1
|
Mușat MI, Cătălin B, Hadjiargyrou M, Popa-Wagner A, Greșiță A. Advancing Post-Stroke Depression Research: Insights from Murine Models and Behavioral Analyses. Life (Basel) 2024; 14:1110. [PMID: 39337894 PMCID: PMC11433193 DOI: 10.3390/life14091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Post-stroke depression (PSD) represents a significant neuropsychiatric complication that affects between 39% and 52% of stroke survivors, leading to impaired recovery, decreased quality of life, and increased mortality. This comprehensive review synthesizes our current knowledge of PSD, encompassing its epidemiology, risk factors, underlying neurochemical mechanisms, and the existing tools for preclinical investigation, including animal models and behavioral analyses. Despite the high prevalence and severe impact of PSD, challenges persist in accurately modeling its complex symptomatology in preclinical settings, underscoring the need for robust and valid animal models to better understand and treat PSD. This review also highlights the multidimensional nature of PSD, where both biological and psychosocial factors interplay to influence its onset and course. Further, we examine the efficacy and limitations of the current animal models in mimicking the human PSD condition, along with behavioral tests used to evaluate depressive-like behaviors in rodents. This review also sets a new precedent by integrating the latest findings across multidisciplinary studies, thereby offering a unique and comprehensive perspective of existing knowledge. Finally, the development of more sophisticated models that closely replicate the clinical features of PSD is crucial in order to advance translational research and facilitate the discovery of future effective therapies.
Collapse
Affiliation(s)
- Mădălina Iuliana Mușat
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Bogdan Cătălin
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Aurel Popa-Wagner
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Neurology, Vascular Neurology and Dementia, University of Medicine Essen, 45122 Essen, Germany
| | - Andrei Greșiță
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
2
|
Zhao R, Zhou X, Zhao Z, Liu W, Lv M, Zhang Z, Wang C, Li T, Yang Z, Wan Q, Xu R, Cui Y. Farrerol Alleviates Cerebral Ischemia-Reperfusion Injury by Promoting Neuronal Survival and Reducing Neuroinflammation. Mol Neurobiol 2024; 61:7239-7255. [PMID: 38376762 DOI: 10.1007/s12035-024-04031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/10/2024] [Indexed: 02/21/2024]
Abstract
Ischemia-reperfusion (I/R) injury is a key influencing factor in the outcome of stroke. Inflammatory response, oxidative stress, and neuronal apoptosis are among the main factors that affect the progression of I/R injury. Farrerol (FAR) is a natural compound that can effectively inhibit the inflammatory response and oxidative stress. However, the role of FAR in cerebral I/R injury remains unknown. In this study, we found that FAR reduced brain injury and neuronal viability after cerebral I/R injury. Meanwhile, administration of FAR also reduced the inflammatory response of microglia after brain injury. Mechanistically, FAR treatment directly reduced neuronal death after oxygen glucose deprivation/re-oxygenation (OGD/R) through enhancing cAMP-response element binding protein (CREB) activation to increase the expression of downstream neurotrophic factors and anti-apoptotic genes. Moreover, FAR decreased the activation of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, inhibited microglia activation, and reduced the production of inflammatory cytokines in microglia after OGD/R treatment or LPS stimulation. The compromised inflammatory response by FAR directly promoted the survival of neurons after OGD/R. In conclusion, FAR exerted a protective effect on cerebral I/R injury by directly decreasing neuronal death through upregulating CREB expression and attenuating neuroinflammation. Therefore, FAR could be a potentially effective drug for the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Xin Zhou
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Ningxia Road 308, Qingdao, 266071, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Zhiyuan Zhao
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Wenhao Liu
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Mengfei Lv
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Ningxia Road 308, Qingdao, 266071, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Zhaolong Zhang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
| | - Changxin Wang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Tianli Li
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Zixiong Yang
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Ningxia Road 308, Qingdao, 266071, Shandong, China
| | - Rui Xu
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China.
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
| | - Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Ningxia Road 308, Qingdao, 266071, Shandong, China.
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
3
|
Planas AM. Role of microglia in stroke. Glia 2024; 72:1016-1053. [PMID: 38173414 DOI: 10.1002/glia.24501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Microglia play key roles in the post-ischemic inflammatory response and damaged tissue removal reacting rapidly to the disturbances caused by ischemia and working to restore the lost homeostasis. However, the modified environment, encompassing ionic imbalances, disruption of crucial neuron-microglia interactions, spreading depolarization, and generation of danger signals from necrotic neurons, induce morphological and phenotypic shifts in microglia. This leads them to adopt a proinflammatory profile and heighten their phagocytic activity. From day three post-ischemia, macrophages infiltrate the necrotic core while microglia amass at the periphery. Further, inflammation prompts a metabolic shift favoring glycolysis, the pentose-phosphate shunt, and lipid synthesis. These shifts, combined with phagocytic lipid intake, drive lipid droplet biogenesis, fuel anabolism, and enable microglia proliferation. Proliferating microglia release trophic factors contributing to protection and repair. However, some microglia accumulate lipids persistently and transform into dysfunctional and potentially harmful foam cells. Studies also showed microglia that either display impaired apoptotic cell clearance, or eliminate synapses, viable neurons, or endothelial cells. Yet, it will be essential to elucidate the viability of engulfed cells, the features of the local environment, the extent of tissue damage, and the temporal sequence. Ischemia provides a rich variety of region- and injury-dependent stimuli for microglia, evolving with time and generating distinct microglia phenotypes including those exhibiting proinflammatory or dysfunctional traits and others showing pro-repair features. Accurate profiling of microglia phenotypes, alongside with a more precise understanding of the associated post-ischemic tissue conditions, is a necessary step to serve as the potential foundation for focused interventions in human stroke.
Collapse
Affiliation(s)
- Anna M Planas
- Cerebrovascular Research Laboratory, Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Cerebrovascular Diseases, Area of Clinical and Experimental Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic, Barcelona, Spain
| |
Collapse
|
4
|
Patir A, Barrington J, Szymkowiak S, Brezzo G, Straus D, Alfieri A, Lefevre L, Liu Z, Ginhoux F, Henderson NC, Horsburgh K, Ramachandran P, McColl BW. Phenotypic and spatial heterogeneity of brain myeloid cells after stroke is associated with cell ontogeny, tissue damage, and brain connectivity. Cell Rep 2024; 43:114250. [PMID: 38762882 DOI: 10.1016/j.celrep.2024.114250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/21/2024] [Accepted: 05/02/2024] [Indexed: 05/21/2024] Open
Abstract
Acute stroke triggers extensive changes to myeloid immune cell populations in the brain that may be targets for limiting brain damage and enhancing repair. Immunomodulatory approaches will be most effective with precise manipulation of discrete myeloid cell phenotypes in time and space. Here, we investigate how stroke alters mononuclear myeloid cell composition and phenotypes at single-cell resolution and key spatial patterns. Our results show that multiple reactive microglial states and monocyte-derived populations contribute to an extensive myeloid cell repertoire in post-stroke brains. We identify important overlaps and distinctions among different cell types/states that involve ontogeny- and spatial-related properties. Notably, brain connectivity with infarcted tissue underpins the pattern of local and remote altered cell accumulation and reactivity. Our discoveries suggest a global but anatomically governed brain myeloid cell response to stroke that comprises diverse phenotypes arising through intrinsic cell ontogeny factors interacting with exposure to spatially organized brain damage and neuro-axonal cues.
Collapse
Affiliation(s)
- Anirudh Patir
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Jack Barrington
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Stefan Szymkowiak
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Gaia Brezzo
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Dana Straus
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Alessio Alfieri
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Lucas Lefevre
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Neil C Henderson
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4TJ, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Karen Horsburgh
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Prakash Ramachandran
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Barry W McColl
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
5
|
Ge Y, Yang C, Zadeh M, Sprague SM, Lin YD, Jain HS, Determann BF, Roth WH, Palavicini JP, Larochelle J, Candelario-Jalil E, Mohamadzadeh M. Functional regulation of microglia by vitamin B12 alleviates ischemic stroke-induced neuroinflammation in mice. iScience 2024; 27:109480. [PMID: 38715940 PMCID: PMC11075062 DOI: 10.1016/j.isci.2024.109480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/14/2023] [Accepted: 03/08/2024] [Indexed: 05/12/2024] Open
Abstract
Ischemic stroke is the second leading cause of death and disability worldwide, and efforts to prevent stroke, mitigate secondary neurological damage, and promote neurological recovery remain paramount. Recent findings highlight the critical importance of microbiome-related metabolites, including vitamin B12 (VB12), in alleviating toxic stroke-associated neuroinflammation. Here, we showed that VB12 tonically programmed genes supporting microglial cell division and activation and critically controlled cellular fatty acid metabolism in homeostasis. Intriguingly, VB12 promoted mitochondrial transcriptional and metabolic activities and significantly restricted stroke-associated gene alterations in microglia. Furthermore, VB12 differentially altered the functions of microglial subsets during the acute phase of ischemic stroke, resulting in reduced brain damage and improved neurological function. Pharmacological depletion of microglia before ischemic stroke abolished VB12-mediated neurological improvement. Thus, our preclinical studies highlight the relevance of VB12 in the functional programming of microglia to alleviate neuroinflammation, minimize ischemic injury, and improve host neurological recovery after ischemic stroke.
Collapse
Affiliation(s)
- Yong Ge
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Changjun Yang
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Mojgan Zadeh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Shane M. Sprague
- Department of Neurosurgery, University of Texas Health, San Antonio, TX, USA
| | - Yang-Ding Lin
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Heetanshi Sanjay Jain
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | | | - William H. Roth
- Department of Neurology, University of Chicago Medical Center, Chicago, IL, USA
| | - Juan Pablo Palavicini
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Jonathan Larochelle
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Mansour Mohamadzadeh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| |
Collapse
|
6
|
Jung HY, Kwon HJ, Kim W, Yoo DY, Kang MS, Choi JH, Moon SM, Kim DW, Hwang IK. Extracts from Dendropanax morbifera leaves ameliorates cerebral ischemia-induced hippocampal damage by reducing oxidative damage in gerbil. J Stroke Cerebrovasc Dis 2024; 33:107483. [PMID: 37976794 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
AIM In this study, we investigated the effects of Dendropanax morbifera extract (DME) on neuroprotection against ischemic damage in gerbils. METHODS DME (100 or 300 mg/kg) was orally administered to gerbils for three weeks, and 2 h after the last DME treatment, transient forebrain ischemia in the common carotid arteries was induced for 5 min. The forebrain ischemia-related cognitive impairments were assessed by spontaneous motor activity and passive avoidance test one and four days after ischemia, respectively. In addition, surviving and degenerating neurons were morphologically confirmed by neuronal nuclei immunohistochemical staining and Fluoro-Jade C staining, respectively, four days after ischemia. Changes of glial morphology were visualized by immunohistochemical staining for each marker such as glial fibrillary acidic protein and ionized calcium-binding protein. Oxidative stress was determined by measurements of dihydroethidium, O2· (formation of formazan) and malondialdehyde two days after ischemia. In addition, glutathione redox system such as reduced glutathione, oxidized glutathione levels, glutathione peroxidase, and glutathione reductase activities were measured two days after ischemia. RESULTS Spontaneous motor activity monitoring and passive avoidance tests showed that treatment with 300 mg/kg DME, but not 100 mg/kg, significantly alleviated ischemia-induced memory impairments. In addition, approximately 67 % of mature neurons survived and 29.3 % neurons were degenerated in hippocampal CA1 region four days after ischemia, and ischemia-induced morphological changes in astrocytes and microglia were decreased in the CA1 region after 300 mg/kg DME treatment. Furthermore, treatment with 300 mg/kg DME significantly ameliorated ischemia-induced oxidative stress, such as superoxide formation and lipid peroxidation, two days after ischemia. In addition, ischemia-induced reduction of the glutathione redox system in the hippocampus, assessed two days after the ischemia, was ameliorated by treatment with 300 mg/kg DME. These suggest that DME can potentially reduce ischemia-induced neuronal damage through its antioxidant properties.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea; Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; Department of Anatomy, College of Veterinary Medicine, and Veterinary Science Research Institute, Konkuk University, Seoul 05030, Republic of Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; Department of Anatomy & Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Min Soo Kang
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung Myung Moon
- Department of Neurosurgery, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07441, Republic of Korea; Research Institute for Complementary & Alternative Medicine, Hallym University, Chuncheon 24253, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea.
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Mihailova V, Stoyanova II, Tonchev AB. Glial Populations in the Human Brain Following Ischemic Injury. Biomedicines 2023; 11:2332. [PMID: 37760773 PMCID: PMC10525766 DOI: 10.3390/biomedicines11092332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
There is a growing interest in glial cells in the central nervous system due to their important role in maintaining brain homeostasis under physiological conditions and after injury. A significant amount of evidence has been accumulated regarding their capacity to exert either pro-inflammatory or anti-inflammatory effects under different pathological conditions. In combination with their proliferative potential, they contribute not only to the limitation of brain damage and tissue remodeling but also to neuronal repair and synaptic recovery. Moreover, reactive glial cells can modulate the processes of neurogenesis, neuronal differentiation, and migration of neurons in the existing neural circuits in the adult brain. By discovering precise signals within specific niches, the regulation of sequential processes in adult neurogenesis holds the potential to unlock strategies that can stimulate the generation of functional neurons, whether in response to injury or as a means of addressing degenerative neurological conditions. Cerebral ischemic stroke, a condition falling within the realm of acute vascular disorders affecting the circulation in the brain, stands as a prominent global cause of disability and mortality. Extensive investigations into glial plasticity and their intricate interactions with other cells in the central nervous system have predominantly relied on studies conducted on experimental animals, including rodents and primates. However, valuable insights have also been gleaned from in vivo studies involving poststroke patients, utilizing highly specialized imaging techniques. Following the attempts to map brain cells, the role of various transcription factors in modulating gene expression in response to cerebral ischemia is gaining increasing popularity. Although the results obtained thus far remain incomplete and occasionally ambiguous, they serve as a solid foundation for the development of strategies aimed at influencing the recovery process after ischemic brain injury.
Collapse
Affiliation(s)
- Victoria Mihailova
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University Varna, 9000 Varna, Bulgaria; (I.I.S.); (A.B.T.)
| | | | | |
Collapse
|
8
|
Liang Z, Lou Y, Hao Y, Li H, Feng J, Liu S. The Relationship of Astrocytes and Microglia with Different Stages of Ischemic Stroke. Curr Neuropharmacol 2023; 21:2465-2480. [PMID: 37464832 PMCID: PMC10616922 DOI: 10.2174/1570159x21666230718104634] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 07/20/2023] Open
Abstract
Ischemic stroke is the predominant cause of severe morbidity and mortality worldwide. Post-stroke neuroinflammation has recently received increasing attention with the aim of providing a new effective treatment strategy for ischemic stroke. Microglia and astrocytes are major components of the innate immune system of the central nervous system. They can be involved in all phases of ischemic stroke, from the early stage, contributing to the first wave of neuronal cell death, to the late stage involving phagocytosis and repair. In the early stage of ischemic stroke, a vicious cycle exists between the activation of microglia and astrocytes (through astrocytic connexin 43 hemichannels), aggravating neuroinflammatory injury post-stroke. However, in the late stage of ischemic stroke, repeatedly activated microglia can induce the formation of glial scars by triggering reactive astrogliosis in the peri-infarct regions, which may limit the movement of activated microglia in reverse and restrict the diffusion of inflammation to healthy brain tissues, alleviating the neuroinflammatory injury poststroke. In this review, we elucidated the various roles of astrocytes and microglia and summarized their relationship with neuroinflammation. We also examined how astrocytes and microglia influence each other at different stages of ischemic stroke. Several potential therapeutic approaches targeting astrocytes and microglia in ischemic stroke have been reviewed. Understanding the details of astrocytemicroglia interaction processes will contribute to a better understanding of the mechanisms underlying ischemic stroke, contributing to the identification of new therapeutic interventions.
Collapse
Affiliation(s)
- Zhen Liang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yingyue Lou
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hui Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Songyan Liu
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
9
|
The complex role of inflammation and gliotransmitters in Parkinson's disease. Neurobiol Dis 2023; 176:105940. [PMID: 36470499 PMCID: PMC10372760 DOI: 10.1016/j.nbd.2022.105940] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Our understanding of the role of innate and adaptive immune cell function in brain health and how it goes awry during aging and neurodegenerative diseases is still in its infancy. Inflammation and immunological dysfunction are common components of Parkinson's disease (PD), both in terms of motor and non-motor components of PD. In recent decades, the antiquated notion that the central nervous system (CNS) in disease states is an immune-privileged organ, has been debunked. The immune landscape in the CNS influences peripheral systems, and peripheral immunological changes can alter the CNS in health and disease. Identifying immune and inflammatory pathways that compromise neuronal health and survival is critical in designing innovative and effective strategies to limit their untoward effects on neuronal health.
Collapse
|
10
|
Bui TA, Jickling GC, Winship IR. Neutrophil dynamics and inflammaging in acute ischemic stroke: A transcriptomic review. Front Aging Neurosci 2022; 14:1041333. [PMID: 36620775 PMCID: PMC9813499 DOI: 10.3389/fnagi.2022.1041333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Stroke is among the leading causes of death and disability worldwide. Restoring blood flow through recanalization is currently the only acute treatment for cerebral ischemia. Unfortunately, many patients that achieve a complete recanalization fail to regain functional independence. Recent studies indicate that activation of peripheral immune cells, particularly neutrophils, may contribute to microcirculatory failure and futile recanalization. Stroke primarily affects the elderly population, and mortality after endovascular therapies is associated with advanced age. Previous analyses of differential gene expression across injury status and age identify ischemic stroke as a complex age-related disease. It also suggests robust interactions between stroke injury, aging, and inflammation on a cellular and molecular level. Understanding such interactions is crucial in developing effective protective treatments. The global stroke burden will continue to increase with a rapidly aging human population. Unfortunately, the mechanisms of age-dependent vulnerability are poorly defined. In this review, we will discuss how neutrophil-specific gene expression patterns may contribute to poor treatment responses in stroke patients. We will also discuss age-related transcriptional changes that may contribute to poor clinical outcomes and greater susceptibility to cerebrovascular diseases.
Collapse
Affiliation(s)
- Truong An Bui
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Glen C. Jickling
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, Division of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ian R. Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Meyer E, Rieder P, Gobbo D, Candido G, Scheller A, de Oliveira RMW, Kirchhoff F. Cannabidiol Exerts a Neuroprotective and Glia-Balancing Effect in the Subacute Phase of Stroke. Int J Mol Sci 2022; 23:12886. [PMID: 36361675 PMCID: PMC9659180 DOI: 10.3390/ijms232112886] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/22/2022] Open
Abstract
Pharmacological agents limiting secondary tissue loss and improving functional outcomes after stroke are still limited. Cannabidiol (CBD), the major non-psychoactive component of Cannabis sativa, has been proposed as a neuroprotective agent against experimental cerebral ischemia. The effects of CBD mostly relate to the modulation of neuroinflammation, including glial activation. To investigate the effects of CBD on glial cells after focal ischemia in vivo, we performed time-lapse imaging of microglia and astroglial Ca2+ signaling in the somatosensory cortex in the subacute phase of stroke by in vivo two-photon laser-scanning microscopy using transgenic mice with microglial EGFP expression and astrocyte-specific expression of the genetically encoded Ca2+ sensor GCaMP3. CBD (10 mg/kg, intraperitoneally) prevented ischemia-induced neurological impairment, reducing the neurological deficit score from 2.0 ± 1.2 to 0.8 ± 0.8, and protected against neurodegeneration, as shown by the reduction (more than 70%) in Fluoro-Jade C staining (18.8 ± 7.5 to 5.3 ± 0.3). CBD reduced ischemia-induced microglial activation assessed by changes in soma area and total branch length, and exerted a balancing effect on astroglial Ca2+ signals. Our findings indicate that the neuroprotective effects of CBD may occur in the subacute phase of ischemia, and reinforce its strong anti-inflammatory property. Nevertheless, its mechanism of action on glial cells still requires further studies.
Collapse
Affiliation(s)
- Erika Meyer
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, D-66421 Homburg, Germany
- Laboratory of Brain Ischemia and Neuroprotection, Department of Pharmacology and Therapeutics, State University of Maringá, Maringá 87020900, Brazil
| | - Phillip Rieder
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, D-66421 Homburg, Germany
| | - Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, D-66421 Homburg, Germany
| | - Gabriella Candido
- Laboratory of Brain Ischemia and Neuroprotection, Department of Pharmacology and Therapeutics, State University of Maringá, Maringá 87020900, Brazil
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, D-66421 Homburg, Germany
| | - Rúbia Maria Weffort de Oliveira
- Laboratory of Brain Ischemia and Neuroprotection, Department of Pharmacology and Therapeutics, State University of Maringá, Maringá 87020900, Brazil
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, D-66421 Homburg, Germany
| |
Collapse
|
12
|
Energy restriction induced SIRT6 inhibits microglia activation and promotes angiogenesis in cerebral ischemia via transcriptional inhibition of TXNIP. Cell Death Dis 2022; 13:449. [PMID: 35562171 PMCID: PMC9095711 DOI: 10.1038/s41419-022-04866-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
Energy restriction (ER) protects against cerebral ischemic injury, but the underlying mechanism remains largely unclear. Here, rats were fed ad libitum (AL) or on an alternate-day food deprivation intermittent fasting (IF) diet for 3 months, followed by middle cerebral artery occlusion (MCAO) surgery. The body weight, infarct volume, and neurological deficit score were accessed at the designated time points. ELISA, qRT-PCR, and Western blotting were used to determine cytokine secretion and the expression of SIRT6, TXNIP, and signaling molecules, respectively. Immunofluorescence evaluated microglial activation and angiogenesis in vivo. For in vitro study, oxygen-glucose deprivation/reoxygenation (OGD/R)-treated cell model was generated. MTT and tube formation assays were employed to determine cell viability and tube formation capability. ChIP assay detected chromatin occupancy of SIRT6 and SIRT6-mediated H3 deacetylation. We found that IF or ER mimetics ameliorated cerebral ischemic brain damage and microglial activation, and potentiated angiogenesis in vivo. ER mimetics or SIRT6 overexpression alleviated cerebral ischemia and reperfusion (I/R)-induced injury in vitro. SIRT6 suppressed TXNIP via deacetylation of H3K9ac and H3K56ac in HAPI cells and BMVECs. Downregulation of SIRT6 reversed ER mimetics-mediated protection during cerebral I/R in vitro. Our study demonstrated that ER-mediated upregulation of SIRT6 inhibited microglia activation and potentiated angiogenesis in cerebral ischemia via suppressing TXNIP.
Collapse
|
13
|
Michalettos G, Ruscher K. Crosstalk Between GABAergic Neurotransmission and Inflammatory Cascades in the Post-ischemic Brain: Relevance for Stroke Recovery. Front Cell Neurosci 2022; 16:807911. [PMID: 35401118 PMCID: PMC8983863 DOI: 10.3389/fncel.2022.807911] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Adaptive plasticity processes are required involving neurons as well as non-neuronal cells to recover lost brain functions after an ischemic stroke. Recent studies show that gamma-Aminobutyric acid (GABA) has profound effects on glial and immune cell functions in addition to its inhibitory actions on neuronal circuits in the post-ischemic brain. Here, we provide an overview of how GABAergic neurotransmission changes during the first weeks after stroke and how GABA affects functions of astroglial and microglial cells as well as peripheral immune cell populations accumulating in the ischemic territory and brain regions remote to the lesion. Moreover, we will summarize recent studies providing data on the immunomodulatory actions of GABA of relevance for stroke recovery. Interestingly, the activation of GABA receptors on immune cells exerts a downregulation of detrimental anti-inflammatory cascades. Conversely, we will discuss studies addressing how specific inflammatory cascades affect GABAergic neurotransmission on the level of GABA receptor composition, GABA synthesis, and release. In particular, the chemokines CXCR4 and CX3CR1 pathways have been demonstrated to modulate receptor composition and synthesis. Together, the actual view on the interactions between GABAergic neurotransmission and inflammatory cascades points towards a specific crosstalk in the post-ischemic brain. Similar to what has been shown in experimental models, specific therapeutic modulation of GABAergic neurotransmission and inflammatory pathways may synergistically promote neuronal plasticity to enhance stroke recovery.
Collapse
Affiliation(s)
- Georgios Michalettos
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
- LUBIN Lab—Lunds Laboratorium för Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- *Correspondence: Karsten Ruscher
| |
Collapse
|
14
|
Zhang R, Chen DY, Luo XW, Yang Y, Zhang XC, Yang RH, Chen P, Shen ZQ, He B. Comprehensive Analysis of the Effect of 20( R)-Ginsenoside Rg3 on Stroke Recovery in Rats via the Integrative miRNA-mRNA Regulatory Network. Molecules 2022; 27:1573. [PMID: 35268674 PMCID: PMC8911624 DOI: 10.3390/molecules27051573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small, endogenous, noncoding RNAs. Recent research has proven that miRNAs play an essential role in the occurrence and development of ischemic stroke. Our previous studies confirmed that 20(R)-ginsenosideRg3 [20(R)-Rg3] exerts beneficial effects on cerebral ischemia-reperfusion injury (CIRI), but its molecular mechanism has not been elucidated. In this study, we used high-throughput sequencing to investigate the differentially expressed miRNA and mRNA expression profiles of 20(R)-Rg3 preconditioning to ameliorate CIRI injury in rats and to reveal its potential neuroprotective molecular mechanism. The results show that 20(R)-Rg3 alleviated neurobehavioral dysfunction in MCAO/R-treated rats. Among these mRNAs, 953 mRNAs were significantly upregulated and 2602 mRNAs were downregulated in the model group versus the sham group, whereas 437 mRNAs were significantly upregulated and 35 mRNAs were downregulated in the 20(R)-Rg3 group in contrast with those in the model group. Meanwhile, the expression profile of the miRNAs showed that a total of 283 differentially expressed miRNAs were identified, of which 142 miRNAs were significantly upregulated and 141 miRNAs were downregulated in the model group compared with the sham group, whereas 34 miRNAs were differentially expressed in the 20(R)-Rg3 treatment group compared with the model group, with 28 miRNAs being significantly upregulated and six miRNAs being significantly downregulated. Furthermore, 415 (391 upregulated and 24 downregulated) differentially expressed mRNAs and 22 (17 upregulated and 5 downregulated) differentially expressed miRNAs were identified to be related to 20(R)-Rg3's neuroprotective effect on stroke recovery. The Kyoto Encyclopedia of Genes and Genomes (KEGG) results showed that 20(R)-Rg3 could modulate multiple signaling pathways related to these differential miRNAs, such as the cGMP-PKG, cAMP and MAPK signaling pathways. This study provides new insights into the protective mechanism of 20(R)-Rg3 against CIRI, and the mechanism may be partly associated with the regulation of brain miRNA expression and its target signaling pathways.
Collapse
Affiliation(s)
- Rui Zhang
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China; (R.Z.); (X.-W.L.); (Y.Y.); (X.-C.Z.); (R.-H.Y.)
| | - De-Yun Chen
- Faculty of Food, Drugs and Health, Yunnan Vocational and Technical College of Agriculture, Kunming 650212, China;
| | - Xing-Wei Luo
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China; (R.Z.); (X.-W.L.); (Y.Y.); (X.-C.Z.); (R.-H.Y.)
| | - Yuan Yang
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China; (R.Z.); (X.-W.L.); (Y.Y.); (X.-C.Z.); (R.-H.Y.)
| | - Xiao-Chao Zhang
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China; (R.Z.); (X.-W.L.); (Y.Y.); (X.-C.Z.); (R.-H.Y.)
| | - Ren-Hua Yang
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China; (R.Z.); (X.-W.L.); (Y.Y.); (X.-C.Z.); (R.-H.Y.)
| | - Peng Chen
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China; (R.Z.); (X.-W.L.); (Y.Y.); (X.-C.Z.); (R.-H.Y.)
| | - Zhi-Qiang Shen
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China; (R.Z.); (X.-W.L.); (Y.Y.); (X.-C.Z.); (R.-H.Y.)
| | - Bo He
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China; (R.Z.); (X.-W.L.); (Y.Y.); (X.-C.Z.); (R.-H.Y.)
| |
Collapse
|
15
|
Stuckey SM, Ong LK, Collins-Praino LE, Turner RJ. Neuroinflammation as a Key Driver of Secondary Neurodegeneration Following Stroke? Int J Mol Sci 2021; 22:ijms222313101. [PMID: 34884906 PMCID: PMC8658328 DOI: 10.3390/ijms222313101] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 01/13/2023] Open
Abstract
Ischaemic stroke involves the rapid onset of focal neurological dysfunction, most commonly due to an arterial blockage in a specific region of the brain. Stroke is a leading cause of death and common cause of disability, with over 17 million people worldwide suffering from a stroke each year. It is now well-documented that neuroinflammation and immune mediators play a key role in acute and long-term neuronal tissue damage and healing, not only in the infarct core but also in distal regions. Importantly, in these distal regions, termed sites of secondary neurodegeneration (SND), spikes in neuroinflammation may be seen sometime after the initial stroke onset, but prior to the presence of the neuronal tissue damage within these regions. However, it is key to acknowledge that, despite the mounting information describing neuroinflammation following ischaemic stroke, the exact mechanisms whereby inflammatory cells and their mediators drive stroke-induced neuroinflammation are still not fully understood. As a result, current anti-inflammatory treatments have failed to show efficacy in clinical trials. In this review we discuss the complexities of post-stroke neuroinflammation, specifically how it affects neuronal tissue and post-stroke outcome acutely, chronically, and in sites of SND. We then discuss current and previously assessed anti-inflammatory therapies, with a particular focus on how failed anti-inflammatories may be repurposed to target SND-associated neuroinflammation.
Collapse
Affiliation(s)
- Shannon M. Stuckey
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
| | - Lin Kooi Ong
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia;
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan 2308, Australia
| | - Lyndsey E. Collins-Praino
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
| | - Renée J. Turner
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
- Correspondence: ; Tel.: +61-8-8313-3114
| |
Collapse
|
16
|
Ermine CM, Nithianantharajah J, O'Brien K, Kauhausen JA, Frausin S, Oman A, Parsons MW, Brait VH, Brodtmann A, Thompson LH. Hemispheric cortical atrophy and chronic microglial activation following mild focal ischemic stroke in adult male rats. J Neurosci Res 2021; 99:3222-3237. [PMID: 34651338 DOI: 10.1002/jnr.24939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 01/05/2023]
Abstract
Animal modeling has played an important role in our understanding of the pathobiology of stroke. The vast majority of this research has focused on the acute phase following severe forms of stroke that result in clear behavioral deficits. Human stroke, however, can vary widely in severity and clinical outcome. There is a rapidly building body of work suggesting that milder ischemic insults can precipitate functional impairment, including cognitive decline, that continues through the chronic phase after injury. Here we show that a small infarction localized to the frontal motor cortex of rats following injection of endothelin-1 results in an essentially asymptomatic state based on motor and cognitive testing, and yet produces significant histopathological change including remote atrophy and inflammation that persists up to 1 year. While there is understandably a major focus in stroke research on mitigating the acute consequences of primary infarction, these results point to progressive atrophy and chronic inflammation as additional targets for intervention in the chronic phase after injury. The present rodent model provides an important platform for further work in this area.
Collapse
Affiliation(s)
- Charlotte M Ermine
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Jess Nithianantharajah
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Katrina O'Brien
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Jessica A Kauhausen
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Stefano Frausin
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Alexander Oman
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Mark W Parsons
- Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia.,Department of Neurology, University of New Wales South Western Clinical School, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Vanessa H Brait
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Amy Brodtmann
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia.,Department of Neurology, Austin Health, Melbourne, VIC, Australia.,Eastern Cognitive Disorders Clinic, Eastern Health, Monash University, Clayton, VIC, Australia
| | - Lachlan H Thompson
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Schlecht A, Vallon M, Wagner N, Ergün S, Braunger BM. TGFβ-Neurotrophin Interactions in Heart, Retina, and Brain. Biomolecules 2021; 11:biom11091360. [PMID: 34572573 PMCID: PMC8464756 DOI: 10.3390/biom11091360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic insults to the heart and brain, i.e., myocardial and cerebral infarction, respectively, are amongst the leading causes of death worldwide. While there are therapeutic options to allow reperfusion of ischemic myocardial and brain tissue by reopening obstructed vessels, mitigating primary tissue damage, post-infarction inflammation and tissue remodeling can lead to secondary tissue damage. Similarly, ischemia in retinal tissue is the driving force in the progression of neovascular eye diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD), which eventually lead to functional blindness, if left untreated. Intriguingly, the easily observable retinal blood vessels can be used as a window to the heart and brain to allow judgement of microvascular damages in diseases such as diabetes or hypertension. The complex neuronal and endocrine interactions between heart, retina and brain have also been appreciated in myocardial infarction, ischemic stroke, and retinal diseases. To describe the intimate relationship between the individual tissues, we use the terms heart-brain and brain-retina axis in this review and focus on the role of transforming growth factor β (TGFβ) and neurotrophins in regulation of these axes under physiologic and pathologic conditions. Moreover, we particularly discuss their roles in inflammation and repair following ischemic/neovascular insults. As there is evidence that TGFβ signaling has the potential to regulate expression of neurotrophins, it is tempting to speculate, and is discussed here, that cross-talk between TGFβ and neurotrophin signaling protects cells from harmful and/or damaging events in the heart, retina, and brain.
Collapse
|
18
|
Yu F, Huang T, Ran Y, Li D, Ye L, Tian G, Xi J, Liu Z. New Insights Into the Roles of Microglial Regulation in Brain Plasticity-Dependent Stroke Recovery. Front Cell Neurosci 2021; 15:727899. [PMID: 34421544 PMCID: PMC8374071 DOI: 10.3389/fncel.2021.727899] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023] Open
Abstract
Stroke remains the leading cause of long-term disability worldwide with significant long-term sequelae. However, there is no highly effective treatment to enhance post-stroke recovery despite extensive efforts in exploring rehabilitative therapies. Neurorehabilitation is recognized as the cornerstone of functional restoration therapy in stroke, where treatments are focused on neuroplastic regulation to reverse neural structural disruption and improve neurofunctional networks. Post-stroke neuroplasticity changes begin within hours of symptom onset and reaches a plateau by 3 to 4 weeks within the global brain in animal studies. It plays a determining role in spontaneous stroke recovery. Microglia are immediately activated following cerebral ischemia, which has been found both proximal to the primary ischemic injury and at the remote brain regions which have functional connections to the primary injury area. Microglia exhibit different activation profiles based on the microenvironment and adaptively switch their phenotypes in a spatiotemporal manner in response to brain injuries. Microglial activation coincides with neuroplasticity after stroke, which provides the fundamental base for the microglia-mediated inflammatory responses involved in the entire neural network rewiring and brain repair. Microglial activation exerts important effects on spontaneous recovery after stroke, including structural and functional reestablishment of neurovascular networks, neurogenesis, axonal remodeling, and blood vessel regeneration. In this review, we focus on the crosstalk between microglial activation and endogenous neuroplasticity, with a special focus on the plastic alterations in the whole brain network and their implications for structural and functional restoration after stroke. We then summarize recent advances in the impacts of microglial phenotype polarization on brain plasticity, trying to discuss the potential efficacy of microglia-based extrinsic restorative interventions in promoting post-stroke recovery.
Collapse
Affiliation(s)
- Fang Yu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Anesthesiology, Westchester Medical Center, New York Medical College, Valhalla, NY, United States
| | - Tingting Huang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Da Li
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Guiqin Tian
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Jianing Xi
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Shishkina GT, Kalinina TS, Gulyaeva NV, Lanshakov DA, Dygalo NN. Changes in Gene Expression and Neuroinflammation in the Hippocampus after Focal Brain Ischemia: Involvement in the Long-Term Cognitive and Mental Disorders. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:657-666. [PMID: 34225589 DOI: 10.1134/s0006297921060043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ischemic brain injuries are accompanied by the long-term changes in gene expression in the hippocampus, the limbic system structure, involved in the regulation of key aspects of the higher nervous activity, such as cognitive functions and emotions. The altered expression of genes and proteins encoded by them may be related to the development of post-ischemic psycho-emotional and cognitive disturbances. Activation of neuroinflammation following stroke in the hippocampus has been suggested to play an essential role in induction of long-lasting consequences. Identification of changes in the gene expression patterns after ischemia and investigation of the dynamics of these changes in the hippocampus are the necessary first steps toward understanding molecular pathways responsible for the development of post-stroke cognitive impairments and mental pathologies.
Collapse
Affiliation(s)
- Galina T Shishkina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Tatiana S Kalinina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Dmitry A Lanshakov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nikolay N Dygalo
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
20
|
Hernández IH, Villa-González M, Martín G, Soto M, Pérez-Álvarez MJ. Glial Cells as Therapeutic Approaches in Brain Ischemia-Reperfusion Injury. Cells 2021; 10:1639. [PMID: 34208834 PMCID: PMC8305833 DOI: 10.3390/cells10071639] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is the second cause of mortality and the first cause of long-term disability constituting a serious socioeconomic burden worldwide. Approved treatments include thrombectomy and rtPA intravenous administration, which, despite their efficacy in some cases, are not suitable for a great proportion of patients. Glial cell-related therapies are progressively overcoming inefficient neuron-centered approaches in the preclinical phase. Exploiting the ability of microglia to naturally switch between detrimental and protective phenotypes represents a promising therapeutic treatment, in a similar way to what happens with astrocytes. However, the duality present in many of the roles of these cells upon ischemia poses a notorious difficulty in disentangling the precise pathways to target. Still, promoting M2/A2 microglia/astrocyte protective phenotypes and inhibiting M1/A1 neurotoxic profiles is globally rendering promising results in different in vivo models of stroke. On the other hand, described oligodendrogenesis after brain ischemia seems to be strictly beneficial, although these cells are the less studied players in the stroke paradigm and negative effects could be described for oligodendrocytes in the next years. Here, we review recent advances in understanding the precise role of mentioned glial cell types in the main pathological events of ischemic stroke, including inflammation, blood brain barrier integrity, excitotoxicity, reactive oxygen species management, metabolic support, and neurogenesis, among others, with a special attention to tested therapeutic approaches.
Collapse
Affiliation(s)
- Ivó H Hernández
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Mario Villa-González
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Gerardo Martín
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Manuel Soto
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María José Pérez-Álvarez
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
21
|
Chojnowski K, Opielka M, Nazar W, Kowianski P, Smolenski RT. Neuroprotective Effects of Guanosine in Ischemic Stroke-Small Steps towards Effective Therapy. Int J Mol Sci 2021; 22:6898. [PMID: 34199004 PMCID: PMC8268871 DOI: 10.3390/ijms22136898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Guanosine (Guo) is a nucleotide metabolite that acts as a potent neuromodulator with neurotrophic and regenerative properties in neurological disorders. Under brain ischemia or trauma, Guo is released to the extracellular milieu and its concentration substantially raises. In vitro studies on brain tissue slices or cell lines subjected to ischemic conditions demonstrated that Guo counteracts destructive events that occur during ischemic conditions, e.g., glutaminergic excitotoxicity, reactive oxygen and nitrogen species production. Moreover, Guo mitigates neuroinflammation and regulates post-translational processing. Guo asserts its neuroprotective effects via interplay with adenosine receptors, potassium channels, and excitatory amino acid transporters. Subsequently, guanosine activates several prosurvival molecular pathways including PI3K/Akt (PI3K) and MEK/ERK. Due to systemic degradation, the half-life of exogenous Guo is relatively low, thus creating difficulty regarding adequate exogenous Guo distribution. Nevertheless, in vivo studies performed on ischemic stroke rodent models provide promising results presenting a sustained decrease in infarct volume, improved neurological outcome, decrease in proinflammatory events, and stimulation of neuroregeneration through the release of neurotrophic factors. In this comprehensive review, we discuss molecular signaling related to Guo protection against brain ischemia. We present recent advances, limitations, and prospects in exogenous guanosine therapy in the context of ischemic stroke.
Collapse
Affiliation(s)
- Karol Chojnowski
- Faculty of Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland; (K.C.); (W.N.)
| | - Mikolaj Opielka
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
- International Research Agenda 3P—Medicine Laboratory, Medical University of Gdańsk, 3A Sklodowskiej-Curie Street, 80-210 Gdansk, Poland
| | - Wojciech Nazar
- Faculty of Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland; (K.C.); (W.N.)
| | - Przemyslaw Kowianski
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki Street, 80-211 Gdańsk, Poland;
- Institute of Health Sciences, Pomeranian University of Słupsk, Bohaterów Westerplatte 64, 76-200 Słupsk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| |
Collapse
|
22
|
Naseh M, Vatanparast J, Rafati A, Bayat M, Haghani M. The emerging role of FTY720 as a sphingosine 1-phosphate analog for the treatment of ischemic stroke: The cellular and molecular mechanisms. Brain Behav 2021; 11:e02179. [PMID: 33969931 PMCID: PMC8213944 DOI: 10.1002/brb3.2179] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/28/2022] Open
Abstract
Finding novel and effective drugs for the treatment of ischemic stroke is warranted because there is not a definitive treatment for this prevalent disease. Due to the relevance between the sphingosine 1-phosphate (S1P) receptor and several neurological diseases including ischemic stroke, it seems that fingolimod (FTY720), as an agonist of S1P receptor, can be a useful therapeutic strategy in these patients. FTY720 is the first oral drug approved by the US food and drug administration for the treatment of multiple sclerosis. Three important mechanisms for neuroprotective effects of FTY720 have been described. First, the functional antagonistic mechanism that is associated with lymphopenia and reduced lymphocytic inflammation. This effect results from the down-regulation and degradation of lymphocytes' S1P receptors, which inhibits lymph node lymphocytes from entering the bloodstream. Second, a functional agonistic activity that is mediated through direct effects via targeting S1P receptors on the membrane of various cells including neurons, microglia, oligodendrocytes, astrocytes, and endothelial cells of blood vessels in the central nervous system (CNS), and the third, receptor-independent mechanisms that are displayed by binding to specific cellular proteins that modulate intracellular signaling pathways or affect epigenetic transcriptions. Therefore, we review these mechanisms in more detail and describe the animal model and in clinical trial studies that support these three mechanisms for the neuroprotective action of FTY720 in ischemic stroke.
Collapse
Affiliation(s)
- Maryam Naseh
- Histomorphometry and Stereology Research CentreShiraz University of Medical SciencesShirazIran
| | | | - Ali Rafati
- Histomorphometry and Stereology Research CentreShiraz University of Medical SciencesShirazIran
- Department of PhysiologyShiraz University of Medical SciencesShirazIran
| | - Mahnaz Bayat
- Clinical Neurology Research CenterShiraz University of Medical SciencesShirazIran
| | - Masoud Haghani
- Histomorphometry and Stereology Research CentreShiraz University of Medical SciencesShirazIran
- Department of PhysiologyShiraz University of Medical SciencesShirazIran
| |
Collapse
|
23
|
Fujita Y, Yamashita T. Mechanisms and significance of microglia-axon interactions in physiological and pathophysiological conditions. Cell Mol Life Sci 2021; 78:3907-3919. [PMID: 33507328 PMCID: PMC11072252 DOI: 10.1007/s00018-021-03758-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022]
Abstract
Microglia are the resident immune cells of the central nervous system, and are important for cellular processes. In addition to their classical roles in pathophysiological conditions, these immune cells also dynamically interact with neurons and influence their structure and function in physiological conditions. Microglia have been shown to contact neurons at various points, including the dendrites, cell bodies, synapses, and axons, and support various developmental functions, such as neuronal survival, axon elongation, and maturation of the synaptic circuit. This review summarizes the current knowledge regarding the roles of microglia in brain development, with particular emphasis on microglia-axon interactions. We will review recent findings regarding the functions and signaling pathways involved in the reciprocal interactions between microglia and neurons. Moreover, as these interactions are altered in disease and injury conditions, we also discuss the effect and alteration of microglia-axon interactions in disease progression and the potential role of microglia in developmental brain disorders.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Graduate School of Frontier Bioscience, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
24
|
Affiliation(s)
- Midori A Yenari
- Department of Neurology, University of California, San Francisco, CA, USA.,Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| |
Collapse
|
25
|
Abstract
We studied the role of Sirtuin 3 (SIRT3) in microglial cell migration in ischemic stroke. We used a middle cerebral artery occlusion (MCAO) model of focal ischemia. We then applied lentivirus-packaged SIRT3 overexpression and knock down in microglial N9 cells to investigate the underlying mechanism driving microglial cell migration. More microglial cells appeared in the ischemic lesion side after MCAO. The levels of SIRT3 were increased in macrophages, the main source of microglia, after ischemia. CX3CR1 levels were increased with SIRT3 overexpression. SIRT3 promoted microglial N9 cells migration by upregulating CX3CR1 in both normal and glucose deprived culture media. These effects were G protein-dependent. Our study for the first time shows that SIRT3 promotes microglia migration by upregulating CX3CR1.
Collapse
Affiliation(s)
- Runjing Cao
- a Department of Neurology , The Second Hospital of Hebei Medical University , Shijiazhuang , China.,b Barrow Neurological Institute , St. Joseph Hospital and Medical Center, Dignity Health Organization , Phoenix , AZ , USA
| | - Shiping Li
- a Department of Neurology , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Junxiang Yin
- b Barrow Neurological Institute , St. Joseph Hospital and Medical Center, Dignity Health Organization , Phoenix , AZ , USA
| | - Li Guo
- a Department of Neurology , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Jiong Shi
- b Barrow Neurological Institute , St. Joseph Hospital and Medical Center, Dignity Health Organization , Phoenix , AZ , USA.,c Advanced Innovation Center for Human Brain Protection , Capital Medical University , Beijing , China.,d China National Clinical Research Center for Neurological Diseases, Department of Neurology , Beijing Tiantan Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
26
|
Cheng X, Yang YL, Li WH, Liu M, Wang YH, Du GH. Cerebral ischemia-reperfusion aggravated cerebral infarction injury and possible differential genes identified by RNA-Seq in rats. Brain Res Bull 2019; 156:33-42. [PMID: 31877338 DOI: 10.1016/j.brainresbull.2019.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/12/2019] [Accepted: 12/19/2019] [Indexed: 10/25/2022]
Abstract
Numerous studies have shown that local excessive inflammatory response in brain tissue was an important pathogenesis of secondary injury following cerebral ischemia-reperfusion (I/R). However, the inflammatory-related targets and pathways after cerebral I/R injury are still unclear. This study was to investigate possible targets and mechanisms after cerebral I/R injury. Rats were subjected to transient or permanent middle cerebral artery occlusion (MCAO). Neurological deficit scores test was used to evaluate neurological function. Cerebral infarction was evaluated by MRI, TTC staining and Nissl staining. Microglia activation was detected by immunofluorescence using Iba-1 antibody. Inflammatory factors were detected by ELISA assay. RNA-sequencing transcriptome analysis was processed and the differential genes were verified by real-time quantitative PCR (qPCR) and western blotting. The results showed that neurological function of rats in I/R group was more severe than that in I group on the 7th after cerebral I/R. Therefore, the differences between cerebral ischemia and cerebral I/R for 7 days were studied in further study. The results showed that the levels of pro-inflammatory factors in I/R group were higher and the levels of anti-inflammatory factors were lower than those in I group. KEGG pathway and gene network enrichment analysis revealed that some common differential up- and down-regulated genes were involved in most of significant pathways. These common differential up-regulated genes belonged to TLR4/MYD88 inflammatory signaling pathway and common differential down-regulated genes belonged to HRAS/RAF1 neurotrophic signaling pathway. Interestingly, according to the genetic interaction analysis of string database, these up-regulated differential genes might promote the development of inflammation, while the down-regulated differential genes might inhibit the development of inflammation. Furthermore, qPCR and WB results verified that these pro-inflammatory genes in the I/R group were higher than those in the I group, while possible anti-inflammatory genes in the I/R group were lower than those in the I group. It is concluded that TLR4/MYD88 inflammatory signaling pathway and HRAS/RAF1 neurotrophic signaling pathway may play different roles after cerebral I or I/R and may be therapeutic targets for stroke recovery.
Collapse
Affiliation(s)
- Xiao Cheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and New Drug Sreeening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ying-Lin Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and New Drug Sreeening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wei-Han Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and New Drug Sreeening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Man Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and New Drug Sreeening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yue-Hua Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and New Drug Sreeening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and New Drug Sreeening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
27
|
Galloway DA, Phillips AEM, Owen DRJ, Moore CS. Phagocytosis in the Brain: Homeostasis and Disease. Front Immunol 2019; 10:790. [PMID: 31040847 PMCID: PMC6477030 DOI: 10.3389/fimmu.2019.00790] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/26/2019] [Indexed: 12/28/2022] Open
Abstract
Microglia are resident macrophages of the central nervous system and significantly contribute to overall brain function by participating in phagocytosis during development, homeostasis, and diseased states. Phagocytosis is a highly complex process that is specialized for the uptake and removal of opsonized and non-opsonized targets, such as pathogens, apoptotic cells, and cellular debris. While the role of phagocytosis in mediating classical innate and adaptive immune responses has been known for decades, it is now appreciated that phagocytosis is also critical throughout early neural development, homeostasis, and initiating repair mechanisms. As such, modulating phagocytic processes has provided unexplored avenues with the intent of developing novel therapeutics that promote repair and regeneration in the CNS. Here, we review the functional consequences that phagocytosis plays in both the healthy and diseased CNS, and summarize how phagocytosis contributes to overall pathophysiological mechanisms involved in brain injury and repair.
Collapse
Affiliation(s)
- Dylan A Galloway
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Alexandra E M Phillips
- Division of Brain Sciences, Department of Medicine Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - David R J Owen
- Division of Brain Sciences, Department of Medicine Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Craig S Moore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
28
|
Xia L, Han Q, Ni XY, Chen B, Yang X, Chen Q, Cheng GL, Liu CF. Different Techniques of Minimally Invasive Craniopuncture for the Treatment of Hypertensive Intracerebral Hemorrhage. World Neurosurg 2019; 126:e888-e894. [PMID: 30872203 DOI: 10.1016/j.wneu.2019.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Efficacy of minimally invasive craniopuncture with the YL-1 puncture needle (hard-channel) and soft drainage tube (soft-channel) in treating hypertensive intracerebral hemorrhage (HICH). MATERIALS AND METHODS A total of 150 patients with HICH were randomly assigned into 3 groups: conservative group (n = 50), hard-channel group (n = 50), and soft-channel group (n = 50). Computed tomography, National Institutes of Health Stroke Scale (NIHSS) and the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), superoxide dismutase (SOD), and malondialdehyde (MDA) in serum and in drainage fluid were examined on days 2, 4, and 6 after operation. RESULTS Compared with the conservative group, the serum levels of IL-6, TNF-α, and MDA were decreased and SOD was increased (P < 0.05); volumes of hematoma and perihematomal edema as well as NIHSS were reduced (P < 0.05) in minimally invasive groups on days 7, 14, and 28 after operation. Compared with the hard-channel group, the serum levels of IL-6, TNF-α, MDA, and SOD showed the same trend as above in the soft-channel group. In the soft-channel group, MDA was reduced and SOD was increased in brain drainage fluid on days 2, 4, and 6 (P < 0.05); volumes of hematoma and perihematomal edema on days 14 and 28 were found to be reduced compared with the hard-channel group (P < 0.05). There was no significant difference of volumes of hematoma and perihematomal edema on day 7 between minimally invasive groups. NIHSS of the soft-channel group appeared to be significantly reduced on days 7, 14, and 28 after operation (P < 0.05). CONCLUSIONS Soft-channel minimally invasive craniopuncture is an ideal technique for treating HICH, with advantages of alleviating cerebral edema, reducing oxidative stress, and inhibiting inflammatory response.
Collapse
Affiliation(s)
- Lei Xia
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Neurology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Qiu Han
- Department of Neurology, The Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Xiao-Yu Ni
- Department of Neurology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Bing Chen
- Department of Neurology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xiu Yang
- Department of Neurology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Quan Chen
- Department of Neurology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Guan-Liang Cheng
- Department of Neurology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Chun-Feng Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
29
|
Edler MK, Sherwood CC, Meindl RS, Munger E, Hopkins WD, Ely JJ, Erwin JM, Perl DP, Mufson EJ, Hof PR, Raghanti MA. Microglia changes associated to Alzheimer's disease pathology in aged chimpanzees. J Comp Neurol 2018; 526:2921-2936. [PMID: 30069930 PMCID: PMC6283685 DOI: 10.1002/cne.24484] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 01/01/2023]
Abstract
In Alzheimer's disease (AD), the brain's primary immune cells, microglia, become activated and are found in close apposition to amyloid beta (Aβ) protein plaques and neurofibrillary tangles (NFT). The present study evaluated microglia density and morphology in a large group of aged chimpanzees (n = 20, ages 37-62 years) with varying degrees of AD-like pathology. Using immunohistochemical and stereological techniques, we quantified the density of activated microglia and morphological variants (ramified, intermediate, and amoeboid) in postmortem chimpanzee brain samples from prefrontal cortex, middle temporal gyrus, and hippocampus, areas that show a high degree of AD pathology in humans. Microglia measurements were compared to pathological markers of AD in these cases. Activated microglia were consistently present across brain areas. In the hippocampus, CA3 displayed a higher density than CA1. Aβ42 plaque volume was positively correlated with higher microglial activation and with an intermediate morphology in the hippocampus. Aβ42-positive vessel volume was associated with increased hippocampal microglial activation. Activated microglia density and morphology were not associated with age, sex, pretangle density, NFT density, or tau neuritic cluster density. Aged chimpanzees displayed comparable patterns of activated microglia phenotypes as well as an association of increased microglial activation and morphological changes with Aβ deposition similar to AD patients. In contrast to human AD brains, activated microglia density was not significantly correlated with tau lesions. This evidence suggests that the chimpanzee brain may be relatively preserved during normal aging processes but not entirely protected from neurodegeneration as previously assumed.
Collapse
Affiliation(s)
- Melissa K. Edler
- School of Biomedical Sciences, Kent State University, Kent, OH 44242
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052
| | | | - Emily Munger
- School of Biomedical Sciences, Kent State University, Kent, OH 44242
| | - William D. Hopkins
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30322
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302
| | | | - Joseph M. Erwin
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052
| | - Daniel P. Perl
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Elliott J. Mufson
- Departments of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, AZ 85013
| | - Patrick R. Hof
- Fishberg Department of Neuroscience, Ronald M. Loeb Center for Alzheimer’s Disease, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- New York Consortium for Evolutionary Primatology, New York, NY 10468
| | - Mary Ann Raghanti
- School of Biomedical Sciences, Kent State University, Kent, OH 44242
- Department of Anthropology, Kent State University, Kent, OH 44242
| |
Collapse
|
30
|
Baumgartner P, El Amki M, Bracko O, Luft AR, Wegener S. Sensorimotor stroke alters hippocampo-thalamic network activity. Sci Rep 2018; 8:15770. [PMID: 30361495 PMCID: PMC6202365 DOI: 10.1038/s41598-018-34002-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/10/2018] [Indexed: 01/06/2023] Open
Abstract
Many stroke survivors experience persisting episodic memory disturbances. Since hippocampal and para-hippocampal areas are usually spared from the infarcted area, alterations of memory processing networks remote from the ischemic brain region might be responsible for the observed clinical symptoms. To pinpoint changes in activity of hippocampal connections and their role in post-stroke cognitive impairment, we induced ischemic stroke by occlusion of the middle cerebral artery (MCAO) in adult rats and analyzed the functional and structural consequences using activity-dependent manganese (Mn2+) enhanced MRI (MEMRI) along with behavioral and histopathological analysis. MCAO caused stroke lesions of variable extent along with sensorimotor and cognitive deficits. Direct hippocampal injury occurred in some rats, but was no prerequisite for cognitive impairment. In healthy rats, injection of Mn2+ into the entorhinal cortex resulted in distribution of the tracer within the hippocampal subfields into the lateral septal nuclei. In MCAO rats, Mn2+ accumulated in the ipsilateral thalamus. Histopathological analysis revealed secondary thalamic degeneration 28 days after stroke. Our findings provide in vivo evidence that remote sensorimotor stroke modifies the activity of hippocampal-thalamic networks. In addition to potentially reversible alterations in signaling of these connections, structural damage of the thalamus likely reinforces dysfunction of hippocampal-thalamic circuitries.
Collapse
Affiliation(s)
- Philipp Baumgartner
- Department of Neurology, University Hospital and University of Zurich, Zurich, 8006, Switzerland
| | - Mohamad El Amki
- Department of Neurology, University Hospital and University of Zurich, Zurich, 8006, Switzerland
| | - Oliver Bracko
- Department of Neurology, University Hospital and University of Zurich, Zurich, 8006, Switzerland.,Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY14853, United States
| | - Andreas R Luft
- Department of Neurology, University Hospital and University of Zurich, Zurich, 8006, Switzerland
| | - Susanne Wegener
- Department of Neurology, University Hospital and University of Zurich, Zurich, 8006, Switzerland.
| |
Collapse
|
31
|
Chen Y, Wang L, Zhang L, Chen B, Yang L, Li X, Li Y, Yu H. Inhibition of Connexin 43 Hemichannels Alleviates Cerebral Ischemia/Reperfusion Injury via the TLR4 Signaling Pathway. Front Cell Neurosci 2018; 12:372. [PMID: 30386214 PMCID: PMC6199357 DOI: 10.3389/fncel.2018.00372] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/28/2018] [Indexed: 01/01/2023] Open
Abstract
Connexin 43 (Cx43) widely exists in all components of the neurovascular unit (NVU) and is a constituent of gap junctions and hemichannels. In physiological states, gap junctions are open for regular intercellular communication, and the hemichannels present low open probability in astrocytes. After cerebral ischemia, a large number of hemichannels are unusually opened, leading to cell swelling and even death. Most known hemichannel blockers also inhibit gap junctions and sequentially obstruct normal electrical cell-cell communication. In this study, we tested the hypothesis that Gap19, a selective Cx43-hemichannel inhibitor, exhibited neuroprotective effects on cerebral ischemia/reperfusion (I/R). An obvious improvement in neurological scores and infarct volume reduction were observed in Gap19-treated mice after brain ischemia induced by middle cerebral artery occlusion (MCAO). Gap19 treatment attenuated white matter damage. Moreover, Gap19 treatment suppressed the expression of Cx43 and Toll-like receptor 4 (TLR4) pathway-relevant proteins and prevented the overexpression of tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). To further explore downstream signaling, we established an in vitro model-oxygen glucose deprivation (OGD) to simulate ischemic conditions. Immunofluorescence staining showed that Cx43 co-existed with TLR4 in astrocytes. The hemichannel activity was increased after OGD and Gap19 could inhibit this effect on astrocytes. Gap19 substantially improved relative cell vitality and decreased the expression of Cx43, TLR4 and inflammatory cytokines in vitro. In addition, in the lipopolysaccharide (LPS) stimulation OGD model, Gap19 also exhibited a protective effect via inhibiting TLR4 pathway activation. In summary, our results showed that Gap19 exerted a neuroprotective effect after stroke via inhibition of the TLR4-mediated signaling pathway.
Collapse
Affiliation(s)
- Yingzhu Chen
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Liangzhu Wang
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China.,Dalian Medical University, Dalian, China
| | - Lingling Zhang
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Beilei Chen
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Liu Yang
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China.,Dalian Medical University, Dalian, China
| | - Xiaobo Li
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China.,Institute of Neuroscience, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Yuping Li
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Hailong Yu
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China.,Institute of Neuroscience, Northern Jiangsu People's Hospital, Yangzhou, China.,Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
32
|
Gupta N, Shyamasundar S, Patnala R, Karthikeyan A, Arumugam TV, Ling EA, Dheen ST. Recent progress in therapeutic strategies for microglia-mediated neuroinflammation in neuropathologies. Expert Opin Ther Targets 2018; 22:765-781. [DOI: 10.1080/14728222.2018.1515917] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Neelima Gupta
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sukanya Shyamasundar
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Radhika Patnala
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Aparna Karthikeyan
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V. Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Eng-Ang Ling
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - S. Thameem Dheen
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
33
|
Drieu A, Levard D, Vivien D, Rubio M. Anti-inflammatory treatments for stroke: from bench to bedside. Ther Adv Neurol Disord 2018; 11:1756286418789854. [PMID: 30083232 PMCID: PMC6066814 DOI: 10.1177/1756286418789854] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
So far, intravenous tissue-type plasminogen activator (tPA) and mechanical
removal of arterial blood clot (thrombectomy) are the only available treatments
for acute ischemic stroke. However, the short therapeutic window and the lack of
specialized stroke unit care make the overall availability of both treatments
limited. Additional agents to combine with tPA administration or thrombectomy to
enhance efficacy and improve outcomes associated with stroke are needed.
Stroke-induced inflammatory processes are a response to the tissue damage due to
the absence of blood supply but have been proposed also as key contributors to
all the stages of the ischemic stroke pathophysiology. Despite promising results
in experimental studies, inflammation-modulating treatments have not yet been
translated successfully into the clinical setting. This review will (a) describe
the timing of the stroke immune pathophysiology; (b) detail the immune responses
to stroke sift-through cell type; and (c) discuss the pitfalls on the
translation from experimental studies to clinical trials testing the therapeutic
pertinence of immune modulators.
Collapse
Affiliation(s)
- Antoine Drieu
- Pathophysiology and Imaging of Neurological Disorders, Normandy University, Caen, France
| | - Damien Levard
- Pathophysiology and Imaging of Neurological Disorders, Normandy University, Caen, France
| | - Denis Vivien
- Pathophysiology and Imaging of Neurological Disorders, Normandy University, Caen, France Pathophysiology and Imaging of Neurological Disorders, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Marina Rubio
- Pathophysiology and Imaging of Neurological Disorders, Normandy University, Boulevard Henri Becquerel BP 5229, Caen Cedex, 14000, France
| |
Collapse
|
34
|
Swanson A, Wolf T, Sitzmann A, Willette AA. Neuroinflammation in Alzheimer's disease: Pleiotropic roles for cytokines and neuronal pentraxins. Behav Brain Res 2018; 347:49-56. [PMID: 29462653 PMCID: PMC5988985 DOI: 10.1016/j.bbr.2018.02.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/30/2018] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
Neuroinflammation is a potential factor speculated to underlie Alzheimer's disease (AD) etiopathogenesis and progression. The overwhelming focus in this area of research to date has been on the chronic upregulation of pro-inflammatory cytokines to understand how neuroinflammatory mechanisms contribute to neurodegeneration. Yet, it is important to understand the pleiotropic roles of these cytokines in modulating neuroinflammation in which they cannot be labeled as a strictly "good" or "bad" biomarker phenotype. As such, biomarkers with more precise functions are needed to better understand how neuroinflammation impacts the brain in AD. Neuronal pentraxins are a concentration- dependent group of pro- or anti- inflammatory cytokines. There is contradictory evidence of these pentraxins as being both neuroprotective and potentially detrimental in AD. Potential neuroprotective examples include their ability to predict AD-related outcomes such as cognition, memory function and synaptic refinement. This review will briefly outline the basis of AD and subsequently summarize findings for neuropathological mechanisms of neuroinflammation, roles for traditional pro-and anti-inflammatory cytokines, and data found thus far on the neuronal pentraxins.
Collapse
Affiliation(s)
- Ashley Swanson
- Department of Food Science and Human Nutrition, Iowa State University, 2312 Food Sciences Building, 536 Farm House Lane, Ames, IA 50011, United States.
| | - Tovah Wolf
- Department of Food Science and Human Nutrition, Iowa State University, 2312 Food Sciences Building, 536 Farm House Lane, Ames, IA 50011, United States.
| | - Alli Sitzmann
- Department of Psychology, Iowa State University, W112 Lagomarcino Hall, 901 Stange Road, Ames, IA 50011, United States.
| | - Auriel A Willette
- Department of Food Science and Human Nutrition, Iowa State University, 2312 Food Sciences Building, 536 Farm House Lane, Ames, IA 50011, United States; Department of Psychology, Iowa State University, W112 Lagomarcino Hall, 901 Stange Road, Ames, IA 50011, United States; Department of Biomedical Sciences, Iowa State University, 2008 Veterinary Medicine, Ames, IA 50011, United States; Department of Neurology, University of Iowa, 2007 Roy Carver Pavilion, 200 Hawkins Drive, Iowa City, IA 52242, United States.
| |
Collapse
|
35
|
Peripheral immune cells infiltrate into sites of secondary neurodegeneration after ischemic stroke. Brain Behav Immun 2018; 67:299-307. [PMID: 28911981 DOI: 10.1016/j.bbi.2017.09.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/10/2017] [Accepted: 09/10/2017] [Indexed: 12/13/2022] Open
Abstract
Experimental stroke leads to microglia activation and progressive neuronal loss at sites of secondary neurodegeneration (SND). These lesions are remote from, but synaptically connected to, primary infarction sites. Previous studies have demonstrated that immune cells are present in sites of infarction in the first hours and days after stroke, and are associated with increased neurodegeneration in peri-infarct regions. However, it is not known whether immune cells are also present in more distal sites where SND occurs. Our study aimed to investigate whether immune cells are present in sites of SND and, if so, how these cell populations compare to those in the peri-infarct zone. Cells were isolated from the thalamus, the main site of SND, and remaining brain tissue 14days post-stroke. Analysis was performed using flow cytometry to quantify microglia, myeloid cell and lymphocyte numbers. We identified a substantial infiltration of immune cells in the ipsilateral (stroked) compared to the contralateral (control) thalamus, with a significant increase in the percentage of CD4+ and CD8+ T cells. This result was further quantified using immunofluorescent labelling of fixed tissue. In the remaining ipsilateral hemisphere tissue, there were significant increases in the frequency of CD4+ and CD8+ T lymphocytes, B lymphocytes, Ly6G+ neutrophils and both Ly6G-Ly6CLO and Ly6G-Ly6CHI monocytes. Our results indicate that infiltrating immune cells persist in ischemic tissue after the acute ischemic phase, and are increased in sites of SND. Importantly, immune cells have been shown to play pivotal roles in both damage and repair processes after stroke. Our findings indicate that immune cells may also be involved in the pathogenesis of SND and further clinical studies are warranted to characterise the nature of inflammatory cell infiltrates in human disease.
Collapse
|
36
|
Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol 2017; 158:94-131. [PMID: 28743464 DOI: 10.1016/j.pneurobio.2017.07.004] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Abstract
Ischemic stroke is a leading cause of death worldwide. A key secondary cell death mechanism mediating neurological damage following the initial episode of ischemic stroke is the upregulation of endogenous neuroinflammatory processes to levels that destroy hypoxic tissue local to the area of insult, induce apoptosis, and initiate a feedback loop of inflammatory cascades that can expand the region of damage. Stem cell therapy has emerged as an experimental treatment for stroke, and accumulating evidence supports the therapeutic efficacy of stem cells to abrogate stroke-induced inflammation. In this review, we investigate clinically relevant stem cell types, such as hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), very small embryonic-like stem cells (VSELs), neural stem cells (NSCs), extraembryonic stem cells, adipose tissue-derived stem cells, breast milk-derived stem cells, menstrual blood-derived stem cells, dental tissue-derived stem cells, induced pluripotent stem cells (iPSCs), teratocarcinoma-derived Ntera2/D1 neuron-like cells (NT2N), c-mycER(TAM) modified NSCs (CTX0E03), and notch-transfected mesenchymal stromal cells (SB623), comparing their potential efficacy to sequester stroke-induced neuroinflammation and their feasibility as translational clinical cell sources. To this end, we highlight that MSCs, with a proven track record of safety and efficacy as a transplantable cell for hematologic diseases, stand as an attractive cell type that confers superior anti-inflammatory effects in stroke both in vitro and in vivo. That stem cells can mount a robust anti-inflammatory action against stroke complements the regenerative processes of cell replacement and neurotrophic factor secretion conventionally ascribed to cell-based therapy in neurological disorders.
Collapse
|
37
|
Neuroprotective effects of AT1 receptor antagonists after experimental ischemic stroke: what is important? Naunyn Schmiedebergs Arch Pharmacol 2017; 390:949-959. [PMID: 28669009 DOI: 10.1007/s00210-017-1395-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 06/16/2017] [Indexed: 12/25/2022]
Abstract
The present study conducted in rats defines the requirements for neuroprotective effects of systemically administered AT1 receptor blockers (ARBs) in acute ischaemic stroke. The inhibition of central effects to angiotensin II (ANG II) after intravenous (i.v.) treatment with candesartan (0.3 and 3 mg/kg) or irbesartan and losartan (3 and 30 mg/kg) was employed to study the penetration of these ARBs across the blood-brain barrier. Verapamil and probenecid were used to assess the role of the transporters, P-glycoprotein and the multidrug resistance-related protein 2, in the entry of losartan and irbesartan into the brain. Neuroprotective effects of i.v. treatment with the ARBs were investigated after transient middle cerebral artery occlusion (MCAO) for 90 min. The treatment with the ARBs was initiated 3 h after the onset of MCAO and continued for two consecutive days. Blood pressure was continuously recorded before and during MCAO until 5.5 h after the onset of reperfusion. The higher dose of candesartan completely abolished, and the lower dose of candesartan and higher doses of irbesartan and losartan partially inhibited the drinking response to intracerebroventricular ANG II. Only 0.3 mg/kg candesartan improved the recovery from ischaemic stroke, and 3 mg/kg candesartan did not exert neuroprotective effects due to marked blood pressure reduction during reperfusion. Both doses of irbesartan and losartan had not any effect on the stroke outcome. An effective, long-lasting blockade of brain AT1 receptors after systemic treatment with ARBs without extensive blood pressure reductions is the prerequisite for neuroprotective effects in ischaemic stroke.
Collapse
|
38
|
Comparative Therapeutic Effects of Minocycline Treatment and Bone Marrow Mononuclear Cell Transplantation following Striatal Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1976191. [PMID: 28713482 PMCID: PMC5497656 DOI: 10.1155/2017/1976191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/27/2017] [Accepted: 03/13/2017] [Indexed: 02/07/2023]
Abstract
We explored the comparative effects of minocycline treatment and intrastriatal BMMC transplantation after experimental striatal stroke in adult rats. Male Wistar adult rats were divided as follows: saline-treated (N = 5), minocycline-treated (N = 5), and BMMC-transplanted (N = 5) animals. Animals received intrastriatal microinjections of 80 pmol of endothelin-1 (ET-1). Behavioral tests were performed at 1, 3, and 7 days postischemia. Animals were treated with minocycline (50 mg/kg, i.p.) or intrastriatal transplants of 106 BMMCs at 24 h postischemia. Animals were perfused at 7 days after ischemic induction. Coronal sections were stained with cresyl violet for gross histopathological analysis and immunolabeled for the identification of neuronal bodies (NeuN), activated microglia/macrophages (ED1), and apoptotic cells (active caspase-3). BMMC transplantation and minocycline reduced the number of ED1+ cells (p < 0.05, ANOVA-Tukey), but BMMC afforded better results. Both treatments afforded comparable levels of neuronal preservation compared to control (p > 0.05). BMMC transplantation induced a higher decrease in the number of apoptotic cells compared to control and minocycline treatment. Both therapeutic approaches improved functional recovery in ischemic animals. The results suggest that BMMC transplantation is more effective in modulating microglial activation and reducing apoptotic cell death than minocycline, although both treatments are equally efficacious on improving neuronal preservation.
Collapse
|
39
|
Zhu H, Lin W, Zhao Y, Wang Z, Lao W, Kuang P, Zhou H. Transient upregulation of Nav1.6 expression in the genu of corpus callosum following middle cerebral artery occlusion in the rats. Brain Res Bull 2017; 132:20-27. [PMID: 28434994 DOI: 10.1016/j.brainresbull.2017.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/12/2017] [Indexed: 12/19/2022]
Abstract
Focal ischemic stroke can lead to brain damage and cause human disability and death. Increased excitatory transmission and reduced neuronal inhibition are important pathological alterations in the cerebral ischemia, which can induce abnormal brain excitability. Nav1.6 is a key determinant of neuronal excitability in the nervous system. Here we investigate the expression of Nav1.6 at protein and mRNA levels in the rats subjected to middle cerebral artery occlusion (MCAO). Nav1.6 expression at mRNA levels in the ischemic and contralateral hemispheres of MCAO rats were persistently decreased at 6h, 12h and 24h after reperfusion compared to the sham-operated rats. However, a prominent, dynamic increase of Nav1.6 immunoreactivity in reactive astrocytes was observed in the genu of corpus callosum (GCC) of MCAO rats in the acute phase, reaching the peak at 6h after reperfusion, rapidly dropping at 12h and 24h after reperfusion. Furthermore, the upregulation of Nav1.6 expression was strongly correlated with the severity of reactive astrogliosis. Collectively, these findings suggest that this upregulated astrocytic sodium channel expression in the GCC of MCAO rats may contribute to the functional roles of reactive astrocytes in response to brain ischemia.
Collapse
Affiliation(s)
- Hongyan Zhu
- School of Life Science, Shanghai University, Nanchen Road 333, Shanghai, 200444, China.
| | - Weide Lin
- School of Life Science, Shanghai University, Nanchen Road 333, Shanghai, 200444, China
| | - Yuxiao Zhao
- School of Life Science, Shanghai University, Nanchen Road 333, Shanghai, 200444, China
| | - Ziyi Wang
- School of Life Science, Shanghai University, Nanchen Road 333, Shanghai, 200444, China
| | - Wenwen Lao
- School of Life Science, Shanghai University, Nanchen Road 333, Shanghai, 200444, China
| | - Ping Kuang
- School of Life Science, Shanghai University, Nanchen Road 333, Shanghai, 200444, China
| | - Houguang Zhou
- Department of Geriatrics Neurology, Huashan Hospital, Fudan University, Middle Wulumuqi Road, Shanghai, 200040, China
| |
Collapse
|
40
|
Lopes RS, Cardoso MM, Sampaio AO, Barbosa MS, Souza CC, DA Silva MC, Ferreira EMN, Freire MAM, Lima RR, Gomes-Leal W. Indomethacin treatment reduces microglia activation and increases numbers of neuroblasts in the subventricular zone and ischaemic striatum after focal ischaemia. J Biosci 2017; 41:381-94. [PMID: 27581930 DOI: 10.1007/s12038-016-9621-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neuroblasts from the subventricular zone (SVZ) migrate to striatum following stroke, but most of them die in the ischaemic milieu and this can be related to exacerbated microglial activation. Here, we explored the effects of the non-steroidal anti-inflammatory indomethacin on microglial activation, neuronal preservation and neuroblast migration following experimental striatal stroke in adult rats. Animals were submitted to endothelin-1 (ET-1)-induced focal striatal ischaemia and were treated with indomethacin or sterile saline (i.p.) for 7 days, being perfused after 8 or 14 days. Immunohistochemistry was performed to assess neuronal loss (anti-NeuN), microglial activation (anti-Iba1, ED1) and migrating neuroblasts (anti-DCX) by counting NeuN, ED1 and DCX-positive cells in the ischaemic striatum or SVZ. Indomethacin treatment reduced microglia activation and the number of ED1+ cells in both 8 and 14 days post injury as compared with controls. There was an increase in the number of DCX+ cells in both SVZ and striatum at the same survival times. Moreover, there was a decrease in the number of NeuN+ cells in indomethacin-treated animals as compared with the control group at 8 days but not after 14 days post injury. Our results suggest that indomethacin treatment modulates microglia activation, contributing to increased neuroblast proliferation in the SVZ and migration to the ischaemic striatum following stroke.
Collapse
Affiliation(s)
- Rosana S Lopes
- Laboratory of Experimental Neuroprotection and Neuroregeneration, Institute of Biological Sciences, Federal University of Para (UFPA), Belem, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Churchward MA, Tchir DR, Todd KG. Microglial Function during Glucose Deprivation: Inflammatory and Neuropsychiatric Implications. Mol Neurobiol 2017; 55:1477-1487. [PMID: 28176274 PMCID: PMC5820372 DOI: 10.1007/s12035-017-0422-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 01/25/2017] [Indexed: 12/23/2022]
Abstract
Inflammation is increasingly recognized as a contributor to the pathophysiology of neuropsychiatric disorders, including depression, anxiety disorders and autism, though the factors leading to contextually inappropriate or sustained inflammation in pathological conditions are yet to be elucidated. Microglia, as the key mediators of inflammation in the CNS, serve as likely candidates in initiating pathological inflammation and as an ideal point of therapeutic intervention. Glucose deprivation, as a component of the pathophysiology of ischemia or occurring transiently in diabetes, may serve to modify microglial function contributing to inflammatory injury. To this end, primary microglia were cultured from postnatal rat brain and subject to glucose deprivation in vitro. Microglia were characterized for their proliferation, phagocytic function and secretion of inflammatory factors, and tested for their capacity to respond to a potent inflammatory stimulus. In the absence of glucose, microglia remained capable of proliferation, phagocytosis and inflammatory activation and showed increased release of inflammatory factors after presentation of an inflammatory stimulus. Glucose-deprived microglia demonstrated increased phagocytic activity and decreased accumulation of lipids in lipid droplets over a 48-h timecourse, suggesting they may use scavenged lipids as a key alternate energy source during metabolic stress. In the present manuscript, we present novel findings that glucose deprivation may sensitize microglial release of inflammatory mediators and prime microglial functions for both survival and inflammatory roles, which may contribute to psychiatric comorbidities of ischemia, diabetes and/or metabolic disorder.
Collapse
Affiliation(s)
- Matthew A Churchward
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, 116th St and 85th Ave NW, Edmonton, AB T6G2R3, Canada
| | - Devan R Tchir
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, 116th St and 85th Ave NW, Edmonton, AB T6G2R3, Canada
| | - Kathryn G Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, 116th St and 85th Ave NW, Edmonton, AB T6G2R3, Canada. .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
42
|
Neurodegeneration and Glial Response after Acute Striatal Stroke: Histological Basis for Neuroprotective Studies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3173564. [PMID: 28090244 PMCID: PMC5165163 DOI: 10.1155/2016/3173564] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/26/2016] [Accepted: 10/12/2016] [Indexed: 11/24/2022]
Abstract
Stroke is a leading cause of death and neurological disability worldwide and striatal ischemic stroke is frequent in humans due to obstruction of middle cerebral artery. Several pathological events underlie damage progression and a comprehensive description of the pathological features following experimental stroke in both acute and chronic survival times is a necessary step for further functional studies. Here, we explored the patterns of microglial activation, astrocytosis, oligodendrocyte damage, myelin impairment, and Nogo-A immunoreactivity between 3 and 30 postlesion days (PLDs) after experimental striatal stroke in adult rats induced by microinjections of endothelin-1 (ET-1). The focal ischemia induced tissue loss concomitant with intense microglia activation between 3 and 14 PLDs (maximum at 7 PLDs), decreasing afterward. Astrocytosis was maximum around 7 PLDs. Oligodendrocyte damage and Nogo-A upregulation were higher at 3 PLDs. Myelin impairment was maximum between 7 and 14 PLDs. Nogo-A expression was higher in the first week in comparison to control. The results add important histopathological features of ET-1 induced stroke in subacute and chronic survival times. In addition, the establishment of the temporal evolution of these neuropathological events is an important step for future studies seeking suitable neuroprotective drugs targeting neuroinflammation and white matter damage.
Collapse
|
43
|
Narayan DS, Wood JPM, Chidlow G, Casson RJ. A review of the mechanisms of cone degeneration in retinitis pigmentosa. Acta Ophthalmol 2016; 94:748-754. [PMID: 27350263 DOI: 10.1111/aos.13141] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/30/2016] [Indexed: 12/12/2022]
Abstract
Retinitis pigmentosa (RP) is an inherited condition that features degeneration of rod and cone photoreceptors. In all forms of RP, the genetic mutation is expressed exclusively in rods; however, cones die too. The secondary death of cones in RP remains somewhat mysterious. A better understanding of the mechanisms that cause cone degeneration in RP could lead to novel treatments that preserve cones. There are a number of prevailing theories that attempt to explain cone degeneration in RP. One concept is that cone survival is dependent on trophic factors produced by rods. Another hypothesis is that cones suffer from a nutrient shortage after rods have been lost. Additionally, oxidative stress and pro-inflammatory microglial activation have also been suggested to play a role in cone death. The present review evaluates the evidence supporting these theories and provides an update on the mechanisms of cone degeneration in RP.
Collapse
Affiliation(s)
- Daniel S. Narayan
- Ophthalmic Research Laboratories; Hanson Institute Centre for Neurological Diseases; Adelaide South Australia Australia
- South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| | - John P. M. Wood
- Ophthalmic Research Laboratories; Hanson Institute Centre for Neurological Diseases; Adelaide South Australia Australia
- South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| | - Glyn Chidlow
- Ophthalmic Research Laboratories; Hanson Institute Centre for Neurological Diseases; Adelaide South Australia Australia
- South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| | - Robert J. Casson
- Ophthalmic Research Laboratories; Hanson Institute Centre for Neurological Diseases; Adelaide South Australia Australia
- South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| |
Collapse
|
44
|
Wixey JA, Chand KK, Colditz PB, Bjorkman ST. Review: Neuroinflammation in intrauterine growth restriction. Placenta 2016; 54:117-124. [PMID: 27916232 DOI: 10.1016/j.placenta.2016.11.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022]
Abstract
Disruption to the maternal environment during pregnancy from events such as hypoxia, stress, toxins, inflammation, and reduced placental blood flow can affect fetal development. Intrauterine growth restriction (IUGR) is commonly caused by chronic placental insufficiency, interrupting supply of oxygen and nutrients to the fetus resulting in abnormal fetal growth. IUGR is a major cause of perinatal morbidity and mortality, occurring in approximately 5-10% of pregnancies. The fetal brain is particularly vulnerable in IUGR and there is an increased risk of long-term neurological disorders including cerebral palsy, epilepsy, learning difficulties, behavioural difficulties and psychiatric diagnoses. Few studies have focused on how growth restriction interferes with normal brain development in the IUGR neonate but recent studies in growth restricted animal models demonstrate increased neuroinflammation. This review describes the role of neuroinflammation in the progression of brain injury in growth restricted neonates. Identifying the mediators responsible for alterations in brain development in the IUGR infant is key to prevention and treatment of brain injury in these infants.
Collapse
Affiliation(s)
- Julie A Wixey
- The University of Queensland, Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Queensland 4029, Australia.
| | - Kirat K Chand
- The University of Queensland, Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Queensland 4029, Australia
| | - Paul B Colditz
- The University of Queensland, Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Queensland 4029, Australia
| | - S Tracey Bjorkman
- The University of Queensland, Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Queensland 4029, Australia
| |
Collapse
|
45
|
Amantea D, Certo M, Petrelli F, Bagetta G. Neuroprotective Properties of a Macrolide Antibiotic in a Mouse Model of Middle Cerebral Artery Occlusion: Characterization of the Immunomodulatory Effects and Validation of the Efficacy of Intravenous Administration. Assay Drug Dev Technol 2016; 14:298-307. [PMID: 27392039 DOI: 10.1089/adt.2016.728] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Repurposing the macrolide antibiotic azithromycin has recently been suggested as a promising neuroprotective strategy for the acute treatment of ischemic stroke. Here, we aim at further characterizing the immunomodulatory properties of intraperitoneal (i.p.) administration of this drug and, more importantly, at assessing whether neuroprotection can also be achieved by the more clinically relevant intravenous (i.v.) route of administration in a mouse model of focal cerebral ischemia induced by transient (30-min) middle cerebral artery occlusion (MCAo). A single i.p. injection of azithromycin (150 mg/kg) upon reperfusion prevented ischemia-induced spleen contraction and increased the number of MAC-1-immunopositive microglia/macrophages in the ischemic hemisphere 48 h after the insult. This was paralleled by an elevation of alternatively activated phenotypes (i.e., Ym1-immunopositive M2-polarized cells) and by a reduced expression of the pro-inflammatory marker myeloperoxidase. More importantly, i.v. administration of azithromycin upon reperfusion reduced MCAo-induced infarct volume and cerebral edema to an extent comparable to that obtained via the i.p. route. Although the i.p. route is often used for research purposes, it is impractical in the clinical setting; however, i.v. administration can easily be used in ischemic stroke patients who usually have i.v. access already established on hospital admission. The neuroprotective efficacy of the clinically relevant i.v. administration of azithromycin, together with its beneficial immunomodulatory properties reported in mice subjected to transient MCAo, suggests that this macrolide antibiotic can be effectively repurposed for the acute treatment of ischemic stroke. To this end, further work is needed to validate the efficacy of azithromycin in the clinical setting.
Collapse
Affiliation(s)
- Diana Amantea
- 1 Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Rende (CS), Italy
| | - Michelangelo Certo
- 1 Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Rende (CS), Italy
| | - Francesco Petrelli
- 1 Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Rende (CS), Italy
| | - Giacinto Bagetta
- 1 Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Rende (CS), Italy .,2 University Consortium for Adaptive Disorders and Head Pain (UCADH), Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University of Calabria , Rende, Italy
| |
Collapse
|
46
|
Wright JL, Ermine CM, Jørgensen JR, Parish CL, Thompson LH. Over-Expression of Meteorin Drives Gliogenesis Following Striatal Injury. Front Cell Neurosci 2016; 10:177. [PMID: 27458346 PMCID: PMC4932119 DOI: 10.3389/fncel.2016.00177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/23/2016] [Indexed: 12/02/2022] Open
Abstract
A number of studies have shown that damage to brain structures adjacent to neurogenic regions can result in migration of new neurons from neurogenic zones into the damaged tissue. The number of differentiated neurons that survive is low, however, and this has led to the idea that the introduction of extrinsic signaling factors, particularly neurotrophic proteins, may augment the neurogenic response to a level that would be therapeutically relevant. Here we report on the impact of the relatively newly described neurotrophic factor, Meteorin, when over-expressed in the striatum following excitotoxic injury. Birth-dating studies using bromo-deoxy-uridine (BrdU) showed that Meteorin did not enhance injury-induced striatal neurogenesis but significantly increased the proportion of new cells with astroglial and oligodendroglial features. As a basis for comparison we found under the same conditions, glial derived neurotrophic factor significantly enhanced neurogenesis but did not effect gliogenesis. The results highlight the specificity of action of different neurotrophic factors in modulating the proliferative response to injury. Meteorin may be an interesting candidate in pathological settings involving damage to white matter, for example after stroke or neonatal brain injury.
Collapse
Affiliation(s)
- Jordan L Wright
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| | - Charlotte M Ermine
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| | | | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| | - Lachlan H Thompson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
47
|
Kawabori M, Yenari MA. Inflammatory responses in brain ischemia. Curr Med Chem 2016; 22:1258-77. [PMID: 25666795 DOI: 10.2174/0929867322666150209154036] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/02/2014] [Accepted: 02/02/2015] [Indexed: 12/20/2022]
Abstract
Brain infarction causes tissue death by ischemia due to occlusion of the cerebral vessels and recent work has shown that post stroke inflammation contributes significantly to the development of ischemic pathology. Because secondary damage by brain inflammation may have a longer therapeutic time window compared to the rescue of primary damage following arterial occlusion, controlling inflammation would be an obvious therapeutic target. A substantial amount of experimentall progress in this area has been made in recent years. However, it is difficult to elucidate the precise mechanisms of the inflammatory responses following ischemic stroke because inflammation is a complex series of interactions between inflammatory cells and molecules, all of which could be either detrimental or beneficial. We review recent advances in neuroinflammation and the modulation of inflammatory signaling pathways in brain ischemia. Potential targets for treatment of ischemic stroke will also be covered. The roles of the immune system and brain damage versus repair will help to clarify how immune modulation may treat stroke.
Collapse
Affiliation(s)
| | - Midori A Yenari
- Dept. of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.
| |
Collapse
|
48
|
Iizumi T, Takahashi S, Mashima K, Minami K, Izawa Y, Abe T, Hishiki T, Suematsu M, Kajimura M, Suzuki N. A possible role of microglia-derived nitric oxide by lipopolysaccharide in activation of astroglial pentose-phosphate pathway via the Keap1/Nrf2 system. J Neuroinflammation 2016; 13:99. [PMID: 27143001 PMCID: PMC4855896 DOI: 10.1186/s12974-016-0564-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/26/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Toll-like receptor 4 (TLR4) plays a pivotal role in the pathophysiology of stroke-induced inflammation. Both astroglia and microglia express TLR4, and endogenous ligands produced in the ischemic brain induce inflammatory responses. Reactive oxygen species (ROS), nitric oxide (NO), and inflammatory cytokines produced by TLR4 activation play harmful roles in neuronal damage after stroke. Although astroglia exhibit pro-inflammatory responses upon TLR4 stimulation by lipopolysaccharide (LPS), they may also play cytoprotective roles via the activation of the pentose phosphate pathway (PPP), reducing oxidative stress by glutathione peroxidase. We investigated the mechanisms by which astroglia reduce oxidative stress via the activation of PPP, using TLR4 stimulation and hypoxia in concert with microglia. METHODS In vitro experiments were performed using cells prepared from Sprague-Dawley rats. Coexisting microglia in the astroglial culture were chemically eliminated using L-leucine methyl ester (LME). Cells were exposed to LPS (0.01 μg/mL) or hypoxia (1 % O2) for 12-15 h. PPP activity was measured using [1-(14)C]glucose and [6-(14)C]glucose. ROS and NO production were measured using 2',7'-dichlorodihydrofluorescein diacetate and diaminofluorescein-FM diacetate, respectively. The involvement of nuclear factor-erythroid-2-related factor 2 (Nrf2), a cardinal transcriptional factor under stress conditions that regulates glucose 6-phosphate dehydrogenase, the rate-limiting enzyme of PPP, was evaluated using immunohistochemistry. RESULTS Cultured astroglia exposed to LPS elicited 20 % increases in PPP flux, and these actions of astroglia appeared to involve Nrf2. However, the chemical depletion of coexisting microglia eliminated both increases in PPP and astroglial nuclear translocation of Nrf2. LPS induced ROS and NO production in the astroglial culture containing microglia but not in the microglia-depleted astroglial culture. LPS enhanced astroglial ROS production after glutathione depletion. U0126, an upstream inhibitor of mitogen-activated protein kinase, eliminated LPS-induced NO production, whereas ROS production was unaffected. U0126 also eliminated LPS-induced PPP activation in astroglial-microglial culture, indicating that microglia-derived NO mediated astroglial PPP activation. Hypoxia induced astroglial PPP activation independent of the microglia-NO pathway. Elimination of ROS and NO production by sulforaphane, a natural Nrf2 activator, confirmed the astroglial protective mechanism. CONCLUSIONS Astroglia in concert with microglia may play a cytoprotective role for countering oxidative stress in stroke.
Collapse
Affiliation(s)
- Takuya Iizumi
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Shinichi Takahashi
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan.
| | - Kyoko Mashima
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Kazushi Minami
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Yoshikane Izawa
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Takato Abe
- Department of Neurology, Osaka City University Graduate School of Medicine, Osaka-shi, 545-8585, Osaka , Japan
| | - Takako Hishiki
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, 160-8582, Tokyo, Japan.,Clinical and Translational Research Center, Keio University School of Medicine, Shinjuku-ku, 160-8582, Tokyo, Japan.,JST Exploratory Research for Advanced Technology (ERATO) Suematsu Gas Biology Project, Shinjuku-ku, 160-8582, Tokyo , Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, 160-8582, Tokyo, Japan.,JST Exploratory Research for Advanced Technology (ERATO) Suematsu Gas Biology Project, Shinjuku-ku, 160-8582, Tokyo , Japan
| | - Mayumi Kajimura
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, 160-8582, Tokyo, Japan.,JST Exploratory Research for Advanced Technology (ERATO) Suematsu Gas Biology Project, Shinjuku-ku, 160-8582, Tokyo , Japan
| | - Norihiro Suzuki
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| |
Collapse
|
49
|
Huang L, Merson TD, Bourne JA. In vivo whole brain, cellular and molecular imaging in nonhuman primate models of neuropathology. Neurosci Biobehav Rev 2016; 66:104-18. [PMID: 27151822 DOI: 10.1016/j.neubiorev.2016.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/31/2016] [Accepted: 04/13/2016] [Indexed: 12/22/2022]
Abstract
Rodents have been the principal model to study brain anatomy and function due to their well-mapped brain architecture, rapid reproduction and amenability to genetic modification. However, there are clear limitations, for example their simpler neocortex, necessitating the need to adopt a model that is closer to humans in order to understand human cognition and brain conditions. Nonhuman primates (NHPs) are ideally suited as they are our closest relatives in the animal kingdom but in vivo imaging technologies to study brain structure and function in these species can be challenging. With the surge in NHP research in recent years, scientists have begun adapting imaging technologies, such as two-photon microscopy, for these species. Here we review the various NHP models that exist as well as their use in advanced microscopic and mesoscopic studies. We discuss the challenges in the field and investigate the opportunities that lie ahead.
Collapse
Affiliation(s)
- Lieven Huang
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, Victoria 3800, Australia
| | - Tobias D Merson
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, Victoria 3800, Australia.
| |
Collapse
|
50
|
Dang G, Chen X, Chen Y, Zhao Y, Ouyang F, Zeng J. Dynamic secondary degeneration in the spinal cord and ventral root after a focal cerebral infarction among hypertensive rats. Sci Rep 2016; 6:22655. [PMID: 26949108 PMCID: PMC4780069 DOI: 10.1038/srep22655] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/18/2016] [Indexed: 01/22/2023] Open
Abstract
Cerebral infarction can cause secondary damage to nonischemic brain regions. However, whether this phenomenon will appear in central nervous system regions outside the brain remains unclear. Here we investigated pathological changes in the spinal cord and ventral root after ischemic stroke. All rats exhibited apparent neurological deficits post-MCAO, which improved gradually but could still be detected 12-weeks. Neuronal filaments in the corticospinal tract (CST) and neurons in the ventral horn were significantly declined in the contralateral cervical and lumbar enlargement 1-week post-MCAO. These decreases remained stable until 12-weeks, accompanied by progressively increased glial activation in the ventral horn. Axonal degeneration and structural derangement were evident in the contralateral cervical and lumbar ventral root 1-week post-MCAO; these changes spontaneously attenuated over time, but abnormalities could still be observed 12-weeks. The number of neural fibers in the contralateral CST and neurons in the contralateral ventral horn were positively correlated with neurological scores 12-weeks post-MCAO. Additionally, GFAP+cell density in the contralateral CST and ventral horn was negatively correlated with neurological scores. Our results suggest that cerebral infarction can elicit secondary degeneration in the cervical and lumbar spinal cord, as well as the projecting ventral root, which may hamper functional recovery after stroke.
Collapse
Affiliation(s)
- Ge Dang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xinran Chen
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yicong Chen
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yuhui Zhao
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Fubing Ouyang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Jinsheng Zeng
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|