physiol 2018; 315:R144-R152. [PMID: 29590552 PMCID: PMC6087889 DOI: 10.1152/ajpregu.00047.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/06/2018] [Accepted: 03/16/2018] [Indexed: 12/31/2022]
Abstract
Products of the proopiomelanocortin (POMC) prohormone regulate aspects of analgesia, reward, and energy balance; thus, the neurons that produce POMC in the hypothalamus have received considerable attention. However, there are also cells in the nucleus of the solitary tract (NTS) that transcribe Pomc, although low levels of Pomc mRNA and relative lack of POMC peptide products in the adult mouse NTS have hindered the study of these cells. Therefore, studies of NTS POMC cells have largely relied on transgenic mouse lines. Here, we set out to determine the amino acid (AA) transmitter phenotype of NTS POMC neurons by using Pomc-Gfp transgenic mice to identify POMC cells. We found that cells expressing the green fluorescent protein (GFP) represent a mix of GABAergic and glutamatergic cells as indicated by Gad2 and vesicular Glut2 ( vGlut2) mRNA expression, respectively. We then examined the AA phenotype of POMC cells labeled by a Pomc-Cre transgene and found that these are also a mix of GABAergic and glutamatergic cells. However, the NTS cells labeled by the Gfp- and Cre-containing transgenes represented distinct populations of cells in three different Pomc-Cre mouse lines. Consistent with previous work, we were unable to reliably detect Pomc mRNA in the NTS despite clear expression in the hypothalamus. Thus, it was not possible to determine which transgenic tool most accurately identifies NTS cells that may express Pomc or release POMC peptides, although the results indicate the transgenic tools for study of these NTS neurons can label disparate populations of cells with varied AA phenotypes.
Collapse
Affiliation(s)
- Andrew R Rau
- Department of Biomedical Sciences, Colorado State University , Fort Collins, Colorado
| | - Alexander R Hughes
- Department of Biomedical Sciences, Colorado State University , Fort Collins, Colorado
| | - Shane T Hentges
- Department of Biomedical Sciences, Colorado State University , Fort Collins, Colorado
| |
Collapse
|
37
|
Ma S, Hangya B, Leonard CS, Wisden W, Gundlach AL. Dual-transmitter systems regulating arousal, attention, learning and memory. Neurosci Biobehav Rev 2018; 85:21-33. [PMID: 28757457 PMCID: PMC5747977 DOI: 10.1016/j.neubiorev.2017.07.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/16/2017] [Indexed: 01/12/2023]
Abstract
An array of neuromodulators, including monoamines and neuropeptides, regulate most behavioural and physiological traits. In the past decade, dramatic progress has been made in mapping neuromodulatory circuits, in analysing circuit dynamics, and interrogating circuit function using pharmacogenetic, optogenetic and imaging methods This review will focus on several distinct neural networks (acetylcholine/GABA/glutamate; histamine/GABA; orexin/glutamate; and relaxin-3/GABA) that originate from neural hubs that regulate wakefulness and related attentional and cognitive processes, and highlight approaches that have identified dual transmitter roles in these behavioural functions. Modulation of these different neural networks might be effective treatments of diseases related to arousal/sleep dysfunction and of cognitive dysfunction in psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| | - Balázs Hangya
- 'Lendület' Laboratory of Systems Neuroscience, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - William Wisden
- Department of Life Sciences, Imperial College London, London, UK
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
38
|
Wang L, Burger LL, Greenwald-Yarnell ML, Myers MG, Moenter SM. Glutamatergic Transmission to Hypothalamic Kisspeptin Neurons Is Differentially Regulated by Estradiol through Estrogen Receptor α in Adult Female Mice. J Neurosci 2018; 38:1061-1072. [PMID: 29114074 PMCID: PMC5792470 DOI: 10.1523/jneurosci.2428-17.2017] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/28/2017] [Accepted: 10/30/2017] [Indexed: 01/20/2023] Open
Abstract
Estradiol feedback regulates gonadotropin-releasing hormone (GnRH) neurons and subsequent luteinizing hormone (LH) release. Estradiol acts via estrogen receptor α (ERα)-expressing afferents of GnRH neurons, including kisspeptin neurons in the anteroventral periventricular (AVPV) and arcuate nuclei, providing homeostatic feedback on episodic GnRH/LH release as well as positive feedback to control ovulation. Ionotropic glutamate receptors are important for estradiol feedback, but it is not known where they fit in the circuitry. Estradiol-negative feedback decreased glutamatergic transmission to AVPV and increased it to arcuate kisspeptin neurons; positive feedback had the opposite effect. Deletion of ERα in kisspeptin cells decreased glutamate transmission to AVPV neurons and markedly increased it to arcuate kisspeptin neurons, which also exhibited increased spontaneous firing rate. KERKO mice had increased LH pulse frequency, indicating loss of negative feedback. These observations indicate that ERα in kisspeptin cells is required for appropriate differential regulation of these neurons and neuroendocrine output by estradiol.SIGNIFICANCE STATEMENT The brain regulates fertility through gonadotropin-releasing hormone (GnRH) neurons. Ovarian estradiol regulates the pattern of GnRH (negative feedback) and initiates a surge of release that triggers ovulation (positive feedback). GnRH neurons do not express the estrogen receptor needed for feedback (estrogen receptor α [ERα]); kisspeptin neurons in the arcuate and anteroventral periventricular nuclei are postulated to mediate negative and positive feedback, respectively. Here we extend the network through which feedback is mediated by demonstrating that glutamatergic transmission to these kisspeptin populations is differentially regulated during the reproductive cycle and by estradiol. Electrophysiological and in vivo hormone profile experiments on kisspeptin-specific ERα knock-out mice demonstrate that ERα in kisspeptin cells is required for appropriate differential regulation of these neurons and for neuroendocrine output.
Collapse
Affiliation(s)
- Luhong Wang
- Departments of Molecular and Integrative Physiology
| | | | | | - Martin G Myers
- Departments of Molecular and Integrative Physiology
- Internal Medicine
- Michigan Diabetes Research & Training Center, University of Michigan, Ann Arbor, Michigan 48109
| | - Suzanne M Moenter
- Departments of Molecular and Integrative Physiology,
- Obstetrics and Gynecology
- Internal Medicine
| |
Collapse
|
39
|
POMC Neurons: Feeding, Energy Metabolism, and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1090:17-29. [DOI: 10.1007/978-981-13-1286-1_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Santos CL, Roppa PHA, Truccolo P, Fontella FU, Souza DO, Bobermin LD, Quincozes-Santos A. Age-Dependent Neurochemical Remodeling of Hypothalamic Astrocytes. Mol Neurobiol 2017; 55:5565-5579. [PMID: 28980158 DOI: 10.1007/s12035-017-0786-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/21/2017] [Indexed: 01/18/2023]
Abstract
The hypothalamus is a crucial integrative center in the central nervous system, responsible for the regulation of homeostatic activities, including systemic energy balance. Increasing evidence has highlighted a critical role of astrocytes in orchestrating hypothalamic functions; they participate in the modulation of synaptic transmission, metabolic and trophic support to neurons, immune defense, and nutrient sensing. In this context, disturbance of systemic energy homeostasis, which is a common feature of obesity and the aging process, involves inflammatory responses. This may be related to dysfunction of hypothalamic astrocytes. In this regard, the aim of this study was to evaluate the neurochemical properties of hypothalamic astrocyte cultures from newborn, adult, and aged Wistar rats. Age-dependent changes in the regulation of glutamatergic homeostasis, glutathione biosynthesis, amino acid profile, glucose metabolism, trophic support, and inflammatory response were observed. Additionally, signaling pathways including nuclear factor erythroid-derived 2-like 2/heme oxygenase-1 p38 mitogen-activated protein kinase, nuclear factor kappa B, phosphatidylinositide 3-kinase/Akt, and leptin receptor expression may represent putative mechanisms associated with the cellular alterations. In summary, our findings indicate that as age increases, hypothalamic astrocytes remodel and exhibit changes in their neurochemical properties. This process may play a role in the onset and/or progression of metabolic disorders.
Collapse
Affiliation(s)
- Camila Leite Santos
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Paola Haack Amaral Roppa
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Pedro Truccolo
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Fernanda Urruth Fontella
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Larissa Daniele Bobermin
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil.
| | - André Quincozes-Santos
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
41
|
van den Top M, Zhao FY, Viriyapong R, Michael NJ, Munder AC, Pryor JT, Renaud LP, Spanswick D. The impact of ageing, fasting and high-fat diet on central and peripheral glucose tolerance and glucose-sensing neural networks in the arcuate nucleus. J Neuroendocrinol 2017; 29. [PMID: 28834571 DOI: 10.1111/jne.12528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/01/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022]
Abstract
Obesity and ageing are risk factors for diabetes. In the present study, we investigated the effects of ageing, obesity and fasting on central and peripheral glucose tolerance and on glucose-sensing neuronal function in the arcuate nucleus of rats, with a view to providing insight into the central mechanisms regulating glucose homeostasis and how they change or are subject to dysfunction with ageing and obesity. We show that, following a glucose load, central glucose tolerance at the level of the cerebrospinal fluid (CSF) and plasma is significantly reduced in rats maintained on a high-fat diet (HFD). With ageing, up to 2 years, central glucose tolerance was impaired in an age-dependent manner, whereas peripheral glucose tolerance remained unaffected. Ageing-induced peripheral glucose intolerance was improved by a 24-hour fast, whereas central glucose tolerance was not corrected. Pre-wean, immature animals have elevated basal plasma glucose levels and a delayed increase in central glucose levels following peripheral glucose injection compared to mature animals. Electrophysiological recording techniques revealed an energy-status-dependent role for glucose-excited, inhibited and adapting neurones, along with glucose-induced changes in synaptic transmission. We conclude that ageing affects central glucose tolerance, whereas HFD profoundly affects central and peripheral glucose tolerance and, in addition, glucose-sensing neurones adapt function in an energy-status-dependent manner.
Collapse
Affiliation(s)
| | - F-Y Zhao
- NeuroSolutions Ltd, Coventry, UK
| | - R Viriyapong
- Warwick Medical School, University of Warwick, Coventry, UK
- MOAC DTC, University of Warwick, Coventry, UK
| | - N J Michael
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - A C Munder
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - J T Pryor
- Warwick Medical School, University of Warwick, Coventry, UK
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - L P Renaud
- Ottawa Hospital Research Institute, Ottawa Civic Hospital, Ottawa, ON, Canada
| | - D Spanswick
- NeuroSolutions Ltd, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Neuroscience Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
42
|
Abstract
The hypothalamus is an evolutionarily conserved brain structure that regulates an organism's basic functions, such as homeostasis and reproduction. Several hypothalamic nuclei and neuronal circuits have been the focus of many studies seeking to understand their role in regulating these basic functions. Within the hypothalamic neuronal populations, the arcuate melanocortin system plays a major role in controlling homeostatic functions. The arcuate pro-opiomelanocortin (POMC) neurons in particular have been shown to be critical regulators of metabolism and reproduction because of their projections to several brain areas both in and outside of the hypothalamus, such as autonomic regions of the brain stem and spinal cord. Here, we review and discuss the current understanding of POMC neurons from their development and intracellular regulators to their physiological functions and pathological dysregulation.
Collapse
Affiliation(s)
- Chitoku Toda
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Anna Santoro
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Jung Dae Kim
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Sabrina Diano
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520.,Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
43
|
Neurochemical Heterogeneity Among Lateral Hypothalamic Hypocretin/Orexin and Melanin-Concentrating Hormone Neurons Identified Through Single-Cell Gene Expression Analysis. eNeuro 2017; 4:eN-NWR-0013-17. [PMID: 28966976 PMCID: PMC5617207 DOI: 10.1523/eneuro.0013-17.2017] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 08/14/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023] Open
Abstract
The lateral hypothalamic area (LHA) lies at the intersection of multiple neural and humoral systems and orchestrates fundamental aspects of behavior. Two neuronal cell types found in the LHA are defined by their expression of hypocretin/orexin (Hcrt/Ox) and melanin-concentrating hormone (MCH) and are both important regulators of arousal, feeding, and metabolism. Conflicting evidence suggests that these cell populations have a more complex signaling repertoire than previously appreciated, particularly in regard to their coexpression of other neuropeptides and the machinery for the synthesis and release of GABA and glutamate. Here, we undertook a single-cell expression profiling approach to decipher the neurochemical phenotype, and heterogeneity therein, of Hcrt/Ox and MCH neurons. In transgenic mouse lines, we used single-cell quantitative polymerase chain reaction (qPCR) to quantify the expression of 48 key genes, which include neuropeptides, fast neurotransmitter components, and other key markers, which revealed unexpected neurochemical diversity. We found that single MCH and Hcrt/Ox neurons express transcripts for multiple neuropeptides and markers of both excitatory and inhibitory fast neurotransmission. Virtually all MCH and approximately half of the Hcrt/Ox neurons sampled express both the machinery for glutamate release and GABA synthesis in the absence of a vesicular GABA release pathway. Furthermore, we found that this profile is characteristic of a subpopulation of LHA glutamatergic neurons but contrasts with a broad population of LHA GABAergic neurons. Identifying the neurochemical diversity of Hcrt/Ox and MCH neurons will further our understanding of how these populations modulate postsynaptic excitability through multiple signaling mechanisms and coordinate diverse behavioral outputs.
Collapse
|
44
|
Rubinstein M, Low MJ. Molecular and functional genetics of the proopiomelanocortin gene, food intake regulation and obesity. FEBS Lett 2017; 591:2593-2606. [PMID: 28771698 PMCID: PMC9975356 DOI: 10.1002/1873-3468.12776] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 12/20/2022]
Abstract
A specter is haunting the world, the specter of obesity. During the last decade, this pandemia has skyrocketed threatening children, adolescents and lower income families worldwide. Although driven by an increase in the consumption of ultraprocessed edibles of poor nutritional value, the obesogenic changes in contemporary human lifestyle affect people differently, revealing that some individuals are more prone to develop increased adiposity. During the last years, we performed a variety of genetic, evolutionary, biochemical and behavioral experiments that allowed us to understand how a group of neurons present in the arcuate nucleus of the hypothalamus regulate the expression of the proopiomelanocortin (Pomc) gene and induce satiety. We disentangled the neuronal transcriptional code of Pomc by identifying the cis-acting regulatory elements and primary transcription factors controlling hypothalamic Pomc expression and determined their functional importance in the regulation of food intake and adiposity. Altogether, our studies reviewed here shed light on the power and limitations of the mammalian central satiety pathways and may contribute to the development of individual and collective strategies to reduce the debilitating effects of the self-induced obesity pandemia.
Collapse
Affiliation(s)
- Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina,Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Malcolm J. Low
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA,Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
45
|
Abdurakhmanova S, Chary K, Kettunen M, Sierra A, Panula P. Behavioral and stereological characterization of Hdc KO mice: Relation to Tourette syndrome. J Comp Neurol 2017; 525:3476-3487. [PMID: 28681514 DOI: 10.1002/cne.24279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 01/03/2023]
Abstract
A premature termination codon in the human histidine decarboxylase (Hdc) gene has been identified in a family suffering from Guilles de la Tourette syndrome (GTS). In the current study we investigated if mice lacking the histamine producing enzyme HDC share the morphological and cytological phenotype with GTS patients by using magnetic resonance (MRI) and diffusion tensor imaging (DTI), unbiased stereology and immunohistochemistry. Behavior of Hdc knock-out (Hdc KO) mice was assessed in an open field test. The results of stereological, volumetric and DTI analysis measurements showed no significant differences between control and Hdc KO mice. The numbers and distribution of GABAergic parvalbumin or nitric oxide-expressing and cholinergic interneurons were normal in Hdc KO mice. Cortical morphology and layering in adult Hdc KO mice were also preserved. In open field test Hdc KO mice showed impaired exploratory activity and habituation when introduced to novel environment. Our results indicate that Hdc deficiency in mice does not disturb the development of striatal and cortical interneurons and does not lead to the morphological and cytological phenotypes characterized by humans with GTS. Nevertheless, histamine deficiency leads to behavioral alterations probably due to neurotransmitter dysbalance on the level of the striatum.
Collapse
Affiliation(s)
| | - Karthik Chary
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Kettunen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Alejandra Sierra
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pertti Panula
- Department of Anatomy and Neuroscience Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
46
|
The Relevance of AgRP Neuron-Derived GABA Inputs to POMC Neurons Differs for Spontaneous and Evoked Release. J Neurosci 2017; 37:7362-7372. [PMID: 28667175 DOI: 10.1523/jneurosci.0647-17.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/14/2017] [Accepted: 06/21/2017] [Indexed: 12/25/2022] Open
Abstract
Hypothalamic agouti-related peptide (AgRP) neurons potently stimulate food intake, whereas proopiomelanocortin (POMC) neurons inhibit feeding. Whether AgRP neurons exert their orexigenic actions, at least in part, by inhibiting anorexigenic POMC neurons remains unclear. Here, the connectivity between GABA-releasing AgRP neurons and POMC neurons was examined in brain slices from male and female mice. GABA-mediated spontaneous IPSCs (sIPSCs) in POMC neurons were unaffected by disturbing GABA release from AgRP neurons either by cell type-specific deletion of the vesicular GABA transporter or by expression of botulinum toxin in AgRP neurons to prevent vesicle-associated membrane protein 2-dependent vesicle fusion. Additionally, there was no difference in the ability of μ-opioid receptor (MOR) agonists to inhibit sIPSCs in POMC neurons when MORs were deleted from AgRP neurons, and activation of the inhibitory designer receptor hM4Di on AgRP neurons did not affect sIPSCs recorded from POMC neurons. These approaches collectively indicate that AgRP neurons do not significantly contribute to the strong spontaneous GABA input to POMC neurons. Despite these observations, optogenetic stimulation of AgRP neurons reliably produced evoked IPSCs in POMC neurons, leading to the inhibition of POMC neuron firing. Thus, AgRP neurons can potently affect POMC neuron function without contributing a significant source of spontaneous GABA input to POMC neurons. Together, these results indicate that the relevance of GABAergic inputs from AgRP to POMC neurons is state dependent and highlight the need to consider different types of transmitter release in circuit mapping and physiologic regulation.SIGNIFICANCE STATEMENT Agouti-related peptide (AgRP) neurons play an important role in driving food intake, while proopiomelanocortin (POMC) neurons inhibit feeding. Despite the importance of these two well characterized neuron types in maintaining metabolic homeostasis, communication between these cells remains poorly understood. To provide clarity to this circuit, we made electrophysiological recordings from mouse brain slices and found that AgRP neurons do not contribute spontaneously released GABA onto POMC neurons, although when activated with channelrhodopsin AgRP neurons inhibit POMC neurons through GABA-mediated transmission. These findings indicate that the relevance of AgRP to POMC neuron GABA connectivity depends on the state of AgRP neuron activity and suggest that different types of transmitter release should be considered when circuit mapping.
Collapse
|
47
|
Chachlaki K, Malone SA, Qualls-Creekmore E, Hrabovszky E, Münzberg H, Giacobini P, Ango F, Prevot V. Phenotyping of nNOS neurons in the postnatal and adult female mouse hypothalamus. J Comp Neurol 2017; 525:3177-3189. [PMID: 28577305 DOI: 10.1002/cne.24257] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/01/2017] [Accepted: 05/19/2017] [Indexed: 12/27/2022]
Abstract
Neurons expressing nitric oxide (NO) synthase (nNOS) and thus capable of synthesizing NO play major roles in many aspects of brain function. While the heterogeneity of nNOS-expressing neurons has been studied in various brain regions, their phenotype in the hypothalamus remains largely unknown. Here we examined the distribution of cells expressing nNOS in the postnatal and adult female mouse hypothalamus using immunohistochemistry. In both adults and neonates, nNOS was largely restricted to regions of the hypothalamus involved in the control of bodily functions, such as energy balance and reproduction. Labeled cells were found in the paraventricular, ventromedial, and dorsomedial nuclei as well as in the lateral area of the hypothalamus. Intriguingly, nNOS was seen only after the second week of life in the arcuate nucleus of the hypothalamus (ARH). The most dense and heavily labeled population of cells was found in the organum vasculosum laminae terminalis (OV) and the median preoptic nucleus (MEPO), where most of the somata of the neuroendocrine neurons releasing GnRH and controlling reproduction are located. A great proportion of nNOS-immunoreactive neurons in the OV/MEPO and ARH were seen to express estrogen receptor (ER) α. Notably, almost all ERα-immunoreactive cells of the OV/MEPO also expressed nNOS. Moreover, the use of EYFPVglut2 , EYFPVgat , and GFPGad67 transgenic mouse lines revealed that, like GnRH neurons, most hypothalamic nNOS neurons have a glutamatergic phenotype, except for nNOS neurons of the ARH, which are GABAergic. Altogether, these observations are consistent with the proposed role of nNOS neurons in physiological processes.
Collapse
Affiliation(s)
- Konstantina Chachlaki
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, U1172, Lille, France.,University of Lille, FHU 1000 days for Health, School of Medicine, Lille, France
| | - Samuel A Malone
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, U1172, Lille, France.,University of Lille, FHU 1000 days for Health, School of Medicine, Lille, France
| | - Emily Qualls-Creekmore
- Departments of Central Leptin Signaling, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Erik Hrabovszky
- Institute of Experimental Medicine, Laboratory of Endocrine Neurobiology, Budapest, Hungary
| | - Heike Münzberg
- Departments of Central Leptin Signaling, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Paolo Giacobini
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, U1172, Lille, France.,University of Lille, FHU 1000 days for Health, School of Medicine, Lille, France
| | - Fabrice Ango
- Inserm, Laboratory of Development of GABAergic circuit, IGF, U1191, Montpellier, France.,University of Montpellier, CNRS UMR5203, Montpellier, France
| | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, U1172, Lille, France.,University of Lille, FHU 1000 days for Health, School of Medicine, Lille, France
| |
Collapse
|
48
|
Orexin-driven GAD65 network of the lateral hypothalamus sets physical activity in mice. Proc Natl Acad Sci U S A 2017; 114:4525-4530. [PMID: 28396414 DOI: 10.1073/pnas.1619700114] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Damage to the lateral hypothalamus (LH) causes profound physical inactivity in mammals. Several molecularly distinct types of LH neurons have been identified, including orexin cells and glutamic acid decarboxylase 65 (GAD65) cells, but their interplay in orchestrating physical activity is not fully understood. Here, using optogenetic circuit analysis and cell type-specific deep-brain recordings in behaving mice, we show that orexin cell activation rapidly recruits GAD65LH neurons. We demonstrate that internally initiated GAD65LH cell bursts precede and accompany spontaneous running bouts, that selective chemogenetic silencing of natural GAD65LH cell activity depresses voluntary locomotion, and that GAD65LH cell overactivation leads to hyperlocomotion. These results thus identify a molecularly distinct, orexin-activated LH submodule that governs physical activity in mice.
Collapse
|
49
|
Lam BYH, Cimino I, Polex-Wolf J, Nicole Kohnke S, Rimmington D, Iyemere V, Heeley N, Cossetti C, Schulte R, Saraiva LR, Logan DW, Blouet C, O'Rahilly S, Coll AP, Yeo GSH. Heterogeneity of hypothalamic pro-opiomelanocortin-expressing neurons revealed by single-cell RNA sequencing. Mol Metab 2017; 6:383-392. [PMID: 28462073 PMCID: PMC5404100 DOI: 10.1016/j.molmet.2017.02.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 02/18/2017] [Accepted: 02/23/2017] [Indexed: 11/26/2022] Open
Abstract
Objective Arcuate proopiomelanocortin (POMC) neurons are critical nodes in the control of body weight. Often characterized simply as direct targets for leptin, recent data suggest a more complex architecture. Methods Using single cell RNA sequencing, we have generated an atlas of gene expression in murine POMC neurons. Results Of 163 neurons, 118 expressed high levels of Pomc with little/no Agrp expression and were considered “canonical” POMC neurons (P+). The other 45/163 expressed low levels of Pomc and high levels of Agrp (A+P+). Unbiased clustering analysis of P+ neurons revealed four different classes, each with distinct cell surface receptor gene expression profiles. Further, only 12% (14/118) of P+ neurons expressed the leptin receptor (Lepr) compared with 58% (26/45) of A+P+ neurons. In contrast, the insulin receptor (Insr) was expressed at similar frequency on P+ and A+P+ neurons (64% and 55%, respectively). Conclusion These data reveal arcuate POMC neurons to be a highly heterogeneous population. Accession Numbers: GSE92707. Hypothalamic POMC neurons are heterogeneous and can broadly divided into 4 groups. Cell surface receptors are major drivers for the segregation. Unexpectedly, 28% of POMC-cells show signatures typical of AgRP/NPY neurons. Only 12% express leptin receptor, indicating response to leptin is likely indirect.
Collapse
Affiliation(s)
- Brian Y H Lam
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Irene Cimino
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Joseph Polex-Wolf
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Sara Nicole Kohnke
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Debra Rimmington
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Valentine Iyemere
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Nicholas Heeley
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Chiara Cossetti
- Flow Cytometry Core, Cambridge Institute of Medical Research, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Reiner Schulte
- Flow Cytometry Core, Cambridge Institute of Medical Research, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Luis R Saraiva
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Darren W Logan
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Clemence Blouet
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Stephen O'Rahilly
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Anthony P Coll
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
50
|
Jeong JH, Lee DK, Jo YH. Cholinergic neurons in the dorsomedial hypothalamus regulate food intake. Mol Metab 2017; 6:306-312. [PMID: 28271037 PMCID: PMC5323886 DOI: 10.1016/j.molmet.2017.01.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 01/13/2023] Open
Abstract
Objective Central cholinergic neural circuits play a role in the regulation of feeding behavior. The dorsomedial hypothalamus (DMH) is considered the appetite-stimulating center and contains cholinergic neurons. Here, we study the role of DMH cholinergic neurons in the control of food intake. Methods To selectively stimulate DMH cholinergic neurons, we expressed stimulatory designer receptors exclusively activated by designer drugs (DREADDs) and channelrhodopsins in DMH cholinergic neurons by injection of adeno-associated virus (AAV) vectors into the DMH of choline acetyltransferase (ChAT)-IRES-Cre mice. We also generated transgenic mice expressing channelrhodopsins in cholinergic neurons with the Cre-LoxP technique. To delete the Chat gene exclusively in the DMH, we injected an AAV carrying a Cre recombinase transgene into the DMH of floxed ChAT mice. Food intake was measured with and without selective stimulation of DMH cholinergic neurons. Results Mice lacking the Chat gene in the DMH show reduced body weight as compared to control. Chemogenetic activation of DMH cholinergic neurons promotes food intake. This orexigenic effect is further supported by experiments of optogenetic stimulation of DMH cholinergic neurons. DMH cholinergic neurons innervate pro-opiomelanocortin neurons in the arcuate nucleus of the hypothalamus (ARC). Treatment with acetylcholine (ACh) enhances GABAergic inhibitory transmission to ARC POMC neurons that is blocked by the muscarinic receptor antagonist. Direct activation of cholinergic fibers in the ARC readily stimulates food intake that is also abolished by the muscarinic receptor antagonist. Conclusion ACh released from DMH cholinergic neurons regulates food intake and body weight. This effect is mediated in part through regulation of ARC POMC neurons. Activation of muscarinic receptors on GABAergic axon terminals enhances inhibitory tone to ARC POMC neurons. Hence, this novel DMHACh → ARCPOMC pathway plays an important role in the control of food intake and body weight. DMH cholinergic neurons innervate ARC POMC neurons. Activation of muscarinic receptors enhances inhibitory tone to ARC POMC neurons. Stimulation of DMH cholinergic neurons promotes food intake. This orexigenic effect is abolished by the muscarinic receptor antagonist. Mice lacking the Chat gene in the DMH show reduced body weight.
Collapse
Affiliation(s)
- Jae Hoon Jeong
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, NY, USA
| | - Dong Kun Lee
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, NY, USA; Department of Physiology, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Young-Hwan Jo
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, NY, USA; Department of Molecular Pharmacology, Albert Einstein College of Medicine, NY, USA.
| |
Collapse
|