1
|
Raffaele S, Clausen BH, Mannella FC, Wirenfeldt M, Marangon D, Tidgen SB, Corradini S, Madsen K, Lecca D, Abbracchio MP, Lambertsen KL, Fumagalli M. Characterisation of GPR17-expressing oligodendrocyte precursors in human ischaemic lesions and correlation with reactive glial responses. J Pathol 2024. [PMID: 39703181 DOI: 10.1002/path.6381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/14/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024]
Abstract
White matter damage and subsequent demyelination significantly contribute to long-term functional impairment after ischaemic stroke. Identifying novel pharmacological targets to restore myelin integrity by promoting the maturation of oligodendrocyte precursor cells (OPCs) into new myelinating oligodendrocytes may open new perspectives for ischaemic stroke treatment. In this respect, previous studies highlighted the role of the G protein-coupled membrane receptor 17 (GPR17) as a key regulator of OPC differentiation in experimental models of brain injury, including ischaemic stroke. To determine the translational value of GPR17 as a possible target in the context of human disease, we exploited immunohistochemistry to characterise the distribution of GPR17-expressing cells in brain tissue samples from ischaemic stroke cases and correlated it with the reactive state of neighbouring glial cells. The results showed that GPR17 specifically decorates a subpopulation of differentiation-committed OPCs, labelled by the peculiar marker breast carcinoma-amplified sequence 1 (BCAS1), that accumulates in the peri-infarct region in the later stages after the ischaemic event. Interestingly, the response of GPR17-expressing cells appears to be paralleled by the switch of reactive microglia/macrophages from a phagocytic to a dystrophic phenotype and by astrocytic scar formation. A negative correlation was found between GPR17-expressing OPCs and reactive microglia/macrophages and astrocytes surrounding chronic ischaemic lesions in female subjects, while the same relationship was less pronounced in males. These results were reinforced by bioinformatic analysis of a publicly available transcriptomic dataset, which implicated a possible role of inflammation and defective neuron-to-OPC communication in remyelination failure after ischaemic damage. Hence, these data strengthen the relevance of GPR17-based remyelinating therapies for the treatment of ischaemic stroke. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Stefano Raffaele
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Bettina Hjelm Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, Brain Research - Inter Disciplinary Guided Excellence (BRIDGE), University of Southern Denmark, Odense, Denmark
- Odense Patient data Explorative Network (OPEN), Department of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Francesca Carolina Mannella
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Martin Wirenfeldt
- Department of Clinical Research, Brain Research - Inter Disciplinary Guided Excellence (BRIDGE), University of Southern Denmark, Odense, Denmark
- Odense Patient data Explorative Network (OPEN), Department of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
- Department of Pathology, South Denmark University Hospital, Odense, Denmark
| | - Davide Marangon
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Sarah Boe Tidgen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Silvia Corradini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Kirsten Madsen
- Department of Pathology, South Denmark University Hospital, Odense, Denmark
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Davide Lecca
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Maria Pia Abbracchio
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, Brain Research - Inter Disciplinary Guided Excellence (BRIDGE), University of Southern Denmark, Odense, Denmark
- Odense Patient data Explorative Network (OPEN), Department of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
2
|
Srivastava A, Rajput P, Tripathi M, Chandra PS, Doddamani R, Sharma MC, Lalwani S, Banerjee J, Dixit AB. Integrated Proteomics and Protein Co-expression Network Analysis Identifies Novel Epileptogenic Mechanism in Mesial Temporal Lobe Epilepsy. Mol Neurobiol 2024; 61:9663-9679. [PMID: 38687446 DOI: 10.1007/s12035-024-04186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 03/12/2024] [Indexed: 05/02/2024]
Abstract
Over 50 million people worldwide are affected by epilepsy, a common neurological disorder that has a high rate of drug resistance and diverse comorbidities such as progressive cognitive and behavioural disorders, and increased mortality from direct or indirect effects of seizures and therapies. Despite extensive research with animal models and human studies, limited insights have been gained into the mechanisms underlying seizures and epileptogenesis, which has not translated into significant reductions in drug resistance, morbidities, or mortality. To better understand the molecular signaling networks associated with seizures in MTLE patients, we analyzed the proteome of brain samples from MTLE and control cases using an integrated approach that combines mass spectrometry-based quantitative proteomics, differential expression analysis, and co-expression network analysis. Our analyses of 20 human brain tissues from MTLE patients and 20 controls showed the organization of the brain proteome into a network of 9 biologically meaningful modules of co-expressed proteins. Of these, 6 modules are positively or negatively correlated to MTLE phenotypes with hub proteins that are altered in MTLE patients. Our study is the first to employ an integrated approach of proteomics and protein co-expression network analysis to study patients with MTLE. Our findings reveal a molecular blueprint of altered protein networks in MTLE brain and highlight dysregulated pathways and processes including altered cargo transport, neurotransmitter release from synaptic vesicles, synaptic plasticity, proteostasis, RNA homeostasis, ion transport and transmembrane transport, cytoskeleton disorganization, metabolic and mitochondrial dysfunction, blood micro-particle function, extracellular matrix organization, immune response, neuroinflammation, and cell signaling. These insights into MTLE pathogenesis suggest potential new candidates for future diagnostic and therapeutic development.
Collapse
Affiliation(s)
| | - Priya Rajput
- Dr B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | | | | | | | | | - Sanjeev Lalwani
- Department of Forensic Medicine & Toxicology, AIIMS, New Delhi, India
| | | | | |
Collapse
|
3
|
Liu J, Tsuboyama M, Jannati A, Kaye HL, Hipp JF, Rotenberg A. Shortened Motor Evoked Potential Latency in the Epileptic Hemisphere of Children With Focal Epilepsy. J Clin Neurophysiol 2024; 41:530-536. [PMID: 37820241 DOI: 10.1097/wnp.0000000000001022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
PURPOSE Motor evoked potential (MEP) amplitude and latency are acquired routinely during neuronavigated transcranial magnetic stimulation, a method of functional mapping of the motor cortex before epilepsy surgery. Although MEP amplitude is routinely used to generate a motor map, MEP latency in patients with focal epilepsy has not been studied systematically. Given that epilepsy may alter myelination, we tested whether intrinsic hand muscle MEPs obtained from the hemisphere containing a seizure focus differ in latency from MEPs collected from the opposite hemisphere. METHODS Latencies of abductor pollicis brevis MEPs were obtained during routine motor mapping by neuronavigated transcranial magnetic stimulation in children with intractable, unihemispheric focal epilepsy. The primary motor cortex was stimulated bilaterally in all cases. Only data from patients without a lesion involving the corticospinal tract were included. We tested whether abductor pollicis brevis MEP latency varied as a function of seizure focus lateralization. RESULTS In the 17 patients who met the inclusion criteria, the mean latency of MEPs with amplitudes in the top and bottom quartiles was shorter in the epileptic hemisphere. Interhemispheric latency difference was greater in patients with lesional epilepsy than in those with nonlesional epilepsy (0.7 ± 0.4 vs. 0.1 ± 0.6 milliseconds, P = 0.02). CONCLUSIONS Motor evoked potential latency was shortened in the epileptic hemisphere of children with focal epilepsy.
Collapse
Affiliation(s)
- Jingjing Liu
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- F. M. Kirby Neurobiology Center; Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- Department of Neurology, Peking University International Hospital, Beijing, China
| | - Melissa Tsuboyama
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Ali Jannati
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- F. M. Kirby Neurobiology Center; Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, U.S.A
| | - Harper Lee Kaye
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- F. M. Kirby Neurobiology Center; Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- Boston University School of Medicine, Behavioral Neuroscience Program, Boston, Massachusetts, U.S.A.; and
| | - Joerg F Hipp
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Alexander Rotenberg
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- F. M. Kirby Neurobiology Center; Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, U.S.A
| |
Collapse
|
4
|
Lin C, Yeh FC, Glynn NW, Gmelin T, Wei YC, Chen YL, Huang CM, Shyu YC, Chen CK. Associations of depression and perceived physical fatigability with white matter integrity in older adults. Psychiatry Res Neuroimaging 2024; 340:111793. [PMID: 38373367 DOI: 10.1016/j.pscychresns.2024.111793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUNDS Fatigability is prevalent in older adults. However, it is often associated with depressed mood. We aim to investigate these two psychobehavioral constructs by examining their underpinning of white matter structures in the brain and their associations with different medical conditions. METHODS Twenty-seven older adults with late-life depression (LLD) and 34 cognitively normal controls (CN) underwent multi-shell diffusion MRI. Fatigability was measured with the Pittsburgh Fatigability Scale. We examined white matter integrity by measuring the quantitative anisotropy (QA), a fiber tracking parameter with better accuracy than the traditional imaging technique. RESULTS We found those with LLD had lower QA in the 2nd branch of the left superior longitudinal fasciculus (SLF-II), and those with more physical fatigability had lower QA in more widespread brain regions. In tracts associated with more physical fatigability, the lower QA in left acoustic radiation and left superior thalamic radiation correlated with higher blood glucose (r = - 0.46 and - 0.49). In tracts associated with depression, lower QA in left SLF-II correlated with higher bilirubin level (r = - 0.58). DISCUSSION Depression and fatigability were associated with various white matter integrity changes, which correlated with biochemistry biomarkers all related to inflammation.
Collapse
Affiliation(s)
- Chemin Lin
- Department of Psychiatry, Keelung Chang Gung Memorial Hospital, Keelung City, Taiwan; College of Medicine, Chang Gung University, Taoyuan County, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Keelung, Taiwan
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nancy W Glynn
- Center for Aging and Population Health, Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Theresa Gmelin
- Center for Aging and Population Health, Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi-Chia Wei
- College of Medicine, Chang Gung University, Taoyuan County, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Keelung, Taiwan; Department of Neurology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan; Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Yao-Liang Chen
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Chiau Shyu
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Keelung, Taiwan
| | - Chih-Ken Chen
- Department of Psychiatry, Keelung Chang Gung Memorial Hospital, Keelung City, Taiwan; College of Medicine, Chang Gung University, Taoyuan County, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Keelung, Taiwan.
| |
Collapse
|
5
|
Sun Q, Wang Z, Xiu H, He N, Liu M, Yin L. Identification of candidate biomarkers for GBM based on WGCNA. Sci Rep 2024; 14:10692. [PMID: 38724609 PMCID: PMC11082160 DOI: 10.1038/s41598-024-61515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma multiforme (GBM), the most aggressive form of primary brain tumor, poses a considerable challenge in neuro-oncology. Despite advancements in therapeutic approaches, the prognosis for GBM patients remains bleak, primarily attributed to its inherent resistance to conventional treatments and a high recurrence rate. The primary goal of this study was to acquire molecular insights into GBM by constructing a gene co-expression network, aiming to identify and predict key genes and signaling pathways associated with this challenging condition. To investigate differentially expressed genes between various grades of Glioblastoma (GBM), we employed Weighted Gene Co-expression Network Analysis (WGCNA) methodology. Through this approach, we were able to identify modules with specific expression patterns in GBM. Next, genes from these modules were performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis using ClusterProfiler package. Our findings revealed a negative correlation between biological processes associated with neuronal development and functioning and GBM. Conversely, the processes related to the cell cycle, glomerular development, and ECM-receptor interaction exhibited a positive correlation with GBM. Subsequently, hub genes, including SYP, TYROBP, and ANXA5, were identified. This study offers a comprehensive overview of the existing research landscape on GBM, underscoring the challenges encountered by clinicians and researchers in devising effective therapeutic strategies.
Collapse
Affiliation(s)
- Qinghui Sun
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Zheng Wang
- Biotechnology and Biochemistry Laboratory, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Hao Xiu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Na He
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Mingyu Liu
- School of Stomatology, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Li Yin
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, Hainan, China.
| |
Collapse
|
6
|
Pavan B. Heterogeneous patterning of blood-brain barrier and adaptive myelination as renewing key in gray and white matter. Neural Regen Res 2024; 19:481-482. [PMID: 37721263 PMCID: PMC10581550 DOI: 10.4103/1673-5374.380884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 09/19/2023] Open
Affiliation(s)
- Barbara Pavan
- Department of Neuroscience and Rehabilitation, University of Ferrara, via L Borsari, Ferrara, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), via Fossato di Mortara, Ferrara, Italy
| |
Collapse
|
7
|
Ding Z, Jiang M, Qian J, Gu D, Bai H, Cai M, Yao D. Role of transforming growth factor-β in peripheral nerve regeneration. Neural Regen Res 2024; 19:380-386. [PMID: 37488894 PMCID: PMC10503632 DOI: 10.4103/1673-5374.377588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/29/2023] [Accepted: 04/27/2023] [Indexed: 07/26/2023] Open
Abstract
Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits. Unlike in the central nervous system, damaged axons in peripheral nerves can be induced to regenerate in response to intrinsic cues after reprogramming or in a growth-promoting microenvironment created by Schwann cells. However, axon regeneration and repair do not automatically result in the restoration of function, which is the ultimate therapeutic goal but also a major clinical challenge. Transforming growth factor (TGF) is a multifunctional cytokine that regulates various biological processes including tissue repair, embryo development, and cell growth and differentiation. There is accumulating evidence that TGF-β family proteins participate in peripheral nerve repair through various factors and signaling pathways by regulating the growth and transformation of Schwann cells; recruiting specific immune cells; controlling the permeability of the blood-nerve barrier, thereby stimulating axon growth; and inhibiting remyelination of regenerated axons. TGF-β has been applied to the treatment of peripheral nerve injury in animal models. In this context, we review the functions of TGF-β in peripheral nerve regeneration and potential clinical applications.
Collapse
Affiliation(s)
- Zihan Ding
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Maorong Jiang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jiaxi Qian
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Dandan Gu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Huiyuan Bai
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Min Cai
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Dengbing Yao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
8
|
Alavi O, Alizadeh A, Dehghani F, Alipour H, Tanideh N. Anti-inflammatory Effects of Umbilical Cord Mesenchymal Stem Cell and Autologous Conditioned Serum on Oligodendrocyte, Astrocyte, and Microglial Specific Gene in Cuprizone Animal Model. Curr Stem Cell Res Ther 2024; 19:71-82. [PMID: 36852798 DOI: 10.2174/1574888x18666230228102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/23/2022] [Accepted: 12/29/2022] [Indexed: 03/01/2023]
Abstract
BACKGROUND Inflammation, myelin loss, astrocytosis, and microgliosis are pathological signs of the autoimmune and demyelinating disease known as multiple sclerosis (MS). Axonal and neuronal degenerations have basic molecular pathways. The remyelination process can be influenced by the secretome of mesenchymal stem cells due to their capacity for immunomodulation, differentiation, and neuroprotection. Microglial cells are divided into two subgroups: M1 and M2 phenotypes. A crucial component of the microglial function is the colony stimulating factor 1 receptor (CSF1R). We aimed to evaluate the immunomodulating effects of secretome and conditioned serum on the microglial phenotypes and improvement of demyelination in a cuprizone model of MS. METHODS The study used 48 male C57BL/6 mice, which were randomly distributed into 6 subgroups (n = 8), i.e., control, cuprizone, MSC (confluency 40% and 80%) secretome group, and blood derived conditioned serum (autologous and humanized). The animals were fed with 0.2% cuprizone diet for 12 weeks. Supplements were injected into the lateral tail vein using a 27-gauge needle every 3 days 500 μl per injection. RESULTS At 14 days after transplantation, animals from each group were sacrificed and analyzed by Real time PCR. The results showed that the administration of MSC secretome can efficiently reduce expression of pro-inflammatory cytokines (IL-1, IL6 and TNF-α) in the corpus callosum; also, conditioned serum downregulated IL-1. Moreover, the oligodendrocyte-specific gene was upregulated by secretome and conditioned serum treatment. Also, the expression of microglial- specific gene was reduced after treatment. CONCLUSION These findings demonstrated that the secretome isolated from MSCs used as a therapy decreased and increased the M1 and M2 levels, respectively, to control neuroinflammation in CPZ mice. In conclusion, the current study showed the viability of devising a method to prepare suitable MSCs and secreted factor to cure neurodegenerative diseases, as well as the capability of regulating MSC secretome patterns by manipulating the cell density.
Collapse
Affiliation(s)
- Omid Alavi
- Department of Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aliakbar Alizadeh
- Department of Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Dehghani
- Department of Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Alipour
- Department of Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iranaz Iran
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Nelson MC, Royer J, Lu WD, Leppert IR, Campbell JSW, Schiavi S, Jin H, Tavakol S, Vos de Wael R, Rodriguez-Cruces R, Pike GB, Bernhardt BC, Daducci A, Misic B, Tardif CL. The human brain connectome weighted by the myelin content and total intra-axonal cross-sectional area of white matter tracts. Netw Neurosci 2023; 7:1363-1388. [PMID: 38144691 PMCID: PMC10697181 DOI: 10.1162/netn_a_00330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/19/2023] [Indexed: 12/26/2023] Open
Abstract
A central goal in neuroscience is the development of a comprehensive mapping between structural and functional brain features, which facilitates mechanistic interpretation of brain function. However, the interpretability of structure-function brain models remains limited by a lack of biological detail. Here, we characterize human structural brain networks weighted by multiple white matter microstructural features including total intra-axonal cross-sectional area and myelin content. We report edge-weight-dependent spatial distributions, variance, small-worldness, rich club, hubs, as well as relationships with function, edge length, and myelin. Contrasting networks weighted by the total intra-axonal cross-sectional area and myelin content of white matter tracts, we find opposite relationships with functional connectivity, an edge-length-independent inverse relationship with each other, and the lack of a canonical rich club in myelin-weighted networks. When controlling for edge length, networks weighted by either fractional anisotropy, radial diffusivity, or neurite density show no relationship with whole-brain functional connectivity. We conclude that the co-utilization of structural networks weighted by total intra-axonal cross-sectional area and myelin content could improve our understanding of the mechanisms mediating the structure-function brain relationship.
Collapse
Affiliation(s)
- Mark C. Nelson
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Jessica Royer
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Wen Da Lu
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Ilana R. Leppert
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Jennifer S. W. Campbell
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Hyerang Jin
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Shahin Tavakol
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Reinder Vos de Wael
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Raul Rodriguez-Cruces
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - G. Bruce Pike
- Hotchkiss Brain Institute and Departments of Radiology and Clinical Neuroscience, University of Calgary, Calgary, Canada
| | - Boris C. Bernhardt
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | | | - Bratislav Misic
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Christine L. Tardif
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Raizen DM, Mullington J, Anaclet C, Clarke G, Critchley H, Dantzer R, Davis R, Drew KL, Fessel J, Fuller PM, Gibson EM, Harrington M, Ian Lipkin W, Klerman EB, Klimas N, Komaroff AL, Koroshetz W, Krupp L, Kuppuswamy A, Lasselin J, Lewis LD, Magistretti PJ, Matos HY, Miaskowski C, Miller AH, Nath A, Nedergaard M, Opp MR, Ritchie MD, Rogulja D, Rolls A, Salamone JD, Saper C, Whittemore V, Wylie G, Younger J, Zee PC, Craig Heller H. Beyond the symptom: the biology of fatigue. Sleep 2023; 46:zsad069. [PMID: 37224457 PMCID: PMC10485572 DOI: 10.1093/sleep/zsad069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/24/2023] [Indexed: 05/26/2023] Open
Abstract
A workshop titled "Beyond the Symptom: The Biology of Fatigue" was held virtually September 27-28, 2021. It was jointly organized by the Sleep Research Society and the Neurobiology of Fatigue Working Group of the NIH Blueprint Neuroscience Research Program. For access to the presentations and video recordings, see: https://neuroscienceblueprint.nih.gov/about/event/beyond-symptom-biology-fatigue. The goals of this workshop were to bring together clinicians and scientists who use a variety of research approaches to understand fatigue in multiple conditions and to identify key gaps in our understanding of the biology of fatigue. This workshop summary distills key issues discussed in this workshop and provides a list of promising directions for future research on this topic. We do not attempt to provide a comprehensive review of the state of our understanding of fatigue, nor to provide a comprehensive reprise of the many excellent presentations. Rather, our goal is to highlight key advances and to focus on questions and future approaches to answering them.
Collapse
Affiliation(s)
- David M Raizen
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Janet Mullington
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Christelle Anaclet
- Department of Neurological Surgery, University of California, Davis School of Medicine, Sacramento, CA, USA
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hugo Critchley
- Brighton and Sussex Medical School Department of Neuroscience, University of Sussex, Brighton, UK
| | - Robert Dantzer
- Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ronald Davis
- Department of Biochemistry and Genetics, Stanford University, Palo Alto, CA, USA
| | - Kelly L Drew
- Department of Chemistry and Biochemistry, Institute of Arctic Biology, Center for Transformative Research in Metabolism, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Josh Fessel
- Division of Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Patrick M Fuller
- Department of Neurological Surgery, University of California, Davis School of Medicine, Sacramento, CA, USA
| | - Erin M Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Mary Harrington
- Department of Psychology, Neuroscience Program, Smith College, Northampton, MA, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, and Departments of Neurology and Pathology, Columbia University, New York City, NY, USA
| | - Elizabeth B Klerman
- Division of Sleep Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Nancy Klimas
- Department of Clinical Immunology, College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Anthony L Komaroff
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Walter Koroshetz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Lauren Krupp
- Department of Neurology, NYU Grossman School of Medicine, NYC, NY, USA
| | - Anna Kuppuswamy
- University College London, Queen Square Institute of Neurology, London, England
| | - Julie Lasselin
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Laura D Lewis
- Center for Systems Neuroscience, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Pierre J Magistretti
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Heidi Y Matos
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Christine Miaskowski
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, CA, USA
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Avindra Nath
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Maiken Nedergaard
- Departments of Neurology and Neurosurgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Mark R Opp
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Marylyn D Ritchie
- Department of Genetics, Institute for Biomedical Informatics, Penn Center for Precision Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dragana Rogulja
- Department of Neurobiology, Harvard University, Boston, MA, USA
| | - Asya Rolls
- Rappaport Institute for Medical Research, Technion, Israel Institute of Technology, Haifa, Israel
| | - John D Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Clifford Saper
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Vicky Whittemore
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Glenn Wylie
- Rocco Ortenzio Neuroimaging Center at Kessler Foundation, East Hanover, NJ, USA
| | - Jarred Younger
- Department of Psychology, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Phyllis C Zee
- Center for Circadian and Sleep Medicine, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - H Craig Heller
- Department of Biology, Stanford University and Sleep Research Society, Stanford, CA, USA
| |
Collapse
|
11
|
Bang M, Kim B, Lee KS, Choi TK, Lee S. Long-term benefits of mindfulness on white matter tracts underlying the cortical midline structures in panic disorder: A 2-year longitudinal study. Psychiatry Clin Neurosci 2023; 77:355-364. [PMID: 36917206 PMCID: PMC11488607 DOI: 10.1111/pcn.13544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
AIMS We aimed to examine the long-term benefits of mindfulness-based cognitive therapy (MBCT) on white matter plasticity in the cortical midline structures (CMS) for a period of 2 years in patients with panic disorder and the relationships between white matter changes in the CMS and severity of state and trait symptoms. METHODS Seventy-one participants were enrolled and underwent diffusion tensor imaging at baseline and after 2 years (26 who received MBCT as an adjunct to pharmacotherapy [MBCT+PT], 20 treated with pharmacotherapy alone [PT-alone], and 25 healthy controls [HCs]). The severity of symptoms and fractional anisotropy (FA) in white matter regions underlying the CMS were assessed at baseline and 2-year follow-up. RESULTS The MBCT+PT group showed better outcomes after 2 years than the PT-alone group. The groups showed different FA changes: the MBCT+PT group showed decreased FA in the left anterior cingulate cortex (ACC); the PT-alone group showed increased FA in the bilateral dorsomedial prefrontal cortex, posterior cingulate cortex (PCC), and precuneus. Decreased white matter FA in the ACC, PCC, and precuneus was associated with improvements in the severity of state and trait symptoms in patients with panic disorder. CONCLUSION Alleviation of excessive white matter connectivity in the CMS after MBCT leads to improvements in clinical symptoms and trait vulnerability in patients with panic disorder. Our study provides new evidence for the long-term benefits of MBCT on white matter plasticity and its clinical applicability as a robust treatment for panic disorder.
Collapse
Affiliation(s)
- Minji Bang
- Department of Psychiatry, CHA Bundang Medical CenterCHA University School of MedicineSeongnamRepublic of Korea
| | - Borah Kim
- Department of Psychiatry, CHA Bundang Medical CenterCHA University School of MedicineSeongnamRepublic of Korea
| | - Kang Soo Lee
- Department of Psychiatry, CHA Bundang Medical CenterCHA University School of MedicineSeongnamRepublic of Korea
| | - Tai Kiu Choi
- Department of Psychiatry, CHA Bundang Medical CenterCHA University School of MedicineSeongnamRepublic of Korea
| | - Sang‐Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical CenterCHA University School of MedicineSeongnamRepublic of Korea
| |
Collapse
|
12
|
Zlomuzica A, Plank L, Kodzaga I, Dere E. A fatal alliance: Glial connexins, myelin pathology and mental disorders. J Psychiatr Res 2023; 159:97-115. [PMID: 36701970 DOI: 10.1016/j.jpsychires.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Mature oligodendrocytes are myelin forming glial cells which are responsible for myelination of neuronal axons in the white matter of the central nervous system. Myelin pathology is a major feature of severe neurological disorders. Oligodendrocyte-specific gene mutations and/or white matter alterations have also been addressed in a variety of mental disorders. Breakdown of myelin integrity and demyelination is associated with severe symptoms, including impairments in motor coordination, breathing, dysarthria, perception (vision and hearing), and cognition. Furthermore, there is evidence indicating that myelin sheath defects and white matter pathology contributes to the affective and cognitive symptoms of patients with mental disorders. Oligodendrocytes express the connexins GJC2; mCx47 [human (GJC2) and mouse (mCx47) connexin gene nomenclature according to Söhl and Willecke (2003)], GJB1; mCx32, and GJD1; mCx29 in both white and gray matter. Preclinical findings indicate that alterations in connexin expression in oligodendrocytes and astrocytes can induce myelin defects. GJC2; mCx47 is expressed at early embryonic stages in oligodendrocyte precursors cells which precedes central nervous system myelination. In adult humans and animals GJC2, respectively mCx47 expression is essential for oligodendrocyte function and ensures adequate myelination as well as myelin maintenance in the central nervous system. In the past decade, evidence has accumulated suggesting that mental disorders can be accompanied by changes in connexin expression, myelin sheath defects and corresponding white matter alterations. This dual pathology could compromise inter-neuronal information transfer, processing and communication and eventually contribute to behavioral, sensory-motor, affective and cognitive symptoms in patients with mental disorders. The induction of myelin repair and remyelination in the central nervous system of patients with mental disorders could help to restore normal neuronal information propagation and ameliorate behavioral and cognitive symptoms in individuals with mental disorders.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787, Bochum, Germany.
| | - Laurin Plank
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787, Bochum, Germany
| | - Iris Kodzaga
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787, Bochum, Germany
| | - Ekrem Dere
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787, Bochum, Germany; Sorbonne Université, UFR des Sciences de la Vie, 9 quai Saint Bernard, F-75005, Paris, France.
| |
Collapse
|
13
|
de Carvalho Borges B, Meng X, Long P, Kanold PO, Corfas G. Loss of oligodendrocyte ErbB receptor signaling leads to hypomyelination, reduced density of parvalbumin-expressing interneurons, and inhibitory function in the auditory cortex. Glia 2023; 71:187-204. [PMID: 36052476 PMCID: PMC9771935 DOI: 10.1002/glia.24266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/24/2022]
Abstract
For a long time, myelin was thought to be restricted to excitatory neurons, and studies on dysmyelination focused primarily on excitatory cells. Recent evidence showed that axons of inhibitory neurons in the neocortex are also myelinated, but the role of myelin on inhibitory circuits remains unknown. Here we studied the impact of mild hypomyelination on both excitatory and inhibitory connectivity in the primary auditory cortex (A1) with well-characterized mouse models of hypomyelination due to loss of oligodendrocyte ErbB receptor signaling. Using laser-scanning photostimulation, we found that mice with mild hypomyelination have reduced functional inhibitory connections to A1 L2/3 neurons without changes in excitatory connections, resulting in altered excitatory/inhibitory balance. These effects are not associated with altered expression of GABAergic and glutamatergic synaptic components, but with reduced density of parvalbumin-positive (PV+ ) neurons, axons, and synaptic terminals, which reflect reduced PV expression by interneurons rather than PV+ neuronal loss. While immunostaining shows that hypomyelination occurs in both PV+ and PV- axons, there is a strong correlation between MBP and PV expression, suggesting that myelination influences PV expression. Together, the results indicate that mild hypomyelination impacts A1 neuronal networks, reducing inhibitory activity, and shifting networks towards excitation.
Collapse
Affiliation(s)
- Beatriz de Carvalho Borges
- Kresge Hearing Research Institute - Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, MI
| | - Xiangying Meng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205,Department of Biology, University of Maryland, College Park, MD 20742
| | - Patrick Long
- Kresge Hearing Research Institute - Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, MI
| | - Patrick Oliver Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205,Department of Biology, University of Maryland, College Park, MD 20742
| | - Gabriel Corfas
- Kresge Hearing Research Institute - Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, MI
| |
Collapse
|
14
|
Chen Y, Liu TT, Niu M, Li X, Wang X, Liu T, Li Y. Epilepsy gene prickle ensures neuropil glial ensheathment through regulating cell adhesion molecules. iScience 2022; 26:105731. [PMID: 36582832 PMCID: PMC9792895 DOI: 10.1016/j.isci.2022.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/27/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Human PRICKLE1 gene has been associated with epilepsy. However, the underlying pathogenetic mechanisms remain elusive. Here we report a Drosophila prickle mutant pk IG1-1 exhibiting strong epileptic seizures and, intriguingly, abnormal glial wrapping. We found that pk is required in both neurons and glia, particularly neuropil ensheathing glia (EGN), the fly analog of oligodendrocyte, for protecting the animal from seizures. We further revealed that Pk directly binds to the membrane skeleton binding protein Ankyrin 2 (Ank2), thereby regulating the cell adhesion molecule Neuroglian (Nrg). Such protein interactions also apply to their human homologues. Moreover, nrg and ank2 mutant flies also display seizure phenotypes, and expression of either Nrg or Ank2 rescues the seizures of pk IG1-1 flies. Therefore, our findings indicate that Prickle ensures neuron-glial interaction within neuropils through regulating cell adhesion between neurons and ensheathing glia. Dysregulation of this process may represent a conserved pathogenic mechanism underlying PRICKLE1-associated epilepsy.
Collapse
Affiliation(s)
- Yanbo Chen
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China,Corresponding author
| | - Tong-Tong Liu
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengxia Niu
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoting Li
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinwei Wang
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Liu
- International Academic Center of Complex Systems, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Yan Li
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding author
| |
Collapse
|
15
|
Cristobal CD, Lee HK. Development of myelinating glia: An overview. Glia 2022; 70:2237-2259. [PMID: 35785432 PMCID: PMC9561084 DOI: 10.1002/glia.24238] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023]
Abstract
Myelin is essential to nervous system function, playing roles in saltatory conduction and trophic support. Oligodendrocytes (OLs) and Schwann cells (SCs) form myelin in the central and peripheral nervous systems respectively and follow different developmental paths. OLs are neural stem-cell derived and follow an intrinsic developmental program resulting in a largely irreversible differentiation state. During embryonic development, OL precursor cells (OPCs) are produced in distinct waves originating from different locations in the central nervous system, with a subset developing into myelinating OLs. OPCs remain evenly distributed throughout life, providing a population of responsive, multifunctional cells with the capacity to remyelinate after injury. SCs derive from the neural crest, are highly dependent on extrinsic signals, and have plastic differentiation states. SC precursors (SCPs) are produced in early embryonic nerve structures and differentiate into multipotent immature SCs (iSCs), which initiate radial sorting and differentiate into myelinating and non-myelinating SCs. Differentiated SCs retain the capacity to radically change phenotypes in response to external signals, including becoming repair SCs, which drive peripheral regeneration. While several transcription factors and myelin components are common between OLs and SCs, their differentiation mechanisms are highly distinct, owing to their unique lineages and their respective environments. In addition, both OLs and SCs respond to neuronal activity and regulate nervous system output in reciprocal manners, possibly through different pathways. Here, we outline their basic developmental programs, mechanisms regulating their differentiation, and recent advances in the field.
Collapse
Affiliation(s)
- Carlo D. Cristobal
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Hyun Kyoung Lee
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA,Department of PediatricsBaylor College of MedicineHoustonTexasUSA,Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
16
|
Krishna S, Hervey-Jumper SL. Neural Regulation of Cancer: Cancer-Induced Remodeling of the Central Nervous System. Adv Biol (Weinh) 2022; 6:e2200047. [PMID: 35802914 PMCID: PMC10182823 DOI: 10.1002/adbi.202200047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/01/2022] [Indexed: 01/28/2023]
Abstract
In recent years, there have been significant advances in understanding the neuronal influence on the biology of solid tumors such as prostate, pancreatic, gastric, and brain cancers. An increasing amount of experimental evidence across multiple tumor types strongly suggests the existence of bidirectional crosstalk between cancer cells and the neural microenvironment. However, unlike cancers affecting many solid organs, brain tumors, namely gliomas, can synaptically integrate into neural circuits and thus can exert a greater potential to induce dynamic remodeling of functional circuits resulting in long-lasting behavioral changes. The first part of the review describes dynamic changes in language, sensory, and motor networks following glioma development and presents evidence focused on how different patterns of glioma-induced cortical reorganization may predict the degree and time course of functional recovery in brain tumor patients. The second part focuses on the network and cellular-level mechanisms underlying glioma-induced cerebral reorganization. Finally, oncological and clinical factors influencing glioma-induced network remodeling in glioma patients are reviewed.
Collapse
Affiliation(s)
- Saritha Krishna
- Department of Neurological Surgery, University of California, San Francisco, CA, 94143, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, CA, 94143, USA
- Weill Neurosciences Institute, University of California, San Francisco, CA, 94143, USA
- Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
17
|
A diffusion MRI study of brain white matter microstructure in adolescents and adults with a Fontan circulation: Investigating associations with resting and peak exercise oxygen saturations and cognition. Neuroimage Clin 2022; 36:103151. [PMID: 35994923 PMCID: PMC9402393 DOI: 10.1016/j.nicl.2022.103151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Adolescents and adults with a Fontan circulation are at risk of cognitive dysfunction; Attention and processing speed are notable areas of concern. Underlying mechanisms and brain alterations associated with worse long-term cognitive outcomes are not well determined. This study investigated brain white matter microstructure in adolescents and adults with a Fontan circulation and associations with resting and peak exercise oxygen saturations (SaO2), predicted maximal oxygen uptake during exercise (% pred VO2), and attention and processing speed. METHODS Ninety-two participants with a Fontan circulation (aged 13-49 years, ≥5 years post-Fontan completion) had diffusion MRI. Averaged tract-wise diffusion tensor imaging (DTI) metrics were generated for 34 white matter tracts of interest. Resting and peak exercise SaO2 and % pred VO2 were measured during cardiopulmonary exercise testing (CPET; N = 81). Attention and processing speed were assessed using Cogstate (N = 67 and 70, respectively). Linear regression analyses adjusted for age, sex, and intracranial volume were performed to investigate associations between i) tract-specific DTI metrics and CPET variables, and ii) tract-specific DTI metrics and attention and processing speed z-scores. RESULTS Forty-nine participants were male (53%), mean age was 23.1 years (standard deviation (SD) = 7.8 years). Mean resting and peak exercise SaO2 were 93.1% (SD = 3.6) and 90.1% (SD = 4.7), respectively. Mean attention and processing speed z-scores were -0.63 (SD = 1.07) and -0.72 (SD = 1.44), respectively. Resting SaO2 were positively associated with mean fractional anisotropy (FA) of the left corticospinal tract (CST) and right superior longitudinal fasciculus I (SLF-I) and negatively associated with mean diffusivity (MD) and radial diffusivity (RD) of the right SLF-I (p ≤ 0.01). Peak exercise SaO2 were positively associated with mean FA of the left CST and were negatively associated with mean RD of the left CST, MD of the left frontopontine tract, MD, RD and axial diffusivity (AD) of the right SLF-I, RD of the left SLF-II, MD, RD and AD of the right SLF-II, and MD and RD of the right SLF-III (p ≤ 0.01). Percent predicted VO2 was positively associated with FA of the left uncinate fasciculus (p < 0.01). Negative associations were identified between mean FA of the right arcuate fasciculus, right SLF-II and right SLF-III and processing speed (p ≤ 0.01). No significant associations were identified between DTI-based metrics and attention. CONCLUSION Chronic hypoxemia may have long-term detrimental impact on white matter microstructure in people living with a Fontan circulation. Paradoxical associations between processing speed and tract-specific DTI metrics could be suggestive of compensatory white matter remodeling. Longitudinal investigations focused on the mechanisms and trajectory of altered white matter microstructure and associated cognitive dysfunction in people with a Fontan circulation are required to better understand causal associations.
Collapse
|
18
|
Winstone JK, Pathak KV, Winslow W, Piras IS, White J, Sharma R, Huentelman MJ, Pirrotte P, Velazquez R. Glyphosate infiltrates the brain and increases pro-inflammatory cytokine TNFα: implications for neurodegenerative disorders. J Neuroinflammation 2022; 19:193. [PMID: 35897073 PMCID: PMC9331154 DOI: 10.1186/s12974-022-02544-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/05/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Herbicides are environmental contaminants that have gained much attention due to the potential hazards they pose to human health. Glyphosate, the active ingredient in many commercial herbicides, is the most heavily applied herbicide worldwide. The recent rise in glyphosate application to corn and soy crops correlates positively with increased death rates due to Alzheimer's disease and other neurodegenerative disorders. Glyphosate has been shown to cross the blood-brain barrier in in vitro models, but has yet to be verified in vivo. Additionally, reports have shown that glyphosate exposure increases pro-inflammatory cytokines in blood plasma, particularly TNFα. METHODS Here, we examined whether glyphosate infiltrates the brain and elevates TNFα levels in 4-month-old C57BL/6J mice. Mice received either 125, 250, or 500 mg/kg/day of glyphosate, or a vehicle via oral gavage for 14 days. Urine, plasma, and brain samples were collected on the final day of dosing for analysis via UPLC-MS and ELISAs. Primary cortical neurons were derived from amyloidogenic APP/PS1 pups to evaluate in vitro changes in Aβ40-42 burden and cytotoxicity. RNA sequencing was performed on C57BL/6J brain samples to determine changes in the transcriptome. RESULTS Our analysis revealed that glyphosate infiltrated the brain in a dose-dependent manner and upregulated TNFα in both plasma and brain tissue post-exposure. Notably, glyphosate measures correlated positively with TNFα levels. Glyphosate exposure in APP/PS1 primary cortical neurons increases levels of soluble Aβ40-42 and cytotoxicity. RNAseq revealed over 200 differentially expressed genes in a dose-dependent manner and cell-type-specific deconvolution analysis showed enrichment of key biological processes in oligodendrocytes including myelination, axon ensheathment, glial cell development, and oligodendrocyte development. CONCLUSIONS Collectively, these results show for the first time that glyphosate infiltrates the brain, elevates both the expression of TNFα and soluble Aβ, and disrupts the transcriptome in a dose-dependent manner, suggesting that exposure to this herbicide may have detrimental outcomes regarding the health of the general population.
Collapse
Affiliation(s)
- Joanna K Winstone
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, 797 E Tyler St, Tempe, AZ, 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Khyatiben V Pathak
- Integrated Mass Spectrometry Shared Resources (IMS-SR), City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Wendy Winslow
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, 797 E Tyler St, Tempe, AZ, 85287, USA
| | - Ignazio S Piras
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Jennifer White
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, 797 E Tyler St, Tempe, AZ, 85287, USA
| | - Ritin Sharma
- Integrated Mass Spectrometry Shared Resources (IMS-SR), City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Matthew J Huentelman
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Patrick Pirrotte
- Integrated Mass Spectrometry Shared Resources (IMS-SR), City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Ramon Velazquez
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, 797 E Tyler St, Tempe, AZ, 85287, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA.
| |
Collapse
|
19
|
The Intricate Epigenetic and Transcriptional Alterations in Pediatric High-Grade Gliomas: Targeting the Crosstalk as the Oncogenic Achilles’ Heel. Biomedicines 2022; 10:biomedicines10061311. [PMID: 35740334 PMCID: PMC9219798 DOI: 10.3390/biomedicines10061311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/01/2023] Open
Abstract
Pediatric high-grade gliomas (pHGGs) are a deadly and heterogenous subgroup of gliomas for which the development of innovative treatments is urgent. Advances in high-throughput molecular techniques have shed light on key epigenetic components of these diseases, such as K27M and G34R/V mutations on histone 3. However, modification of DNA compaction is not sufficient by itself to drive those tumors. Here, we review molecular specificities of pHGGs subcategories in the context of epigenomic rewiring caused by H3 mutations and the subsequent oncogenic interplay with transcriptional signaling pathways co-opted from developmental programs that ultimately leads to gliomagenesis. Understanding how transcriptional and epigenetic alterations synergize in each cellular context in these tumors could allow the identification of new Achilles’ heels, thereby highlighting new levers to improve their therapeutic management.
Collapse
|
20
|
DeFlitch L, Gonzalez-Fernandez E, Crawley I, Kang SH. Age and Alzheimer's Disease-Related Oligodendrocyte Changes in Hippocampal Subregions. Front Cell Neurosci 2022; 16:847097. [PMID: 35465615 PMCID: PMC9023310 DOI: 10.3389/fncel.2022.847097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Oligodendrocytes (OLs) form myelin sheaths and provide metabolic support to axons in the CNS. Although most OLs develop during early postnatal life, OL generation continues in adulthood, and this late oligodendrogenesis may contribute to neuronal network plasticity in the adult brain. We used genetic tools for OL labeling and fate tracing of OL progenitors (OPCs), thereby determining OL population growth in hippocampal subregions with normal aging. OL numbers increased up to at least 1 year of age, but the rates and degrees of this OL change differed among hippocampal subregions. In particular, adult oligodendrogenesis was most prominent in the CA3 and CA4 subregions. In Alzheimer's disease-like conditions, OL loss was also most severe in the CA3 and CA4 of APP/PS1 mice, although the disease did not impair the rate of OPC differentiation into OLs in those regions. Such region-specific, dynamic OL changes were not correlated with those of OPCs or astrocytes, or the regional distribution of Aβ deposits. Our findings suggest subregion-dependent mechanisms for myelin plasticity and disease-associated OL vulnerability in the adult hippocampus.
Collapse
Affiliation(s)
- Leah DeFlitch
- Biology Department, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Estibaliz Gonzalez-Fernandez
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States,Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University, Philadelphia, PA, United States
| | - Ilan Crawley
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States,Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University, Philadelphia, PA, United States
| | - Shin H. Kang
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States,Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University, Philadelphia, PA, United States,*Correspondence: Shin H. Kang,
| |
Collapse
|
21
|
Garcia-Martin G, Alcover-Sanchez B, Wandosell F, Cubelos B. Pathways Involved in Remyelination after Cerebral Ischemia. Curr Neuropharmacol 2022; 20:751-765. [PMID: 34151767 PMCID: PMC9878953 DOI: 10.2174/1570159x19666210610093658] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022] Open
Abstract
Brain ischemia, also known as ischemic stroke, occurs when there is a lack of blood supply into the brain. When an ischemic insult appears, both neurons and glial cells can react in several ways that will determine the severity and prognosis. This high heterogeneity of responses has been a major obstacle in developing effective treatments or preventive methods for stroke. Although white matter pathophysiology has not been deeply assessed in stroke, its remodelling can greatly influence the clinical outcome and the disability degree. Oligodendrocytes, the unique cell type implied in CNS myelination, are sensible to ischemic damage. Loss of myelin sheaths can compromise axon survival, so new Oligodendrocyte Precursor Cells are required to restore brain function. Stroke can, therefore, enhance oligodendrogenesis to regenerate those new oligodendrocytes that will ensheath the damaged axons. Given that myelination is a highly complex process that requires coordination of multiple pathways such as Sonic Hedgehog, RTKs or Wnt/β-catenin, we will analyse new research highlighting their importance after brain ischemia. In addition, oligodendrocytes are not isolated cells inside the brain, but rather form part of a dynamic environment of interactions between neurons and glial cells. For this reason, we will put some context into how microglia and astrocytes react against stroke and influence oligodendrogenesis to highlight the relevance of remyelination in the ischemic brain. This will help to guide future studies to develop treatments focused on potentiating the ability of the brain to repair the damage.
Collapse
Affiliation(s)
- Gonzalo Garcia-Martin
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Berta Alcover-Sanchez
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Francisco Wandosell
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Beatriz Cubelos
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain,Address correspondence to this author at the Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Nicolás Cabrera 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Tel: 34-91-1964561; Fax: 34-91-1964420; E-mail:
| |
Collapse
|
22
|
Duffau H. White Matter Tracts and Diffuse Lower-Grade Gliomas: The Pivotal Role of Myelin Plasticity in the Tumor Pathogenesis, Infiltration Patterns, Functional Consequences and Therapeutic Management. Front Oncol 2022; 12:855587. [PMID: 35311104 PMCID: PMC8924360 DOI: 10.3389/fonc.2022.855587] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Abstract
For many decades, interactions between diffuse lower-grade glioma (LGG) and brain connectome were neglected. However, the neoplasm progression is intimately linked to its environment, especially the white matter (WM) tracts and their myelin status. First, while the etiopathogenesis of LGG is unclear, this tumor seems to appear during the adolescence, and it is mostly located within anterior and associative cerebral areas. Because these structures correspond to those which were myelinated later in the brain maturation process, WM myelination could play a role in the development of LGG. Second, WM fibers and the myelin characteristics also participate in LGG diffusion, since glioma cells migrate along the subcortical pathways, especially when exhibiting a demyelinated phenotype, which may result in a large invasion of the parenchyma. Third, such a migratory pattern can induce functional (neurological, cognitive and behavioral) disturbances, because myelinated WM tracts represent the main limitation of neuroplastic potential. These parameters are critical for tailoring an individualized therapeutic strategy, both (i) regarding the timing of active treatment(s) which must be proposed earlier, before a too wide glioma infiltration along the WM bundles, (ii) and regarding the anatomic extent of surgical resection and irradiation, which should take account of the subcortical connectivity. Therefore, the new science of connectomics must be integrated in LGG management, based upon an improved understanding of the interplay across glioma dissemination within WM and reactional neural networks reconfiguration, in order to optimize long-term oncological and functional outcomes. To this end, mechanisms of activity-dependent myelin plasticity should be better investigated.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors", Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM) U1191, University of Montpellier, Montpellier, France
| |
Collapse
|
23
|
Bencurova P, Laakso H, Salo RA, Paasonen E, Manninen E, Paasonen J, Michaeli S, Mangia S, Bares M, Brazdil M, Kubova H, Gröhn O. Infantile status epilepticus disrupts myelin development. Neurobiol Dis 2022; 162:105566. [PMID: 34838665 PMCID: PMC8845085 DOI: 10.1016/j.nbd.2021.105566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most prevalent type of epilepsy in adults; it often starts in infancy or early childhood. Although TLE is primarily considered to be a grey matter pathology, a growing body of evidence links this disease with white matter abnormalities. In this study, we explore the impact of TLE onset and progression in the immature brain on white matter integrity and development utilising the rat model of Li-pilocarpine-induced TLE at the 12th postnatal day (P). Diffusion tensor imaging (DTI) and Black-Gold II histology uncovered disruptions in major white matter tracks (corpus callosum, internal and external capsules, and deep cerebral white matter) spreading through the whole brain at P28. These abnormalities were mostly not present any longer at three months after TLE induction, with only limited abnormalities detectable in the external capsule and deep cerebral white matter. Relaxation Along a Fictitious Field in the rotating frame of rank 4 indicated that white matter changes observed at both timepoints, P28 and P72, are consistent with decreased myelin content. The animals affected by TLE-induced white matter abnormalities exhibited increased functional connectivity between the thalamus and medial prefrontal and somatosensory cortex in adulthood. Furthermore, histological analyses of additional animal groups at P15 and P18 showed only mild changes in white matter integrity, suggesting a gradual age-dependent impact of TLE progression. Taken together, TLE progression in the immature brain distorts white matter development with a peak around postnatal day 28, followed by substantial recovery in adulthood. This developmental delay might give rise to cognitive and behavioural comorbidities typical for early-onset TLE.
Collapse
Affiliation(s)
- Petra Bencurova
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Pekarska 53, 656 91 Brno, Czech Republic.
| | - Hanne Laakso
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Raimo A Salo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Ekaterina Paasonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Eppu Manninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Jaakko Paasonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Shalom Michaeli
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Silvia Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Martin Bares
- Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Pekarska 53, 656 91 Brno, Czech Republic; Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Milan Brazdil
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Pekarska 53, 656 91 Brno, Czech Republic
| | - Hana Kubova
- Academy of Sciences Czech Republic, Institute of Physiology, Department of Developmental Epileptology, Videnska 1083, 14220 Prague, Czech Republic.
| | - Olli Gröhn
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
24
|
Long KLP, Chao LL, Kazama Y, An A, Hu KY, Peretz L, Muller DCY, Roan VD, Misra R, Toth CE, Breton JM, Casazza W, Mostafavi S, Huber BR, Woodward SH, Neylan TC, Kaufer D. Regional gray matter oligodendrocyte- and myelin-related measures are associated with differential susceptibility to stress-induced behavior in rats and humans. Transl Psychiatry 2021; 11:631. [PMID: 34903726 PMCID: PMC8668977 DOI: 10.1038/s41398-021-01745-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/30/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Individual reactions to traumatic stress vary dramatically, yet the biological basis of this variation remains poorly understood. Recent studies demonstrate the surprising plasticity of oligodendrocytes and myelin with stress and experience, providing a potential mechanism by which trauma induces aberrant structural and functional changes in the adult brain. In this study, we utilized a translational approach to test the hypothesis that gray matter oligodendrocytes contribute to traumatic-stress-induced behavioral variation in both rats and humans. We exposed adult, male rats to a single, severe stressor and used a multimodal approach to characterize avoidance, startle, and fear-learning behavior, as well as oligodendrocyte and myelin basic protein (MBP) content in multiple brain areas. We found that oligodendrocyte cell density and MBP were correlated with behavioral outcomes in a region-specific manner. Specifically, stress-induced avoidance positively correlated with hippocampal dentate gyrus oligodendrocytes and MBP. Viral overexpression of the oligodendrogenic factor Olig1 in the dentate gyrus was sufficient to induce an anxiety-like behavioral phenotype. In contrast, contextual fear learning positively correlated with MBP in the amygdala and spatial-processing regions of the hippocampus. In a group of trauma-exposed US veterans, T1-/T2-weighted magnetic resonance imaging estimates of hippocampal and amygdala myelin associated with symptom profiles in a region-specific manner that mirrored the findings in rats. These results demonstrate a species-independent relationship between region-specific, gray matter oligodendrocytes and differential behavioral phenotypes following traumatic stress exposure. This study suggests a novel mechanism for brain plasticity that underlies individual variance in sensitivity to traumatic stress.
Collapse
Affiliation(s)
- Kimberly L P Long
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Psychiatry and Behavioral Sciences, University of California, SanFrancisco, San Francisco, CA, 94143, USA
| | - Linda L Chao
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94143, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Yurika Kazama
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Anjile An
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kelsey Y Hu
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Lior Peretz
- Department of Molecular, Cellular, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Dyana C Y Muller
- Department of Computer Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Vivian D Roan
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Rhea Misra
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Claire E Toth
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jocelyn M Breton
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Psychiatry, Columbia University, New York, NY, 10027, USA
| | - William Casazza
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Sara Mostafavi
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada
| | - Bertrand R Huber
- Department of Neurology, Boston University, Boston, MA, 02215, USA
- National Center for PTSD, VA New England Health Care System, Boston, MA, 02130, USA
| | - Steven H Woodward
- National Center for PTSD, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Thomas C Neylan
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- San Francisco VA Health Care System, San Francisco, CA, 94121, USA
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada.
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
25
|
Steinberg DJ, Aqeilan RI. WWOX-Related Neurodevelopmental Disorders: Models and Future Perspectives. Cells 2021; 10:cells10113082. [PMID: 34831305 PMCID: PMC8623516 DOI: 10.3390/cells10113082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
The WW domain-containing oxidoreductase (WWOX) gene was originally discovered as a putative tumor suppressor spanning the common fragile site FRA16D, but as time has progressed the extent of its pleiotropic function has become apparent. At present, WWOX is a major source of interest in the context of neurological disorders, and more specifically developmental and epileptic encephalopathies (DEEs). This review article aims to introduce the many model systems used through the years to study its function and roles in neuropathies. Similarities and fundamental differences between rodent and human models are discussed. Finally, future perspectives and promising research avenues are suggested.
Collapse
|
26
|
Lazari A, Salvan P, Cottaar M, Papp D, Jens van der Werf O, Johnstone A, Sanders ZB, Sampaio-Baptista C, Eichert N, Miyamoto K, Winkler A, Callaghan MF, Nichols TE, Stagg CJ, Rushworth MFS, Verhagen L, Johansen-Berg H. Reassessing associations between white matter and behaviour with multimodal microstructural imaging. Cortex 2021; 145:187-200. [PMID: 34742100 PMCID: PMC8940642 DOI: 10.1016/j.cortex.2021.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/21/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022]
Abstract
Several studies have established specific relationships between White Matter (WM) and behaviour. However, these studies have typically focussed on fractional anisotropy (FA), a neuroimaging metric that is sensitive to multiple tissue properties, making it difficult to identify what biological aspects of WM may drive such relationships. Here, we carry out a pre-registered assessment of WM-behaviour relationships in 50 healthy individuals across multiple behavioural and anatomical domains, and complementing FA with myelin-sensitive quantitative MR modalities (MT, R1, R2∗). Surprisingly, we only find support for predicted relationships between FA and behaviour in one of three pre-registered tests. For one behavioural domain, where we failed to detect an FA-behaviour correlation, we instead find evidence for a correlation between behaviour and R1. This hints that multimodal approaches are able to identify a wider range of WM-behaviour relationships than focusing on FA alone. To test whether a common biological substrate such as myelin underlies WM-behaviour relationships, we then ran joint multimodal analyses, combining across all MRI parameters considered. No significant multimodal signatures were found and power analyses suggested that sample sizes of 40–200 may be required to detect such joint multimodal effects, depending on the task being considered. These results demonstrate that FA-behaviour relationships from the literature can be replicated, but may not be easily generalisable across domains. Instead, multimodal microstructural imaging may be best placed to detect a wider range of WM-behaviour relationships, as different MRI modalities provide distinct biological sensitivities. Our findings highlight a broad heterogeneity in WM's relationship with behaviour, suggesting that variable biological effects may be shaping their interaction.
Collapse
Affiliation(s)
- Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nu_eld Department of Clinical Neurosciences, University of Oxford, UK.
| | - Piergiorgio Salvan
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nu_eld Department of Clinical Neurosciences, University of Oxford, UK
| | - Michiel Cottaar
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nu_eld Department of Clinical Neurosciences, University of Oxford, UK
| | - Daniel Papp
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nu_eld Department of Clinical Neurosciences, University of Oxford, UK
| | - Olof Jens van der Werf
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, the Netherlands
| | - Ainslie Johnstone
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nu_eld Department of Clinical Neurosciences, University of Oxford, UK; Department of Clinical and Movement Neuroscience, Institute of Neurology, University College London, UK
| | - Zeena-Britt Sanders
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nu_eld Department of Clinical Neurosciences, University of Oxford, UK
| | - Cassandra Sampaio-Baptista
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nu_eld Department of Clinical Neurosciences, University of Oxford, UK
| | - Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nu_eld Department of Clinical Neurosciences, University of Oxford, UK
| | - Kentaro Miyamoto
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, UK
| | - Anderson Winkler
- National Institute of Mental Health, National of Health, Bethesda, MD, USA
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Thomas E Nichols
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nu_eld Department of Population Health, University of Oxford, UK
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nu_eld Department of Clinical Neurosciences, University of Oxford, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, UK; MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, UK
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, UK; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nu_eld Department of Clinical Neurosciences, University of Oxford, UK.
| |
Collapse
|
27
|
Madden ME, Suminaite D, Ortiz E, Early JJ, Koudelka S, Livesey MR, Bianco IH, Granato M, Lyons DA. CNS Hypomyelination Disrupts Axonal Conduction and Behavior in Larval Zebrafish. J Neurosci 2021; 41:9099-9111. [PMID: 34544838 PMCID: PMC8570833 DOI: 10.1523/jneurosci.0842-21.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/21/2022] Open
Abstract
Myelination is essential for central nervous system (CNS) formation, health and function. As a model organism, larval zebrafish have been extensively employed to investigate the molecular and cellular basis of CNS myelination, because of their genetic tractability and suitability for non-invasive live cell imaging. However, it has not been assessed to what extent CNS myelination affects neural circuit function in zebrafish larvae, prohibiting the integration of molecular and cellular analyses of myelination with concomitant network maturation. To test whether larval zebrafish might serve as a suitable platform with which to study the effects of CNS myelination and its dysregulation on circuit function, we generated zebrafish myelin regulatory factor (myrf) mutants with CNS-specific hypomyelination and investigated how this affected their axonal conduction properties and behavior. We found that myrf mutant larvae exhibited increased latency to perform startle responses following defined acoustic stimuli. Furthermore, we found that hypomyelinated animals often selected an impaired response to acoustic stimuli, exhibiting a bias toward reorientation behavior instead of the stimulus-appropriate startle response. To begin to study how myelination affected the underlying circuitry, we established electrophysiological protocols to assess various conduction properties along single axons. We found that the hypomyelinated myrf mutants exhibited reduced action potential conduction velocity and an impaired ability to sustain high-frequency action potential firing. This study indicates that larval zebrafish can be used to bridge molecular and cellular investigation of CNS myelination with multiscale assessment of neural circuit function.SIGNIFICANCE STATEMENT Myelination of CNS axons is essential for their health and function, and it is now clear that myelination is a dynamic life-long process subject to modulation by neuronal activity. However, it remains unclear precisely how changes to myelination affects animal behavior and underlying action potential conduction along axons in intact neural circuits. In recent years, zebrafish have been employed to study cellular and molecular mechanisms of myelination, because of their relatively simple, optically transparent, experimentally tractable vertebrate nervous system. Here we find that changes to myelination alter the behavior of young zebrafish and action potential conduction along individual axons, providing a platform to integrate molecular, cellular, and circuit level analyses of myelination using this model.
Collapse
Affiliation(s)
- M E Madden
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - D Suminaite
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - E Ortiz
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - J J Early
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - S Koudelka
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - M R Livesey
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, Sheffield S10 2HQ, United Kingdom
| | - I H Bianco
- Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - M Granato
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - D A Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| |
Collapse
|
28
|
Tahmasebi F, Barati S, Kashani IR. Effect of CSF1R inhibitor on glial cells population and remyelination in the cuprizone model. Neuropeptides 2021; 89:102179. [PMID: 34274854 DOI: 10.1016/j.npep.2021.102179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 11/22/2022]
Abstract
Multiple sclerosis is a kind of autoimmune and demyelinating disease with pathological symptoms such as inflammation, myelin loss, astrocytosis, and microgliosis. The colony stimulating factor 1 receptor (CSF1R) is an essential factor for the microglial function, and PLX3397 (PLX) is its specific inhibitor. In this wstudy, we assessed the effect of different doses of PLX for microglial ablation on glial cell population and remyelination process. Sixty male C57BL/6 mice (8 weeks old) were divided into 6 groups. The animals were fed with 0.2% cuprizone diet for 12 weeks. For microglial ablation, PLX (290 mg/kg) was added to the animal food for 3, 7, 14 and 21 days. Glial cell population was measured using immunohistochemistry. The rate of remyelination was evaluated using electron microscopy and Luxol Fast Blue staining. The expression levels of all genes were assessed by qRT-PCR method. Data were analysed using GraphPad Prism and SPSS software. The results showed that the administration of different doses of PLX significantly reduced microglial cells (p ≤ .001). PLX administration also significantly increased oligodendrocytes population (p ≤ .001) and remyelination compared to the cuprizone mice, which was aligned with the results of LFB and TEM. Gene results showed that PLX treatment reduced CSF1R expression. According to the results, the administration of PLX for 21 days enhanced remyelination by increasing oligodendrocytes in the chronic demyelination model. These positive effects could be related to the reduction of microglia.
Collapse
Affiliation(s)
- Fatemeh Tahmasebi
- Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Kim SE, Jung S, Sung G, Bang M, Lee SH. Impaired cerebro-cerebellar white matter connectivity and its associations with cognitive function in patients with schizophrenia. NPJ SCHIZOPHRENIA 2021; 7:38. [PMID: 34385473 PMCID: PMC8360938 DOI: 10.1038/s41537-021-00169-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/28/2021] [Indexed: 11/20/2022]
Abstract
Schizophrenia is a complex brain disorder of unknown etiology. Based on the notion of “cognitive dysmetria,” we aimed to investigate aberrations in structural white matter (WM) connectivity that links the cerebellum to cognitive dysfunction in patients with schizophrenia. A total of 112 participants (65 patients with schizophrenia and 47 healthy controls [HCs]) were enrolled and underwent diffusion tensor imaging. Between-group voxel-wise comparisons of cerebellar WM regions (superior/middle [MCP]/inferior cerebellar peduncle and pontine crossing fibers) were performed using Tract-Based Spatial Statistics. Cognitive function was assessed using the Trail Making Test Part A/B (TMT-A/B), Wisconsin Card Sorting Test (WCST), and Rey-Kim Memory Test in 46 participants with schizophrenia. WM connectivity, measured as fractional anisotropy (FA), was significantly lower in the MCP in participants with schizophrenia than in HCs. The mean FAs extracted from the significant MCP cluster were inversely correlated with poorer cognitive performance, particularly longer time to complete the TMB-B (r = 0.559, p < 0.001) and more total errors in the WCST (r = 0.442, p = 0.003). Our findings suggest that aberrant cerebro-cerebellar communication due to disrupted WM connectivity may contribute to cognitive impairments, a core characteristic of schizophrenia. Our results may expand our understanding of the neurobiology of schizophrenia based on the cerebro-cerebellar interconnectivity of the brain.
Collapse
Affiliation(s)
- Sung Eun Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Sungcheol Jung
- CHA University School of Medicine, Seongnam, Republic of Korea
| | - Gyhye Sung
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.,Department of Psychology, Korea University, Seoul, Republic of Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
30
|
Barbet V, Broutier L. Future Match Making: When Pediatric Oncology Meets Organoid Technology. Front Cell Dev Biol 2021; 9:674219. [PMID: 34327198 PMCID: PMC8315550 DOI: 10.3389/fcell.2021.674219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Unlike adult cancers that frequently result from the accumulation in time of mutational “hits” often linked to lifestyle, childhood cancers are emerging as diseases of dysregulated development through massive epigenetic alterations. The ability to reconstruct these differences in cancer models is therefore crucial for better understanding the uniqueness of pediatric cancer biology. Cancer organoids (i.e., tumoroids) represent a promising approach for creating patient-derived in vitro cancer models that closely recapitulate the overall pathophysiological features of natural tumorigenesis, including intra-tumoral heterogeneity and plasticity. Though largely applied to adult cancers, this technology is scarcely used for childhood cancers, with a notable delay in technological transfer. However, tumoroids could provide an unprecedented tool to unravel the biology of pediatric cancers and improve their therapeutic management. We herein present the current state-of-the-art of a long awaited and much needed matchmaking.
Collapse
Affiliation(s)
- Virginie Barbet
- Childhood Cancer & Cell Death (C3), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Laura Broutier
- Childhood Cancer & Cell Death (C3), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| |
Collapse
|
31
|
Leitner DF, Mills JD, Pires G, Faustin A, Drummond E, Kanshin E, Nayak S, Askenazi M, Verducci C, Chen BJ, Janitz M, Anink JJ, Baayen JC, Idema S, van Vliet EA, Devore S, Friedman D, Diehl B, Scott C, Thijs R, Wisniewski T, Ueberheide B, Thom M, Aronica E, Devinsky O. Proteomics and Transcriptomics of the Hippocampus and Cortex in SUDEP and High-Risk SUDEP Patients. Neurology 2021; 96:e2639-e2652. [PMID: 33910938 PMCID: PMC8205452 DOI: 10.1212/wnl.0000000000011999] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To identify the molecular signaling pathways underlying sudden unexpected death in epilepsy (SUDEP) and high-risk SUDEP compared to control patients with epilepsy. METHODS For proteomics analyses, we evaluated the hippocampus and frontal cortex from microdissected postmortem brain tissue of 12 patients with SUDEP and 14 with non-SUDEP epilepsy. For transcriptomics analyses, we evaluated hippocampus and temporal cortex surgical brain tissue from patients with mesial temporal lobe epilepsy: 6 low-risk and 8 high-risk SUDEP as determined by a short (<50 seconds) or prolonged (≥50 seconds) postictal generalized EEG suppression (PGES) that may indicate severely depressed brain activity impairing respiration, arousal, and protective reflexes. RESULTS In autopsy hippocampus and cortex, we observed no proteomic differences between patients with SUDEP and those with non-SUDEP epilepsy, contrasting with our previously reported robust differences between epilepsy and controls without epilepsy. Transcriptomics in hippocampus and cortex from patients with surgical epilepsy segregated by PGES identified 55 differentially expressed genes (37 protein-coding, 15 long noncoding RNAs, 3 pending) in hippocampus. CONCLUSION The SUDEP proteome and high-risk SUDEP transcriptome were similar to those in other patients with epilepsy in hippocampus and cortex, consistent with diverse epilepsy syndromes and comorbid conditions associated with SUDEP. Studies with larger cohorts and different epilepsy syndromes, as well as additional anatomic regions, may identify molecular mechanisms of SUDEP.
Collapse
Affiliation(s)
- Dominique F Leitner
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - James D Mills
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Geoffrey Pires
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Arline Faustin
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Eleanor Drummond
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Evgeny Kanshin
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Shruti Nayak
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Manor Askenazi
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Chloe Verducci
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Bei Jun Chen
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Michael Janitz
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Jasper J Anink
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Johannes C Baayen
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Sander Idema
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Erwin A van Vliet
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Sasha Devore
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Daniel Friedman
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Beate Diehl
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Catherine Scott
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Roland Thijs
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Thomas Wisniewski
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Beatrix Ueberheide
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Maria Thom
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Eleonora Aronica
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| | - Orrin Devinsky
- From the Comprehensive Epilepsy Center (D.F.L., C.V., S.D., D.F., O.D.), Proteomics Laboratory (E.K., S.N., B.U.), Division of Advanced Research Technologies, and Department of Biochemistry and Molecular Pharmacology (B.U.), NYU School of Medicine; Department of Neurology (D.F.L., G.P., A.F., E.D., S.D., D.F., T.W., B.U., O.D.), Center for Cognitive Neurology (G.P., A.F., E.D., T.W.), Department of Pathology (T.W.), and Department of Psychiatry (T.W.), NYU Langone Health and School of Medicine, New York; Department of (Neuro)Pathology (J.D.M., J.J.A., E.A.v.V., E.A.), Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, the Netherlands; Alzheimer's and Prion Diseases Team (G.P.), Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France; Brain & Mind Centre and School of Medical Sciences (E.D.), Faculty of Medicine and Health, University of Sydney, Australia; Biomedical Hosting LLC (M.A.), Arlington, MA; School of Biotechnology and Biomolecular Sciences (B.J.C., M.J.), University of New South Wales, Sydney, Australia; Amsterdam UMC (J.C.B., S.I.), Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117; Swammerdam Institute for Life Sciences (E.A.v.V.), Center for Neuroscience, University of Amsterdam, the Netherlands; Department of Clinical and Experimental Epilepsy (B.D., C.S., M.T.), University College London Institute of Neurology, UK; and Stichting Epilepsie Instellingen Nederland (R.T., E.A.), Heemstede, the Netherlands
| |
Collapse
|
32
|
Breton JM, Barraza M, Hu KY, Frias SJ, Long KL, Kaufer D. Juvenile exposure to acute traumatic stress leads to long-lasting alterations in grey matter myelination in adult female but not male rats. Neurobiol Stress 2021; 14:100319. [PMID: 33937444 PMCID: PMC8079662 DOI: 10.1016/j.ynstr.2021.100319] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 12/02/2022] Open
Abstract
Stress early in life can have a major impact on brain development, and there is increasing evidence that childhood stress confers vulnerability for later developing psychiatric disorders. In particular, during peri-adolescence, brain regions crucial for emotional regulation, such as the prefrontal cortex (PFC), amygdala (AMY) and hippocampus (HPC), are still developing and are highly sensitive to stress. Changes in myelin levels have been implicated in mental illnesses and stress effects on myelin and oligodendrocytes (OLs) are beginning to be explored as a novel and underappreciated mechanism underlying psychopathologies. Yet there is little research on the effects of acute stress on myelin during peri-adolescence, and even less work exploring sex-differences. Here, we used a rodent model to test the hypothesis that exposure to acute traumatic stress as a juvenile would induce changes in OLs and myelin content across limbic brain regions. Male and female juvenile rats underwent 3 h of restraint stress with exposure to a predator odor on postnatal day (p) 28. Acute stress induced a physiological response, increasing corticosterone release and reducing weight gain in stress-exposed animals. Brain sections containing the PFC, AMY and HPC were taken either in adolescence (p40), or in adulthood (p95) and stained for markers of OLs and myelin. We found that acute stress induced sex-specific changes in grey matter (GM) myelination and OLs in both the short- and long-term. Exposure to a single stressor as a juvenile increased GM myelin content in the AMY and HPC in p40 males, compared to the respective control group. At p40, corticosterone release during stress exposure was also positively correlated with GM myelin content in the AMY of male rats. Single exposure to juvenile stress also led to long-term effects exclusively in female rats. Compared to controls, stress-exposed females showed reduced GM myelin content in all three brain regions. Acute stress exposure decreased PFC and HPC OL density in p40 females, perhaps contributing towards this observed long-term decrease in myelin content. Overall, our findings suggest that the juvenile brain is vulnerable to exposure to a brief severe stressor. Exposure to a single short traumatic event during peri-adolescence produces long-lasting changes in GM myelin content in the adult brain of female, but not male, rats. These findings highlight myelin plasticity as a potential contributor to sex-specific sensitivity to perturbation during a critical window of development.
Collapse
Affiliation(s)
- Jocelyn M. Breton
- University of California, Berkeley, Helen Wills Neuroscience Institute, United States
| | - Matthew Barraza
- University of California, Berkeley, Molecular and Cellular Biology, United States
| | - Kelsey Y. Hu
- University of California, Berkeley, Molecular and Cellular Biology, United States
| | - Samantha Joy Frias
- University of California, Berkeley, Molecular and Cellular Biology, United States
| | - Kimberly L.P. Long
- University of California, Berkeley, Helen Wills Neuroscience Institute, United States
| | - Daniela Kaufer
- University of California, Berkeley, Helen Wills Neuroscience Institute, United States
- University of California, Berkeley, Integrative Biology, United States
- Canadian Institute for Advanced Research, Toronto, ON, M5G1M1, Canada
| |
Collapse
|
33
|
Repudi S, Steinberg DJ, Elazar N, Breton VL, Aquilino MS, Saleem A, Abu-Swai S, Vainshtein A, Eshed-Eisenbach Y, Vijayaragavan B, Behar O, Hanna JJ, Peles E, Carlen PL, Aqeilan RI. Neuronal deletion of Wwox, associated with WOREE syndrome, causes epilepsy and myelin defects. Brain 2021; 144:3061-3077. [PMID: 33914858 DOI: 10.1093/brain/awab174] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/21/2021] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
WOREE syndrome caused by human germline biallelic mutations in WWOX is a neurodevelopmental disorder characterized by intractable epilepsy, severe developmental delay, ataxia and premature death at the age of 2-4 years. The underlying mechanisms of WWOX actions are poorly understood. In the current study, we show that specific neuronal deletion of murine Wwox produces phenotypes typical of the Wwox-null mutation leading to brain hyperexcitability, intractable epilepsy, ataxia and postnatal lethality. A significant decrease in transcript levels of genes involved in myelination was observed in mouse cortex and hippocampus. Wwox-mutant mice exhibited reduced maturation of oligodendrocytes, reduced myelinated axons and impaired axonal conductivity. Brain hyperexcitability and hypomyelination were also revealed in human brain organoids with a WWOX deletion. These findings provide cellular and molecular evidence for myelination defects and hyperexcitability in the WOREE syndrome linked to neuronal function of WWOX.
Collapse
Affiliation(s)
- Srinivasarao Repudi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Daniel J Steinberg
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Nimrod Elazar
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Vanessa L Breton
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Mark S Aquilino
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Afifa Saleem
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Sara Abu-Swai
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Anna Vainshtein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Eshed-Eisenbach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Bharath Vijayaragavan
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Oded Behar
- Department of Developmental Biology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Jacob J Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Peter L Carlen
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Rami I Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
34
|
Champoux KL, Miller KE, Perkel DJ. Differential development of myelin in zebra finch song nuclei. J Comp Neurol 2021; 529:1255-1265. [PMID: 32857415 DOI: 10.1002/cne.25019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 06/30/2020] [Accepted: 08/09/2020] [Indexed: 12/29/2022]
Abstract
Songbirds learn vocalizations by hearing and practicing songs. As song develops, the tempo becomes faster and more precise. In the songbird brain, discrete nuclei form interconnected myelinated circuits that control song acquisition and production. The myelin sheath increases the speed of action potential propagation by insulating the axons of neurons and by reducing membrane capacitance. As the brain develops, myelin increases in density, but the time course of myelin development across discrete song nuclei has not been systematically studied in a quantitative fashion. We tested the hypothesis that myelination develops differentially across time and song nuclei. We examined myelin development in the brains of the zebra finch (Taeniopygia guttata) from chick at posthatch day (d) 8 to adult (up to 147 d) in five major song nuclei: HVC (proper name), robust nucleus of the arcopallium (RA), Area X, lateral magnocellular nucleus of the anterior nidopallium, and medial portion of the dorsolateral thalamic nucleus (DLM). All of these nuclei showed an increase in the density of myelination during development but at different rates and to different final degrees. Exponential curve fits revealed that DLM showed earlier myelination than other nuclei, and HVC showed the slowest myelination of song nuclei. Together, these data show differential maturation of myelination in different portions of the song system. Such differential maturation would be well placed to play a role in regulating the development of learned song.
Collapse
Affiliation(s)
- Katharine L Champoux
- Department of Biology and Otolaryngology, University of Washington, Seattle, Washington, USA.,Department of Undergraduate Neurobiology Program, University of Washington, Seattle, Washington, USA
| | - Kimberly E Miller
- Department of Biology and Otolaryngology, University of Washington, Seattle, Washington, USA
| | - David J Perkel
- Department of Biology and Otolaryngology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
35
|
Tepavčević V. Oligodendroglial Energy Metabolism and (re)Myelination. Life (Basel) 2021; 11:238. [PMID: 33805670 PMCID: PMC7998845 DOI: 10.3390/life11030238] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) myelin has a crucial role in accelerating the propagation of action potentials and providing trophic support to the axons. Defective myelination and lack of myelin regeneration following demyelination can both lead to axonal pathology and neurodegeneration. Energy deficit has been evoked as an important contributor to various CNS disorders, including multiple sclerosis (MS). Thus, dysregulation of energy homeostasis in oligodendroglia may be an important contributor to myelin dysfunction and lack of repair observed in the disease. This article will focus on energy metabolism pathways in oligodendroglial cells and highlight differences dependent on the maturation stage of the cell. In addition, it will emphasize that the use of alternative energy sources by oligodendroglia may be required to save glucose for functions that cannot be fulfilled by other metabolites, thus ensuring sufficient energy input for both myelin synthesis and trophic support to the axons. Finally, it will point out that neuropathological findings in a subtype of MS lesions likely reflect defective oligodendroglial energy homeostasis in the disease.
Collapse
Affiliation(s)
- Vanja Tepavčević
- Achucarro Basque Center for Neuroscience, University of the Basque Country, Parque Cientifico de la UPV/EHU, Barrio Sarriena s/n, Edificio Sede, Planta 3, 48940 Leioa, Spain
| |
Collapse
|
36
|
Richards K, Jancovski N, Hanssen E, Connelly A, Petrou S. Atypical myelinogenesis and reduced axon caliber in the Scn1a variant model of Dravet syndrome: An electron microscopy pilot study of the developing and mature mouse corpus callosum. Brain Res 2020; 1751:147157. [PMID: 33069731 DOI: 10.1016/j.brainres.2020.147157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/26/2020] [Accepted: 10/12/2020] [Indexed: 11/24/2022]
Abstract
Dravet Syndrome (DS) is a genetic neurodevelopmental disease. Recurrent severe seizures begin in infancy and co-morbidities follow, including developmental delay, cognitive and behavioral dysfunction. A majority of DS patients have an SCN1A heterozygous gene mutation. This mutation causes a loss-of-function in inhibitory neurons, initiating seizure onset. We have investigated whether the sodium channelopathy may result in structural changes in the DS model independent of seizures. Morphometric analyses of axons within the corpus callosum were completed at P16 and P50 in Scn1a heterozygote KO male mice and their age-matched wild-type littermates. Trainable machine learning algorithms were used to examine electron microscopy images of ~400 myelinated axons per animal, per genotype, including myelinated axon cross-section area, frequency distribution and g-ratios. Pilot data for Scn1a heterozygote KO mice demonstrate the average axon caliber was reduced in developing and adult mice. Qualitative analysis also shows micro-features marking altered myelination at P16 in the DS model, with myelin out-folding and myelin debris within phagocytic cells. The data has indicated, in the absence of behavioral seizures, factors that governed a shift toward small calibre axons at P16 have persisted in adult Scn1a heterozygote KO corpus callosum. The pilot study provides a basis for future meta-analysis that will enable robust estimates of the effects of the sodium channelopathy on axon architecture. We propose that early therapeutic strategies in DS could help minimize the effect of sodium channelopathies, beyond the impact of overt seizures, and therefore achieve better long-term treatment outcomes.
Collapse
Affiliation(s)
- Kay Richards
- Florey Institute of Neuroscience and Mental Health, Australia
| | | | - Eric Hanssen
- Bio21 Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Australia
| | - Alan Connelly
- Florey Institute of Neuroscience and Mental Health, Australia; Florey Institute of Neuroscience and Mental Health, The Florey Department of Neuroscience and Mental Health, University of Melbourne, Australia
| | - Steve Petrou
- Florey Institute of Neuroscience and Mental Health, Australia.
| |
Collapse
|
37
|
Xin W, Chan JR. Myelin plasticity: sculpting circuits in learning and memory. Nat Rev Neurosci 2020; 21:682-694. [PMID: 33046886 DOI: 10.1038/s41583-020-00379-8] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Throughout our lifespan, new sensory experiences and learning continually shape our neuronal circuits to form new memories. Plasticity at the level of synapses has been recognized and studied for decades, but recent work has revealed an additional form of plasticity - affecting oligodendrocytes and the myelin sheaths they produce - that plays a crucial role in learning and memory. In this Review, we summarize recent work characterizing plasticity in the oligodendrocyte lineage following sensory experience and learning, the physiological and behavioural consequences of manipulating that plasticity, and the evidence for oligodendrocyte and myelin dysfunction in neurodevelopmental disorders with cognitive symptoms. We also discuss the limitations of existing approaches and the conceptual and technical advances that are needed to move forward this rapidly developing field.
Collapse
Affiliation(s)
- Wendy Xin
- Weill Institute for Neuroscience, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Jonah R Chan
- Weill Institute for Neuroscience, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
38
|
Chiou B, Gao C, Giera S, Folts CJ, Kishore P, Yu D, Oak HC, Jiang R, Piao X. Cell type-specific evaluation of ADGRG1/GPR56 function in developmental central nervous system myelination. Glia 2020; 69:413-423. [PMID: 32902916 DOI: 10.1002/glia.23906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/13/2022]
Abstract
Myelination of axons in the central nervous system (CNS) is a concerted effort between many cell types, resulting in significant cross-talk and communication among cells. Adhesion G protein-coupled receptor ADGRG1 (GPR56) is expressed in all major glial cells and regulates a wide variety of physiological processes by mediating cell-cell and cell-matrix communications. Previous literature has demonstrated the requirement of ADGRG1 in oligodendrocyte precursor cells (OPCs) during developmental myelination. However, it is unknown if ADGRG1 is responsible for myelin formation in a cell-type-specific manner. To that end, here we profiled myelin status in response to deletion of Adgrg1 specifically in OPCs, microglia, astrocytes, and neurons. Interestingly, we find that knocking out Adgrg1 in OPCs significantly decreases OPC proliferation and reduced number of myelinated axons. However, deleting Adgrg1 in microglia, astrocytes, and neurons does not impact developmental myelination. These data support an autonomous functional role for Adgrg1 in OPCs related to myelination.
Collapse
Affiliation(s)
- Brian Chiou
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California, USA
| | - Chuang Gao
- Department of Medicine, Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Stefanie Giera
- Department of Medicine, Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Sanofi S.A., Framingham, Massachusetts, USA
| | - Christopher J Folts
- Department of Medicine, Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Vertex Pharmaceuticals, Boston, Massachusetts, USA
| | - Priya Kishore
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California, USA
| | - Diankun Yu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California, USA
| | - Hayeon C Oak
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California, USA.,Department of Medicine, Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rongcai Jiang
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xianhua Piao
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California, USA.,Department of Medicine, Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Newborn Brain Research Institute, University of California at San Francisco, San Francisco, California, USA.,Department of Pediatrics, University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|
39
|
Huang P, Chen X, Hu X, Zhou Q, Lin L, Jiang S, Fu H, Xiong Y, Zeng H, Fang M, Chen C, Deng Y. Experimentally Induced Sepsis Causes Extensive Hypomyelination in the Prefrontal Cortex and Hippocampus in Neonatal Rats. Neuromolecular Med 2020; 22:420-436. [PMID: 32638208 DOI: 10.1007/s12017-020-08602-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 06/17/2020] [Indexed: 02/05/2023]
Abstract
Neonatal sepsis is associated with cognitive deficit in the later life. Axonal myelination plays a pivotal role in neurotransmission and formation of learning and memory. This study aimed to explore if systemic lipopolysaccharide (LPS) injection would induce hypomyelination in the prefrontal cortex and hippocampus in developing septic neonatal rats. Sprague-Dawley rats (1-day old) were injected with LPS (1 mg/kg) intraperitoneally. By electron microscopy, axonal hypomyelination was evident in the subcortical white matter and hippocampus. The expression of myelin proteins including CNPase, MBP, PLP and MAG was downregulated in both areas of the brain at 7, 14 and 28 days after LPS injection. The frequency of MBP and PLP-positive oligodendrocyte was significantly reduced using in situ hybridization in the cerebral cortex and hippocampus at the corresponding time points after LPS injection, whereas the expression of NG2 and PDGFRα was noticeably increased. In tandem with this was reduction of Olig1 and Olig2 expressions which are involved in differentiation/maturation of OPCs. Expression of NFL, NFM, and NFH was significantly downregulated, indicating that axon development was disrupted after LPS injection. Morris Water Maze behavioral test, Open field test, Rotarod test, and Pole test were used to evaluate neurological behaviors of 28 days rats. The rats in the LPS group showed the impairment of motor coordination, balance, memory, and learning ability and represented bradykinesia and anxiety-like behavior. The present results suggest that following systemic LPS injection, differentiation/maturation of OPCs was affected which may be attributed to the inhibition of transcription factors Olig1 and Olig2 expression resulting in impairment to axonal development. It is suggested that this would ultimately lead to axonal hypomyelination in the prefrontal cortex and hippocampus, which may be associated with neurological deficits in later life.
Collapse
Affiliation(s)
- Peixian Huang
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Xuan Chen
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- Shantou University Medical College, Shantou, 515063, Guangdong, China
| | - Xiaoli Hu
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, China
| | - Qiuping Zhou
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- South China University of Technology, Guangzhou, 510641, Guangdong, China
| | - Lanfen Lin
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Shuqi Jiang
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- South China University of Technology, Guangzhou, 510641, Guangdong, China
| | - Hui Fu
- Wuhan University School of Basic Medical Sciences, Wuhan, 430072, Hubei, China
| | - Yajie Xiong
- Wuhan University School of Basic Medical Sciences, Wuhan, 430072, Hubei, China
| | - Hongke Zeng
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Ming Fang
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Chunbo Chen
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Yiyu Deng
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
40
|
R-Ras GTPases Signaling Role in Myelin Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21165911. [PMID: 32824627 PMCID: PMC7460555 DOI: 10.3390/ijms21165911] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022] Open
Abstract
Myelination is required for fast and efficient synaptic transmission in vertebrates. In the central nervous system, oligodendrocytes are responsible for creating myelin sheaths that isolate and protect axons, even throughout adulthood. However, when myelin is lost, the failure of remyelination mechanisms can cause neurodegenerative myelin-associated pathologies. From oligodendrocyte progenitor cells to mature myelinating oligodendrocytes, myelination is a highly complex process that involves many elements of cellular signaling, yet many of the mechanisms that coordinate it, remain unknown. In this review, we will focus on the three major pathways involved in myelination (PI3K/Akt/mTOR, ERK1/2-MAPK, and Wnt/β-catenin) and recent advances describing the crosstalk elements which help to regulate them. In addition, we will review the tight relation between Ras GTPases and myelination processes and discuss its potential as novel elements of crosstalk between the pathways. A better understanding of the crosstalk elements orchestrating myelination mechanisms is essential to identify new potential targets to mitigate neurodegeneration.
Collapse
|
41
|
Patodia S, Tachrount M, Somani A, Scheffer I, Yousry T, Golay X, Sisodiya SM, Thom M. MRI and pathology correlations in the medulla in sudden unexpected death in epilepsy (SUDEP): a postmortem study. Neuropathol Appl Neurobiol 2020; 47:157-170. [PMID: 32559314 DOI: 10.1111/nan.12638] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/10/2020] [Indexed: 12/21/2022]
Abstract
AIMS Sudden unexpected death in epilepsy (SUDEP) likely arises as a result of autonomic dysfunction around the time of a seizure. In vivo MRI studies report volume reduction in the medulla and other brainstem autonomic regions. Our aim, in a pathology series, is to correlate regional quantitative features on 9.4T MRI with pathology measures in medullary regions. METHODS Forty-seven medullae from 18 SUDEP, 18 nonepilepsy controls and 11 epilepsy controls were studied. In 16 cases, representing all three groups, ex vivo 9.4T MRI of the brainstem was carried out. Five regions of interest (ROI) were delineated, including the reticular formation zone (RtZ), and actual and relative volumes (RV), as well as T1, T2, T2* and magnetization transfer ratio (MTR) measurements were evaluated on MRI. On serial sections, actual and RV estimates using Cavalieri stereological method and immunolabelling indices for myelin basic protein, synaptophysin and Microtubule associated protein 2 (MAP2) were carried out in similar ROI. RESULTS Lower relative RtZ volumes in the rostral medulla but higher actual volumes in the caudal medulla were observed in SUDEP (P < 0.05). No differences between groups for T1, T2, T2* and MTR values in any region was seen but a positive correlation between T1 values and MAP2 labelling index in RtZ (P < 0.05). Significantly lower MAP2 LI were noted in the rostral medulla RtZ in epilepsy cases (P < 0.05). CONCLUSIONS Rostro-caudal alterations of medullary volume in SUDEP localize with regions containing respiratory regulatory nuclei. They may represent seizure-related alterations, relevant to the pathophysiology of SUDEP.
Collapse
Affiliation(s)
- S Patodia
- Department of Neuropathology, UCL Queen Square Institute of Neurology, London, UK.,Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - M Tachrount
- Neuroradiology Academic Unit, Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK.,FMRIB, Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - A Somani
- Department of Neuropathology, UCL Queen Square Institute of Neurology, London, UK.,Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - I Scheffer
- Department of Medicine (Neurology), Epilepsy Research Centre, University of Melbourne, Melbourne, VIC, Australia
| | - T Yousry
- Neuroradiology Academic Unit, Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
| | - X Golay
- Neuroradiology Academic Unit, Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
| | - S M Sisodiya
- Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - M Thom
- Department of Neuropathology, UCL Queen Square Institute of Neurology, London, UK.,Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
42
|
Marshall-Phelps KL, Kegel L, Baraban M, Ruhwedel T, Almeida RG, Rubio-Brotons M, Klingseisen A, Benito-Kwiecinski SK, Early JJ, Bin JM, Suminaite D, Livesey MR, Möbius W, Poole RJ, Lyons DA. Neuronal activity disrupts myelinated axon integrity in the absence of NKCC1b. J Cell Biol 2020; 219:e201909022. [PMID: 32364583 PMCID: PMC7337504 DOI: 10.1083/jcb.201909022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/09/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Through a genetic screen in zebrafish, we identified a mutant with disruption to myelin in both the CNS and PNS caused by a mutation in a previously uncharacterized gene, slc12a2b, predicted to encode a Na+, K+, and Cl- (NKCC) cotransporter, NKCC1b. slc12a2b/NKCC1b mutants exhibited a severe and progressive pathology in the PNS, characterized by dysmyelination and swelling of the periaxonal space at the axon-myelin interface. Cell-type-specific loss of slc12a2b/NKCC1b in either neurons or myelinating Schwann cells recapitulated these pathologies. Given that NKCC1 is critical for ion homeostasis, we asked whether the disruption to myelinated axons in slc12a2b/NKCC1b mutants is affected by neuronal activity. Strikingly, we found that blocking neuronal activity completely prevented and could even rescue the pathology in slc12a2b/NKCC1b mutants. Together, our data indicate that NKCC1b is required to maintain neuronal activity-related solute homeostasis at the axon-myelin interface, and the integrity of myelinated axons.
Collapse
Affiliation(s)
| | - Linde Kegel
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Marion Baraban
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Torben Ruhwedel
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Rafael G. Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Anna Klingseisen
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Jason J. Early
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Jenea M. Bin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Daumante Suminaite
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Matthew R. Livesey
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Richard J. Poole
- Department of Cell and Developmental Biology, University College London, London, UK
| | - David A. Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
43
|
Suárez-Pozos E, Thomason EJ, Fuss B. Glutamate Transporters: Expression and Function in Oligodendrocytes. Neurochem Res 2020; 45:551-560. [PMID: 30628017 PMCID: PMC6616022 DOI: 10.1007/s11064-018-02708-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 12/14/2022]
Abstract
Glutamate, the main excitatory neurotransmitter of the vertebrate central nervous system (CNS), is well known as a regulator of neuronal plasticity and neurodevelopment. Such glutamate function is thought to be mediated primarily by signaling through glutamate receptors. Thus, it requires a tight regulation of extracellular glutamate levels and a fine-tuned homeostasis that, when dysregulated, has been associated with a wide range of central pathologies including neuropsychiatric, neurodevelopmental, and neurodegenerative disorders. In the mammalian CNS, extracellular glutamate levels are controlled by a family of sodium-dependent glutamate transporters belonging to the solute carrier family 1 (SLC1) that are also referred to as excitatory amino acid transporters (EAATs). The presumed main function of EAATs has been best described in the context of synaptic transmission where EAATs expressed by astrocytes and neurons effectively regulate extracellular glutamate levels so that synapses can function independently. There is, however, increasing evidence that EAATs are expressed by cells other than astrocytes and neurons, and that they exhibit functions beyond glutamate clearance. In this review, we will focus on the expression and functions of EAATs in the myelinating cells of the CNS, oligodendrocytes. More specifically, we will discuss potential roles of oligodendrocyte-expressed EAATs in contributing to extracellular glutamate homeostasis, and in regulating oligodendrocyte maturation and CNS myelination by exerting signaling functions that have traditionally been associated with glutamate receptors. In addition, we will provide some examples for how dysregulation of oligodendrocyte-expressed EAATs may be involved in the pathophysiology of neurologic diseases.
Collapse
Affiliation(s)
- Edna Suárez-Pozos
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA
| | - Elizabeth J Thomason
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA.
| |
Collapse
|
44
|
Didiasova M, Banning A, Brennenstuhl H, Jung-Klawitter S, Cinquemani C, Opladen T, Tikkanen R. Succinic Semialdehyde Dehydrogenase Deficiency: An Update. Cells 2020; 9:cells9020477. [PMID: 32093054 PMCID: PMC7072817 DOI: 10.3390/cells9020477] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Succinic semialdehyde dehydrogenase deficiency (SSADH-D) is a genetic disorder that results from the aberrant metabolism of the neurotransmitter γ-amino butyric acid (GABA). The disease is caused by impaired activity of the mitochondrial enzyme succinic semialdehyde dehydrogenase. SSADH-D manifests as varying degrees of mental retardation, autism, ataxia, and epileptic seizures, but the clinical picture is highly heterogeneous. So far, there is no approved curative therapy for this disease. In this review, we briefly summarize the molecular genetics of SSADH-D, the past and ongoing clinical trials, and the emerging features of the molecular pathogenesis, including redox imbalance and mitochondrial dysfunction. The main aim of this review is to discuss the potential of further therapy approaches that have so far not been tested in SSADH-D, such as pharmacological chaperones, read-through drugs, and gene therapy. Special attention will also be paid to elucidating the role of patient advocacy organizations in facilitating research and in the communication between researchers and patients.
Collapse
Affiliation(s)
- Miroslava Didiasova
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (M.D.); (A.B.)
| | - Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (M.D.); (A.B.)
| | - Heiko Brennenstuhl
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Children’s Hospital Heidelberg, 69120 Heidelberg, Germany; (H.B.); (S.J.-K.); (T.O.)
| | - Sabine Jung-Klawitter
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Children’s Hospital Heidelberg, 69120 Heidelberg, Germany; (H.B.); (S.J.-K.); (T.O.)
| | | | - Thomas Opladen
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Children’s Hospital Heidelberg, 69120 Heidelberg, Germany; (H.B.); (S.J.-K.); (T.O.)
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (M.D.); (A.B.)
- Correspondence: ; Tel.: +49-641-9947-420
| |
Collapse
|
45
|
Zhang Y, Jiang L, Zhang D, Wang L, Fei X, Liu X, Fu X, Niu C, Wang Y, Qian R. Thalamocortical structural connectivity abnormalities in drug-resistant generalized epilepsy: A diffusion tensor imaging study. Brain Res 2020; 1727:146558. [PMID: 31794706 DOI: 10.1016/j.brainres.2019.146558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Epilepsy is one of the most common diseases of the nervous system. Approximately one-third of epilepsy cases are drug-resistant, among which generalized-onset seizures are very common. The present study aimed to analyze abnormalities of the thalamocortical fiber pathways in each hemisphere of the brains of patients with drug-resistant generalized epilepsy. MATERIALS AND METHODS The thalamocortical structural pathways were identified by diffusion tensor imaging (DTI) in 15 patients with drug-resistant generalized epilepsy and 16 gender/age-matched controls. The thalami of both groups were parcellated into subregions according to the local thalamocortical connectivity pattern. DTI measures of thalamocortical connections were compared between the two groups. RESULTS Probabilistic tractography analyses showed that fractional anisotropy of thalamocortical pathways in patients with epilepsy decreased significantly, and the radial diffusivity of the left thalamus pathways with homolateral motor and parietal-occipital cortical regions in the drug-resistant epilepsy group increased significantly. In addition to the right thalamus pathway and prefrontal cortical region, fractional anisotropy of all other pathways was inversely correlated with disease duration. CONCLUSION The results provide evidence indicating widespread bilateral abnormalities in the thalamocortical pathways in epilepsy patients and imply that the degree of abnormality in the pathway increases with the disease duration.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China; Anhui Provincial Hospital Affiliated to Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province 230032, PR China
| | - Luwei Jiang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China; Anhui Provincial Hospital Affiliated to Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province 230032, PR China
| | - Dong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Lanlan Wang
- Department of Nerve Electrophysiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Xiaorui Fei
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Xiang Liu
- Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Anhui Province 230001, PR China; Department of Nerve Electrophysiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Xianming Fu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China; Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Anhui Province 230001, PR China
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China; Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Anhui Province 230001, PR China
| | - Yehan Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China; Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Anhui Province 230001, PR China
| | - Ruobing Qian
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China; Anhui Provincial Hospital Affiliated to Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province 230032, PR China; Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Anhui Province 230001, PR China.
| |
Collapse
|
46
|
Suvà ML, Tirosh I. Single-Cell RNA Sequencing in Cancer: Lessons Learned and Emerging Challenges. Mol Cell 2020; 75:7-12. [PMID: 31299208 DOI: 10.1016/j.molcel.2019.05.003] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 01/06/2023]
Abstract
Bulk genomic analyses and expression profiling of clinical specimens have shaped much of our understanding of cancer in patients. However, human tumors are intricate ecosystems composed of diverse cells, including malignant, immune, and stromal subsets, whose precise characterization is masked by bulk genomic methods. Single-cell genomic techniques have emerged as powerful approaches to dissect human tumors at the resolution of individual cells, providing a compelling approach to deciphering cancer biology. Here, we discuss some of the common themes emerging from initial studies of single-cell RNA sequencing in cancer and then highlight challenges in cancer biology for which emerging single-cell genomics methods may provide a compelling approach.
Collapse
Affiliation(s)
- Mario L Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 761001, Israel.
| |
Collapse
|
47
|
Shaw GA, Dupree JL, Neigh GN. Adolescent maturation of the prefrontal cortex: Role of stress and sex in shaping adult risk for compromise. GENES BRAIN AND BEHAVIOR 2019; 19:e12626. [DOI: 10.1111/gbb.12626] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Gladys A. Shaw
- Department of Anatomy and NeurobiologyVirginia Commonwealth University Richmond Virginia
| | - Jeffrey L. Dupree
- Department of Anatomy and NeurobiologyVirginia Commonwealth University Richmond Virginia
- Research ServiceHunter Holmes McGuire VA Medical Center Richmond Virginia
| | - Gretchen N. Neigh
- Department of Anatomy and NeurobiologyVirginia Commonwealth University Richmond Virginia
| |
Collapse
|
48
|
Steadman PE, Xia F, Ahmed M, Mocle AJ, Penning ARA, Geraghty AC, Steenland HW, Monje M, Josselyn SA, Frankland PW. Disruption of Oligodendrogenesis Impairs Memory Consolidation in Adult Mice. Neuron 2019; 105:150-164.e6. [PMID: 31753579 DOI: 10.1016/j.neuron.2019.10.013] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/04/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022]
Abstract
The generation of myelin-forming oligodendrocytes persists throughout life and is regulated by neural activity. Here we tested whether experience-driven changes in oligodendrogenesis are important for memory consolidation. We found that water maze learning promotes oligodendrogenesis and de novo myelination in the cortex and associated white matter tracts. Preventing these learning-induced increases in oligodendrogenesis without affecting existing oligodendrocytes impaired memory consolidation of water maze, as well as contextual fear, memories. These results suggest that de novo myelination tunes activated circuits, promoting coordinated activity that is important for memory consolidation. Consistent with this, contextual fear learning increased the coupling of hippocampal sharp wave ripples and cortical spindles, and these learning-induced increases in ripple-spindle coupling were blocked when oligodendrogenesis was suppressed. Our results identify a non-neuronal form of plasticity that remodels hippocampal-cortical networks following learning and is required for memory consolidation.
Collapse
Affiliation(s)
- Patrick E Steadman
- Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Frances Xia
- Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Moriam Ahmed
- Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Andrew J Mocle
- Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Amber R A Penning
- Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Anna C Geraghty
- Department of Neurology, Stanford University, Stanford, CA 94305, USA
| | - Hendrik W Steenland
- Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Max Planck Institute of Microstructure Physics, Halle 06120, Germany
| | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA 94305, USA
| | - Sheena A Josselyn
- Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada; Brain, Mind and Consciousness Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| | - Paul W Frankland
- Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada; Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
49
|
Thomason EJ, Escalante M, Osterhout DJ, Fuss B. The oligodendrocyte growth cone and its actin cytoskeleton: A fundamental element for progenitor cell migration and CNS myelination. Glia 2019; 68:1329-1346. [PMID: 31696982 DOI: 10.1002/glia.23735] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023]
Abstract
Cells of the oligodendrocyte (OLG) lineage engage in highly motile behaviors that are crucial for effective central nervous system (CNS) myelination. These behaviors include the guided migration of OLG progenitor cells (OPCs), the surveying of local environments by cellular processes extending from differentiating and pre-myelinating OLGs, and during the process of active myelin wrapping, the forward movement of the leading edge of the myelin sheath's inner tongue along the axon. Almost all of these motile behaviors are driven by actin cytoskeletal dynamics initiated within a lamellipodial structure that is located at the tip of cellular OLG/OPC processes and is structurally as well as functionally similar to the neuronal growth cone. Accordingly, coordinated stoichiometries of actin filament (F-actin) assembly and disassembly at these OLG/OPC growth cones have been implicated in directing process outgrowth and guidance, and the initiation of myelination. Nonetheless, the functional importance of the OLG/OPC growth cone still remains to be fully understood, and, as a unique aspect of actin cytoskeletal dynamics, F-actin depolymerization and disassembly start to predominate at the transition from myelination initiation to myelin wrapping. This review provides an overview of the current knowledge about OLG/OPC growth cones, and it proposes a model in which actin cytoskeletal dynamics in OLG/OPC growth cones are a main driver for morphological transformations and motile behaviors. Remarkably, these activities, at least at the later stages of OLG maturation, may be regulated independently from the transcriptional gene expression changes typically associated with CNS myelination.
Collapse
Affiliation(s)
- Elizabeth J Thomason
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Miguel Escalante
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Donna J Osterhout
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
50
|
Evidence of decreased gap junction coupling between astrocytes and oligodendrocytes in the anterior cingulate cortex of depressed suicides. Neuropsychopharmacology 2019; 44:2099-2111. [PMID: 31374562 PMCID: PMC6897926 DOI: 10.1038/s41386-019-0471-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022]
Abstract
Glial dysfunction is a major pathophysiological feature of mood disorders. While altered astrocyte (AS) and oligodendrocyte-lineage (OL) functions have been associated with depression, the crosstalk between these glial cell types has never been assessed in that context. AS are potent regulators of myelination, in part through gap junction (GJ) channels formed by the heterotypic coupling of AS-specific (Cx30 and Cx43) and OL-specific (Cx32 and Cx47) connexins. This study therefore aimed at addressing the integrity of AS/OL coupling in the anterior cingulate cortex (ACC) of depressed suicides. Using immunofluorescence and confocal imaging, we characterized the distribution of Cx30 and mapped its expression onto OL somas, myelinated axons, and brain vasculature in postmortem brain samples from depressed suicides (N = 48) and matched controls (N = 23). Differential gene expression of key components of the GJ nexus was also screened through RNA-sequencing previously generated by our group, and validated by quantitative real-time PCR. We show that Cx30 expression localized onto OL cells and myelinated fibers is decreased in deep cortical layers of the ACC in male-depressed suicides. This effect was associated with decreased expression of OL-specific connexins, as well as the downregulation of major connexin-interacting proteins essential for the scaffolding, trafficking, and function of GJs. These results provide a first evidence of impaired AS/OL GJ-mediated communication in the ACC of individuals with mood disorders. These changes in glial coupling are likely to have significant impact on brain function, and may contribute to the altered OL function previously reported in this brain region.
Collapse
|