1
|
Jamal T, Yan X, Lantyer ADS, Ter Horst JG, Celikel T. Experience-dependent regulation of dopaminergic signaling in the somatosensory cortex. Prog Neurobiol 2024; 239:102630. [PMID: 38834131 DOI: 10.1016/j.pneurobio.2024.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
Dopamine critically influences reward processing, sensory perception, and motor control. Yet, the modulation of dopaminergic signaling by sensory experiences is not fully delineated. Here, by manipulating sensory experience using bilateral single-row whisker deprivation, we demonstrated that gene transcription in the dopaminergic signaling pathway (DSP) undergoes experience-dependent plasticity in both granular and supragranular layers of the primary somatosensory (barrel) cortex (S1). Sensory experience and deprivation compete for the regulation of DSP transcription across neighboring cortical columns, and sensory deprivation-induced changes in DSP are topographically constrained. These changes in DSP extend beyond cortical map plasticity and influence neuronal information processing. Pharmacological regulation of D2 receptors, a key component of DSP, revealed that D2 receptor activation suppresses excitatory neuronal excitability, hyperpolarizes the action potential threshold, and reduces the instantaneous firing rate. These findings suggest that the dopaminergic drive originating from midbrain dopaminergic neurons, targeting the sensory cortex, is subject to experience-dependent regulation and might create a regulatory feedback loop for modulating sensory processing. Finally, using topological gene network analysis and mutual information, we identify the molecular hubs of experience-dependent plasticity of DSP. These findings provide new insights into the mechanisms by which sensory experience shapes dopaminergic signaling in the brain and might help unravel the sensory deficits observed after dopamine depletion.
Collapse
Affiliation(s)
- Tousif Jamal
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Xuan Yan
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | | | - Judith G Ter Horst
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Tansu Celikel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
2
|
Tanaka DH, Li S, Mukae S, Tanabe T. Genetic recombination in disgust-associated bitter taste-responsive neurons of the central nucleus of amygdala in male mice. Neurosci Lett 2020; 742:135456. [PMID: 33290837 DOI: 10.1016/j.neulet.2020.135456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/23/2020] [Accepted: 10/11/2020] [Indexed: 11/18/2022]
Abstract
A bitter substance induces specific orofacial and somatic behavioral reactions such as gapes in mice as well as monkeys and humans. These reactions have been proposed to represent affective disgust, and therefore, understanding the neuronal basis of the reactions would pave the way to understand affective disgust. It is crucial to identify and access the specific neuronal ensembles that are activated by bitter substances, such as quinine, the intake of which induces disgust reactions. However, the method to access the quinine-activated neurons has not been fully established yet. Here, we show evidence that a targeted recombination in active populations (TRAP) method, induces genetic recombination in the quinine-activated neurons in the central nucleus of the amygdala (CeA). CeA is one of the well-known emotional centers of the brain. We found that the intraoral quinine infusion, that resulted in disgust reactions, increased both cFos-positive cells and Arc-positive cells in the CeA. By using Arc-CreER;Ai3 TRAP mice, we induced genetic recombination in the quinine-activated neurons and labelled them with fluorescent protein. We confirmed that the quinine-TRAPed fluorescently-labelled cells preferentially coexpressed Arc after quinine infusion. Our results suggest that the TRAP method can be used to access specific functional neurons in the CeA.
Collapse
Affiliation(s)
- Daisuke H Tanaka
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 Japan
| | - Shusheng Li
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 Japan
| | - Shiori Mukae
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 Japan
| | - Tsutomu Tanabe
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 Japan.
| |
Collapse
|
3
|
Zolnik TA, Sha F, Johenning FW, Schreiter ER, Looger LL, Larkum ME, Sachdev RNS. All-optical functional synaptic connectivity mapping in acute brain slices using the calcium integrator CaMPARI. J Physiol 2016; 595:1465-1477. [PMID: 27861906 DOI: 10.1113/jp273116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/04/2016] [Indexed: 01/28/2023] Open
Abstract
KEY POINTS The genetically encoded fluorescent calcium integrator calcium-modulated photoactivatable ratiobetric integrator (CaMPARI) reports calcium influx induced by synaptic and neural activity. Its fluorescence is converted from green to red in the presence of violet light and calcium. The rate of conversion - the sensitivity to activity - is tunable and depends on the intensity of violet light. Synaptic activity and action potentials can independently initiate significant CaMPARI conversion. The level of conversion by subthreshold synaptic inputs is correlated to the strength of input, enabling optical readout of relative synaptic strength. When combined with optogenetic activation of defined presynaptic neurons, CaMPARI provides an all-optical method to map synaptic connectivity. ABSTRACT The calcium-modulated photoactivatable ratiometric integrator (CaMPARI) is a genetically encoded calcium integrator that facilitates the study of neural circuits by permanently marking cells active during user-specified temporal windows. Permanent marking enables measurement of signals from large swathes of tissue and easy correlation of activity with other structural or functional labels. One potential application of CaMPARI is labelling neurons postsynaptic to specific populations targeted for optogenetic stimulation, giving rise to all-optical functional connectivity mapping. Here, we characterized the response of CaMPARI to several common types of neuronal calcium signals in mouse acute cortical brain slices. Our experiments show that CaMPARI is effectively converted by both action potentials and subthreshold synaptic inputs, and that conversion level is correlated to synaptic strength. Importantly, we found that conversion rate can be tuned: it is linearly related to light intensity. At low photoconversion light levels CaMPARI offers a wide dynamic range due to slower conversion rate; at high light levels conversion is more rapid and more sensitive to activity. Finally, we employed CaMPARI and optogenetics for functional circuit mapping in ex vivo acute brain slices, which preserve in vivo-like connectivity of axon terminals. With a single light source, we stimulated channelrhodopsin-2-expressing long-range posteromedial (POm) thalamic axon terminals in cortex and induced CaMPARI conversion in recipient cortical neurons. We found that POm stimulation triggers robust photoconversion of layer 5 cortical neurons and weaker conversion of layer 2/3 neurons. Thus, CaMPARI enables network-wide, tunable, all-optical functional circuit mapping that captures supra- and subthreshold depolarization.
Collapse
Affiliation(s)
- Timothy A Zolnik
- Neurocure Center for Excellence, Chariteplatz 1/Virchowweg 6, Charité Universitätsmedizin Berlin and Humboldt Universität, Berlin, 10117, Germany
| | - Fern Sha
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147, USA
| | - Friedrich W Johenning
- Neuroscience Research Center, Charité Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
| | - Eric R Schreiter
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147, USA
| | - Loren L Looger
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147, USA
| | - Matthew E Larkum
- Neurocure Center for Excellence, Chariteplatz 1/Virchowweg 6, Charité Universitätsmedizin Berlin and Humboldt Universität, Berlin, 10117, Germany
| | - Robert N S Sachdev
- Neurocure Center for Excellence, Chariteplatz 1/Virchowweg 6, Charité Universitätsmedizin Berlin and Humboldt Universität, Berlin, 10117, Germany
| |
Collapse
|
4
|
Kawashima T, Okuno H, Bito H. A new era for functional labeling of neurons: activity-dependent promoters have come of age. Front Neural Circuits 2014; 8:37. [PMID: 24795570 PMCID: PMC4005930 DOI: 10.3389/fncir.2014.00037] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 04/01/2014] [Indexed: 12/03/2022] Open
Abstract
Genetic labeling of neurons with a specific response feature is an emerging technology for precise dissection of brain circuits that are functionally heterogeneous at the single-cell level. While immediate early gene mapping has been widely used for decades to identify brain regions which are activated by external stimuli, recent characterization of the promoter and enhancer elements responsible for neuronal activity-dependent transcription have opened new avenues for live imaging of active neurons. Indeed, these advancements provided the basis for a growing repertoire of novel experiments to address the role of active neuronal networks in cognitive behaviors. In this review, we summarize the current literature on the usage and development of activity-dependent promoters and discuss the future directions of this expanding new field.
Collapse
Affiliation(s)
- Takashi Kawashima
- Department of Neurochemistry, Graduate School of Medicine, The University of TokyoTokyo, Japan
| | - Hiroyuki Okuno
- Department of Neurochemistry, Graduate School of Medicine, The University of TokyoTokyo, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of TokyoTokyo, Japan
- Core Research for Evolutionary Science and Technology, Japan Science and Technology AgencySaitama, Japan
| |
Collapse
|
5
|
Addiction-related gene regulation: risks of exposure to cognitive enhancers vs. other psychostimulants. Prog Neurobiol 2012; 100:60-80. [PMID: 23085425 DOI: 10.1016/j.pneurobio.2012.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/02/2012] [Accepted: 10/08/2012] [Indexed: 01/09/2023]
Abstract
The psychostimulants methylphenidate (Ritalin, Concerta), amphetamine (Adderall), and modafinil (Provigil) are widely used in the treatment of medical conditions such as attention-deficit hyperactivity disorder and narcolepsy and, increasingly, as "cognitive enhancers" by healthy people. The long-term neuronal effects of these drugs, however, are poorly understood. A substantial amount of research over the past two decades has investigated the effects of psychostimulants such as cocaine and amphetamines on gene regulation in the brain because these molecular changes are considered critical for psychostimulant addiction. This work has determined in some detail the neurochemical and cellular mechanisms that mediate psychostimulant-induced gene regulation and has also identified the neuronal systems altered by these drugs. Among the most affected brain systems are corticostriatal circuits, which are part of cortico-basal ganglia-cortical loops that mediate motivated behavior. The neurotransmitters critical for such gene regulation are dopamine in interaction with glutamate, while other neurotransmitters (e.g., serotonin) play modulatory roles. This review presents (1) an overview of the main findings on cocaine- and amphetamine-induced gene regulation in corticostriatal circuits in an effort to provide a cellular framework for (2) an assessment of the molecular changes produced by methylphenidate, medical amphetamine (Adderall), and modafinil. The findings lead to the conclusion that protracted exposure to these cognitive enhancers can induce gene regulation effects in corticostriatal circuits that are qualitatively similar to those of cocaine and other amphetamines. These neuronal changes may contribute to the addiction liability of the psychostimulant cognitive enhancers.
Collapse
|
6
|
Wada M, Watanabe S, Chung UI, Higo N, Taniguchi T, Kitazawa S. Noninvasive bioluminescence imaging of c-fos expression in the mouse barrel cortex. Behav Brain Res 2009; 208:158-62. [PMID: 19931567 DOI: 10.1016/j.bbr.2009.11.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 11/07/2009] [Accepted: 11/15/2009] [Indexed: 10/20/2022]
Abstract
Expression of immediate early genes, such as c-fos, has been extensively used as a marker of neural activity. However, their expression in the brain has so far been examined by using invasive procedures. In this study, we tried to image c-fos expression in the mouse barrel cortex noninvasively by detecting bioluminescence produced by the reporter luciferase. To detect asymmetry in c-fos expression in the bilateral barrel cortices, we used ten Fos-Luc mice and removed long whiskers on one side. After 1h of exploration in a novel cage, luciferin was intraperitoneally administrated under gas anesthesia and bioluminescence was measured with a cooled CCD camera. We observed moderate but clear emission over the head that was significantly stronger on the side of removal. After regrowth of the whiskers, the same mice had the vibrissae clipped on the other side. Bioluminescence was again dominant on the side of removal. In three of the mice, c-fos expression was examined immunohistochemically. The distribution of bioluminescence generally agreed with that of the c-fos positive cells though the bioluminescence tended to distribute wider, by around 0.5mm, probably due to scattering of light through the tissues. The results show that expression of c-fos in the mouse barrel cortex can be imaged repeatedly and noninvasively in the living animal.
Collapse
Affiliation(s)
- Makoto Wada
- Department of Physiology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo, Tokyo 113-8421, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Mundiñano IC, Martínez-Millán L. Somatosensory cross-modal plasticity in the superior colliculus of visually deafferented rats. Neuroscience 2009; 165:1457-70. [PMID: 19932888 DOI: 10.1016/j.neuroscience.2009.11.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 11/18/2022]
Abstract
The effects of neonatal visual deafferentation on the final adult pattern of cortico-collicular connections from the rat primary somatosensory cortex barrel field were studied by injecting an anterograde tracer (BDA) into different locations of the barrel cortex. Collicular afferents originating in the barrel cortex normally end in the intermediate collicular strata (SGI and SAI). However, neonatal visual deafferentation caused an invasion of abundant somatosensory cortical afferents into the lateral portions of the superficial collicular strata (SGS and SO). Moreover, anterograde-labelled fibers in the intermediate strata were more densely packed in visually deafferented animals. In order to study the activity of the altered somatosensory cortico-collicular connection, the effects of two different types of whisker stimuli on c-fos expression in the SC were analyzed (apomorphine treatment and enriched environment exploration). In stimulated control animals, c-fos expression was clearly evident in neurons of the intermediate layers 2 h after whisker stimulation. Similar stimulation in adult animals that underwent neonatal visual deafferentation triggered higher levels of c-fos expression in the superficial collicular layers that were invaded by cortico-collicular axonal branches. In exploration experiments, increased levels of c-fos expression were also detected in lateral parts of the intermediate layers of visually deafferented animals. These results suggest that the ascending fibers of somatosensory cortical origin can recruit deafferented superficial collicular neurons that enabling them to participate in extravisual behavioural responses mediated by collicular circuits.
Collapse
Affiliation(s)
- I C Mundiñano
- Laboratory of Regenerative Therapy, Department of Neurology and Neuroscience Division, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | |
Collapse
|
8
|
Olivier JDA, de Jong TR, Jos Dederen P, van Oorschot R, Heeren D, Pattij T, Waldinger MD, Coolen LM, Cools AR, Olivier B, Veening JG. Effects of acute and chronic apomorphine on sex behavior and copulation-induced neural activation in the male rat. Eur J Pharmacol 2007; 576:61-76. [PMID: 17826765 DOI: 10.1016/j.ejphar.2007.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 08/13/2007] [Accepted: 08/15/2007] [Indexed: 12/20/2022]
Abstract
Apomorphine is a non-selective dopaminergic receptor agonist. Because of its pro-erectile effects, apomorphine is clinically used for treatment of erectile dysfunction. We investigated the effects of subcutaneous apomorphine administration (0.4 mg/kg rat) on sexual behavior and mating-induced Fos-expression following acute (day 1) or chronic apomorphine treatment (days 8 and 15) in sexually experienced male rats. Consistent facilitatory effects of apomorphine were observed in the reduced numbers of mounts and intromissions over time and an increased ejaculation frequency on day 1. The first post-ejaculatory interval, however, was lengthened, while other behavioral parameters were unaffected. Fos-immunoreactivity induced by acute apomorphine administration (barrel cortex, paraventricular hypothalamic nucleus, central amygdala and locus coeruleus) was strongly reduced after chronic administration. After mating, induction of Fos-immunoreactivity was observed in well-known areas like medial preoptic nucleus and the posterodorsal medial amygdaloid area. Apomorphine, however, reduced mating-induced Fos-immunoreactivity in the nucleus accumbens shell and prevented its occurrence in its core area. This remarkable apomorphine effect was not observed in any other brain area. We conclude that the behavioral (pro-erectile) effects of apomorphine are consistent over time, and that the diminished accumbens-Fos-immunoreactivity and the elongated post-ejaculatory interval may reflect a decreased response to remote cues from the estrus female.
Collapse
|
9
|
Hasen NS, Gammie SC. Maternal aggression: New insights from Egr-1. Brain Res 2006; 1108:147-56. [PMID: 16828713 DOI: 10.1016/j.brainres.2006.06.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 05/17/2006] [Accepted: 06/03/2006] [Indexed: 01/28/2023]
Abstract
Lactating mice display fierce aggression towards novel, male mice. This study compares neuronal activity in the brains of aggression-tested (T) and -untested (U) mice using early growth response factor 1 (Egr-1; also known as Krox 24, NGFI-A, Zif268, Tis8, and ZENK) as a measure of neuronal activity. Animals were sampled 90 min after either a sham or real 7-min test with a male intruder, after which their brains were examined for immunoreactivity to Egr-1 (Egr-IR). Significant increases in Egr-IR in T mice were identified in 11 of 40 brain regions, including paraventricular nucleus of the hypothalamus; anterior and lateral hypothalamus (both posterior portion); ventromedial hypothalamus; lateral periaqueductal gray; and medial, central, and basolateral amygdala. Posterodorsal (MePD) and posteroventral medial amygdala were examined for the first time in association with maternal aggression. MePD, a region associated with both sexual and aggressive behaviors in rats, hamsters, and mice, showed increased Egr-IR in association with testing. Taken together, the results from this study provide new insights into the neural circuits regulating maternal behaviors.
Collapse
Affiliation(s)
- Nina S Hasen
- Department of Zoology, University of Wisconsin, Madison, 53706, USA.
| | | |
Collapse
|
10
|
Yano M, Beverley JA, Steiner H. Inhibition of methylphenidate-induced gene expression in the striatum by local blockade of D1 dopamine receptors: interhemispheric effects. Neuroscience 2006; 140:699-709. [PMID: 16549270 DOI: 10.1016/j.neuroscience.2006.02.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 02/02/2006] [Accepted: 02/08/2006] [Indexed: 10/24/2022]
Abstract
Psychostimulants change the function of cortico-basal ganglia circuits. Some of these effects are mediated by altered gene regulation in projection neurons of the striatum which participate in these circuits. Psychostimulant-induced changes in gene expression in these neurons are a consequence of excessive stimulation of G-protein-coupled receptors, particularly the D1 dopamine receptor subtype. Recent findings show that the psychostimulant methylphenidate, which causes dopamine overflow in the striatum, produces changes in striatal gene regulation similar, but not identical, to those induced by psychostimulants such as cocaine and amphetamine. We investigated, in rats, the role of striatal D1 receptors in methylphenidate-induced gene expression, by intrastriatal administration of the D1 receptor antagonist SCH-23390. Effects on the expression of two plasticity-related molecules, the transcription factor zif 268 and the synaptic plasticity factor Homer 1a, in the striatum and cortex were assessed. Intrastriatal infusion of SCH-23390 (2-10 microg) attenuated zif 268 and Homer 1a mRNA expression induced by methylphenidate (10 mg/kg, i.p.) in a dose-dependent manner. Moreover, this unilateral SCH-23390 infusion not only inhibited gene induction at the infusion site in the central striatum, but also in distant striatal regions including the nucleus accumbens, as well as throughout the entire contralateral striatum. These results indicate that striatal D1 receptors are critical for gene induction by methylphenidate. Moreover, the ipsilateral and contralateral effects of local SCH-23390 administration suggest that D1 receptor-stimulated striatal output exerts robust control over widespread striatal activities/gene expression via regulation of input to the striatum.
Collapse
Affiliation(s)
- M Yano
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science/The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | | | |
Collapse
|
11
|
Knapska E, Kaczmarek L. A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Prog Neurobiol 2005; 74:183-211. [PMID: 15556287 DOI: 10.1016/j.pneurobio.2004.05.007] [Citation(s) in RCA: 302] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Accepted: 05/26/2004] [Indexed: 11/25/2022]
Abstract
Zif268 is a transcription regulatory protein, the product of an immediate early gene. Zif268 was originally described as inducible in cell cultures; however, it was later shown to be activated by a variety of stimuli, including ongoing synaptic activity in the adult brain. Recently, mice with experimentally mutated zif268 gene have been obtained and employed in neurobiological research. In this review we present a critical overview of Zif268 expression patterns in the naive brain and following neuronal stimulation as well as functional data with Zif268 mutants. In conclusion, we suggest that Zif268 expression and function should be considered in a context of neuronal activity that is tightly linked to neuronal plasticity.
Collapse
Affiliation(s)
- Ewelina Knapska
- Department of Neurophysiology, Nencki Institute, Pasteura 3, 02-093 Warsaw, Poland
| | | |
Collapse
|
12
|
Luhmann HJ, Huston JP, Hasenöhrl RU. Contralateral increase in thigmotactic scanning following unilateral barrel-cortex lesion in mice. Behav Brain Res 2005; 157:39-43. [PMID: 15617769 DOI: 10.1016/j.bbr.2004.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 06/08/2004] [Accepted: 06/08/2004] [Indexed: 11/24/2022]
Abstract
Adult C57BL/6 mice received uni- or bilateral cryogenic or sham-lesions over the barrel field and their exploratory behaviour was assessed in an open field between 1 and 7 days post-lesion. Bilateral cortical lesions produced a short-lasting increase in thigmotactic scanning with both sides of the face on the first day of testing. Mice with a unilateral barrel-cortex lesion showed more contralateral wall scanning with a recovery to behavioural symmetry after 5-7 days. Furthermore, the increase in contralateral thigmotaxis was most pronounced in animals with damage to the left barrel field, indicative of a lateralization of the lesion-induced behavioural changes. The cortical lesions did not influence locomotor activity and the rate of habituation to the open field (habituation 'learning'). Referring to recent electrophysiological findings, we hypothesize that the lesion established a lateralized source of increased neuronal excitability within the affected barrel-cortex, leading to more behaviour with its corresponding vibrissae. Alternatively, if the lesion results in contralateral 'neglect' in terms of input, the increased scanning with the affected vibrissae may reflect an attempt of the system to compensate for this with an increase in usage.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology and Pathophysiology, University of Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | | | | |
Collapse
|
13
|
Yano M, Steiner H. Methylphenidate (Ritalin) induces Homer 1a and zif 268 expression in specific corticostriatal circuits. Neuroscience 2005; 132:855-65. [PMID: 15837145 DOI: 10.1016/j.neuroscience.2004.12.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2004] [Indexed: 11/19/2022]
Abstract
Corticostriatal circuits participate in limbic, attentional, motor and other networks, and are implicated in psychostimulant addiction. The psychostimulant methylphenidate is used in the treatment of attention-deficit hyperactivity disorder and for recreational purposes. Recent studies indicate that methylphenidate alters gene expression in striatal neurons. We investigated whether methylphenidate affects gene regulation in specific corticostriatal circuits, by comparing drug-induced molecular changes in different functional domains of the striatum with changes in their cortical input regions. In order to assess the potential functional significance of methylphenidate-induced molecular changes, we examined members of two different classes of plasticity-related molecules, the transcription factor zif 268 and the synaptic plasticity factor Homer 1a. Acute methylphenidate administration in adult rats increased the expression of Homer 1a and zif 268 in both cortex and striatum in a dose-dependent and regionally selective manner. These changes in gene expression occurred after doses of 2 mg/kg (i.p.) and higher, and were highly correlated between cortical regions and their striatal targets. In the cortex, increases were maximal in the medial agranular (premotor) and cingulate cortex, followed by motor and somatosensory cortex, and were minimal in the insular cortex. Correspondingly, in the striatum, increases were most robust in sensorimotor sectors that receive medial agranular input, and were weaker or absent in ventral sectors. The methylphenidate-induced increases in cortical Homer 1a and zif 268 expression were also correlated with increases in striatal substance P and dynorphin expression (direct pathway). Overall, the regional distribution of methylphenidate-induced molecular changes in the striatum was similar to that of changes induced by psychostimulants such as cocaine. These findings demonstrate that methylphenidate affects transcription and synaptic plasticity regulatory proteins in specific corticostriatal circuits, including those implicated in attentional functions and psychostimulant addiction. Such methylphenidate-induced gene regulation may contribute to the therapeutic effects and/or abuse liability of this psychostimulant.
Collapse
Affiliation(s)
- M Yano
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science/The Chicago Medical School, North Chicago, IL 60064, USA
| | | |
Collapse
|
14
|
Bisler S, Schleicher A, Gass P, Stehle JH, Zilles K, Staiger JF. Expression of c-Fos, ICER, Krox-24 and JunB in the whisker-to-barrel pathway of rats: time course of induction upon whisker stimulation by tactile exploration of an enriched environment. J Chem Neuroanat 2002; 23:187-98. [PMID: 11861125 DOI: 10.1016/s0891-0618(01)00155-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Modified tactile information has been shown to induce adaptive plasticity in the somatosensory cortex of rat. The cellular mechanisms resulting in plastic neuronal responses, however, are largely unknown. Inducible transcription factors have been proposed as one major link in the cascade from modified input to altered neuronal structure and function. We investigated the spatial and temporal patterns of transcription factor induction in the rat whisker-to-barrel pathway by placing the animals in a novel, enriched environment while having clipped sets of whiskers on one side of the face. Such stimulation resulted not only in a specific c-Fos induction in brainstem barrelettes and thalamic barreloids, but also in the barrel-related cortical columns, each with different time courses. In the barrel cortex, c-Fos and Krox-24 immunostaining showed a rapid induction with peak levels at 1 h and a return to basal levels after 14 h. JunB was induced after 1 h of exploration, declined at 6 h and returned to basal levels after this time point. The inducible cyclic AMP early repressor (ICER), a transcription factor of the cAMP signaling pathway, showed a maximum after 6 h, decreased slowly, but elevated levels were still detectable after 5 days. Our data demonstrate that upon whisker stimulation by exploration of a novel, enriched environment, (i) subcortical relay stations in the whisker-to-barrel pathway are able to express elevated levels of c-Fos and (ii) in the barrel cortex c-Fos, JunB, Krox-24 and ICER are differentially regulated in the temporal domain.
Collapse
Affiliation(s)
- Sebastian Bisler
- C.&O. Vogt-Institut für Hirnforschung, Heinrich-Heine-Universität, Universitätsstr. 1, D-40225 Dusseldorf, Germany
| | | | | | | | | | | |
Collapse
|
15
|
O'Dell SJ, Marshall JF. Effects of vibrissae removal on methamphetamine-induced damage to rat somatosensory cortical neurons. Synapse 2002; 43:122-30. [PMID: 11754491 DOI: 10.1002/syn.10016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Repeated methamphetamine (mAMPH) damages forebrain monoamine terminals and causes degeneration of nonmonoaminergic cell bodies in rat primary somatosensory cortex (S1). These degenerating cortical neurons can be labeled with the fluorochrome dye Fluoro-Jade (FJ) and are found almost exclusively in layers II/III and IV of the vibrissae representation in S1. Within S1, layer IV is organized into discrete, anatomically identifiable units termed barrels, each of which receives information from a single whisker. We previously reported that mAMPH-damaged neurons in S1 were located within the whisker barrels, suggesting that the prolonged mAMPH-induced whisking contributes to S1 neuronal injury. Here, we investigate effects of vibrissae removal on mAMPH-induced damage to S1 neurons. Rats were anesthetized and vibrissae were trimmed from either the left, right, or neither side of the snout. The next day they were given four injections of either saline (1 ml/kg, s.c.) or mAMPH (4 mg/kg, s.c.) at 2-h intervals. Three days later, cortical sections were processed for FJ histochemistry. The hemivibrissotomy produces a hemispheric asymmetry in FJ-positive neurons in barrel cortex, with fewer damaged neurons contralateral than ipsilateral to whisker removal. Taken together with the demonstration that acute injection of this dose of mAMPH induces the immediate early gene zif/268 and Fos protein in barrel cortex, these data suggest that the prolonged behavioral activity involving the vibrissae contributes to the mAMPH-induced damage to S1 neurons. Thus, some of the injurious effects of drugs may depend on afferent activity occurring as a result of the abnormal behaviors evoked by their administration.
Collapse
Affiliation(s)
- Steven J O'Dell
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA.
| | | |
Collapse
|
16
|
Filipkowski RK, Rydz M, Kaczmarek L. Expression of c-Fos, Fos B, Jun B, and Zif268 transcription factor proteins in rat barrel cortex following apomorphine-evoked whisking behavior. Neuroscience 2002; 106:679-88. [PMID: 11682155 DOI: 10.1016/s0306-4522(01)00310-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Apomorphine-evoked expression of transcription factor proteins: c-Fos, Fos B, Jun B, and Zif268 (also named Krox-24, NGFI-A, Egr-1), was investigated in rat somatosensory (barrel) cortex. The effect of the N-methyl-D-aspartate receptor antagonist MK-801 on their expression was also analyzed. Apomorphine is a dopamine receptor agonist, eliciting motor activity, including enhanced whisking leading to the activation of vibrissae representation in the barrel cortex. Rats had their whiskers clipped on one side of the snout. The Zif268 levels were markedly reduced by this procedure alone. In contrast, apomorphine (5.0 mg/kg) evoked marked c-Fos elevation, less pronounced changes in Jun B and Zif268 and no change in Fos B. The greatest apomorphine-evoked c-Fos accumulation was observed in layers IV and V/VI of non-deprived barrel cortex and was not significantly influenced by MK-801 injection at 0.1 mg/kg. A higher dose of MK-801 (1.0 mg/kg) produced abnormalities in locomotor behavior and diminished c-Fos levels on the non-deprived side to the ones observed in the sensory stimulus-deprived cortex. We conclude that the response of the somatosensory cortex is selective with respect to both the gene activated and its cortical layer localization. Furthermore, sensory stimulation provides a major but not the only component to apomorphine-evoked barrel cortex gene activation.
Collapse
Affiliation(s)
- R K Filipkowski
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Warsaw, Poland.
| | | | | |
Collapse
|
17
|
Abstract
The way genetic and/or environmental factors influence psychiatric disorders is an enduring question in the field of human psychiatric diseases. Anxiety-related disorders provide a relevant example of how such an interaction is involved in the aetiology of a psychiatric disease. In this paper we review the literature on that subject, reporting data derived from human and rodent studies. We present in a critical way the animal models used in the studies aimed at investigating the genetic basis of anxiety, including inbred mice, selected lines, multiple marker strains, or knockout mice and review data reporting environmental components influencing anxiety-related behaviours. We conclude that anxiety is a complex behaviour, underlined not only by genetic or environmental factors but also by multiple interactions between these two factors.
Collapse
Affiliation(s)
- Yan Clément
- Université Reims Champagne-Ardenne, Taittinger, Reims Cedex, France
| | | | | |
Collapse
|
18
|
Chapter I Methods used in inducible transcription factor studies: focus on mRNA. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0924-8196(02)80012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
19
|
Chaudhuri A, Zangenehpour S. Chapter V Molecular activity maps of sensory function. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0924-8196(02)80016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
20
|
Steiner H, Kitai ST. Unilateral striatal dopamine depletion: time-dependent effects on cortical function and behavioural correlates. Eur J Neurosci 2001; 14:1390-404. [PMID: 11703467 DOI: 10.1046/j.0953-816x.2001.01756.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previously, we showed that unilateral blockade of D1 dopamine receptors in the striatum inhibits immediate-early gene expression bilaterally throughout large parts of the cortex, including sensory-evoked expression in the barrel cortex. To further investigate this dopamine regulation of cortical function, we examined the effects of dopamine depletion on cortical gene regulation and behavioural correlates. Two days after unilateral infusion of 6-hydroxydopamine into the midbrain, rats displayed a (to some degree) bilateral reduction in cortical zif 268 expression that was more pronounced on the lesioned side. This decrease was found across motor, somatosensory, insular and piriform, but not cingulate, cortex, similar to the effects of blockade of striatal D1 receptors. Furthermore, whisker stimulation-evoked c-fos and zif 268 expression in the barrel cortex ipsilateral to the lesion was also attenuated by acute dopamine depletion. These cortical deficits were accompanied by a breakdown of spontaneous behaviours in an open-field test. In contrast, 21 days after dopamine depletion, both basal and sensory-evoked gene expression in the cortex were near-normal. This cortical recovery was paralleled by recovery in locomotion and in sensory-guided behaviour (scanning) related to the hemisphere contralateral to the lesion, but not in scanning by the dopamine-depleted hemisphere. Our results suggest that striatal dopamine exerts a widespread facilitatory influence on cortical function that is necessary, but not sufficient, for normal behaviour. Moreover, the mechanisms mediating this cortical facilitation appear to be subject to substantial neuroplasticity after dopamine perturbation.
Collapse
Affiliation(s)
- H Steiner
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis, TN 38163, USA.
| | | |
Collapse
|
21
|
Dassesse D, Massie A, Ferrari R, Ledent C, Parmentier M, Arckens L, Zoli M, Schiffmann SN. Functional striatal hypodopaminergic activity in mice lacking adenosine A(2A) receptors. J Neurochem 2001; 78:183-98. [PMID: 11432985 DOI: 10.1046/j.1471-4159.2001.00389.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenosine and caffeine modulate locomotor activity and striatal gene expression, partially through the activation and blockade of striatal A(2A) receptors, respectively. The elucidation of the roles of these receptors benefits from the construction of A(2A) receptor-deficient mice (A(2A)-R(-/-)). These mice presented alterations in locomotor behaviour and striatal expression of genes studied so far, which are unexpected regarding the specific expression of A(2A) receptor by striatopallidal neurones. To clarify the functions of A(2A) receptors in the striatum and to identify the mechanisms leading to these unexpected modifications, we studied the basal expression of immediate early and constitutive genes as well as dopamine and glutamate neurotransmission in the striatum. Basal zif268 and arc mRNAs expression was reduced in mutant mice by 60-80%, not only in the striatum but also widespread in the cerebral cortex and hippocampus. Striatal expression of substance P and enkephalin mRNAs was reduced by about 50% and 30%, respectively, whereas the expression of GAD67 and GAD65 mRNAs was slightly increased and unaltered, respectively. In vivo microdialysis in the striatum revealed a 45% decrease in the extracellular dopamine concentration and three-fold increase in extracellular glutamate concentration. This was associated with an up-regulation of D(1) and D(2) dopamine receptors expression but not with changes in ionotropic glutamate receptors. The levels of tyrosine hydroxylase and of striatal and cortical glial glutamate transporters as well as adenosine A(1) receptors expression were indistinguishable between A(2A)-R(-/-) and wild-type mice. Altogether these results pointed out that the lack of A(2A) receptors leads to a functional hypodopaminergic state and demonstrated that A(2A) receptors are necessary to maintain a basal level in immediate early and constitutive genes expression in the striatum and cerebral cortex, possibly via their control of dopamine pathways.
Collapse
Affiliation(s)
- D Dassesse
- European Graduate School of Neuroscience (EURON), Laboratory of Neurophysiology, Department of Neuroscience, Université Libre de Bruxelles, Campus Erasme, 808 route de Lennik, 1070 Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Brandt JA, Churchill L, Guan Z, Fang J, Chen L, Krueger JM. Sleep deprivation but not a whisker trim increases nerve growth factor within barrel cortical neurons. Brain Res 2001; 898:105-12. [PMID: 11292453 DOI: 10.1016/s0006-8993(01)02149-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sleep is hypothesized to influence activity-driven changes in the brain microcircuitry. A change in the barrel cortex following the removal of the mystacial whiskers in rats is a model for synaptic plasticity. This model was combined with sleep deprivation and immunoreactivity for nerve growth factor (NGF) was determined. Sleep deprivation for 6 h after light onset significantly increased the number of NGF-immunoreactive pyramidal neurons in layer V of the barrel cortex. However, unilateral trimming of mystacial whiskers did not affect NGF immunoreactivity in the contralateral or ipsilateral barrel cortices when rats were allowed to sleep. If the rats received a unilateral whisker cut at light onset, and subsequently were deprived of sleep, increases in the NGF-immunoreactive neurons were only observed in the barrel cortex on the side that received input from the remaining intact whiskers. In contrast, NGF immunoreactivity on the side contralateral to the cut whiskers decreased in sleep-deprived animals to levels below those observed in the control animals that were allowed to sleep. These results suggest that NGF expression is influenced by the interaction of sleep, afferent input and the nature of ongoing synaptic reorganization. Further, results are consistent with the hypothesis that growth factors, such as NGF, form part of the mechanism responsible for sleep regulation and that they also form one facet of sleep-related synaptic plasticity.
Collapse
Affiliation(s)
- J A Brandt
- Washington State University, College of Veterinary Medicine, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, P.O. Box 646520, Pullman, WA 99164-6520, USA
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Interactions between the basal ganglia and the cerebral cortex are critical for normal goal-directed behavior. In the present study, we used immediate-early genes (c-fos, zif 268) as functional markers to investigated how basal ganglia output altered by stimulation/blockade of D1 dopamine receptors in the striatum affects cortical function. Systemic administration of the mixed D1/D2 receptor agonist apomorphine (3 mg/kg) increased immediate-early gene expression in the striatum and throughout most of the cortex. Unilateral intrastriatal infusion of the selective D1 receptor antagonist SCH-23390 (0.5-10 microg) blocked this response bilaterally in striatum and cortex in a dose-dependent manner. Even apparently regionally restricted blockade of striatal D1 receptors attenuated gene expression throughout striatum and cortex in both hemispheres. Intrastriatal administration of the D1 antagonist inhibited apomorphine-induced sniffing/whisking, whereas other motor behaviors were unaffected. To determine whether such changes in cortical gene expression could reflect altered cortical function, we examined the effects of blocking striatal D1 receptors on whisker stimulation-evoked immediate-early gene expression in the sensorimotor cortex. Apomorphine increased sensory stimulation-evoked gene expression in the barrel cortex, and intrastriatal infusion of SCH-23390 attenuated this effect. These results suggest that stimulation of D1 dopamine receptors in the striatum exerts a widespread facilitatory effect on cortical function.
Collapse
|
24
|
Filipkowski RK, Rydz M, Berdel B, Morys J, Kaczmarek L. Tactile experience induces c-fos expression in rat barrel cortex. Learn Mem 2000; 7:116-22. [PMID: 10753978 PMCID: PMC311323 DOI: 10.1101/lm.7.2.116] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Understanding gene expression that is responsive to sensory stimulation is central to elucidate molecular mechanisms underlying neuronal plasticity. In this study we demonstrate two new methods of stimulating whiskers that provide major sensory input to rat neocortex. In the first paradigm, animals were placed on the top of a cylinder and their vibrissae were brushed by hand. In the second paradigm, animals were placed for a brief period of time into a new, wired cage resulting in vibrissae stimulation when they explored the new environment. Both approaches induced c-Fos expression in barrel cortex corresponding to the stimulated vibrissae, especially in layer IV. Layers II/III and V/VI also showed c-Fos induction, but there were no detectable changes in layer VIb. The majority of c-Fos-expressing cells are probably not inhibitory neurons, because they do not show parvalbumin staining. Both paradigms, in contrast to the previous methods, are simple to use and do not require anesthesia, restraint of animals, or elaborate experimental setups.
Collapse
Affiliation(s)
- R K Filipkowski
- Department of Molecular and Cellular Neurobiology, Nencki Institute, 02-093 Warsaw, Poland
| | | | | | | | | |
Collapse
|
25
|
Lonstein JS, Stern JM. Effects of unilateral suckling on nursing behavior and c-fos activity in the caudal periaqueductal gray in rats. Dev Psychobiol 1999; 35:264-75. [PMID: 10573567 DOI: 10.1002/(sici)1098-2302(199912)35:4<264::aid-dev2>3.0.co;2-u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In rats, suckling elicits kyphosis-the bilaterally symmetrical, upright, humpbacked nursing posture-and maximal expression of the immediate early gene c-fos in a region of the caudal periaqueductal gray (cPAG) that mediates the sensorimotor integration of kyphosis. We determined the effects of prepartum unilateral nipple removal on nursing behavior and c-fos expression during a 60-min mother-litter interaction on Day 7 postpartum. Compared with dams suckled by 6 pups bilaterally, dams suckled unilaterally displayed essentially normal maternal behaviors, including kyphosis. Unilaterally suckled dams, however, showed an increase in the abnormal prone nursing posture, a decrease in proportion of kyphotic nursing of total time over pups, and a 20% higher contralateral/ipsilateral ratio of cPAG neurons expressing c-fos. These results are consistent with an incompletely lateralized neural pathway conveying suckling stimulation to the cPAG and provide a mechanism whereby kyphosis is elicited by unilateral suckling when pups initiate nursing from their supine dam.
Collapse
Affiliation(s)
- J S Lonstein
- Department of Psychology, Rutgers University, New Brunswick, NJ 08903, USA
| | | |
Collapse
|
26
|
Caleo M, Lodovichi C, Pizzorusso T, Maffei L. Expression of the transcription factor Zif268 in the visual cortex of monocularly deprived rats: effects of nerve growth factor. Neuroscience 1999; 91:1017-26. [PMID: 10391479 DOI: 10.1016/s0306-4522(98)00682-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neurotrophins are known to be involved in experience-dependent plasticity of the visual cortex. Here, we have characterized in detail the effects of intraventricular nerve growth factor infusion in monocularly deprived rats by using immunostaining for the immediate-early gene product Zif268 as a marker of functional activity with cellular resolution. We have taken advantage of the rapid regulation of Zif268 by visual input to reveal the cortical units that are responsive to the deprived eye after a period of monocular deprivation. We found that responses to the deprived eye were significantly preserved in the cortex of monocularly deprived rats infused with nerve growth factor. The effects of nerve growth factor were greater for cortical cells located in deep layers and with more peripheral receptive fields. Results from Zif268 staining correlated very well with those obtained by single-cell recordings from the visual cortex. Our results demonstrate that exogenous nerve growth factor preserves the functional input from the deprived eye, enabling cortical neurons to activate immediate-early gene expression in response to stimulation of the deprived eye. Furthermore, we show that the intraventricular infusion of nerve growth factor differentially affects the ocular dominance of cells at various depths and eccentricities in the developing cortex.
Collapse
Affiliation(s)
- M Caleo
- Scuola Normale Superiore, Pisa, Italy
| | | | | | | |
Collapse
|
27
|
Vibrissae-evoked behavior and conditioning before functional ontogeny of the somatosensory vibrissae cortex. J Neurosci 1999. [PMID: 10366646 DOI: 10.1523/jneurosci.19-12-05131.1999] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The following experiments determined that the somatosensory whisker system is functional and capable of experience-dependent behavioral plasticity in the neonate before functional maturation of the somatosensory whisker cortex. First, unilateral whisker stimulation caused increased behavioral activity in both postnatal day (P) 3-4 and P8 pups, whereas stimulation-evoked cortical activity (14C 2-deoxyglucose autoradiography) was detectable only in P8 pups. Second, neonatal rat pups are capable of forming associations between whisker stimulation and a reinforcer. A classical conditioning paradigm (P3-P4) showed that the learning groups (paired whisker stimulation-shock or paired whisker stimulation-warm air stream) exhibited significantly higher behavioral responsiveness to whisker stimulation than controls. Finally, stimulus-evoked somatosensory cortical activity during testing [P8; using 14C 2-deoxyglucose (2-DG) autoradiography] was assessed after somatosensory conditioning from P1-P8. No learning-associated differences in stimulus-evoked cortical activity were detected between learning and nonlearning control groups. Together, these experiments demonstrate that the whisker system is functional in neonates and capable of experience-dependent behavioral plasticity. Furthermore, in contrast to adult somatosensory classical conditioning, these data suggest that the cortex is not required for associative somatosensory learning in neonates.
Collapse
|
28
|
Glossopharyngeal nerve transection eliminates quinine-stimulated fos-like immunoreactivity in the nucleus of the solitary tract: implications for a functional topography of gustatory nerve input in rats. J Neurosci 1999. [PMID: 10191326 DOI: 10.1523/jneurosci.19-08-03107.1999] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The relationship between specific gustatory nerve activity and central patterns of taste-evoked neuronal activation is poorly understood. To address this issue within the first central synaptic relay in the gustatory system, we examined the distribution of neurons in the nucleus of the solitary tract (NST) activated by the intraoral infusion of quinine using Fos immunohistochemistry in rats with bilateral transection of the chorda tympani (CTX), bilateral transection of the glossopharyngeal nerve (GLX), or combined neurotomy (DBLX). Compared with nonstimulated and water-stimulated controls, quinine evoked significantly more Fos-like-immunoreactive (FLI) neurons across the rostrocaudal extent of the gustatory NST (gNST), especially within its dorsomedial portion (subfield 5). Although the somatosensory aspects of fluid stimulation contributed to the observed increase in FLI neurons, the elevated number and spatial distribution of FLI neurons in response to quinine were remarkably distinguishable from those in response to water. GLX and DBLX produced a dramatic attenuation of quinine-evoked FLI neurons and a shift in their spatial distribution such that their number and pattern were indiscernable from those observed in water-stimulated controls. Although CTX had no effect on the number of quinine-evoked FLI neurons within subfield 5 at intermediate levels of the gNST, it produced intermediate effects elsewhere; yet, the spatial distribution of the quinine-evoked FLI neurons was not altered by CTX. These findings suggest that the GL provides input to all FLI neurons responsive to quinine, however, some degree of convergence with CT input apparently occurs in this subpopulation of neurons. Although the role of these FLI neurons in taste-guided behavioral responses to quinine remains speculative, their possible function in oromotor reflex control is considered.
Collapse
|
29
|
Herdegen T, Leah JD. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 28:370-490. [PMID: 9858769 DOI: 10.1016/s0165-0173(98)00018-6] [Citation(s) in RCA: 1056] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article reviews findings up to the end of 1997 about the inducible transcription factors (ITFs) c-Jun, JunB, JunD, c-Fos, FosB, Fra-1, Fra-2, Krox-20 (Egr-2) and Krox-24 (NGFI-A, Egr-1, Zif268); and the constitutive transcription factors (CTFs) CREB, CREM, ATF-2 and SRF as they pertain to gene expression in the mammalian nervous system. In the first part we consider basic facts about the expression and activity of these transcription factors: the organization of the encoding genes and their promoters, the second messenger cascades converging on their regulatory promoter sites, the control of their transcription, the binding to dimeric partners and to specific DNA sequences, their trans-activation potential, and their posttranslational modifications. In the second part we describe the expression and possible roles of these transcription factors in neural tissue: in the quiescent brain, during pre- and postnatal development, following sensory stimulation, nerve transection (axotomy), neurodegeneration and apoptosis, hypoxia-ischemia, generalized and limbic seizures, long-term potentiation and learning, drug dependence and withdrawal, and following stimulation by neurotransmitters, hormones and neurotrophins. We also describe their expression and possible roles in glial cells. Finally, we discuss the relevance of their expression for nervous system functioning under normal and patho-physiological conditions.
Collapse
Affiliation(s)
- T Herdegen
- Institute of Pharmacology, University of Kiel, Hospitalstrasse 4, 24105, Kiel,
| | | |
Collapse
|
30
|
Eisch AJ, Marshall JF. Methamphetamine neurotoxicity: dissociation of striatal dopamine terminal damage from parietal cortical cell body injury. Synapse 1998; 30:433-45. [PMID: 9826235 DOI: 10.1002/(sici)1098-2396(199812)30:4<433::aid-syn10>3.0.co;2-o] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methamphetamine (m-AMPH) administration injures both striatal dopaminergic terminals and certain nonmonoaminergic cortical neurons. Fluoro-Jade histochemistry was used to label cortical cells injured by m-AMPH in order to identify factors that contribute to the cortical cell body damage. Rats given four injections of m-AMPH (4 mg/kg) at 2-h intervals showed hyperthermia (mean = 40.0 +/- 0.10 degrees C) and increased behavioral activation relative to animals given saline (SAL). Three days later, m-AMPH-treated animals showed indices of injury to striatal DA terminals (depletion of tyrosine hydroxylase immunoreactivity) and parietal cortical cell bodies (appearance of Fluoro-Jade stained cells). Pretreatment with a dopamine (DA) D1, D2, or N-methyl-D-aspartate (NMDA) receptor antagonist, or administration of m-AMPH in a 4 degrees C environment, prevented or attenuated m-AMPH-induced hyperthermia, behavioral activation, and injury to striatal DA terminals and parietal cortical cell bodies. Animals pretreated with a DA transport inhibitor prior to m-AMPH showed hyperthermia, behavioral activation, and parietal cortical cell body injury, but they did not show striatal DA terminal injury. Pretreatment with a 5HT transport inhibitor failed to prevent m-AMPH-induced damage to striatal DA terminals or parietal cortical cell bodies. Animals given four injections of SAL in a 37 degrees C environment became hyperthermic, but showed no injury to striatal DA terminals or cortical cell bodies. The ability of the DA transport inhibitor to block m-AMPH-induced striatal DA damage, but not cortical injury, and the inability of hyperthermia alone to cause the cortical cell body injury suggests that m-AMPH-induced behavioral activation and hyperthermia may both be necessary for the subsequent parietal cortical cell body damage.
Collapse
Affiliation(s)
- A J Eisch
- Department of Psychobiology, University of California, Irvine 92697-4550, USA
| | | |
Collapse
|
31
|
Eisch AJ, Schmued LC, Marshall JF. Characterizing cortical neuron injury with Fluoro-Jade labeling after a neurotoxic regimen of methamphetamine. Synapse 1998; 30:329-33. [PMID: 9776136 DOI: 10.1002/(sici)1098-2396(199811)30:3<329::aid-syn10>3.0.co;2-v] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We used Fluoro-Jade, a recently-developed fluorescent indicator of neuronal damage, to identify neurons injured 1-21 days after repeated injections of methamphetamine (m-AMPH) or saline. The m-AMPH-treated rats showed Fluoro-Jade positive neurons in parietal cortex (layers III and IV) and had less striatal tyrosine hydroxylase immunoreactivity than did saline-injected controls. Fluoro-Jade positive neurons were greatest in number 3 days post-treatment; some fluorescent neurons displayed bud-like surface protrusions. These observations support the hypothesis that certain neocortical neurons degenerate after m-AMPH.
Collapse
Affiliation(s)
- A J Eisch
- Department of Psychobiology, University of California, Irvine 92697-4550, USA
| | | | | |
Collapse
|
32
|
Eisch AJ, Schmued LC, Marshall JF. Characterizing cortical neuron injury with fluoro-jade labeling after a neurotoxic regimen of methamphetamine. Synapse 1998. [DOI: 10.1002/(sici)1098-2396(199811)30:3%3c329::aid-syn10%3e3.0.co;2-v] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Lonstein JS, Simmons DA, Swann JM, Stern JM. Forebrain expression of c-fos due to active maternal behaviour in lactating rats. Neuroscience 1998; 82:267-81. [PMID: 9483519 DOI: 10.1016/s0306-4522(97)00283-2] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To reveal brain sites simultaneously active during the expression of maternal behaviour in lactating rats, we used immunocytochemical visualization of the nuclear protein product Fos of the immediate-early gene c-fos as a marker of neuronal activity. After a 48 h separation from their litter, day 7 postpartum dams received a 1 h period of physical interaction with pups either capable or incapable of suckling, inaccessible pups in a wire-mesh box, an empty box, or no stimulation. Physical interaction with pups elicited high levels of pronurturant maternal behaviour (retrieval, licking, mouthing), and suckling elicited nursing behaviour as well. Exposure to the box, with or without pups, elicited high levels of investigatory sniffing, self-grooming, and general activity. Distal stimulation from pups did not differentially activate Fos in any of 20 sites, including olfactory-processing structures such as the piriform cortex and medial amygdala. Physical interaction with pups, with or without suckling, elicited higher levels of Fos-immunoreactive nuclei than that of other conditions in numerous sites, including many previously implicated in maternal behaviour (medial preoptic nucleus, nucleus accumbens, lateral septum, lateral habenula, and the bed nucleus of the stria terminalis). Similar group patterns of Fos expression also occurred in sites not previously implicated in maternal behaviour (somatosensory cortex and paraventricular thalamic nucleus). Interaction with nonsuckling pups elicited the highest levels of Fos in the cortical amygdala, whereas suckling did not activate higher Fos than nonsuckling interaction in any site included in this report, including hypothalamic nuclei involved in lactation (paraventricular, supraoptic, and arcuate). There was little or no Fos in cingulate cortex, olfactory tubercle, medial septum, medial habenula, or ventromedial hypothalamus. These data suggest that trigeminal stimuli received by lactating rats during the performance of pronurturant maternal behaviour promote cellular activity resulting in neuronal expression of c-fos in many forebrain sites including the medial preoptic nucleus, several sites connected with it that are part of the mesotelencephalic dopamine system, and in the somatosensory cortex. In contrast, in these forebrain sites suckling does not elicit greater levels of Fos than that seen in nonsuckled rats and distal stimuli from pups are ineffective in increasing Fos levels compared with non-stimulated controls.
Collapse
Affiliation(s)
- J S Lonstein
- Department of Psychology, Rutgers University, New Brunswick, NJ 08903, USA
| | | | | | | |
Collapse
|
34
|
Differential effects of abnormal tactile experience on shaping representation patterns in developing and adult motor cortex. J Neurosci 1997. [PMID: 9364069 DOI: 10.1523/jneurosci.17-23-09220.1997] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study investigates the influence of early somatosensory experience on shaping movement representation patterns in motor cortex. Electrical microstimulation was used to map bilaterally the motor cortices of adult rats subjected to altered tactile experience by unilateral vibrissa trimming from birth (birth-trimmed group) or for comparable periods that began in adulthood (adult-trimmed group). Findings demonstrated that (1) vibrissa trimming from birth, but not when initiated in adulthood, led to a significantly smaller-sized primary motor cortex (M1) vibrissa representation in the hemisphere contralateral to the trimmed vibrissae, with no evidence for concomitant changes in size of the adjacent forelimb representation or the representation of the intact vibrissae in the opposite (ipsilateral) hemisphere; (2) in the contralateral hemispheres of the birth-trimmed group, an abnormal pattern of evoked vibrissa movement was evident in which bilateral or ipsilateral (intact) vibrissa movement predominated; (3) in both hemispheres of the birth-trimmed group, current thresholds for eliciting movement of the trimmed vibrissa were significantly lower than normal; and (4) in the adult-trimmed group, but not in the birth-trimmed group, there was a decrease bilaterally in the relative frequency of dual forelimb-vibrissa sites that form the common border between these representations. These results show that sensory experience early in life exerts a significant influence in sculpting motor representation patterns in M1. The mature motor cortex is more resistant to the type and magnitude of influence that tactile experience has on developing M1, which may indicate that such an influence is constrained by a developmentally regulated critical period.
Collapse
|
35
|
Kaczmarek L, Chaudhuri A. Sensory regulation of immediate-early gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 23:237-56. [PMID: 9164673 DOI: 10.1016/s0165-0173(97)00005-2] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The expression of immediate-early genes that code for transcription factors has been extensively studied in the brain with regard to imaging functional activity. The components of the AP-1 transcription factor--in particular, c-Fos--and Zif268 have been widely used for this purpose. However, the precise details by which they are induced after synaptic stimulation remain unknown. Furthermore, the roles of these two proteins in neurons remains speculative and include such varied functions as short-term maintenance of cellular homeostasis to long-term changes that guide cortical plasticity. Current efforts at elucidating the physiological roles of AP-1 and Zif268 rely on assessing their expression in response to different conditions of sensory and pharmacological stimulation. In this review, we have examined the expression patterns of these transcription factors in the mammalian visual cortex under different conditions, with particular emphasis on the constitutive levels and how they change after visual deprivation and stimulation. A synthesis of this information offers further insight into their likely functions and the extent to which transcription factors may represent patterns of neural activity as a possible prelude to plastic events.
Collapse
|
36
|
Abstract
Using in situ hybridization histochemistry, we investigated the effects of whisker stimulation in freely moving rats on the expression of the immediate-early genes zif 268 and c-fos in the barrel cortex. Whiskers equipped with metal filaments were stimulated for 5-15 minutes with a pulsating magnetic field. Such whisker stimulation resulted in increased zif 268 and c-fos expression that was largely restricted to radial columns across the barrels representing the stimulated whiskers. In these columns, gene expression was elevated, to a variable degree, across the entire cortical thickness, with a distinct maximum in layer IV. The magnitude of gene expression in a barrel was proportional to the intensity of stimulation. Cellular analysis confirmed that whisker stimulation induced c-fos expression mostly in stellate cells of layer IV and in some pyramidal cells in other layers. However, even after the strongest stimulation, only subsets of neurons were labeled in all layers, suggesting that subpopulations of neurons with a differential genomic response to sensory input exist. These results indicate that the expression of these immediate-early genes is regulated by normal neuronal activity under physiological conditions, and suggest that such gene regulation is an integral part of neuronal function.
Collapse
Affiliation(s)
- P Melzer
- Laboratory of Cerebral Metabolism, National Institute of Mental Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
37
|
LaHoste GJ, Ruskin DN, Marshall JF. Cerebrocortical Fos expression following dopaminergic stimulation: D1/D2 synergism and its breakdown. Brain Res 1996. [DOI: 10.1016/0006-8993(96)00392-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Clement CI, Keay KA, Owler BK, Bandler R. Common patterns of increased and decreased fos expression in midbrain and pons evoked by noxious deep somatic and noxious visceral manipulations in the rat. J Comp Neurol 1996; 366:495-515. [PMID: 8907361 DOI: 10.1002/(sici)1096-9861(19960311)366:3<495::aid-cne9>3.0.co;2-#] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Immunohistochemical detection of the protein product (Fos) of the c-fos immediate early gene was used to study neuronal activation in the rostral pons and midbrain of halothane-anesthetised rats following noxious deep somatic or noxious visceral stimulation. In animals exposed only to halothane anesthesia, Fos-like immunoreactive (IR) neurons were located in the midbrain periaqueductal gray matter, tectum, and parabrachial nucleus. Following noxious stimulation of hindlimb muscle, knee joint, vagal cardiopulmonary, or peritoneal nociceptors, there was, compared to halothane-only animals, a significant increase in the numbers of Fos-like (IR) cells in the caudal ventrolateral periaqueductal gray and the intermediate gray lamina of the superior colliculus. Given the general agreement that increased Fos expression is a consequence of increased neuronal activity, the finding that a range of noxious deep somatic and noxious visceral stimuli evoked increased neuronal activity in a discrete, caudal ventrolateral periaqueductal gray region is consistent with previous suggestions that this region is an integrator of deep noxious evoked reactions. The noxious deep somatic and noxious visceral manipulations also evoked, compared to halothane-only animals, reductions in the numbers of Fos-like IR cells in the stratum opticum of the superior colliculus and the unlaminated portion of the external subnucleus of the inferior colliculus. To our knowledge this is the first report of reductions in Fos-expression in the tectum evoked by noxious stimulation. In separate experiments, the effects of noxious deep somatic and noxious visceral manipulations on arterial pressure and heart rate were measured. The noxious visceral manipulations evoked substantial and sustained falls in arterial pressure (15-45 mmHg), and heart rate (75-100 bpm), whereas the depressor and bradycardiac effects of the noxious deep somatic manipulations were weaker, not as sustained, or entirely absent. As similar distributions and numbers of both increased and decreased Fos-like IR cells were observed after each of the deep noxious manipulations, it follows that the deep noxious evoked increases and decreases in Fos expression were not secondary to the evoked depressor or bradycardiac effects.
Collapse
Affiliation(s)
- C I Clement
- Department of Anatomy and Histology, University of Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
39
|
Dolan S, Cahusac PM. Differential effect of whisker trimming on excitatory and inhibitory transmission in primary somatosensory cortex of the adult rat in vivo. Neuroscience 1996; 70:79-92. [PMID: 8848139 DOI: 10.1016/0306-4522(95)00375-s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of sensory deprivation on excitatory and inhibitory activity in the primary somatosensory cortex were studied in the adult rat. Excitatory and inhibitory transmission generated by whisker stimulation, and neuronal responsiveness to iontophoretically applied excitatory amino acids were recorded. Whisker input deprivation, through whisker trimming for a median of 24 days, resulted in a significant decrease in excitatory transmission to surround whisker stimulation. In contrast, the response magnitude to principal whisker stimulation remained unchanged. However, the response latencies to principal whisker and surround whisker stimulation were significantly reduced, which led to altered temporal response distributions in deprived cells. Neurons deprived of sensory input were significantly less responsive to glutamate, N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methyl-4- isoxazolepropionate and kainate. Following deprivation, no change was observed in cortical inhibitory transmission measured 30-200 ms post-stimulus. These results show that excitatory transmission (including excitatory amino acid receptor function) is altered by adult whisker deprivation.
Collapse
Affiliation(s)
- S Dolan
- Department of Psychology, University of Stirling, Scotland, U.K
| | | |
Collapse
|
40
|
Lasiter PS, Bulcourf BB. Alterations in geniculate ganglion proteins following fungiform receptor damage. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 89:289-306. [PMID: 8612332 DOI: 10.1016/0165-3806(95)00135-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous anatomical studies in rat have shown that damage produced to fungiform receptors of the anterior tongue at postnatal age 2 (P2) alters the growth and ramification of primary gustatory axons in the rostral nucleus of the solitary tract (NST). Studies employing artificial rearing (AR) procedures, which functionally deprive rat pups of orochemical stimulation during critical periods of postnatal life, produce similar alterations in the development of primary gustatory axons in the NST. Therefore, orochemical stimulation during rat's early postnatal life is necessary for normal development of primary gustatory axons in the rostral NST. One hypothesis concerning receptor-damage effects and AR effects is that receptor damage during critical periods of development may alter the regulation (i.e. transcription/translation) and/or distribution (i.e. transport) of proteins in geniculate ganglion neurons, thereby affecting growth of primary gustatory axons in the rostral NST. Specific aims of the present experiments were to comprehensively examine electrophoretic profiles of geniculate ganglion proteins following P2 receptor damage and late (> P40) receptor damage. Results show that concentrations of particular geniculate ganglion proteins are differentially altered following P2 receptor damage and late receptor damage, and that early receptor damage and late receptor damage produces distinct effects on the electrophoretic profiles of particular classes of proteins. Between the ages of P7-P38, P2 receptor damage lowers ganglion concentration of an acidic membrane glycoprotein designated as A1, with an apparent M(r) of 64-67 kDa and a pI of 4.8-5.2 P2 receptor damage also lowers ganglion concentrations of GAP-43. P2 receptor damage produces transient decreases in ganglion concentrations of NF-160, NF-200, and 8 additional acidic proteins. Three of these proteins may correspond to peripheral nerve sheath proteins analyzed in previous studies of the sciatic nerve, and one of these proteins may correspond to a 24 kDa growth-associated protein characterized in regenerating optic nerve. The time-course for changes observed in ganglion proteins following P2 damage was consistent with that observed for normal anatomical development of primary gustatory axons in both the lingual epithelium and NST. Receptor damage produced at P40 and later yielded different patterns of changes in geniculate ganglion proteins. Late receptor damage produced a transient increase in ganglion concentrations of NF-160, NF-200, GAP-43 and four additional acidic proteins within the 29-57 kDa M(r) range. Late receptor damage also produced a transient decrease in the concentrations of protein A1 and a 30 kDa protein that was not affected by P2 damage. Therefore, proteins that were preferentially affected by P2 damage may be involved in the regulation of initial axonal growth within the lingual epithelium and NST, as opposed to the structural repair or maintenance of extant axons. Relationships between normal anatomical development in peripheral and central components of primary gustatory axons are discussed in relation to availability of particular cytoskeletal and growth-associated proteins.
Collapse
Affiliation(s)
- P S Lasiter
- Department of Psychology, Florida Atlantic University, Boca Raton 33431-0991, USA
| | | |
Collapse
|
41
|
Jacquin MF, Rhoades RW, Klein BG. Structure-function relationships in rat brainstem subnucleus interpolaris. XI. Effects of chronic whisker trimming from birth. J Comp Neurol 1995; 356:200-24. [PMID: 7629315 DOI: 10.1002/cne.903560206] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Whisker trimming from birth reduces activity and alters receptive fields (RFs) in the barrel cortex and thalamus. To assess whether or not this reflects deprivation effects on trigeminal (V) first- and second-order neurons, 59 primary afferents and 343 cells in V brainstem subnucleus interpolaris (SpVi) were studied in rats whose whiskers were trimmed daily for 6-9 weeks from birth. Deprivation did not effect brainstem somatotopy or primary afferent RFs. However, many SpVi cells had abnormal RFs and higher-order inputs, resembling the changes caused by infraorbital nerve injury. For example, in controls, only 3% of whisker-sensitive local circuit neurons responded to more than one whisker, whereas 35% of the deprived and 41% of the infraorbital nerve cut samples had multiwhisker. RFs. Deprived rats also had higher than normal incidences of cells with split or absent RFs, RFs spanning more than one V division, intermodality convergence, and directional or high-velocity sensitivity. Because these changes mimic those caused by nerve section, deprivation may underlie some nerve injury effects on V brainstem RF size and character. Insofar as cytochrome oxidase, anterograde labeling, and unit recordings revealed normal topography in deprived primary afferents and SpVi cells, RF changes in SpVi cells may reflect altered SpVi circuitry. To test this hypothesis, we assessed the morphology of 32 similarly deprived V primary afferents. In SpVi, deprived fibers had normal numbers of collaterals with normal shapes, transverse arbor areas, and topography. However, the total number of boutons per collateral was significantly reduced. Thus, deprivation effects on V higher-order RFs reflect quantitative changes in V afferent terminals.
Collapse
Affiliation(s)
- M F Jacquin
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
42
|
Steiner H, Gerfen CR. Dynorphin opioid inhibition of cocaine-induced, D1 dopamine receptor-mediated immediate-early gene expression in the striatum. J Comp Neurol 1995; 353:200-12. [PMID: 7745131 DOI: 10.1002/cne.903530204] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neurons in the striatum that project to the substantia nigra contain the opioid peptide dynorphin. Stimulation of D1 dopamine receptors results in increased expression of mRNA encoding dynorphin as well as expression of immediate-early genes such as c-fos in these neurons. Levels of dynorphin vary in different regions of the normal rat striatum, being highest in ventral and medial striatum. In a prior study, we have shown that both regional and temporal patterns of c-fos induction following treatment with the indirect dopamine receptor agonist cocaine are inversely related to those of dynorphin expression. These results suggested that dynorphin is involved in regulating the responsiveness of these neurons to dopamine input. In the present experiments, we examined such a potential role for dynorphin by analyzing the influence of the dynorphin (kappa opioid receptor) agonist spiradoline on immediate-early gene induction by cocaine, and we determined that this immediate-early gene response is mediated by D1 dopamine receptors located in the striatum. As a marker of neuron activation, expression of c-fos and zif 268 immediate-early genes was assessed with quantitative in situ hybridization histochemistry. Results showed that 1) intrastriatal infusion of the D1 dopamine receptor antagonist SCH-23390 (2.5-250 pmol) resulted in a dose-dependent blockade of immediate-early gene induction by cocaine (30 mg/kg); 2 systemic administration of the kappa opioid receptor agonist spiradoline (0.5-10.0 mg/kg) decreased cocaine-induced expression of c-fos and zif 268 mRNAs in striatum in a dose-dependent manner; 3) intrastriatal infusion of spiradoline (1-50 nmol) also suppressed immediate-early gene induction by cocaine, demonstrating that kappa opioid receptors located in the striatum mediate such an effect; and 4) systemic and intrastriatal administration of spiradoline also affected immediate-early gene expression in cortex. These results demonstrate that, in striatum, immediate-early gene induction by cocaine is a D1 dopamine receptor-mediated process that is inhibited by activation of kappa opioid receptors. Therefore, these findings suggest that the striatal dynorphin opioid system acts directly and/or indirectly to inhibit dopamine input to striatonigral neurons through kappa opioid receptor-mediated processes in the striatum.
Collapse
Affiliation(s)
- H Steiner
- Section of Neuroanatomy, Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892-4068, USA
| | | |
Collapse
|
43
|
Mack KJ, Yi SD, Chang S, Millan N, Mack P. NGFI-C expression is affected by physiological stimulation and seizures in the somatosensory cortex. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 29:140-6. [PMID: 7769989 DOI: 10.1016/0169-328x(94)00243-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
NGFI-C is an early response gene which encodes a Cys2/His2 zinc finger protein. NGFI-C has previously been demonstrated to be inducible in PC12 cells after NGF stimulation. This study sought to localize this gene in somatosensory cortex, and investigate its possible induction by physiological and seizure stimuli. To determine if NGFI-C message levels are affected by stimulation, RT-PCR was performed on mRNA extracts from somatosensory cortex. NGFI-C mRNA levels were increased to levels four-fold over baseline after a seizure. In a paradigm used as a model of experience-dependent plasticity, vibrissae stimulation also increased the level of NGFI-C expression in the contralateral barrel cortex to 180% of control levels. In situ analysis using digoxigenin-labelled cRNA probes demonstrated NGFI-C containing neurons throughout layers 2 through 6 in somatosensory cortex. A higher cell density was seen after stimulation. Qualitatively, staining was more intense in post-seizure and post-stimulus cortex than in control cortex. Analysis of related zinc finger expression in serial sections revealed that NGFI-C is expressed in a distinct but overlapping cell populations relative to NGFI-A, Krox 20, and Egr-3. These studies demonstrate the inducible nature of NGFI-C message in response to a physiological vibrissae stimulus, as well as to seizures. However, the levels and pattern of expression differ between these two stimuli.
Collapse
Affiliation(s)
- K J Mack
- Waisman Center on Mental Retardation, Madison, WI, USA
| | | | | | | | | |
Collapse
|
44
|
Lasiter PS. Effects of orochemical stimulation on postnatal development of gustatory recipient zones within the nucleus of the solitary tract. Brain Res Bull 1995; 38:1-9. [PMID: 7552368 DOI: 10.1016/0361-9230(95)00063-k] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Previous receptor damage studies and artificial rearing (AR) studies in rat have demonstrated that orochemical stimulation between the postnatal ages of P2 and P14 is necessary for development of primary gustatory axons and terminal endings in the rostral nucleus of the solitary tract (NST). Objectives of the present experiment were to evaluate the qualitative nature of orochemical stimulation and amount of orochemical stimulation that is necessary to produce normal axonal and terminal development in gustatory recipient zones of the rostral and intermediate NST. To this end, ultra-pure water, 30, 150, and 500 mM NaCl, 80 and 340 mM lactose, whole rat milk, and rat milk that had been subject to extensive dialysis (12-14 kD MWCO) was delivered to independent groups of rat pups during AR procedures. Unstimulated AR animals and matched mother-reared (MR) animals were used as controls. AR animals received experimental orochemical stimulation between the ages of P4 and P10, and were thereafter returned to lactating dams until the time of weaning; MR animals received experimental orochemical stimulation during the course of normal nursing. Following maturation, anterograde fluorescent dual-labeling experiments were conducted to map the course and distribution of primary gustatory axons within the NST. Results show that experimental stimualtion with water during AR procedures is not sufficient to produce normal development of primary gustatory axons and terminal endings in the gustatory NST. Stimulation with 30, 150, and 500 mM NaCl produced normal axonal development in the NST, as did 80 and 340 mM lactose, whole rat milk, and dialyzed rat milk.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P S Lasiter
- Department of Psychology, Florida Atlantic University, Boca Raton 33431, USA
| |
Collapse
|