1
|
Saint-Jour E, Allichon MC, Andrianarivelo A, Montalban E, Martin C, Huet L, Heck N, Hagenston AM, Ravenhorst A, Marias M, Gervasi N, Arrivet F, Vilette A, Pinchaud K, Betuing S, Lissek T, Caboche J, Bading H, Vanhoutte P. Nuclear Calcium Signaling in D 1 Receptor-Expressing Neurons of the Nucleus Accumbens Regulates Molecular, Cellular, and Behavioral Adaptations to Cocaine. Biol Psychiatry 2025:S0006-3223(25)00055-1. [PMID: 39864789 DOI: 10.1016/j.biopsych.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND The persistence of cocaine-evoked adaptations relies on gene regulations within the reward circuit, especially in the ventral striatum (i.e., nucleus accumbens [NAc]). Notably, activation of the ERK (extracellular signal-regulated kinase) pathway in the striatum is known to trigger a transcriptional program shaping long-term responses to cocaine. Nuclear calcium signaling has also been shown to control multiple forms of transcription-dependent neuroadaptations, but the dynamics and roles of striatal nuclear calcium signaling in preclinical models of addiction remain unknown. METHODS A genetically encoded cell type-specific nuclear calcium probe has been developed to monitor calcium dynamics in the nuclei of striatal neurons, including in freely moving mice. A cell type-specific inhibitor of nuclear calcium signaling combined with 3-dimensional imaging of neuronal morphology, immunostaining, and behavior was used to disentangle the roles of nuclear calcium in NAc medium spiny neurons (MSNs) expressing the dopamine D1 receptor (D1R) or D2 receptor (D2R) on cocaine-evoked responses. RESULTS The D1R-mediated potentiation of calcium influx through glutamate NMDA receptors, which shapes cocaine effects, also drives nuclear calcium transients. Fiber photometry revealed that cocaine-treated mice showed a sustained nuclear calcium increase in NAc D1R-MSNs. Disrupting nuclear calcium in D1R-MSNs, but not D2R-MSNs, blocked cocaine-evoked morphological changes of MSNs and gene expression and blunted cocaine's rewarding effects. CONCLUSIONS Our study unravels the dynamics and roles of cocaine-induced nuclear calcium signaling increases in D1R-MSNs on molecular, cellular, and behavioral adaptations to cocaine and represents a significant breakthrough because it could contribute to the development of innovative strategies with therapeutic potential to alleviate addiction symptoms.
Collapse
Affiliation(s)
- Estefani Saint-Jour
- Sorbonne University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut of Biology Paris-Seine, Center for Neuroscience at Sorbonne University, Paris, France
| | - Marie-Charlotte Allichon
- Sorbonne University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut of Biology Paris-Seine, Center for Neuroscience at Sorbonne University, Paris, France
| | - Andry Andrianarivelo
- Sorbonne University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut of Biology Paris-Seine, Center for Neuroscience at Sorbonne University, Paris, France
| | - Enrica Montalban
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, Unité Mixte de Recherche 8251, Centre National de la Recherche Scientifique, Paris, France
| | - Claire Martin
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, Unité Mixte de Recherche 8251, Centre National de la Recherche Scientifique, Paris, France
| | - Lisa Huet
- Sorbonne University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut of Biology Paris-Seine, Center for Neuroscience at Sorbonne University, Paris, France
| | - Nicolas Heck
- Sorbonne University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut of Biology Paris-Seine, Center for Neuroscience at Sorbonne University, Paris, France
| | - Anna M Hagenston
- Heidelberg University, Interdisciplinary Center for Neurosciences, Institute of Neurobiology, Heidelberg, Germany
| | - Aisha Ravenhorst
- Heidelberg University, Interdisciplinary Center for Neurosciences, Institute of Neurobiology, Heidelberg, Germany
| | - Mélanie Marias
- Sorbonne University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut of Biology Paris-Seine, Center for Neuroscience at Sorbonne University, Paris, France
| | - Nicolas Gervasi
- Center for Interdisciplinary Research in Biology, College de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Paris Science et Lettre Research University, Paris, France
| | - Faustine Arrivet
- Sorbonne University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut of Biology Paris-Seine, Center for Neuroscience at Sorbonne University, Paris, France
| | - Adèle Vilette
- Sorbonne University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut of Biology Paris-Seine, Center for Neuroscience at Sorbonne University, Paris, France
| | - Katleen Pinchaud
- Sorbonne University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut of Biology Paris-Seine, Center for Neuroscience at Sorbonne University, Paris, France
| | - Sandrine Betuing
- Sorbonne University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut of Biology Paris-Seine, Center for Neuroscience at Sorbonne University, Paris, France
| | - Thomas Lissek
- Heidelberg University, Interdisciplinary Center for Neurosciences, Institute of Neurobiology, Heidelberg, Germany
| | - Jocelyne Caboche
- Sorbonne University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut of Biology Paris-Seine, Center for Neuroscience at Sorbonne University, Paris, France
| | - Hilmar Bading
- Heidelberg University, Interdisciplinary Center for Neurosciences, Institute of Neurobiology, Heidelberg, Germany
| | - Peter Vanhoutte
- Sorbonne University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut of Biology Paris-Seine, Center for Neuroscience at Sorbonne University, Paris, France.
| |
Collapse
|
2
|
Gupta SC, Taugher-Hebl RJ, Ghobbeh A, Jahnke MT, Fan R, LaLumiere RT, Wemmie JA. Carbonic anhydrase 4 disruption and pharmacological inhibition reduce synaptic and behavioral adaptations following oxycodone withdrawal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634619. [PMID: 39896547 PMCID: PMC11785184 DOI: 10.1101/2025.01.23.634619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The ongoing opioid crisis underscores the need for innovative treatments targeting neurobiological mechanisms underlying opioid-seeking behaviors and relapse. Here we explored the role of carbonic anhydrase 4 (CA4) in modulating synaptic adaptations to oxycodone withdrawal in mice. We disrupted CA4 genetically and inhibited it pharmacologically with acetazolamide (AZD), a carbonic anhydrase inhibitor used clinically. We found that oxycodone withdrawal increased AMPAR/NMDAR ratio and synaptic recruitment of calcium-permeable AMPARs in nucleus accumbens core (NAcC) medium spiny neurons (MSNs). Synaptic changes required an extended period of abstinence, generalized across opioids including morphine and heroin, were specific to D1 dopamine receptor-expressing MSNs, and were prevented by CA4 disruption. AZD administration in vitro and in vivo reversed the synaptic alterations, and effects of AZD depended on CA4 and acid sensing ion channel 1A (ASIC1A). Interestingly, abstinence from oxycodone did not affect dendritic spine density in NAcC MSNs, in contrast to previously observed effects of abstinence from cocaine. Finally, in an oxycodone self-administration paradigm, CA4 disruption and AZD reduced drug-seeking behaviors following 30 days of forced abstinence. Together, these findings identify a critical role for CA4 in synaptic adaptations in opioid withdrawn mice and drug-seeking behavior. Moreover, they suggest pharmacological inhibitors of CA4 may hold therapeutic potential for reducing opioid-seeking and relapse in opioid use disorder.
Collapse
|
3
|
Johnson NL, Cotelo-Larrea A, Stetzik LA, Akkaya UM, Zhang Z, Gadziola MA, Varga AG, Ma M, Wesson DW. Dopaminergic signaling to ventral striatum neurons initiates sniffing behavior. Nat Commun 2025; 16:336. [PMID: 39747223 PMCID: PMC11696867 DOI: 10.1038/s41467-024-55644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Sniffing is a motivated behavior displayed by nearly all terrestrial vertebrates. While sniffing is associated with acquiring and processing odors, sniffing is also intertwined with affective and motivated states. The systems which influence the display of sniffing are unclear. Here, we report that dopamine release into the ventral striatum in mice is coupled with bouts of sniffing and that stimulation of dopaminergic terminals in these regions drives increases in respiratory rate to initiate sniffing whereas inhibition of these terminals reduces respiratory rate. Both the firing of individual neurons and the activity of post-synaptic D1 and D2 dopamine receptor-expressing neurons are coupled with sniffing and local antagonism of D1 and D2 receptors squelches sniffing. Together, these results support a model whereby sniffing can be initiated by dopamine's actions upon ventral striatum neurons. The nature of sniffing being integral to both olfaction and motivated behaviors implicates this circuit in a wide array of functions.
Collapse
Affiliation(s)
- Natalie L Johnson
- Department of Pharmacology and Therapeutics, Florida Chemical Senses Institute, Center for Addiction Research and Education; University of Florida College of Medicine, Gainesville, FL, USA
| | - Anamaria Cotelo-Larrea
- Department of Pharmacology and Therapeutics, Florida Chemical Senses Institute, Center for Addiction Research and Education; University of Florida College of Medicine, Gainesville, FL, USA
| | - Lucas A Stetzik
- Department of Pharmacology and Therapeutics, Florida Chemical Senses Institute, Center for Addiction Research and Education; University of Florida College of Medicine, Gainesville, FL, USA
| | - Umit M Akkaya
- Department of Computer Engineering, Gebze Technical University, Kocaeli, Turkey
| | - Zihao Zhang
- Department of Pharmacology and Therapeutics, Florida Chemical Senses Institute, Center for Addiction Research and Education; University of Florida College of Medicine, Gainesville, FL, USA
| | - Marie A Gadziola
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Adrienn G Varga
- Department of Neuroscience, Breathing Research and Therapeutics Center, McKnight Brain Institute; University of Florida College of Medicine, Gainesville, FL, USA
| | - Minghong Ma
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, Florida Chemical Senses Institute, Center for Addiction Research and Education; University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
4
|
Bramlett SN, Foster SL, Weinshenker D, Hepler JR. Endogenous Regulator of G protein Signaling 14 (RGS14) suppresses cocaine-induced emotionally motivated behaviors in female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612719. [PMID: 39314405 PMCID: PMC11419016 DOI: 10.1101/2024.09.12.612719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Addictive drugs hijack the neuronal mechanisms of learning and memory in motivation and emotion processing circuits to reinforce their own use. Regulator of G-protein Signaling 14 (RGS14) is a natural suppressor of post-synaptic plasticity underlying learning and memory in the hippocampus. The present study used immunofluorescence and RGS14 knockout mice to assess the role of RGS14 in behavioral plasticity and reward learning induced by chronic cocaine in emotional-motivational circuits. We report that RGS14 is strongly expressed in discrete regions of the ventral striatum and extended amygdala in wild-type mice, and is co-expressed with D1 and D2 dopamine receptors in neurons of the nucleus accumbens (NAc). Of note, we found that RGS14 is upregulated in the NAc in mice with chronic cocaine history following acute cocaine treatment. We found significantly increased cocaine-induced locomotor sensitization, as well as enhanced conditioned place preference and conditioned locomotor activity in RGS14-deficient mice compared to wild-type littermates. Together, these findings suggest that endogenous RGS14 suppresses cocaine-induced plasticity in emotional-motivational circuits, implicating RGS14 as a protective agent against the maladaptive neuroplastic changes that occur during addiction.
Collapse
Affiliation(s)
- Sara N. Bramlett
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stephanie L. Foster
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - John R. Hepler
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Johnson NL, Cotelo-Larrea A, Stetzik LA, Akkaya UM, Zhang Z, Gadziola MA, Varga AG, Ma M, Wesson DW. Sniffing can be initiated by dopamine's actions on ventral striatum neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.581052. [PMID: 39229099 PMCID: PMC11370338 DOI: 10.1101/2024.02.19.581052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Sniffing is a motivated behavior displayed by nearly all terrestrial vertebrates. While sniffing is associated with acquiring and processing odors, sniffing is also intertwined with affective and motivated states. The neuromodulatory systems which influence the display of sniffing are unclear. Here, we report that dopamine release into the ventral striatum is coupled with bouts of sniffing and that stimulation of dopaminergic terminals in these regions drives increases in respiratory rate to initiate sniffing whereas inhibition of these terminals reduces respiratory rate. Both the firing of individual neurons and the activity of post-synaptic D1 and D2 receptor-expressing neurons in the ventral striatum are also coupled with sniffing and local antagonism of D1 and D2 receptors squelches sniffing. Together, these results support a model whereby sniffing can be initiated by dopamine's actions upon ventral striatum neurons. The nature of sniffing being integral to both olfaction and motivated behaviors implicates this circuit in a wide array of functions.
Collapse
|
6
|
Andraka E, Phillips RA, Brida KL, Day JJ. Chst9 marks a spatially and transcriptionally unique population of Oprm1-expressing neurons in the nucleus accumbens. ADDICTION NEUROSCIENCE 2024; 11:100153. [PMID: 38957401 PMCID: PMC11218735 DOI: 10.1016/j.addicn.2024.100153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Opioids produce addictive, analgesic, and euphoric effects via actions at mu opioid receptors (μORs). The μOR is encoded by the Oprm1 gene and is expressed in multiple brain regions that regulate reward and motivation, such as the nucleus accumbens (NAc). Oprm1 expression in NAc medium spiny neurons (MSNs) mediates opioid place preference, seeking, and consumption. However, recent single nucleus RNA sequencing (snRNA-seq) studies have revealed that multiple subpopulations of NAc neurons express Oprm1 mRNA, making it unclear which populations mediate diverse behaviors resulting from μOR activation. Using published snRNA-seq datasets from the rat NAc, we identified a novel population of MSNs that express the highest levels of Oprm1 of any NAc cell type. Here, we show that this population is selectively marked by expression of Chst9, a gene encoding a carbohydrate sulfotransferase. Notably, Chst9+ neurons exhibited more abundant expression of Oprm1 as compared to other cell types, and formed discrete cellular clusters along the medial and ventral borders of the NAc shell subregion. Moreover, CHST9 mRNA was also found to mark specific MSN populations in published human and primate snRNA-seq studies, indicating that this unique population may be conserved across species. Together, these results identify a spatially and transcriptionally distinct NAc neuron population characterized by the expression of Chst9. The abundant expression of Oprm1 in this population and the conservation of these cells across species suggests that they may play a key functional role in opioid response and identify this subpopulation as a target for further investigation.
Collapse
Affiliation(s)
- Emma Andraka
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Robert A. Phillips
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kasey L. Brida
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jeremy J. Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
7
|
Murata K, Maegawa A, Imoto Y, Fujieda S, Fukazawa Y. Endogenous opioids in the olfactory tubercle and their roles in olfaction and quality of life. Front Neural Circuits 2024; 18:1408189. [PMID: 38872907 PMCID: PMC11170707 DOI: 10.3389/fncir.2024.1408189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Olfactory dysfunctions decrease daily quality of life (QOL) in part by reducing the pleasure of eating. Olfaction plays an essential role in flavor sensation and palatability. The decreased QOL due to olfactory dysfunction is speculated to result from abnormal neural activities in the olfactory and limbic areas of the brain, as well as peripheral odorant receptor dysfunctions. However, the specific underlying neurobiological mechanisms remain unclear. As the olfactory tubercle (OT) is one of the brain's regions with high expression of endogenous opioids, we hypothesize that the mechanism underlying the decrease in QOL due to olfactory dysfunction involves the reduction of neural activity in the OT and subsequent endogenous opioid release in specialized subregions. In this review, we provide an overview and recent updates on the OT, the endogenous opioid system, and the pleasure systems in the brain and then discuss our hypothesis. To facilitate the effective treatment of olfactory dysfunctions and decreased QOL, elucidation of the neurobiological mechanisms underlying the pleasure of eating through flavor sensation is crucial.
Collapse
Affiliation(s)
- Koshi Murata
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Ayako Maegawa
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yoshimasa Imoto
- Life Science Innovation Center, University of Fukui, Fukui, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Shigeharu Fujieda
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
| |
Collapse
|
8
|
Ayoub SM, Libster AM, Barnes SA, Dulawa SC, Young JW. Sex differences in risk-based decision-making and the modulation of risk preference by dopamine-2 like receptors in rats. Neuropharmacology 2024; 248:109851. [PMID: 38325772 PMCID: PMC11227321 DOI: 10.1016/j.neuropharm.2024.109851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
Heightened risk-based decision-making is observed across several neuropsychiatric disorders including schizophrenia, bipolar disorder, and Parkinson's disease, yet no treatments exist that effectively normalize this aberrant behavior. Preclinical risk-based decision-making paradigms have identified the important modulatory roles of dopamine and sex in the performance of such tasks, though specific task parameters may alter such effects (e.g., punishment and reward values). Previous work has highlighted the role of dopamine 2-like receptors (D2R) during performance of the Risk Preference Task (RPT) in male rats, however sex was not considered as a factor in this study, nor were treatments identified that reduced risk preference. Here, we utilized the RPT to determine sex-dependent differences in baseline performance and impact of the D2R receptor agonist pramipexole (PPX), and antagonist sulpiride (SUL) on behavioral performance. Female rats exhibited heightened risk-preference during baseline testing. Consistent with human studies, PPX increased risk-preference across sex, though the effects of PPX were more pronounced in female animals. Importantly, SUL reduced risk-preference in these rats across sexes. Thus, under the task specifications of the RPT that does not include punishment, female rats were more risk-preferring and required higher PPX doses to promote risky choices compared to males. Furthermore, blockade of D2R receptors may reduce risk-preference of rats, though further studies are required.
Collapse
Affiliation(s)
- Samantha M Ayoub
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Avraham M Libster
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Samuel A Barnes
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Stephanie C Dulawa
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
9
|
Villalobos-Escobedo FS, Jijón-Lorenzo R, Avalos-Fuentes JA, Paz-Bermúdez F, Recillas-Morales S, Rojas IC, Leyva-Gómez G, Cortés H, Florán B. Dopamine D3 receptor modulates D2 receptor effects on cAMP and GABA release at striatopallidal terminals-Modulation by the Ca 2+-Calmodulin-CaMKII system. Eur J Neurosci 2024; 59:1441-1459. [PMID: 38151481 DOI: 10.1111/ejn.16237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/29/2023]
Abstract
Dopamine D2 receptor (D2R) is expressed in striatopallidal neurons and decreases forskolin-stimulated cyclic adenine monophosphate (cAMP) accumulation and gamma-aminobutyric acid (GABA) release. Dopamine D3 receptor (D3R) mRNA is expressed in a population of striatal D2R-expressing neurons. Also, D3R protein and binding have been reported in the neuropil of globus pallidus. We explore whether D2R and D3R colocalize in striatopallidal terminals and whether D3R modulates the D2R effect on forskolin-stimulated [3H]cAMP accumulation in pallidal synaptosomes and high K+ stimulated-[3H]GABA release in pallidal slices. Previous reports in heterologous systems indicate that calmodulin (CaM) and CaMKII modulate D2R and D3R functions; thus, we study whether this system regulates its functional interaction. D2R immunoprecipitates with CaM, and pretreatment with ophiobolin A or depolarization of synaptosomes with 15 mM of K+ decreases it. Both treatments increase the D2R inhibition of forskolin-stimulated [3H]cAMP accumulation when activated with quinpirole, indicating a negative modulation of CaM on D2R function. Quinpirole also activates D3R, potentiating D2R inhibition of cAMP accumulation in the ophiobolin A-treated synaptosomes. D2R and D3R immunoprecipitate in pallidal synaptosomes and decrease after the kainic acid striatal lesion, indicating the striatal origin of the presynaptic receptors. CaM-kinase II alfa (CaMKIIα) immunoprecipitates with D3R and increases after high K+ depolarization. In the presence of KN62, a CaMKIIα blocker, D3R potentiates D2R effects on cAMP accumulation in depolarized synaptosomes and GABA release in pallidal slices, indicating D3R function regulation by CaMKIIα. Our data indicate that D3R potentiates the D2R effect on cAMP accumulation and GABA release at pallidal terminals, an interaction regulated by the CaM-CaMKIIα system.
Collapse
Affiliation(s)
- Flor Selene Villalobos-Escobedo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rafael Jijón-Lorenzo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José Arturo Avalos-Fuentes
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Francisco Paz-Bermúdez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Israel Conde Rojas
- Neurobiology of Eating, FES-Iztacala, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Benjamín Florán
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
10
|
Bezard E, Gray D, Kozak R, Leoni M, Combs C, Duvvuri S. Rationale and Development of Tavapadon, a D1/D5-Selective Partial Dopamine Agonist for the Treatment of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:476-487. [PMID: 36999711 PMCID: PMC10909821 DOI: 10.2174/1871527322666230331121028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 04/01/2023]
Abstract
Currently, available therapeutics for the treatment of Parkinson's disease (PD) fail to provide sustained and predictable relief from motor symptoms without significant risk of adverse events (AEs). While dopaminergic agents, particularly levodopa, may initially provide strong motor control, this efficacy can vary with disease progression. Patients may suffer from motor fluctuations, including sudden and unpredictable drop-offs in efficacy. Dopamine agonists (DAs) are often prescribed during early-stage PD with the expectation they will delay the development of levodopa-associated complications, but currently available DAs are less effective than levodopa for the treatment of motor symptoms. Furthermore, both levodopa and DAs are associated with a significant risk of AEs, many of which can be linked to strong, repeated stimulation of D2/D3 dopamine receptors. Targeting D1/D5 dopamine receptors has been hypothesized to produce strong motor benefits with a reduced risk of D2/D3-related AEs, but the development of D1-selective agonists has been previously hindered by intolerable cardiovascular AEs and poor pharmacokinetic properties. There is therefore an unmet need in PD treatment for therapeutics that provide sustained and predictable efficacy, with strong relief from motor symptoms and reduced risk of AEs. Partial agonism at D1/D5 has shown promise for providing relief from motor symptoms, potentially without the AEs associated with D2/D3-selective DAs and full D1/D5-selective DAs. Tavapadon is a novel oral partial agonist that is highly selective at D1/D5 receptors and could meet these criteria. This review summarizes currently available evidence of tavapadon's therapeutic potential for the treatment of early through advanced PD.
Collapse
Affiliation(s)
- Erwan Bezard
- Université de Bordeaux, CNRS Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- Motac Neuroscience, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
11
|
Kaplan GB, Thompson BL. Neuroplasticity of the extended amygdala in opioid withdrawal and prolonged opioid abstinence. Front Pharmacol 2023; 14:1253736. [PMID: 38044942 PMCID: PMC10690374 DOI: 10.3389/fphar.2023.1253736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
Opioid use disorder is characterized by excessive use of opioids, inability to control its use, a withdrawal syndrome upon discontinuation of opioids, and long-term likelihood of relapse. The behavioral stages of opioid addiction correspond with affective experiences that characterize the opponent process view of motivation. In this framework, active involvement is accompanied by positive affective experiences which gives rise to "reward craving," whereas the opponent process, abstinence, is associated with the negative affective experiences that produce "relief craving." Relief craving develops along with a hypersensitization to the negatively reinforcing aspects of withdrawal during abstinence from opioids. These negative affective experiences are hypothesized to stem from neuroadaptations to a network of affective processing called the "extended amygdala." This negative valence network includes the three core structures of the central nucleus of the amygdala (CeA), the bed nucleus of the stria terminalis (BNST), and the nucleus accumbens shell (NAc shell), in addition to major inputs from the basolateral amygdala (BLA). To better understand the major components of this system, we have reviewed their functions, inputs and outputs, along with the associated neural plasticity in animal models of opioid withdrawal. These models demonstrate the somatic, motivational, affective, and learning related models of opioid withdrawal and abstinence. Neuroadaptations in these stress and motivational systems are accompanied by negative affective and aversive experiences that commonly give rise to relapse. CeA neuroplasticity accounts for many of the aversive and fear-related effects of opioid withdrawal via glutamatergic plasticity and changes to corticotrophin-releasing factor (CRF)-containing neurons. Neuroadaptations in BNST pre-and post-synaptic GABA-containing neurons, as well as their noradrenergic modulation, may be responsible for a variety of aversive affective experiences and maladaptive behaviors. Opioid withdrawal yields a hypodopaminergic and amotivational state and results in neuroadaptive increases in excitability of the NAc shell, both of which are associated with increased vulnerability to relapse. Finally, BLA transmission to hippocampal and cortical regions impacts the perception of conditioned aversive effects of opioid withdrawal by higher executive systems. The prevention or reversal of these varied neuroadaptations in the extended amygdala during opioid withdrawal could lead to promising new interventions for this life-threatening condition.
Collapse
Affiliation(s)
- Gary B Kaplan
- Mental Health Service, VA Boston Healthcare System, Boston, MA, United States
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | | |
Collapse
|
12
|
Ayon-Olivas M, Wolf D, Andreska T, Granado N, Lüningschrör P, Ip CW, Moratalla R, Sendtner M. Dopaminergic Input Regulates the Sensitivity of Indirect Pathway Striatal Spiny Neurons to Brain-Derived Neurotrophic Factor. BIOLOGY 2023; 12:1360. [PMID: 37887070 PMCID: PMC10604681 DOI: 10.3390/biology12101360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Motor dysfunction in Parkinson's disease (PD) is closely linked to the dopaminergic depletion of striatal neurons and altered synaptic plasticity at corticostriatal synapses. Dopamine receptor D1 (DRD1) stimulation is a crucial step in the formation of long-term potentiation (LTP), whereas dopamine receptor D2 (DRD2) stimulation is needed for the formation of long-term depression (LTD) in striatal spiny projection neurons (SPNs). Tropomyosin receptor kinase B (TrkB) and its ligand brain-derived neurotrophic factor (BDNF) are centrally involved in plasticity regulation at the corticostriatal synapses. DRD1 activation enhances TrkB's sensitivity for BDNF in direct pathway spiny projection neurons (dSPNs). In this study, we showed that the activation of DRD2 in cultured striatal indirect pathway spiny projection neurons (iSPNs) and cholinergic interneurons causes the retraction of TrkB from the plasma membrane. This provides an explanation for the opposing synaptic plasticity changes observed upon DRD1 or DRD2 stimulation. In addition, TrkB was found within intracellular structures in dSPNs and iSPNs from Pitx3-/- mice, a genetic model of PD with early onset dopaminergic depletion in the dorsolateral striatum (DLS). This dysregulated BDNF/TrkB signaling might contribute to the pathophysiology of direct and indirect pathway striatal projection neurons in PD.
Collapse
Affiliation(s)
- Maurilyn Ayon-Olivas
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Daniel Wolf
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Thomas Andreska
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Noelia Granado
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| |
Collapse
|
13
|
Andraka E, Phillips RA, Brida KL, Day JJ. Chst9 Marks a Spatially and Transcriptionally Unique Population of Oprm1 -Expressing Neurons in the Nucleus Accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562623. [PMID: 37904940 PMCID: PMC10614864 DOI: 10.1101/2023.10.16.562623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Opioids produce addictive, analgesic, and euphoric effects via actions at mu opioid receptors (μORs). The μOR is encoded by the Oprm1 gene and is expressed in multiple brain regions that regulate reward and motivation, such as the nucleus accumbens (NAc). Oprm1 expression in NAc medium spiny neurons (MSNs) mediates opioid place preference, seeking, and consumption. However, recent single nucleus RNA sequencing (snRNA-seq) studies in rodent, primate, and human NAc have revealed that multiple subpopulations of NAc neurons express Oprm1 mRNA, making it unclear which populations mediate diverse behaviors resulting from μOR activation. Using published snRNA-seq datasets from the rat NAc, we identified a novel population of MSNs that express the highest levels of Oprm1 of any NAc cell type. Here, we show that this population is selectively marked by expression of Chst9 , a gene encoding a carbohydrate sulfotransferase. To validate this observation and characterize spatial localization of this population in the rat NAc, we performed multiplexed RNAscope fluorescence in situ hybridization studies to detect expression of Oprm1 and Chst9 mRNA along with well-validated markers of MSNs. Notably, Chst9 + neurons exhibited more abundant expression of Oprm1 as compared to other cell types, and formed discrete cellular clusters along the medial and ventral borders of the NAc shell subregion. Moreover, CHST9 mRNA was also found to mark specific MSN populations in published human and primate snRNA-seq studies, indicating that this unique population may be conserved across species. Together, these results identify a spatially and transcriptionally distinct NAc neuron population characterized by the expression of Chst9 . The abundant expression of Oprm1 in this population and the conservation of these cells across species suggests that they may play a key functional role in opioid response and identify this subpopulation as a target for further investigation.
Collapse
|
14
|
Gao N, Liu Z, Wang H, Shen C, Dong Z, Cui W, Xiong WC, Mei L. Deficiency of Cullin 3, a Protein Encoded by a Schizophrenia and Autism Risk Gene, Impairs Behaviors by Enhancing the Excitability of Ventral Tegmental Area (VTA) DA Neurons. J Neurosci 2023; 43:6249-6267. [PMID: 37558490 PMCID: PMC10490515 DOI: 10.1523/jneurosci.0247-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/09/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
The dopaminergic neuromodulator system is fundamental to brain functions. Abnormal dopamine (DA) pathway is implicated in psychiatric disorders, including schizophrenia (SZ) and autism spectrum disorder (ASD). Mutations in Cullin 3 (CUL3), a core component of the Cullin-RING ubiquitin E3 ligase complex, have been associated with SZ and ASD. However, little is known about the function and mechanism of CUL3 in the DA system. Here, we show that CUL3 is critical for the function of DA neurons and DA-relevant behaviors in male mice. CUL3-deficient mice exhibited hyperactive locomotion, deficits in working memory and sensorimotor gating, and increased sensitivity to psychostimulants. In addition, enhanced DA signaling and elevated excitability of the VTA DA neurons were observed in CUL3-deficient animals. Behavioral impairments were attenuated by dopamine D2 receptor antagonist haloperidol and chemogenetic inhibition of DA neurons. Furthermore, we identified HCN2, a hyperpolarization-activated and cyclic nucleotide-gated channel, as a potential target of CUL3 in DA neurons. Our study indicates that CUL3 controls DA neuronal activity by maintaining ion channel homeostasis and provides insight into the role of CUL3 in the pathogenesis of psychiatric disorders.SIGNIFICANCE STATEMENT This study provides evidence that Cullin 3 (CUL3), a core component of the Cullin-RING ubiquitin E3 ligase complex that has been associated with autism spectrum disorder and schizophrenia, controls the excitability of dopamine (DA) neurons in mice. Its DA-specific heterozygous deficiency increased spontaneous locomotion, impaired working memory and sensorimotor gating, and elevated response to psychostimulants. We showed that CUL3 deficiency increased the excitability of VTA DA neurons, and inhibiting D2 receptor or DA neuronal activity attenuated behavioral deficits of CUL3-deficient mice. We found HCN2, a hyperpolarization-activated channel, as a target of CUL3 in DA neurons. Our findings reveal CUL3's role in DA neurons and offer insights into the pathogenic mechanisms of autism spectrum disorder and schizophrenia.
Collapse
Affiliation(s)
- Nannan Gao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Zhipeng Liu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Hongsheng Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Chen Shen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Zhaoqi Dong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Wanpeng Cui
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106
- Chinese Institutes for Medical Research, Beijing, China 100069
- Capital Medical University, Beijing, China 100069
| |
Collapse
|
15
|
Jin R, Sun S, Hu Y, Zhang H, Sun X. Neuropeptides Modulate Feeding via the Dopamine Reward Pathway. Neurochem Res 2023:10.1007/s11064-023-03954-4. [PMID: 37233918 DOI: 10.1007/s11064-023-03954-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Dopamine (DA) is a catecholamine neurotransmitter widely distributed in the central nervous system. It participates in various physiological functions, such as feeding, anxiety, fear, sleeping and arousal. The regulation of feeding is exceptionally complex, involving energy homeostasis and reward motivation. The reward system comprises the ventral tegmental area (VTA), nucleus accumbens (NAc), hypothalamus, and limbic system. This paper illustrates the detailed mechanisms of eight typical orexigenic and anorexic neuropeptides that regulate food intake through the reward system. According to recent literature, neuropeptides released from the hypothalamus and other brain regions regulate reward feeding predominantly through dopaminergic neurons projecting from the VTA to the NAc. In addition, their effect on the dopaminergic system is mediated by the prefrontal cortex, paraventricular thalamus, laterodorsal tegmental area, amygdala, and complex neural circuits. Research on neuropeptides involved in reward feeding can help identify more targets to treat diseases with metabolic disorders, such as obesity.
Collapse
Affiliation(s)
- Ruijie Jin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Shanbin Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Yang Hu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Hongfei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xiangrong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
16
|
Godino A, Salery M, Durand-de Cuttoli R, Estill MS, Holt LM, Futamura R, Browne CJ, Mews P, Hamilton PJ, Neve RL, Shen L, Russo SJ, Nestler EJ. Transcriptional control of nucleus accumbens neuronal excitability by retinoid X receptor alpha tunes sensitivity to drug rewards. Neuron 2023; 111:1453-1467.e7. [PMID: 36889314 PMCID: PMC10164098 DOI: 10.1016/j.neuron.2023.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 12/06/2022] [Accepted: 02/07/2023] [Indexed: 03/09/2023]
Abstract
The complex nature of the transcriptional networks underlying addictive behaviors suggests intricate cooperation between diverse gene regulation mechanisms that go beyond canonical activity-dependent pathways. Here, we implicate in this process a nuclear receptor transcription factor, retinoid X receptor alpha (RXRα), which we initially identified bioinformatically as associated with addiction-like behaviors. In the nucleus accumbens (NAc) of male and female mice, we show that although its own expression remains unaltered after cocaine exposure, RXRα controls plasticity- and addiction-relevant transcriptional programs in both dopamine receptor D1- and D2-expressing medium spiny neurons, which in turn modulate intrinsic excitability and synaptic activity of these NAc cell types. Behaviorally, bidirectional viral and pharmacological manipulation of RXRα regulates drug reward sensitivity in both non-operant and operant paradigms. Together, this study demonstrates a key role for NAc RXRα in promoting drug addiction and paves the way for future studies of rexinoid signaling in psychiatric disease states.
Collapse
Affiliation(s)
- Arthur Godino
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marine Salery
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Romain Durand-de Cuttoli
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Molly S Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Leanne M Holt
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rita Futamura
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Caleb J Browne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Philipp Mews
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter J Hamilton
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
17
|
Differential Patterns of Synaptic Plasticity in the Nucleus Accumbens Caused by Continuous and Interrupted Morphine Exposure. J Neurosci 2023; 43:308-318. [PMID: 36396404 PMCID: PMC9838694 DOI: 10.1523/jneurosci.0595-22.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 10/14/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Opioid exposure and withdrawal both cause adaptations in brain circuits that may contribute to abuse liability. These adaptations vary in magnitude and direction following different patterns of opioid exposure, but few studies have systematically manipulated the pattern of opioid administration while measuring neurobiological impact. In this study, we compared cellular and synaptic adaptations in the nucleus accumbens shell caused by morphine exposure that was either continuous or interrupted by daily bouts of naloxone-precipitated withdrawal. At the behavioral level, continuous morphine administration caused psychomotor tolerance, which was reversed when the continuity of morphine action was interrupted by naloxone-precipitated withdrawal. Using ex vivo slice electrophysiology in female and male mice, we investigated how these patterns of morphine administration altered intrinsic excitability and synaptic plasticity of medium spiny neurons (MSNs) expressing the D1 or D2 dopamine receptor. We found that morphine-evoked adaptations at excitatory synapses were predominately conserved between patterns of administration, but there were divergent effects on inhibitory synapses and the subsequent balance between excitatory and inhibitory synaptic input. Overall, our data suggest that continuous morphine administration produces adaptations that dampen the output of D1-MSNs, which are canonically thought to promote reward-related behaviors. Interruption of otherwise continuous morphine exposure does not dampen D1-MSN functional output to the same extent, which may enhance behavioral responses to subsequent opioid exposure. Our findings support the hypothesis that maintaining continuity of opioid administration could be an effective therapeutic strategy to minimize the vulnerability to opioid use disorders.SIGNIFICANCE STATEMENT Withdrawal plays a key role in the cycle of addiction to opioids like morphine. We studied how repeated cycles of naloxone-precipitated withdrawal from otherwise continuous opioid exposure can change brain function of the nucleus accumbens, which is an important brain region for reward and addiction. Different patterns of opioid exposure caused unique changes in communication between neurons in the nucleus accumbens, and the nature of these changes depended on the type of neuron being studied. The specific changes in communication between neurons caused by repeated cycles of withdrawal may increase vulnerability to opioid use disorders. This highlights the importance of reducing or preventing the experience of withdrawal during opioid treatment.
Collapse
|
18
|
Targeting G Protein-Coupled Receptors in the Treatment of Parkinson's Disease. J Mol Biol 2022:167927. [PMID: 36563742 DOI: 10.1016/j.jmb.2022.167927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized in part by the deterioration of dopaminergic neurons which leads to motor impairment. Although there is no cure for PD, the motor symptoms can be treated using dopamine replacement therapies including the dopamine precursor L-DOPA, which has been in use since the 1960s. However, neurodegeneration in PD is not limited to dopaminergic neurons, and many patients experience non-motor symptoms including cognitive impairment or neuropsychiatric disturbances, for which there are limited treatment options. Moreover, there are currently no treatments able to alter the progression of neurodegeneration. There are many therapeutic strategies being investigated for PD, including alternatives to L-DOPA for the treatment of motor impairment, symptomatic treatments for non-motor symptoms, and neuroprotective or disease-modifying agents. G protein-coupled receptors (GPCRs), which include the dopamine receptors, are highly druggable cell surface proteins which can regulate numerous intracellular signaling pathways and thereby modulate the function of neuronal circuits affected by PD. This review will describe the treatment strategies being investigated for PD that target GPCRs and their downstream signaling mechanisms. First, we discuss new developments in dopaminergic agents for alleviating PD motor impairment, the role of dopamine receptors in L-DOPA induced dyskinesia, as well as agents targeting non-dopamine GPCRs which could augment or replace traditional dopaminergic treatments. We then discuss GPCRs as prospective treatments for neuropsychiatric and cognitive symptoms in PD. Finally, we discuss the evidence pertaining to ghrelin receptors, β-adrenergic receptors, angiotensin receptors and glucagon-like peptide 1 receptors, which have been proposed as disease modifying targets with potential neuroprotective effects in PD.
Collapse
|
19
|
Inbar K, Levi LA, Kupchik YM. Cocaine induces input and cell-type-specific synaptic plasticity in ventral pallidum-projecting nucleus accumbens medium spiny neurons. Neuropsychopharmacology 2022; 47:1461-1472. [PMID: 35121830 PMCID: PMC9205871 DOI: 10.1038/s41386-022-01285-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/09/2022]
Abstract
Cocaine use and abstinence induce long-term synaptic alterations in the excitatory input to nucleus accumbens (NAc) medium spiny neurons (MSNs). The NAc regulates reward-related behaviors through two parallel projections to the ventral pallidum (VP)-originating in D1 or D2-expressing MSNs (D1-MSNs→VP; D2-MSNs→VP). The activity of these projections depends on their excitatory synaptic inputs, but it is not known whether and how abstinence from cocaine affects the excitatory transmission to D1-MSNs→VP and D2-MSNs→VP. Here we examined different forms of cocaine-induced synaptic plasticity in the inputs from the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC) to NAc D1-MSNs→VP and putative D2-MSNs→VP (pD2-MSNs→VP) in the core and shell subcompartments of the NAc. We used the whole-cell patch-clamp technique to record excitatory postsynaptic currents from D1-tdTomato mice injected with ChR2 in either the BLA or the mPFC and retrograde tracer (RetroBeads) in the VP. We found that cocaine conditioned place preference (CPP) followed by abstinence potentiated the excitatory input from the BLA and mPFC to both D1-MSNs→VP and pD2-MSNs→VP. Interestingly, while the strengthening of the inputs to D1-MSNs→VP was of postsynaptic origin and manifested as increased AMPA to NMDA ratio, in pD2-MSNs→VP plasticity was predominantly presynaptic and was detected as changes in the paired-pulse ratio and coefficient of variation. Lastly, some of the changes were sex-specific. Overall our data show that abstinence from cocaine changes the excitatory inputs to both D1-MSNs→VP and pD2-MSNs→VP but with different mechanisms. This may help understand how circuits converging into the VP change after cocaine exposure.
Collapse
Affiliation(s)
- Kineret Inbar
- grid.9619.70000 0004 1937 0538Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem, 9112102 Israel
| | - Liran A. Levi
- grid.9619.70000 0004 1937 0538Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem, 9112102 Israel
| | - Yonatan M. Kupchik
- grid.9619.70000 0004 1937 0538Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem, 9112102 Israel
| |
Collapse
|
20
|
Puri NM, Romano GR, Lin TY, Mai QN, Irannejad R. The organic cation Transporter 2 regulates dopamine D1 receptor signaling at the Golgi apparatus. eLife 2022; 11:75468. [PMID: 35467530 PMCID: PMC9098220 DOI: 10.7554/elife.75468] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Dopamine is a key catecholamine in the brain and kidney, where it is involved in a number of physiological functions such as locomotion, cognition, emotion, endocrine regulation, and renal function. As a membrane-impermeant hormone and neurotransmitter, dopamine is thought to signal by binding and activating dopamine receptors, members of the G protein coupled receptor (GPCR) family, only on the plasma membrane. Here, using novel nanobody-based biosensors, we demonstrate for the first time that the dopamine D1 receptor (D1DR), the primary mediator of dopaminergic signaling in the brain and kidney, not only functions on the plasma membrane but becomes activated at the Golgi apparatus in the presence of its ligand. We present evidence that activation of the Golgi pool of D1DR is dependent on organic cation transporter 2 (OCT2), a dopamine transporter, providing an explanation for how the membrane-impermeant dopamine accesses subcellular pools of D1DR. We further demonstrate that dopamine activates Golgi-D1DR in murine striatal medium spiny neurons, and this activity depends on OCT2 function. We also introduce a new approach to selectively interrogate compartmentalized D1DR signaling by inhibiting Gαs coupling using a nanobody-based chemical recruitment system. Using this strategy, we show that Golgi-localized D1DRs regulate cAMP production and mediate local protein kinase A activation. Together, our data suggest that spatially compartmentalized signaling hubs are previously unappreciated regulatory aspects of D1DR signaling. Our data provide further evidence for the role of transporters in regulating subcellular GPCR activity.
Collapse
Affiliation(s)
- Natasha M Puri
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Giovanna R Romano
- Biochemistry Department, Weill Cornell Medicine, New York, United States
| | - Ting-Yu Lin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Quynh N Mai
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Roshanak Irannejad
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
21
|
Urrutia-Piñones J, Morales-Moraga C, Sanguinetti-González N, Escobar AP, Chiu CQ. Long-Range GABAergic Projections of Cortical Origin in Brain Function. Front Syst Neurosci 2022; 16:841869. [PMID: 35392440 PMCID: PMC8981584 DOI: 10.3389/fnsys.2022.841869] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
The study of long-range GABAergic projections has traditionally been focused on those with subcortical origin. In the last few years, cortical GABAergic neurons have been shown to not only mediate local inhibition, but also extend long-range axons to remote cortical and subcortical areas. In this review, we delineate the different types of long-range GABAergic neurons (LRGNs) that have been reported to arise from the hippocampus and neocortex, paying attention to the anatomical and functional circuits they form to understand their role in behavior. Although cortical LRGNs are similar to their interneuron and subcortical counterparts, they comprise distinct populations that show specific patterns of cortico-cortical and cortico-fugal connectivity. Functionally, cortical LRGNs likely induce timed disinhibition in target regions to synchronize network activity. Thus, LRGNs are emerging as a new element of cortical output, acting in concert with long-range excitatory projections to shape brain function in health and disease.
Collapse
Affiliation(s)
- Jocelyn Urrutia-Piñones
- Ph.D. Program in Neuroscience, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Camila Morales-Moraga
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Nicole Sanguinetti-González
- Ph.D. Program in Neuroscience, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Angelica P. Escobar
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Neurobiología y Fisiopatología Integrativa, Universidad de Valparaíso, Valparaíso, Chile
| | - Chiayu Q. Chiu
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
22
|
Gurevich EV. Location, Location, Location: The Expression of D3 Dopamine Receptors in the Nervous System. Curr Top Behav Neurosci 2022; 60:29-45. [PMID: 35505061 DOI: 10.1007/7854_2022_314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
When the rat D3 dopamine receptor (D3R) was cloned and the distribution of its mRNA examined in 1990-1991, it attracted attention due to its peculiar distribution in the brain quite different from that of its closest relative, the D2 receptor. In the rat brain, the D3R mRNA is enriched in the limbic striatum as opposed to the D2 receptor, which is highly expressed in the motor striatal areas. Later studies in the primate and human brain confirmed relative enrichment of the D3R in the limbic striatum but also demonstrated higher abundance of the D3R in the primate as compared to the rodent brain. Additionally, in the rodent brain, the D3R in the dorsal striatum appears to be co-expressed with the D1 dopamine receptor-bearing striatal neurons giving rise to the direct output striatal pathway, although the picture is less clear with respect to the nucleus accumbens. In contrast, in the primate striatum, the D3R co-localizes with the D2 receptor throughout the basal ganglia as well as in extrastriatal brain areas. The relative abundance of the D3R in the limbic striatum, its output structures, secondary targets, and some of the other connected limbic territories may underpin its role in reward, drug dependence, and impulse control. Selective expression of D3R in the brain proliferative areas may point to its important role in the neural development as well as in neurodevelopmental abnormalities associated with schizophrenia and other developmental brain disorders.
Collapse
|
23
|
Salinas AG, Mateo Y, Carlson VCC, Stinnett GS, Luo G, Seasholtz AF, Grant KA, Lovinger DM. Long-term alcohol consumption alters dorsal striatal dopamine release and regulation by D2 dopamine receptors in rhesus macaques. Neuropsychopharmacology 2021; 46:1432-1441. [PMID: 33452430 PMCID: PMC8209056 DOI: 10.1038/s41386-020-00938-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/03/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023]
Abstract
The dorsal striatum (DS) is implicated in behavioral and neural processes including action control and reinforcement. Alcohol alters these processes in rodents, and it is believed that the development of alcohol use disorder involves changes in DS dopamine signaling. In nonhuman primates, the DS can be divided into caudate and putamen subregions. As part of a collaborative effort examining the effects of long-term alcohol self-administration in rhesus macaques, we examined DS dopamine signaling using fast-scan cyclic voltammetry. We found that chronic alcohol self-administration resulted in several dopamine system adaptations. Most notably, dopamine release was altered in a sex- and region-dependent manner. Following long-term alcohol consumption, male macaques, regardless of abstinence status, had reduced dopamine release in putamen, while only male macaques in abstinence had reduced dopamine release in caudate. In contrast, female macaques had enhanced dopamine release in the caudate, but not putamen. Dopamine uptake was also enhanced in females, but not males (regardless of abstinence state). We also found that dopamine D2/3 autoreceptor function was reduced in male, but not female, alcohol drinkers relative to control groups. Finally, we found that blockade of nicotinic acetylcholine receptors inhibited evoked dopamine release in nonhuman primates. Altogether, our findings demonstrate that long-term alcohol consumption can sex-dependently alter dopamine release, as well as its feedback control mechanisms in both DS subregions.
Collapse
Affiliation(s)
- Armando G. Salinas
- grid.22448.380000 0004 1936 8032Department of Bioengineering, George Mason University, Fairfax, VA 22030 USA ,grid.94365.3d0000 0001 2297 5165Laboratory for Integrative Neuroscience, Division of Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892 USA
| | - Yolanda Mateo
- grid.94365.3d0000 0001 2297 5165Laboratory for Integrative Neuroscience, Division of Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892 USA
| | - Verginia C. Cuzon Carlson
- grid.5288.70000 0000 9758 5690Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006 USA
| | - Gwen S. Stinnett
- grid.214458.e0000000086837370Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Guoxiang Luo
- grid.94365.3d0000 0001 2297 5165Laboratory for Integrative Neuroscience, Division of Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892 USA
| | - Audrey F. Seasholtz
- grid.214458.e0000000086837370Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109 USA
| | - Kathleen A. Grant
- grid.5288.70000 0000 9758 5690Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006 USA
| | - David M. Lovinger
- grid.94365.3d0000 0001 2297 5165Laboratory for Integrative Neuroscience, Division of Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
24
|
Verduzco-Mendoza A, Carrillo-Mora P, Avila-Luna A, Gálvez-Rosas A, Olmos-Hernández A, Mota-Rojas D, Bueno-Nava A. Role of the Dopaminergic System in the Striatum and Its Association With Functional Recovery or Rehabilitation After Brain Injury. Front Neurosci 2021; 15:693404. [PMID: 34248494 PMCID: PMC8264205 DOI: 10.3389/fnins.2021.693404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/03/2021] [Indexed: 01/06/2023] Open
Abstract
Disabilities are estimated to occur in approximately 2% of survivors of traumatic brain injury (TBI) worldwide, and disability may persist even decades after brain injury. Facilitation or modulation of functional recovery is an important goal of rehabilitation in all patients who survive severe TBI. However, this recovery tends to vary among patients because it is affected by the biological and physical characteristics of the patients; the types, doses, and application regimens of the drugs used; and clinical indications. In clinical practice, diverse dopaminergic drugs with various dosing and application procedures are used for TBI. Previous studies have shown that dopamine (DA) neurotransmission is disrupted following moderate to severe TBI and have reported beneficial effects of drugs that affect the dopaminergic system. However, the mechanisms of action of dopaminergic drugs have not been completely clarified, partly because dopaminergic receptor activation can lead to restoration of the pathway of the corticobasal ganglia after injury in brain structures with high densities of these receptors. This review aims to provide an overview of the functionality of the dopaminergic system in the striatum and its roles in functional recovery or rehabilitation after TBI.
Collapse
Affiliation(s)
- Antonio Verduzco-Mendoza
- Ph.D. Program in Biological and Health Sciences, Universidad Autónoma Metropolitana, Mexico City, Mexico
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Paul Carrillo-Mora
- Division of Neurosciences, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Alberto Avila-Luna
- Division of Neurosciences, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Arturo Gálvez-Rosas
- Division of Neurosciences, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Antonio Bueno-Nava
- Division of Neurosciences, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| |
Collapse
|
25
|
Brodovskaya A, Shiono S, Kapur J. Activation of the basal ganglia and indirect pathway neurons during frontal lobe seizures. Brain 2021; 144:2074-2091. [PMID: 33730155 DOI: 10.1093/brain/awab119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/12/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
There are no detailed descriptions of neuronal circuit active during frontal lobe motor seizures. Using activity reporter mice, local field potential recordings, tissue clearing, viral tracing, and super-resolution microscopy, we found neuronal activation after focal motor to bilateral tonic-clonic seizures in the striatum, globus pallidus externus, subthalamic nucleus, substantia nigra pars reticulata and neurons of the indirect pathway. Seizures preferentially activated dopamine D2 receptor-expressing neurons over D1 in the striatum, which have different projections. Furthermore, the D2 receptor agonist infused into the striatum exerted an anticonvulsant effect. Seizures activate structures via short and long latency loops, and anatomical connections of the seizure focus determine the seizure circuit. These studies, for the first time, show activation of neurons in the striatum, globus pallidus, subthalamic nucleus, and substantia nigra during frontal lobe motor seizures on the cellular level, revealing a complex neuronal activation circuit subject to modulation by the basal ganglia.
Collapse
Affiliation(s)
- Anastasia Brodovskaya
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Shinnosuke Shiono
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908, USA.,UVA Brain Institute, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
26
|
Loth MK, Donaldson ZR. Oxytocin, Dopamine, and Opioid Interactions Underlying Pair Bonding: Highlighting a Potential Role for Microglia. Endocrinology 2021; 162:6046188. [PMID: 33367612 PMCID: PMC7787427 DOI: 10.1210/endocr/bqaa223] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Indexed: 02/06/2023]
Abstract
Pair bonds represent some of the strongest attachments we form as humans. These relationships positively modulate health and well-being. Conversely, the loss of a spouse is an emotionally painful event that leads to numerous deleterious physiological effects, including increased risk for cardiac dysfunction and mental illness. Much of our understanding of the neuroendocrine basis of pair bonding has come from studies of monogamous prairie voles (Microtus ochrogaster), laboratory-amenable rodents that, unlike laboratory mice and rats, form lifelong pair bonds. Specifically, research using prairie voles has delineated a role for multiple neuromodulatory and neuroendocrine systems in the formation and maintenance of pair bonds, including the oxytocinergic, dopaminergic, and opioidergic systems. However, while these studies have contributed to our understanding of selective attachment, few studies have examined how interactions among these 3 systems may be essential for expression of complex social behaviors, such as pair bonding. Therefore, in this review, we focus on how the social neuropeptide, oxytocin, interacts with classical reward system modulators, including dopamine and endogenous opioids, during bond formation and maintenance. We argue that an understanding of these interactions has important clinical implications and is required to understand the evolution and encoding of complex social behaviors more generally. Finally, we provide a brief consideration of future directions, including a discussion of the possible roles that glia, specifically microglia, may have in modulating social behavior by acting as a functional regulator of these 3 neuromodulatory systems.
Collapse
Affiliation(s)
- Meredith K Loth
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Zoe R Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Correspondence: Zoe R. Donaldson, PhD, University of Colorado Boulder, 347 UCB, Boulder, CO 80309, USA.
| |
Collapse
|
27
|
Blackwood CA, McCoy MT, Ladenheim B, Cadet JL. Oxycodone self-administration activates the mitogen-activated protein kinase/ mitogen- and stress-activated protein kinase (MAPK-MSK) signaling pathway in the rat dorsal striatum. Sci Rep 2021; 11:2567. [PMID: 33510349 PMCID: PMC7843984 DOI: 10.1038/s41598-021-82206-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/12/2021] [Indexed: 01/23/2023] Open
Abstract
To identify signaling pathways activated by oxycodone self-administration (SA), Sprague–Dawley rats self-administered oxycodone for 20 days using short—(ShA, 3 h) and long-access (LgA, 9 h) paradigms. Animals were euthanized 2 h after SA cessation and dorsal striata were used in post-mortem molecular analyses. LgA rats escalated their oxycodone intake and separated into lower (LgA-L) or higher (LgA-H) oxycodone takers. LgA-H rats showed increased striatal protein phosphorylation of ERK1/2 and MSK1/2. Histone H3, phosphorylated at serine 10 and acetylated at lysine 14 (H3S10pK14Ac), a MSK1/2 target, showed increased abundance only in LgA-H rats. RT-qPCR analyses revealed increased AMPA receptor subunits, GluA2 and GluA3 mRNAs, in the LgA-H rats. GluA3, but not GluA2, mRNA expression correlated positively with changes in pMSK1/2 and H3S10pK14Ac. These findings suggest that escalated oxycodone SA results in MSK1/2-dependent histone phosphorylation and increases in striatal gene expression. These observations offer potential avenues for interventions against oxycodone addiction.
Collapse
Affiliation(s)
- Christopher A Blackwood
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Michael T McCoy
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
28
|
Wright KN, Wesson DW. The tubular striatum and nucleus accumbens distinctly represent reward-taking and reward-seeking. J Neurophysiol 2021; 125:166-183. [PMID: 33174477 PMCID: PMC8087377 DOI: 10.1152/jn.00495.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/16/2020] [Accepted: 11/08/2020] [Indexed: 01/14/2023] Open
Abstract
The ventral striatum regulates motivated behaviors that are essential for survival. The ventral striatum contains both the nucleus accumbens (NAc), which is well established to contribute to motivated behavior, and the adjacent tubular striatum (TuS), which is poorly understood in this context. We reasoned that these ventral striatal subregions may be uniquely specialized in their neural representation of goal-directed behavior. To test this, we simultaneously examined TuS and NAc single-unit activity as male mice engaged in a sucrose self-administration task, which included extinction and cue-induced reinstatement sessions. Although background levels of activity were comparable between regions, more TuS neurons were recruited upon reward-taking, and among recruited neurons, TuS neurons displayed greater changes in their firing during reward-taking and extinction than those in the NAc. Conversely, NAc neurons displayed greater changes in their firing during cue-reinstated reward-seeking. Interestingly, at least in the context of this behavioral paradigm, TuS neural activity predicted reward-seeking, whereas NAc activity did not. Together, by directly comparing their dynamics in several behavioral contexts, this work reveals that the NAc and TuS ventral striatum subregions distinctly represent reward-taking and reward-seeking.NEW & NOTEWORTHY The ventral striatum, considered the reward circuitry "hub," is composed of two regions: the NAc, which is well established for its role in reward processing, and the TuS, which has been largely excluded from such studies. This study provides a first step in directly contextualizing the TuS's activity in relation to that in the NAc and, by doing so, establishes a critical framework for future research seeking to better understand the brain basis for drug addiction.
Collapse
Affiliation(s)
- Katherine N Wright
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida
| |
Collapse
|
29
|
Okamoto S, Sohn J, Tanaka T, Takahashi M, Ishida Y, Yamauchi K, Koike M, Fujiyama F, Hioki H. Overlapping Projections of Neighboring Direct and Indirect Pathway Neostriatal Neurons to Globus Pallidus External Segment. iScience 2020; 23:101409. [PMID: 32877648 PMCID: PMC7520896 DOI: 10.1016/j.isci.2020.101409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/15/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Indirect pathway medium-sized spiny neurons (iMSNs) in the neostriatum are well known to project to the external segment of the globus pallidus (GPe). Although direct MSNs (dMSNs) also send axon collaterals to the GPe, it remains unclear how dMSNs and iMSNs converge within the GPe. Here, we selectively labeled neighboring dMSNs and iMSNs with green and red fluorescent proteins using an adeno-associated virus vector and examined axonal projections of dMSNs and iMSNs to the GPe in mice. Both dMSNs and iMSNs formed two axonal arborizations displaying topographical projections in the dorsoventral and mediolateral planes. iMSNs displayed a wider and denser axon distribution, which included that of dMSNs. Density peaks of dMSN and iMSN axons almost overlapped, revealing convergence of dMSN axons in the center of iMSN projection fields. These overlapping projections suggest that dMSNs and iMSNs may work cooperatively via interactions within the GPe.
Collapse
Affiliation(s)
- Shinichiro Okamoto
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Advanced Research Institute for Health Sciences, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jaerin Sohn
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, 5-1 Higashiyama Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Takuma Tanaka
- Graduate School of Data Science, Shiga University, 1-1-1 Banba, Hikone, Shiga 522-8522, Japan
| | - Megumu Takahashi
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoko Ishida
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kenta Yamauchi
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Advanced Research Institute for Health Sciences, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Advanced Research Institute for Health Sciences, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Fumino Fujiyama
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Hiroyuki Hioki
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
30
|
Carr KD. Modulatory Effects of Food Restriction on Brain and Behavioral Effects of Abused Drugs. Curr Pharm Des 2020; 26:2363-2371. [DOI: 10.2174/1381612826666200204141057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Energy homeostasis is achieved, in part, by metabolic signals that regulate the incentive motivating
effects of food and its cues, thereby driving or curtailing procurement and consumption. The neural underpinnings
of these regulated incentive effects have been identified as elements within the mesolimbic dopamine pathway.
A separate line of research has shown that most drugs with abuse liability increase dopamine transmission in
this same pathway and thereby reinforce self-administration. Consequently, one might expect shifts in energy
balance and metabolic signaling to impact drug abuse risk. Basic science studies have yielded numerous examples
of drug responses altered by diet manipulation. Considering the prevalence of weight loss dieting in Western
societies, and the anorexigenic effects of many abused drugs themselves, we have focused on the CNS and behavioral
effects of food restriction in rats. Food restriction has been shown to increase the reward magnitude of diverse
drugs of abuse, and these effects have been attributed to neuroadaptations in the dopamine-innervated nucleus
accumbens. The changes induced by food restriction include synaptic incorporation of calcium-permeable
AMPA receptors and increased signaling downstream of D1 dopamine receptor stimulation. Recent studies suggest
a mechanistic model in which concurrent stimulation of D1 and GluA2-lacking AMPA receptors enables
increased stimulus-induced trafficking of GluA1/GluA2 AMPARs into the postsynaptic density, thereby increasing
the incentive effects of food, drugs, and associated cues. In addition, the established role of AMPA receptor
trafficking in enduring synaptic plasticity prompts speculation that drug use during food restriction may more
strongly ingrain behavior relative to similar use under free-feeding conditions.
Collapse
Affiliation(s)
- Kenneth D. Carr
- Departments of Psychiatry, Biochemistry and Molecular Pharmacology, New York University School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| |
Collapse
|
31
|
Collins AL, Saunders BT. Heterogeneity in striatal dopamine circuits: Form and function in dynamic reward seeking. J Neurosci Res 2020; 98:1046-1069. [PMID: 32056298 PMCID: PMC7183907 DOI: 10.1002/jnr.24587] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 01/03/2023]
Abstract
The striatal dopamine system has long been studied in the context of reward learning, motivation, and movement. Given the prominent role dopamine plays in a variety of adaptive behavioral states, as well as diseases like addiction, it is essential to understand the full complexity of dopamine neurons and the striatal systems they target. A growing number of studies are uncovering details of the heterogeneity in dopamine neuron subpopulations. Here, we review that work to synthesize current understanding of dopamine system heterogeneity across three levels, anatomical organization, functions in behavior, and modes of action, wherein we focus on signaling profiles and local mechanisms for modulation of dopamine release. Together, these studies reveal new and emerging dimensions of the striatal dopamine system, informing its contribution to dynamic motivational and decision-making processes.
Collapse
Affiliation(s)
- Anne L. Collins
- University of Minnesota, Department of Neuroscience, Medical Discovery Team on Addiction, Minneapolis, MN 55455
| | - Benjamin T. Saunders
- University of Minnesota, Department of Neuroscience, Medical Discovery Team on Addiction, Minneapolis, MN 55455
| |
Collapse
|
32
|
Salery M, Trifilieff P, Caboche J, Vanhoutte P. From Signaling Molecules to Circuits and Behaviors: Cell-Type-Specific Adaptations to Psychostimulant Exposure in the Striatum. Biol Psychiatry 2020; 87:944-953. [PMID: 31928716 DOI: 10.1016/j.biopsych.2019.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022]
Abstract
Addiction is characterized by a compulsive pattern of drug seeking and consumption and a high risk of relapse after withdrawal that are thought to result from persistent adaptations within brain reward circuits. Drugs of abuse increase dopamine (DA) concentration in these brain areas, including the striatum, which shapes an abnormal memory trace of drug consumption that virtually highjacks reward processing. Long-term neuronal adaptations of gamma-aminobutyric acidergic striatal projection neurons (SPNs) evoked by drugs of abuse are critical for the development of addiction. These neurons form two mostly segregated populations, depending on the DA receptor they express and their output projections, constituting the so-called direct (D1 receptor) and indirect (D2 receptor) SPN pathways. Both SPN subtypes receive converging glutamate inputs from limbic and cortical regions, encoding contextual and emotional information, together with DA, which mediates reward prediction and incentive values. DA differentially modulates the efficacy of glutamate synapses onto direct and indirect SPN pathways by recruiting distinct striatal signaling pathways, epigenetic and genetic responses likely involved in the transition from casual drug use to addiction. Herein we focus on recent studies that have assessed psychostimulant-induced alterations in a cell-type-specific manner, from remodeling of input projections to the characterization of specific molecular events in each SPN subtype and their impact on long-lasting behavioral adaptations. We discuss recent evidence revealing the complex and concerted action of both SPN populations on drug-induced behavioral responses, as these studies can contribute to the design of future strategies to alleviate specific behavioral components of addiction.
Collapse
Affiliation(s)
- Marine Salery
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pierre Trifilieff
- NutriNeuro, Unité Mixte de Recherche (UMR) 1286, Institut National de la Recherche Agronomique, Bordeaux Institut Polytechnique, University of Bordeaux, Bordeaux, France
| | - Jocelyne Caboche
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Sorbonne Université, Faculty of Sciences, Paris, France; Centre National de la Recherche Scientifique, UMR8246, Paris, France; Institut National de la Santé et de la Recherche Médicale, U1130, Paris France.
| | - Peter Vanhoutte
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Sorbonne Université, Faculty of Sciences, Paris, France; Centre National de la Recherche Scientifique, UMR8246, Paris, France; Institut National de la Santé et de la Recherche Médicale, U1130, Paris France
| |
Collapse
|
33
|
Cansler HL, Wright KN, Stetzik LA, Wesson DW. Neurochemical organization of the ventral striatum's olfactory tubercle. J Neurochem 2020; 152:425-448. [PMID: 31755104 PMCID: PMC7042089 DOI: 10.1111/jnc.14919] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/08/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022]
Abstract
The ventral striatum is a collection of brain structures, including the nucleus accumbens, ventral pallidum and the olfactory tubercle (OT). While much attention has been devoted to the nucleus accumbens, a comprehensive understanding of the ventral striatum and its contributions to neurological diseases requires an appreciation for the complex neurochemical makeup of the ventral striatum's other components. This review summarizes the rich neurochemical composition of the OT, including the neurotransmitters, neuromodulators and hormones present. We also address the receptors and transporters involved in each system as well as their putative functional roles. Finally, we end with briefly reviewing select literature regarding neurochemical changes in the OT in the context of neurological disorders, specifically neurodegenerative disorders. By overviewing the vast literature on the neurochemical composition of the OT, this review will serve to aid future research into the neurobiology of the ventral striatum.
Collapse
Affiliation(s)
- Hillary L Cansler
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Katherine N Wright
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Lucas A Stetzik
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
34
|
Hasbi A, Madras BK, Bergman J, Kohut S, Lin Z, Withey SL, George SR. Δ-Tetrahydrocannabinol Increases Dopamine D1-D2 Receptor Heteromer and Elicits Phenotypic Reprogramming in Adult Primate Striatal Neurons. iScience 2020; 23:100794. [PMID: 31972514 PMCID: PMC6971351 DOI: 10.1016/j.isci.2019.100794] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/01/2019] [Accepted: 12/18/2019] [Indexed: 01/09/2023] Open
Abstract
Long-term cannabis users manifest deficits in dopaminergic functions, reflecting Δ9-tetrahydrocannabinol (THC)-induced neuroadaptive dysfunctional dopamine signaling, similar to those observed upon dopamine D1-D2 heteromer activation. The molecular mechanisms remain largely unknown. We show evolutionary and regional differences in D1-D2 heteromer abundance in mammalian striatum. Importantly, chronic THC increased the number of D1-D2 heteromer-expressing neurons, and the number of heteromers within individual neurons in adult monkey striatum. The majority of these neurons displayed a phenotype co-expressing the characteristic markers of both striatonigral and striatopallidal neurons. Furthermore, THC increased D1-D2-linked calcium signaling markers (pCaMKIIα, pThr75-DARPP-32, BDNF/pTrkB) and inhibited cyclic AMP signaling (pThr34-DARPP-32, pERK1/2, pS845-GluA1, pGSK3). Cannabidiol attenuated most but not all of these THC-induced neuroadaptations. Targeted pathway analyses linked these changes to neurological and psychological disorders. These data underline the importance of the D1-D2 receptor heteromer in cannabis use-related disorders, with THC-induced changes likely responsible for the reported adverse effects observed in heavy long-term users.
Collapse
Affiliation(s)
- Ahmed Hasbi
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Bertha K Madras
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, USA
| | - Jack Bergman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, USA
| | - Stephen Kohut
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, USA
| | - Zhicheng Lin
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, USA
| | - Sarah L Withey
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, USA
| | - Susan R George
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
35
|
Giacometti LL, Barker JM. Comorbid HIV infection and alcohol use disorders: Converging glutamatergic and dopaminergic mechanisms underlying neurocognitive dysfunction. Brain Res 2019; 1723:146390. [PMID: 31421128 PMCID: PMC6766419 DOI: 10.1016/j.brainres.2019.146390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
Alcohol use disorders (AUDs) are highly comorbid with human immunodeficiency virus (HIV) infection, occurring at nearly twice the rate in HIV positive individuals as in the general population. Individuals with HIV who consume alcohol show worse long-term prognoses and may be at elevated risk for the development of HIV-associated neurocognitive disorders. The direction of this relationship is unclear, and likely multifactorial. Chronic alcohol exposure and HIV infection independently promote cognitive dysfunction and further may interact to exacerbate neurocognitive deficits through effects on common targets, including corticostriatal glutamate and dopamine neurotransmission. Additionally, drug and alcohol use is likely to reduce treatment adherence, potentially resulting in accelerated disease progression and subsequent neurocognitive impairment. The development of neurocognitive impairments may further reduce cognitive control over behavior, resulting in escalating alcohol use. This review will examine the complex relationship between HIV infection and alcohol use, highlighting impacts on dopamine and glutamate systems by which alcohol use and HIV act independently and in tandem to alter corticostriatal circuit structure and function to dysregulate cognitive function.
Collapse
Affiliation(s)
- Laura L Giacometti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, United States
| | - Jacqueline M Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, United States.
| |
Collapse
|
36
|
Pettibone JR, Yu JY, Derman RC, Faust TW, Hughes ED, Filipiak WE, Saunders TL, Ferrario CR, Berke JD. Knock-In Rat Lines with Cre Recombinase at the Dopamine D1 and Adenosine 2a Receptor Loci. eNeuro 2019; 6:ENEURO.0163-19.2019. [PMID: 31451604 PMCID: PMC6776791 DOI: 10.1523/eneuro.0163-19.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/31/2022] Open
Abstract
Genetically modified mice have become standard tools in neuroscience research. Our understanding of the basal ganglia in particular has been greatly assisted by BAC mutants with selective transgene expression in striatal neurons forming the direct or indirect pathways. However, for more sophisticated behavioral tasks and larger intracranial implants, rat models are preferred. Furthermore, BAC lines can show variable expression patterns depending upon genomic insertion site. We therefore used CRISPR/Cas9 to generate two novel knock-in rat lines specifically encoding Cre recombinase immediately after the dopamine D1 receptor (Drd1a) or adenosine 2a receptor (Adora2a) loci. Here, we validate these lines using in situ hybridization and viral vector mediated transfection to demonstrate selective, functional Cre expression in the striatal direct and indirect pathways, respectively. We used whole-genome sequencing to confirm the lack of off-target effects and established that both rat lines have normal locomotor activity and learning in simple instrumental and Pavlovian tasks. We expect these new D1-Cre and A2a-Cre rat lines will be widely used to study both normal brain functions and neurological and psychiatric pathophysiology.
Collapse
Affiliation(s)
| | - Jai Y Yu
- Department of Physiology, University of California, San Francisco 94143, CA
| | - Rifka C Derman
- Neuroscience Graduate Program, University of Michigan, Ann Arbor 48109, MI
| | - Thomas W Faust
- Department of Neurology, University of California, San Francisco 94143, CA
| | - Elizabeth D Hughes
- Transgenic Animal Model Core, University of Michigan, Ann Arbor 48109, MI
| | - Wanda E Filipiak
- Transgenic Animal Model Core, University of Michigan, Ann Arbor 48109, MI
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan, Ann Arbor 48109, MI
- Department of Internal Medicine, University of Michigan, Ann Arbor 48109, MI
| | - Carrie R Ferrario
- Neuroscience Graduate Program, University of Michigan, Ann Arbor 48109, MI
- Department of Pharmacology, University of Michigan, Ann Arbor 48109, MI
| | - Joshua D Berke
- Department of Neurology, University of California, San Francisco 94143, CA
- Department of Psychiatry, University of California, San Francisco 94143, CA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco 94143, CA
- Weill Institute for Neurosciences, University of California, San Francisco 94143, CA
| |
Collapse
|
37
|
Madayag AC, Gomez D, Anderson EM, Ingebretson AE, Thomas MJ, Hearing MC. Cell-type and region-specific nucleus accumbens AMPAR plasticity associated with morphine reward, reinstatement, and spontaneous withdrawal. Brain Struct Funct 2019; 224:2311-2324. [PMID: 31201496 PMCID: PMC6698404 DOI: 10.1007/s00429-019-01903-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/04/2019] [Indexed: 12/17/2022]
Abstract
Despite evidence that morphine-related pathologies reflect adaptations in NAc glutamate signaling, substantial gaps in basic information remain. The current study examines the impact of non-contingent acute, repeated, and withdrawal-inducing morphine dosing regimens on glutamate transmission in D1- or D2-MSNs in the nucleus accumbens shell (NAcSh) and core (NAcC) sub-regions in hopes of identifying excitatory plasticity that may contribute to unique facets of opioid addiction-related behavior. Following an acute morphine injection (10 mg/kg), average miniature excitatory postsynaptic current (mEPSC) amplitude mediated by AMPA-type glutamate receptors was increased at D1-MSNs in the both the NAcShl and NAcC, whereas only the frequency of events was elevated at D2-MSNs in the NAcSh. In contrast, spontaneous somatic withdrawal induced by escalating dose of repeated morphine twice per day (20, 40, 60, 80, 100 mg/kg) enhanced mEPSC frequency specifically at D2-MSNs in the NAcSh. Similar to previous findings, excitatory drive was elevated at NAcSh D1-MSNs after 10-14 days home cage abstinence. Following abstinence, an acute drug re-exposure produced a rapid and enduring endocytosis of GluA2-containing AMPARs at D1-MSNs in the shell, that when blocked by an intra-NAc shell infusion of the Tat-GluA23Y peptide, increased reinstatement of morphine place preference-a phenomenon distinctly different than effects previously found with cocaine. The present study is the first to directly identify unique circuit specific adaptations in NAc glutamate synaptic transmission associated with morphine-related acute reward and somatic withdrawal as well as post-abstinence short-term plasticity. Moreover, while differing classes of abused drugs (i.e., psychostimulants and opioids) produce seemingly similar bidirectional plasticity in the NAc following drug re-exposure, our findings indicate this plasticity has distinct behavioral consequences.
Collapse
Affiliation(s)
- Aric C Madayag
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Devan Gomez
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Eden M Anderson
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Anna E Ingebretson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mark J Thomas
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Matthew C Hearing
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA.
| |
Collapse
|
38
|
Gálvez-Rosas A, Avila-Luna A, Valdés-Flores M, Montes S, Bueno-Nava A. GABAergic imbalance is normalized by dopamine D 1 receptor activation in the striatum contralateral to the cortical injury in motor deficit-recovered rats. Psychopharmacology (Berl) 2019; 236:2211-2222. [PMID: 30859334 DOI: 10.1007/s00213-019-05215-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/01/2019] [Indexed: 02/07/2023]
Abstract
RATIONALE The sensorimotor cortex and the striatum are interconnected by the corticostriatal pathway, suggesting that cortical injury alters the striatal function, which may be modulated by dopamine. OBJECTIVES We studied whether the activation of dopamine D1 receptors (D1Rs) modulates the γ-aminobutyric acid (GABA) and glutamate levels in the striatum of recovered rats at 192 h after cortical injury. METHODS The D1R agonist SKF-38393 (0, 2, 3, or 4 mg/kg) was administered at 24, 48, 96, and 192 h post-injury, and then rats were decapitated to determine GABA and glutamate levels and the levels of D1R mRNA on both sides of the striatum. RESULTS GABAergic imbalance in the striatum contralateral to the injury site was normalized by the administration of the D1R agonist, but this treatment did not produce a significant effect on glutamate levels, suggesting that glutamate was metabolized into GABA. The administration of SKF-38393 (2 mg/kg) decreased the levels of D1R mRNA in the striatum contralateral to the injury, and this effect was blocked by the coadministration of the D1R antagonist SCH-23390 (2 mg/kg). In the striatum ipsilateral to the injury, the D1R agonist increased the D1R mRNA levels, an effect that was blocked by SCH-23390. CONCLUSION The reversal of the GABAergic imbalance in the striatum contralateral to the cortical injury can be modulated by extrastriatal D1R activation, and the D1R agonist-induced increases in the D1R mRNA levels in the striatum ipsilateral to the injury suggest that the striatum may be necessary to achieve functional recovery.
Collapse
Affiliation(s)
- Arturo Gálvez-Rosas
- Lab. Neurofisiología Química de la Discapacidad, División de Neurociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calz. México-Xochimilco 289, Col. Arenal de Guadalupe, 14389, Mexico City, Mexico
| | - Alberto Avila-Luna
- Lab. Neurofisiología Química de la Discapacidad, División de Neurociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calz. México-Xochimilco 289, Col. Arenal de Guadalupe, 14389, Mexico City, Mexico
| | - Margarita Valdés-Flores
- Departamento de Genética y Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calz. México-Xochimilco 289, Col. Arenal de Guadalupe, 14389, Mexico City, Mexico
| | - Sergio Montes
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, SSa, Insurgentes Sur 3877, 14269, Mexico City, Mexico
| | - Antonio Bueno-Nava
- Lab. Neurofisiología Química de la Discapacidad, División de Neurociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calz. México-Xochimilco 289, Col. Arenal de Guadalupe, 14389, Mexico City, Mexico.
| |
Collapse
|
39
|
Gallo EF. Disentangling the diverse roles of dopamine D2 receptors in striatal function and behavior. Neurochem Int 2019; 125:35-46. [PMID: 30716356 DOI: 10.1016/j.neuint.2019.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
Abstract
Dopamine D2 receptors (D2Rs) mediate many of the actions of dopamine in the striatum, ranging from movement to the effortful pursuit of reward. Yet despite significant advances in linking D2Rs to striatal functions with pharmacological and genetic strategies in animals, how dopamine orchestrates its myriad actions on different cell populations -each expressing D2Rs- remains unclear. Furthermore, brain imaging and genetic studies in humans have consistently associated striatal D2R alterations with various neurological and neuropsychiatric disorders, but how and which D2Rs are involved in each case is poorly understood. Therefore, a critical first step is to engage in a refined and systematic investigation of the impact of D2R function on specific striatal cells, circuits, and behaviors. Here, I will review recent efforts, primarily in animal models, aimed at unlocking the complex and heterogeneous roles of D2Rs in striatum.
Collapse
Affiliation(s)
- Eduardo F Gallo
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| |
Collapse
|
40
|
López AJ, Siciliano CA, Calipari ES. Activity-Dependent Epigenetic Remodeling in Cocaine Use Disorder. Handb Exp Pharmacol 2019; 258:231-263. [PMID: 31628597 DOI: 10.1007/164_2019_257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Substance use disorder (SUD) is a behavioral disorder characterized by cycles of abstinence, drug seeking, and relapse. SUD is characterized by aberrant learning processes which develop after repeated exposure to drugs of abuse. At the core of this phenotype is the persistence of symptoms, such as craving and relapse to drug seeking, long after the cessation of drug use. The neural basis of these behavioral changes has been linked to dysfunction in neural circuits across the brain; however, the molecular drivers that allow for these changes to persist beyond the lifespan of any individual protein remain opaque. Epigenetic adaptations - where DNA is modified to increase or decrease the probability of gene expression at key genes - have been identified as a mechanism underlying the long-lasting nature of drug-seeking behavior. Thus, to understand SUD, it is critical to define the interplay between neuronal activation and longer-term changes in transcription and epigenetic remodeling and define their role in addictive behaviors. In this review, we discuss the current understanding of drug-induced changes to circuit function, recent discoveries in epigenetic mechanisms that mediate these changes, and, ultimately, how these adaptations drive the persistent nature of relapse, with emphasis on adaptations in models of cocaine use disorder. Understanding the complex interplay between epigenetic gene regulation and circuit activity will be critical in elucidating the neural mechanisms underlying SUD. This, with the advent of novel genetic-based techniques, will allow for the generation of novel therapeutic avenues to improve treatment outcomes in SUD.
Collapse
Affiliation(s)
- Alberto J López
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Department of Molecular Physiology and Biophysics, Vanderbilt Institute for Infection, Immunology, and Infection, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Department of Psychiatry and Behavioral Sciences, Vanderbilt Institute for Infection, Immunology, and Infection, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
41
|
Solinas M, Belujon P, Fernagut PO, Jaber M, Thiriet N. Dopamine and addiction: what have we learned from 40 years of research. J Neural Transm (Vienna) 2018; 126:481-516. [PMID: 30569209 DOI: 10.1007/s00702-018-1957-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/17/2018] [Indexed: 12/22/2022]
Abstract
Among the neurotransmitters involved in addiction, dopamine (DA) is clearly the best known. The critical role of DA in addiction is supported by converging evidence that has been accumulated in the last 40 years. In the present review, first we describe the dopaminergic system in terms of connectivity, functioning and involvement in reward processes. Second, we describe the functional, structural, and molecular changes induced by drugs within the DA system in terms of neuronal activity, synaptic plasticity and transcriptional and molecular adaptations. Third, we describe how genetic mouse models have helped characterizing the role of DA in addiction. Fourth, we describe the involvement of the DA system in the vulnerability to addiction and the interesting case of addiction DA replacement therapy in Parkinson's disease. Finally, we describe how the DA system has been targeted to treat patients suffering from addiction and the result obtained in clinical settings and we discuss how these different lines of evidence have been instrumental in shaping our understanding of the physiopathology of drug addiction.
Collapse
Affiliation(s)
- Marcello Solinas
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France.
| | - Pauline Belujon
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pierre Olivier Fernagut
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Mohamed Jaber
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | - Nathalie Thiriet
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| |
Collapse
|
42
|
Barrientos C, Knowland D, Wu MMJ, Lilascharoen V, Huang KW, Malenka RC, Lim BK. Cocaine-Induced Structural Plasticity in Input Regions to Distinct Cell Types in Nucleus Accumbens. Biol Psychiatry 2018; 84:893-904. [PMID: 29921416 PMCID: PMC8169057 DOI: 10.1016/j.biopsych.2018.04.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/06/2018] [Accepted: 04/20/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND The nucleus accumbens (NAc) is a brain region implicated in pathological motivated behaviors such as drug addiction and is composed predominantly of two discrete populations of neurons, dopamine receptor-1- and dopamine receptor-2-expressing medium spiny neurons (D1-MSNs and D2-MSNs, respectively). It is unclear whether these populations receive inputs from different brain areas and whether input regions to these cell types undergo distinct structural adaptations in response to the administration of addictive drugs such as cocaine. METHODS Using a modified rabies virus-mediated tracing method, we created a comprehensive brain-wide monosynaptic input map to NAc D1- and D2-MSNs. Next, we analyzed nearly 2000 dendrites and 125,000 spines of neurons across four input regions (the prelimbic cortex, medial orbitofrontal cortex, basolateral amygdala, and ventral hippocampus) at four separate time points during cocaine administration and withdrawal to examine changes in spine density in response to repeated intraperitoneal cocaine injection in mice. RESULTS D1- and D2-MSNs display overall similar input profiles, with the exception that D1-MSNs receive significantly more input from the medial orbitofrontal cortex. We found that neurons in distinct brain areas projecting to D1- and D2-MSNs display different adaptations in dendritic spine density at different stages of cocaine administration and withdrawal. CONCLUSIONS While NAc D1- and D2-MSNs receive input from similar brain structures, cocaine-induced spine density changes in input regions are quite distinct and dynamic. While previous studies have focused on input-specific postsynaptic changes within NAc MSNs in response to cocaine, these findings emphasize the dramatic changes that occur in the afferent input regions as well.
Collapse
Affiliation(s)
- Cindy Barrientos
- Neurobiology Section in the Division of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Daniel Knowland
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, California
| | - Mingche MJ Wu
- Neurobiology Section in the Division of Biological Sciences, University of California, San Diego, La Jolla
| | - Varoth Lilascharoen
- Neurobiology Section in the Division of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Kee Wui Huang
- Nancy Pritzker Laboratory in the Department of Psychiatry and Behavioral Sciences at Stanford University School of Medicine, Palo Alto, California
| | - Robert C. Malenka
- Nancy Pritzker Laboratory in the Department of Psychiatry and Behavioral Sciences at Stanford University School of Medicine, Palo Alto, California
| | - Byung Kook Lim
- Neurobiology Section, Biological Sciences Division, University of California San Diego, La Jolla, California; Neurosciences Graduate Program, University of California San Diego, La Jolla, California.
| |
Collapse
|
43
|
Hearing M. Prefrontal-accumbens opioid plasticity: Implications for relapse and dependence. Pharmacol Res 2018; 139:158-165. [PMID: 30465850 DOI: 10.1016/j.phrs.2018.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 01/12/2023]
Abstract
In addiction, an individual's ability to inhibit drug seeking and drug taking is thought to reflect a pathological strengthening of drug-seeking behaviors or impairments in the capacity to control maladaptive behavior. These processes are not mutually exclusive and reflect drug-induced modifications within prefrontal cortical and nucleus accumbens circuits, however unlike psychostimulants such as cocaine, far less is known about the temporal, anatomical, and cellular dynamics of these changes. We discuss what is known regarding opioid-induced adaptations in intrinsic membrane physiology and pre-/postsynaptic neurotransmission in principle pyramidal and medium spiny neurons in the medial prefrontal cortex and nucleus accumbens from electrophysiological studies and explore how circuit specific adaptations may contribute to unique facets of opioid addiction.
Collapse
Affiliation(s)
- Matthew Hearing
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA.
| |
Collapse
|
44
|
McDevitt DS, Graziane NM. Neuronal mechanisms mediating pathological reward-related behaviors: A focus on silent synapses in the nucleus accumbens. Pharmacol Res 2018; 136:90-96. [PMID: 30171902 DOI: 10.1016/j.phrs.2018.08.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
The compulsive drive to seek drugs despite negative consequences relies heavily on drug-induced alterations that occur within the reward neurocircuit. These alterations include changes in neuromodulator and neurotransmitter systems that ultimately lock behaviors into an inflexible and permanent state. To provide clinicians with improved treatment options, researchers are trying to identify, as potential targets of therapeutic intervention, the neural mechanisms mediating an "addictive-like state". Here, we discuss how drug-induced generation of silent synapses in the nucleus accumbens may be a potential therapeutic target capable of reversing drug-related behaviors.
Collapse
Affiliation(s)
- Dillon S McDevitt
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, 17033 USA; Neuroscience graduate program, Penn State College of Medicine, Hershey, PA, 17033 USA
| | - Nicholas M Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, 17033 USA.
| |
Collapse
|
45
|
McCullough KM, Daskalakis NP, Gafford G, Morrison FG, Ressler KJ. Cell-type-specific interrogation of CeA Drd2 neurons to identify targets for pharmacological modulation of fear extinction. Transl Psychiatry 2018; 8:164. [PMID: 30135420 PMCID: PMC6105686 DOI: 10.1038/s41398-018-0190-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/23/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
Behavioral and molecular characterization of cell-type-specific populations governing fear learning and behavior is a promising avenue for the rational identification of potential therapeutics for fear-related disorders. Examining cell-type-specific changes in neuronal translation following fear learning allows for targeted pharmacological intervention during fear extinction learning, mirroring possible treatment strategies in humans. Here we identify the central amygdala (CeA) Drd2-expressing population as a novel fear-supporting neuronal population that is molecularly distinct from other, previously identified, fear-supporting CeA populations. Sequencing of actively translating transcripts of Drd2 neurons using translating ribosome affinity purification (TRAP) technology identifies mRNAs that are differentially regulated following fear learning. Differentially expressed transcripts with potentially targetable gene products include Npy5r, Rxrg, Adora2a, Sst5r, Fgf3, Erbb4, Fkbp14, Dlk1, and Ssh3. Direct pharmacological manipulation of NPY5R, RXR, and ADORA2A confirms the importance of this cell population and these cell-type-specific receptors in fear behavior. Furthermore, these findings validate the use of functionally identified specific cell populations to predict novel pharmacological targets for the modulation of emotional learning.
Collapse
Affiliation(s)
- Kenneth M McCullough
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, and Behavioral Sciences, Behavioral Neuroscience, Emory University, Atlanta, GA, USA
| | - Nikolaos P Daskalakis
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Georgette Gafford
- Department of Psychiatry, and Behavioral Sciences, Behavioral Neuroscience, Emory University, Atlanta, GA, USA
| | - Filomene G Morrison
- Department of Psychiatry, and Behavioral Sciences, Behavioral Neuroscience, Emory University, Atlanta, GA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Behavioral Science Division, National Center for PTSD, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Kerry J Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, and Behavioral Sciences, Behavioral Neuroscience, Emory University, Atlanta, GA, USA.
| |
Collapse
|
46
|
Reiner A, Deng Y. Disrupted striatal neuron inputs and outputs in Huntington's disease. CNS Neurosci Ther 2018; 24:250-280. [PMID: 29582587 PMCID: PMC5875736 DOI: 10.1111/cns.12844] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a hereditary progressive neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for the protein huntingtin, resulting in a pathogenic expansion of the polyglutamine tract in the N-terminus of this protein. The HD pathology resulting from the mutation is most prominent in the striatal part of the basal ganglia, and progressive differential dysfunction and loss of striatal projection neurons and interneurons account for the progression of motor deficits seen in this disease. The present review summarizes current understanding regarding the progression in striatal neuron dysfunction and loss, based on studies both in human HD victims and in genetic mouse models of HD. We review evidence on early loss of inputs to striatum from cortex and thalamus, which may be the basis of the mild premanifest bradykinesia in HD, as well as on the subsequent loss of indirect pathway striatal projection neurons and their outputs to the external pallidal segment, which appears to be the basis of the chorea seen in early symptomatic HD. Later loss of direct pathway striatal projection neurons and their output to the internal pallidal segment account for the severe akinesia seen late in HD. Loss of parvalbuminergic striatal interneurons may contribute to the late dystonia and rigidity.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy & NeurobiologyThe University of Tennessee Health Science CenterMemphisTNUSA
- Department of OphthalmologyThe University of Tennessee Health Science CenterMemphisTNUSA
| | - Yun‐Ping Deng
- Department of Anatomy & NeurobiologyThe University of Tennessee Health Science CenterMemphisTNUSA
| |
Collapse
|
47
|
Ullah I, Subhan F, Alam J, Shahid M, Ayaz M. Suppression of Cisplatin-Induced Vomiting by Cannabis sativa in Pigeons: Neurochemical Evidences. Front Pharmacol 2018; 9:231. [PMID: 29615907 PMCID: PMC5865282 DOI: 10.3389/fphar.2018.00231] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/28/2018] [Indexed: 01/03/2023] Open
Abstract
Cannabis sativa (CS, family Cannabinaceae) has been reported for its anti-emetic activity against cancer chemotherapy-induced emesis in animal models and in clinics. The current study was designed to investigate CS for potential effectiveness to attenuate cisplatin-induced vomiting in healthy pigeons and to study the impact on neurotransmitters involved centrally and peripherally in the act of vomiting. High-performance liquid chromatography system coupled with electrochemical detector was used for the quantification of neurotransmitters 5-hydroxytryptamine (5HT), dopamine (DA) and their metabolites; Di-hydroxy Phenyl Acetic acid (Dopac), Homovanillic acid (HVA), and 5-hydroxy indole acetic acid (5HIAA) centrally in specific brain areas (area postrema and brain stem) while, peripherally in small intestine. Cisplatin (7 mg/kg i.v.) induce emesis without lethality across the 24 h observation period. CS hexane fraction (CS-HexFr; 10 mg/kg) attenuated cisplatin-induced emesis ∼ 65.85% (P < 0.05); the reference anti-emetic drug, metoclopramide (MCP; 30 mg/kg), produced ∼43.90% reduction (P < 0.05). At acute time point (3rd h), CS-HexFr decreased (P < 0.001) the concentration of 5HT and 5HIAA in the area postrema, brain stem and intestine, while at 18th h (delayed time point) CS-HexFr attenuated (P < 0.001) the upsurge of 5HT caused by cisplatin in the brain stem and intestine and dopamine in the area postrema. CS-HexFr treatment alone did not alter the basal neurotransmitters and their metabolites in the brain areas and intestine except 5HIAA and HVA, which were decreased significantly. In conclusion the anti-emetic effect of CS-HexFr is mediated by anti-serotonergic and anti-dopaminergic components in a blended manner at the two different time points, i.e., 3rd and 18th h in pigeons.
Collapse
Affiliation(s)
- Ihsan Ullah
- Department of Pharmacy, University of Swabi, Swabi, Pakistan.,Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Fazal Subhan
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Javaid Alam
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan.,Drug and Herbal Research Centre, Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Shahid
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
48
|
Naneix F, Darlot F, De Smedt-Peyrusse V, Pape JR, Coutureau E, Cador M. Protracted motivational dopamine-related deficits following adolescence sugar overconsumption. Neuropharmacology 2018; 129:16-25. [DOI: 10.1016/j.neuropharm.2017.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/02/2017] [Accepted: 11/12/2017] [Indexed: 10/18/2022]
|
49
|
Hearing M, Graziane N, Dong Y, Thomas MJ. Opioid and Psychostimulant Plasticity: Targeting Overlap in Nucleus Accumbens Glutamate Signaling. Trends Pharmacol Sci 2018; 39:276-294. [PMID: 29338873 DOI: 10.1016/j.tips.2017.12.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/11/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Commonalities in addictive behavior, such as craving, stimuli-driven drug seeking, and a high propensity for relapse following abstinence, have pushed for a unified theory of addiction that encompasses most abused substances. This unitary theory has recently been challenged - citing distinctions in structural neural plasticity, biochemical signaling, and neural circuitry to argue that addiction to opioids and psychostimulants is behaviorally and neurobiologically distinct. Recent more selective examination of drug-induced plasticity has highlighted that these two drug classes promote an overall reward circuitry signaling overlap through modifying excitatory synapses in the nucleus accumbens - a key constituent of the reward system. We discuss adaptations in presynaptic/postsynaptic and extrasynaptic glutamate signaling produced by opioids and psychostimulants, and their relevance to circuit remodeling and addiction-related behavior - arguing that these core neural adaptations are important targets for developing pharmacotherapies to treat addiction to multiple drugs.
Collapse
Affiliation(s)
- Matthew Hearing
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA.
| | - Nicholas Graziane
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA 17033, USA; Departments of Neuroscience and Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yan Dong
- Departments of Neuroscience and Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mark J Thomas
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
50
|
Kato AS, Witkin JM. Protein complexes as psychiatric and neurological drug targets. Biochem Pharmacol 2018; 151:263-281. [PMID: 29330067 DOI: 10.1016/j.bcp.2018.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/05/2018] [Indexed: 12/25/2022]
Abstract
The need for improved medications for psychiatric and neurological disorders is clear. Difficulties in finding such drugs demands that all strategic means be utilized for their invention. The discovery of forebrain specific AMPA receptor antagonists, which selectively block the specific combinations of principal and auxiliary subunits present in forebrain regions but spare targets in the cerebellum, was recently disclosed. This discovery raised the possibility that other auxiliary protein systems could be utilized to help identify new medicines. Discussion of the TARP-dependent AMPA receptor antagonists has been presented elsewhere. Here we review the diversity of protein complexes of neurotransmitter receptors in the nervous system to highlight the broad range of protein/protein drug targets. We briefly outline the structural basis of protein complexes as drug targets for G-protein-coupled receptors, voltage-gated ion channels, and ligand-gated ion channels. This review highlights heterodimers, subunit-specific receptor constructions, multiple signaling pathways, and auxiliary proteins with an emphasis on the later. We conclude that the use of auxiliary proteins in chemical compound screening could enhance the detection of specific, targeted drug searches and lead to novel and improved medicines for psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Akihiko S Kato
- Neuroscience Discovery, Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA.
| | - Jeffrey M Witkin
- Neuroscience Discovery, Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|