1
|
Pakula A, Nagar SE, Sumru Bayin N, Christensen JB, Stephen DN, Reid AJ, Koche R, Joyner AL. An increase in reactive oxygen species underlies neonatal cerebellum repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618368. [PMID: 39464104 PMCID: PMC11507802 DOI: 10.1101/2024.10.14.618368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The neonatal mouse cerebellum shows remarkable regenerative potential upon injury at birth, wherein a subset of Nestin-expressing progenitors (NEPs) undergoes adaptive reprogramming to replenish granule cell progenitors that die. Here, we investigate how the microenvironment of the injured cerebellum changes upon injury and contributes to the regenerative potential of normally gliogenic-NEPs and their adaptive reprogramming. Single cell transcriptomic and bulk chromatin accessibility analyses of the NEPs from injured neonatal cerebella compared to controls show a temporary increase in cellular processes involved in responding to reactive oxygen species (ROS), a known damage-associated molecular pattern. Analysis of ROS levels in cerebellar tissue confirm a transient increased one day after injury at postanal day 1, overlapping with the peak cell death in the cerebellum. In a transgenic mouse line that ubiquitously overexpresses human mitochondrial catalase (mCAT), ROS is reduced 1 day after injury to the granule cell progenitors, and we demonstrate that several steps in the regenerative process of NEPs are curtailed leading to reduced cerebellar growth. We also provide evidence that microglia are involved in one step of adaptive reprogramming by regulating NEP replenishment of the granule cell precursors. Collectively, our results highlight that changes in the tissue microenvironment regulate multiple steps in adaptative reprogramming of NEPs upon death of cerebellar granule cell progenitors at birth, highlighting the instructive roles of microenvironmental signals during regeneration of the neonatal brain.
Collapse
Affiliation(s)
- Anna Pakula
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Salsabiel El Nagar
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - N. Sumru Bayin
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Gurdon Institute, Cambridge University, Cambridge, UK
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK
| | - Jens Bager Christensen
- Gurdon Institute, Cambridge University, Cambridge, UK
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK
| | - Daniel N. Stephen
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | | | - Richard Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alexandra L. Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Biochemistry, Cell and Molecular Biology Program and Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| |
Collapse
|
2
|
Hodgdon EA, Anderson R, Azzawi HA, Wilson TW, Calhoun VD, Wang YP, Solis I, Greve DN, Stephen JM, Ciesielski KTR. MRI morphometry of the anterior and posterior cerebellar vermis and its relationship to sensorimotor and cognitive functions in children. Dev Cogn Neurosci 2024; 67:101385. [PMID: 38713999 PMCID: PMC11096723 DOI: 10.1016/j.dcn.2024.101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 05/09/2024] Open
Abstract
INTRODUCTION The human cerebellum emerges as a posterior brain structure integrating neural networks for sensorimotor, cognitive, and emotional processing across the lifespan. Developmental studies of the cerebellar anatomy and function are scant. We examine age-dependent MRI morphometry of the anterior cerebellar vermis, lobules I-V and posterior neocortical lobules VI-VII and their relationship to sensorimotor and cognitive functions. METHODS Typically developing children (TDC; n=38; age 9-15) and healthy adults (HAC; n=31; 18-40) participated in high-resolution MRI. Rigorous anatomically informed morphometry of the vermis lobules I-V and VI-VII and total brain volume (TBV) employed manual segmentation computer-assisted FreeSurfer Image Analysis Program [http://surfer.nmr.mgh.harvard.edu]. The neuropsychological scores (WASI-II) were normalized and related to volumes of anterior, posterior vermis, and TBV. RESULTS TBVs were age independent. Volumes of I-V and VI-VII were significantly reduced in TDC. The ratio of VI-VII to I-V (∼60%) was stable across age-groups; I-V correlated with visual-spatial-motor skills; VI-VII with verbal, visual-abstract and FSIQ. CONCLUSIONS In TDC neither anterior I-V nor posterior VI-VII vermis attained adult volumes. The "inverted U" developmental trajectory of gray matter peaking in adolescence does not explain this finding. The hypothesis of protracted development of oligodendrocyte/myelination is suggested as a contributor to TDC's lower cerebellar vermis volumes.
Collapse
Affiliation(s)
- Elizabeth A Hodgdon
- Pediatric Neuroscience Laboratory, Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ryan Anderson
- Pediatric Neuroscience Laboratory, Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Hussein Al Azzawi
- Pediatric Neuroscience Laboratory, Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Tony W Wilson
- Institute of Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE 68010, USA
| | - Vince D Calhoun
- Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd N.E., Albuquerque, NM 87106, USA; Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, USA
| | - Isabel Solis
- Pediatric Neuroscience Laboratory, Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Douglas N Greve
- MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Julia M Stephen
- Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd N.E., Albuquerque, NM 87106, USA
| | - Kristina T R Ciesielski
- Pediatric Neuroscience Laboratory, Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Lyu W, Wu Y, Huynh KM, Ahmad S, Yap PT. A multimodal submillimeter MRI atlas of the human cerebellum. Sci Rep 2024; 14:5622. [PMID: 38453991 PMCID: PMC10920891 DOI: 10.1038/s41598-024-55412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
The human cerebellum is engaged in a broad array of tasks related to motor coordination, cognition, language, attention, memory, and emotional regulation. A detailed cerebellar atlas can facilitate the investigation of the structural and functional organization of the cerebellum. However, existing cerebellar atlases are typically limited to a single imaging modality with insufficient characterization of tissue properties. Here, we introduce a multifaceted cerebellar atlas based on high-resolution multimodal MRI, facilitating the understanding of the neurodevelopment and neurodegeneration of the cerebellum based on cortical morphology, tissue microstructure, and intra-cerebellar and cerebello-cerebral connectivity.
Collapse
Affiliation(s)
- Wenjiao Lyu
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Ye Wu
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Khoi Minh Huynh
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Sahar Ahmad
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Pew-Thian Yap
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Zhong S, Wang M, Huang L, Chen Y, Ge Y, Zhang J, Shi Y, Dong H, Zhou X, Wang B, Lu T, Jing X, Lu Y, Zhang J, Wang X, Wu Q. Single-cell epigenomics and spatiotemporal transcriptomics reveal human cerebellar development. Nat Commun 2023; 14:7613. [PMID: 37993461 PMCID: PMC10665552 DOI: 10.1038/s41467-023-43568-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
Human cerebellar development is orchestrated by molecular regulatory networks to achieve cytoarchitecture and coordinate motor and cognitive functions. Here, we combined single-cell transcriptomics, spatial transcriptomics and single cell chromatin accessibility states to systematically depict an integrative spatiotemporal landscape of human fetal cerebellar development. We revealed that combinations of transcription factors and cis-regulatory elements (CREs) play roles in governing progenitor differentiation and cell fate determination along trajectories in a hierarchical manner, providing a gene expression regulatory map of cell fate and spatial information for these cells. We also illustrated that granule cells located in different regions of the cerebellar cortex showed distinct molecular signatures regulated by different signals during development. Finally, we mapped single-nucleotide polymorphisms (SNPs) of disorders related to cerebellar dysfunction and discovered that several disorder-associated genes showed spatiotemporal and cell type-specific expression patterns only in humans, indicating the cellular basis and possible mechanisms of the pathogenesis of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Suijuan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
- Changping Laboratory, Beijing, 102206, China.
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luwei Huang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youqiao Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Yuxin Ge
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Jiyao Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Yingchao Shi
- Guangdong Institute of Intelligence Science and Technology, Guangdong, 519031, China
| | - Hao Dong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- Changping Laboratory, Beijing, 102206, China
| | - Bosong Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Tian Lu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxi Jing
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Yufeng Lu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Junjing Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Xiaoqun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- Changping Laboratory, Beijing, 102206, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
- Changping Laboratory, Beijing, 102206, China.
| |
Collapse
|
5
|
Santana-Bejarano MB, Grosso-Martínez PR, Puebla-Mora AG, Martínez-Silva MG, Nava-Villalba M, Márquez-Aguirre AL, Ortuño-Sahagún D, Godínez-Rubí M. Pleiotrophin and the Expression of Its Receptors during Development of the Human Cerebellar Cortex. Cells 2023; 12:1733. [PMID: 37443767 PMCID: PMC10341181 DOI: 10.3390/cells12131733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
During embryonic and fetal development, the cerebellum undergoes several histological changes that require a specific microenvironment. Pleiotrophin (PTN) has been related to cerebral and cerebellar cortex ontogenesis in different species. PTN signaling includes PTPRZ1, ALK, and NRP-1 receptors, which are implicated in cell differentiation, migration, and proliferation. However, its involvement in human cerebellar development has not been described so far. Therefore, we investigated whether PTN and its receptors were expressed in the human cerebellar cortex during fetal and early neonatal development. The expression profile of PTN and its receptors was analyzed using an immunohistochemical method. PTN, PTPRZ1, and NRP-1 were expressed from week 17 to the postnatal stage, with variable expression among granule cell precursors, glial cells, and Purkinje cells. ALK was only expressed during week 31. These results suggest that, in the fetal and neonatal human cerebellum, PTN is involved in cell communication through granule cell precursors, Bergmann glia, and Purkinje cells via PTPRZ1, NRP-1, and ALK signaling. This communication could be involved in cell proliferation and cellular migration. Overall, the present study represents the first characterization of PTN, PTPRZ1, ALK, and NRP-1 expression in human tissues, suggesting their involvement in cerebellar cortex development.
Collapse
Affiliation(s)
- Margarita Belem Santana-Bejarano
- Laboratorio de Patología Diagnóstica e Inmunohistoquímica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.B.S.-B.); (P.R.G.-M.); (A.G.P.-M.)
- Doctorado en Ciencias en Biología Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Paula Romina Grosso-Martínez
- Laboratorio de Patología Diagnóstica e Inmunohistoquímica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.B.S.-B.); (P.R.G.-M.); (A.G.P.-M.)
- Departamento de Anatomía Patológica, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico;
| | - Ana Graciela Puebla-Mora
- Laboratorio de Patología Diagnóstica e Inmunohistoquímica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.B.S.-B.); (P.R.G.-M.); (A.G.P.-M.)
| | - María Guadalupe Martínez-Silva
- Departamento de Anatomía Patológica, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico;
| | - Mario Nava-Villalba
- Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Ana Laura Márquez-Aguirre
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara 44270, Mexico;
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Marisol Godínez-Rubí
- Laboratorio de Patología Diagnóstica e Inmunohistoquímica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.B.S.-B.); (P.R.G.-M.); (A.G.P.-M.)
- Departamento de Morfología, CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
6
|
Zou H, Poore B, Brown EE, Qian J, Xie B, Asimakidou E, Razskazovskiy V, Ayrapetian D, Sharma V, Xia S, Liu F, Chen A, Guan Y, Li Z, Wanggou S, Saulnier O, Ly M, Fellows-Mayle W, Xi G, Tomita T, Resnick AC, Mack SC, Raabe EH, Eberhart CG, Sun D, Stronach BE, Agnihotri S, Kohanbash G, Lu S, Herrup K, Rich JN, Gittes GK, Broniscer A, Hu Z, Li X, Pollack IF, Friedlander RM, Hainer SJ, Taylor MD, Hu B. A neurodevelopmental epigenetic programme mediated by SMARCD3-DAB1-Reelin signalling is hijacked to promote medulloblastoma metastasis. Nat Cell Biol 2023; 25:493-507. [PMID: 36849558 PMCID: PMC10014585 DOI: 10.1038/s41556-023-01093-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/17/2023] [Indexed: 03/01/2023]
Abstract
How abnormal neurodevelopment relates to the tumour aggressiveness of medulloblastoma (MB), the most common type of embryonal tumour, remains elusive. Here we uncover a neurodevelopmental epigenomic programme that is hijacked to induce MB metastatic dissemination. Unsupervised analyses of integrated publicly available datasets with our newly generated data reveal that SMARCD3 (also known as BAF60C) regulates Disabled 1 (DAB1)-mediated Reelin signalling in Purkinje cell migration and MB metastasis by orchestrating cis-regulatory elements at the DAB1 locus. We further identify that a core set of transcription factors, enhancer of zeste homologue 2 (EZH2) and nuclear factor I X (NFIX), coordinates with the cis-regulatory elements at the SMARCD3 locus to form a chromatin hub to control SMARCD3 expression in the developing cerebellum and in metastatic MB. Increased SMARCD3 expression activates Reelin-DAB1-mediated Src kinase signalling, which results in a MB response to Src inhibition. These data deepen our understanding of how neurodevelopmental programming influences disease progression and provide a potential therapeutic option for patients with MB.
Collapse
Affiliation(s)
- Han Zou
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Changsha, China
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Bradley Poore
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Emily E Brown
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jieqi Qian
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Bin Xie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Evridiki Asimakidou
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Vladislav Razskazovskiy
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Deanna Ayrapetian
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Vaibhav Sharma
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Shunjin Xia
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Liu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Apeng Chen
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Yongchang Guan
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Zhengwei Li
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Olivier Saulnier
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michelle Ly
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wendy Fellows-Mayle
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guifa Xi
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tadanori Tomita
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Adam C Resnick
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephen C Mack
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Eric H Raabe
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Beth E Stronach
- Office of Research, University of Pittsburgh Health Sciences, Pittsburgh, PA, USA
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Songjian Lu
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karl Herrup
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeremy N Rich
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - George K Gittes
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alberto Broniscer
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhongliang Hu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Changsha, China
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Robert M Friedlander
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- John G. Rangos Sr Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Krycer JR, Nayler SP. A Survey of the Metabolic Landscape of the Developing Cerebellum at Single-Cell Resolution. CEREBELLUM (LONDON, ENGLAND) 2022; 21:838-850. [PMID: 35767214 DOI: 10.1007/s12311-022-01415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The use of cell-culture models to investigate development and disease of the cerebellum is a recent advance, facilitated by the discovery that patterning of precursors is capable of giving rise to cells with specific neuronal identity. Pluripotent stem cell-derived organoids, which exhibit self-organisational characteristics reminiscent of early cerebellar tissue, present a number of challenges including recapitulation of conditions resembling the mature brain. An understanding of the processes driving fetal and postnatal maturation is required to reproduce these conditions in vitro and advance the capability of the system to model adult-onset disease. A key tool for achieving this is single-cell RNA sequencing, which enables visualisation of key transcriptional features of subpopulations comprising tissues. Here, we explore and compare available single-cell RNA sequencing data derived from the developing human cerebellum and its synthetic, in vitro counterpart (stem cell-derived cerebellar organoids). We focus on performing a qualitative assessment of the expression of key metabolic pathway genes, given recent findings exemplifying tissue-specific metabolic activity, including hypoxia and metabolic shifts associated with neuronal expansion. Signatures indicative of known cell type-specific metabolic differences, such as the astrocyte-neuron lactate shuttle and glutamate-glutamine cycle were evident at a transcriptional level. Cerebellar tissue and cerebellar organoids showed a number of behavioural similarities, including HIF1 signalling, which may serve to drive expansion of granule cell progenitors in both settings. We further highlight numerous differences between cultured organoids and native tissue which may provide clarity on the state of metabolic state following differentiation of organoids, providing the future framework to test and further hypotheses regarding promoting maturation. Overall, this analysis provides insight into understanding the state of in vitro models of the cerebellum, a critical factor required for modelling susceptibility of various cell types to cerebellar disease.
Collapse
Affiliation(s)
- James R Krycer
- Queensland Institute of Medical Research Berghofer Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sam P Nayler
- Queensland Institute of Medical Research Berghofer Research Institute, Herston, QLD, Australia.
| |
Collapse
|
8
|
Poudel PP, Bhattarai C, Ghosh A, Kalthur SG. Histomorphometry of the cortical layers and the dentate nucleus of the human fetal cerebellum. J Taibah Univ Med Sci 2022; 18:390-399. [PMID: 37102073 PMCID: PMC10124138 DOI: 10.1016/j.jtumed.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/25/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Objectives This study was aimed at determining the histomorphometry of the cerebellar cortical laminae and the dentate nucleus of the human fetal cerebellum; the number and shape of the neurons; and the gestational age of appearance of the cerebellar folia, white matter and arbor vitae cerebelli. Methods Microscopic sections of the human fetal cerebellum stained with hematoxylin and eosin and Bielschowsky silver stain were studied. Results The thickness of the cortical laminae of the human fetal cerebellum varied among gestational weeks as follows: external granular layer: 36.06 ± 9.36-50.05 ± 34.06 μm, molecular layer: 32.76 ± 17.16-52 ± 28.6 μm, Purkinje cell layer: 9.36 ± 6.8-15.6 ± 4.68 μm and internal granular layer: 66.65 ± 24.42-146.63 ± 47.79 μm. Similarly, the number of neurons per field of view at 1000X under a compound microscope varied among gestational weeks as follows: external granular layer: 89.92 ± 42-142.84 ± 50, molecular layer: 15 ± 12.5-25 ± 8.25, Purkinje cell layer: 3.5 ± 1-5 ± 2.5 and internal granular layer: 98.5 ± 69.75-224 ± 47.White matter in the fetal cerebellum was already present at the age of 12th gestational week, whereas cerebellar folia appeared at 16-20 gestational weeks. Arbor vitae cerebelli and the dentate nucleus became conspicuous after the 20th gestational week. Fetal neurons were round except for Purkinje cells. Conclusions The thickness and neuronal counts of the human fetal cerebellar cortical layers and the measurements of the dentate nucleus along with other histomorphological features varied with gestational age from the 12th week of gestation until birth.
Collapse
Affiliation(s)
- Phanindra P. Poudel
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Anatomy, Manipal College of Medical Sciences, Pokhara, Nepal
| | - Chacchu Bhattarai
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Anatomy, Manipal College of Medical Sciences, Pokhara, Nepal
| | - Arnab Ghosh
- Department of Pathology, Manipal-TATA Medical College, Jamshedpur, India
| | - Sneha G. Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Corresponding address: Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
9
|
Joyner AL, Bayin NS. Cerebellum lineage allocation, morphogenesis and repair: impact of interplay amongst cells. Development 2022; 149:dev185587. [PMID: 36172987 PMCID: PMC9641654 DOI: 10.1242/dev.185587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The cerebellum has a simple cytoarchitecture consisting of a folded cortex with three cell layers that surrounds a nuclear structure housing the output neurons. The excitatory neurons are generated from a unique progenitor zone, the rhombic lip, whereas the inhibitory neurons and astrocytes are generated from the ventricular zone. The growth phase of the cerebellum is driven by lineage-restricted progenitor populations derived from each zone. Research during the past decade has uncovered the importance of cell-to-cell communication between the lineages through largely unknown signaling mechanisms for regulating the scaling of cell numbers and cell plasticity during mouse development and following injury in the neonatal (P0-P14) cerebellum. This Review focuses on how the interplay between cell types is key to morphogenesis, production of robust neural circuits and replenishment of cells after injury, and ends with a discussion of the implications of the greater complexity of the human cerebellar progenitor zones for development and disease.
Collapse
Affiliation(s)
- Alexandra L. Joyner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - N. Sumru Bayin
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge University, Cambridge CB2 1NQ, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| |
Collapse
|
10
|
Bartkowska K, Tepper B, Turlejski K, Djavadian R. Postnatal and Adult Neurogenesis in Mammals, Including Marsupials. Cells 2022; 11:cells11172735. [PMID: 36078144 PMCID: PMC9455070 DOI: 10.3390/cells11172735] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/11/2022] Open
Abstract
In mammals, neurogenesis occurs during both embryonic and postnatal development. In eutherians, most brain structures develop embryonically; conversely, in marsupials, a number of brain structures develop after birth. The exception is the generation of granule cells in the dentate gyrus, olfactory bulb, and cerebellum of eutherian species. The formation of these structures starts during embryogenesis and continues postnatally. In both eutherians and marsupials, neurogenesis continues in the subventricular zone of the lateral ventricle (SVZ) and the dentate gyrus of the hippocampal formation throughout life. The majority of proliferated cells from the SVZ migrate to the olfactory bulb, whereas, in the dentate gyrus, cells reside within this structure after division and differentiation into neurons. A key aim of this review is to evaluate advances in understanding developmental neurogenesis that occurs postnatally in both marsupials and eutherians, with a particular emphasis on the generation of granule cells during the formation of the olfactory bulb, dentate gyrus, and cerebellum. We debate the significance of immature neurons in the piriform cortex of young mammals. We also synthesize the knowledge of adult neurogenesis in the olfactory bulb and the dentate gyrus of marsupials by considering whether adult-born neurons are essential for the functioning of a given area.
Collapse
Affiliation(s)
- Katarzyna Bartkowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Beata Tepper
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Krzysztof Turlejski
- Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Ruzanna Djavadian
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
- Correspondence:
| |
Collapse
|
11
|
Choi J, Kim YS, Kim MH, Kim HJ, Yoon BE. Maternal lead exposure induces sex-dependent cerebellar glial alterations and repetitive behaviors. Front Cell Neurosci 2022; 16:954807. [PMID: 36072563 PMCID: PMC9442054 DOI: 10.3389/fncel.2022.954807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Lead (Pb) is one of the most prevalent heavy metals we encounter daily. Although there are many reports regarding their toxic effects on humans, the effects of exposure to low lead concentrations throughout the pregnancy period on the offspring are not fully elucidated yet. This study aimed to investigate the cellular mechanisms that occur in response to lead exposure. To this end, we administered lead-containing water to pregnant mice from the day of conception till delivery or till day 28 postnatally. Furthermore, we performed neurodevelopmental disorder-related behavior tests and RNA-sequencing analysis. We used both genders for all experiments because neurodevelopmental disorders usually show several sex-dependent differences. The results revealed increased levels of gliosis in the cerebella of lead-exposed pups compared to those in littermates belonging to the control group. Additionally, we observed altered behaviors of male mice in the autism spectrum disorder-related tests. RNA-sequencing results revealed changes in gamma-aminobutyric acid (GABA) signaling in the lead-exposed mouse model. Specifically, the lead-exposed male mice showed decreased monoamine oxidase B and increased levels of diamine oxidase enzyme, which is related to the synthesis of GABA in astrocytes. These findings demonstrate sex-dependent basal developmental changes in glial cells and an increased prevalence of autistic-like behaviors in the young pups of mothers exposed to lead during pregnancy.
Collapse
Affiliation(s)
- Juwon Choi
- Department of Molecular Biology, College of Natural Sciences, Dankook University, Cheonan, South Korea
| | - Yoo Sung Kim
- Department of Molecular Biology, College of Natural Sciences, Dankook University, Cheonan, South Korea
| | - Mi-Hye Kim
- Department of Physiology, College of Medicine, Dankook University, Cheonan, South Korea
- Department of Medical Laser, Graduate School, Dankook University, Cheonan, South Korea
| | - Hee Jung Kim
- Department of Physiology, College of Medicine, Dankook University, Cheonan, South Korea
| | - Bo-Eun Yoon
- Department of Molecular Biology, College of Natural Sciences, Dankook University, Cheonan, South Korea
- *Correspondence: Bo-Eun Yoon,
| |
Collapse
|
12
|
Haldipur P, Millen KJ, Aldinger KA. Human Cerebellar Development and Transcriptomics: Implications for Neurodevelopmental Disorders. Annu Rev Neurosci 2022; 45:515-531. [PMID: 35440142 PMCID: PMC9271632 DOI: 10.1146/annurev-neuro-111020-091953] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Developmental abnormalities of the cerebellum are among the most recognized structural brain malformations in human prenatal imaging. Yet reliable information regarding their cause in humans is sparse, and few outcome studies are available to inform prognosis. We know very little about human cerebellar development, in stark contrast to the wealth of knowledge from decades of research on cerebellar developmental biology of model organisms, especially mice. Recent studies show that multiple aspects of human cerebellar development significantly differ from mice and even rhesus macaques, a nonhuman primate. These discoveries challenge many current mouse-centric models of normal human cerebellar development and models regarding the pathogenesis of several neurodevelopmental phenotypes affecting the cerebellum, including Dandy-Walker malformation and medulloblastoma. Since we cannot model what we do not know, additional normative and pathological human developmental data are essential, and new models are needed.
Collapse
Affiliation(s)
- Parthiv Haldipur
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA;
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA; .,Department of Pediatrics, Division of Medical Genetics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA;
| |
Collapse
|
13
|
Structure, Function, and Genetics of the Cerebellum in Autism. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2022; 7:e220008. [PMID: 36425354 PMCID: PMC9683352 DOI: 10.20900/jpbs.20220008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Autism spectrum disorders are common neurodevelopmental disorders that are defined by core behavioral symptoms but have diverse genetic and environmental risk factors. Despite its etiological heterogeneity, several unifying theories of autism have been proposed, including a central role for cerebellar dysfunction. The cerebellum follows a protracted course of development that culminates in an exquisitely crafted brain structure containing over half of the neurons in the entire brain densely packed into a highly organized structure. Through its complex network of connections with cortical and subcortical brain regions, the cerebellum acts as a sensorimotor regulator and affects changes in executive and limbic processing. In this review, we summarize the structural, functional, and genetic contributions of the cerebellum to autism.
Collapse
|
14
|
Bayin NS, Mizrak D, Stephen DN, Lao Z, Sims PA, Joyner AL. Injury-induced ASCL1 expression orchestrates a transitory cell state required for repair of the neonatal cerebellum. SCIENCE ADVANCES 2021; 7:eabj1598. [PMID: 34878841 PMCID: PMC8654303 DOI: 10.1126/sciadv.abj1598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/20/2021] [Indexed: 05/23/2023]
Abstract
To understand repair processes, it is critical to identify the molecular foundations underlying progenitor diversity and plasticity. Upon injury to the neonatal cerebellum, a normally gliogenic nestin-expressing progenitor (NEP) in the Bergmann glia layer (BgL) undergoes adaptive reprograming to restore granule cell production. However, the cellular states and genes regulating the NEP fate switch are unknown. Using single-cell RNA sequencing and fate mapping, we defined molecular subtypes of NEPs and their lineages under homeostasis and repair. NEPs contain two major subtypes: Hopx+ astrogliogenic and Ascl1+ neurogenic NEPs that are further subdivided based on their location, lineage, and differentiation status. Upon injury, an Ascl1+ transitory cellular state arises from Hopx+ BgL-NEPs. Furthermore, mutational analysis revealed that induction of Ascl1 is required for adaptive reprogramming by orchestrating a glial-to-neural switch in vivo following injury. Thus, we provide molecular and cellular insights into context-dependent progenitor plasticity and repair mechanisms in the brain.
Collapse
Affiliation(s)
- N. Sumru Bayin
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Dogukan Mizrak
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Daniel N. Stephen
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Zhimin Lao
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Peter A. Sims
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biochemistry and Biophysics, Columbia University, New York, NY, USA
| | - Alexandra L. Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| |
Collapse
|
15
|
Evidence of disrupted rhombic lip development in the pathogenesis of Dandy-Walker malformation. Acta Neuropathol 2021; 142:761-776. [PMID: 34347142 DOI: 10.1007/s00401-021-02355-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/26/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
Dandy-Walker malformation (DWM) and Cerebellar vermis hypoplasia (CVH) are commonly recognized human cerebellar malformations diagnosed following ultrasound and antenatal or postnatal MRI. Specific radiological criteria are used to distinguish them, yet little is known about their differential developmental disease mechanisms. We acquired prenatal cases diagnosed as DWM and CVH and studied cerebellar morphobiometry followed by histological and immunohistochemical analyses. This was supplemented by laser capture microdissection and RNA-sequencing of the cerebellar rhombic lip, a transient progenitor zone, to assess the altered transcriptome of DWM vs control samples. Our radiological findings confirm that the cases studied fall within the accepted biometric range of DWM. Our histopathological analysis points to reduced foliation and inferior vermian hypoplasia as common features in all examined DWM cases. We also find that the rhombic lip, a dorsal stem cell zone that drives the growth and maintenance of the posterior vermis is specifically disrupted in DWM, with reduced proliferation and self-renewal of the progenitor pool, and altered vasculature, all confirmed by transcriptomics analysis. We propose a unified model for the developmental pathogenesis of DWM. We hypothesize that rhombic lip development is disrupted through either aberrant vascularization and/or direct insult which causes reduced proliferation and failed expansion of the rhombic lip progenitor pool leading to disproportionate hypoplasia and dysplasia of the inferior vermis. Timing of insult to the developing rhombic lip (before or after 14 PCW) dictates the extent of hypoplasia and distinguishes DWM from CVH.
Collapse
|
16
|
Liu F, Shao J, Yang H, Yang G, Zhu Q, Wu Y, Zhu L, Wu H. Disruption of rack1 suppresses SHH-type medulloblastoma formation in mice. CNS Neurosci Ther 2021; 27:1518-1530. [PMID: 34480519 PMCID: PMC8611787 DOI: 10.1111/cns.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction Medulloblastoma (MB) is a malignant pediatric brain tumor that arises in the cerebellar granular neurons. Sonic Hedgehog subtype of MB (SHH‐MB) is one of the major subtypes of MB in the clinic. However, the molecular mechanisms underlying MB tumorigenesis are still not fully understood. Aims Our previous work demonstrated that the receptor for activated C kinase 1 (Rack1) is essential for SHH signaling activation in granule neuron progenitors (GNPs) during cerebellar development. To investigate the potential role of Rack1 in MB development, human MB tissue array and SHH‐MB genetic mouse model were used to study the expression of function of Rack1 in MB pathogenesis. Results We found that the expression of Rack1 was significantly upregulated in the majority of human cerebellar MB tumors. Genetic ablation of Rack1 expression in SHH‐MB tumor mice could significantly inhibit MB proliferation, reduce the tumor size, and prolong the survival of tumor rescue mice. Interestingly, neither apoptosis nor autophagy levels were affected in Rack1‐deletion rescue mice compared to WT mice, but the expression of Gli1 and HDAC2 was significantly decreased suggesting the inactivation of SHH signaling pathway in rescue mice. Conclusion Our results demonstrated that Rack1 may serve as a potential candidate for the diagnostic marker and therapeutic target of MB, including SHH‐MB.
Collapse
Affiliation(s)
- Fengjiao Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jingyuan Shao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Haihong Yang
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Guochao Yang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Zhu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lingling Zhu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China.,Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
17
|
Aldinger KA, Thomson Z, Phelps IG, Haldipur P, Deng M, Timms AE, Hirano M, Santpere G, Roco C, Rosenberg AB, Lorente-Galdos B, Gulden FO, O'Day D, Overman LM, Lisgo SN, Alexandre P, Sestan N, Doherty D, Dobyns WB, Seelig G, Glass IA, Millen KJ. Spatial and cell type transcriptional landscape of human cerebellar development. Nat Neurosci 2021; 24:1163-1175. [PMID: 34140698 PMCID: PMC8338761 DOI: 10.1038/s41593-021-00872-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
The human neonatal cerebellum is one-fourth of its adult size yet contains the blueprint required to integrate environmental cues with developing motor, cognitive and emotional skills into adulthood. Although mature cerebellar neuroanatomy is well studied, understanding of its developmental origins is limited. In this study, we systematically mapped the molecular, cellular and spatial composition of human fetal cerebellum by combining laser capture microscopy and SPLiT-seq single-nucleus transcriptomics. We profiled functionally distinct regions and gene expression dynamics within cell types and across development. The resulting cell atlas demonstrates that the molecular organization of the cerebellar anlage recapitulates cytoarchitecturally distinct regions and developmentally transient cell types that are distinct from the mouse cerebellum. By mapping genes dominant for pediatric and adult neurological disorders onto our dataset, we identify relevant cell types underlying disease mechanisms. These data provide a resource for probing the cellular basis of human cerebellar development and disease.
Collapse
Affiliation(s)
- Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| | - Zachary Thomson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ian G Phelps
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Parthiv Haldipur
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Mei Deng
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Matthew Hirano
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Gabriel Santpere
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Neurogenomics Group, Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Charles Roco
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Alexander B Rosenberg
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Belen Lorente-Galdos
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Forrest O Gulden
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Diana O'Day
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Lynne M Overman
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Steven N Lisgo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paula Alexandre
- University College London Great Ormond Street Institute of Child Health, London, UK
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Dan Doherty
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Georg Seelig
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
- School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Ian A Glass
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
18
|
Basu SK, Pradhan S, du Plessis AJ, Ben-Ari Y, Limperopoulos C. GABA and glutamate in the preterm neonatal brain: In-vivo measurement by magnetic resonance spectroscopy. Neuroimage 2021; 238:118215. [PMID: 34058332 PMCID: PMC8404144 DOI: 10.1016/j.neuroimage.2021.118215] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cognitive and behavioral disabilities in preterm infants, even without obvious brain injury on conventional neuroimaging, underscores a critical need to identify the subtle underlying microstructural and biochemical derangements. The gamma-aminobutyric acid (GABA) and glutamatergic neurotransmitter systems undergo rapid maturation during the crucial late gestation and early postnatal life, and are at-risk of disruption after preterm birth. Animal and human autopsy studies provide the bulk of current understanding since non-invasive specialized proton magnetic resonance spectroscopy (1H-MRS) to measure GABA and glutamate are not routinely available for this vulnerable population due to logistical and technical challenges. We review the specialized 1H-MRS techniques including MEscher-GArwood Point Resolved Spectroscopy (MEGA-PRESS), special challenges and considerations needed for interpretation of acquired data from the developing brain of preterm infants. We summarize the limited in-vivo preterm data, highlight the gaps in knowledge, and discuss future directions for optimal integration of available in-vivo approaches to understand the influence of GABA and glutamate on neurodevelopmental outcomes after preterm birth.
Collapse
Affiliation(s)
- Sudeepta K Basu
- Neonatology, Children's National Hospital, Washington, D.C., United States; Center for the Developing Brain, Children's National Hospital, Washington, D.C., United States; Division of Neurology, Children's National Hospital, Washington, D.C., United States; The George Washington University School of Medicine, Washington, D.C., United States
| | - Subechhya Pradhan
- Center for the Developing Brain, Children's National Hospital, Washington, D.C., United States; Division of Neurology, Children's National Hospital, Washington, D.C., United States; The George Washington University School of Medicine, Washington, D.C., United States
| | - Adre J du Plessis
- Fetal Medicine institute, Children's National Hospital, Washington, D.C., United States; Division of Neurology, Children's National Hospital, Washington, D.C., United States; The George Washington University School of Medicine, Washington, D.C., United States
| | - Yehezkel Ben-Ari
- Division of Neurology, Children's National Hospital, Washington, D.C., United States; Neurochlore, Marseille, France
| | - Catherine Limperopoulos
- Center for the Developing Brain, Children's National Hospital, Washington, D.C., United States; Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, D.C., United States; Division of Neurology, Children's National Hospital, Washington, D.C., United States; The George Washington University School of Medicine, Washington, D.C., United States.
| |
Collapse
|
19
|
Waddell J, Rickman NC, He M, Tang N, Bearer CF. Choline supplementation prevents the effects of bilirubin on cerebellar-mediated behavior in choline-restricted Gunn rat pups. Pediatr Res 2021; 89:1414-1419. [PMID: 33027804 PMCID: PMC8024424 DOI: 10.1038/s41390-020-01187-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Bilirubin is produced by the breakdown of hemoglobin and is normally catabolized and excreted. Neurotoxic accumulation of serum bilirubin often occurs in premature infants. The homozygous Gunn rat lacks uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1), the enzyme needed to biotransform bilirubin. This rodent model of hyperbilirubinemia emulates many aspects of bilirubin toxicity observed in the human infant. We demonstrate that choline supplementation in early postnatal development is neuroprotective in the choline-restricted Gunn rat, when hyperbilirubinemia is induced on postnatal day 5. METHODS We first compared behaviors and cerebellar weight of pups born to dams consuming regular rat chow to those of dams consuming choline-restricted diets. Second, we measured behaviors and cerebellar weights of pups born to choline-restricted dams, reared on a choline-restricted diet, supplemented with or without choline, and treated with or without sulfadimethoxine (SDMX). RESULTS A choline-restricted diet did not change the behavioral outcomes, but cerebellar weight was reduced in the choline-restricted group regardless of genotype or SDMX administration. SDMX induced behavioral deficits in jj pups, and choline supplementation improved most behavioral effects and cerebellar weight in SDMX-treated jj rats. CONCLUSIONS These results suggest that choline may be used as a safe and effective neuroprotective intervention against hyperbilirubinemia in the choline-deficient premature infant. IMPACT This article investigates the effect of neonatal jaundice/bilirubin neurotoxicity on cerebellar-mediated behaviors. This article explores the potential use of choline as an intervention capable of ameliorating the effect of bilirubin on the choline-restricted developing brain. This article opens the door for future studies on the action of choline in the presence of hyperbilirubinemia, especially in preterm neonates.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nicholas C Rickman
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Min He
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Ningfeng Tang
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Cynthia F Bearer
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
20
|
Selvadurai HJ, Luis E, Desai K, Lan X, Vladoiu MC, Whitley O, Galvin C, Vanner RJ, Lee L, Whetstone H, Kushida M, Nowakowski T, Diamandis P, Hawkins C, Bader G, Kriegstein A, Taylor MD, Dirks PB. Medulloblastoma Arises from the Persistence of a Rare and Transient Sox2 + Granule Neuron Precursor. Cell Rep 2021; 31:107511. [PMID: 32294450 DOI: 10.1016/j.celrep.2020.03.075] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/10/2019] [Accepted: 03/23/2020] [Indexed: 10/24/2022] Open
Abstract
Medulloblastoma (MB) is a neoplasm linked to dysregulated cerebellar development. Previously, we demonstrated that the Sonic Hedgehog (SHH) subgroup grows hierarchically, with Sox2+ cells at the apex of tumor progression and relapse. To test whether this mechanism is rooted in a normal developmental process, we studied the role of Sox2 in cerebellar development. We find that the external germinal layer (EGL) is derived from embryonic Sox2+ precursors and that the EGL maintains a rare fraction of Sox2+ cells during the first postnatal week. Through lineage tracing and single-cell analysis, we demonstrate that these Sox2+ cells are within the Atoh1+ lineage, contribute extensively to adult granule neurons, and resemble Sox2+ tumor cells. Critically, constitutive activation of the SHH pathway leads to their aberrant persistence in the EGL and rapid tumor onset. We propose that failure to eliminate this rare but potent developmental population is the tumor initiation mechanism in SHH-subgroup MB.
Collapse
Affiliation(s)
- Hayden J Selvadurai
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Erika Luis
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kinjal Desai
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiaoyang Lan
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Maria C Vladoiu
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Owen Whitley
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; The Donnelly Centre, University of Toronto, ON M5T 1W1, Canada
| | - Ciaran Galvin
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Robert J Vanner
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lilian Lee
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Heather Whetstone
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Michelle Kushida
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Tomasz Nowakowski
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Phedias Diamandis
- Department of Pathology, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada; Division of Pathology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Cynthia Hawkins
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Pathology, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada; Division of Pathology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Gary Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; The Donnelly Centre, University of Toronto, ON M5T 1W1, Canada
| | - Arnold Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 0A4, Canada; Division of Neurosurgery, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Peter B Dirks
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Division of Neurosurgery, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
21
|
Amore G, Spoto G, Ieni A, Vetri L, Quatrosi G, Di Rosa G, Nicotera AG. A Focus on the Cerebellum: From Embryogenesis to an Age-Related Clinical Perspective. Front Syst Neurosci 2021; 15:646052. [PMID: 33897383 PMCID: PMC8062874 DOI: 10.3389/fnsys.2021.646052] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
The cerebellum and its functional multiplicity and heterogeneity have been objects of curiosity and interest since ancient times, giving rise to the urge to reveal its complexity. Since the first hypothesis of cerebellar mere role in motor tuning and coordination, much more has been continuously discovered about the cerebellum’s circuitry and functioning throughout centuries, leading to the currently accepted knowledge of its prominent involvement in cognitive, social, and behavioral areas. Particularly in childhood, the cerebellum may subserve several age-dependent functions, which might be compromised in several Central Nervous System pathologies. Overall, cerebellar damage may produce numerous signs and symptoms and determine a wide variety of neuropsychiatric impairments already during the evolutive age. Therefore, an early assessment in children would be desirable to address a prompt diagnosis and a proper intervention since the first months of life. Here we provide an overview of the cerebellum, retracing its morphology, histogenesis, and physiological functions, and finally outlining its involvement in typical and atypical development and the age-dependent patterns of cerebellar dysfunctions.
Collapse
Affiliation(s)
- Greta Amore
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Antonio Ieni
- Unit of Pathology, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Luigi Vetri
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Giuseppe Quatrosi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| |
Collapse
|
22
|
Hadders-Algra M. Early Diagnostics and Early Intervention in Neurodevelopmental Disorders-Age-Dependent Challenges and Opportunities. J Clin Med 2021; 10:861. [PMID: 33669727 PMCID: PMC7922888 DOI: 10.3390/jcm10040861] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/20/2022] Open
Abstract
This review discusses early diagnostics and early intervention in developmental disorders in the light of brain development. The best instruments for early detection of cerebral palsy (CP) with or without intellectual disability are neonatal magnetic resonance imaging, general movements assessment at 2-4 months and from 2-4 months onwards, the Hammersmith Infant Neurological Examination and Standardized Infant NeuroDevelopmental Assessment. Early detection of autism spectrum disorders (ASD) is difficult; its first signs emerge at the end of the first year. Prediction with the Modified Checklist for Autism in Toddlers and Infant Toddler Checklist is possible to some extent and improves during the second year, especially in children at familial risk of ASD. Thus, prediction improves substantially when transient brain structures have been replaced by permanent circuitries. At around 3 months the cortical subplate has dissolved in primary motor and sensory cortices; around 12 months the cortical subplate in prefrontal and parieto-temporal cortices and cerebellar external granular layer have disappeared. This review stresses that families are pivotal in early intervention. It summarizes evidence on the effectiveness of early intervention in medically fragile neonates, infants at low to moderate risk, infants with or at high risk of CP and with or at high risk of ASD.
Collapse
Affiliation(s)
- Mijna Hadders-Algra
- University of Groningen, University Medical Center Groningen, Department of Paediatrics-Section Developmental Neurology, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
23
|
Tepper B, Bartkowska K, Okrasa M, Ngati S, Braszak M, Turlejski K, Djavadian R. Downregulation of TrkC Receptors Increases Dendritic Arborization of Purkinje Cells in the Developing Cerebellum of the Opossum, Monodelphis domestica. Front Neuroanat 2020; 14:56. [PMID: 33013328 PMCID: PMC7511753 DOI: 10.3389/fnana.2020.00056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
In therian mammals, the cerebellum is one of the late developing structures in the brain. Specifically, the proliferation of cerebellar granule cells occurs after birth, and even in humans, the generation of these cells continues during the first year of life. The main difference between marsupials and eutherians is that the majority of the brain structures in marsupials develop after birth. Herein, we report that in the newborn laboratory opossum (Monodelphis domestica), the cerebellar primordium is distinguishable in Nissl-stained sections. Additionally, bromodeoxyuridine birthdating experiments revealed that the first neurons form the deep cerebellar nuclei (DCN) and Purkinje cells, and are generated within postnatal days (P) 1 and 5. Three weeks after birth, progenitors of granule cells in the external germinal layer (EGL) proliferate, producing granule cells. These progenitor cells persist for a long time, approximately 5 months. Furthermore, to study the effects of neurotrophic tropomyosin receptor kinase C (TrkC) during cerebellar development, cells were obtained from P3 opossums and cultured for 8 days. We found that TrkC downregulation stimulates dendritic branching of Purkinje neurons, which was surprising. The number of dendritic branches was higher in Purkinje cells transfected with the shRNA TrkC plasmid. However, there was no morphological change in the number of dendritic branches of granule cells transfected with either control or shRNA TrkC plasmids. We suggest that inhibition of TrkC activity enables NT3 binding to the neurotrophic receptor p75NTR that promotes dendritic arborization of Purkinje cells. This effect of TrkC receptors on dendritic branching is cell type specific, which could be explained by the strong expression of TrkC in Purkinje cells but not in granule cells. The data indicate a new role for TrkC receptors in Monodelphis opossum.
Collapse
Affiliation(s)
- Beata Tepper
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Bartkowska
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Okrasa
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
| | - Sonia Ngati
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Braszak
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Turlejski
- Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| | - Ruzanna Djavadian
- Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| |
Collapse
|
24
|
Novel genetic features of human and mouse Purkinje cell differentiation defined by comparative transcriptomics. Proc Natl Acad Sci U S A 2020; 117:15085-15095. [PMID: 32546527 PMCID: PMC7334519 DOI: 10.1073/pnas.2000102117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Comparative transcriptomics between differentiating human pluripotent stem cells (hPSCs) and developing mouse neurons offers a powerful approach to compare genetic and epigenetic pathways in human and mouse neurons. To analyze human Purkinje cell (PC) differentiation, we optimized a protocol to generate human pluripotent stem cell-derived Purkinje cells (hPSC-PCs) that formed synapses when cultured with mouse cerebellar glia and granule cells and fired large calcium currents, measured with the genetically encoded calcium indicator jRGECO1a. To directly compare global gene expression of hPSC-PCs with developing mouse PCs, we used translating ribosomal affinity purification (TRAP). As a first step, we used Tg(Pcp2-L10a-Egfp) TRAP mice to profile actively transcribed genes in developing postnatal mouse PCs and used metagene projection to identify the most salient patterns of PC gene expression over time. We then created a transgenic Pcp2-L10a-Egfp TRAP hPSC line to profile gene expression in differentiating hPSC-PCs, finding that the key gene expression pathways of differentiated hPSC-PCs most closely matched those of late juvenile mouse PCs (P21). Comparative bioinformatics identified classical PC gene signatures as well as novel mitochondrial and autophagy gene pathways during the differentiation of both mouse and human PCs. In addition, we identified genes expressed in hPSC-PCs but not mouse PCs and confirmed protein expression of a novel human PC gene, CD40LG, expressed in both hPSC-PCs and native human cerebellar tissue. This study therefore provides a direct comparison of hPSC-PC and mouse PC gene expression and a robust method for generating differentiated hPSC-PCs with human-specific gene expression for modeling developmental and degenerative cerebellar disorders.
Collapse
|
25
|
Jossin Y. Reelin Functions, Mechanisms of Action and Signaling Pathways During Brain Development and Maturation. Biomolecules 2020; 10:biom10060964. [PMID: 32604886 PMCID: PMC7355739 DOI: 10.3390/biom10060964] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
During embryonic development and adulthood, Reelin exerts several important functions in the brain including the regulation of neuronal migration, dendritic growth and branching, dendritic spine formation, synaptogenesis and synaptic plasticity. As a consequence, the Reelin signaling pathway has been associated with several human brain disorders such as lissencephaly, autism, schizophrenia, bipolar disorder, depression, mental retardation, Alzheimer’s disease and epilepsy. Several elements of the signaling pathway are known. Core components, such as the Reelin receptors very low-density lipoprotein receptor (VLDLR) and Apolipoprotein E receptor 2 (ApoER2), Src family kinases Src and Fyn, and the intracellular adaptor Disabled-1 (Dab1), are common to most but not all Reelin functions. Other downstream effectors are, on the other hand, more specific to defined tasks. Reelin is a large extracellular protein, and some aspects of the signal are regulated by its processing into smaller fragments. Rather than being inhibitory, the processing at two major sites seems to be fulfilling important physiological functions. In this review, I describe the various cellular events regulated by Reelin and attempt to explain the current knowledge on the mechanisms of action. After discussing the shared and distinct elements of the Reelin signaling pathway involved in neuronal migration, dendritic growth, spine development and synaptic plasticity, I briefly outline the data revealing the importance of Reelin in human brain disorders.
Collapse
Affiliation(s)
- Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
26
|
Abstract
The cerebellum is a pivotal centre for the integration and processing of motor and sensory information. Its extended development into the postnatal period makes this structure vulnerable to a variety of pathologies, including neoplasia. These properties have prompted intensive investigations that reveal not only developmental mechanisms in common with other regions of the neuraxis but also unique strategies to generate neuronal diversity. How the phenotypically distinct cell types of the cerebellum emerge rests on understanding how gene expression differences arise in a spatially and temporally coordinated manner from initially homogeneous cell populations. Increasingly sophisticated fate mapping approaches, culminating in genetic-induced fate mapping, have furthered the understanding of lineage relationships between early- versus later-born cells. Tracing the developmental histories of cells in this way coupled with analysis of gene expression patterns has provided insight into the developmental genetic programmes that instruct cellular heterogeneity. A limitation to date has been the bulk analysis of cells, which blurs lineage relationships and obscures gene expression differences between cells that underpin the cellular taxonomy of the cerebellum. This review emphasises recent discoveries, focusing mainly on single-cell sequencing in mouse and parallel human studies that elucidate neural progenitor developmental trajectories with unprecedented resolution. Complementary functional studies of neural repair after cerebellar injury are challenging assumptions about the stability of postnatal cellular identities. The result is a wealth of new information about the developmental mechanisms that generate cerebellar neural diversity, with implications for human evolution.
Collapse
Affiliation(s)
- Max J. van Essen
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Samuel Nayler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Esther B. E. Becker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - John Jacob
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Abstract
BACKGROUND The impact of bilirubin in preterm infants is poorly understood. An animal model would assist in improving understanding. The Gunn rat lacks uridine diphosphate-glucuronylsyl transferase 1 and can be made acutely hyperbilirubinemic by injection of sulfodimethoxine (sulfa), a drug that displaces bilirubin from albumin and thus increases free bilirubin. METHODS On postnatal day (P) 5, Gunn rats either heterozygous (Nj) or homozygous (jj) for glucuronosyltransferase activity were injected with either saline or sulfa. Behavior and cerebellar weight were measured. RESULTS Pups did not show any signs of acute bilirubin encephalopathy. Pup weight dropped significantly on P8 only in the jj-sulfa group. Behavior was affected only in the jj-sulfa group. Cerebellar weight was significantly less in the jj-sulfa group. CONCLUSION The Gunn rat pup model may be a good model to study hyperbilirubinemia in preterm infants.
Collapse
|
28
|
Sven Ingvar (1889-1947) of Lund University and the Centennial of His Landmark Dissertation on Cerebellar Phylo-Ontogeny. THE CEREBELLUM 2020; 18:676-687. [PMID: 31054022 DOI: 10.1007/s12311-019-01034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In January 1919, Sven Ingvar (1889-1947) defended his doctoral dissertation (required for the M.D. degree) on cerebellar phylogeny, development, and function at Lund University, Sweden. The work was supervised by Cornelius U. Ariëns Kappers (1877-1946) in Amsterdam and by Karl Petrén (1868-1927) in Lund. A physician of many interests, Ingvar became professor of Practical Medicine in his alma mater. His cerebellar papers, spanning over a decade, are the contributions that gained him international recognition in the neurological sciences. A key discovery was the demonstration, with the Marchi method, of the primary vestibulocerebellar afferent fibers. The merits of his work rest with the use of connections to compare lobes and lobules in different species, and the introduction of the idea of vestibular, spinal, and corticopontine storeys; on the other hand, based on current knowledge, one might take a more critical stance toward the proposition of a posterior lobe as a phylogenetically old structure, and the homolog of the human tonsil. Nonetheless, Ingvar was an early pioneer of the "evo-devo" synthesis (or the field of Evolutionary Developmental Biology, which aims at understanding how developmental processes evolve across species). He studied the comparative anatomy of the cerebellum in over 50 species of reptiles, birds, and mammals and theorized about the spatial relations of phylogenetically older and more recent acquisitions in both the cerebellar and the thalamocortical systems.
Collapse
|
29
|
Sathyanesan A, Zhou J, Scafidi J, Heck DH, Sillitoe RV, Gallo V. Emerging connections between cerebellar development, behaviour and complex brain disorders. Nat Rev Neurosci 2019; 20:298-313. [PMID: 30923348 DOI: 10.1038/s41583-019-0152-2] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human cerebellum has a protracted developmental timeline compared with the neocortex, expanding the window of vulnerability to neurological disorders. As the cerebellum is critical for motor behaviour, it is not surprising that most neurodevelopmental disorders share motor deficits as a common sequela. However, evidence gathered since the late 1980s suggests that the cerebellum is involved in motor and non-motor function, including cognition and emotion. More recently, evidence indicates that major neurodevelopmental disorders such as intellectual disability, autism spectrum disorder, attention-deficit hyperactivity disorder and Down syndrome have potential links to abnormal cerebellar development. Out of recent findings from clinical and preclinical studies, the concept of the 'cerebellar connectome' has emerged that can be used as a framework to link the role of cerebellar development to human behaviour, disease states and the design of better therapeutic strategies.
Collapse
Affiliation(s)
- Aaron Sathyanesan
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, DC, USA.
| | - Joy Zhou
- Department of Pathology and Immunology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Scafidi
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, DC, USA.,George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, DC, USA. .,George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
30
|
Willett RT, Bayin NS, Lee AS, Krishnamurthy A, Wojcinski A, Lao Z, Stephen D, Rosello-Diez A, Dauber-Decker KL, Orvis GD, Wu Z, Tessier-Lavigne M, Joyner AL. Cerebellar nuclei excitatory neurons regulate developmental scaling of presynaptic Purkinje cell number and organ growth. eLife 2019; 8:e50617. [PMID: 31742552 PMCID: PMC6890462 DOI: 10.7554/elife.50617] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/18/2019] [Indexed: 01/17/2023] Open
Abstract
For neural systems to function effectively, the numbers of each cell type must be proportioned properly during development. We found that conditional knockout of the mouse homeobox genes En1 and En2 in the excitatory cerebellar nuclei neurons (eCN) leads to reduced postnatal growth of the cerebellar cortex. A subset of medial and intermediate eCN are lost in the mutants, with an associated cell non-autonomous loss of their presynaptic partner Purkinje cells by birth leading to proportional scaling down of neuron production in the postnatal cerebellar cortex. Genetic killing of embryonic eCN throughout the cerebellum also leads to loss of Purkinje cells and reduced postnatal growth but throughout the cerebellar cortex. Thus, the eCN play a key role in scaling the size of the cerebellum by influencing the survival of their Purkinje cell partners, which in turn regulate production of granule cells and interneurons via the amount of sonic hedgehog secreted.
Collapse
Affiliation(s)
- Ryan T Willett
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | - N Sumru Bayin
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | - Andrew S Lee
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
- Neuroscience ProgramWeill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - Anjana Krishnamurthy
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
- Neuroscience ProgramWeill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | | | - Zhimin Lao
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | - Daniel Stephen
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | | | | | - Grant D Orvis
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | - Zhuhao Wu
- The Laboratory of Brain Development and RepairThe Rockefeller UniversityNew YorkUnited States
| | - Marc Tessier-Lavigne
- The Laboratory of Brain Development and RepairThe Rockefeller UniversityNew YorkUnited States
| | - Alexandra L Joyner
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
- Neuroscience ProgramWeill Cornell Graduate School of Medical SciencesNew YorkUnited States
- Biochemistry, Cell and Molecular Biology ProgramWeill Cornell Graduate School of Medical SciencesNew YorkUnited States
| |
Collapse
|
31
|
Xu F, Ge X, Shi Y, Zhang Z, Tang Y, Lin X, Teng G, Zang F, Gao N, Liu H, Toga AW, Liu S. Morphometric development of the human fetal cerebellum during the early second trimester. Neuroimage 2019; 207:116372. [PMID: 31751665 PMCID: PMC7055298 DOI: 10.1016/j.neuroimage.2019.116372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/02/2019] [Accepted: 11/16/2019] [Indexed: 11/28/2022] Open
Abstract
The protracted nature of development makes the cerebellum vulnerable to a broad spectrum of pathologic conditions, especially during the early fetal period. This study aims to characterize normal cerebellar growth in human fetuses during the early second trimester. We manually segmented the fetal cerebellum using 7.0-T high-resolution MR images obtained in 35 specimens with gestational ages ranging from 15 to 22 weeks. Volume measurements and shape analysis were performed to quantitatively evaluate global and regional cerebellar growth. The absolute volume of the fetal cerebellum showed a quadratic growth with increasing gestational age, while the pattern of relative volume changes revealed that the cerebellum grew at a greater pace than the cerebrum after 17 gestational weeks. Shape analysis was used to examine the distinctive development of subregions of the cerebellum. The extreme lateral portions of both cerebellar hemispheres showed the lowest rate of growth. The anterior lobe grew faster than most of the posterior lobe. These findings expand our understanding of the early growth pattern of the human cerebellum and could be further used to assess the developmental conditions of the fetal brain.
Collapse
Affiliation(s)
- Feifei Xu
- Research Center for Sectional and Imaging Anatomy, Shandong University Cheeloo College of Medicine, 250012, Jinan, Shandong, China; Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Xinting Ge
- Department of Medical Imaging, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China; Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Yonggang Shi
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Zhonghe Zhang
- Research Center for Sectional and Imaging Anatomy, Shandong University Cheeloo College of Medicine, 250012, Jinan, Shandong, China; Department of Medical Imaging, Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
| | - Yuchun Tang
- Research Center for Sectional and Imaging Anatomy, Shandong University Cheeloo College of Medicine, 250012, Jinan, Shandong, China
| | - Xiangtao Lin
- Research Center for Sectional and Imaging Anatomy, Shandong University Cheeloo College of Medicine, 250012, Jinan, Shandong, China; Department of Medical Imaging, Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
| | - Gaojun Teng
- Department of Radiology, Zhong Da Hospital, Southeast University School of Clinical Medicine, 210009, Nanjing, Jiangsu, China
| | - Fengchao Zang
- Department of Radiology, Zhong Da Hospital, Southeast University School of Clinical Medicine, 210009, Nanjing, Jiangsu, China
| | - Nuonan Gao
- Nanjing First Hospital, Affiliated to Nanjing Medical University, 210006, Nanjing, Jiangsu, China
| | - Haihong Liu
- Department of Medical Imaging, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Arthur W Toga
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA.
| | - Shuwei Liu
- Research Center for Sectional and Imaging Anatomy, Shandong University Cheeloo College of Medicine, 250012, Jinan, Shandong, China.
| |
Collapse
|
32
|
Sathyanesan A, Gallo V. Cerebellar contribution to locomotor behavior: A neurodevelopmental perspective. Neurobiol Learn Mem 2019; 165:106861. [PMID: 29723669 PMCID: PMC7303045 DOI: 10.1016/j.nlm.2018.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/06/2018] [Accepted: 04/24/2018] [Indexed: 12/30/2022]
Abstract
The developmental trajectory of the formation of cerebellar circuitry has significant implications for locomotor plasticity and adaptive learning at later stages. While there is a wealth of knowledge on the development of locomotor behavior in human infants, children, and adolescents, pre-clinical animal models have fallen behind on the study of the emergence of behavioral motifs in locomotor function across postnatal development. Since cerebellar development is protracted, it is subject to higher risk of genetic or environmental disruption, potentially leading to abnormal behavioral development. This highlights the need for more sophisticated and specific functional analyses of adaptive cerebellar behavior within the context of whole-body locomotion across the entire span of postnatal development. Here we review evidence on cerebellar contribution to adaptive locomotor behavior, highlighting methodologies employed to quantify and categorize behavior at different developmental stages, with the ultimate goal of following the course of early behavioral alterations in neurodevelopmental disorders. Since experimental paradigms used to study cerebellar behavior are lacking in both specificity and applicability to locomotor contexts, we highlight the use of the Erasmus Ladder - an advanced, computerized, fully automated system to quantify adaptive cerebellar learning in conjunction with locomotor function. Finally, we emphasize the need to develop objective, quantitative, behavioral tasks which can track changes in developmental trajectories rather than endpoint measurement at the adult stage of behavior.
Collapse
Affiliation(s)
- Aaron Sathyanesan
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, DC, USA.
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, DC, USA; George Washington University School of Medicine and Health Sciences, USA
| |
Collapse
|
33
|
Hanzel M, Rook V, Wingate RJT. Mitotic granule cell precursors undergo highly dynamic morphological transitions throughout the external germinal layer of the chick cerebellum. Sci Rep 2019; 9:15218. [PMID: 31645601 PMCID: PMC6811643 DOI: 10.1038/s41598-019-51532-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/02/2019] [Indexed: 01/16/2023] Open
Abstract
The developing cerebellum of amniotes is characterised by a unique, transient, secondary proliferation zone: the external germinal layer (EGL). The EGL is comprised solely of granule cell precursors, whose progeny migrate inwardly to form the internal granule cell layer. While a range of cell morphologies in the EGL has long been known, how they reflect the cells' differentiation status has previously only been inferred. Observations have suggested a deterministic maturation from outer to inner EGL that we wished to test experimentally. To do this, we electroporated granule cell precursors in chick with plasmids encoding fluorescent proteins and probed labelled cells with markers of both proliferation (phosphohistone H3) and differentiation (Axonin1/TAG1 and NeuroD1). We show that granule cell precursors can display a range of complex forms throughout the EGL while mitotically active. Overexpression of full length NeuroD1 within granule cell precursors does not abolish proliferation, but biases granule cells towards precocious differentiation, alters their migration path and results in a smaller and less foliated cerebellum. Our results show that granule cells show a greater flexibility in differentiation than previously assumed. We speculate that this allows the EGL to regulate its proliferative activity in response to overall patterns of cerebellar growth.
Collapse
Affiliation(s)
- Michalina Hanzel
- MRC Centre for Neurodevelopmental Disorders, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 4th floor New Hunt's House, Guy's Campus, London, UK
| | - Victoria Rook
- MRC Centre for Neurodevelopmental Disorders, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 4th floor New Hunt's House, Guy's Campus, London, UK
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E4 1NS, UK
| | - Richard J T Wingate
- MRC Centre for Neurodevelopmental Disorders, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 4th floor New Hunt's House, Guy's Campus, London, UK.
| |
Collapse
|
34
|
Haldipur P, Aldinger KA, Bernardo S, Deng M, Timms AE, Overman LM, Winter C, Lisgo SN, Razavi F, Silvestri E, Manganaro L, Adle-Biassette H, Guimiot F, Russo R, Kidron D, Hof PR, Gerrelli D, Lindsay SJ, Dobyns WB, Glass IA, Alexandre P, Millen KJ. Spatiotemporal expansion of primary progenitor zones in the developing human cerebellum. Science 2019; 366:454-460. [PMID: 31624095 DOI: 10.1126/science.aax7526] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022]
Abstract
We present histological and molecular analyses of the developing human cerebellum from 30 days after conception to 9 months after birth. Differences in developmental patterns between humans and mice include spatiotemporal expansion of both ventricular and rhombic lip primary progenitor zones to include subventricular zones containing basal progenitors. The human rhombic lip persists longer through cerebellar development than in the mouse and undergoes morphological changes to form a progenitor pool in the posterior lobule, which is not seen in other organisms, not even in the nonhuman primate the macaque. Disruptions in human rhombic lip development are associated with posterior cerebellar vermis hypoplasia and Dandy-Walker malformation. The presence of these species-specific neural progenitor populations refines our insight into human cerebellar developmental disorders.
Collapse
Affiliation(s)
- Parthiv Haldipur
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Silvia Bernardo
- Departments of Experimental Medicine and Radiological Sciences, Sapienza University of Rome, Rome, Italy
| | - Mei Deng
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Lynne M Overman
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Conrad Winter
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Steven N Lisgo
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ferechte Razavi
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Evelina Silvestri
- Surgical Pathology Unit, San Camillo Forlanini Hospital, Rome, Italy
| | - Lucia Manganaro
- Departments of Experimental Medicine and Radiological Sciences, Sapienza University of Rome, Rome, Italy
| | - Homa Adle-Biassette
- Department of Pathology, Hôpital Lariboisière, Assistance Publique Hôpitaux de Paris, Paris, France.,NeuroDiderot, INSERM, Université de Paris, Paris, France
| | | | - Rosa Russo
- Department of Pathology, University Medical Hospital, Salerno, Italy
| | - Debora Kidron
- Department of Pathology, Meir Medical Center, Kfar Saba and Sackler School of Medicine, Tel Aviv University, Israel
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dianne Gerrelli
- University College London Great Ormond Street Institute of Child Health, London, UK
| | - Susan J Lindsay
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Ian A Glass
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Paula Alexandre
- University College London Great Ormond Street Institute of Child Health, London, UK
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA. .,Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
35
|
Gill JS, Sillitoe RV. Functional Outcomes of Cerebellar Malformations. Front Cell Neurosci 2019; 13:441. [PMID: 31636540 PMCID: PMC6787289 DOI: 10.3389/fncel.2019.00441] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
The cerebellum is well-established as a primary center for controlling sensorimotor functions. However, recent experiments have demonstrated additional roles for the cerebellum in higher-order cognitive functions such as language, emotion, reward, social behavior, and working memory. Based on the diversity of behaviors that it can influence, it is therefore not surprising that cerebellar dysfunction is linked to motor diseases such as ataxia, dystonia, tremor, and Parkinson's disease as well to non-motor disorders including autism spectrum disorders (ASD), schizophrenia, depression, and anxiety. Regardless of the condition, there is a growing consensus that developmental disturbances of the cerebellum may be a central culprit in triggering a number of distinct pathophysiological processes. Here, we consider how cerebellar malformations and neuronal circuit wiring impact brain function and behavior during development. We use the cerebellum as a model to discuss the expanding view that local integrated brain circuits function within the context of distributed global networks to communicate the computations that drive complex behavior. We highlight growing concerns that neurological and neuropsychiatric diseases with severe behavioral outcomes originate from developmental insults to the cerebellum.
Collapse
Affiliation(s)
- Jason S. Gill
- Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
36
|
Yang Z, Joyner AL. YAP1 is involved in replenishment of granule cell precursors following injury to the neonatal cerebellum. Dev Biol 2019; 455:458-472. [PMID: 31376393 DOI: 10.1016/j.ydbio.2019.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 01/08/2023]
Abstract
The cerebellum undergoes major rapid growth during the third trimester and early neonatal stage in humans, making it vulnerable to injuries in pre-term babies. Experiments in mice have revealed a remarkable ability of the neonatal cerebellum to recover from injuries around birth. In particular, recovery following irradiation-induced ablation of granule cell precursors (GCPs) involves adaptive reprogramming of Nestin-expressing glial progenitors (NEPs). Sonic hedgehog signaling is required for the initial step in NEP reprogramming; however, the full spectrum of developmental signaling pathways that promote NEP-driven regeneration is not known. Since the growth regulatory Hippo pathway has been implicated in the repair of several tissue types, we tested whether Hippo signaling is involved in regeneration of the cerebellum. Using mouse models, we found that the Hippo pathway transcriptional co-activator YAP1 (Yes-associated protein 1) but not TAZ (transcriptional coactivator with PDZ binding motif, or WWTR1) is required in NEPs for full recovery of cerebellar growth following irradiation one day after birth. Although Yap1 plays only a minor role during normal development in differentiation of NEPs or GCPs, the size of the cerebellum, and in particular the internal granule cell layer produced by GCPs, is significantly reduced in Yap1 mutants after irradiation, and the organization of Purkinje cells and Bergmann glial fibers is disrupted. The initial proliferative response of Yap1 mutant NEPs to irradiation is normal and the cells migrate to the GCP niche, but subsequently there is increased cell death of GCPs and altered migration of granule cells, possibly due to defects in Bergmann glia. Moreover, loss of Taz along with Yap1 in NEPs does not abrogate regeneration or alter development of the cerebellum. Our study provides new insights into the molecular signaling underlying postnatal cerebellar development and regeneration.
Collapse
Affiliation(s)
- Zhaohui Yang
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, United States; Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, United States
| | - Alexandra L Joyner
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, United States; Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, United States.
| |
Collapse
|
37
|
Herzmann CS, Snyder AZ, Kenley JK, Rogers CE, Shimony JS, Smyser CD. Cerebellar Functional Connectivity in Term- and Very Preterm-Born Infants. Cereb Cortex 2019; 29:1174-1184. [PMID: 29420701 PMCID: PMC6373668 DOI: 10.1093/cercor/bhy023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 12/31/2022] Open
Abstract
Cortical resting state networks have been consistently identified in infants using resting state-functional connectivity magnetic resonance imaging (rs-fMRI). Comparable studies in adults have demonstrated cerebellar components of well-established cerebral networks. However, there has been limited investigation of early cerebellar functional connectivity. We acquired non-sedated rs-fMRI data in the first week of life in 57 healthy, term-born infants and at term-equivalent postmenstrual age in 20 very preterm infants (mean birth gestational age 27 ± 2 weeks) without significant cerebral or cerebellar injury. Seed correlation analyses were performed using regions of interests spanning the cortical and subcortical gray matter and cerebellum. Parallel analyses were performed using rs-fMRI data acquired in 100 healthy adults. Our results demonstrate that cortico-cerebellar functional connectivity is well-established by term. Intra- and cortico-cerebellar functional connectivity were largely similar in infants and adults. However, infants showed more functional connectivity structure within the cerebellum, including stronger homotopic correlations and more robust anterior-posterior anticorrelations. Prematurity was associated with reduced correlation magnitudes, but no alterations in intra- and cortico-cerebellar functional connectivity topography. These results add to the growing evidence that the cerebellum plays an important role in shaping early brain development during infancy.
Collapse
Affiliation(s)
- Charlotte S Herzmann
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Abraham Z Snyder
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jeanette K Kenley
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Christopher D Smyser
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
38
|
Wojcinski A, Morabito M, Lawton AK, Stephen DN, Joyner AL. Genetic deletion of genes in the cerebellar rhombic lip lineage can stimulate compensation through adaptive reprogramming of ventricular zone-derived progenitors. Neural Dev 2019; 14:4. [PMID: 30764875 PMCID: PMC6375182 DOI: 10.1186/s13064-019-0128-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/17/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The cerebellum is a foliated posterior brain structure involved in coordination of motor movements and cognition. The cerebellum undergoes rapid growth postnataly due to Sonic Hedgehog (SHH) signaling-dependent proliferation of ATOH1+ granule cell precursors (GCPs) in the external granule cell layer (EGL), a key step for generating cerebellar foliation and the correct number of granule cells. Due to its late development, the cerebellum is particularly vulnerable to injury from preterm birth and stress around birth. We recently uncovered an intrinsic capacity of the developing cerebellum to replenish ablated GCPs via adaptive reprogramming of Nestin-expressing progenitors (NEPs). However, whether this compensation mechanism occurs in mouse mutants affecting the developing cerebellum and could lead to mis-interpretation of phenotypes was not known. METHODS We used two different approaches to remove the main SHH signaling activator GLI2 in GCPs: 1) Our mosaic mutant analysis with spatial and temporal control of recombination (MASTR) technique to delete Gli2 in a small subset of GCPs; 2) An Atoh1-Cre transgene to delete Gli2 in most of the EGL. Genetic Inducible Fate Mapping (GIFM) and live imaging were used to analyze the behavior of NEPs after Gli2 deletion. RESULTS Mosaic analysis demonstrated that SHH-GLI2 signaling is critical for generating the correct pool of granule cells by maintaining GCPs in an undifferentiated proliferative state and promoting their survival. Despite this, inactivation of GLI2 in a large proportion of GCPs in the embryo did not lead to the expected dramatic reduction in the size of the adult cerebellum. GIFM uncovered that NEPs do indeed replenish GCPs in Gli2 conditional mutants, and then expand and partially restore the production of granule cells. Furthermore, the SHH signaling-dependent NEP compensation requires Gli2, demonstrating that the activator side of the pathway is involved. CONCLUSION We demonstrate that a mouse conditional mutation that results in loss of SHH signaling in GCPs is not sufficient to induce long term severe cerebellum hypoplasia. The ability of the neonatal cerebellum to regenerate after loss of cells via a response by NEPs must therefore be considered when interpreting the phenotypes of Atoh1-Cre conditional mutants affecting GCPs.
Collapse
Affiliation(s)
- Alexandre Wojcinski
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, Box 511, New York, NY, 10065, USA
| | - Morgane Morabito
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, Box 511, New York, NY, 10065, USA
| | - Andrew K Lawton
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, Box 511, New York, NY, 10065, USA
| | - Daniel N Stephen
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, Box 511, New York, NY, 10065, USA
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, Box 511, New York, NY, 10065, USA.
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, USA.
| |
Collapse
|
39
|
Basu SK, Pradhan S, Kapse K, McCarter R, Murnick J, Chang T, Limperopoulos C. Third Trimester Cerebellar Metabolite Concentrations are Decreased in Very Premature Infants with Structural Brain Injury. Sci Rep 2019; 9:1212. [PMID: 30718546 PMCID: PMC6362247 DOI: 10.1038/s41598-018-37203-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/20/2018] [Indexed: 11/09/2022] Open
Abstract
Advanced neuroimaging techniques have improved our understanding of microstructural changes in the preterm supratentorial brain as well as the cerebellum and its association with impaired neurodevelopmental outcomes. However, the metabolic interrogation of the developing cerebellum during the early postnatal period after preterm birth remains largely unknown. Our study investigates the relationship between cerebellar neurometabolites measured by proton magnetic spectroscopy (1H-MRS) in preterm infants with advancing post-menstrual age (PMA) and brain injury during ex-utero third trimester prior to term equivalent age (TEA). We prospectively enrolled and acquired high quality 1H-MRS at median 33.0 (IQR 31.6-35.2) weeks PMA from a voxel placed in the cerebellum of 53 premature infants born at a median gestational age of 27.0 (IQR 25.0-29.0) weeks. 1H-MRS data were processed using LCModel software to calculate absolute metabolite concentrations of N-acetylaspartate (NAA), choline (Cho) and creatine (Cr). We noted positive correlations of cerebellar concentrations of NAA, Cho and Cr (Spearman correlations of 0.59, 0.64 and 0.52, respectively, p value < 0.0001) and negative correlation of Cho/Cr ratio (R -0.5, p value 0.0002) with advancing PMA. Moderate-to-severe cerebellar injury was noted on conventional magnetic resonance imaging (MRI) in 14 (26.4%) of the infants and were noted to have lower cerebellar NAA, Cho and Cr concentrations compared with those without injury (p value < 0.001). Several clinical complications of prematurity including necrotizing enterocolitis, systemic infections and bronchopulmonary dysplasia were associated with altered metabolite concentrations in the developing cerebellum. We report for the first time that ex-utero third trimester cerebellar metabolite concentrations are decreased in very preterm infants with moderate-to-severe structural cerebellar injury. We report increasing temporal trends of metabolite concentrations in the cerebellum with advancing PMA, which was impaired in infants with brain injury on MRI and may have early diagnostic and prognostic value in predicting neurodevelopmental outcomes in very preterm infants.
Collapse
Affiliation(s)
- Sudeepta K Basu
- Neonatology, Children's National Health System, Washington, D.C., USA.,Developing Brain Research Laboratory, Children's National Health System, Washington, D.C., USA.,The George Washington University School of Medicine, Washington, D.C., USA
| | - Subechhya Pradhan
- Developing Brain Research Laboratory, Children's National Health System, Washington, D.C., USA.,The George Washington University School of Medicine, Washington, D.C., USA
| | - Kushal Kapse
- Developing Brain Research Laboratory, Children's National Health System, Washington, D.C., USA
| | - Robert McCarter
- Division of Bio-Statistics, Children's National Health System, Washington, D.C., USA.,The George Washington University School of Medicine, Washington, D.C., USA
| | - Jonathan Murnick
- Division of Diagnostic Imaging and Radiology, Children's National Health System, Washington, D.C., USA.,The George Washington University School of Medicine, Washington, D.C., USA
| | - Taeun Chang
- Division of Neurology, Children's National Health System, Washington, D.C., USA.,The George Washington University School of Medicine, Washington, D.C., USA
| | - Catherine Limperopoulos
- Developing Brain Research Laboratory, Children's National Health System, Washington, D.C., USA. .,Division of Diagnostic Imaging and Radiology, Children's National Health System, Washington, D.C., USA. .,The George Washington University School of Medicine, Washington, D.C., USA.
| |
Collapse
|
40
|
Gano D, Barkovich AJ. Cerebellar hypoplasia of prematurity: Causes and consequences. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:201-216. [PMID: 31324311 DOI: 10.1016/b978-0-444-64029-1.00009-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As magnetic resonance imaging has been increasingly used to study brain injury and brain development in premature newborns, the prevalence of cerebellar abnormalities is increasingly recognized. The preterm cerebellum is highly vulnerable to a number of insults during its critical phase of growth and development throughout the period of prematurity and beyond. Direct cerebellar injury and additional factors such as supratentorial brain injury and glucocorticoid exposure adversely impact cerebellar growth and, consequently, increase the risk of neurodevelopmental disabilities. In this chapter the causes and consequences of cerebellar hypoplasia of prematurity are reviewed.
Collapse
Affiliation(s)
- Dawn Gano
- Department of Neurology, University of California, San Francisco, CA, United States.
| | - A James Barkovich
- Department of Radiology, University of California, San Francisco, CA, United States
| |
Collapse
|
41
|
Haldipur P, Millen KJ. What cerebellar malformations tell us about cerebellar development. Neurosci Lett 2019; 688:14-25. [PMID: 29802918 PMCID: PMC6240394 DOI: 10.1016/j.neulet.2018.05.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 02/06/2023]
Abstract
Structural birth defects of the cerebellum, or cerebellar malformations, in humans, have long been recognized. However, until recently there has been little progress in elucidating their developmental pathogenesis. Innovations in brain imaging and human genetic technologies over the last 2 decades have led to better classifications of these disorders and identification of several causative genes. In contrast, cerebellar malformations in model organisms, particularly mice, have been the focus of intense study for more than 70 years. As a result, many of the molecular, genetic and cellular programs that drive formation of the cerebellum have been delineated in mice. In this review, we overview the basic epochs and key molecular regulators of the developmental programs that build the structure of the mouse cerebellum. This mouse-centric approach has been a useful to interpret the developmental pathogenesis of human cerebellar malformations. However, it is becoming apparent that we actually know very little regarding the specifics of human cerebellar development beyond what is inferred from mice. A better understanding of human cerebellar development will not only facilitate improved diagnosis of human cerebellar malformations, but also lead to the development of treatment paradigms for these important neurodevelopmental disorders.
Collapse
Affiliation(s)
- Parthiv Haldipur
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
| | - Kathleen J Millen
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, United States; University of Washington, Department of Pediatrics, Division of Genetics, Seattle, WA, United States.
| |
Collapse
|
42
|
Rahimi-Balaei M, Bergen H, Kong J, Marzban H. Neuronal Migration During Development of the Cerebellum. Front Cell Neurosci 2018; 12:484. [PMID: 30618631 PMCID: PMC6304365 DOI: 10.3389/fncel.2018.00484] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/27/2018] [Indexed: 01/19/2023] Open
Abstract
Neuronal migration is a fundamental process in central nervous system (CNS) development. The assembly of functioning neuronal circuits relies on neuronal migration occurring in the appropriate spatio-temporal pattern. A defect in the neuronal migration may result in a neurological disorder. The cerebellum, as a part of the CNS, plays a pivotal role in motor coordination and non-motor functions such as emotion, cognition and language. The excitatory and inhibitory neurons within the cerebellum originate from different distinct germinal zones and migrate through complex routes to assemble in a well-defined neuronal organization in the cerebellar cortex and nuclei. In this review article, the neuronal migration modes and pathways from germinal zones to the final position in the cerebellar cortex and nuclei will be described. The cellular and molecular mechanisms involved in cerebellar neuronal migration during development will also be reviewed. Finally, some diseases and animal models associated with defects in neuronal migration will be presented.
Collapse
Affiliation(s)
- Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hugo Bergen
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
43
|
Bayin NS, Wojcinski A, Mourton A, Saito H, Suzuki N, Joyner AL. Age-dependent dormant resident progenitors are stimulated by injury to regenerate Purkinje neurons. eLife 2018; 7:39879. [PMID: 30091706 PMCID: PMC6115187 DOI: 10.7554/elife.39879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/30/2018] [Indexed: 01/19/2023] Open
Abstract
Outside of the neurogenic niches of the brain, postmitotic neurons have not been found to undergo efficient regeneration. We demonstrate that mouse Purkinje cells (PCs), which are born at midgestation and are crucial for development and function of cerebellar circuits, are rapidly and fully regenerated following their ablation at birth. New PCs are produced from immature FOXP2+ Purkinje cell precursors (iPCs) that are able to enter the cell cycle and support normal cerebellum development. The number of iPCs and their regenerative capacity, however, diminish soon after birth and consequently PCs are poorly replenished when ablated at postnatal day five. Nevertheless, the PC-depleted cerebella reach a normal size by increasing cell size, but scaling of neuron types is disrupted and cerebellar function is impaired. Our findings provide a new paradigm in the field of neuron regeneration by identifying a population of immature neurons that buffers against perinatal brain injury in a stage-dependent process.
Collapse
Affiliation(s)
- N Sumru Bayin
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Alexandre Wojcinski
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Aurelien Mourton
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Hiromitsu Saito
- Department of Animal Functional Genomics of Advanced Science Research Promotion Center, Organization for the Promotion of Regional Innovation, Mie University, Tsu, JAPAN
| | - Noboru Suzuki
- Department of Animal Functional Genomics of Advanced Science Research Promotion Center, Organization for the Promotion of Regional Innovation, Mie University, Tsu, JAPAN
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, United States.,Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, United States
| |
Collapse
|
44
|
Cerebellar Ataxia in Children: A Clinical and MRI Approach to the Differential Diagnosis. Top Magn Reson Imaging 2018; 27:275-302. [PMID: 30086112 DOI: 10.1097/rmr.0000000000000175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: The cerebellum has long been recognized as a fundamental structure in motor coordination. Structural cerebellar abnormalities and diseases involving the cerebellum are relatively common in children. The not always specific clinical presentation of ataxia, incoordination, and balance impairment can often be a challenge to attain a precise diagnosis. Continuous advances in genetic research and moreover the constant development in neuroimaging modalities, particularly in the field of magnetic resonance imaging, have promoted a better understanding of cerebellar diseases and led to several modifications in their classification in recent years. Thorough clinical and neuroimaging investigation is recommended for proper diagnosis. This review outlines an update of causes of cerebellar disorders that present clinically with ataxia in the pediatric population. These conditions were classified in 2 major groups, namely genetic malformations and acquired or disruptive disorders recognizable by neuroimaging and subsequently according to their features during the prenatal and postnatal periods.
Collapse
|
45
|
Iskusnykh IY, Buddington RK, Chizhikov VV. Preterm birth disrupts cerebellar development by affecting granule cell proliferation program and Bergmann glia. Exp Neurol 2018; 306:209-221. [PMID: 29772246 PMCID: PMC6291230 DOI: 10.1016/j.expneurol.2018.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/09/2018] [Accepted: 05/12/2018] [Indexed: 01/17/2023]
Abstract
Preterm birth is a leading cause of long-term motor and cognitive deficits. Clinical studies suggest that some of these deficits result from disruption of cerebellar development, but the mechanisms that mediate cerebellar abnormalities in preterm infants are largely unknown. Furthermore, it remains unclear whether preterm birth and precocious exposure to the ex-utero environment directly disrupt cerebellar development or indirectly by increasing the probability of cerebellar injury, including that resulting from clinical interventions and protocols associated with the care of preterm infants. In this study, we analyzed the cerebellum of preterm pigs delivered via c-section at 91% term and raised for 10 days, until term-equivalent age. The pigs did not receive any treatments known or suspected to affect cerebellar development and had no evidence of brain damage. Term pigs sacrificed at birth were used as controls. Immunohistochemical analysis revealed that preterm birth did not affect either size or numbers of Purkinje cells or molecular layer interneurons at term-equivalent age. The number of granule cell precursors and Bergmann glial fibers, however, were reduced in preterm pigs. Preterm pigs had reduced proliferation but not differentiation of granule cells. qRT-PCR analysis of laser capture microdissected external granule cell layer showed that preterm pigs had a reduced expression of Ccnd1 (Cyclin D1), Ccnb1 (Cyclin B1), granule cell master regulatory transcription factor Atoh1, and signaling molecule Jag1. In vitro rescue experiments identified Jag1 as a central granule cell gene affected by preterm birth. Thus, preterm birth and precocious exposure to the ex-utero environment disrupt cerebellum by modulating expression of key cerebellar developmental genes, predominantly affecting development of granule precursors and Bergmann glia.
Collapse
Affiliation(s)
- Igor Y Iskusnykh
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | - Victor V Chizhikov
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
46
|
Hadders-Algra M. Early human brain development: Starring the subplate. Neurosci Biobehav Rev 2018; 92:276-290. [PMID: 29935204 DOI: 10.1016/j.neubiorev.2018.06.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
This review summarizes early human brain development on the basis of neuroanatomical data and functional connectomics. It indicates that the most significant changes in the brain occur during the second half of gestation and the first three months post-term, in particular in the cortical subplate and cerebellum. As the transient subplate pairs a high rate of intricate developmental changes and interactions with clear functional activity, two phases of development are distinguished: a) the transient cortical subplate phase, ending at 3 months post-term when the permanent circuitries in the primary motor, somatosensory and visual cortices have replaced the subplate; and subsequently, b) the phase in which the permanent circuitries dominate. In the association areas the subplate dissolves in the remainder of the first postnatal year. During both phases developmental changes are paralleled by continuous reconfigurations in network activity. The reviewed literature also suggests that disruption of subplate development may play a pivotal role in developmental disorders, such as cerebral palsy, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia.
Collapse
Affiliation(s)
- Mijna Hadders-Algra
- University of Groningen, University Medical Center Groningen, Dept. Pediatrics - Section Developmental Neurology, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
47
|
Lopez‐Atalaya JP, Askew KE, Sierra A, Gomez‐Nicola D. Development and maintenance of the brain's immune toolkit: Microglia and non-parenchymal brain macrophages. Dev Neurobiol 2018; 78:561-579. [PMID: 29030904 PMCID: PMC6001428 DOI: 10.1002/dneu.22545] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 01/10/2023]
Abstract
Microglia and non-parenchymal macrophages located in the perivascular space, the meninges and the choroid plexus are independent immune populations that play vital roles in brain development, homeostasis, and tissue healing. Resident macrophages account for a significant proportion of cells in the brain and their density remains stable throughout the lifespan thanks to constant turnover. Microglia develop from yolk sac progenitors, later evolving through intermediate progenitors in a fine-tuned process in which intrinsic factors and external stimuli combine to progressively sculpt their cell type-specific transcriptional profiles. Recent evidence demonstrates that non-parenchymal macrophages are also generated during early embryonic development. In recent years, the development of powerful fate mapping approaches combined with novel genomic and transcriptomic methodologies have greatly expanded our understanding of how brain macrophages develop and acquire specialized functions, and how cell population dynamics are regulated. Here, we review the transcription factors, epigenetic remodeling, and signaling pathways orchestrating the embryonic development of microglia and non-parenchymal macrophages. Next, we describe the dynamics of the macrophage populations of the brain and discuss the role of progenitor cells, to gain a better understanding of their functions in the healthy and diseased brain. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 561-579, 2018.
Collapse
Affiliation(s)
- Jose P. Lopez‐Atalaya
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández‐Consejo Superior de Investigaciones Científicas (UMH‐CSIC), Avenida Ramón y Cajal, s/n, Sant Joan d'AlacantSpain
| | - Katharine E. Askew
- Southampton General Hospital, Biological Sciences, University of Southampton, South Lab&Path Block, LD80C, MP840SO166YDSouthamptonUnited Kingdom
| | - Amanda Sierra
- Achucarro Basque Center for NeuroscienceLeioa48940Spain
- Ikerbasque FoundationBilbao48013Spain
- University of the Basque Country EHU/UPVLeioa48940Spain
| | - Diego Gomez‐Nicola
- Southampton General Hospital, Biological Sciences, University of Southampton, South Lab&Path Block, LD80C, MP840SO166YDSouthamptonUnited Kingdom
| |
Collapse
|
48
|
Kaushal P, Kumar P, Mehra RD, Dhar P. Dendritic processes as targets for arsenic induced neurotoxicity: Protective role of curcumin. J ANAT SOC INDIA 2018. [DOI: 10.1016/j.jasi.2018.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Lateral cerebellum is preferentially sensitive to high sonic hedgehog signaling and medulloblastoma formation. Proc Natl Acad Sci U S A 2018. [PMID: 29531057 DOI: 10.1073/pnas.1717815115] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The main cell of origin of the Sonic hedgehog (SHH) subgroup of medulloblastoma (MB) is granule cell precursors (GCPs), a SHH-dependent transient amplifying population in the developing cerebellum. SHH-MBs can be further subdivided based on molecular and clinical parameters, as well as location because SHH-MBs occur preferentially in the lateral cerebellum (hemispheres). Our analysis of adult patient data suggests that tumors with Smoothened (SMO) mutations form more specifically in the hemispheres than those with Patched 1 (PTCH1) mutations. Using sporadic mouse models of SHH-MB with the two mutations commonly seen in adult MB, constitutive activation of Smo (SmoM2) or loss-of-Ptch1, we found that regardless of timing of induction or type of mutation, tumors developed primarily in the hemispheres, with SmoM2-mutants indeed showing a stronger specificity. We further uncovered that GCPs in the hemispheres are more susceptible to high-level SHH signaling compared with GCPs in the medial cerebellum (vermis), as more SmoM2 or Ptch1-mutant hemisphere cells remain undifferentiated and show increased tumorigenicity when transplanted. Finally, we identified location-specific GCP gene-expression profiles, and found that deletion of the genes most highly expressed in the hemispheres (Nr2f2) or vermis (Engrailed1) showed opposing effects on GCP differentiation. Our studies thus provide insights into intrinsic differences within GCPs that impact on SHH-MB progression.
Collapse
|
50
|
Grbatinić I, Milosevic N, Maric D. The translaminar neuromorphotopological clustering and classification of the dentate nucleus neurons. J Integr Neurosci 2018. [DOI: 10.3233/jin-170044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ivan Grbatinić
- Laboratory for digital image processing and analysis, Institute of Biophysics, Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia. E-mails: ,
| | - Nebojsa Milosevic
- Laboratory for digital image processing and analysis, Institute of Biophysics, Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia. E-mails: ,
| | - Dusica Maric
- Institute of Anatomy, Medical Faculty, University of Novi Sad, Serbia
| |
Collapse
|