1
|
Kleven H, Schlegel U, Groenewegen HJ, Leergaard TB, Bjerke IE. Comparison of basal ganglia regions across murine brain atlases using metadata models and the Waxholm Space. Sci Data 2024; 11:1036. [PMID: 39333155 PMCID: PMC11437236 DOI: 10.1038/s41597-024-03863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/04/2024] [Indexed: 09/29/2024] Open
Abstract
The murine basal ganglia regions are targets for research into complex brain functions such as motor control and habit formation. However, there are several ways to name and annotate these regions, posing challenges for interpretation and comparison of data across studies. Here, we give an overview of basal ganglia terms and boundaries in the literature and reference atlases, and describe the criteria used for annotating these regions in the Waxholm Space rat brain atlas. We go on to compare basal ganglia annotations in stereotaxic rat brain atlases and the Allen Mouse brain Common Coordinate Framework to those in the Waxholm Space rat brain atlas. We demonstrate and describe considerable differences in the terms and boundaries of most basal ganglia regions across atlases and their versions. We also register information about atlases and regions in the openMINDS metadata framework, facilitating integration of data in neuroscience databases. The comparisons of terms and boundaries across rat and mouse atlases support analysis and interpretation of existing and new data from the basal ganglia.
Collapse
Affiliation(s)
- H Kleven
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - U Schlegel
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - H J Groenewegen
- Department of Anatomy and Neurosciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - T B Leergaard
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - I E Bjerke
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Feng AY, Barbosa DAN, Casey AB, Rijsketic DR, Salgado JS, Huang H, Malenka RC, Hermes D, Miller KJ, Halpern CH, Heifets BD. Cross-species brain-wide mapping reveals a conserved and coordinated network engaged by NAc DBS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.08.611940. [PMID: 39314466 PMCID: PMC11419029 DOI: 10.1101/2024.09.08.611940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Nucleus accumbens (NAc) deep brain stimulation (DBS) has been increasingly explored as a treatment modality for refractory neuropsychiatric disorders. Uncovering the accumbens network that is engaged by DBS is a critical step forward in understanding how modulating this important node impacts the broader mesocorticolimbic circuit. Using whole-brain clearing and unbiased, brain-wide neural activity mapping, we found that NAc DBS increases neural activity in a coordinated mesocorticolimbic network in mice. Simultaneous intracranial electrophysiology recordings from the human NAc and brief stimulation epochs of homologous mesocorticolimbic nodes revealed similar connectivity. Altogether, these results identify specific connectivity conserved across species within the mesocorticolimbic circuit that may underlie mechanisms of NAc DBS.
Collapse
|
3
|
Borland JM. The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents. Neurosci Biobehav Rev 2024; 164:105809. [PMID: 39004323 DOI: 10.1016/j.neubiorev.2024.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
BORLAND, J.M., The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents, NEUROSCI BIOBEH REV 21(1) XXX-XXX, 2024.-Sociality shapes an organisms' life. The nucleus accumbens is a critical brain region for mental health. In the following review, the effects of different types of social interactions on the physiology of neurons in the nucleus accumbens is synthesized. More specifically, the effects of sex behavior, aggression, social defeat, pair-bonding, play behavior, affiliative interactions, parental behaviors, the isolation from social interactions and maternal separation on measures of excitatory synaptic transmission, intracellular signaling and factors of transcription and translation in neurons in the nucleus accumbens in rodent models are reviewed. Similarities and differences in effects depending on the type of social interaction is then discussed. This review improves the understanding of the molecular and synaptic mechanisms of sociality.
Collapse
|
4
|
Gildawie KR, Wang K, Budge KE, Byrnes EM. Effects of Maternal Separation on Effort-based Responding for Sucrose Are Associated with c-Fos Expression in the Nucleus Accumbens Core. Neuroscience 2024; 537:174-188. [PMID: 38036058 PMCID: PMC10872495 DOI: 10.1016/j.neuroscience.2023.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
In both people and animals, exposure to adverse experiences early in life can alter neurodevelopment and lead to long-term behavioral effects, including effects on reward processing. In the current study, we use a well-validated rodent model of maternal neglect, maternal separation (MS), to investigate the impact of early life adversity on reward learning and motivation and identify associated modifications in cellular activation in reward-relevant areas. Litters of Long-Evans rats were separated from the dam for either 15 min (brief) or 180 min (prolonged)/day from postnatal day (PND)2 to PND14. As adults, offspring were trained to lever press for a sucrose pellet using fixed ratio (FR) schedules and motivation was tested using a progressive ratio (PR) schedule over 10 daily sessions to assess sustained effects on effort-based responding. Immunohistochemical staining for c-Fos was conducted in a subset of animals that underwent an additional PR session. While there were no effects on reward learning, both MS180 males and females demonstrated increased effort-based responding on the first day of PR testing, while only MS180 males demonstrated a sustained increase in effort across all 10 days. MS180-induced changes in c-Fos expression in the dorsal and ventral striatum were observed, with subregion-specific effects along the rostrocaudal axis. Moreover, regression analyses suggest that motivated responding for a sucrose food reward in MS180-exposed, but not MS15-exposed animals, was associated with increased c-Fos expression in the rostral nucleus accumbens core. These findings implicate specific striatal regions in sex-specific modulation of sustained effort-based reward behavior following early life adversity.
Collapse
Affiliation(s)
- Kelsea R Gildawie
- Department of Comparative Pathobiology, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA 01536, USA
| | - Katherine Wang
- Department of Comparative Pathobiology, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA 01536, USA
| | - Kerri E Budge
- Department of Comparative Pathobiology, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA 01536, USA
| | - Elizabeth M Byrnes
- Department of Comparative Pathobiology, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA 01536, USA.
| |
Collapse
|
5
|
Shih CW, Chang CH. Anatomical analyses of collateral prefrontal cortex projections to the basolateral amygdala and the nucleus accumbens core in rats. Brain Struct Funct 2024; 229:97-114. [PMID: 37910300 DOI: 10.1007/s00429-023-02722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023]
Abstract
The basolateral amygdala (BLA) and the nucleus accumbens core (NAcc) share some similar behavioral functions, such as associative learning, Pavlovian to instrumental transfer, and choice behavior. However, their prefrontal anatomical inputs have not been well characterized before, especially the collateral projections. In this study, we analyzed the distribution and collateralization of projections to the BLA and the NAcc from the prefrontal cortices (PFC), including the prelimbic (PL) and the infralimbic (IL) divisions of the medial prefrontal cortex (mPFC) and the subregions of the orbitofrontal cortex (OFC), such as the medial OFC (MO), the lateral OFC (LO), and the ventral OFC (VO). Double retrograde tracing approach was used, in which Cholera toxin subunit B conjugated with the Alexa Fluor 488 (CTB-AF488) or Alexa Fluor 594 (CTB-AF594) were unilaterally injected into the BLA and the NAcc, respectively, in male Long-Evans rats (n = 6). Among the sampled neurons, prefrontal projection to the BLA or the NAcc is more robust on the ipsilateral side, and more robust from the PL, the IL, and the MO compared to from the LO and the VO. The majority of the projections from the PFC to the BLA and/or the NAcc are confined in deep layer. In addition, for each of the prefrontal areas, about 15-25% BLA-projecting neurons send collateral projections to the NAcc, and vice versa. In conclusion, our data suggested that prefrontal control over the BLA and the NAcc is not entirely independent. The functional importance of the collateral projections awaits further examination.
Collapse
Affiliation(s)
- Cheng-Wei Shih
- Institute of Systems Neuroscience, National Tsing Hua University, Kuang-fu Rd, Sec 2, No 101, Hsinchu, 30013, Taiwan
- Brain Research Center, National Tsing Hua University, Kuang-fu Rd, Sec 2, No 101, Hsinchu, 30013, Taiwan
| | - Chun-Hui Chang
- Institute of Systems Neuroscience, National Tsing Hua University, Kuang-fu Rd, Sec 2, No 101, Hsinchu, 30013, Taiwan.
- Brain Research Center, National Tsing Hua University, Kuang-fu Rd, Sec 2, No 101, Hsinchu, 30013, Taiwan.
| |
Collapse
|
6
|
Braine A, Georges F. Emotion in action: When emotions meet motor circuits. Neurosci Biobehav Rev 2023; 155:105475. [PMID: 37996047 DOI: 10.1016/j.neubiorev.2023.105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The brain is a remarkably complex organ responsible for a wide range of functions, including the modulation of emotional states and movement. Neuronal circuits are believed to play a crucial role in integrating sensory, cognitive, and emotional information to ultimately guide motor behavior. Over the years, numerous studies employing diverse techniques such as electrophysiology, imaging, and optogenetics have revealed a complex network of neural circuits involved in the regulation of emotional or motor processes. Emotions can exert a substantial influence on motor performance, encompassing both everyday activities and pathological conditions. The aim of this review is to explore how emotional states can shape movements by connecting the neural circuits for emotional processing to motor neural circuits. We first provide a comprehensive overview of the impact of different emotional states on motor control in humans and rodents. In line with behavioral studies, we set out to identify emotion-related structures capable of modulating motor output, behaviorally and anatomically. Neuronal circuits involved in emotional processing are extensively connected to the motor system. These circuits can drive emotional behavior, essential for survival, but can also continuously shape ongoing movement. In summary, the investigation of the intricate relationship between emotion and movement offers valuable insights into human behavior, including opportunities to enhance performance, and holds promise for improving mental and physical health. This review integrates findings from multiple scientific approaches, including anatomical tracing, circuit-based dissection, and behavioral studies, conducted in both animal and human subjects. By incorporating these different methodologies, we aim to present a comprehensive overview of the current understanding of the emotional modulation of movement in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Anaelle Braine
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | |
Collapse
|
7
|
Estrin DJ, Kulik JM, Beacher NJ, Pawlak AP, Klein SD, West MO. Acquired Alterations in Nucleus Accumbens Responsiveness to a Cocaine-Paired Discriminative Stimulus Preceding Rats' Daily Cocaine Consumption. ADDICTION NEUROSCIENCE 2023; 8:100121. [PMID: 37664217 PMCID: PMC10470667 DOI: 10.1016/j.addicn.2023.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Resumption of drug taking is a primary focus for substance use disorder research and can be triggered by drug-associated environmental stimuli. The Nucleus Accumbens (NAc) is a key brain region which guides motivated behavior and is implicated in resumption. There remains a pressing need to characterize NAc neurons' responsiveness to drug associated stimuli during withdrawal and abstinence. We recorded discriminative stimulus (DS) induced NAc activity via in vivo single-unit electrophysiology in rats that self-administered cocaine. Male and female rats implanted with a jugular catheter and a microwire array in NAc Core and Shell self-administered cocaine under control of a 30s auditory DS for 6 hours per session across 14 consecutive days. Rats acquired tone discrimination within 4 sessions. To exclude pharmacological effects of circulating cocaine from all neural analyses, we studied changes in DS-induced firing only for trials preceding the first infusion of cocaine in each of the 14 sessions, which were defined as "pre-drug trials." NAc neuron responses were assessed prior to tone-evoked movement onset. Responsiveness to the DS tone was exhibited throughout all sessions by the NAc Core population, but only during Early sessions by the NAc Shell population. Both Core and Shell responded selectively to the DS, i.e., more strongly on drug taking trials, or Hits, than on Missed opportunities. These findings suggest that NAc Core and Shell play distinct roles in initiating cocaine seeking prior to daily cocaine consumption, and align with reports suggesting that as drug use becomes chronic, cue-evoked activity shifts from NAc Shell to NAc Core.
Collapse
Affiliation(s)
- David J. Estrin
- Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, 413 East 69 Street, New York, NY 10021
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854
| | - Julianna M. Kulik
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854
| | - Nicholas J. Beacher
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854
- Neural Engineering Section, National Institute on Drug Abuse, 333 Cassell Drive, Baltimore, MD 21224
| | - Anthony P. Pawlak
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854
- Center of Alcohol & Substance Use Studies, University of Minnesota-Twin Cities, 75 East River Road, Minneapolis, MN 55455
- Graduate School of Applied & Professional Psychology, University of Minnesota-Twin Cities, 75 East River Road, Minneapolis, MN 55455
| | - Samuel D. Klein
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854
- Department of Psychology, University of Minnesota-Twin Cities, 75 East River Road, Minneapolis, MN 55455
| | - Mark O. West
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854
| |
Collapse
|
8
|
Guarino S, Hagen C, Nguyen Q, Papini MR. Frustrative nonreward and the basal ganglia: Chemogenetic inhibition and excitation of the nucleus accumbens and globus pallidus externus during reward downshift. Neurobiol Learn Mem 2023; 200:107736. [PMID: 36822464 DOI: 10.1016/j.nlm.2023.107736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/27/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Frustrative nonreward contributes to anxiety disorders and addiction, and is included in the Research Domain Criteria initiative as a relevant endophenotype. These experiments explored the role of the basal ganglia in consummatory reward downshift (cRD) using inhibitory and excitatory DREADDs (designer receptors exclusively activated by designer drugs) infused in either the nucleus accumbens (NAc) or one of its downstream targets, the globus pallidus externus (GPe). NAc inhibition did not disrupt consummatory suppression during a 32-to-2% (Experiment 1) or 8-to-2% sucrose downshift (Experiment 2). However, NAc excitation enhanced consummatory suppression during a 32-to-2% sucrose downshift (Experiment 1). GPe inhibition caused a trend toward increased consummatory suppression after a 32-to-2% sucrose downshift, whereas GPe excitation eliminated consummatory suppression after an 8-to-2% sucrose downshift (Experiment 3). Chemogenetic manipulations of NAc and GPe had no detectable effects on open field activity. The effects of DREADD activation via clozapine N-oxide (CNO) administration were compared to controls that carried the DREADDs, but received vehicle injections. There was no evidence that CNO or vehicle injections in virus vector control (VVC) animals affected cRD or OF activity after either CNO or vehicle injections. NAc and GPe excitation led to opposite results in the cRD task, providing evidence that the basal ganglia circuit has a function in frustrative nonreward in the absence of detectable motor effects.
Collapse
Affiliation(s)
- Sara Guarino
- Department of Psychology, Texas Christian University, Fort Worth, TX 76109, USA
| | - Christopher Hagen
- Department of Psychology, Texas Christian University, Fort Worth, TX 76109, USA
| | - Quynh Nguyen
- Department of Psychology, Texas Christian University, Fort Worth, TX 76109, USA
| | - Mauricio R Papini
- Department of Psychology, Texas Christian University, Fort Worth, TX 76109, USA.
| |
Collapse
|
9
|
Polzin BJ, Maksimoski AN, Stevenson SA, Zhao C, Riters LV. Mu opioid receptor stimulation in the medial preoptic area or nucleus accumbens facilitates song and reward in flocking European starlings. Front Physiol 2022; 13:970920. [PMID: 36171974 PMCID: PMC9510710 DOI: 10.3389/fphys.2022.970920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
It has been proposed that social cohesion in gregarious animals is reinforced both by a positive affective state induced by social interactions and by the prevention of a negative state that would be caused by social separation. Opioids that bind to mu opioid receptors (MORs) act in numerous brain regions to induce positive and to reduce negative affective states. Here we explored a potential role for MORs in affective states that may impact flocking behavior in mixed-sex flocks of nonbreeding European starlings, Sturnus vulgaris. Singing behavior, which is considered central to flock cohesion, and other social behaviors were quantified after infusions of the MOR agonist D-Ala2, N-Me-Phe4, glycinol5-ENK (DAMGO) into either the medial preoptic area (POM) or the nucleus accumbens (NAC), regions previously implicated in affective state and flock cohesion. We focused on beak wiping, a potential sign of stress or redirected aggression in this species, to provide insight into a presumed negative state. We also used conditioned place preference (CPP) tests to provide insight into the extent to which infusions of DAMGO into POM or NAC that stimulated song might be rewarding. We found that MOR stimulation in either POM or NAC dose-dependently promoted singing behavior, reduced beak wiping, and induced a CPP. Subtle differences in responses to MOR stimulation between NAC and POM also suggest potential functional differences in the roles of these two regions. Finally, because the location of NAC has only recently been identified in songbirds, we additionally performed a tract tracing study that confirmed the presence of dopaminergic projections from the ventral tegmental area to NAC, suggesting homology with mammalian NAC. These findings support the possibility that MORs in POM and NAC play a dual role in reinforcing social cohesion in flocks by facilitating positive and reducing negative affective states.
Collapse
|
10
|
Souza R, Bueno D, Lima LB, Muchon MJ, Gonçalves L, Donato J, Shammah-Lagnado SJ, Metzger M. Top-down projections of the prefrontal cortex to the ventral tegmental area, laterodorsal tegmental nucleus, and median raphe nucleus. Brain Struct Funct 2022; 227:2465-2487. [DOI: 10.1007/s00429-022-02538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
|
11
|
Polzin BJ, Heimovics SA, Riters LV. Immunolabeling Provides Evidence for Subregions in the Songbird Nucleus Accumbens and Suggests a Context-Dependent Role in Song in Male European Starlings (Sturnus vulgaris). BRAIN, BEHAVIOR AND EVOLUTION 2022; 96:147-162. [PMID: 34879382 DOI: 10.1159/000521310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
Abstract
Birdsong is well known for its role in mate attraction during the breeding season. However, many birds, including European starlings (Sturnus vulgaris), also sing outside the breeding season as part of large flocks. Song in a breeding context can be extrinsically rewarded by mate attraction; however, song in nonbreeding flocks, referred to here as gregarious song, results in no obvious extrinsic reward and is proposed to be intrinsically rewarded. The nucleus accumbens (NAC) is a brain region well known to mediate reward and motivation, which suggests it is an ideal candidate to regulate reward associated with gregarious song. The goal of this study was to provide new histochemical information on the songbird NAC and its subregions (rostral pole, core, and shell) and to begin to determine subregion-specific contributions to gregarious song in male starlings. We examined immunolabeling for tyrosine hydroxylase (TH), neurotensin, and enkephalin (ENK) in the NAC. We then examined the extent to which gregarious and sexually motivated song differentially correlated with immunolabeling for the immediate early genes FOS and ZENK in each subdivision of the NAC. We found that TH and ENK labeling within subregions of the starling NAC was generally similar to patterns seen in the core and shell of NACs in mammals and birds. Additionally, we found that gregarious song, but not sexually motivated song, positively correlated with FOS in all NAC subregions. Our observations provide further evidence for distinct subregions within the songbird NAC and suggest the NAC may play an important role in regulating gregarious song in songbirds.
Collapse
Affiliation(s)
- Brandon J Polzin
- Department of Integrative Biology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Sarah A Heimovics
- Department of Biology, University of St. Thomas, Saint Paul, Minnesota, USA
| | - Lauren V Riters
- Department of Integrative Biology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Rusche T, Kaufmann J, Voges J. Nucleus accumbens projections: Validity and reliability of fiber reconstructions based on high-resolution diffusion-weighted MRI. Hum Brain Mapp 2021; 42:5888-5910. [PMID: 34528323 PMCID: PMC8596959 DOI: 10.1002/hbm.25657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/02/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022] Open
Abstract
Clinical effects of deep brain stimulation are largely mediated by the activation of myelinated axons. Hence, increasing attention has been paid in the past on targeting white matter tracts in addition to gray matter. Aims of the present study were: (i) visualization of discrete afferences and efferences of the nucleus accumbens (NAc), supposed to be a major hub of neural networks relating to mental disorders, using probabilistic fiber tractography and a data driven approach, and (ii) validation of the applied methodology for standardized routine clinical applications. MR‐data from 11 healthy subjects and 7 measurement sessions each were acquired on a 3T MRI‐scanner. For probabilistic fiber tracking the NAc as a seed region and the medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), amygdala (AMY), hippocampus (HPC), dorsomedial thalamus (dmT) and ventral tegmental area (VTA) as target regions were segmented for each subject and both hemispheres. To quantitatively assess the reliability and stability of the reconstructions, we filtered and clustered the individual fiber‐tracts (NAc to target) for each session and subject and performed a point‐by‐point calculation of the maximum cluster distances for intra‐subject comparison. The connectivity patterns formed by the obtained fibers were in good concordance with published data from tracer and/or fiber‐dissection studies. Furthermore, the reliability assessment of the (NAc to target)‐fiber‐tracts yielded to high correlations between the obtained clustered‐tracts. Using DBS with directional lead technology, the workflow elaborated in this study may guide selective electrical stimulation of NAc projections.
Collapse
Affiliation(s)
- Thilo Rusche
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Department of Radiology, Clinic of Radiology & Nuclear Medicine, University Hospital Basel, University Basel, Basel, Switzerland
| | - Jörn Kaufmann
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jürgen Voges
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
13
|
Castillo Díaz F, Caffino L, Fumagalli F. Bidirectional role of dopamine in learning and memory-active forgetting. Neurosci Biobehav Rev 2021; 131:953-963. [PMID: 34655655 DOI: 10.1016/j.neubiorev.2021.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Dopaminergic neurons projecting from the Substantia Nigra to the Striatum play a critical role in motor functions while dopaminergic neurons originating in the Ventral Tegmental Area (VTA) and projecting to the Nucleus Accumbens, Hippocampus and other cortical structures regulate rewarding learning. While VTA mainly consists of dopaminergic neurons, excitatory (glutamate) and inhibitory (GABA) VTA-neurons have also been described: these neurons may also modulate and contribute to shape the final dopaminergic response, which is critical for memory formation. However, given the large amount of information that is handled daily by our brain, it is essential that irrelevant information be deleted. Recently, apart from the well-established role of dopamine (DA) in learning, it has been shown that DA plays a critical role in the intrinsic active forgetting mechanisms that control storage information, contributing to the deletion of a consolidated memory. These new insights may be instrumental to identify therapies for those disorders that involve memory alterations.
Collapse
Affiliation(s)
- Fernando Castillo Díaz
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
14
|
Single-nucleus transcriptome analysis reveals cell-type-specific molecular signatures across reward circuitry in the human brain. Neuron 2021; 109:3088-3103.e5. [PMID: 34582785 DOI: 10.1016/j.neuron.2021.09.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 08/02/2021] [Accepted: 08/31/2021] [Indexed: 11/21/2022]
Abstract
Single-cell gene expression technologies are powerful tools to study cell types in the human brain, but efforts have largely focused on cortical brain regions. We therefore created a single-nucleus RNA-sequencing resource of 70,615 high-quality nuclei to generate a molecular taxonomy of cell types across five human brain regions that serve as key nodes of the human brain reward circuitry: nucleus accumbens, amygdala, subgenual anterior cingulate cortex, hippocampus, and dorsolateral prefrontal cortex. We first identified novel subpopulations of interneurons and medium spiny neurons (MSNs) in the nucleus accumbens and further characterized robust GABAergic inhibitory cell populations in the amygdala. Joint analyses across the 107 reported cell classes revealed cell-type substructure and unique patterns of transcriptomic dynamics. We identified discrete subpopulations of D1- and D2-expressing MSNs in the nucleus accumbens to which we mapped cell-type-specific enrichment for genetic risk associated with both psychiatric disease and addiction.
Collapse
|
15
|
Neuroplasticity and Multilevel System of Connections Determine the Integrative Role of Nucleus Accumbens in the Brain Reward System. Int J Mol Sci 2021; 22:ijms22189806. [PMID: 34575969 PMCID: PMC8471564 DOI: 10.3390/ijms22189806] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
A growing body of evidence suggests that nucleus accumbens (NAc) plays a significant role not only in the physiological processes associated with reward and satisfaction but also in many diseases of the central nervous system. Summary of the current state of knowledge on the morphological and functional basis of such a diverse function of this structure may be a good starting point for further basic and clinical research. The NAc is a part of the brain reward system (BRS) characterized by multilevel organization, extensive connections, and several neurotransmitter systems. The unique role of NAc in the BRS is a result of: (1) hierarchical connections with the other brain areas, (2) a well-developed morphological and functional plasticity regulating short- and long-term synaptic potentiation and signalling pathways, (3) cooperation among several neurotransmitter systems, and (4) a supportive role of neuroglia involved in both physiological and pathological processes. Understanding the complex function of NAc is possible by combining the results of morphological studies with molecular, genetic, and behavioral data. In this review, we present the current views on the NAc function in physiological conditions, emphasizing the role of its connections, neuroplasticity processes, and neurotransmitter systems.
Collapse
|
16
|
Nasrollahi S, Karimi S, Hamidi G, Naderitehrani M, Abed A. Blockade of the orexin 1 receptors in the nucleus accumbens' shell reversed the reduction effect of olanzapine on motivation for positive reinforcers. Neurosci Lett 2021; 762:136137. [PMID: 34311049 DOI: 10.1016/j.neulet.2021.136137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Effort-based choice of high reward requires one to decide how much effort to expend for a certain amount of reward. Orexin is a crucial neuropeptide in the physiological aspect especially a variety of affective and cognitive processes. The nucleus accumbens (NAc) is a region of the neural system that serves effort-related high reward choices andthe Orexin 1 receptor (OX1R) is distributed extensively throughout the nucleus accumbens shell (AcbS). Olanzapine (OLZ), a typical antipsychotic drug, has a high affinity to D2 as an antagonist, and also partial agonistic-like action at D2 receptors has been reported. We examined the interaction of OLZ with the orexinergic receptor 1 in AcbS on effort- related high reward choice when two goal arms were different in the amount of accessible reward. The animals had to pass the barrier for receiving a high reward in one arm (HRA) or obtain a low reward in the other arm without any cost. Before surgery, all animals were selecting the HRA on almost every trial.During test days, the rats received local injections of either DMSO 20% /0.5 µl, as vehicle or SB334867 (30, 100, 300 nM/0.5 µl), as selective OX1R antagonist, within the AcbS. Other group received OLZ (32 µM/0.5 µl DMSO20%) / vehicle alone or 5 min after administration of SB334867 (300 nM/0.5 µl). The results showed that administration of OLZ in the AcbS alters rat's preference for high reward. On the other hand, blocked of the OX1R (300 nM/0.5 µl) in this region could reverse the effect of OLZ, however, administration of the OX1R antagonists alone in the AcbS led to decreasing rat's preference for high reward. This result indicates that the orexin-1 antagonist might affect some effects of antipsychotic drugs.
Collapse
Affiliation(s)
- Saeedeh Nasrollahi
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran; Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Karimi
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Gholamali Hamidi
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran; Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Monireh Naderitehrani
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran; Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Abed
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
17
|
Integrative opioid-GABAergic neuronal mechanisms regulating dopamine efflux in the nucleus accumbens of freely moving animals. Pharmacol Rep 2021; 73:971-983. [PMID: 33743175 DOI: 10.1007/s43440-021-00249-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 01/14/2023]
Abstract
The nucleus accumbens (NAc) is a terminal region of mesocorticolimbic dopamine (DA) neuronal projections from the ventral tegmental area. Accumbal DA release is integrated by afferents from other brain regions and by interneurons, which involve a diversity of neurotransmitters and neuropeptides. These integrative processes, implicated in the pathobiology of neuropsychiatric disorders, are mediated via receptor subtypes whose relative roles in the regulation of accumbal DA release are poorly understood. Such complex interactions are exemplified by how selective activation of opioid receptor subtypes enhances accumbal DA efflux in a manner that is modulated by changes in neural activity through GABA receptor subtypes. This review delineates the roles of GABAA and GABAB receptors in GABAergic neural mechanisms in NAc that participate in delta- and mu-opioid receptor-mediated increases in accumbal DA efflux in freely moving rats, focusing on studies using in vivo brain microdialysis. First, we consider how endogenous GABA exerts inhibition of accumbal DA efflux through GABA receptor subtypes. We also consider possible intra-neuronal source of the endogenous GABA that inhibits accumbal DA efflux. As NAc contains GABAergic neurons that express delta- or mu-opioid receptors, inhibition of accumbal GABAergic neurons is a candidate for mediating delta- or mu-opioid receptor-mediated increases in accumbal DA efflux. Therefore, we provide a detailed analysis of the effects of GABA receptor subtype ligands on delta- and mu-opioid receptor-mediated accumbal DA efflux. Finally, we present an integrative model to explain the mechanisms of interaction among delta- and mu-opioid receptors, GABAergic neurons and DAergic neurons in NAc.
Collapse
|
18
|
de la Cruz F, Wagner G, Schumann A, Suttkus S, Güllmar D, Reichenbach JR, Bär KJ. Interrelations between dopamine and serotonin producing sites and regions of the default mode network. Hum Brain Mapp 2021; 42:811-823. [PMID: 33128416 PMCID: PMC7814772 DOI: 10.1002/hbm.25264] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/05/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Recent functional magnetic resonance imaging (fMRI) studies showed that blood oxygenation level-dependent (BOLD) signal fluctuations in the default mode network (DMN) are functionally tightly connected to those in monoaminergic nuclei, producing dopamine (DA), and serotonin (5-HT) transmitters, in the midbrain/brainstem. We combined accelerated fMRI acquisition with spectral Granger causality and coherence analysis to investigate causal relationships between these areas. Both methods independently lead to similar results and confirm the existence of a top-down information flow in the resting-state condition, where activity in core DMN areas influences activity in the neuromodulatory centers producing DA/5-HT. We found that latencies range from milliseconds to seconds with high inter-subject variability, likely attributable to the resting condition. Our novel findings provide new insights into the functional organization of the human brain.
Collapse
Affiliation(s)
- Feliberto de la Cruz
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Germany
| | - Gerd Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Germany
| | - Andy Schumann
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Germany
| | - Stefanie Suttkus
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Germany
| | - Daniel Güllmar
- Medical Physics Group, Department of Diagnostic and Interventional Radiology, Jena University Hospital, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Department of Diagnostic and Interventional Radiology, Jena University Hospital, Germany
| | - Karl-Jürgen Bär
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Germany
| |
Collapse
|
19
|
Cooperative synaptic and intrinsic plasticity in a disynaptic limbic circuit drive stress-induced anhedonia and passive coping in mice. Mol Psychiatry 2021; 26:1860-1879. [PMID: 32161361 PMCID: PMC7735389 DOI: 10.1038/s41380-020-0686-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/19/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022]
Abstract
Stress promotes negative affective states, which include anhedonia and passive coping. While these features are in part mediated by neuroadaptations in brain reward circuitry, a comprehensive framework of how stress-induced negative affect may be encoded within key nodes of this circuit is lacking. Here, we show in a mouse model for stress-induced anhedonia and passive coping that these phenomena are associated with increased synaptic strength of ventral hippocampus (VH) excitatory synapses onto D1 medium spiny neurons (D1-MSNs) in the nucleus accumbens medial shell (NAcmSh), and with lateral hypothalamus (LH)-projecting D1-MSN hyperexcitability mediated by decreased inwardly rectifying potassium channel (IRK) function. Stress-induced negative affective states are prevented by depotentiation of VH to NAcmSh synapses, restoring Kir2.1 function in D1R-MSNs, or disrupting co-participation of these synaptic and intrinsic adaptations in D1-MSNs. In conclusion, our data provide strong evidence for a disynaptic pathway controlling maladaptive emotional behavior.
Collapse
|
20
|
Morales I, Berridge KC. 'Liking' and 'wanting' in eating and food reward: Brain mechanisms and clinical implications. Physiol Behav 2020; 227:113152. [PMID: 32846152 PMCID: PMC7655589 DOI: 10.1016/j.physbeh.2020.113152] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 01/02/2023]
Abstract
It is becoming clearer how neurobiological mechanisms generate 'liking' and 'wanting' components of food reward. Mesocorticolimbic mechanisms that enhance 'liking' include brain hedonic hotspots, which are specialized subregions that are uniquely able to causally amplify the hedonic impact of palatable tastes. Hedonic hotspots are found in nucleus accumbens medial shell, ventral pallidum, orbitofrontal cortex, insula cortex, and brainstem. In turn, a much larger mesocorticolimbic circuitry generates 'wanting' or incentive motivation to obtain and consume food rewards. Hedonic and motivational circuitry interact together and with hypothalamic homeostatic circuitry, allowing relevant physiological hunger and satiety states to modulate 'liking' and 'wanting' for food rewards. In some conditions such as drug addiction, 'wanting' is known to dramatically detach from 'liking' for the same reward, and this may also occur in over-eating disorders. Via incentive sensitization, 'wanting' selectively becomes higher, especially when triggered by reward cues when encountered in vulnerable states of stress, etc. Emerging evidence suggests that some cases of obesity and binge eating disorders may reflect an incentive-sensitization brain signature of cue hyper-reactivity, causing excessive 'wanting' to eat. Future findings on the neurobiological bases of 'liking' and 'wanting' can continue to improve understanding of both normal food reward and causes of clinical eating disorders.
Collapse
Affiliation(s)
- Ileana Morales
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1043, United States.
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1043, United States
| |
Collapse
|
21
|
Shifting motivational states: The effects of nucleus accumbens dopamine and opioid receptor activation on a modified effort-based choice task. Behav Brain Res 2020; 399:112999. [PMID: 33161034 DOI: 10.1016/j.bbr.2020.112999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/30/2020] [Indexed: 01/26/2023]
Abstract
The nucleus accumbens (NAc) is critical for regulating the appetitive and consummatory phases of motivated behavior. These experiments examined the effects of dopamine and opioid receptor manipulations within the NAc during an effort-based choice task that allowed for simultaneous assessment of both phases of motivation. Male Sprague-Dawley rats received bilateral guide cannulas targeting the NAc core and were tested in 1-hr sessions with free access to rat chow and the choice to work for sugar pellets on a progressive ratio 2 (PR2) reinforcement schedule. Individual groups of rats were tested following stimulation or blockade of NAc D1-like or D2-like receptors, stimulation of μ-, δ-, or κ-opioid receptors, or antagonism of opioid receptors. Behavior was examined under ad libitum conditions and following 23-h food restriction. NAc blockade of the D1-like receptors or stimulation of the D2 receptor reduced break point for earning sugar pellets; D2 receptor stimulation also modestly lowered chow intake. NAc μ-opioid receptor stimulation increased intake of the freely-available chow while simultaneously reducing break point for the sugar pellets. In non-restricted conditions, δ-opioid receptor stimulation increased both food intake and breakpoint. There were no effects of stimulating NAc D1 or κ receptors, nor did blocking D2 or opioid receptors affect task behavior. These data support prior literature linking dopamine to appetitive motivational processes, and suggest that μ- and δ-opioid receptors affect food-directed motivation differentially. Specifically, μ-opioid receptors shifted behavior towards consumption, and δ-opioid receptor enhanced both sugar-seeking and consumption of the pabulum chow when animals were not food restricted.
Collapse
|
22
|
Kokane SS, Perrotti LI. Sex Differences and the Role of Estradiol in Mesolimbic Reward Circuits and Vulnerability to Cocaine and Opiate Addiction. Front Behav Neurosci 2020; 14:74. [PMID: 32508605 PMCID: PMC7251038 DOI: 10.3389/fnbeh.2020.00074] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
Although both men and women become addicted to drugs of abuse, women transition to addiction faster, experience greater difficulties remaining abstinent, and relapse more often than men. In both humans and rodents, hormonal cycles are associated with females' faster progression to addiction. Higher concentrations and fluctuating levels of ovarian hormones in females modulate the mesolimbic reward system and influence reward-directed behavior. For example, in female rodents, estradiol (E2) influences dopamine activity within the mesolimbic reward system such that drug-directed behaviors that are normally rewarding and reinforcing become enhanced when circulating levels of E2 are high. Therefore, neuroendocrine interactions, in part, explain sex differences in behaviors motivated by drug reward. Here, we review sex differences in the physiology and function of the mesolimbic reward system in order to explore the notion that sex differences in response to drugs of abuse, specifically cocaine and opiates, are the result of molecular neuroadaptations that differentially develop depending upon the hormonal state of the animal. We also reconsider the notion that ovarian hormones, specifically estrogen/estradiol, sensitize target neurons thereby increasing responsivity when under the influence of either cocaine or opiates or in response to exposure to drug-associated cues. These adaptations may ultimately serve to guide the motivational behaviors that underlie the factors that cause women to be more vulnerable to cocaine and opiate addiction than men.
Collapse
Affiliation(s)
- Saurabh S Kokane
- Department of Psychology, University of Texas at Arlington, Arlington, TX, United States
| | - Linda I Perrotti
- Department of Psychology, University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
23
|
Pardo-García TR, Yusif-Rodriguez N, Yudowski G, Maldonado-Vlaar CS. Blockade of the endovanilloid receptor, TRPV1, and of the endocannabinoid enzyme, FAAH, within the nucleus accumbens shell elicits anxiolytic-like effects in male rats. Neurosci Lett 2020; 732:135023. [PMID: 32422166 DOI: 10.1016/j.neulet.2020.135023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 11/17/2022]
Abstract
RATIONALE The functional role of the endocannabinoid system (ECS) and Transient Receptor Potential Vanilloid type-1 (TRPV1) within the Nucleus Accumbens shell (NAc shell) remains unknown. Preclinical studies in rodents have reported that the ECS modulates emotional responses such as anxiety. The NAc shell has a high density of synaptically co-localized cannabinoid receptor type-1 (CB1R) and TRPV1, suggesting a potential involvement in the modulation of anxiety. OBJECTIVES The present study aims to establish the role of ECS-TRPV1 interactions within the NAc shell and its effects on anxiety. It is hypothesized that the neurochemical regulation elicited by ECS within the NAc shell mediates anxiety-like behaviors in rodents. METHODS In this study, male Sprague Dawley rats were implanted with bilateral brain cannula targeting the NAc shell. Following recovery from surgery, animals received microinfusion pretreatments (0, 0.125, 0.5 nmol/0.4 μl) of N-arachidonoyl-serotonin (AA-5-HT), a dual blocker of the endocannabinoid-inactivating enzyme, fatty acid amide hydrolase (FAAH) and a TRPV1 antagonist in the NAc shell. Following treatment, animals were tested in an elevated plus maze (EPM) paradigm for a period of 5 minutes. At the end of the experiment, animals were sacrificed and their brains collected for histological and biochemical analysis. RESULTS Results showed that animals treated with AA-5-HT in a dose dependent manner spent significantly more time in the open arms than vehicle-treated animals. In addition, AA-5-HT administration induced a significant downregulation of CB1R expression in the NAc shell. CONCLUSIONS The present findings suggest that the ECS within the NAc shell modulates anxiety-like behaviors via FAAH and CB1R activity.
Collapse
Affiliation(s)
- Thibaut R Pardo-García
- University of Puerto Rico-Rio Piedras Campus, Department of Biology, PO Box 23360, San Juan, 00931, Puerto Rico.
| | - Nadira Yusif-Rodriguez
- University of Puerto Rico-Rio Piedras Campus, Department of Biology, PO Box 23360, San Juan, 00931, Puerto Rico.
| | - Guillermo Yudowski
- University of Puerto Rico-Medical School, Institute of Neurobiology, San Juan, 00936, Puerto Rico
| | - Carmen S Maldonado-Vlaar
- University of Puerto Rico-Rio Piedras Campus, Department of Biology, PO Box 23360, San Juan, 00931, Puerto Rico.
| |
Collapse
|
24
|
Medial Nucleus Accumbens Projections to the Ventral Tegmental Area Control Food Consumption. J Neurosci 2020; 40:4727-4738. [PMID: 32354856 DOI: 10.1523/jneurosci.3054-18.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Decades of research have shown that the NAc is a critical region influencing addiction, mood, and food consumption through its effects on reinforcement learning, motivation, and hedonic experience. Pharmacological studies have demonstrated that inhibition of the NAc shell induces voracious feeding, leading to the hypothesis that the inhibitory projections that emerge from the NAc normally act to restrict feeding. While much of this work has focused on projections to the lateral hypothalamus, the role of NAc projections to the VTA in the control food intake has been largely unexplored. Using a retrograde viral labeling technique and real-time monitoring of neural activity with fiber photometry, we find that medial NAc shell projections to the VTA (mNAc→VTA) are inhibited during food-seeking and food consumption in male mice. We also demonstrate that this circuit bidirectionally controls feeding: optogenetic activation of NAc projections to the VTA inhibits food-seeking and food intake (in both sexes), while optogenetic inhibition of this circuit potentiates food-seeking behavior. Additionally, we show that activity of the NAc to VTA pathway is necessary for adaptive inhibition of food intake in response to external cues. These data provide new insight into NAc control over feeding in mice, and contribute to an emerging literature elucidating the role of inhibitory midbrain feedback within the mesolimbic circuit.SIGNIFICANCE STATEMENT The medial NAc has long been known to control consummatory behavior, with particular focus on accumbens projections to the lateral hypothalamus. Conversely, NAc projections to the VTA have mainly been studied in the context of drug reward. We show that NAc projections to the VTA bidirectionally control food intake, consistent with a permissive role in feeding. Additionally, we show that this circuit is normally inactivated during consumption and food-seeking. Together, these findings elucidate how mesolimbic circuits control food consumption.
Collapse
|
25
|
Yee M, Maal-Bared G, Ting-A-Kee R, Chwalek M, Mackay-Clackett I, Bergamini M, Grieder TE, van der Kooy D. Segregation of caffeine reward and aversion in the rat nucleus accumbens shell versus core. Eur J Neurosci 2020; 52:3074-3086. [PMID: 32150654 DOI: 10.1111/ejn.14718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/16/2020] [Accepted: 02/26/2020] [Indexed: 01/05/2023]
Abstract
Caffeine, the most commonly consumed psychoactive drug in the world, is readily available in dietary sources, including soft drinks, chocolate, tea and coffee. However, little is known about the neural substrates that underlie caffeine's rewarding and aversive properties and what ultimately leads us to seek or avoid caffeine consumption. Using male Wistar rats in a place conditioning procedure, we show that systemic caffeine at a low intraperitoneal dose of 2 mg/kg (or 100 µM injected directly into the rostral, but not caudal, portion of the ventral tegmental area) produced conditioned place preferences. By contrast, high doses of systemic caffeine at 10 and 30 mg/kg produced conditioned place aversions. These aversions were not recapitulated by a caffeine analog restricted to the periphery. Both caffeine reward and aversion were blocked by systemic D1-like receptor antagonism using SCH23390, while systemic D2-like receptor antagonism with eticlopride had smaller effects on caffeine motivation. Most important, we demonstrated that pharmacological blockade of dopamine receptors using α-flupenthixol injected into the nucleus accumbens shell, but not core, blocked caffeine-conditioned place preferences. Conversely, α-flupenthixol injected into the nucleus accumbens core, but not shell, blocked caffeine-conditioned place aversions. Thus, our findings reveal two dopamine-dependent and functionally dissociable mechanisms for processing caffeine motivation, which are segregated between nucleus accumbens subregions. These data provide novel evidence for the roles of the nucleus accumbens subregions in mediating approach and avoidance behaviours for caffeine.
Collapse
Affiliation(s)
- Mandy Yee
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Geith Maal-Bared
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Ryan Ting-A-Kee
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michal Chwalek
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Michael Bergamini
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Taryn E Grieder
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Center for the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Derek van der Kooy
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Abstract
Axons from the olfactory bulb (OB) project to multiple central structures of the brain, many of which, in turn, send axons back into the OB and/or to one another. These secondary sensory regions underlie many aspects of odor representation, valence, and learning, as well as serving some nonolfactory functions, though many details remain unclear. We here describe the connectivity and essential structural and functional properties of these postbulbar olfactory regions in the mammalian brain.
Collapse
Affiliation(s)
- Thomas A Cleland
- Department of Psychology, Cornell University, Ithaca, NY, United States.
| | - Christiane Linster
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States
| |
Collapse
|
27
|
Sackett DA, Moschak TM, Carelli RM. Nucleus accumbens shell dopamine mediates outcome value, but not predicted value, in a magnitude decision-making task. Eur J Neurosci 2020; 51:1526-1538. [PMID: 31863510 DOI: 10.1111/ejn.14655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/06/2019] [Accepted: 12/12/2019] [Indexed: 11/29/2022]
Abstract
Effective decision-making depends on an animal's ability to predict and select the outcome of greatest value, and the nucleus accumbens (NAc) and its dopaminergic input play a key role in this process. We previously reported that rapid dopamine release in the NAc shell preferentially tracks the "preferred" (i.e., large reward) option during cues that predict the ability to respond for rewards of different sizes, as well as during reward delivery itself. The present study assessed whether shell dopamine release at these discrete times selectively mediated choice behavior for rewards of different magnitudes using optogenetics. Here, using Long Evans TH:Cre± rats we employed selective optogenetic stimulation of dopamine terminals in the NAc shell during either reward-predictive cues (experiment 1) or reward delivery (experiment 2) in a magnitude-based decision-making task. We found that in TH:Cre± rats, but not littermate controls, optical stimulation during low-magnitude reward delivery during forced choice trials was sufficient to bias preference for this option when given a choice. In contrast, optical stimulation of shell dopamine terminals during low-magnitude reward-predictive cues in forced choice trials did not shift free choice behavior in TH:Cre± rats or controls. The findings indicate that preferential dopamine signaling in the NAc shell during reward outcome (delivery), but not reward-predictive cues are sufficient to influence choice behavior in our task supporting a causal role of dopamine in the NAc shell in reward outcome value, but not value-based predictive strategies.
Collapse
Affiliation(s)
- Deirdre A Sackett
- Department of Psychology and Neuroscience, The University of North Carolina, Chapel Hill, NC, USA
| | - Travis M Moschak
- Department of Psychology and Neuroscience, The University of North Carolina, Chapel Hill, NC, USA
| | - Regina M Carelli
- Department of Psychology and Neuroscience, The University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
28
|
Dobrovitsky V, West MO, Horvitz JC. The role of the nucleus accumbens in learned approach behavior diminishes with training. Eur J Neurosci 2019; 50:3403-3415. [PMID: 31340074 PMCID: PMC6848754 DOI: 10.1111/ejn.14523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/10/2019] [Accepted: 07/05/2019] [Indexed: 01/17/2023]
Abstract
Nucleus accumbens dopamine plays a key role in reward-directed approach. Past findings suggest that dopamine's role in the expression of learned behavior diminishes with extended training. However, little is known about the central substrates that mediate the shift to dopamine-independent reward approach. In the present study, rats approached and inserted the head into a reward compartment in response to a cue signaling food delivery. On days 4 and 5 of 28-trial-per-day sessions, D1 receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH23390) infused to the NAc core reduced the probability and speed of cued approach. The disruptive effect of D1 receptor blockade was specific to the nucleus accumbens core and not seen with drug infusions to nearby dopamine target regions. In rats that received drug infusions after extended training (days 10 or 11), accumbens core D1 receptor blockade produced little effect on the expression of the same behavior. These results could have been due to a continued accumbens mediation of cued approach even after the behavior had become independent of accumbens D1 receptors. However, accumbens core ionotropic glutamate receptor blockade disrupted cued approach during early but not late stages of training, similar to the effects of D1 antagonist infusions. The results suggest that with extended training, a nucleus accumbens D1-dependent behavior becomes less dependent not only on nucleus accumbens D1 transmission but also on excitatory transmission in the nucleus accumbens. These findings fill an important gap in a growing literature on reorganization of striatal function over the course of training.
Collapse
Affiliation(s)
- Veronica Dobrovitsky
- The Graduate Center, City University of New York, Program in Behavioral and Cognitive Neuroscience, NY, NY 10016; CCNY, Dept of Psychology NY, NY, 10031, USA
| | - Mark O. West
- Department of Psychology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jon C. Horvitz
- The Graduate Center, City University of New York, Program in Behavioral and Cognitive Neuroscience, NY, NY 10016; CCNY, Dept of Psychology NY, NY, 10031, USA
| |
Collapse
|
29
|
Yonemochi N, Ardianto C, Ueda D, Kamei J, Ikeda H. GABAergic function in the lateral hypothalamus regulates feeding behavior: Possible mediation via orexin. Neuropsychopharmacol Rep 2019; 39:289-296. [PMID: 31618533 PMCID: PMC7292314 DOI: 10.1002/npr2.12080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 11/17/2022] Open
Abstract
Aim The lateral hypothalamus (LH) is known as the hunger center, but the mechanisms through which the LH regulates food intake are unclear. Since GABA neurons are reported to project to the LH, the present study investigated the role of GABAergic function in the LH in the regulation of feeding behavior. Methods GABA levels in the LH were measured by in vivo microdialysis. Food intake after drug injection into the LH was measured every 1 hour for 4 hours. The mRNA levels were measured using RT‐PCR. Results Food intake significantly increased GABA levels in the LH, suggesting that food intake stimulates GABAergic function in the LH. Injection of the GABAA receptor agonist muscimol into the LH significantly inhibited food intake, whereas injection of the GABAA receptor antagonist bicuculline into the LH did not significantly affect food intake. The inhibitory effect of muscimol injected into the LH was blocked by co‐administration of bicuculline. These results indicate that the stimulation of GABAA receptors in the LH inhibits food intake. We next examined whether the stimulation of GABAA receptors affects hypothalamic neuropeptides that are known to regulate feeding behavior. The injection of muscimol significantly decreased preproorexin mRNA in the hypothalamus. Conclusion These results indicate that food intake activates GABAergic function in the LH, which terminates feeding behavior by stimulating GABAA receptors. Moreover, it is suggested that the stimulation of GABAA receptors in the LH reduces food intake through inhibition of orexin neurons. We investigated whether GABAergic function in the lateral hypothalamus (LH) regulates feeding behavior. We showed that food intake increased GABA levels in the LH in in vivo microdialysis and that the GABAA receptor agonist muscimol injected into the LH decreased food intake. These results suggest that food intake activates GABA neurons projecting to the LH, and it terminates feeding behavior through GABAA receptors.![]()
Collapse
Affiliation(s)
- Naomi Yonemochi
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Chrismawan Ardianto
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Daiki Ueda
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Junzo Kamei
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan.,Department of Biomolecular Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Hiroko Ikeda
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
30
|
Effects of Ethanol Exposure and Withdrawal on Neuronal Morphology in the Agranular Insular and Prelimbic Cortices: Relationship with Withdrawal-Related Structural Plasticity in the Nucleus Accumbens. Brain Sci 2019; 9:brainsci9080180. [PMID: 31357611 PMCID: PMC6721441 DOI: 10.3390/brainsci9080180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
The present study investigated the effects of chronic intermittent ethanol exposure and withdrawal on dendritic morphology and spine density in the agranular insular and prelimbic cortices. Adult male Sprague–Dawley rats were passively exposed to vaporized ethanol (~37 mg/L; 12 h/day) or air (control) for ten consecutive days. Dendritic length, branching, and spine density were quantified in layer II/III pyramidal neurons 24 hours or seven days following the final ethanol exposure. Compared to unexposed control animals there were structural alterations on neurons in the prelimbic cortex, and to a lesser extent the agranular insular cortex. The most prominent ethanol-related differences were the transient increases in dendritic length and branching in prelimbic neurons at 24 h post-cessation, and increased mushroom-shaped spines at seven days post-cessation. The results obtained in the prelimbic cortex are the opposite of those previously reported in the nucleus accumbens core (Peterson, et al. 2015), suggesting that these regions undergo distinct functional adaptations following ethanol exposure and withdrawal.
Collapse
|
31
|
Stolzenberg DS, Mayer HS. Experience-dependent mechanisms in the regulation of parental care. Front Neuroendocrinol 2019; 54:100745. [PMID: 31009675 PMCID: PMC7347228 DOI: 10.1016/j.yfrne.2019.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/29/2019] [Accepted: 04/12/2019] [Indexed: 01/03/2023]
Abstract
Maternal behavior is a defining characteristic of mammals, which is regulated by a core, conserved neural circuit. However, mothering behavior is not always a default response to infant conspecifics. For example, initial fearful, fragmented or aggressive responses toward infants in laboratory rats and mice can give way to highly motivated and organized caregiving behaviors following appropriate hormone exposure or repeated experience with infants. Therefore hormonal and/or experiential factors must be involved in determining the extent to which infants access central approach and avoidance neural systems. In this review we describe evidence supporting the idea that infant conspecifics are capable of activating distinct neural pathways to elicit avoidant, aggressive and parental responses from adult rodents. Additionally, we discuss the hypothesis that alterations in transcriptional regulation within the medial preoptic area of the hypothalamus may be a key mechanism of neural plasticity involved in programming the differential sensitivity of these neural pathways.
Collapse
Affiliation(s)
- Danielle S Stolzenberg
- University of California, Davis, Department of Psychology, One Shields Ave., Davis, CA 95616, United States.
| | - Heather S Mayer
- University of California, Davis, Department of Psychology, One Shields Ave., Davis, CA 95616, United States
| |
Collapse
|
32
|
Park YS, Sammartino F, Young NA, Corrigan J, Krishna V, Rezai AR. Anatomic Review of the Ventral Capsule/Ventral Striatum and the Nucleus Accumbens to Guide Target Selection for Deep Brain Stimulation for Obsessive-Compulsive Disorder. World Neurosurg 2019; 126:1-10. [PMID: 30790738 DOI: 10.1016/j.wneu.2019.01.254] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Disturbances in the reward network of the brain underlie addiction, depression, and obsessive-compulsive disorder. The ventral capsule/ventral striatum and nucleus accumbens (NAc) region is a clinically approved target for deep brain stimulation for obsessive-compulsive disorder. METHODS We performed a comprehensive literature review to define clinically relevant anatomy and connectivity of the ventral capsule/ventral striatum and NAc region to guide target selection for deep brain stimulation. RESULTS Architecturally and functionally, the NAc is divided into the core and the shell, with each area having different connections. The shell primarily receives limbic information, and the core typically receives information from the motor system. In general, afferents from the prefrontal cortex, hippocampus, and amygdala are excitatory. The dopaminergic projections to the NAc from the ventral tegmental area modulate the balance of these excitatory inputs. Several important inputs to the NAc converge at the junction of the internal capsule (IC) and the anterior commissure (AC): the ventral amygdalofugal pathways that run parallel to and underneath the AC, the precommissural fornical fibers that run anterior to the AC, axons from the ventral prefrontal cortex and medial orbitofrontal cortex that occupy the most ventral part of the IC and embedding within the NAc and AC, and the superolateral branch of the medial forebrain bundle located parallel to the anterior thalamic radiation in the IC. CONCLUSIONS The caudal part of the NAc passing through the IC-AC junction may be an effective target for deep brain stimulation to improve behavioral symptoms associated with obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Yong-Sook Park
- Department of Neurosurgery, Chung-Ang University Hospital, Seoul, Korea
| | | | - Nicole A Young
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA
| | - John Corrigan
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA
| | - Vibhor Krishna
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA.
| | - Ali R Rezai
- Department of Neurosurgery, West Virginia University Hospital, Morgantown, West Virginia, USA
| |
Collapse
|
33
|
Chemogenetic activation of ventral tegmental area GABA neurons, but not mesoaccumbal GABA terminals, disrupts responding to reward-predictive cues. Neuropsychopharmacology 2019; 44:372-380. [PMID: 29875446 PMCID: PMC6300533 DOI: 10.1038/s41386-018-0097-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 05/03/2018] [Accepted: 05/05/2018] [Indexed: 12/19/2022]
Abstract
Cues predicting rewards can gain motivational properties and initiate reward-seeking behaviors. Dopamine projections from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) are critical in regulating cue-motivated responding. Although, approximately one third of mesoaccumbal projection neurons are GABAergic, it is unclear how this population influences motivational processes and cue processing. This is largely due to our inability to pharmacologically probe circuit level contributions of VTA-GABA, which arises from diverse sources, including multiple GABA afferents, interneurons, and projection neurons. Here we used a combinatorial viral vector approach to restrict activating Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to GABA neurons in the VTA of wild-type rats trained to respond during a distinct audiovisual cue for sucrose. We measured different aspects of motivation for the cue or primary reinforcer, while chemogenetically activating either the VTA-GABA neurons or their projections to the NAc. Activation of VTA-GABA neurons decreased cue-induced responding and accuracy, while increasing latencies to respond to the cue and obtain the reward. Perseverative and spontaneous responses decreased, yet the rats persisted in entering the reward cup when the cue and reward were absent. However, activation of the VTA-GABA terminals in the accumbens had no effect on any of these behaviors. Together, we demonstrate that VTA-GABA neuron activity preferentially attenuates the ability of cues to trigger reward-seeking, while some aspects of the motivation for the reward itself are preserved. Additionally, the dense VTA-GABA projections to the NAc do not influence the motivational salience of the cue.
Collapse
|
34
|
Abstract
Pain has a strong emotional component and is defined by its unpleasantness. Chronic pain represents a complex disorder with anxio-depressive symptoms and cognitive deficits. Underlying mechanisms are still not well understood but an important role for interactions between prefrontal cortical areas and subcortical limbic structures has emerged. Evidence from preclinical studies in the rodent brain suggests that neuroplastic changes in prefrontal (anterior cingulate, prelimbic and infralimbic) cortical and subcortical (amygdala and nucleus accumbens) brain areas and their interactions (corticolimbic circuitry) contribute to the complexity and persistence of pain and may be predetermining factors as has been proposed in recent human neuroimaging studies.
Collapse
Affiliation(s)
- Jeremy M Thompson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, United States; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| |
Collapse
|
35
|
Subramanian S, Reichard RA, Stevenson HS, Schwartz ZM, Parsley KP, Zahm DS. Lateral preoptic and ventral pallidal roles in locomotion and other movements. Brain Struct Funct 2018; 223:2907-2924. [PMID: 29700637 PMCID: PMC5997555 DOI: 10.1007/s00429-018-1669-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/19/2018] [Indexed: 12/31/2022]
Abstract
The lateral preoptic area (LPO) and ventral pallidum (VP) are structurally and functionally distinct territories in the subcommissural basal forebrain. It was recently shown that unilateral infusion of the GABAA receptor antagonist, bicuculline, into the LPO strongly invigorates exploratory locomotion, whereas bicuculline infused unilaterally into the VP has a negligible locomotor effect, but when infused bilaterally, produces vigorous, abnormal pivoting and gnawing movements and compulsive ingestion. This study was done to further characterize these responses. We observed that bilateral LPO infusions of bicuculline activate exploratory locomotion only slightly more potently than unilateral infusions and that unilateral and bilateral LPO injections of the GABAA receptor agonist muscimol potently suppress basal locomotion, but only modestly inhibit locomotion invigorated by amphetamine. In contrast, unilateral infusions of muscimol into the VP affect basal and amphetamine-elicited locomotion negligibly, but bilateral VP muscimol infusions profoundly suppress both. Locomotor activation elicited from the LPO by bicuculline was inhibited modestly and profoundly by blockade of dopamine D2 and D1 receptors, respectively, but was not entirely abolished even under combined blockade of dopamine D1 and D2 receptors. That is, infusing the LPO with bic caused instances of near normal, even if sporadic, invigoration of locomotion in the presence of saturating dopamine receptor blockade, indicating that LPO can stimulate locomotion in the absence of dopamine signaling. Pivoting following bilateral VP bicuculline infusions was unaffected by dopamine D2 receptor blockade, but was completely suppressed by D1 receptor blockade. The present results are discussed in a context of neuroanatomical and functional organization underlying exploratory locomotion and adaptive movements.
Collapse
Affiliation(s)
- Suriya Subramanian
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Rhett A Reichard
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Hunter S Stevenson
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Zachary M Schwartz
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Kenneth P Parsley
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Daniel S Zahm
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA.
| |
Collapse
|
36
|
Willett JA, Johnson AG, Vogel AR, Patisaul HB, McGraw LA, Meitzen J. Nucleus accumbens core medium spiny neuron electrophysiological properties and partner preference behavior in the adult male prairie vole, Microtus ochrogaster. J Neurophysiol 2018; 119:1576-1588. [PMID: 29361665 DOI: 10.1152/jn.00737.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Medium spiny neurons (MSNs) in the nucleus accumbens have long been implicated in the neurobiological mechanisms that underlie numerous social and motivated behaviors as studied in rodents such as rats. Recently, the prairie vole has emerged as an important model animal for studying social behaviors, particularly regarding monogamy because of its ability to form pair bonds. However, to our knowledge, no study has assessed intrinsic vole MSN electrophysiological properties or tested how these properties vary with the strength of the pair bond between partnered voles. Here we performed whole cell patch-clamp recordings of MSNs in acute brain slices of the nucleus accumbens core (NAc) of adult male voles exhibiting strong and weak preferences for their respective partnered females. We first document vole MSN electrophysiological properties and provide comparison to rat MSNs. Vole MSNs demonstrated many canonical electrophysiological attributes shared across species but exhibited notable differences in excitability compared with rat MSNs. Second, we assessed male vole partner preference behavior and tested whether MSN electrophysiological properties varied with partner preference strength. Male vole partner preference showed extensive variability. We found that decreases in miniature excitatory postsynaptic current amplitude and the slope of the evoked action potential firing rate to depolarizing current injection weakly associated with increased preference for the partnered female. This suggests that excitatory synaptic strength and neuronal excitability may be decreased in MSNs in males exhibiting stronger preference for a partnered female. Overall, these data provide extensive documentation of MSN electrophysiological characteristics and their relationship to social behavior in the prairie vole. NEW & NOTEWORTHY This research represents the first assessment of prairie vole nucleus accumbens core medium spiny neuron intrinsic electrophysiological properties and probes the relationship between cellular excitability and social behavior.
Collapse
Affiliation(s)
- Jaime A Willett
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.,Graduate Program in Physiology, North Carolina State University , Raleigh, North Carolina
| | - Ashlyn G Johnson
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina
| | - Andrea R Vogel
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.,Graduate Program in Genetics, North Carolina State University , Raleigh, North Carolina
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.,Center for Human Health and the Environment, North Carolina State University , Raleigh, North Carolina
| | - Lisa A McGraw
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.,Graduate Program in Genetics, North Carolina State University , Raleigh, North Carolina
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.,Center for Human Health and the Environment, North Carolina State University , Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina
| |
Collapse
|
37
|
Koekkoek LL, Mul JD, la Fleur SE. Glucose-Sensing in the Reward System. Front Neurosci 2017; 11:716. [PMID: 29311793 PMCID: PMC5742113 DOI: 10.3389/fnins.2017.00716] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/07/2017] [Indexed: 01/14/2023] Open
Abstract
Glucose-sensing neurons are neurons that alter their activity in response to changes in extracellular glucose. These neurons, which are an important mechanism the brain uses to monitor changes in glycaemia, are present in the hypothalamus, where they have been thoroughly investigated. Recently, glucose-sensing neurons have also been identified in brain nuclei which are part of the reward system. However, little is known about the molecular mechanisms by which they function, and their role in the reward system. We therefore aim to provide an overview of molecular mechanisms that have been studied in the hypothalamic glucose-sensing neurons, and investigate which of these transporters, enzymes and channels are present in the reward system. Furthermore, we speculate about the role of glucose-sensing neurons in the reward system.
Collapse
Affiliation(s)
- Laura L Koekkoek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Joram D Mul
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| |
Collapse
|
38
|
Abstract
The amygdala is a limbic brain region that plays a key role in emotional processing, neuropsychiatric disorders, and the emotional-affective dimension of pain. Preclinical and clinical studies have identified amygdala hyperactivity as well as impairment of cortical control mechanisms in pain states. Hyperactivity of basolateral amygdala (BLA) neurons generates enhanced feedforward inhibition and deactivation of the medial prefrontal cortex (mPFC), resulting in pain-related cognitive deficits. The mPFC sends excitatory projections to GABAergic neurons in the intercalated cell mass (ITC) in the amygdala, which project to the laterocapsular division of the central nucleus of the amygdala (CeLC; output nucleus) and serve gating functions for amygdala output. Impairment of these cortical control mechanisms allows the development of amygdala pain plasticity. Mechanisms of abnormal amygdala activity in pain with particular focus on loss of cortical control mechanisms as well as new strategies to correct pain-related amygdala dysfunction will be discussed in the present review.
Collapse
|
39
|
Nucleus Accumbens Shell Dopamine Preferentially Tracks Information Related to Outcome Value of Reward. eNeuro 2017; 4:eN-NWR-0058-17. [PMID: 28593190 PMCID: PMC5461554 DOI: 10.1523/eneuro.0058-17.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/06/2017] [Accepted: 05/05/2017] [Indexed: 11/23/2022] Open
Abstract
Effective decision-making requires organisms to predict reward values and bias behavior toward the best available option. The mesolimbic dopamine system, including the nucleus accumbens (NAc) shell and core, is involved in this process. Although studies support a role of the shell and core in specific aspects of decision-making (e.g., risk, effort, delay), no studies have directly compared dopamine release dynamics in these subregions to cues exclusively signaling the availability of different reward magnitudes. Here, fast-scan cyclic voltammetry was used to compare rapid dopamine release dynamics in the NAc subregions during a magnitude-based decision-making task. Rats learned that distinct cues signaled the availability of either a small or large reward (one or two sugar pellets), and then were given an opportunity to choose their preferred option. We found that peak dopamine release tracked the more preferred (higher-magnitude) option in both core and shell subregions. Critically, however, overall (i.e., global) dopamine release was significantly higher and longer lasting in the shell and tracked the preferred magnitude during the entire cue period. Further, in the shell (not core), dopamine signaling significantly declined immediately at the lever press for reward but increased during the period of reward consumption. Collectively, the results indicate that although dopamine release in both the core and shell are activated by cues signaling the opportunity to respond for rewards of different magnitudes, dopamine release in the shell plays a differential and unique role in tracking information related to the outcome value of reward.
Collapse
|
40
|
Xia X, Fan L, Cheng C, Eickhoff SB, Chen J, Li H, Jiang T. Multimodal connectivity-based parcellation reveals a shell-core dichotomy of the human nucleus accumbens. Hum Brain Mapp 2017; 38:3878-3898. [PMID: 28548226 DOI: 10.1002/hbm.23636] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 04/14/2017] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
The subdifferentiation of the nucleus accumbens (NAc) has been extensively studied using neuroanatomy and histochemistry, yielding a well-accepted dichotomic shell/core architecture that reflects dissociable roles, such as in reward and aversion, respectively. However, in vivo parcellation of these structures in humans has been rare, potentially impairing future research into the structural and functional characteristics and alterations of putative NAc subregions. Here, we used three complementary parcellation schemes based on tractography, task-independent functional connectivity, and task-dependent co-activation to investigate the regional differentiation within the NAc. We found that a 2-cluster solution with shell-like and core-like subdivisions provided the best description of the data and was consistent with the earlier anatomical shell/core architecture. The consensus clusters from this optimal solution, which was based on the three schemes, were used as the final parcels for the subsequent connection analyses. The resulting connectivity patterns presented inter-hemispheric symmetry, convergence and divergence across the modalities, and, most importantly, clearly distinct patterns between the two subregions. This convergent connectivity patterns also confirmed the connections in animal models, supporting views that the two subregions could have antagonistic roles in some circumstances. Finally, the identified parcels should be helpful in further neuroimaging studies of the NAc. Hum Brain Mapp 38:3878-3898, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoluan Xia
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen Cheng
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, 52425 Juelich, Germany.,Institute for Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Junjie Chen
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Haifang Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,The Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
41
|
Rodríguez-López C, Clascá F, Prensa L. The Mesoaccumbens Pathway: A Retrograde Labeling and Single-Cell Axon Tracing Analysis in the Mouse. Front Neuroanat 2017; 11:25. [PMID: 28396627 PMCID: PMC5367261 DOI: 10.3389/fnana.2017.00025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/10/2017] [Indexed: 11/23/2022] Open
Abstract
Neurons in the ventral tegmental area (VTA) that innervate the nucleus accumbens (Acb) constitute the so-called mesoaccumbens system. Increased activity by these neurons is correlated with the expectation and achievement of reward. The mesoaccumbens projection neurons are regarded as a central node in the brain networks that regulate drive and hedonic experience, and their dysregulation is a common pathophysiological step in addictive behaviors as well as major depression. Despite previous anatomical studies that have analyzed the origin of the mesoaccumbens axons within the VTA, regarded as a unit, the exact contributions of the various cytoarchitectural subdivisions of the VTA to this innervation is still unexplored; understanding these contributions would help further our understanding of their precise anatomical organization. With the aim of deciphering the contribution of the various VTA subdivisions to accumbal innervation, the present study has used retrograde tracer microinjections in the Acb to map the location within the various VTA subdivisions of neurons targeting either the shell or core compartments of the Acb in mice. Furthermore, the dopaminergic nature of these projections has also been analyzed using tyrosine-hydroxylase immunohistochemistry. We demonstrate here that small territories of the Acb core and shell are innervated simultaneously by many VTA subdivisions, contributing dopaminergic as well as non-dopaminergic axons to the accumbal innervation. In fact, single VTA subdivisions harbor both dopaminergic and non-dopaminergic neurons that project to the same accumbal territory. The most medial VTA subnuclei, like the caudal linear nucleus, project abundantly to medial aspects of the Acb core, whereas more lateral territories of the Acb are preferentially targeted by neurons located in the parabrachial pigmented and paranigral nuclei. Overall, about half of the mesoaccumbens neurons are putatively dopaminergic in mice. Anterograde single-cell labeling (Sindbis-pal-eGFP vector) of a limited sample of neurons revealed that mesoaccumbens neurons form profuse terminal arborizations to cover large volumes of either the Acb core or shell, and, unlike other VTA projection neuron populations, they do not branch to other striatal or extrastriatal structures. These anatomical observations are consistent with reports of an intense response in many Acb neurons after stimulation of very few VTA cells.
Collapse
Affiliation(s)
- Claudia Rodríguez-López
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid Madrid, Spain
| | - Francisco Clascá
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid Madrid, Spain
| | - Lucía Prensa
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
42
|
Sommer S, Hauber W. Ghrelin receptor activation in the ventral tegmental area amplified instrumental responding but not the excitatory influence of Pavlovian stimuli on instrumental responding. Neurobiol Learn Mem 2016; 134 Pt B:210-5. [DOI: 10.1016/j.nlm.2016.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
|
43
|
Bruce LL, Erichsen JT, Reiner A. Neurochemical compartmentalization within the pigeon basal ganglia. J Chem Neuroanat 2016; 78:65-86. [PMID: 27562515 DOI: 10.1016/j.jchemneu.2016.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 01/20/2023]
Abstract
The goals of this study were to use multiple informative markers to define and characterize the neurochemically distinct compartments of the pigeon basal ganglia, especially striatum and accumbens. To this end, we used antibodies against 12 different neuropeptides, calcium-binding proteins or neurotransmitter-related enzymes that are enriched in the basal ganglia. Our results clarify boundaries between previously described basal ganglia subdivisions in birds, and reveal considerable novel heterogeneity within these previously described subdivisions. Sixteen regions were identified that each displayed a unique neurochemical organization. Four compartments were identified within the dorsal striatal region. The neurochemical characteristics support previous comparisons to part of the central extended amygdala, somatomotor striatum, and associational striatum of mammals, respectively. The medialmost part of the medial striatum, however, has several unique features, including prominent pallidal-like woolly fibers and thus may be a region unique to birds. Four neurochemically distinct regions were identified within the pigeon ventral striatum: the accumbens, paratubercular striatum, ventrocaudal striatum, and the ventral area of the lateral part of the medial striatum that is located adjacent to these regions. The pigeon accumbens is neurochemically similar to the mammalian rostral accumbens. The pigeon paratubercular and ventrocaudal striatal regions are similar to the mammalian accumbens shell. The ventral portions of the medial and lateral parts of the medial striatum, which are located adjacent to accumbens shell-like areas, have neurochemical characteristics as well as previously reported limbic connections that are comparable to the accumbens core. Comparisons to neurochemically identified compartments in reptiles, mammals, and amphibians indicate that, although most of the basic compartments of the basal ganglia were highly conserved during tetrapod evolution, uniquely avian compartments may exist as well.
Collapse
Affiliation(s)
- Laura L Bruce
- Department of Biomedical Sciences, Creighton University, Omaha NE, 68178, USA.
| | | | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
44
|
Winn P. The Lateral Hypothalamus and Motivated Behavior: An Old Syndrome Reassessed and a New Perspective Gained. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2016. [DOI: 10.1111/1467-8721.ep10772629] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Philip Winn
- Lecturer in Psychology in the University of St. Andrews
| |
Collapse
|
45
|
Howard JD, Kahnt T, Gottfried JA. Converging prefrontal pathways support associative and perceptual features of conditioned stimuli. Nat Commun 2016; 7:11546. [PMID: 27143299 PMCID: PMC4857483 DOI: 10.1038/ncomms11546] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/07/2016] [Indexed: 11/09/2022] Open
Abstract
Perceptually similar stimuli often predict vastly different outcomes, requiring the brain to maintain specific associations in the face of potential ambiguity. This could be achieved either through local changes in stimulus representations, or through modulation of functional connections between stimulus-coding and outcome-coding regions. Here we test these competing hypotheses using classical conditioning of perceptually similar odours in the context of human fMRI. Pattern-based analyses of odour-evoked fMRI activity reveal that odour category, identity and value are coded in piriform (PC), orbitofrontal (OFC) and ventromedial prefrontal (vmPFC) cortices, respectively. However, we observe no learning-related reorganization of category or identity representations. Instead, changes in connectivity between vmPFC and OFC are correlated with learning-related changes in value, whereas connectivity changes between vmPFC and PC predict changes in perceived odour similarity. These results demonstrate that dissociable neural pathways support associative and perceptual representations of sensory stimuli. Animals often need to form specific associations between perceptually similar stimuli and the different outcomes they may predict. Howard et al. find that the human brain accomplishes this via enhanced coupling between stable codes of sensory features and flexible codes of stimulus reward value.
Collapse
Affiliation(s)
- James D Howard
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Thorsten Kahnt
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Jay A Gottfried
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
46
|
Preclinical studies on the reinforcing effects of cannabinoids. A tribute to the scientific research of Dr. Steve Goldberg. Psychopharmacology (Berl) 2016; 233:1845-66. [PMID: 27026633 PMCID: PMC5073892 DOI: 10.1007/s00213-016-4244-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/09/2016] [Indexed: 11/27/2022]
Abstract
RATIONALE The reinforcing effects of most abused drugs have been consistently demonstrated and studied in animal models, although those of marijuana were not, until the demonstration 15 years ago that delta-9-tetrahydrocannabinol (THC) could serve as a reinforcer in self-administration (SA) procedures in squirrel monkeys. Until then, those effects were inferred using indirect assessments. OBJECTIVES The aim of this manuscript is to review the primary preclinical procedures used to indirectly and directly infer reinforcing effects of cannabinoid drugs. METHODS Results will be reviewed from studies of cannabinoid discrimination, intracranial self-stimulation (ICSS), conditioned place preference (CPP), as well as change in levels of dopamine assessed in brain areas related to reinforcement, and finally from self-administration procedures. For each procedure, an evaluation will be made of the predictive validity in detecting the potential abuse liability of cannabinoids based on seminal papers, with the addition of selected reports from more recent years especially those from Dr. Goldberg's research group. RESULTS AND CONCLUSIONS ICSS and CPP do not provide consistent results for the assessment of potential for abuse of cannabinoids. However, drug discrimination and neurochemistry procedures appear to detect potential for abuse of cannabinoids, as well as several novel "designer cannabinoid drugs." Though after 15 years transfer of the self-administration model of marijuana abuse from squirrel monkeys to other species remains somewhat problematic, studies with the former species have substantially advanced the field, and several reports have been published with consistent self-administration of cannabinoid agonists in rodents.
Collapse
|
47
|
Mongia S, Tripathi A, Mengual E. Arborization patterns of amygdalopetal axons from the rat ventral pallidum. Brain Struct Funct 2016; 221:4549-4573. [PMID: 26832919 DOI: 10.1007/s00429-016-1184-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
Abstract
We previously analyzed the arborization patterns of rat ventral pallidal (VP) axons that coursed caudally to innervate the thalamus and brainstem (Tripathi et al. in Brain Struct Funct 218:1133-1157, 2013). Here, we have reconstructed 16 previously undetected axons from the same tracer deposits that follow a more lateral trajectory. Virtually all 16 axons emanating from the different VP compartments collateralized in the extended amygdala system (EAS) and amygdaloid complex. The most frequent targets of axons from the lateral and medial (VPm) VP compartments were the rostral sublenticular extended amygdala, the extended amygdala (EA), the central nucleus of the amygdala and the posterior part of the basolateral amygdaloid nucleus. In contrast, axons from the rostral extension of the VP preferentially innervated the anterior amygdaloid area, the magnocellular preoptic nucleus, and the anterior part of the basomedial amygdaloid nucleus. We additionally found and reconstructed a single corticopetal axon arising from the VPm. The new results show that both direct and indirect projections from the basolateral complex and EAS to the ventral striatopallidal system are reciprocated by VP projections, and suggest that the systems can be activated simultaneously. The results additionally suggest that the amygdaloid complex and cortex are innervated separately from the VP. Finally, the combination of new and previous data indicate that approximately 84 % of VP axons (88/105) participate in basal ganglia circuits, 15 % (16/105) target the amygdaloid complex, and less than 1 % innervate the cortex.
Collapse
Affiliation(s)
- S Mongia
- Departamento de Anatomía, Facultad de Medicina, Universidad de Navarra, Ed. Los Castaños, C/. Irunlarrea 1, 31008, Pamplona, Navarra, Spain
| | - A Tripathi
- Center for Applied Medical Research (CIMA), Division of Neurosciences, Universidad de Navarra, Pamplona, Spain.,Department of Integrative Medical Biology, Umeå University, 90187, Umeå, Sweden
| | - E Mengual
- Center for Applied Medical Research (CIMA), Division of Neurosciences, Universidad de Navarra, Pamplona, Spain. .,Departamento de Anatomía, Facultad de Medicina, Universidad de Navarra, Ed. Los Castaños, C/. Irunlarrea 1, 31008, Pamplona, Navarra, Spain.
| |
Collapse
|
48
|
Deep Brain Stimulation for Obesity: From a Theoretical Framework to Practical Application. Neural Plast 2015; 2016:7971460. [PMID: 26819774 PMCID: PMC4706960 DOI: 10.1155/2016/7971460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/14/2015] [Indexed: 12/11/2022] Open
Abstract
Obesity remains a pervasive global health problem. While there are a number of nonsurgical and surgical options for treatment, the incidence of obesity continues to increase at an alarming rate. The inability to curtail the growing rise of the obesity epidemic may be related to a combination of increased food availability and palatability. Research into feeding behavior has yielded a number of insights into the homeostatic and reward mechanisms that govern feeding. However, there remains a gap between laboratory investigations of feeding physiology in animals and translation into meaningful treatment options for humans. In addition, laboratory investigation may not be able to recapitulate all aspects of human food consumption. In a landmark pilot study of deep brain stimulation (DBS) of the lateral hypothalamic area for obesity, we found that there was an increase in resting metabolic rate as well as a decreased urge to eat. In this review, the authors will review some of the work relating to feeding physiology and research surrounding two nodes involved in feeding homeostasis, nucleus accumbens (NAc) and hypothalamus, and use this to provide a framework for future investigations of DBS as a viable therapeutic modality for obesity.
Collapse
|
49
|
Yetnikoff L, Cheng AY, Lavezzi HN, Parsley KP, Zahm DS. Sources of input to the rostromedial tegmental nucleus, ventral tegmental area, and lateral habenula compared: A study in rat. J Comp Neurol 2015; 523:2426-56. [PMID: 25940654 PMCID: PMC4575621 DOI: 10.1002/cne.23797] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/19/2015] [Accepted: 04/20/2015] [Indexed: 01/23/2023]
Abstract
Profound inhibitory control exerted on midbrain dopaminergic neurons by the lateral habenula (LHb), which has mainly excitatory outputs, is mediated by the GABAergic rostromedial tegmental nucleus (RMTg), which strongly innervates dopaminergic neurons in the ventral midbrain. Early reports indicated that the afferent connections of the RMTg, excepting its very strong LHb inputs, do not differ appreciably from those of the ventral tegmental area (VTA). Presumably, however, the RMTg contributes more to behavioral synthesis than to simply invert the valence of the excitatory signal coming from the LHb. Therefore, the present study was done to directly compare the inputs to the RMTg and VTA and, in deference to its substantial involvement with this circuitry, the LHb was also included in the comparison. Data indicated that, while the afferents of the RMTg, VTA, and LHb do originate within the same large pool of central nervous system (CNS) structures, each is also related to structures that project more strongly to it than to the others. The VTA gets robust input from ventral striatopallidum and extended amygdala, whereas RMTg biased inputs arise in structures with a more direct impact on motor function, such as deep layers of the contralateral superior colliculus, deep cerebellar and several brainstem nuclei, and, via a relay in the LHb, the entopeduncular nucleus. Input from the ventral pallidal-lateral preoptic-lateral hypothalamus continuum is strong in the RMTg and VTA and dominant in the LHb. Axon collateralization was also investigated, providing additional insights into the organization of the circuitry of this important triad of structures.
Collapse
Affiliation(s)
- Leora Yetnikoff
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Anita Y Cheng
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Heather N Lavezzi
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Kenneth P Parsley
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Daniel S Zahm
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
50
|
Zernig G, Pinheiro BS. Dyadic social interaction inhibits cocaine-conditioned place preference and the associated activation of the accumbens corridor. Behav Pharmacol 2015; 26:580-94. [PMID: 26221832 PMCID: PMC4523229 DOI: 10.1097/fbp.0000000000000167] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/23/2015] [Indexed: 01/05/2023]
Abstract
Impaired social interaction is a hallmark symptom of many psychiatric disorders. In substance use disorders, impaired social interaction is triply harmful (a) because addicts increasingly prefer the drug of abuse to the natural reward of drug-free social interaction, thus worsening the progression of the disease by increasing their drug consumption, (b) because treatment adherence and, consequently, treatment success itself depends on the ability of the recovering addict to maintain social interaction and adhere to treatment, and (c) because socially interacting with an individual suffering from a substance use disorder may be harmful for others. Helping the addict reorient his/her behavior away from the drug of abuse toward social interaction would therefore be of considerable therapeutic benefit. This article reviews our work on the neural basis of such a reorientation from cocaine, as a prototypical drug of abuse, toward dyadic (i.e. one-to-one) social interaction and compares our findings with the effects of other potentially beneficial interventions, that is, environmental enrichment or paired housing, on the activation of the accumbens and other brain regions involved in behavior motivated by drugs of abuse or nondrug stimuli. Our experimental models are based on the conditioned place preference paradigm. As the therapeutically most promising finding, only four 15 min episodes of dyadic social interaction were able to inhibit both the subsequent reacquisition/re-expression of preference for cocaine and the neural activation associated with this behavior, that is, an increase in the expression of the immediate early gene Early Growth Response protein 1 (EGR1, Zif268) in the nucleus accumbens, basolateral and central amygdala, and the ventral tegmental area. The time spent in the cocaine-associated conditioning compartment was correlated with the density of EGR1-activated neurons not only in the medial core (AcbCm) and medial shell (AcbShm) of the nucleus accumbens, but was observed in all regions medial to the anterior commissure ('accumbens corridor'), including (from medial to lateral), the vertical limb of the diagonal band and the medial septum (VDB+MS), the major island of Calleja and the intermediate nucleus of the lateral septum (ICjM+LSI), the AcbShm, and the AcbCm. All effects were limited to GABAergic projection neurons (called 'medium spiny neurons', in the accumbens), encompassing both dopamine D1 receptor-expressing and D2 receptor-expressing medium spiny neuron subtypes. Our EGR1 expression findings were mirrored in multielectrode array recordings. Finally, we have validated our paradigm in C57BL/6 mice to make use of the plethora of transgenic models available in this genus.
Collapse
Affiliation(s)
- Gerald Zernig
- Experimental Psychiatry Unit, Department of General Psychiatry and Social Psychiatry, Medical University of Innsbruck
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Barbara S. Pinheiro
- Experimental Psychiatry Unit, Department of General Psychiatry and Social Psychiatry, Medical University of Innsbruck
| |
Collapse
|