1
|
Lui JC, Palmer AC, Christian P. Nutrition, Other Environmental Influences, and Genetics in the Determination of Human Stature. Annu Rev Nutr 2024; 44:205-229. [PMID: 38759081 DOI: 10.1146/annurev-nutr-061121-091112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Linear growth during three distinct stages of life determines attained stature in adulthood: namely, in utero, early postnatal life, and puberty and the adolescent period. Individual host factors, genetics, and the environment, including nutrition, influence attained human stature. Each period of physical growth has its specific biological and environmental considerations. Recent epidemiologic investigations reveal a strong influence of prenatal factors on linear size at birth that in turn influence the postnatal growth trajectory. Although average population height changes have been documented in high-income regions, stature as a complex human trait is not well understood or easily modified. This review summarizes the biology of linear growth and its major drivers, including nutrition from a life-course perspective, the genetics of programmed growth patterns or height, and gene-environment interactions that determine human stature in toto over the life span. Implications for public health interventions and knowledge gaps are discussed.
Collapse
Affiliation(s)
- Julian C Lui
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Amanda C Palmer
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Parul Christian
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| |
Collapse
|
2
|
Quan C, Zhou S, Zhang Y, Kulyar MFEA, Gong S, Nawaz S, Ahmed AE, Mo Q, Li J. The autophagy-mediated mechanism via TSC1/mTOR signaling pathway in thiram-induced tibial dyschondroplasia of broilers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172305. [PMID: 38593872 DOI: 10.1016/j.scitotenv.2024.172305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
Thiram is a member of the dithiocarbamate family and is widely used in agriculture, especially in low-income countries. Its residues lead to various diseases, among which tibial dyschondroplasia (TD) in broiler chickens is the most common. Recent studies have also demonstrated that thiram residues may harm human health. Our previous study showed that the activity of the mTOR (mammalian target of rapamycin) signaling pathway has changed after thiram exposure. In the current study, we investigated the effect of autophagy via the mTOR signaling pathway after thiram exposure in vitro and in vivo. Our results showed that thiram inhibited the protein expression of mTOR signaling pathway-related genes such as p-4EBP1 and p-S6K1. The analysis showed a significant increase in the expression of key autophagy-related proteins, including LC3, ULK1, ATG5, and Beclin1. Further investigation proved that the effects of thiram were mediated through the downregulation of mTOR. The mTOR agonist MHY-1485 reverse the upregulation of autophagy caused by thiram in vitro. Moreover, our experiment using knockdown of TSC1 resulted in chondrocytes expressing lower levels of autophagy. In conclusion, our results demonstrate that thiram promotes autophagy via the mTOR signaling pathway in chondrogenesis, providing a potential pharmacological target for the prevention of TD.
Collapse
Affiliation(s)
- Chuxian Quan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Shimeng Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | | | - Saisai Gong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China.
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China.
| |
Collapse
|
3
|
Chang Y, Chen J, Zhu H, Huang R, Wu J, Lin Y, Li Q, Shen G, Feng J. Metabolic Characteristics and Discriminative Diagnosis of Growth Hormone Deficiency and Idiopathic Short Stature in Preadolescents and Adolescents. Molecules 2024; 29:1661. [PMID: 38611940 PMCID: PMC11013616 DOI: 10.3390/molecules29071661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Growth hormone deficiency (GHD) and idiopathic short stature (ISS) are the most common types of short stature (SS), but little is known about their pathogenesis, and even less is known about the study of adolescent SS. In this study, nuclear magnetic resonance (NMR)-based metabolomic analysis combined with least absolute shrinkage and selection operator (LASSO) were performed to identify the biomarkers of different types of SS (including 94 preadolescent GHD (PAG), 61 preadolescent ISS (PAI), 43 adolescent GHD (ADG), and 19 adolescent ISS (ADI)), and the receiver operating characteristic curve (ROC) was further used to evaluate the predictive power of potential biomarkers. The results showed that fourteen, eleven, nine, and fifteen metabolites were identified as the potential biomarkers of PAG, PAI, ADG, and ADI compared with their corresponding controls, respectively. The disturbed metabolic pathways in preadolescent SS were mainly carbohydrate metabolism and lipid metabolism, while disorders of amino acid metabolism played an important role in adolescent SS. The combination of aspartate, ethanolamine, phosphocholine, and trimethylamine was screened out to identify PAI from PAG, and alanine, histidine, isobutyrate, methanol, and phosphocholine gave a high classification accuracy for ADI and ADC. The differences in metabolic characteristics between GHD and ISS in preadolescents and adolescents will contribute to the development of individualized clinical treatments in short stature.
Collapse
Affiliation(s)
- Yajie Chang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China; (Y.C.); (J.W.); (Q.L.)
| | - Jing Chen
- Department of Child Health, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361003, China; (J.C.); (R.H.); (Y.L.)
| | - Hongwei Zhu
- Education Section and Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China;
| | - Rong Huang
- Department of Child Health, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361003, China; (J.C.); (R.H.); (Y.L.)
| | - Jinxia Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China; (Y.C.); (J.W.); (Q.L.)
| | - Yanyan Lin
- Department of Child Health, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361003, China; (J.C.); (R.H.); (Y.L.)
| | - Quanquan Li
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China; (Y.C.); (J.W.); (Q.L.)
| | - Guiping Shen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China; (Y.C.); (J.W.); (Q.L.)
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China; (Y.C.); (J.W.); (Q.L.)
| |
Collapse
|
4
|
Ho H'ng C, Amarasinghe SL, Zhang B, Chang H, Qu X, Powell DR, Rosello-Diez A. Compensatory growth and recovery of cartilage cytoarchitecture after transient cell death in fetal mouse limbs. Nat Commun 2024; 15:2940. [PMID: 38580631 PMCID: PMC10997652 DOI: 10.1038/s41467-024-47311-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/27/2024] [Indexed: 04/07/2024] Open
Abstract
A major question in developmental and regenerative biology is how organ size and architecture are controlled by progenitor cells. While limb bones exhibit catch-up growth (recovery of a normal growth trajectory after transient developmental perturbation), it is unclear how this emerges from the behaviour of chondroprogenitors, the cells sustaining the cartilage anlagen that are progressively replaced by bone. Here we show that transient sparse cell death in the mouse fetal cartilage is repaired postnatally, via a two-step process. During injury, progression of chondroprogenitors towards more differentiated states is delayed, leading to altered cartilage cytoarchitecture and impaired bone growth. Then, once cell death is over, chondroprogenitor differentiation is accelerated and cartilage structure recovered, including partial rescue of bone growth. At the molecular level, ectopic activation of mTORC1 correlates with, and is necessary for, part of the recovery, revealing a specific candidate to be explored during normal growth and in future therapies.
Collapse
Affiliation(s)
- Chee Ho H'ng
- Australian Regenerative Medicine Institute, Monash University, Clayton, 3800 VIC, Australia
| | - Shanika L Amarasinghe
- Australian Regenerative Medicine Institute, Monash University, Clayton, 3800 VIC, Australia
- Bioinformatics Node - Monash Genomics and Bioinformatics Platform, Monash University, Clayton, 3800 VIC, Australia
| | - Boya Zhang
- Australian Regenerative Medicine Institute, Monash University, Clayton, 3800 VIC, Australia
| | - Hojin Chang
- Australian Regenerative Medicine Institute, Monash University, Clayton, 3800 VIC, Australia
- Biological Optical Microscopy Platform, Faculty of Medicine, Dentistry & Health Sciences. The University of Melbourne, Parkville, 3010, VIC, Australia
| | - Xinli Qu
- Australian Regenerative Medicine Institute, Monash University, Clayton, 3800 VIC, Australia
| | - David R Powell
- Bioinformatics Node - Monash Genomics and Bioinformatics Platform, Monash University, Clayton, 3800 VIC, Australia
| | - Alberto Rosello-Diez
- Australian Regenerative Medicine Institute, Monash University, Clayton, 3800 VIC, Australia.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
5
|
Csukasi F, Bosakova M, Barta T, Martin JH, Arcedo J, Barad M, Rico-Llanos GA, Zieba J, Becerra J, Krejci P, Duran I, Krakow D. Skeletal diseases caused by mutations in PTH1R show aberrant differentiation of skeletal progenitors due to dysregulation of DEPTOR. Front Cell Dev Biol 2023; 10:963389. [PMID: 36726589 PMCID: PMC9885499 DOI: 10.3389/fcell.2022.963389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Alterations in the balance between skeletogenesis and adipogenesis is a pathogenic feature in multiple skeletal disorders. Clinically, enhanced bone marrow adiposity in bones impairs mobility and increases fracture risk, reducing the quality of life of patients. The molecular mechanism that underlies the balance between skeletogenesis and adipogenesis is not completely understood but alterations in skeletal progenitor cells' differentiation pathway plays a key role. We recently demonstrated that parathyroid hormone (PTH)/PTH-related peptide (PTHrP) control the levels of DEPTOR, an inhibitor of the mechanistic target of rapamycin (mTOR), and that DEPTOR levels are altered in different skeletal diseases. Here, we show that mutations in the PTH receptor-1 (PTH1R) alter the differentiation of skeletal progenitors in two different skeletal genetic disorders and lead to accumulation of fat or cartilage in bones. Mechanistically, DEPTOR controls the subcellular localization of TAZ (transcriptional co-activator with a PDZ-binding domain), a transcriptional regulator that governs skeletal stem cells differentiation into either bone and fat. We show that DEPTOR regulation of TAZ localization is achieved through the control of Dishevelled2 (DVL2) phosphorylation. Depending on nutrient availability, DEPTOR directly interacts with PTH1R to regulate PTH/PTHrP signaling or it forms a complex with TAZ, to prevent its translocation to the nucleus and therefore inhibit its transcriptional activity. Our data point DEPTOR as a key molecule in skeletal progenitor differentiation; its dysregulation under pathologic conditions results in aberrant bone/fat balance.
Collapse
Affiliation(s)
- Fabiana Csukasi
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Malaga, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Tomas Barta
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czechia
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jorge H. Martin
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
| | - Jesus Arcedo
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Malaga, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
| | - Maya Barad
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
| | - Gustavo A. Rico-Llanos
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Malaga, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Jennifer Zieba
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
| | - Jose Becerra
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Malaga, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Ivan Duran
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Malaga, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Deborah Krakow
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Human Genetics, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
6
|
H’ng CH, Khaladkar A, Rosello-Diez A. Look who's TORking: mTOR-mediated integration of cell status and external signals during limb development and endochondral bone growth. Front Cell Dev Biol 2023; 11:1153473. [PMID: 37152288 PMCID: PMC10154674 DOI: 10.3389/fcell.2023.1153473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
The balance of cell proliferation and size is key for the control of organ development and repair. Moreover, this balance has to be coordinated within tissues and between tissues to achieve robustness in the organ's pattern and size. The tetrapod limb has been used to study these topics during development and repair, and several conserved pathways have emerged. Among them, mechanistic target of rapamycin (mTOR) signaling, despite being active in several cell types and developmental stages, is one of the least understood in limb development, perhaps because of its multiple potential roles and interactions with other pathways. In the body of this review, we have collated and integrated what is known about the role of mTOR signaling in three aspects of tetrapod limb development: 1) limb outgrowth; 2) chondrocyte differentiation after mesenchymal condensation and 3) endochondral ossification-driven longitudinal bone growth. We conclude that, given its ability to interact with the most common signaling pathways, its presence in multiple cell types, and its ability to influence cell proliferation, size and differentiation, the mTOR pathway is a critical integrator of external stimuli and internal status, coordinating developmental transitions as complex as those taking place during limb development. This suggests that the study of the signaling pathways and transcription factors involved in limb patterning, morphogenesis and growth could benefit from probing the interaction of these pathways with mTOR components.
Collapse
Affiliation(s)
- Chee Ho H’ng
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Ashwini Khaladkar
- Department of Biochemistry, Central University of Hyderabad, Hyderabad, India
| | - Alberto Rosello-Diez
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Alberto Rosello-Diez, ,
| |
Collapse
|
7
|
Stage-Dependent Activity and Pro-Chondrogenic Function of PI3K/AKT during Cartilage Neogenesis from Mesenchymal Stromal Cells. Cells 2022; 11:cells11192965. [PMID: 36230927 PMCID: PMC9563299 DOI: 10.3390/cells11192965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Differentiating mesenchymal stromal cells (MSCs) into articular chondrocytes (ACs) for application in clinical cartilage regeneration requires a profound understanding of signaling pathways regulating stem cell chondrogenesis and hypertrophic degeneration. Classifying endochondral signals into drivers of chondrogenic speed versus hypertrophy, we here focused on insulin/insulin-like growth factor 1 (IGF1)-induced phosphoinositide 3-kinase (PI3K)/AKT signaling. Aware of its proliferative function during early but not late MSC chondrogenesis, we aimed to unravel the late pro-chondrogenic versus pro-hypertrophic PI3K/AKT role. PI3K/AKT activity in human MSC and AC chondrogenic 3D cultures was assessed via Western blot detection of phosphorylated AKT. The effects of PI3K inhibition with LY294002 on chondrogenesis and hypertrophy were assessed via histology, qPCR, the quantification of proteoglycans, and alkaline phosphatase activity. Being repressed by ACs, PI3K/AKT activity transiently rose in differentiating MSCs independent of TGFβ or endogenous BMP/WNT activity and climaxed around day 21. PI3K/AKT inhibition from day 21 on equally reduced chondrocyte and hypertrophy markers. Proving important for TGFβ-induced SMAD2 phosphorylation and SOX9 accumulation, PI3K/AKT activity was here identified as a required stage-dependent driver of chondrogenic speed but not of hypertrophy. Thus, future attempts to improve MSC chondrogenesis will depend on the adequate stimulation and upregulation of PI3K/AKT activity to generate high-quality cartilage from human MSCs.
Collapse
|
8
|
Pathophysiology and Emerging Molecular Therapeutic Targets in Heterotopic Ossification. Int J Mol Sci 2022; 23:ijms23136983. [PMID: 35805978 PMCID: PMC9266941 DOI: 10.3390/ijms23136983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 12/23/2022] Open
Abstract
The term heterotopic ossification (HO) describes bone formation in tissues where bone is normally not present. Musculoskeletal trauma induces signalling events that in turn trigger cells, probably of mesenchymal origin, to differentiate into bone. The aetiology of HO includes extremely rare but severe, generalised and fatal monogenic forms of the disease; and as a common complex disorder in response to musculoskeletal, neurological or burn trauma. The resulting bone forms through a combination of endochondral and intramembranous ossification, depending on the aetiology, initiating stimulus and affected tissue. Given the heterogeneity of the disease, many cell types and biological pathways have been studied in efforts to find effective therapeutic strategies for the disorder. Cells of mesenchymal, haematopoietic and neuroectodermal lineages have all been implicated in the pathogenesis of HO, and the emerging dominant signalling pathways are thought to occur through the bone morphogenetic proteins (BMP), mammalian target of rapamycin (mTOR), and retinoic acid receptor pathways. Increased understanding of these disease mechanisms has resulted in the emergence of several novel investigational therapeutic avenues, including palovarotene and other retinoic acid receptor agonists and activin A inhibitors that target both canonical and non-canonical signalling downstream of the BMP type 1 receptor. In this article we aim to illustrate the key cellular and molecular mechanisms involved in the pathogenesis of HO and outline recent advances in emerging molecular therapies to treat and prevent HO that have had early success in the monogenic disease and are currently being explored in the common complex forms of HO.
Collapse
|
9
|
The Effects of Nutrition on Linear Growth. Nutrients 2022; 14:nu14091752. [PMID: 35565716 PMCID: PMC9100533 DOI: 10.3390/nu14091752] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/10/2022] [Accepted: 04/17/2022] [Indexed: 12/16/2022] Open
Abstract
Linear growth is a complex process and is considered one of the best indicators of children’s well-being and health. Genetics, epigenetics and environment (mainly stress and availability of nutrients) are the main regulators of growth. Nutrition exerts its effects on growth throughout the course of life with different, not completely understood mechanisms. Cells have a sophisticated sensing system, which allows growth processes to occur in the presence of an adequate nutrient availability. Most of the nutritional influence on growth is mediated by hormonal signals, in turn sensitive to nutritional cues. Both macro- and micro-nutrients are required for normal growth, as demonstrated by the impairment of growth occurring when their intake is insufficient. Clinical conditions characterized by abnormal nutritional status, including obesity and eating disorders, are associated with alterations of growth pattern, confirming the tight link between growth and nutrition. The precise molecular mechanisms connecting nutrition to linear growth are far from being fully understood and further studies are required. A better understanding of the interplay between nutrients and the endocrine system will allow one to develop more appropriate and effective nutritional interventions for optimizing child growth.
Collapse
|
10
|
Teissier T, Temkin V, Pollak RD, Cox LS. Crosstalk Between Senescent Bone Cells and the Bone Tissue Microenvironment Influences Bone Fragility During Chronological Age and in Diabetes. Front Physiol 2022; 13:812157. [PMID: 35388291 PMCID: PMC8978545 DOI: 10.3389/fphys.2022.812157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/27/2022] [Indexed: 01/10/2023] Open
Abstract
Bone is a complex organ serving roles in skeletal support and movement, and is a source of blood cells including adaptive and innate immune cells. Structural and functional integrity is maintained through a balance between bone synthesis and bone degradation, dependent in part on mechanical loading but also on signaling and influences of the tissue microenvironment. Bone structure and the extracellular bone milieu change with age, predisposing to osteoporosis and increased fracture risk, and this is exacerbated in patients with diabetes. Such changes can include loss of bone mineral density, deterioration in micro-architecture, as well as decreased bone flexibility, through alteration of proteinaceous bone support structures, and accumulation of senescent cells. Senescence is a state of proliferation arrest accompanied by marked morphological and metabolic changes. It is driven by cellular stress and serves an important acute tumor suppressive mechanism when followed by immune-mediated senescent cell clearance. However, aging and pathological conditions including diabetes are associated with accumulation of senescent cells that generate a pro-inflammatory and tissue-destructive secretome (the SASP). The SASP impinges on the tissue microenvironment with detrimental local and systemic consequences; senescent cells are thought to contribute to the multimorbidity associated with advanced chronological age. Here, we assess factors that promote bone fragility, in the context both of chronological aging and accelerated aging in progeroid syndromes and in diabetes, including senescence-dependent alterations in the bone tissue microenvironment, and glycation changes to the tissue microenvironment that stimulate RAGE signaling, a process that is accelerated in diabetic patients. Finally, we discuss therapeutic interventions targeting RAGE signaling and cell senescence that show promise in improving bone health in older people and those living with diabetes.
Collapse
Affiliation(s)
- Thibault Teissier
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Vladislav Temkin
- Division of Medicine, Department of Endocrinology and Metabolism, The Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rivka Dresner Pollak
- Division of Medicine, Department of Endocrinology and Metabolism, The Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Parikh P, Semba R, Manary M, Swaminathan S, Udomkesmalee E, Bos R, Poh BK, Rojroongwasinkul N, Geurts J, Sekartini R, Nga TT. Animal source foods, rich in essential amino acids, are important for linear growth and development of young children in low- and middle-income countries. MATERNAL AND CHILD NUTRITION 2021; 18:e13264. [PMID: 34467645 PMCID: PMC8710096 DOI: 10.1111/mcn.13264] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/02/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022]
Abstract
Growth faltering under 5 years of age is unacceptably high worldwide, and even more children, while not stunted, fail to reach their growth potential. The time between conception and 2 years of age is critical for development. The period from 6 to 23 months, when complementary foods are introduced, coincides with a time when growth faltering and delayed neurocognitive developments are most common. Fortunately, this is also the period when diet exercises its greatest influence. Growing up in an adverse environment, with a deficient diet, as typically seen in low‐ and middle‐income countries (LMICs), hampers growth and development of children and prevents them from realising their full developmental and economic future potential. Sufficient nutrient availability and utilisation are paramount to a child's growth and development trajectory, especially in the period after breastfeeding. This review highlights the importance of essential amino acids (EAAs) in early life for linear growth and, likely, neurocognitive development. The paper further discusses signalling through mammalian target of rapamycin complex 1 (mTORC1) as one of the main amino acid (AA)‐sensing hubs and the master regulator of both growth and neurocognitive development. Children in LMICs, despite consuming sufficient total protein, do not meet their EAA requirements due to poor diet diversity and low‐quality dietary protein. AA deficiencies in early life can cause reductions in linear growth and cognition. Ensuring AA adequacy in diets, particularly through inclusion of nutrient‐dense animal source foods from 6 to 23 months, is strongly encouraged in LMICs in order to compensate for less than optimal growth during complementary feeding.
Collapse
Affiliation(s)
| | - Richard Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Manary
- Department of Paediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sumathi Swaminathan
- St John's Research Institute, St John's National Academy of Health Sciences, Bangalore, Karnataka, India
| | | | - Rolf Bos
- FrieslandCampina, Amersfoort, The Netherlands
| | - Bee Koon Poh
- Nutritional Sciences Programme & Centre for Community Health, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Jan Geurts
- FrieslandCampina, Amersfoort, The Netherlands
| | - Rini Sekartini
- Faculty of Medicine, Department of Pediatrics, University of Indonesia and Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Tran Thuy Nga
- Department of Occupational and School Nutrition, National Institute of Nutrition (NIN), Hanoi, Vietnam
| |
Collapse
|
12
|
Loss of Wnt16 Leads to Skeletal Deformities and Downregulation of Bone Developmental Pathway in Zebrafish. Int J Mol Sci 2021; 22:ijms22136673. [PMID: 34206401 PMCID: PMC8268848 DOI: 10.3390/ijms22136673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/21/2022] Open
Abstract
Wingless-type MMTV integration site family, member 16 (wnt16), is a wnt ligand that participates in the regulation of vertebrate skeletal development. Studies have shown that wnt16 can regulate bone metabolism, but its molecular mechanism remains largely undefined. We obtained the wnt16−/− zebrafish model using the CRISPR-Cas9-mediated gene knockout screen with 11 bp deletion in wnt16, which led to the premature termination of amino acid translation and significantly reduced wnt16 expression, thus obtaining the wnt16−/− zebrafish model. The expression of wnt16 in bone-related parts was detected via in situ hybridization. The head, spine, and tail exhibited significant deformities, and the bone mineral density and trabecular bone decreased in wnt16−/− using light microscopy and micro-CT analysis. RNA sequencing was performed to explore the differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the down-regulated DEGs are mainly concentrated in mTOR, FoxO, and VEGF pathways. Protein–protein interaction (PPI) network analysis was performed with the detected DEGs. Eight down-regulated DEGs including akt1, bnip4, ptena, vegfaa, twsg1b, prkab1a, prkab1b, and pla2g4f.2 were validated by qRT-PCR and the results were consistent with the RNA-seq data. Overall, our work provides key insights into the influence of wnt16 gene on skeletal development.
Collapse
|
13
|
Perez-Tejeiro JM, Csukasi F. DEPTOR in Skeletal Development and Diseases. Front Genet 2021; 12:667283. [PMID: 34122519 PMCID: PMC8191632 DOI: 10.3389/fgene.2021.667283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/12/2021] [Indexed: 12/02/2022] Open
Abstract
Discovered in 2009, the DEP-domain containing mTOR-interacting protein, DEPTOR, is a known regulator of the mechanistic target of rapamycin (mTOR), an evolutionarily conserved kinase that regulates diverse cellular processes in response to environmental stimuli. DEPTOR was originally identified as a negative regulator of mTOR complexes 1 (mTORC1) and 2 (mTORC2). However, recent discoveries have started to unravel the roles of DEPTOR in mTOR-independent responses. In the past few years, mTOR emerged as an important regulator of skeletal development, growth, and homeostasis; the dysregulation of its activity contributes to the development of several skeletal diseases, both chronic and genetic. Even more recently, several groups have reported on the relevance of DEPTOR in skeletal biology through its action on mTOR-dependent and mTOR-independent pathways. In this review, we summarize the current understanding of DEPTOR in skeletal development and disease.
Collapse
Affiliation(s)
- Jose Miguel Perez-Tejeiro
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, IBIMA, University of Málaga, Málaga, Spain.,Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Networking Biomedical Research Center in Bioengineering, Málaga, Spain
| | - Fabiana Csukasi
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, IBIMA, University of Málaga, Málaga, Spain.,Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Networking Biomedical Research Center in Bioengineering, Málaga, Spain
| |
Collapse
|
14
|
Millward DJ. Interactions between Growth of Muscle and Stature: Mechanisms Involved and Their Nutritional Sensitivity to Dietary Protein: The Protein-Stat Revisited. Nutrients 2021; 13:729. [PMID: 33668846 PMCID: PMC7996181 DOI: 10.3390/nu13030729] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Childhood growth and its sensitivity to dietary protein is reviewed within a Protein-Stat model of growth regulation. The coordination of growth of muscle and stature is a combination of genetic programming, and of two-way mechanical interactions involving the mechanotransduction of muscle growth through stretching by bone length growth, the core Protein-Stat feature, and the strengthening of bone through muscle contraction via the mechanostat. Thus, growth in bone length is the initiating event and this is always observed. Endocrine and cellular mechanisms of growth in stature are reviewed in terms of the growth hormone-insulin like growth factor-1 (GH-IGF-1) and thyroid axes and the sex hormones, which together mediate endochondral ossification in the growth plate and bone lengthening. Cellular mechanisms of muscle growth during development are then reviewed identifying (a) the difficulties posed by the need to maintain its ultrastructure during myofibre hypertrophy within the extracellular matrix and the concept of muscle as concentric "bags" allowing growth to be conceived as bag enlargement and filling, (b) the cellular and molecular mechanisms involved in the mechanotransduction of satellite and mesenchymal stromal cells, to enable both connective tissue remodelling and provision of new myonuclei to aid myofibre hypertrophy and (c) the implications of myofibre hypertrophy for protein turnover within the myonuclear domain. Experimental data from rodent and avian animal models illustrate likely changes in DNA domain size and protein turnover during developmental and stretch-induced muscle growth and between different muscle fibre types. Growth of muscle in male rats during adulthood suggests that "bag enlargement" is achieved mainly through the action of mesenchymal stromal cells. Current understanding of the nutritional regulation of protein deposition in muscle, deriving from experimental studies in animals and human adults, is reviewed, identifying regulation by amino acids, insulin and myofibre volume changes acting to increase both ribosomal capacity and efficiency of muscle protein synthesis via the mechanistic target of rapamycin complex 1 (mTORC1) and the phenomenon of a "bag-full" inhibitory signal has been identified in human skeletal muscle. The final section deals with the nutritional sensitivity of growth of muscle and stature to dietary protein in children. Growth in length/height as a function of dietary protein intake is described in the context of the breastfed child as the normative growth model, and the "Early Protein Hypothesis" linking high protein intakes in infancy to later adiposity. The extensive paediatric studies on serum IGF-1 and child growth are reviewed but their clinical relevance is of limited value for understanding growth regulation; a role in energy metabolism and homeostasis, acting with insulin to mediate adiposity, is probably more important. Information on the influence of dietary protein on muscle mass per se as opposed to lean body mass is limited but suggests that increased protein intake in children is unable to promote muscle growth in excess of that linked to genotypic growth in length/height. One possible exception is milk protein intake, which cohort and cross-cultural studies suggest can increase height and associated muscle growth, although such effects have yet to be demonstrated by randomised controlled trials.
Collapse
Affiliation(s)
- D Joe Millward
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
15
|
Alaaraj N, Soliman A, Hamed N, Alyafei F, De Sanctis V. Understanding the complex role of mTORC as an intracellular critical mediator of whole-body metabolism in anorexia nervosa: A mini review. ACTA BIO-MEDICA : ATENEI PARMENSIS 2021; 92:e2021170. [PMID: 33682848 PMCID: PMC7975969 DOI: 10.23750/abm.v92i1.11342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/02/2022]
Abstract
Anorexia nervosa (AN) is a kind of malnutrition resulting from chronic self-induced starvation. The reported associated endocrine changes (adaptive and non-adaptive) include hypothalamic amenorrhea, a nutritionally acquired growth hormone resistance with low insulin like growth factor-1 (IGF-1) secretion, relative hypercortisolemia, decreased leptin and insulin concentrations, and increased ghrelin, Peptide YY (PYY) and adiponectin secretion. The combined effect of malnutrition and endocrinopathy may have deleterious effects on multi-organs including bone, gonads, thyroid gland, and brain (neurocognition, anxiety, depression, and other psychopathologies). The mammalian target of rapamycin (mTOR) is a kinase that in humans is encoded by the mTOR gene. Recent studies suggest an important role of mTOR complex in integration of nutrient and hormone signals to adjust energy homeostasis. In this review, we tried to elucidate the role/s of mTOR as critical mediator of the cellular response in anorexia nervosa. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Nada Alaaraj
- Department of Pediatrics, Division of Endocrinology, Hamad General Hospital, Doha, Qatar.
| | - Ashraf Soliman
- Department of Pediatrics, Division of Endocrinology, Hamad General Hospital, Doha, Qatar.
| | - Noor Hamed
- Department of Pediatrics, Division of Endocrinology, Hamad General Hospital, Doha, Qatar.
| | - Fawziya Alyafei
- Department of Pediatrics, Division of Endocrinology, Hamad General Hospital, Doha, Qatar.
| | | |
Collapse
|
16
|
Zhang X, Weng M, Chen Z. Fibroblast Growth Factor 9 (FGF9) negatively regulates the early stage of chondrogenic differentiation. PLoS One 2021; 16:e0241281. [PMID: 33529250 PMCID: PMC7853451 DOI: 10.1371/journal.pone.0241281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/12/2020] [Indexed: 01/02/2023] Open
Abstract
Fibroblast growth factor signaling is essential for mammalian bone morphogenesis and growth, involving membranous ossification and endochondral ossification. FGF9 has been shown to be an important regulator of endochondral ossification; however, its role in the early differentiation of chondrocytes remains unknown. Therefore, in this study, we aimed to determine the role of FGF9 in the early differentiation of chondrogenesis. We found an increase in FGF9 expression during proliferating chondrocyte hypertrophy in the mouse growth plate. Silencing of FGF9 promotes the growth of ATDC5 cells and promotes insulin-induced differentiation of ATDC5 chondrocytes, which is due to increased cartilage matrix formation and type II collagen (col2a1) and X (col10a1), Acan, Ihh, Mmp13 gene expression. Then, we evaluated the effects of AKT, GSK-3β, and mTOR. Inhibition of FGF9 significantly inhibits phosphorylation of AKT and GSK-3β, but does not affected the activation of mTOR. Furthermore, phosphorylation of inhibited AKT and GSK-3β was compensated using the AKT activator SC79, and differentiation of ATDC5 cells was inhibited. In conclusion, our results indicate that FGF9 acts as an important regulator of early chondrogenesis partly through the AKT/GSK-3β pathway.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Department of Orthodontics, The Affiliated Stomatology Hospital of Tongji University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Mengjia Weng
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenqi Chen
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
17
|
Wuelling M, Vortkamp A. Murine Limb Explant Cultures to Assess Cartilage Development. Methods Mol Biol 2021; 2230:139-149. [PMID: 33197013 DOI: 10.1007/978-1-0716-1028-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
To investigate chondrocyte biology in an organized structure, limb explant cultures have been established that allow for the cultivation of the entire cartilaginous skeletal elements. In these organ cultures, the arrangement of chondrocytes in the cartilage elements and their interaction with the surrounding perichondrium and joint tissue are maintained. Chondrocyte proliferation and differentiation can thus be studied under nearly in vivo conditions. Growth factors and other soluble agents can be administered to the explants and their effect on limb morphogenesis, gene expression and cell-matrix interactions can be studied. Cotreatment with distinct growth factors and their inhibitors as well as the use of transgenic mice will allow one to decipher the epistatic relationship between different signaling systems and other regulators of chondrocyte differentiation. Here we describe the protocol to culture cartilage explants ex vivo and discuss the advantages and disadvantages of the culture system.
Collapse
Affiliation(s)
- Manuela Wuelling
- Developmental Biology, Centre for Medical Biology, University Duisburg-Essen, Essen, Germany
| | - Andrea Vortkamp
- Developmental Biology, Centre for Medical Biology, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
18
|
De Luna A, Otahal A, Nehrer S. Mesenchymal Stromal Cell-Derived Extracellular Vesicles - Silver Linings for Cartilage Regeneration? Front Cell Dev Biol 2020; 8:593386. [PMID: 33363147 PMCID: PMC7758223 DOI: 10.3389/fcell.2020.593386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/19/2020] [Indexed: 01/15/2023] Open
Abstract
As the world's population is aging, the incidence of the degenerative disease Osteoarthritis (OA) is increasing. Current treatment options of OA focus on the alleviation of the symptoms including pain and inflammation rather than on restoration of the articular cartilage. Cell-based therapies including the application of mesenchymal stromal cells (MSCs) have been a promising tool for cartilage regeneration approaches. Due to their immunomodulatory properties, their differentiation potential into cells of the mesodermal lineage as well as the plurality of sources from which they can be isolated, MSCs have been applied in a vast number of studies focusing on the establishment of new treatment options for Osteoarthritis. Despite promising outcomes in vitro and in vivo, applications of MSCs are connected with teratoma formation, limited lifespan of differentiated cells as well as rejection of the cells after transplantation, highlighting the need for new cell free approaches harboring the beneficial properties of MSCs. It has been demonstrated that the regenerative potential of MSCs is mediated by the release of paracrine factors rather than by differentiation into cells of the desired tissue. Besides soluble factors, extracellular vesicles are the major component of a cell's secretome. They represent novel mechanisms by which (pathogenic) signals can be communicated between cell types as they deliver bioactive molecules (nucleic acids, proteins, lipids) from the cell of origin to the target cell leading to specific biological processes upon uptake. This review will give an overview about extracellular vesicles including general characteristics, isolation methods and characterization approaches. Furthermore, the role of MSC-derived extracellular vesicles in in vitro and in vivo studies for cartilage regeneration will be summarized with special focus on transported miRNA which either favored the progression of OA or protected the cartilage from degradation. In addition, studies will be reviewed investigating the impact of MSC-derived extracellular vesicles on inflammatory arthritis. As extracellular vesicles are present in all body fluids, their application as potential biomarkers for OA will also be discussed in this review. Finally, studies exploring the combination of MSC-derived extracellular vesicles with biomaterials for tissue engineering approaches are summarized.
Collapse
Affiliation(s)
- Andrea De Luna
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, Danube University Krems, Krems an der Donau, Austria
| | | | | |
Collapse
|
19
|
Schwarz JM, Pedrazza L, Stenzel W, Rosa JL, Schuelke M, Straussberg R. A new homozygous HERC1 gain-of-function variant in MDFPMR syndrome leads to mTORC1 hyperactivation and reduced autophagy during cell catabolism. Mol Genet Metab 2020; 131:126-134. [PMID: 32921582 DOI: 10.1016/j.ymgme.2020.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
The giant 532 kDa HERC1 protein is a ubiquitin ligase that interacts with tuberous sclerosis complex subunit 2 (TSC2), a negative upstream regulator of the mammalian target of rapamycin complex 1 (mTORC1). TSC2 regulates anabolic cell growth through its influence on protein synthesis, cell growth, proliferation, autophagy, and differentiation. TSC subunit 1 (TSC1) stabilizes TSC2 by inhibiting the interaction between TSC2 and HERC1, forming a TSC1-TSC2 complex that negatively regulates mTORC1. HERC1-TSC2 interaction destabilizes and degrades TSC2. Recessive mutations in HERC1 have been reported in patients with intellectual disability. Some patients exhibit epilepsy, macrocephaly, somatic overgrowth, and dysmorphic facial features as well. Here we describe two sisters from a consanguineous marriage with a novel homozygous missense variant in the C-terminal HECT domain of HERC1 [chr15:g63,907,989C>G GRCh37.p11 | c.14,072G>C NM_003922 | p.(Arg4,691Pro)]. Symptoms compris global developmental delay, macrocephaly, somatic overgrowth, intellectual disability, seizures, schizoaffective disorder, and pyramidal tract signs. We functionally assessed the HERC1 mutation by investigation of patient and control fibroblasts under normal and nutrient starving conditions. During catabolic state, mTORC1 activity remained high in patient fibroblasts, which stands in stark contrast to its downregulation in controls. This was corroborated by an abnormally high phosphorylation of S6K1-kinase, a direct downstream target of mTORC1, in patients. Moreover, autophagy, usually enhanced in catabolic states, was down-regulated in patient fibroblasts. These data confirm that the missense variant found in both patients results in a gain-of-function for the mutant HERC1 protein.
Collapse
Affiliation(s)
- Jana Marie Schwarz
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Leonardo Pedrazza
- Departament de Ciències Fisiològiques, Institut d'Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, Institut d'Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Markus Schuelke
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany.
| | - Rachel Straussberg
- Schneider Children's Medical Center, Petach Tikva, Israel; Department of Child Neurology, Neurogenetic Service, Affiliated to Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel.
| |
Collapse
|
20
|
Abstract
The resting zone houses a group of slowly proliferating 'reserve' chondrocytes and has long been speculated to serve as the stem cell niche of the postnatal growth plate. But are these resting chondrocytes bona fide stem cells? Recent technological advances in lineage tracing and next-generation sequencing have finally allowed researchers to answer this question. Several recent studies have also shed light into the signaling pathways and molecular mechanisms involved in the maintenance of resting chondrocytes, thus providing us with important new insights into the role of the resting zone in the paracrine and endocrine regulation of childhood bone growth.
Collapse
Affiliation(s)
- Julian C Lui
- Section on Growth and Development, Eunice Kennedy ShriverNational Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Chen CH, Kuo SM, Tien YC, Shen PC, Kuo YW, Huang HH. Steady Augmentation of Anti-Osteoarthritic Actions of Rapamycin by Liposome-Encapsulation in Collaboration with Low-Intensity Pulsed Ultrasound. Int J Nanomedicine 2020; 15:3771-3790. [PMID: 32547027 PMCID: PMC7266395 DOI: 10.2147/ijn.s252223] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction Rapamycin has been considered as a potential treatment for osteoarthritis (OA). Drug carriers fabricated from liposomes can prolong the effects of drugs and reduce side effects of drugs. Low-intensity pulsed ultrasound (LIPUS) has been found to possess anti-OA effects. Materials and Methods The anti-osteoarthritic effects of liposome-encapsulated rapamycin (L-rapa) combined with LIPUS were examined by culture of normal and OA chondrocytes in alginate beads and further validated in OA prone Dunkin-Hartley guinea pigs. Results L-rapa with LIPUS largely up-regulated aggrecan and type II collagen mRNA in human OA chondrocytes (HOACs). L-rapa with LIPUS caused significant enhancement in proteoglycan and type II collagen production in HOACs. Large decreases in both MMP-13 and IL-6 proteins were found in the HOACs exposed to L-rapa with LIPUS. Intra-articular injection of 40 μL L-rapa at both 5 μM and 50 μM twice a week combined with LIPUS thrice a week for 8 weeks significantly increased GAGs and type II collagen in the cartilage of knee. Results on OARSI score showed that intra-articular injection of 5 μM L-rapa with LIPUS displayed the greatest anti-OA effects. Immunohistochemistry revealed that L-rapa with or without LIPUS predominantly reduced MMP-13 in vivo. The values of complete blood count and serum biochemical examinations remained in the normal ranges after the injections with or without LIPUS. These data indicated that intra-articular injection of L-rapa collaborated with LIPUS is not only effective against OA but a safe OA therapy. Conclusion Taken together, L-rapa combined with LIPUS possessed the most consistently and effectively anabolic and anti-catabolic effects in HOACs and the spontaneous OA guinea pigs. This study evidently revealed that liposome-encapsulation collaborated with LIPUS is able to reduce the effective dose and administration frequency of rapamycin and further stably reinforce its therapeutic actions against OA.
Collapse
Affiliation(s)
- Chung-Hwan Chen
- Department of Orthopedics and Orthopedic Research Center, Kaohsiung Municipal Ta-Tung Hospital and Kaohsiung Medical University Hospital, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung City 80424, Taiwan
| | - Shyh Ming Kuo
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Yin-Chun Tien
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan.,Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Po-Chih Shen
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
| | - Yi-Wen Kuo
- Orthopedic Research Center, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
| | - Han Hsiang Huang
- Department of Veterinary Medicine, National Chiayi University, Chiayi City 60054, Taiwan
| |
Collapse
|
22
|
Bar-Or D, Thomas G, Rael LT, Frederick E, Hausburg M, Bar-Or R, Brody E. On the Mechanisms of Action of the Low Molecular Weight Fraction of Commercial Human Serum Albumin in Osteoarthritis. Curr Rheumatol Rev 2020; 15:189-200. [PMID: 30451114 PMCID: PMC6791032 DOI: 10.2174/1573397114666181119121519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 01/05/2023]
Abstract
The low molecular weight fraction of commercial human serum albumin (LMWF5A) has been shown to successfully relieve pain and inflammation in severe osteoarthritis of the knee (OAK). LMWF5A contains at least three active components that could account for these antiinflammatory and analgesic effects. We summarize in vitro experiments in bone marrow-derived mesenchymal stem cells, monocytic cell lines, chondrocytes, peripheral blood mononuclear cells, fibroblast-like synoviocytes, and endothelial cells on the biochemistry of anti-inflammatory changes induced by LMWF5A. We then look at four of the major pathways that cut across cell-type considerations to examine which biochemical reactions are affected by mTOR, COX-2, CD36, and AhR pathways. All three components show anti-inflammatory activities in at least some of the cell types. The in vitro experiments show that the effects of LMWF5A in chondrocytes and bone marrow- derived stem cells in particular, coupled with recent data from previous clinical trials of single and multiple injections of LMWF5A into OAK patients demonstrated improvements in pain, function, and Patient Global Assessment (PGA), as well as high responder rates that could be attributed to the multiple mechanism of action (MOA) pathways are summarized here. In vitro and in vivo data are highly suggestive of LMWF5A being a disease-modifying drug for OAK.
Collapse
Affiliation(s)
- David Bar-Or
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States.,Ampio Pharmaceuticals, Inc., 373 Inverness Parkway, #200, Englewood, CO 80112, United States
| | - Gregory Thomas
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States.,Ampio Pharmaceuticals, Inc., 373 Inverness Parkway, #200, Englewood, CO 80112, United States
| | - Leonard T Rael
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States
| | - Elizabeth Frederick
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States.,Ampio Pharmaceuticals, Inc., 373 Inverness Parkway, #200, Englewood, CO 80112, United States
| | - Melissa Hausburg
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States
| | - Raphael Bar-Or
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States.,Ampio Pharmaceuticals, Inc., 373 Inverness Parkway, #200, Englewood, CO 80112, United States
| | - Edward Brody
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, United States
| |
Collapse
|
23
|
Jin X, Kang X, Zhao L, Xu M, Xie T, Li H, Li F, Qian Z, Ma Z, Zhang Y, Yang W, Zhang Z, Gao X, Chen Q, Sun H, Wu S. Cartilage Ablation of Sirt1 Causes Inhibition of Growth Plate Chondrogenesis by Hyperactivation of mTORC1 Signaling. Endocrinology 2019; 160:3001-3017. [PMID: 31599935 DOI: 10.1210/en.2019-00427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 10/04/2019] [Indexed: 01/04/2023]
Abstract
A growing body of evidence implies a pivotal role of sirtuin-1 (Sirt1) in chondrocyte function and homeostasis; however, its underlying mechanisms mediating chondrogenesis, which is an essential process for physiological skeletal growth, are still poorly understood. In the current study, we generated TamCartSirt1-/- [Sirt1 conditional knockout (cKO)] mice to explore the role of Sirt1 during postnatal endochondral ossification. Compared with control mice, cKO mice exhibited growth retardation associated with inhibited chondrocyte proliferation and hypertrophy, as well as activated apoptosis. These effects were regulated by hyperactivation of mammalian target of rapamycin complex 1 (mTORC1) signaling, and thereby inhibition of autophagy and induction of endoplasmic reticulum stress in growth plate chondrocytes. IP injection of the mTORC1 inhibitor rapamycin to mice with Sirt1 deletion partially neutralized such inhibitory effects of Sirt1 ablation on longitudinal bone growth, indicating the causative link between SIRT1 and mTORC1 signaling in the growth plate. Mechanistically, SIRT1 interacted with tuberous sclerosis complex 2 (TSC2), a key upstream negative regulator of mTORC1 signaling, and loss of Sirt1 inhibited TSC2 expression, resulting in hyperactivated mTORC1 signaling in chondrocytes. In conclusion, our findings suggest that loss of Sirt1 may trigger mTORC1 signaling in growth plate chondrocytes and contributes to growth retardation, thus indicating that SIRT1 is an important regulator during chondrogenesis and providing new insights into the clinical potential of SIRT1 in bone development.
Collapse
Affiliation(s)
- Xinxin Jin
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Xiaomin Kang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Liting Zhao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Mao Xu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Tianping Xie
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Huixia Li
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Fang Li
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Zhuang Qian
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Zhengmin Ma
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Ying Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Wei Yang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Zhuanmin Zhang
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xin Gao
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Qian Chen
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
- Bone and Joint Research Center, The First Affiliated Hospital of Medical School, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hongzhi Sun
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Shufang Wu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
24
|
Ordiz MI, Semba RD, Moaddel R, Rolle-Kampczyk U, von Bergen M, Herberth G, Khadeer M, Röder S, Manary MJ. Serum Amino Acid Concentrations in Infants from Malawi are Associated with Linear Growth. Curr Dev Nutr 2019; 3:nzz100. [PMID: 31620672 PMCID: PMC6785685 DOI: 10.1093/cdn/nzz100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2019] [Indexed: 01/14/2023] Open
Abstract
Serum amino acid (AA) concentrations are correlated with childhood stunting, but their relation to linear growth velocity has not been explored. This was a secondary analysis of a clinical trial where Malawian infants aged 6-12 mo were given a legume supplement providing 8.2 g/d of protein; anthropometry was conducted at multiple intervals, and fasted serum AA concentrations were measured at 12 mo of age. Lysine, proline, tryptophan, tyrosine, and valine concentrations were higher in infants with a linear growth velocity z-score >0 than those <0. Corrected Spearman correlation coefficients between individual AA concentrations and weight-for-height and length velocity from 6 to 12 mo of age were positively correlated for glycine, isoleucine, proline, serine, threonine, tyrosine, and valine. Additionally, weight-for-height was correlated with arginine, asparagine, glutamine, leucine, lysine, methionine, and phenylalanine. The observed associations suggest that testing the hypothesis that essential AA provision will reduce linear growth faltering is warranted. This trial was registered at clinicaltrials.gov as NCT02472262.
Collapse
Affiliation(s)
- M Isabel Ordiz
- Department of Pediatrics, Washington University in Saint Louis, St Louis, MO, USA
| | - Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | | | - Stefan Röder
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Mark J Manary
- Department of Pediatrics, Washington University in Saint Louis, St Louis, MO, USA
- School of Public Health and Family Medicine, University of Malawi, Blantyre, Malawi
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
25
|
Zhu L, Dai LM, Shen H, Gu PQ, Zheng K, Liu YJ, Zhang L, Cheng JF. Qing Chang Hua Shi granule ameliorate inflammation in experimental rats and cell model of ulcerative colitis through MEK/ERK signaling pathway. Biomed Pharmacother 2019; 116:108967. [PMID: 31102937 DOI: 10.1016/j.biopha.2019.108967] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 01/16/2023] Open
Abstract
Ulcerative colitis (UC), a bowel disease with significant morbidity, is associated with inflammation. In this study, the effect of Qingchang Huashi granule (QCHS) on UC and its underlying mechanisms were explored using both animal and cell culture experiments. A rat UC model was induced with trinitro-benzene-sulfonic acid (TNBS), concentrations of the cytokines IL-1α, IL-6, IL-8, IL-1β, and TNF-α were significantly up-regulated and the concentrations of IL-4, IL-10, and IL-13 were significantly down-regulated compared with the control group (P < 0.05). In contrast, the QCHS and salicylazosulfapyridine (SASP) groups reversed these modulations (P < 0.05). A UC cell model in HT-29 cells was generated using TNF-α combined with lipopolysaccharide treatment. Cells treated with QCHS were used to investigate the possible mechanisms. The expression of apoptosis-related proteins, including Bax/Bcl-2, caspase-3, caspase-9, Fas/Fas-L, and Rafl in the QCHS and SASP groups, were significantly lower than that in the control group in both animal and cell experiments (P < 0.05). In addition, the in vitro results indicate changes in these indicators mediate the MEK/ERK signaling pathways via SGK1. Our results suggested that QCHS could be beneficial in preventing UC progression as an alternative drug for UC treatment.
Collapse
Affiliation(s)
- Lei Zhu
- Affiliated Hospital of Nanjing University of TCM, JiangSu Province Hospital of TCM, Nan Jing, 210029, Jiangsu Province, China
| | - Lu-Ming Dai
- Affiliated Hospital of Nanjing University of TCM, JiangSu Province Hospital of TCM, Nan Jing, 210029, Jiangsu Province, China
| | - Hong Shen
- Affiliated Hospital of Nanjing University of TCM, JiangSu Province Hospital of TCM, Nan Jing, 210029, Jiangsu Province, China.
| | - Pei-Qing Gu
- Affiliated Hospital of Nanjing University of TCM, JiangSu Province Hospital of TCM, Nan Jing, 210029, Jiangsu Province, China
| | - Kai Zheng
- Affiliated Hospital of Nanjing University of TCM, JiangSu Province Hospital of TCM, Nan Jing, 210029, Jiangsu Province, China
| | - Ya-Jun Liu
- Affiliated Hospital of Nanjing University of TCM, JiangSu Province Hospital of TCM, Nan Jing, 210029, Jiangsu Province, China
| | - Lu Zhang
- Affiliated Hospital of Nanjing University of TCM, JiangSu Province Hospital of TCM, Nan Jing, 210029, Jiangsu Province, China
| | - Jia-Fei Cheng
- Affiliated Hospital of Nanjing University of TCM, JiangSu Province Hospital of TCM, Nan Jing, 210029, Jiangsu Province, China
| |
Collapse
|
26
|
Meyers C, Lisiecki J, Miller S, Levin A, Fayad L, Ding C, Sono T, McCarthy E, Levi B, James AW. Heterotopic Ossification: A Comprehensive Review. JBMR Plus 2019; 3:e10172. [PMID: 31044187 PMCID: PMC6478587 DOI: 10.1002/jbm4.10172] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/31/2018] [Accepted: 01/13/2019] [Indexed: 12/17/2022] Open
Abstract
Heterotopic ossification (HO) is a diverse pathologic process, defined as the formation of extraskeletal bone in muscle and soft tissues. HO can be conceptualized as a tissue repair process gone awry and is a common complication of trauma and surgery. This comprehensive review seeks to synthesize the clinical, pathoetiologic, and basic biologic features of HO, including nongenetic and genetic forms. First, the clinical features, radiographic appearance, histopathologic diagnosis, and current methods of treatment are discussed. Next, current concepts regarding the mechanistic bases for HO are discussed, including the putative cell types responsible for HO formation, the inflammatory milieu and other prerequisite “niche” factors for HO initiation and propagation, and currently available animal models for the study of HO of this common and potentially devastating condition. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Carolyn Meyers
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | | | - Sarah Miller
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Adam Levin
- Department of Orthopaedic Surgery Johns Hopkins University Baltimore MD USA
| | - Laura Fayad
- Department of Radiology Johns Hopkins University Baltimore MD USA
| | - Catherine Ding
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center Los Angeles CA USA
| | - Takashi Sono
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Edward McCarthy
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Benjamin Levi
- Department of Surgery University of Michigan Ann Arbor MI USA
| | - Aaron W James
- Department of Pathology Johns Hopkins University Baltimore MD USA.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center Los Angeles CA USA
| |
Collapse
|
27
|
Qi H, Liu DP, Xiao DW, Tian DC, Su YW, Jin SF. Exosomes derived from mesenchymal stem cells inhibit mitochondrial dysfunction-induced apoptosis of chondrocytes via p38, ERK, and Akt pathways. In Vitro Cell Dev Biol Anim 2019; 55:203-210. [PMID: 30783864 DOI: 10.1007/s11626-019-00330-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/28/2019] [Indexed: 12/18/2022]
Abstract
Osteoarthritis (OA) is the most common chronic joint disease worldwide. Chondrocyte, as the only resident cell type in cartilage, its apoptosis is of pathogenetic significance in OA. Mesenchymal stem cell (MSC)-based-therapy has been proved effective in OA in animals and clinical studies. Nowadays, the regenerative potential of MSC-based therapy is mostly attributed to its paracrine secretion, in which exosomes may play an important role. In the present study, we aimed to find out the significance of MSC-derived exosomes (MSC-Exos) on the viability of chondrocytes under normal and inflammatory conditions. Bone marrow MSCs (BMSCs) and chondrocytes from rabbits were cultured in vitro. BMSC-Exos were isolated by an ultracentrifugation method. Transmission electron microscopy and Western blot were used to identify exosomes. The internalization of BMSC-Exos into chondrocytes was observed by fluorescent microscope. The viability and apoptosis of chondrocytes induced by IL-1β were tested through MTT method, Hoechst33324 dying, and mitochondrial damage measurement. Phosphorylation of p38, ERK, and Akt were evaluated by Western blot. The results showed that BMSC-Exos were round-shaped. Co-culturing BMSC-Exos with chondrocytes could observe the uptake of BMSC-Exos by chondrocytes. The viability decreased, apoptosis occurred, and the mitochondrial membrane potential of chondrocytes changed a lot when IL-1β were given, but all the changes were almost abolished when BMSC-Exos was added. Furthermore, the phosphorylation of p38 and ERK were inhibited, and phosphorylation of Akt was promoted by BMSC-Exos compared with IL-1β group. The present study demonstrated that BMSC-Exos inhibited mitochondrial-induced apoptosis in response to IL-1β, and p38, ERK, and Akt pathways were involved. BMSC-Exo might represent a novel cell-free therapeutic approach for the treatment of OA.
Collapse
Affiliation(s)
- Hui Qi
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China.
| | - Dan-Ping Liu
- Department of Orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Da-Wei Xiao
- Department of Orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Da-Chuan Tian
- Department of Orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Yong-Wei Su
- Department of Orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Shao-Feng Jin
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| |
Collapse
|
28
|
Yang J, He MT, Huang X, Wang QS, Pi J, Wang HJ, Rahhal AH, Luo SM, Zha ZG. Atomic Force Microscopy-Based Nanoscopy of Chondrogenically Differentiating Human Adipose-Derived Stem Cells: Nanostructure and Integrin β1 Expression. NANOSCALE RESEARCH LETTERS 2018; 13:333. [PMID: 30353236 PMCID: PMC6199198 DOI: 10.1186/s11671-018-2722-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/17/2018] [Indexed: 05/08/2023]
Abstract
Integrin β1 is known to be involved in differentiation, migration, proliferation, wound repair, tissue development, and organogenesis. In order to analyze the binding probability between integrin β1 ligand and cluster of differentiation 29 (CD29) receptors, atomic force microscopy (AFM) was used to detect native integrin β1-coupled receptors on the surface of human adipose-derived stem cells (hADSc). The binding probability of integrin β1 ligand-receptor interaction was probed by integrin β1-functionalized tips on hADSc during early chondrogenic differentiation at the two-dimensional cell culture level. Cell morphology and ultrastructure of hADSc were measured by AFM, which demonstrated that long spindled cells became polygonal cells with decreased length/width ratios and increased roughness during chondrogenic induction. The binding of integrin β1 ligand and CD29 receptors was detected by β1-functionalized tips for living hADSc. A total of 1200 curves were recorded at 0, 6, and 12 days of chondrogenic induction. Average rupture forces were, respectively, 61.8 ± 22.2 pN, 60 ± 20.2 pN, and 67.2 ± 22.0 pN. Rupture events were 19.58 ± 1.74%, 28.03 ± 2.05%, and 33.4 ± 1.89%, respectively, which demonstrated that binding probability was increased between integrin β1 ligand and receptors on the surface of hADSc during chondrogenic induction. Integrin β1 and the β-catenin/SOX signaling pathway were correlated during chondrogenic differentiation. The results of this investigation imply that AFM offers kinetic and visual insight into the changes in integrin β1 ligand-CD29 receptor binding on hADSc during chondrogenesis. Changes in cellular morphology, membrane ultrastructure, and the probability of ligand-transmembrane receptor binding were demonstrated to be useful markers for evaluation of the chondrogenic differentiation process.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, 510630 People’s Republic of China
| | - Ming-Tang He
- Longgang Orthopedics Hospital of Shenzhen, Shenzhen, People’s Republic of China
| | - Xun Huang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, 510630 People’s Republic of China
- Department of Materials Science and Engineering, Jinan University, Guangzhou, People’s Republic of China
| | - Qiu-Shi Wang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, 510630 People’s Republic of China
| | - Jiang Pi
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL USA
| | - Hua-Jun Wang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, 510630 People’s Republic of China
| | - Ali Hasan Rahhal
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, 510630 People’s Republic of China
| | - Si-Min Luo
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, 510630 People’s Republic of China
| | - Zhen-Gang Zha
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, 510630 People’s Republic of China
| |
Collapse
|
29
|
Regulation of energy metabolism in the growth plate and osteoarthritic chondrocytes. Rheumatol Int 2018; 38:1963-1974. [DOI: 10.1007/s00296-018-4103-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/13/2018] [Indexed: 12/27/2022]
|
30
|
Iezaki T, Horie T, Fukasawa K, Kitabatake M, Nakamura Y, Park G, Onishi Y, Ozaki K, Kanayama T, Hiraiwa M, Kitaguchi Y, Kaneda K, Manabe T, Ishigaki Y, Ohno M, Hinoi E. Translational Control of Sox9 RNA by mTORC1 Contributes to Skeletogenesis. Stem Cell Reports 2018; 11:228-241. [PMID: 30008325 PMCID: PMC6117477 DOI: 10.1016/j.stemcr.2018.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 11/18/2022] Open
Abstract
The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) regulates cellular function in various cell types. Although the role of mTORC1 in skeletogenesis has been investigated previously, here we show a critical role of mTORC1/4E-BPs/SOX9 axis in regulating skeletogenesis through its expression in undifferentiated mesenchymal cells. Inactivation of Raptor, a component of mTORC1, in limb buds before mesenchymal condensations resulted in a marked loss of both cartilage and bone. Mechanistically, we demonstrated that mTORC1 selectively controls the RNA translation of Sox9, which harbors a 5′ terminal oligopyrimidine tract motif, via inhibition of the 4E-BPs. Indeed, introduction of Sox9 or a knockdown of 4E-BP1/2 in undifferentiated mesenchymal cells markedly rescued the deficiency of the condensation observed in Raptor-deficient mice. Furthermore, introduction of the Sox9 transgene rescued phenotypes of deficient skeletal growth in Raptor-deficient mice. These findings highlight a critical role of mTORC1 in mammalian skeletogenesis, at least in part, through translational control of Sox9 RNA. mTORC1 controls skeletogenesis both in skeletogenic progenitors and in chondrocytes mTORC1/4E-BPs cascade regulates the translation of Sox9 RNA SOX9 is a critical mediator in the control of skeletogenesis by mTORC1 in vivo
Collapse
Affiliation(s)
- Takashi Iezaki
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Venture Business Laboratory, Organization of Frontier Science and Innovation, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Tetsuhiro Horie
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kazuya Fukasawa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Makoto Kitabatake
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa 920-0293, Japan
| | - Gyujin Park
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuki Onishi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kakeru Ozaki
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takashi Kanayama
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Manami Hiraiwa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuka Kitaguchi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takayuki Manabe
- Department of Neuroanatomy and Neuropharmacology, Faculty of Nursing, Chukyogakuin University, Mizunami, Gifu 509-6192, Japan
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa 920-0293, Japan
| | - Mutsuhito Ohno
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| |
Collapse
|
31
|
Gat-Yablonski G, De Luca F. Effect of Nutrition on Statural Growth
. Horm Res Paediatr 2018; 88:46-62. [PMID: 28365689 DOI: 10.1159/000456547] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/11/2017] [Indexed: 12/14/2022] Open
Abstract
In children, proper growth and development are often regarded as a surrogate marker for good health. A complex system controls the initiation, rate, and cessation of growth, and thus gives a wonderful example of the interactions between genetics, epigenetics, and environmental factors (especially stress and nutrition). Malnutrition is considered a leading cause of growth attenuation in children. This review summarizes our current knowledge regarding the mechanisms linking nutrition and skeletal growth, including systemic factors, such as insulin, growth hormone, insulin-like growth factor-1, fibroblast growth factor-21, etc., and local mechanisms, including mTOR, miRNAs, and epigenetics. Studying the molecular mechanisms regulating skeletal growth may lead to the establishment of better nutritional and therapeutic regimens for more effective linear growth in children with malnutrition and growth abnormalities.
.
Collapse
Affiliation(s)
- Galia Gat-Yablonski
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Children's Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Francesco De Luca
- Section of Endocrinology and Diabetes, St. Christopher's Hospital for Children, Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
32
|
mTOR signaling in skeletal development and disease. Bone Res 2018; 6:1. [PMID: 29423330 PMCID: PMC5802487 DOI: 10.1038/s41413-017-0004-5] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/13/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023] Open
Abstract
The mammalian/mechanistic target of rapamycin (mTOR) is a serine/threonine protein kinase that integrates inputs from nutrients and growth factors to control many fundamental cellular processes through two distinct protein complexes mTORC1 and mTORC2. Recent mouse genetic studies have established that mTOR pathways play important roles in regulating multiple aspects of skeletal development and homeostasis. In addition, mTORC1 has emerged as a common effector mediating the bone anabolic effect of Igf1, Wnt and Bmp. Dysregulation of mTORC1 could contribute to various skeletal diseases including osteoarthritis and osteoporosis. Here we review the current understanding of mTOR signaling in skeletal development and bone homeostasis, as well as in the maintenance of articular cartilage. We speculate that targeting mTOR signaling may be a valuable approach for treating skeletal diseases. Drugs directed at a key cellular signaling pathway could prove useful for treating skeletal diseases. Jianquan Chen from Soochow University in Suzhou, China, and Fanxin Long from Washington University School of Medicine in St. Louis, Missouri, USA, provide an overview of how proteins involved in the mechanistic target of rapamycin (mTOR) signaling pathway sense and integrate a range of environmental cues to regulate bone and cartilage development. In particular, they review the differing roles of the two distinct mTOR-containing protein complexes, mTORC1 and mTORC2. Both seem to mediate bone formation and resorption but in different ways, with implications for how best to treat osteoarthritis, osteoporosis, and other degenerative skeletal diseases. The authors suggest that more specific mTOR inhibitors with minimal side effects are needed to help stimulate bone growth in these diseases.
Collapse
|
33
|
Ospina-Rojas IC, Murakami AE, Duarte CRA, Sakamoto MI, Aguihe PC, Pozza PC, Santos TC. Tibiotarsus bone characteristics and tibial dyschondroplasia incidence of broilers fed diets supplemented with leucine and valine. J Anim Physiol Anim Nutr (Berl) 2017; 102:e768-e776. [PMID: 29193326 DOI: 10.1111/jpn.12832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/19/2017] [Indexed: 11/28/2022]
Abstract
Two experiments were conducted to study the effect of standardized ileal digestible (SID) leucine and valine levels on tibiotarsus bone characteristics and the incidence of tibial dyschondroplasia of broilers from day 1 to 21 (Experiment I) and day 21 to 42 post-hatch (Experiment II). Each experimental phase was evaluated independently. In both experiments, a total of 1,500 one-day-old Cobb 500 male broiler chickens were distributed in a completely randomized design 5 × 5 factorial arrangement for a total of 25 treatments. The SID leucine and valine levels were ranged from 10.0 to 19.6 g/kg, and 6.0 to 12.0 g/kg from day 1 to 21 post-hatch, respectively, while day 21 to 42 post-hatch ranged from 10.0 to 18.0 g leucine/kg, and 5.2 to 11.2 g valine/kg. Serum calcium and phosphorus, bone concentrations of calcium, phosphorus and ash, diameter and Seedor index of the tibiotarsus were not affected (p > .05) by the treatments at 21 or 42 days of age. There was an interaction (p ≤.06) between the SID levels of leucine and valine on tibiotarsus breaking strength at 21 days, but not at 42 days of age (p > .05). Tibiotarsus breaking strength was maximized in broilers from day 1 to 21 with the dietary levels of leucine and valine at 14.2 and 9.0 g/kg respectively. Dietary leucine levels reduced linearly (p < .05) the hypertrophic zone of tibiotarsus cartilage at 21 days of age. Therefore, leucine and valine supplementation interact positively on bone strength of broilers from day 1 to 21 post-hatch. Leucine can be a useful amino acid for reducing the hypertrophic cartilage zone in broilers from day 1 to 21, but not from day 21 to 42 post-hatch.
Collapse
Affiliation(s)
- I C Ospina-Rojas
- Department of Animal Science, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - A E Murakami
- Department of Animal Science, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - C R A Duarte
- Department of Biological Sciences, Universidade do Estado de Mato Grosso, Tangará da Serra, Brazil
| | - M I Sakamoto
- Department of Animal Science, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - P C Aguihe
- Department of Animal Production Technology, Federal College of Wildlife Management, New Bussa, Nigeria
| | - P C Pozza
- Department of Animal Science, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - T C Santos
- Department of Animal Science, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
34
|
Roselló-Díez A, Stephen D, Joyner AL. Altered paracrine signaling from the injured knee joint impairs postnatal long bone growth. eLife 2017; 6. [PMID: 28741471 PMCID: PMC5526667 DOI: 10.7554/elife.27210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/03/2017] [Indexed: 12/23/2022] Open
Abstract
Regulation of organ growth is a poorly understood process. In the long bones, the growth plates (GPs) drive elongation by generating a scaffold progressively replaced by bone. Although studies have focused on intrinsic GP regulation, classic and recent experiments suggest that local signals also modulate GP function. We devised a genetic mouse model to study extrinsic long bone growth modulation, in which injury is specifically induced in the left hindlimb, such that the right hindlimb serves as an internal control. Remarkably, when only mesenchyme cells surrounding postnatal GPs were killed, left bone growth was nevertheless reduced. GP signaling was impaired by altered paracrine signals from the knee joint, including activation of the injury response and, in neonates, dampened IGF1 production. Importantly, only the combined prevention of both responses rescued neonatal growth. Thus, we identified signals from the knee joint that modulate bone growth and could underlie establishment of body proportions. DOI:http://dx.doi.org/10.7554/eLife.27210.001 As bones grow, their size is carefully controlled and coordinated with the growth of the other organs in the body. The mechanisms that control organ size also help the body to recover from injury, and play a key role in controlling body size and proportions. Over the course of evolution, these mechanisms have likely changed to produce the distinct body sizes and proportions seen in humans and other animals. Despite their importance, it is not well understood how signals from both inside and outside an organ work together to regulate its size. In growth disorders this signaling goes wrong, which can lead to a person having unusual proportions such as a very short stature or having one leg shorter than the other. Currently, most growth disorders that affect leg proportions are treated with painful surgical procedures. Researchers would like to know how bone growth is affected by signals from the surrounding tissues because this could help them to develop new non-invasive treatments for these conditions. Long bones, for example those in the leg, grow from structures near their ends called growth plates. Roselló-Díez et al. have now engineered mice in which an injury shortly after birth caused cells in the knee in the rear left leg to die off. At the same time, the rear right leg of the mice developed as normal, allowing the growth of the two legs to be compared. Roselló-Díez et al. found that the left leg of these mice grew more slowly than the right leg, even though none of the cells in the growth plate of the left leg bone had been damaged. Further investigation revealed that this was because the injury caused an imbalance between the growth-promoting and growth-restricting signals that are produced by the fat pad and articular cartilage in the knee joint. Restoring the lost balance allowed the left leg bone to grow to a more normal length. In the future, boosting bone growth signals might provide a way to treat conditions like dwarfism or leg-length discrepancies. Understanding how different tissues influence body proportions could also help researchers to investigate how different animals evolved different body proportions. DOI:http://dx.doi.org/10.7554/eLife.27210.002
Collapse
Affiliation(s)
- Alberto Roselló-Díez
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Daniel Stephen
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, United States.,Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate Schoolof Medical Sciences, New York, United States
| |
Collapse
|
35
|
Kim H, Kim DH, Jeong B, Kim JH, Lee SR, Sonn JK. Blebbistatin induces chondrogenesis of single mesenchymal cells via PI3K/PDK1/mTOR/p70S6K pathway. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Chondrocyte-Specific Knockout of TSC-1 Leads to Congenital Spinal Deformity in Mice. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8215805. [PMID: 28523278 PMCID: PMC5420956 DOI: 10.1155/2017/8215805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/13/2017] [Indexed: 11/17/2022]
Abstract
Congenital spinal deformity is the most severe clinical orthopedic issue worldwide. Among all the pathological processes of congenital spinal deformity, the imbalance of endochondral ossification is considered to be the most important developmental cause of spinal dysplasia. We established chondrocyte-specific TSC-1 knockout (KO) mice to overactivate the energy metabolic component, mammalian target of rapamycin complex 1 (mTORC1), and measured the spinal development by general, imaging, histological, and Western-blot assessments. In addition to skeletal dysplasia, the KO mice displayed severe congenital spinal deformity and significant intervertebral disc changes. This study suggests that, in the process of endochondral ossification, excessive activation of mTORC1 signaling in chondrocytes induces obvious spinal deformity, and the chondrocytes may be the cell type responsible for congenital spinal deformity.
Collapse
|
37
|
Lu TJ, Chiu FY, Chiu HY, Chang MC, Hung SC. Chondrogenic Differentiation of Mesenchymal Stem Cells in Three-Dimensional Chitosan Film Culture. Cell Transplant 2016; 26:417-427. [PMID: 27737727 DOI: 10.3727/096368916x693464] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Articular cartilage has a very limited capacity for self-repair, and mesenchymal stem cells (MSCs) have the potential to treat cartilage defects and osteoarthritis. However, in-depth mechanistic studies regarding their applications are required. Here we demonstrated the use of chitosan film culture for promoting chondrogenic differentiation of MSCs. We found that MSCs formed spheres 2 days after seeding on dishes coated with chitosan. When MSCs were induced in a chondrogenic induction medium on chitosan films, the size of the spheres continuously increased for up to 21 days. Alcian blue staining and immunohistochemistry demonstrated the expression of chondrogenic proteins, including aggrecan, type II collagen, and type X collagen at 14 and 21 days of differentiation. Importantly, chitosan, with a medium molecular weight (size: 190-310 kDa), was more suitable than other sizes for inducing chondrogenic differentiation of MSCs in terms of sphere size and expression of chondrogenic proteins and endochondral markers. We identified that the mechanistic target of rapamycin (mTOR) signaling and its downstream S6 kinase (S6K)/S6 were activated in chitosan film culture compared to that of monolayer culture. The activation of mTOR/S6K was continuously upregulated from days 2 to 7 of differentiation. Furthermore, we found that mTOR/S6K signaling was required for chondrogenic differentiation of MSCs in chitosan film culture through rapamycin treatment and mTOR knockdown. In conclusion, we showed the suitability of chitosan film culture for promoting chondrogenic differentiation of MSCs and its potential in the development of new strategies in cartilage tissue engineering.
Collapse
|
38
|
Zhou B, Chen D, Xu H, Zhang X. Proliferation of rabbit chondrocyte and inhibition of IL-1β-induced apoptosis through MEK/ERK signaling by statins. In Vitro Cell Dev Biol Anim 2016; 53:124-131. [DOI: 10.1007/s11626-016-0086-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/03/2016] [Indexed: 10/20/2022]
|
39
|
Comparison of the transcriptional responses of skeletal muscle and bone to a flooding dose of leucine in the gilthead sea bream (Sparus aurata). Comp Biochem Physiol B Biochem Mol Biol 2016; 199:50-57. [DOI: 10.1016/j.cbpb.2016.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 12/17/2022]
|
40
|
Semba RD, Trehan I, Gonzalez-Freire M, Kraemer K, Moaddel R, Ordiz MI, Ferrucci L, Manary MJ. Perspective: The Potential Role of Essential Amino Acids and the Mechanistic Target of Rapamycin Complex 1 (mTORC1) Pathway in the Pathogenesis of Child Stunting. Adv Nutr 2016; 7:853-65. [PMID: 27633102 PMCID: PMC5015042 DOI: 10.3945/an.116.013276] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stunting is the best summary measure of chronic malnutrition in children. Approximately one-quarter of children under age 5 worldwide are stunted. Lipid-based or micronutrient supplementation has little to no impact in reducing stunting, which suggests that other critical dietary nutrients are missing. A dietary pattern of poor-quality protein is associated with stunting. Stunted children have significantly lower circulating essential amino acids than do nonstunted children. Inadequate dietary intakes of essential amino acids could adversely affect growth, because amino acids are required for synthesis of proteins. The master growth regulation pathway, the mechanistic target of rapamycin complex 1 (mTORC1) pathway, is exquisitely sensitive to amino acid availability. mTORC1 integrates cues such as nutrients, growth factors, oxygen, and energy to regulate growth of bone, skeletal muscle, nervous system, gastrointestinal tract, hematopoietic cells, immune effector cells, organ size, and whole-body energy balance. mTORC1 represses protein and lipid synthesis and cell and organismal growth when amino acids are deficient. Over the past 4 decades, the main paradigm for child nutrition in developing countries has been micronutrient malnutrition, with relatively less attention paid to protein. In this Perspective, we present the view that essential amino acids and the mTORC1 pathway play a key role in child growth. The current assumption that total dietary protein intake is adequate for growth among most children in developing countries needs re-evaluation.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD;
| | - Indi Trehan
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | | | - Klaus Kraemer
- Sight and Life, Basel, Switzerland; and Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | - M Isabel Ordiz
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | | | - Mark J Manary
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
41
|
Joergensen NL, Foldager CB, Le DQS, Lind M, Lysdahl H. Precipitant induced porosity augmentation of polystyrene preserves the chondrogenicity of human chondrocytes. J Biomed Mater Res A 2016; 104:3073-3081. [DOI: 10.1002/jbm.a.35853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/08/2016] [Accepted: 08/02/2016] [Indexed: 12/29/2022]
Affiliation(s)
| | - Casper B. Foldager
- Orthopaedic Research Laboratory; Aarhus University Hospital; Aarhus Denmark
| | - Dang Q. S. Le
- Orthopaedic Research Laboratory; Aarhus University Hospital; Aarhus Denmark
| | - Martin Lind
- Orthopaedic Research Laboratory; Aarhus University Hospital; Aarhus Denmark
- Sports Trauma Clinic, Aarhus University Hospital; Aarhus Denmark
| | - Helle Lysdahl
- Orthopaedic Research Laboratory; Aarhus University Hospital; Aarhus Denmark
| |
Collapse
|
42
|
Newton PT, Vuppalapati KK, Bouderlique T, Chagin AS. Pharmacological inhibition of lysosomes activates the MTORC1 signaling pathway in chondrocytes in an autophagy-independent manner. Autophagy 2016; 11:1594-607. [PMID: 26259639 PMCID: PMC4590675 DOI: 10.1080/15548627.2015.1068489] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mechanistic target of rapamycin (serine/threonine kinase) complex 1 (MTORC1) is a protein-signaling complex at the fulcrum of anabolic and catabolic processes, which acts depending on wide-ranging environmental cues. It is generally accepted that lysosomes facilitate MTORC1 activation by generating an internal pool of amino acids. Amino acids activate MTORC1 by stimulating its translocation to the lysosomal membrane where it forms a super-complex involving the lysosomal-membrane-bound vacuolar-type H+-ATPase (v-ATPase) proton pump. This translocation and MTORC1 activation require functional lysosomes. Here we found that, in contrast to this well-accepted concept, in epiphyseal chondrocytes inhibition of lysosomal activity by v-ATPase inhibitors bafilomycin A1 or concanamycin A potently activated MTORC1 signaling. The activity of MTORC1 was visualized by phosphorylated forms of RPS6 (ribosomal protein S6) and EIF4EBP1, 2 well-known downstream targets of MTORC1. Maximal RPS6 phosphorylation was observed at 48-h treatment and reached as high as a 12-fold increase (p < 0.018). This activation of MTORC1 was further confirmed in bone organ culture and promoted potent stimulation of longitudinal growth (p < 0.001). Importantly, the same effect was observed in ATG5 (autophagy-related 5)-deficient bones suggesting a macroautophagy-independent mechanism of MTORC1 inhibition by lysosomes. Thus, our data show that in epiphyseal chondrocytes lysosomes inhibit MTORC1 in a macroautophagy-independent manner and this inhibition likely depends on v-ATPase activity.
Collapse
Affiliation(s)
- Phillip T Newton
- a Department of Physiology and Pharmacology ; Karolinska Institutet ; Stockholm , Sweden.,b Department of Women's and Children's Health ; Astrid Lindgren Children's Hospital; Karolinska University Hospital ; Stockholm , Sweden
| | - Karuna K Vuppalapati
- a Department of Physiology and Pharmacology ; Karolinska Institutet ; Stockholm , Sweden
| | - Thibault Bouderlique
- a Department of Physiology and Pharmacology ; Karolinska Institutet ; Stockholm , Sweden
| | - Andrei S Chagin
- a Department of Physiology and Pharmacology ; Karolinska Institutet ; Stockholm , Sweden.,b Department of Women's and Children's Health ; Astrid Lindgren Children's Hospital; Karolinska University Hospital ; Stockholm , Sweden
| |
Collapse
|
43
|
Scioli MG, Bielli A, Gentile P, Cervelli V, Orlandi A. Combined treatment with platelet-rich plasma and insulin favours chondrogenic and osteogenic differentiation of human adipose-derived stem cells in three-dimensional collagen scaffolds. J Tissue Eng Regen Med 2016; 11:2398-2410. [PMID: 27074878 DOI: 10.1002/term.2139] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/18/2015] [Accepted: 12/10/2015] [Indexed: 02/06/2023]
Abstract
Osteochondral lesions due to injury or other pathology commonly result in the development of osteoarthritis and progressive joint destruction. Bioengineered scaffolds are widely studied for regenerative surgery strategies in osteochondral defect management, also combining the use of stem cells, growth factors and hormones. The utility in tissue engineering of human adipose-derived stem cells (ASCs) isolated from adipose tissue has been widely noted. Autologous platelet-rich plasma (PRP) represents an alternative strategy in regenerative medicine for the local release of endogenous growth factors and hormones. Here we compared the effects of three-dimensional (3D) collagen type I scaffold culture and combined treatment with PRP and human recombinant insulin on the chondro-/osteogenic differentiation of ASCs. Histochemical and biomolecular analyses demonstrated that chondro-/osteogenic differentiation was increased in ASC-populated 3D collagen scaffolds compared with two-dimensional (2D) plastic dish culture. Chondro-/osteogenic differentiation was further enhanced in the presence of combined PRP (5% v/v) and insulin (100 nm) treatment. In addition, chondro-/osteogenic differentiation associated with the contraction of ASC-populated 3D collagen scaffold and increased β1/β3-integrin expression. Inhibition studies demonstrated that PRP/insulin-induced chondro-/osteogenic differentiation is independent of insulin-like growth factor 1 receptor (IGF-1R) and mammalian target of rapamycin (mTOR) signalling; IGF-R1/mTOR inhibition even enhanced ASC chondro-/osteogenic differentiation. Our findings underline that 3D collagen scaffold culture in association with platelet-derived growth factors and insulin favour the chondro-/osteogenic differentiation of ASCs, suggesting new translational applications in regenerative medicine for the management of osteochondral defects. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Institute of Anatomical Pathology, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Alessandra Bielli
- Institute of Anatomical Pathology, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Pietro Gentile
- Plastic and Reconstructive Surgery, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Augusto Orlandi
- Institute of Anatomical Pathology, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| |
Collapse
|
44
|
Yan B, Zhang Z, Jin D, Cai C, Jia C, Liu W, Wang T, Li S, Zhang H, Huang B, Lai P, Wang H, Liu A, Zeng C, Cai D, Jiang Y, Bai X. mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation. Nat Commun 2016; 7:11151. [PMID: 27039827 PMCID: PMC4822018 DOI: 10.1038/ncomms11151] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/24/2016] [Indexed: 12/20/2022] Open
Abstract
Precise coordination of cell growth, proliferation and differentiation is essential for the development of multicellular organisms. Here, we report that although the mechanistic target of rapamycin complex 1 (mTORC1) activity is required for chondrocyte growth and proliferation, its inactivation is essential for chondrocyte differentiation. Hyperactivation of mTORC1 via TSC1 gene deletion in chondrocytes causes uncoupling of the normal proliferation and differentiation programme within the growth plate, resulting in uncontrolled cell proliferation, and blockage of differentiation and chondrodysplasia in mice. Rapamycin promotes chondrocyte differentiation and restores these defects in mutant mice. Mechanistically, mTORC1 downstream kinase S6K1 interacts with and phosphorylates Gli2, and releases Gli2 from SuFu binding, resulting in nuclear translocation of Gli2 and transcription of parathyroid hormone-related peptide (PTHrP), a key regulator of bone development. Our findings demonstrate that dynamically controlled mTORC1 activity is crucial to coordinate chondrocyte proliferation and differentiation partially through regulating Gli2/PTHrP during endochondral bone development.
Collapse
Affiliation(s)
- Bo Yan
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Zhongmin Zhang
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Dadi Jin
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Chen Cai
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Chunhong Jia
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wen Liu
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ting Wang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shengfa Li
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Haiyan Zhang
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Bin Huang
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Pinglin Lai
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hua Wang
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Anling Liu
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chun Zeng
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Daozhang Cai
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Xiaochun Bai
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
45
|
Preitschopf A, Schörghofer D, Kinslechner K, Schütz B, Zwickl H, Rosner M, Joó JG, Nehrer S, Hengstschläger M, Mikula M. Rapamycin-Induced Hypoxia Inducible Factor 2A Is Essential for Chondrogenic Differentiation of Amniotic Fluid Stem Cells. Stem Cells Transl Med 2016; 5:580-90. [PMID: 27025692 DOI: 10.5966/sctm.2015-0262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/13/2016] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Amniotic fluid stem (AFS) cells represent a major source of donor cells for cartilage repair. Recently, it became clear that mammalian target of rapamycin (mTOR) inhibition has beneficial effects on cartilage homeostasis, but the effect of mTOR on chondrogenic differentiation is still elusive. Therefore, the objectives of this study were to investigate the effects of mammalian target of rapamycin complex 1 (mTORC1) modulation on the expression of SOX9 and on its downstream targets during chondrogenic differentiation of AFS cells. We performed three-dimensional pellet culturing of AFS cells and of in vitro-expanded, human-derived chondrocytes in the presence of chondrogenic factors. Inhibition of mTORC1 by rapamycin or by small interfering RNA-mediated targeting of raptor (gene name, RPTOR) led to increased AKT activation, upregulation of hypoxia inducible factor (HIF) 2A, and an increase in SOX9, COL2A1, and ACAN abundance. Here we show that HIF2A expression is essential for chondrogenic differentiation and that AKT activity regulates HIF2A amounts. Importantly, engraftment of AFS cells in cell pellets composed of human chondrocytes revealed an advantage of raptor knockdown cells compared with control cells in their ability to express SOX9. Our results demonstrate that mTORC1 inhibition leads to AKT activation and an increase in HIF2A expression. Therefore, we suggest that mTORC1 inhibition is a powerful tool for enhancing chondrogenic differentiation of AFS cells and also of in vitro-expanded adult chondrocytes before transplantation. SIGNIFICANCE Repair of cartilage defects is still an unresolved issue in regenerative medicine. Results of this study showed that inhibition of the mammalian target of rapamycin complex 1 (mTORC1) pathway, by rapamycin or by small interfering RNA-mediated targeting of raptor (gene name, RPTOR), enhanced amniotic fluid stem cell differentiation toward a chondrocytic phenotype and increased their engrafting efficiency into cartilaginous structures. Moreover, freshly isolated and in vitro passaged human chondrocytes also showed redifferentiation upon mTORC1 inhibition during culturing. Therefore, this study revealed that rapamycin could enable a more efficient clinical use of cell-based therapy approaches to treat articular cartilage defects.
Collapse
Affiliation(s)
- Andrea Preitschopf
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria Center for Regenerative Medicine, Danube University Krems, Krems, Austria
| | - David Schörghofer
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | | | - Birgit Schütz
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Hannes Zwickl
- Center for Regenerative Medicine, Danube University Krems, Krems, Austria
| | - Margit Rosner
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - József Gabor Joó
- First Department of Obstetrics and Gynaecology, Medical School, Semmelweis University, Budapest, Hungary
| | - Stefan Nehrer
- Center for Regenerative Medicine, Danube University Krems, Krems, Austria
| | | | - Mario Mikula
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
46
|
Abstract
The regulation of organ size is essential to human health and has fascinated biologists for centuries. Key to the growth process is the ability of most organs to integrate organ-extrinsic cues (eg, nutritional status, inflammatory processes) with organ-intrinsic information (eg, genetic programs, local signals) into a growth response that adapts to changing environmental conditions and ensures that the size of an organ is coordinated with the rest of the body. Paired organs such as the vertebrate limbs and the long bones within them are excellent models for studying this type of regulation because it is possible to manipulate one member of the pair and leave the other as an internal control. During development, growth plates at the end of each long bone produce a transient cartilage model that is progressively replaced by bone. Here, we review how proliferation and differentiation of cells within each growth plate are tightly controlled mainly by growth plate-intrinsic mechanisms that are additionally modulated by extrinsic signals. We also discuss the involvement of several signaling hubs in the integration and modulation of growth-related signals and how they could confer remarkable plasticity to the growth plate. Indeed, long bones have a significant ability for "catch-up growth" to attain normal size after a transient growth delay. We propose that the characterization of catch-up growth, in light of recent advances in physiology and cell biology, will provide long sought clues into the molecular mechanisms that underlie organ growth regulation. Importantly, catch-up growth early in life is commonly associated with metabolic disorders in adulthood, and this association is not completely understood. Further elucidation of the molecules and cellular interactions that influence organ size coordination should allow development of novel therapies for human growth disorders that are noninvasive and have minimal side effects.
Collapse
Affiliation(s)
- Alberto Roselló-Díez
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| |
Collapse
|
47
|
Tao Y, Sun H, Sun H, Qiu X, Xu C, Shi C, Du J. 17β-estradiol activates mTOR in chondrocytes by AKT-dependent and AKT-independent signaling pathways. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:15911-15918. [PMID: 26884863 PMCID: PMC4730076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/28/2015] [Indexed: 06/05/2023]
Abstract
To confirm whether 17β-estradiol (E2) activates mammalian target of rapamycin (mTOR) signaling pathway in chondrocytes and in what way activates mTOR. Human immortalized chondrocytes cell lines TC28a2 and C28/I2 were subjected to incubate with or without E2, LY294002 (the inhibitor of PI3K), rapamycin (the inhibitor of mTOR), or E2 in combination with LY294002 or rapamycin. Thereafter, protein levels of S6K1, p-S6K1, protein kinase B (AKT), and p-AKT were determined by Western blot analysis. Matrix metallopeptidase (MMP) 3 or MMP13 mRNA levels were evaluated by quantitative real-time PCR (qRT-PCR). Co-immunoprecipitation and Western blot analysis were performed to verify the interaction between ERα and mTOR. Both p-S6K1 and p-AKT protein levels in TC28a2 and C28/I2E2 cells were significantly increased by incubation with E2 (0.5 h and 1 h) (P < 0.05). Rapamycin did not affect the levels of p-AKT, but were significantly reduced by LY294002 or E2 in combination with LY294002. The levels of p-S6K1 were significantly decreased by incubation with LY294002, but the effect could be reversed by E2 in combination with LY294002. Rabbit anti-mTOR antibody was able to immunoprecipitate ERα after incubation with E2. Moreover, E2 inhibited the mRNA levels of MMP3 and MMP13 by mTOR pathway. E2 actives mTOR in chondrocytes through AKT-dependent and independent ways.
Collapse
Affiliation(s)
- Yulei Tao
- First Clinical Medical College, Shanxi Medical UniversityShanxi, China
| | - Haibiao Sun
- Department of Orthopaedics, First Hospital of Shanxi Medical UniversityShanxi, China
| | - Hongyan Sun
- Department of Obstetrical, Yingshang County Peoples’ HospitalNorth District, Anhui, China
| | | | - Changbo Xu
- Department of Surgery, Center for Health Services and TechnologyGuizhou, China
| | | | - Jiahui Du
- Department of Thoracic Surgery, Linyi Peoples’ HospitalShandong, China
| |
Collapse
|
48
|
Goodman CA, Hornberger TA, Robling AG. Bone and skeletal muscle: Key players in mechanotransduction and potential overlapping mechanisms. Bone 2015; 80:24-36. [PMID: 26453495 PMCID: PMC4600534 DOI: 10.1016/j.bone.2015.04.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 03/18/2015] [Accepted: 04/07/2015] [Indexed: 12/16/2022]
Abstract
The development and maintenance of skeletal muscle and bone mass is critical for movement, health and issues associated with the quality of life. Skeletal muscle and bone mass are regulated by a variety of factors that include changes in mechanical loading. Moreover, bone mass is, in large part, regulated by muscle-derived mechanical forces and thus by changes in muscle mass/strength. A thorough understanding of the cellular mechanism(s) responsible for mechanotransduction in bone and skeletal muscle is essential for the development of effective exercise and pharmaceutical strategies aimed at increasing, and/or preventing the loss of, mass in these tissues. Thus, in this review we will attempt to summarize the current evidence for the major molecular mechanisms involved in mechanotransduction in skeletal muscle and bone. By examining the differences and similarities in mechanotransduction between these two tissues, it is hoped that this review will stimulate new insights and ideas for future research and promote collaboration between bone and muscle biologists.(1).
Collapse
Affiliation(s)
- Craig A Goodman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, Melbourne, Australia; Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.
| | - Troy A Hornberger
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alexander G Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA; Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
49
|
Zhang JG, Tan LJ, Xu C, He H, Tian Q, Zhou Y, Qiu C, Chen XD, Deng HW. Integrative Analysis of Transcriptomic and Epigenomic Data to Reveal Regulation Patterns for BMD Variation. PLoS One 2015; 10:e0138524. [PMID: 26390436 PMCID: PMC4577125 DOI: 10.1371/journal.pone.0138524] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/01/2015] [Indexed: 01/16/2023] Open
Abstract
Integration of multiple profiling data and construction of functional gene networks may provide additional insights into the molecular mechanisms of complex diseases. Osteoporosis is a worldwide public health problem, but the complex gene-gene interactions, post-transcriptional modifications and regulation of functional networks are still unclear. To gain a comprehensive understanding of osteoporosis etiology, transcriptome gene expression microarray, epigenomic miRNA microarray and methylome sequencing were performed simultaneously in 5 high hip BMD (Bone Mineral Density) subjects and 5 low hip BMD subjects. SPIA (Signaling Pathway Impact Analysis) and PCST (Prize Collecting Steiner Tree) algorithm were used to perform pathway-enrichment analysis and construct the interaction networks. Through integrating the transcriptomic and epigenomic data, firstly we identified 3 genes (FAM50A, ZNF473 and TMEM55B) and one miRNA (hsa-mir-4291) which showed the consistent association evidence from both gene expression and methylation data; secondly in network analysis we identified an interaction network module with 12 genes and 11 miRNAs including AKT1, STAT3, STAT5A, FLT3, hsa-mir-141 and hsa-mir-34a which have been associated with BMD in previous studies. This module revealed the crosstalk among miRNAs, mRNAs and DNA methylation and showed four potential regulatory patterns of gene expression to influence the BMD status. In conclusion, the integration of multiple layers of omics can yield in-depth results than analysis of individual omics data respectively. Integrative analysis from transcriptomics and epigenomic data improves our ability to identify causal genetic factors, and more importantly uncover functional regulation pattern of multi-omics for osteoporosis etiology.
Collapse
Affiliation(s)
- Ji-Gang Zhang
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, Louisiana, 70112, United States of America
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, Louisiana, 70112, United States of America
| | - Li-Jun Tan
- Laboratory of Molecular and Statistical Genetics, Hunan Normal University, Changsha, Hunan, 410081, China
- * E-mail: (HWD); (LJT)
| | - Chao Xu
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, Louisiana, 70112, United States of America
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, Louisiana, 70112, United States of America
| | - Hao He
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, Louisiana, 70112, United States of America
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, Louisiana, 70112, United States of America
| | - Qing Tian
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, Louisiana, 70112, United States of America
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, Louisiana, 70112, United States of America
| | - Yu Zhou
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, Louisiana, 70112, United States of America
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, Louisiana, 70112, United States of America
| | - Chuan Qiu
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, Louisiana, 70112, United States of America
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, Louisiana, 70112, United States of America
| | - Xiang-Ding Chen
- Laboratory of Molecular and Statistical Genetics, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Hong-Wen Deng
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, Louisiana, 70112, United States of America
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, Louisiana, 70112, United States of America
- Laboratory of Molecular and Statistical Genetics, Hunan Normal University, Changsha, Hunan, 410081, China
- * E-mail: (HWD); (LJT)
| |
Collapse
|
50
|
Hara ES, Ono M, Pham HT, Sonoyama W, Kubota S, Takigawa M, Matsumoto T, Young MF, Olsen BR, Kuboki T. Fluocinolone Acetonide Is a Potent Synergistic Factor of TGF-β3-Associated Chondrogenesis of Bone Marrow-Derived Mesenchymal Stem Cells for Articular Surface Regeneration. J Bone Miner Res 2015; 30:1585-96. [PMID: 25753754 PMCID: PMC5569386 DOI: 10.1002/jbmr.2502] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/09/2015] [Accepted: 03/04/2015] [Indexed: 12/18/2022]
Abstract
Articular cartilage repair remains a challenging problem. Based on a high-throughput screening and functional analysis, we found that fluocinolone acetonide (FA) in combination with transforming growth factor beta 3 (TGF-β3) strongly potentiated chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs). In an in vivo cartilage defect model in knee joints of immunocompromised mice, transplantation of FA/TGF-β3-treated hBMSCs could completely repair the articular surface. Analysis of the intracellular pathways revealed that FA enhanced TGF-β3-induced phosphorylation of Smad2 and Smad3. Additionally, we performed a pathway array and found that FA activates the mTORC1/AKT pathway. Chemical inhibition of mTORC1 with rapamycin substantially suppressed FA effect, and inhibition of AKT completely repressed chondrogenesis of hBMSCs. Inhibition of glucocorticoid receptor with mifepristone also suppressed FA effect, suggesting that FA involves binding to the glucocorticoid receptor. Comparative analysis with other glucocorticoids (triamcinolone acetonide [TA] and dexamethasone [DEX]) revealed the unique ability of FA to repair articular cartilage surgical defects. Analysis of intracellular pathways showed that the mTORC1/AKT pathway and the glucocorticoid receptor was highly activated with FA and TA, but to a lesser extent with DEX. Collectively, these results show a unique ability of FA to enhance TGF-β3-associated chondrogenesis, and suggest that the FA/TGF-β3 combination may be used as major inducer of chondrogenesis in vitro. Additionally, FA/TGF-β3 could be potentially applied in a clinical setting to increase the efficiency of regenerative approaches based on chondrogenic differentiation of stem cells.
Collapse
Affiliation(s)
- Emilio Satoshi Hara
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mitsuaki Ono
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hai Thanh Pham
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Wataru Sonoyama
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Marian F Young
- Craniofacial and Skeletal Diseases Branch, National Institutes of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD,, USA
| | - Bjorn R Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA,, USA
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|