1
|
Xu T, Li Y, Cheng M, Jin J, Zhang S, Bai Y, Xu J. Construction of competitive endogenous RNA network and identification of potential regulatory axis in vascular calcification. FASEB J 2024; 38:e70114. [PMID: 39432302 DOI: 10.1096/fj.202400973rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Competitive endogenous RNAs (ceRNA) theory has been proved in numerous biological processes. Nevertheless, there is a lack of research applying the ceRNA theory to the study of vascular calcification (VC) in chronic kidney diseases (CKD). In the present study, a ceRNA network was constructed after conducting transcriptome sequencing of differentially expressed genes, followed by experimental validation to identify a new target for the diagnosis and treatment of vascular calcification. Total RNA was extracted from β-glycerophosphate (β-GP) cultured vascular smooth muscle cells (VSMCs) on Day 7. Illumina HiSeq platform was utilized to build sequencing libraries. GO and KEGG analysis was conducted to identify the function of the differentially expressed genes. Protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. A ceRNA network was established based on TargetScan, miRDB, miRWALK, and miRanda database. Western blot and qRT-PCR were used to explore the expression level of protein and RNA, respectively. The direct binding sites were confirmed by dual-luciferase reporter assay. In total, 647 differentially expressed lncRNAs and 289 differentially expressed mRNAs were identified (|log2FC| ≥ 1, p < .05). The function of differentially expressed mRNAs was mainly enriched in negative regulation of osteoblast differentiation, regulation of RNA metabolic process, and other typical pathways. The ceRNA network was generated with a total of 107 interaction pairs. The lncRNA Prrc2c/miR-145-5p/Smad3 axis was considered a potential regulatory pathway within the ceRNA network. The regulatory relationship and targets of this ceRNA axis were validated via in vitro experiments. For the first time, we found that lncRNA Prrc2c was highly expressed and promoted calcification of VSMCs. Luciferase reporter assay showed that lncRNA Prrc2c could bind miR-145-5p at site 1755-1761. Similarly, luciferase reporter assay showed that miR-145-5p inhibited Smad3 expression by binding to its 3'UTR. Our findings provide a comprehensive examination of the ceRNA networks in vascular smooth muscle cells (VSMCs) treated with high phosphorate. Specifically, we have identified the role of lncRNA Prrc2c in promoting VSMC calcification through the miR-145-5p/Smad3 axis.
Collapse
MESH Headings
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Gene Regulatory Networks
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Humans
- Myocytes, Smooth Muscle/metabolism
- Protein Interaction Maps
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Smad3 Protein/metabolism
- Smad3 Protein/genetics
- Cells, Cultured
- Gene Expression Regulation
- Transcriptome
- Glycerophosphates/metabolism
- RNA, Competitive Endogenous
Collapse
Affiliation(s)
- Tongxin Xu
- Department of CT&MRI, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Yuzhe Li
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, P.R. China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, P.R. China
| | - Meijuan Cheng
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, P.R. China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, P.R. China
| | - Jingjing Jin
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, P.R. China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, P.R. China
| | - Shenglei Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, P.R. China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, P.R. China
| | - Yaling Bai
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, P.R. China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, P.R. China
| | - Jinsheng Xu
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, P.R. China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, P.R. China
| |
Collapse
|
2
|
Avanoglu Guler A, De Luca G, Dagna L, Matucci-Cerinic M, Campochiaro C. Unraveling the Pathogenesis of Calcinosis in Systemic Sclerosis: A Molecular and Clinical Insight. Int J Mol Sci 2024; 25:11257. [PMID: 39457038 PMCID: PMC11508720 DOI: 10.3390/ijms252011257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Dystrophic calcinosis, which is the accumulation of insoluble calcified crystalline materials within tissues with normal circulating calcium and phosphorus levels, is a frequent finding in systemic sclerosis (SSc) and represents a major burden for patients. In SSc, calcinosis poses significant challenges in management due to the associated risk of severe complications such as infection, ulceration, pain, reduction in functional capacity and quality of life, and lack of standardized treatment choices. The exact pathogenesis of calcinosis is still unknown. There are multifaceted factors contributing to calcinosis development, including osteogenic differentiation of cells, imbalance between promoter and inhibitors of mineralization, local disturbance in calcium and phosphate levels, and extracellular matrix as a template for mineralization. Several pathophysiological changes observed in SSc such as ischemia, exacerbated production of excessive reactive oxygen species, inflammation, production of inflammatory cytokines, acroosteolysis, and increased extracellular matrix production may promote the development of calcinosis in SSc. Furthermore, mitochondrial dynamics, particularly fission function through the activity of dynamin-related protein-1, may have an effect on the dystrophic calcinosis process. In-depth investigations of cellular mechanisms and microenvironmental influences can offer valuable insights into the complex pathogenesis of calcinosis in SSc, providing potential targeting pathways for calcinosis treatment.
Collapse
Affiliation(s)
| | - Giacomo De Luca
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy; (G.D.L.); (L.D.); (M.M.-C.)
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy; (G.D.L.); (L.D.); (M.M.-C.)
| | - Marco Matucci-Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy; (G.D.L.); (L.D.); (M.M.-C.)
| | - Corrado Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy; (G.D.L.); (L.D.); (M.M.-C.)
| |
Collapse
|
3
|
Voicu G, Mocanu CA, Safciuc F, Rebleanu D, Anghelache M, Cecoltan S, Droc I, Simionescu M, Manduteanu I, Calin M. VCAM-1 targeted nanocarriers of shRNA-Smad3 mitigate endothelial-to-mesenchymal transition triggered by high glucose concentrations and osteogenic factors in valvular endothelial cells. Int J Biol Macromol 2024; 281:136355. [PMID: 39374726 DOI: 10.1016/j.ijbiomac.2024.136355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Endothelial to mesenchymal transition (EndMT) of valvular endothelial cells (VEC) is a key process in the development and progression of calcific aortic valve disease (CAVD). High expression of the Smad3 transcription factor is crucial in the transition process. We hypothesize that silencing Smad3 could hinder EndMT and provide a novel treatment for CAVD. We aimed at developing nanoparticles encapsulating short-hairpin (sh)RNA sequences specific for Smad3 targeted to the aortic valve. We synthesized VCAM-1-targeted lipopolyplexes encapsulating shRNA-Smad3 plasmid (V-LPP/shSmad3) and investigated their potential to reduce the EndMT of human VEC. VEC incubation in a medium containing high glucose concentrations and osteogenic factors (HGOM) triggers EndMT and increased expression of Smad3. Exposed to lipopolyplexes, VEC took up efficiently the V-LPP/shSmad3. The latter reduced the EndMT process in VEC exposed to HGOM by downregulating the expression of αSMA and S100A4 mesenchymal markers and increasing the expression of the CD31 endothelial marker. In vivo, V-LPP/shSmad3 accumulated in the aortic root and aorta of a murine model of atherosclerosis complicated with diabetes, without affecting the liver and kidney function. The results suggest that targeting activated VEC with lipopolyplexes to silence Smad3 could be an effective, novel treatment for CAVD mediated by the EndMT process.
Collapse
Affiliation(s)
- Geanina Voicu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Cristina Ana Mocanu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Florentina Safciuc
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Daniela Rebleanu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Maria Anghelache
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Sergiu Cecoltan
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Ionel Droc
- Central Military Hospital "Dr. Carol Davila", Cardiovascular Surgery Clinic, Bucharest, Romania
| | - Maya Simionescu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Ileana Manduteanu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Manuela Calin
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania.
| |
Collapse
|
4
|
Zhang D, Gou Z, Qu Y, Su X. Understanding how methyltransferase-like 3 functions in lung diseases: From pathogenesis to clinical application. Biomed Pharmacother 2024; 179:117421. [PMID: 39241568 DOI: 10.1016/j.biopha.2024.117421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024] Open
Abstract
Lung diseases have complex pathogenesis and treatment challenges, showing an obvious increase in the rate of diagnosis and death every year. Therefore, elucidating the mechanism for their pathogenesis and treatment ineffective from novel views is essential and urgent. Methyltransferase-like 3 (METTL3) is a novel post-transcriptional regulator for gene expression that has been implicated in regulating lung diseases, including that observed in chronic conditions such as pulmonary fibrosis (PF), pulmonary arterial hypertension (PAH), and chronic obstructive pulmonary disease (COPD), as well as acute conditions such as pneumonia, severe acute respiratory syndrome coronavirus 2 infection, and sepsis-induced acute respiratory distress syndrome. Notably, a comprehensive summary and analysis of findings from these studies might help understand lung diseases from the novel view of METTL3-regulated mechanism, however, such a review is still lacking. Therefore, this review aims to bridge such shortage by summarising the roles of METTL3 in lung diseases, establishing their interrelationships, and elucidating the potential applications of METTL3 regarding diagnosis, treatment, and prognosis. The analysis collectively suggests METTL3 is contributable to the onset and progression of these lung diseases, thereby prospecting METTL3 as a valuable biomarker for their diagnosis, treatment, and prognosis. In conclusion, this review offers elucidation into the correlation between METTL3 and lung diseases in both research and clinical settings and highlights potential avenues for exploring the roles of METTL3 in the respiratory system.
Collapse
Affiliation(s)
- Deshuang Zhang
- Department of Paediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Zhixian Gou
- Department of Pediatrics, School of Clinical Medicine & the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Yi Qu
- Department of Paediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China; NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Xiaojuan Su
- Department of Paediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China; NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Fan L, Yao D, Fan Z, Zhang T, Shen Q, Tong F, Qian X, Xu L, Jiang C, Dong N. Beyond VICs: Shedding light on the overlooked VECs in calcific aortic valve disease. Biomed Pharmacother 2024; 178:117143. [PMID: 39024838 DOI: 10.1016/j.biopha.2024.117143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
Calcific aortic valve disease (CAVD) is prevalent in developed nations and has emerged as a pressing global public health concern due to population aging. The precise etiology of this disease remains uncertain, and recent research has primarily focused on examining the role of valvular interstitial cells (VICs) in the development of CAVD. The predominant treatment options currently available involve open surgery and minimally invasive interventional surgery, with no efficacious pharmacological treatment. This article seeks to provide a comprehensive understanding of valvular endothelial cells (VECs) from the aspects of valvular endothelium-derived nitric oxide (NO), valvular endothelial mechanotransduction, valvular endothelial injury, valvular endothelial-mesenchymal transition (EndMT), and valvular neovascularization, which have received less attention, and aims to establish their role and interaction with VICs in CAVD. The ultimate goal is to provide new perspectives for the investigation of non-invasive treatment options for this disease.
Collapse
Affiliation(s)
- Lin Fan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dingyi Yao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengfeng Fan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tailong Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Shen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuqiang Tong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Qian
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chen Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Terriaca S, Scioli MG, Bertoldo F, Pisano C, Nardi P, Balistreri CR, Magro D, Belmonte B, Savino L, Ferlosio A, Orlandi A. miRNA-Driven Regulation of Endothelial-to-Mesenchymal Transition Differs among Thoracic Aortic Aneurysms. Cells 2024; 13:1252. [PMID: 39120283 PMCID: PMC11312012 DOI: 10.3390/cells13151252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Thoracic aortic aneurysms (TAAs) represent a serious health concern, as they are associated with early aortic dissection and rupture. TAA formation is triggered by genetic conditions, in particular Marfan syndrome (MFS) and bicuspid aortic valve (BAV). During the aneurysmatic process, aortic endothelial cells can undergo endothelial-to-mesenchymal transition (End-MT) with consequent phenotypic and functional alterations. We previously documented that MFS TAA is characterized by miR-632-driven End-MT exacerbation, whereas in BAV aortopathy, the occurrence of this process remains still controversial. We investigated the End-MT process and the underlined regulatory mechanisms in BAV, TAV and MFS TAA tissues. Gene expression and immunohistochemical analysis were performed in order to analyze some important miRNAs and genes characterizing End-MT. We documented that BAV endothelium maintains the expression of the endothelial homeostasis markers, such as ERG, CD31 and miR-126-5p, while it shows lower levels of miR-632 and mesenchymal markers compared with MFS. Interestingly, we also found higher levels of miR-632 in MFS patients' blood. Our findings definitively demonstrate that the End-MT process does not characterize BAV that, among the other TAAs, better maintains the endothelial features. In addition, our results suggest miR-632 as a promising diagnostic/prognostic factor in MFS aortopathy.
Collapse
Affiliation(s)
- Sonia Terriaca
- Anatomic Pathology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (S.T.); (L.S.)
| | - Maria Giovanna Scioli
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (A.F.); (A.O.)
| | - Fabio Bertoldo
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy; (F.B.); (C.P.); (P.N.)
| | - Calogera Pisano
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy; (F.B.); (C.P.); (P.N.)
| | - Paolo Nardi
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy; (F.B.); (C.P.); (P.N.)
| | - Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy; (C.R.B.); (D.M.)
| | - Daniele Magro
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy; (C.R.B.); (D.M.)
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, 90134 Palermo, Italy;
- Azienda sanitaria Provinciale di Catania (ASP), 95124 Catania, Italy
| | - Luca Savino
- Anatomic Pathology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (S.T.); (L.S.)
| | - Amedeo Ferlosio
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (A.F.); (A.O.)
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (A.F.); (A.O.)
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, 1001 Tirana, Albania
| |
Collapse
|
7
|
Azimi-Boulali J, Mahler GJ, Murray BT, Huang P. Multiscale computational modeling of aortic valve calcification. Biomech Model Mechanobiol 2024; 23:581-599. [PMID: 38093148 DOI: 10.1007/s10237-023-01793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/13/2023] [Indexed: 03/26/2024]
Abstract
Calcific aortic valve disease (CAVD) is a common cardiovascular disease that affects millions of people worldwide. The disease is characterized by the formation of calcium nodules on the aortic valve leaflets, which can lead to stenosis and heart failure if left untreated. The pathogenesis of CAVD is still not well understood, but involves several signaling pathways, including the transforming growth factor beta (TGF β ) pathway. In this study, we developed a multiscale computational model for TGF β -stimulated CAVD. The model framework comprises cellular behavior dynamics, subcellular signaling pathways, and tissue-level diffusion fields of pertinent chemical species, where information is shared among different scales. Processes such as endothelial to mesenchymal transition (EndMT), fibrosis, and calcification are incorporated. The results indicate that the majority of myofibroblasts and osteoblast-like cells ultimately die due to lack of nutrients as they become trapped in areas with higher levels of fibrosis or calcification, and they subsequently act as sources for calcium nodules, which contribute to a polydispersed nodule size distribution. Additionally, fibrosis and calcification processes occur more frequently in regions closer to the endothelial layer where the cell activity is higher. Our results provide insights into the mechanisms of CAVD and TGF β signaling and could aid in the development of novel therapeutic approaches for CAVD and other related diseases such as cancer. More broadly, this type of modeling framework can pave the way for unraveling the complexity of biological systems by incorporating several signaling pathways in subcellular models to simulate tissue remodeling in diseases involving cellular mechanobiology.
Collapse
Affiliation(s)
- Javid Azimi-Boulali
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Bruce T Murray
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Peter Huang
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA.
| |
Collapse
|
8
|
Liu J, Yu X, Braucht A, Smith S, Wang C. N-Cadherin Targeted Melanin Nanoparticles Reverse the Endothelial-Mesenchymal Transition in Vascular Endothelial Cells to Potentially Slow the Progression of Atherosclerosis and Cancer. ACS NANO 2024; 18:8229-8247. [PMID: 38427686 DOI: 10.1021/acsnano.3c12281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Endothelial-mesenchymal transition (EndoMT) of vascular endothelial cells has recently been considered as a key player in the early progression of a variety of vascular and nonvascular diseases, including atherosclerosis, cancer, and organ fibrosis. However, current strategies attempting to identify pharmacological inhibitors to block the regulatory pathways of EndoMT suffer from poor selectivity, unwanted side effects, and a heterogeneous response from endothelial cells with different origins. Furthermore, EndoMT inhibitors focus on preventing EndoMT, leaving the endothelial cells that have already undergone EndoMT unresolved. Here, we report the design of a simple but powerful nanoparticle system (i.e., N-cadherin targeted melanin nanoparticles) to convert cytokine-activated, mesenchymal-like endothelial cells back to their original endothelial phenotype. We term this process "Reversed EndoMT" (R-EndoMT). R-EndoMT allows the impaired endothelial barriers to recover their quiescence and intactness, with significantly reduced leukocyte and cancer cell adhesion and transmigration, which could potentially stop atheromatous plaque formation and cancer metastasis in the early stages. R-EndoMT is achieved on different endothelial cell types originating from arteries, veins, and capillaries, independent of activating cytokines. We reveal that N-cadherin targeted melanin nanoparticles reverse EndoMT by downregulating an N-cadherin dependent RhoA activation pathway. Overall, this approach offers a different prospect to treat multiple EndoMT-associated diseases by designing nanoparticles to reverse the phenotypical transition of endothelial cells.
Collapse
Affiliation(s)
- Jinyuan Liu
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
| | - Xiao Yu
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
| | - Annaliese Braucht
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
| | - Steve Smith
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
| | - Congzhou Wang
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
| |
Collapse
|
9
|
Hall IF, Kishta F, Xu Y, Baker AH, Kovacic JC. Endothelial to mesenchymal transition: at the axis of cardiovascular health and disease. Cardiovasc Res 2024; 120:223-236. [PMID: 38385523 PMCID: PMC10939465 DOI: 10.1093/cvr/cvae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/01/2023] [Accepted: 08/25/2023] [Indexed: 02/23/2024] Open
Abstract
Endothelial cells (ECs) line the luminal surface of blood vessels and play a major role in vascular (patho)-physiology by acting as a barrier, sensing circulating factors and intrinsic/extrinsic signals. ECs have the capacity to undergo endothelial-to-mesenchymal transition (EndMT), a complex differentiation process with key roles both during embryonic development and in adulthood. EndMT can contribute to EC activation and dysfunctional alterations associated with maladaptive tissue responses in human disease. During EndMT, ECs progressively undergo changes leading to expression of mesenchymal markers while repressing EC lineage-specific traits. This phenotypic and functional switch is considered to largely exist in a continuum, being characterized by a gradation of transitioning stages. In this report, we discuss process plasticity and potential reversibility and the hypothesis that different EndMT-derived cell populations may play a different role in disease progression or resolution. In addition, we review advancements in the EndMT field, current technical challenges, as well as therapeutic options and opportunities in the context of cardiovascular biology.
Collapse
Affiliation(s)
- Ignacio Fernando Hall
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Franceska Kishta
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Yang Xu
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Andrew H Baker
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht 6229ER, The Netherlands
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
- Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia
- St. Vincent’s Clinical School and University of New South Wales, 390 Victoria St, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
10
|
Chen L, Su H, Tao Z, Liang C, Liu Z, Dong Y, Zheng P, Liu Y. DUSP22 Ameliorates Endothelial-to-Mesenchymal Transition in HUVECs through Smad2/3 and MAPK Signaling Pathways. Cardiovasc Ther 2024; 2024:5583961. [PMID: 38495810 PMCID: PMC10942825 DOI: 10.1155/2024/5583961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 03/19/2024] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) is the process by which endothelial cells lose their endothelial properties and acquire mesenchymal characteristics. Dual-specific protein phosphatase 22 (DUSP22) inactivates various protein kinases and transcription factors by dephosphorylating serine/threonine residues: hence, it plays a key role in many diseases. The aim of this study was to explore the functional role of DUSP22 in EndMT. In the transforming growth factor-β-induced EndMT model in human umbilical vein endothelial cells (HUVECs), we observed a downregulation of DUSP22 expression. This DUSP22 deficiency could aggravate EndMT. Conversely, the overexpression of DUSP22 could ameliorate EndMT. We used signaling pathway inhibitors to verify our results and found that DUSP22 could regulate EndMT through the smad2/3 and the mitogen-activated protein kinase (MAPK) signaling pathways. In summary, DUSP22 ameliorates EndMT in HUVECs in vitro through the smad2/3 and MAPK signaling pathways.
Collapse
Affiliation(s)
- Lu Chen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyu Su
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zekai Tao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cui Liang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongzhao Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiming Dong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peipei Zheng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Boss AL, Chamley LW, Brooks AES, James JL. Human placental vascular and perivascular cell heterogeneity differs between first trimester and term, and in pregnancies affected by foetal growth restriction. Mol Hum Reprod 2023; 29:gaad041. [PMID: 38059603 PMCID: PMC10746841 DOI: 10.1093/molehr/gaad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/12/2023] [Indexed: 12/08/2023] Open
Abstract
Growth-restricted placentae have a reduced vascular network, impairing exchange of nutrients and oxygen. However, little is known about the differentiation events and cell types that underpin normal/abnormal placental vascular formation and function. Here, we used 23-colour flow cytometry to characterize placental vascular/perivascular populations between first trimester and term, and in foetal growth restriction (FGR). First-trimester endothelial cells had an immature phenotype (CD144+/lowCD36-CD146low), while term endothelial cells expressed mature endothelial markers (CD36+CD146+). At term, a distinct population of CD31low endothelial cells co-expressed mesenchymal markers (CD90, CD26), indicating a capacity for endothelial to mesenchymal transition (EndMT). In FGR, compared with normal pregnancies, endothelial cells constituted 3-fold fewer villous core cells (P < 0.05), contributing to an increased perivascular: endothelial cell ratio (2.6-fold, P < 0.05). This suggests that abnormal EndMT may play a role in FGR. First-trimester endothelial cells underwent EndMT in culture, losing endothelial (CD31, CD34, CD144) and gaining mesenchymal (CD90, CD26) marker expression. Together this highlights how differences in villous core cell heterogeneity and phenotype may contribute to FGR pathophysiology across gestation.
Collapse
Affiliation(s)
- Anna L Boss
- Department of Obstetrics and Gynecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anna E S Brooks
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna L James
- Department of Obstetrics and Gynecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Fang Q, Bai Y, Hu S, Ding J, Liu L, Dai M, Qiu J, Wu L, Rao X, Wang Y. Unleashing the Potential of Nrf2: A Novel Therapeutic Target for Pulmonary Vascular Remodeling. Antioxidants (Basel) 2023; 12:1978. [PMID: 38001831 PMCID: PMC10669195 DOI: 10.3390/antiox12111978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Pulmonary vascular remodeling, characterized by the thickening of all three layers of the blood vessel wall, plays a central role in the pathogenesis of pulmonary hypertension (PH). Despite the approval of several drugs for PH treatment, their long-term therapeutic effect remains unsatisfactory, as they mainly focus on vasodilation rather than addressing vascular remodeling. Therefore, there is an urgent need for novel therapeutic targets in the treatment of PH. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a vital transcription factor that regulates endogenous antioxidant defense and emerges as a novel regulator of pulmonary vascular remodeling. Growing evidence has suggested an involvement of Nrf2 and its downstream transcriptional target in the process of pulmonary vascular remodeling. Pharmacologically targeting Nrf2 has demonstrated beneficial effects in various diseases, and several Nrf2 inducers are currently undergoing clinical trials. However, the exact potential and mechanism of Nrf2 as a therapeutic target in PH remain unknown. Thus, this review article aims to comprehensively explore the role and mechanism of Nrf2 in pulmonary vascular remodeling associated with PH. Additionally, we provide a summary of Nrf2 inducers that have shown therapeutic potential in addressing the underlying vascular remodeling processes in PH. Although Nrf2-related therapies hold great promise, further research is necessary before their clinical implementation can be fully realized.
Collapse
Affiliation(s)
- Qin Fang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Bai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiqing Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jie Ding
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meiyan Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jie Qiu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lujin Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoquan Rao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
13
|
Allbritton-King JD, García-Cardeña G. Endothelial cell dysfunction in cardiac disease: driver or consequence? Front Cell Dev Biol 2023; 11:1278166. [PMID: 37965580 PMCID: PMC10642230 DOI: 10.3389/fcell.2023.1278166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
The vascular endothelium is a multifunctional cellular system which directly influences blood components and cells within the vessel wall in a given tissue. Importantly, this cellular interface undergoes critical phenotypic changes in response to various biochemical and hemodynamic stimuli, driving several developmental and pathophysiological processes. Multiple studies have indicated a central role of the endothelium in the initiation, progression, and clinical outcomes of cardiac disease. In this review we synthesize the current understanding of endothelial function and dysfunction as mediators of the cardiomyocyte phenotype in the setting of distinct cardiac pathologies; outline existing in vivo and in vitro models where key features of endothelial cell dysfunction can be recapitulated; and discuss future directions for development of endothelium-targeted therapeutics for cardiac diseases with limited existing treatment options.
Collapse
Affiliation(s)
- Jules D. Allbritton-King
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Guillermo García-Cardeña
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
14
|
Wardman R, Keles M, Pachkiv I, Hemanna S, Grein S, Schwarz J, Stein F, Ola R, Dobreva G, Hentze MW, Heineke J. RNA-Binding Proteins Regulate Post-Transcriptional Responses to TGF-β to Coordinate Function and Mesenchymal Activation of Murine Endothelial Cells. Arterioscler Thromb Vasc Biol 2023; 43:1967-1989. [PMID: 37650327 PMCID: PMC10521797 DOI: 10.1161/atvbaha.123.319925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Endothelial cells (ECs) are primed to respond to various signaling cues. For example, TGF (transforming growth factor)-β has major effects on EC function and phenotype by driving ECs towards a more mesenchymal state (ie, triggering endothelial to mesenchymal activation), a dynamic process associated with cardiovascular diseases. Although transcriptional regulation triggered by TGF-β in ECs is well characterized, post-transcriptional regulatory mechanisms induced by TGF-β remain largely unknown. METHODS Using RNA interactome capture, we identified global TGF-β driven changes in RNA-binding proteins in ECs. We investigated specific changes in the RNA-binding patterns of hnRNP H1 (heterogeneous nuclear ribonucleoprotein H1) and Csde1 (cold shock domain containing E1) using RNA immunoprecipitation and overlapped this with RNA-sequencing data after knockdown of either protein for functional insight. Using a modified proximity ligation assay, we visualized the specific interactions between hnRNP H1 and Csde1 and target RNAs in situ both in vitro and in mouse heart sections. RESULTS Characterization of TGF-β-regulated RBPs (RNA-binding proteins) revealed hnRNP H1 and Csde1 as key regulators of the cellular response to TGF-β at the post-transcriptional level, with loss of either protein-promoting mesenchymal activation in ECs. We found that TGF-β drives an increase in binding of hnRNP H1 to its target RNAs, offsetting mesenchymal activation, but a decrease in Csde1 RNA-binding, facilitating this process. Both, hnRNP H1 and Csde1, dynamically bind and regulate specific subsets of mRNAs related to mesenchymal activation and endothelial function. CONCLUSIONS Together, we show that RBPs play a key role in the endothelial response to TGF-β stimulation at the post-transcriptional level and that the RBPs hnRNP H1 and Csde1 serve to maintain EC function and counteract mesenchymal activation. We propose that TGF-β profoundly modifies RNA-protein interaction entailing feedback and feed-forward control at the post-transcriptional level, to fine-tune mesenchymal activation in ECs.
Collapse
Affiliation(s)
- Rhys Wardman
- Department of Cardiovascular Physiology (R.W., M.K., I.P., S.H., S.G., J.H.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (R.W., M.K., S.H., S.G., G.D., J.H.)
| | - Merve Keles
- Department of Cardiovascular Physiology (R.W., M.K., I.P., S.H., S.G., J.H.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (R.W., M.K., S.H., S.G., G.D., J.H.)
| | - Ihor Pachkiv
- Department of Cardiovascular Physiology (R.W., M.K., I.P., S.H., S.G., J.H.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
| | - Shruthi Hemanna
- Department of Cardiovascular Physiology (R.W., M.K., I.P., S.H., S.G., J.H.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (R.W., M.K., S.H., S.G., G.D., J.H.)
| | - Steve Grein
- Department of Cardiovascular Physiology (R.W., M.K., I.P., S.H., S.G., J.H.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (R.W., M.K., S.H., S.G., G.D., J.H.)
| | - Jennifer Schwarz
- Proteomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany (J.S., F.S.)
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany (J.S., F.S.)
| | - Roxana Ola
- Cardiovascular Pharmacology (R.O.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
| | - Gergana Dobreva
- Cardiovascular Genomics and Epigenomics (G.D.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (R.W., M.K., S.H., S.G., G.D., J.H.)
| | - Matthias W. Hentze
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany (M.W.H.)
| | - Joerg Heineke
- Department of Cardiovascular Physiology (R.W., M.K., I.P., S.H., S.G., J.H.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (R.W., M.K., S.H., S.G., G.D., J.H.)
| |
Collapse
|
15
|
Monaco CF, Davis JS. Mechanisms of angioregression of the corpus luteum. Front Physiol 2023; 14:1254943. [PMID: 37841308 PMCID: PMC10568036 DOI: 10.3389/fphys.2023.1254943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
The corpus luteum is a transient ovarian endocrine gland that produces the progesterone necessary for the establishment and maintenance of pregnancy. The formation and function of this gland involves angiogenesis, establishing the tissue with a robust blood flow and vast microvasculature required to support production of progesterone. Every steroidogenic cell within the corpus luteum is in direct contact with a capillary, and disruption of angiogenesis impairs luteal development and function. At the end of a reproductive cycle, the corpus luteum ceases progesterone production and undergoes rapid structural regression into a nonfunctional corpus albicans in a process initiated and exacerbated by the luteolysin prostaglandin F2α (PGF2α). Structural regression is accompanied by complete regression of the luteal microvasculature in which endothelial cells die and are sloughed off into capillaries and lymphatic vessels. During luteal regression, changes in nitric oxide transiently increase blood flow, followed by a reduction in blood flow and progesterone secretion. Early luteal regression is marked by an increased production of cytokines and chemokines and influx of immune cells. Microvascular endothelial cells are sensitive to released factors during luteolysis, including thrombospondin, endothelin, and cytokines like tumor necrosis factor alpha (TNF) and transforming growth factor β 1 (TGFB1). Although PGF2α is known to be a vasoconstrictor, endothelial cells do not express receptors for PGF2α, therefore it is believed that the angioregression occurring during luteolysis is mediated by factors downstream of PGF2α signaling. Yet, the exact mechanisms responsible for angioregression in the corpus luteum remain unknown. This review describes the current knowledge on angioregression of the corpus luteum and the roles of vasoactive factors released during luteolysis on luteal vasculature and endothelial cells of the microvasculature.
Collapse
Affiliation(s)
- Corrine F. Monaco
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, United States
| | - John S. Davis
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, United States
- US Department of Veterans Affairs Nebraska-Western Iowa Healthcare System, Omaha, NE, United States
| |
Collapse
|
16
|
Zhu J, Li Q, Sun Y, Zhang S, Pan R, Xie Y, Chen J, Shi L, Chen Y, Sun Z, Zhang L. Insulin-Like Growth Factor 1 Receptor Deficiency Alleviates Angiotensin II-Induced Cardiac Fibrosis Through the Protein Kinase B/Extracellular Signal-Regulated Kinase/Nuclear Factor-κB Pathway. J Am Heart Assoc 2023; 12:e029631. [PMID: 37721135 PMCID: PMC10547288 DOI: 10.1161/jaha.123.029631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023]
Abstract
Background The renin-angiotensin system plays a crucial role in the development of heart failure, and Ang II (angiotensin II) acts as the critical effector of the renin-angiotensin system in regulating cardiac fibrosis. However, the mechanisms of cardiac fibrosis are complex and still not fully understood. IGF1R (insulin-like growth factor 1 receptor) has multiple functions in maintaining cardiovascular homeostasis, and low-dose IGF1 treatment is effective in relieving Ang II-induced cardiac fibrosis. Here, we aimed to investigate the molecular mechanism of IGF1R in Ang II-induced cardiac fibrosis. Methods and Results Using primary mouse cardiac microvascular endothelial cells and fibroblasts, in vitro experiments were performed. Using C57BL/6J mice and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9)-mediated IGF1R heterozygous knockout (Igf1r+/-) mice, cardiac fibrosis mouse models were induced by Ang II for 2 weeks. The expression of IGF1R was examined by quantitative reverse transcription polymerase chain reaction, immunohistochemistry, and Western blot. Mice heart histologic changes were evaluated using Masson and picro sirius red staining. Fibrotic markers and signal molecules indicating the function of the Akt (protein kinase B)/ERK (extracellular signal-regulated kinase)/nuclear factor-κB pathway were detected using quantitative reverse transcription polymerase chain reaction and Western blot. RNA sequencing was used to explore IGF1R-mediated target genes in the hearts of mice, and the association of IGF1R and G-protein-coupled receptor kinase 5 was identified by coimmunoprecipitation. More important, blocking IGF1R signaling significantly suppressed endothelial-mesenchymal transition in primary mouse cardiac microvascular endothelial cells and mice in response to transforming growth factor-β1 or Ang II, respectively. Deficiency or inhibition of IGF1R signaling remarkably attenuated Ang II-induced cardiac fibrosis in primary mouse cardiac fibroblasts and mice. We further observed that the patients with heart failure exhibited higher blood levels of IGF1 and IGF1R than healthy individuals. Moreover, Ang II treatment significantly increased cardiac IGF1R in wild type mice but led to a slight downregulation in Igf1r+/- mice. Interestingly, IGF1R deficiency significantly alleviated cardiac fibrosis in Ang II-treated mice. Mechanistically, the phosphorylation level of Akt and ERK was upregulated in Ang II-treated mice, whereas blocking IGF1R signaling in mice inhibited these changes of Akt and ERK phosphorylation. Concurrently, phosphorylated p65 of nuclear factor-κB exhibited similar alterations in the corresponding group of mice. Intriguingly, IGF1R directly interacted with G-protein-coupled receptor kinase 5, and this association decreased ≈50% in Igf1r+/- mice. In addition, Grk5 deletion downregulated expression of the Akt/ERK/nuclear factor-κB signaling pathway in primary mouse cardiac fibroblasts. Conclusions IGF1R signaling deficiency alleviates Ang II-induced cardiac fibrosis, at least partially through inhibiting endothelial-mesenchymal transition via the Akt/ERK/nuclear factor-κB pathway. Interestingly, G-protein-coupled receptor kinase 5 associates with IGF1R signaling directly, and it concurrently acts as an IGF1R downstream effector. This study suggests the promising potential of IGF1R as a therapeutic target for cardiac fibrosis.
Collapse
Affiliation(s)
- Jiafeng Zhu
- Department of NursingWeifang Medical UniversityWeifangChina
| | - Qian Li
- Department of NursingWeifang Medical UniversityWeifangChina
| | - Yan Sun
- Department of StomatologyWeifang Medical UniversityWeifangChina
| | - Shiyu Zhang
- Department of NursingWeifang Medical UniversityWeifangChina
| | - Ruiyan Pan
- Department of PharmacologyWeifang Medical UniversityWeifangChina
| | - Yanguang Xie
- Department of NursingWeifang Medical UniversityWeifangChina
| | - Jinyan Chen
- Department of Clinical MedicineWeifang Medical UniversityWeifangChina
| | - Lihong Shi
- Department of Rehabilitation MedicineWeifang Medical UniversityWeifangChina
| | - Yanbo Chen
- Department of Cardiology, The First Affiliated HospitalWeifang Medical UniversityWeifangChina
| | - Zhipeng Sun
- Department of PharmacologyWeifang Medical UniversityWeifangChina
| | - Lane Zhang
- Department of NursingWeifang Medical UniversityWeifangChina
| |
Collapse
|
17
|
Sánchez-Duffhues G, Hiepen C. Human iPSCs as Model Systems for BMP-Related Rare Diseases. Cells 2023; 12:2200. [PMID: 37681932 PMCID: PMC10487005 DOI: 10.3390/cells12172200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Disturbances in bone morphogenetic protein (BMP) signalling contribute to onset and development of a number of rare genetic diseases, including Fibrodysplasia ossificans progressiva (FOP), Pulmonary arterial hypertension (PAH), and Hereditary haemorrhagic telangiectasia (HHT). After decades of animal research to build a solid foundation in understanding the underlying molecular mechanisms, the progressive implementation of iPSC-based patient-derived models will improve drug development by addressing drug efficacy, specificity, and toxicity in a complex humanized environment. We will review the current state of literature on iPSC-derived model systems in this field, with special emphasis on the access to patient source material and the complications that may come with it. Given the essential role of BMPs during embryonic development and stem cell differentiation, gain- or loss-of-function mutations in the BMP signalling pathway may compromise iPSC generation, maintenance, and differentiation procedures. This review highlights the need for careful optimization of the protocols used. Finally, we will discuss recent developments towards complex in vitro culture models aiming to resemble specific tissue microenvironments with multi-faceted cellular inputs, such as cell mechanics and ECM together with organoids, organ-on-chip, and microfluidic technologies.
Collapse
Affiliation(s)
- Gonzalo Sánchez-Duffhues
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), ISPA-HUCA, Avda. de Roma, s/n, 33011 Oviedo, Spain
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Christian Hiepen
- Department of Engineering and Natural Sciences, Westphalian University of Applied Sciences, August-Schmidt-Ring 10, 45665 Recklinghausen, Germany
| |
Collapse
|
18
|
Guo W, Li H, Li Y, Kong W. Renal intrinsic cells remodeling in diabetic kidney disease and the regulatory effects of SGLT2 Inhibitors. Biomed Pharmacother 2023; 165:115025. [PMID: 37385209 DOI: 10.1016/j.biopha.2023.115025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent complication of diabetes and a major secondary factor leading to end-stage renal disease. The kidney, a vital organ, is composed of a heterogeneous group of intrinsic cells, including glomerular endothelial cells, podocytes, mesangial cells, tubular epithelial cells, and interstitial fibroblasts. In the context of DKD, hyperglycemia elicits direct or indirect injury to these intrinsic cells, leading to their structural and functional changes, such as cell proliferation, apoptosis, and transdifferentiation. The dynamic remodeling of intrinsic cells represents an adaptive response to stimulus during the pathogenesis of diabetic kidney disease. However, the persistent stimulus may trigger an irreversible remodeling, leading to fibrosis and functional deterioration of the kidney. Sodium-glucose cotransporter 2 (SGLT2) inhibitors, a new class of hypoglycemic drugs, exhibit efficacy in reducing blood glucose levels by curtailing renal tubular glucose reabsorption. Furthermore, SGLT2 inhibitors have been shown to modulate intrinsic cell remodeling in the kidney, ameliorate kidney structure and function, and decelerate DKD progression. This review will elaborate on the intrinsic cell remodeling in DKD and the underlying mechanism of SGLT2 inhibitors in modulating it from the perspective of the renal intrinsic cell, providing insights into the pathogenesis of DKD and the renal protective action of SGLT2 inhibitors.
Collapse
Affiliation(s)
- Wenwen Guo
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, Hubei 430022, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, Hubei 430022, China; Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, Hubei 430022, China
| | - Han Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, Hubei 430022, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, Hubei 430022, China; Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, Hubei 430022, China
| | - Yixuan Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, Hubei 430022, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, Hubei 430022, China; Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, Hubei 430022, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, Hubei 430022, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, Hubei 430022, China; Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, Hubei 430022, China.
| |
Collapse
|
19
|
Cantu A, Cantu Gutierrez M, Zhang Y, Dong X, Lingappan K. Endothelial to mesenchymal transition in neonatal hyperoxic lung injury: role of sex as a biological variable. Physiol Genomics 2023; 55:345-354. [PMID: 37395632 PMCID: PMC10625841 DOI: 10.1152/physiolgenomics.00037.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is characterized by an arrest in alveolarization, abnormal vascular development, and variable interstitial fibroproliferation in the premature lung. Endothelial to mesenchymal transition (EndoMT) may be a source of pathological fibrosis in many organ systems. Whether EndoMT contributes to the pathogenesis of BPD is not known. We tested the hypothesis that pulmonary endothelial cells will show increased expression of EndoMT markers upon exposure to hyperoxia and that sex as a biological variable will modulate differences in expression. Wild-type (WT) and Cdh5-PAC CreERT2 (endothelial reporter) neonatal male and female mice (C57BL6) were exposed to hyperoxia (0.95 [Formula: see text]) either during the saccular stage of lung development (95% [Formula: see text]; postnatal day 1-5 [PND1-5]) or through the saccular and early alveolar stages of lung development (75% [Formula: see text]; PND1-14). Expression of EndoMT markers was measured in whole lung and endothelial cell mRNA. Sorted lung endothelial cells (from room air- and hyperoxia-exposed lungs) were subjected to bulk RNA-Seq. We show that exposure of the neonatal lung to hyperoxia leads to upregulation of key markers of EndoMT. Furthermore, using lung sc-RNA-Seq data from neonatal lung we were able to show that all endothelial cell subpopulations including the lung capillary endothelial cells show upregulation of EndoMT-related genes. Markers related to EndoMT are upregulated in the neonatal lung upon exposure to hyperoxia and show sex-specific differences. Mechanisms mediating EndoMT in the injured neonatal lung can modulate the response of the neonatal lung to hyperoxic injury and need further investigation.NEW & NOTEWORTHY We show that neonatal hyperoxia exposure increased EndoMT markers in the lung endothelial cells and this biological process exhibits sex-specific differences.
Collapse
Affiliation(s)
- Abiud Cantu
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Manuel Cantu Gutierrez
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Yuhao Zhang
- Division of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States
| | - Xiaoyu Dong
- Division of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States
| | - Krithika Lingappan
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| |
Collapse
|
20
|
Zhao XK, Zhu MM, Wang SN, Zhang TT, Wei XN, Wang CY, Zheng J, Zhu WY, Jiang MX, Xu SW, Yang XX, Duan YJ, Zhang BC, Han JH, Miao QR, Hu H, Chen YL. Transcription factor 21 accelerates vascular calcification in mice by activating the IL-6/STAT3 signaling pathway and the interplay between VSMCs and ECs. Acta Pharmacol Sin 2023; 44:1625-1636. [PMID: 36997664 PMCID: PMC10374894 DOI: 10.1038/s41401-023-01077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Vascular calcification is caused by the deposition of calcium salts in the intimal or tunica media layer of the aorta, which increases the risk of cardiovascular events and all-cause mortality. However, the mechanisms underlying vascular calcification are not fully clarified. Recently it has been shown that transcription factor 21 (TCF21) is highly expressed in human and mouse atherosclerotic plaques. In this study we investigated the role of TCF21 in vascular calcification and the underlying mechanisms. In carotid artery atherosclerotic plaques collected from 6 patients, we found that TCF21 expression was upregulated in calcific areas. We further demonstrated TCF21 expression was increased in an in vitro vascular smooth muscle cell (VSMC) osteogenesis model. TCF21 overexpression promoted osteogenic differentiation of VSMC, whereas TCF21 knockdown in VSMC attenuated the calcification. Similar results were observed in ex vivo mouse thoracic aorta rings. Previous reports showed that TCF21 bound to myocardin (MYOCD) to inhibit the transcriptional activity of serum response factor (SRF)-MYOCD complex. We found that SRF overexpression significantly attenuated TCF21-induced VSMC and aortic ring calcification. Overexpression of SRF, but not MYOCD, reversed TCF21-inhibited expression of contractile genes SMA and SM22. More importantly, under high inorganic phosphate (3 mM) condition, SRF overexpression reduced TCF21-induced expression of calcification-related genes (BMP2 and RUNX2) as well as vascular calcification. Moreover, TCF21 overexpression enhanced IL-6 expression and downstream STAT3 activation to facilitate vascular calcification. Both LPS and STAT3 could induce TCF21 expression, suggesting that the inflammation and TCF21 might form a positive feedback loop to amplify the activation of IL-6/STAT3 signaling pathway. On the other hand, TCF21 induced production of inflammatory cytokines IL-1β and IL-6 in endothelial cells (ECs) to promote VSMC osteogenesis. In EC-specific TCF21 knockout (TCF21ECKO) mice, VD3 and nicotine-induced vascular calcification was significantly reduced. Our results suggest that TCF21 aggravates vascular calcification by activating IL-6/STAT3 signaling and interplay between VSMC and EC, which provides new insights into the pathogenesis of vascular calcification. TCF21 enhances vascular calcification by activating the IL-6-STAT3 signaling pathway. TCF21 inhibition may be a new potential therapeutic strategy for the prevention and treatment of vascular calcification.
Collapse
Affiliation(s)
- Xiao-Kang Zhao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Meng-Meng Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Sheng-Nan Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ting-Ting Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiao-Ning Wei
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Cheng-Yi Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Juan Zheng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wen-Ya Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Mei-Xiu Jiang
- The Institute of Translational Medicine, the National Engineering Research Center for Bioengineering Drugs and the Technologies, Nanchang University, Nanchang, 330031, China
| | - Suo-Wen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
- School of Pharmacy, Bengbu Medical College, Bengbu, 233000, China
| | - Xiao-Xiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ya-Jun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Bu-Chun Zhang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Ji-Hong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Qing R Miao
- Diabetes and Obesity Research Center, New York University Long Island School of Medicine, New York, NY, USA
| | - Hao Hu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Yuan-Li Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
21
|
Balistrieri A, Makino A, Yuan JXJ. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca 2+ signaling. Physiol Rev 2023; 103:1827-1897. [PMID: 36422993 PMCID: PMC10110735 DOI: 10.1152/physrev.00030.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Harvard University, Cambridge, Massachusetts
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
22
|
Podyacheva E, Danilchuk M, Toropova Y. Molecular mechanisms of endothelial remodeling under doxorubicin treatment. Biomed Pharmacother 2023; 162:114576. [PMID: 36989721 DOI: 10.1016/j.biopha.2023.114576] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Doxorubicin (DOX) is an effective antineoplastic agent used to treat various types of cancers. However, its use is limited by the development of cardiotoxicity, which may result in heart failure. The exact mechanisms underlying DOX-induced cardiotoxicity are not fully understood, but recent studies have shown that endothelial-mesenchymal transition (EndMT) and endothelial damage play a crucial role in this process. EndMT is a biological process in which endothelial cells lose their characteristics and transform into mesenchymal cells, which have a fibroblast-like phenotype. This process has been shown to contribute to tissue fibrosis and remodeling in various diseases, including cancer and cardiovascular diseases. DOX-induced cardiotoxicity has been demonstrated to increase the expression of EndMT markers, suggesting that EndMT may play a critical role in the development of this condition. Furthermore, DOX-induced cardiotoxicity has been shown to cause endothelial damage, leading to the disruption of the endothelial barrier function and increased vascular permeability. This can result in the leakage of plasma proteins, leading to tissue edema and inflammation. Moreover, DOX can impair the production of nitric oxide, endothelin-1, neuregulin, thrombomodulin, thromboxane B2 etc. by endothelial cells, leading to vasoconstriction, thrombosis and further impairing cardiac function. In this regard, this review is devoted to the generalization and structuring of information about the known molecular mechanisms of endothelial remodeling under the action of DOX.
Collapse
|
23
|
Kim HS, Ha HS, Kim DH, Son DH, Baek S, Park J, Lee CH, Park S, Yoon HJ, Yu SE, Kang JI, Park KM, Shin YM, Lee JB, Sung HJ. O 2 variant chip to simulate site-specific skeletogenesis from hypoxic bone marrow. SCIENCE ADVANCES 2023; 9:eadd4210. [PMID: 36947623 PMCID: PMC10032601 DOI: 10.1126/sciadv.add4210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The stemness of bone marrow mesenchymal stem cells (BMSCs) is maintained by hypoxia. The oxygen level increases from vessel-free cartilage to hypoxic bone marrow and, furthermore, to vascularized bone, which might direct the chondrogenesis to osteogenesis and regenerate the skeletal system. Hence, oxygen was diffused from relatively low to high levels throughout a three-dimensional chip. When we cultured BMSCs in the chip and implanted them into the rabbit defect models of low-oxygen cartilage and high-oxygen calvaria bone, (i) the low oxygen level (base) promoted stemness and chondrogenesis of BMSCs with robust antioxidative potential; (ii) the middle level (two times ≥ low) pushed BMSCs to quiescence; and (iii) the high level (four times ≥ low) promoted osteogenesis by disturbing the redox balance and stemness. Last, endochondral or intramembranous osteogenesis upon transition from low to high oxygen in vivo suggests a developmental mechanism-driven solution to promote chondrogenesis to osteogenesis in the skeletal system by regulating the oxygen environment.
Collapse
Affiliation(s)
- Hye-Seon Kim
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyun-Su Ha
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dae-Hyun Kim
- Department of Veterinary Surgery, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Deok Hyeon Son
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sewoom Baek
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jeongeun Park
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chan Hee Lee
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Suji Park
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyo-Jin Yoon
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seung Eun Yu
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jeon Il Kang
- Department of Bioengineering and Nano-Bioengineering, College of Life sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Kyung Min Park
- Department of Bioengineering and Nano-Bioengineering, College of Life sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Research Center for Biomaterials and Process Development, Incheon National University, Incheon 22012, Republic of Korea
| | - Young Min Shin
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jung Bok Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea
- Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Hak-Joon Sung
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
24
|
Liu H, Shi Q, Tang L, Wang H, Wang D. APELIN-13 AMELIORATES LPS-INDUCED ENDOTHELIAL-TO-MESENCHYMAL TRANSITION AND POST-ACUTE LUNG INJURY PULMONARY FIBROSIS BY SUPPRESSING TRANSFORMING GROWTH FACTOR-Β1 SIGNALING. Shock 2023; 59:108-117. [PMID: 36377383 DOI: 10.1097/shk.0000000000002046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ABSTRACT The pathophysiology of acute respiratory distress syndrome (ARDS) involves cytokine storms, alveolar-capillary barrier destruction, and fibrotic progression. Pulmonary interstitial fibrosis is an important factor affecting the prognosis of ARDS patients. Endothelial-to-mesenchymal transition (EndMT) plays an important role in the development of fibrotic diseases, and the occurrence of EndMT has been observed in experimental models of LPS-induced acute lung injury (ALI). Apelin is an endogenous active polypeptide that plays an important role in maintaining endothelial cell homeostasis and inhibiting fibrotic progression in various diseases. However, whether apelin attenuates EndMT in ALI and post-ALI pulmonary fibrosis remains unclear. We analyzed the serum levels of apelin-13 in patients with sepsis-associated ARDS to examine its possible clinical value. A murine model of LPS-induced pulmonary fibrosis and an LPS-challenged endothelial cell injury model were used to analyze the protective effect and underlying mechanism of apelin-13. Mice were treated with apelin-13 by i.p. injection, and human pulmonary microvascular endothelial cells were incubated with apelin-13 in vitro . We found that the circulating apelin-13 levels were significantly elevated in sepsis-associated ARDS patients compared with healthy controls. Our study also confirmed that LPS induced EndMT progression and pulmonary fibrosis, which were characterized by decreased CD31 expression and increased α-smooth muscle actin expression and collagen deposition. LPS also stimulated the production of transforming growth factor β1 and activated the Smad signaling pathway. However, apelin-13 treatment significantly attenuated these changes. Our findings suggest that apelin-13 may be a novel biomarker in patients with sepsis-associated ARDS. These results demonstrate that apelin-13 ameliorates LPS-induced EndMT and post-ALI pulmonary fibrosis by suppressing transforming growth factor β1 signaling.
Collapse
Affiliation(s)
- Huang Liu
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
25
|
Colombo G, Altomare A, Astori E, Landoni L, Garavaglia ML, Rossi R, Giustarini D, Lionetti MC, Gagliano N, Milzani A, Dalle-Donne I. Effects of Physiological and Pathological Urea Concentrations on Human Microvascular Endothelial Cells. Int J Mol Sci 2022; 24:ijms24010691. [PMID: 36614132 PMCID: PMC9821335 DOI: 10.3390/ijms24010691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 01/03/2023] Open
Abstract
Urea is the uremic toxin accumulating with the highest concentration in the plasma of chronic kidney disease (CKD) patients, not being completely cleared by dialysis. Urea accumulation is reported to exert direct and indirect side effects on the gastrointestinal tract, kidneys, adipocytes, and cardiovascular system (CVS), although its pathogenicity is still questioned since studies evaluating its side effects lack homogeneity. Here, we investigated the effects of physiological and pathological urea concentrations on a human endothelial cell line from the microcirculation (Human Microvascular Endothelial Cells-1, HMEC-1). Urea (5 g/L) caused a reduction in the proliferation rate after 72 h of exposure and appeared to be a potential endothelial-to-mesenchymal transition (EndMT) stimulus. Moreover, urea induced actin filament rearrangement, a significant increase in matrix metalloproteinases 2 (MMP-2) expression in the medium, and a significant up- or down-regulation of other EndMT biomarkers (keratin, fibrillin-2, and collagen IV), as highlighted by differential proteomic analysis. Among proteins whose expression was found to be significantly dysregulated following exposure of HMEC-1 to urea, dimethylarginine dimethylaminohydrolase (DDAH) and vasorin turned out to be down-regulated. Both proteins have been directly linked to cardiovascular diseases (CVD) by in vitro and in vivo studies. Future experiments will be needed to deepen their role and investigate the signaling pathways in which they are involved to clarify the possible link between CKD and CVD.
Collapse
Affiliation(s)
- Graziano Colombo
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, 20133 Milan, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Emanuela Astori
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, 20133 Milan, Italy
| | - Lucia Landoni
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, 20133 Milan, Italy
| | - Maria Lisa Garavaglia
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, 20133 Milan, Italy
| | - Ranieri Rossi
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018–2022), University of Siena, 53100 Siena, Italy
| | - Daniela Giustarini
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018–2022), University of Siena, 53100 Siena, Italy
| | - Maria Chiara Lionetti
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, 20133 Milan, Italy
| | - Nicoletta Gagliano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Aldo Milzani
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, 20133 Milan, Italy
| | - Isabella Dalle-Donne
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, 20133 Milan, Italy
- Correspondence:
| |
Collapse
|
26
|
Colombo G, Astori E, Landoni L, Garavaglia ML, Altomare A, Lionetti MC, Gagliano N, Giustarini D, Rossi R, Milzani A, Dalle‐Donne I. Effects of the uremic toxin indoxyl sulphate on human microvascular endothelial cells. J Appl Toxicol 2022; 42:1948-1961. [PMID: 35854198 PMCID: PMC9796800 DOI: 10.1002/jat.4366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 01/07/2023]
Abstract
Indoxyl sulphate (IS) is a uremic toxin accumulating in the plasma of chronic kidney disease (CKD) patients. IS accumulation induces side effects in the kidneys, bones and cardiovascular system. Most studies assessed IS effects on cell lines by testing higher concentrations than those measured in CKD patients. Differently, we exposed a human microvascular endothelial cell line (HMEC-1) to the IS concentrations measured in the plasma of healthy subjects (physiological) or CKD patients (pathological). Pathological concentrations reduced cell proliferation rate but did not increase long-term oxidative stress level. Indeed, total protein thiols decreased only after 24 h of exposure in parallel with an increased Nrf-2 protein expression. IS induced actin cytoskeleton rearrangement with formation of stress fibres. Proteomic analysis supported this hypothesis as many deregulated proteins are related to actin filaments organization or involved in the endothelial to mesenchymal transition. Interestingly, two proteins directly linked to cardiovascular diseases (CVD) in in vitro and in vivo studies underwent deregulation: COP9 signalosome complex subunit 9 and thrombomodulin. Future experiments will be needed to investigate the role of these proteins and the signalling pathways in which they are involved to clarify the possible link between CKD and CVD.
Collapse
Affiliation(s)
- Graziano Colombo
- Department of Biosciences (Department of Excellence 2018–2022)Università degli Studi di MilanoMilanItaly
| | - Emanuela Astori
- Department of Biosciences (Department of Excellence 2018–2022)Università degli Studi di MilanoMilanItaly
| | - Lucia Landoni
- Department of Biosciences (Department of Excellence 2018–2022)Università degli Studi di MilanoMilanItaly
| | - Maria L. Garavaglia
- Department of Biosciences (Department of Excellence 2018–2022)Università degli Studi di MilanoMilanItaly
| | - Alessandra Altomare
- Department of Pharmaceutical SciencesUniversità degli Studi di MilanoMilanItaly
| | - Maria C. Lionetti
- Department of Biosciences (Department of Excellence 2018–2022)Università degli Studi di MilanoMilanItaly
| | - Nicoletta Gagliano
- Department of Biomedical Sciences for HealthUniversità degli Studi di MilanoMilanItaly
| | - Daniela Giustarini
- Department of Life Sciences, Laboratory of Pharmacology and ToxicologyUniversity of SienaSienaItaly
| | - Ranieri Rossi
- Department of Life Sciences, Laboratory of Pharmacology and ToxicologyUniversity of SienaSienaItaly
| | - Aldo Milzani
- Department of Biosciences (Department of Excellence 2018–2022)Università degli Studi di MilanoMilanItaly
| | - Isabella Dalle‐Donne
- Department of Biosciences (Department of Excellence 2018–2022)Università degli Studi di MilanoMilanItaly
| |
Collapse
|
27
|
Adnani L, Spinelli C, Tawil N, Rak J. Role of extracellular vesicles in cancer-specific interactions between tumour cells and the vasculature. Semin Cancer Biol 2022; 87:196-213. [PMID: 36371024 DOI: 10.1016/j.semcancer.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/25/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Cancer progression impacts and exploits the vascular system in several highly consequential ways. Among different types of vascular cells, blood cells and mediators that are engaged in these processes, endothelial cells are at the centre of the underlying circuitry, as crucial constituents of angiogenesis, angiocrine stimulation, non-angiogenic vascular growth, interactions with the coagulation system and other responses. Tumour-vascular interactions involve soluble factors, extracellular matrix molecules, cell-cell contacts, as well as extracellular vesicles (EVs) carrying assemblies of molecular effectors. Oncogenic mutations and transforming changes in the cancer cell genome, epigenome and signalling circuitry exert important and often cancer-specific influences upon pathways of tumour-vascular interactions, including the biogenesis, content, and biological activity of EVs and responses of cancer cells to them. Notably, EVs may carry and transfer bioactive, oncogenic macromolecules (oncoproteins, RNA, DNA) between tumour and vascular cells and thereby elicit unique functional changes and forms of vascular growth and remodeling. Cancer EVs influence the state of the vasculature both locally and systemically, as exemplified by cancer-associated thrombosis. EV-mediated communication pathways represent attractive targets for therapies aiming at modulation of the tumour-vascular interface (beyond angiogenesis) and could also be exploited for diagnostic purposes in cancer.
Collapse
Affiliation(s)
- Lata Adnani
- McGill University and Research Institute of the McGill University Health Centre, Canada
| | - Cristiana Spinelli
- McGill University and Research Institute of the McGill University Health Centre, Canada
| | - Nadim Tawil
- McGill University and Research Institute of the McGill University Health Centre, Canada
| | - Janusz Rak
- McGill University and Research Institute of the McGill University Health Centre, Canada; Department of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
28
|
Cao Y, Lin JH, Hammes HP, Zhang C. Cellular phenotypic transitions in diabetic nephropathy: An update. Front Pharmacol 2022; 13:1038073. [PMID: 36408221 PMCID: PMC9666367 DOI: 10.3389/fphar.2022.1038073] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic nephropathy (DN) is a major cause of morbidity and mortality in diabetes and is the most common cause of end stage renal disease (ESRD). Renal fibrosis is the final pathological change in DN. It is widely believed that cellular phenotypic switching is the cause of renal fibrosis in diabetic nephropathy. Several types of kidney cells undergo activation and differentiation and become reprogrammed to express markers of mesenchymal cells or podocyte-like cells. However, the development of targeted therapy for DN has not yet been identified. Here, we discussed the pathophysiologic changes of DN and delineated the possible origins that contribute to myofibroblasts and podocytes through phenotypic transitions. We also highlight the molecular signaling pathways involved in the phenotypic transition, which would provide valuable information for the activation of phenotypic switching and designing effective therapies for DN.
Collapse
Affiliation(s)
- Yiling Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Hong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Zhang ZY, Zhai C, Yang XY, Li HB, Wu LL, Li L. Knockdown of CD146 promotes endothelial-to-mesenchymal transition via Wnt/β-catenin pathway. PLoS One 2022; 17:e0273542. [PMID: 36001597 PMCID: PMC9401105 DOI: 10.1371/journal.pone.0273542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
Purpose Cardiac fibrosis is characterized by the excessive deposition of extracellular matrix (ECM) proteins and leads to the maladaptive changes in myocardium. Endothelial cells (ECs) undergoing mesenchymal transition contributes to the occurrence and development of cardiac fibrosis. CD146 is an adhesion molecule highly expressed in ECs. The present study was performed to explore the role of CD146 in modulating endothelial to mesenchymal transition (EndMT). Methods C57BL/6 mice were subjected to subcutaneous implantation of osmotic minipump infused with angiotensin II (Ang Ⅱ). Adenovirus carrying CD146 short hairpin RNA (shRNA) or CD146 encoding sequence were infected into cultured human umbilical vein endothelial cells (HUVECs) followed by stimulation with Ang II or transforming growth factor-β1 (TGF-β1). Differentially expressed genes were revealed by RNA-sequencing (RNA-Seq) analysis. Gene expression was measured by quantitative real-time PCR, and protein expression and distribution were determined by Western blot and immunofluorescence staining, respectively. Results CD146 was predominantly expressed by ECs in normal mouse hearts. CD146 was upregulated in ECs but not fibroblasts and myocytes in hearts of Ang II-infused mice and in HUVECs stimulated with Ang Ⅱ. RNA-Seq analysis revealed the differentially expressed genes related to EndMT and Wnt/β-catenin signaling pathway. CD146 knockdown and overexpression facilitated and attenuated, respectively, EndMT induced by Ang II or TGF-β1. CD146 knockdown upregulated Wnt pathway-related genes including Wnt4, LEF1, HNF4A, FOXA1, SOX6, and CCND3, and increased the protein level and nuclear translocation of β-catenin. Conclusions Knockdown of CD146 exerts promotional effects on EndMT via activating Wnt/β-catenin pathway and the upregulation of CD146 might play a protective role against EndMT and cardiac fibrosis.
Collapse
Affiliation(s)
- Zhao-Yu Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Chao Zhai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Xue-Yuan Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Hai-Bing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Li Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
- * E-mail:
| |
Collapse
|
30
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
31
|
Abstract
Angiogenesis, the formation of new blood vessels, contributes fundamentally to embryonic development, tissue homeostasis, and wound healing. Basic fibroblast growth factor (FGF2) is recognized as the first proangiogenic molecule discovered and it facilitates angiogenesis by activating FGF receptor 1 (FGFR1) signaling in endothelial cells. However, the roles of FGFR and the FGF/FGFR signaling axis in angiogenesis remain unclear. Here, we report that, upon reversible, posttranslational, small ubiquitin-like modifier modification (SUMOylation), FGFR1 regulates angiogenesis by coordinating endothelial angiogenic signaling. Mechanistically, FGFR1 SUMOylation maintains the balance in the competitive recruitment of the adaptor protein FRS2α between FGFR1 and VEGFR2 receptor complexes. VEGFA/VEGFR2 signaling primarily operates under hypoxic conditions and FGF/FGFR1 signaling is more important under normoxic conditions. Angiogenesis contributes fundamentally to embryonic development, tissue homeostasis, and wound healing. Basic fibroblast growth factor (FGF2) is recognized as the first proangiogenic molecule discovered, and it facilitates angiogenesis by activating FGF receptor 1 (FGFR1) signaling in endothelial cells. However, the precise roles of FGFR and the FGF/FGFR signaling axis in angiogenesis remain unclear, especially because of the contradictory phenotypes of in vivo FGF and FGFR gene deficiency models. Our previous study results suggested a potential role of posttranslational small ubiquitin-like modifier modification (SUMOylation), with highly dynamic regulatory features, in vascular development and disorder. Here, we identified SENP1-regulated endothelial FGFR1 SUMOylation at conserved lysines responding to proangiogenic stimuli, while SENP1 functioned as the deSUMOylase. Hypoxia-enhanced FGFR1 SUMOylation restricted the tyrosine kinase activation of FGFR1 by modulating the dimerization of FGFR1 and FGFR1 binding with its phosphatase PTPRG. Consequently, it facilitated the recruitment of FRS2α to VEGFR2 but limited additional recruitment of FRS2α to FGFR1, supporting the activation of VEGFA/VEGFR2 signaling in endothelial cells. Furthermore, SUMOylation-defective mutation of FGFR1 resulted in exaggerated FGF2/FGFR1 signaling but suppressed VEGFA/VEGFR2 signaling and the angiogenic capabilities of endothelial cells, which were rescued by FRS2α overexpression. Reduced angiogenesis and endothelial sprouting in mice bearing an endothelial-specific, FGFR1 SUMOylation-defective mutant confirmed the functional significance of endothelial FGFR1 SUMOylation in vivo. Our findings identify the reversible SUMOylation of FGFR1 as an intrinsic fine-tuned mechanism in coordinating endothelial angiogenic signaling during neovascularization; SENP1-regulated FGFR1 SUMOylation and deSUMOylation controls the competitive recruitment of FRS2α by FGFR1 and VEGFR2 to switch receptor-complex formation responding to hypoxia and normoxia angiogenic environments.
Collapse
|
32
|
Wang L, Zhu T, Feng D, Li R, Zhang C. Polyphenols from Chinese Herbal Medicine: Molecular Mechanisms and Therapeutic Targets in Pulmonary Fibrosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1063-1094. [PMID: 35475972 DOI: 10.1142/s0192415x22500434] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pulmonary fibrosis (PF) is a highly confounding and fatal pathological process with finite treatment options. Multiple factors such as oxidative and immune/inflammation involve key pathological processes in chronic lung disease, and their intimate interactions mediate chronic lung damage, denudation of the alveolar epithelium, hyperproliferation of type II alveolar epithelial cells (AECIIs), proliferation and differentiation of fibroblasts, and the permeability of microvessels. We reviewed the classic mechanism of PF and highlighted a few emerging mechanisms for studying complex networks in lung disease pathology. Polyphenols, as a multi-target drug, has excellent potential in the treatment of pulmonary fibrosis. We then reviewed recent advances in discovering phenolic compounds from fruits, tea, and medical herbs with the bioactivities of simultaneously regulating multiple factors (e.g., oxidative stress, inflammation, autophagy, apoptosis, pyroptosis) for minimizing pulmonary fibrosis injury. These compounds include resveratrol, curcumin, salvianolic acid B, epigallocatechin-3-gallate, gallic acid, corilagin. Each phenolic compound can exert its anti-PF effect through various mechanisms, and the signaling pathways involved in different phenolic compounds are not the same. This review summarized the available evidence on phenolic compounds' effectiveness in pulmonary diseases and explored the molecular mechanisms and therapeutic targets of phenolic compounds from Chinese herbal medicine with the properties of inhibition of ongoing fibrogenesis and resolution of existing fibrosis.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.,Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ting Zhu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao 266071, P. R. China
| | - Deqin Feng
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Renshi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.,Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Chaofeng Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.,Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
33
|
Krishnamoorthi MK, Thandavarayan RA, Youker KA, Bhimaraj A. An In Vitro Platform to Study Reversible Endothelial-to-Mesenchymal Transition. Front Pharmacol 2022; 13:912660. [PMID: 35814231 PMCID: PMC9259860 DOI: 10.3389/fphar.2022.912660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/11/2022] [Indexed: 01/09/2023] Open
Abstract
Endothelial cells can acquire a mesenchymal phenotype in response to external stimuli through both mechanical and biological factors, using a process known as endothelial-to-mesenchymal (EndoMT) transition. EndoMT is characterized by the decrease in endothelial characteristics, increase in mesenchymal markers, and morphological changes. It has been recognized not only during development but also in different pathological conditions including organ/tissue fibrosis in adults. The ability to modulate the EndoMT process could have a therapeutic potential in many fibrotic diseases. An in vitro method is presented here to induce EndoMT with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) and angiotensin II (Ang II) followed by a protocol to study the reversibility of EndoMT. Using this method, we furnish evidence that the combination of L-NAME and Ang II can stimulate EndoMT in Human umbilical vascular endothelial cells (HUVECs) and this process can be reversed as observed using endothelial functionality assays. This method may serve as a model to screen and identify potential pharmacological molecules to target and regulate the EndoMT process, with applications in drug discovery for human diseases.
Collapse
Affiliation(s)
| | | | | | - Arvind Bhimaraj
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
34
|
Liu Q, Cheng Z, Huang B, Luo S, Guo Y. Palmitic acid promotes endothelial-to-mesenchymal transition via activation of the cytosolic DNA-sensing cGAS-STING pathway. Arch Biochem Biophys 2022; 727:109321. [PMID: 35697075 DOI: 10.1016/j.abb.2022.109321] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
Elevated levels of plasma free fatty acids (FFAs) lead to endothelial dysfunction, a process that is involved in the pathogenesis of atherosclerosis. Endothelial-to-mesenchymal transformation (EndMT) has been reported to accelerate endothelial dysfunction during the process of atherosclerosis. However, the underlying mechanisms of EndMT remain poorly understood. The present study aimed to investigate the role of the cytosolic DNA-sensing cyclic GMP-AMP synthase-stimulator interferon gene (cGAS-STING) pathway in palmitic acid (PA)-induced EndMT. Human aortic endothelial cells (HAECs) were exposed to different concentrations of PA, and subsequently its effects on EndMT and the cGAS-STING pathway were assessed. To investigate the role of cGAS-STING pathway on PA-induced EndMT, RNA interference was used to knockdown the expression of cGAS in HAECs prior to their exposure to PA. First, it was observed that PA reduced cell viability and intracellular nitric oxide production, and increased migratory capacity of the HAECs as well as the cellular oxidative stress response, leading to EndMT. Moreover, it was observed that the cGAS-STING pathway was activated in PA-exposed primary HAECs. Activating cGAS-STING pathway via mtDNA directing lead to EndMT in HAECs. Interestingly, cGAS knockdown by RNA interference attenuated PA-induced inflammation, oxidative stress and EndMT in HAECs. Taken together, the results of the present study suggested that the cytosolic DNA-sensing cGAS-STING pathway may have important roles in PA-induced EndMT in endothelial cells.
Collapse
Affiliation(s)
- Qian Liu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Zhe Cheng
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Bi Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yongzheng Guo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
35
|
Huang H, Huang W. Regulation of Endothelial Progenitor Cell Functions in Ischemic Heart Disease: New Therapeutic Targets for Cardiac Remodeling and Repair. Front Cardiovasc Med 2022; 9:896782. [PMID: 35677696 PMCID: PMC9167961 DOI: 10.3389/fcvm.2022.896782] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 12/16/2022] Open
Abstract
Ischemic heart disease (IHD) is the leading cause of morbidity and mortality worldwide. Ischemia and hypoxia following myocardial infarction (MI) cause subsequent cardiomyocyte (CM) loss, cardiac remodeling, and heart failure. Endothelial progenitor cells (EPCs) are involved in vasculogenesis, angiogenesis and paracrine effects and thus have important clinical value in alternative processes for repairing damaged hearts. In fact, this study showed that the endogenous repair of EPCs may not be limited to a single cell type. EPC interactions with cardiac cell populations and mesenchymal stem cells (MSCs) in ischemic heart disease can attenuate cardiac inflammation and oxidative stress in a microenvironment, regulate cell survival and apoptosis, nourish CMs, enhance mature neovascularization, alleviate adverse ventricular remodeling after infarction and enhance ventricular function. In this review, we introduce the definition and discuss the origin and biological characteristics of EPCs and summarize the mechanisms of EPC recruitment in ischemic heart disease. We focus on the crosstalk between EPCs and endothelial cells (ECs), smooth muscle cells (SMCs), CMs, cardiac fibroblasts (CFs), cardiac progenitor cells (CPCs), and MSCs during cardiac remodeling and repair. Finally, we discuss the translation of EPC therapy to the clinic and treatment strategies.
Collapse
|
36
|
Chen Y, Zou H, Lu H, Xiang H, Chen S. Research progress of endothelial-mesenchymal transition in diabetic kidney disease. J Cell Mol Med 2022; 26:3313-3322. [PMID: 35560773 PMCID: PMC9189345 DOI: 10.1111/jcmm.17356] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/22/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Renal fibrosis is an important pathological feature of diabetic kidney disease (DKD), manifested as tubular interstitial fibrosis, tubular atrophy, glomerulosclerosis and damage to the normal structure of the kidney. Renal fibrosis can eventually develop into renal failure. A better understanding of renal fibrosis in DKD is needed due to clinical limitations of current anti‐fibrotic drugs in terms of effectiveness, cost‐effectiveness and side effects. Fibrosis is characterized by local excessive deposition of extracellular matrix, which is derived from activated myofibroblasts to increase its production or specific tissue inhibitors of metalloproteinases to reduce its degradation. In recent years, endothelial‐mesenchymal transition (EndMT) has gradually integrated into the pathogenesis of fibrosis. In animal models of diabetic kidney disease, it has been found that EndMT is involved in the formation of renal fibrosis and multiple signalling pathways such as TGF‐β signalling pathway, Wnt signalling pathway and non‐coding RNA network participate in the regulation of EndMT during fibrosis. Here, we mainly review EndMT regulation and targeted therapy of renal fibrosis in DKD.
Collapse
Affiliation(s)
- Ying Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| | - Hang Zou
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| | - Hongwei Lu
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hong Xiang
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuhua Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
37
|
Zeng ZL, Yuan Q, Zu X, Liu J. Insights Into the Role of Mitochondria in Vascular Calcification. Front Cardiovasc Med 2022; 9:879752. [PMID: 35571215 PMCID: PMC9099050 DOI: 10.3389/fcvm.2022.879752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/14/2022] [Indexed: 12/22/2022] Open
Abstract
Vascular calcification (VC) is a growing burden in aging societies worldwide, and with a significant increase in all-cause mortality and atherosclerotic plaque rupture, it is frequently found in patients with aging, diabetes, atherosclerosis, or chronic kidney disease. However, the mechanism of VC is still not yet fully understood, and there are still no effective therapies for VC. Regarding energy metabolism factories, mitochondria play a crucial role in maintaining vascular physiology. Discoveries in past decades signifying the role of mitochondrial homeostasis in normal physiology and pathological conditions led to tremendous advances in the field of VC. Therapies targeting basic mitochondrial processes, such as energy metabolism, damage in mitochondrial DNA, or free-radical generation, hold great promise. The remarkably unexplored field of the mitochondrial process has the potential to shed light on several VC-related diseases. This review focuses on current knowledge of mitochondrial dysfunction, dynamics anomalies, oxidative stress, and how it may relate to VC onset and progression and discusses the main challenges and prerequisites for their therapeutic applications.
Collapse
Affiliation(s)
- ZL Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Qing Yuan
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuyu Zu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Xuyu Zu
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Jianghua Liu
| |
Collapse
|
38
|
Liang G, Wang S, Shao J, Jin Y, Xu L, Yan Y, Günther S, Wang L, Offermanns S. Tenascin-X Mediates Flow-Induced Suppression of EndMT and Atherosclerosis. Circ Res 2022; 130:1647-1659. [PMID: 35443807 DOI: 10.1161/circresaha.121.320694] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Endothelial-to-mesenchymal transition (EndMT) has been identified as a critical driver of vascular inflammation and atherosclerosis, and TGF-β (transforming growth factor β) is a key mediator of EndMT. Both EndMT and atherosclerosis are promoted by disturbed flow, whereas unidirectional laminar flow limits EndMT and is atheroprotective. How EndMT and endothelial TGF-β signaling are regulated by different flow patterns is, however, still poorly understood. METHODS Flow chamber experiments in vitro and endothelium-specific knockout mice were used to study the role of tenascin-X in the regulation of EndMT and atherosclerosis as well as the underlying mechanisms. RESULTS In human endothelial cells as well as in human and mouse aortae, unidirectional laminar flow but not disturbed flow strongly increased endothelial expression of the extracellular matrix protein TN-X (tenascin-X) in a KLF4 (Krüppel-like factor 4) dependent manner. Mice with endothelium-specific loss of TN-X (EC-Tnxb-KO) showed increased endothelial TGF-β signaling as well as increased endothelial expression of EndMT and inflammatory marker genes. When EC-Tnxb-KO mice were subjected to partial carotid artery ligation, we observed increased vascular remodeling. EC-Tnxb-KO mice crossed to low-density lipoprotein receptor-deficient mice showed advanced atherosclerotic lesions after being fed a high-fat diet. Treatment of EC-Tnxb-KO mice with an anti-TGF-beta antibody or additional endothelial loss of TGF-beta receptors 1 and 2 normalized endothelial TGF-beta signaling and prevented EndMT. In in vitro studies, we found that TN-X through its fibrinogen-like domain directly interacts with TGF-β and thereby interferes with its binding to the TGF-β receptor. CONCLUSIONS In summary, we show that TN-X is a central mediator of flow-induced inhibition of EndMT, endothelial inflammation and atherogenesis, which functions by binding to and by blocking the activity of TGF-β. Our data identify a novel mechanism of flow-dependent regulation of vascular TGF-β, which holds promise for generating new strategies to prevent vascular inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Guozheng Liang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Germany (G.L., J.S., Y.J., L.W., S.O.)
| | - ShengPeng Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (S.W., L.X.)
| | - Jingchen Shao
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Germany (G.L., J.S., Y.J., L.W., S.O.)
| | - YoungJune Jin
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Germany (G.L., J.S., Y.J., L.W., S.O.)
| | - Liran Xu
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (S.W., L.X.)
| | - Yang Yan
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, China (Y.Y.)
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Germany (S.G.)
| | - Lei Wang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Germany (G.L., J.S., Y.J., L.W., S.O.)
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Germany (G.L., J.S., Y.J., L.W., S.O.).,Center for Molecular Medicine, Goethe University Frankfurt, Germany (S.O.).,Cardiopulmonary Institute (CPI), Frankfurt/Bad Nauheim, Germany (S.O.).,German Center for Cardiovascular Research (DZHK), Rhine-Main site, Frankfurt and Bad Nauheim, Germany (S.O.)
| |
Collapse
|
39
|
Holtzer L, Wesseling-Rozendaal Y, Verhaegh W, van de Stolpe A. Measurement of activity of developmental signal transduction pathways to quantify stem cell pluripotency and phenotypically characterize differentiated cells. Stem Cell Res 2022; 61:102748. [PMID: 35325817 DOI: 10.1016/j.scr.2022.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 10/18/2022] Open
Abstract
Important challenges in stem cell research and regenerative medicine are reliable assessment of pluripotency state and purity of differentiated cell populations. Pluripotency and differentiation are regulated and determined by activity of developmental signal transduction pathways (STPs). To date activity of these STPs could not be directly measured on a cell sample. Here we validate a novel assay platform for measurement of activity of developmental STPs (STP) for use in stem cells and stem cell derivatives. In addition to previously developed STP assays, we report development of an additional STP assay for the MAPK-AP1 pathway. Subsequently, activity of Notch, Hedgehog, TGFβ, Wnt, PI3K, MAPK-AP1, and NFκB signaling pathways was calculated from Affymetrix transcriptome data of human pluripotent embryonic (hES) and iPS cell lines under different culture conditions, organ-derived multipotent stem cells, and differentiated cell types, to generate quantitative STP activity profiles. Results show that the STP assay technology enables reliable and quantitative measurement of multiple STP activities simultaneously on any individual cell sample. Using the technology, we found that culture conditions dominantly influence the pluripotent stem cell STP activity profile, while the origin of the stem cell line was a minor variable. A pluripotency STP activity profile (Pluripotency qPAP) was defined (active PI3K, MAPK, Hedgehog, Notch, TGFβ, and NFκB pathway, inactive Wnt pathway). Differentiation of hES cells to intestinal progenitor cells resulted in an STP activity profile characterized by active PI3K, Wnt and Notch pathways, comparable to the STP activity profile measured on primary intestinal crypt stem cells. Quantitative STP activity measurement is expected to improve experimental reproducibility and standardization of pluripotent and multipotent stem cell culture/differentiation, and enable controlled manipulation of pluripotency/differentiation state using pathway targeting compounds.
Collapse
Affiliation(s)
- Laurent Holtzer
- Molecular Pathway Diagnostics, Philips, Eindhoven, The Netherlands.
| | | | - Wim Verhaegh
- Molecular Pathway Diagnostics, Philips, Eindhoven, The Netherlands.
| | | |
Collapse
|
40
|
The Roles of S100A4 and the EGF/EGFR Signaling Axis in Pulmonary Hypertension with Right Ventricular Hypertrophy. BIOLOGY 2022; 11:biology11010118. [PMID: 35053115 PMCID: PMC8773074 DOI: 10.3390/biology11010118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 01/09/2023]
Abstract
Pulmonary hypertension (PH) is characterized by increased pulmonary arterial pressure caused by the accumulation of mesenchymal-like cells in the pulmonary vasculature. PH can lead to right ventricular hypertrophy (RVH) and, ultimately, heart failure and death. In PH etiology, endothelial-to-mesenchymal transition (EndMT) has emerged as a critical process governing the conversion of endothelial cells into mesenchymal cells, and S100A4, EGF, and EGFR are implicated in EndMT. However, a potential role of S100A4, EGF, and EGFR in PH has to date not been elucidated. We therefore quantified S100A4, EGF, and EGFR in patients suffering from chronic thromboembolic pulmonary hypertension (CTEPH) and idiopathic pulmonary arterial hypertension (iPAH). To determine specificity for unilateral heart disease, the EndMT biomarker signature was further compared between PH patients presenting with RVH and patients suffering from aortic valve stenosis (AVS) with left ventricular hypertrophy. Reduced S100A4 concentrations were found in CTEPH and iPAH patients with RVH. Systemic EGF was increased in CTEPH but not in iPAH, while AVS patients displayed slightly diminished EGF levels. EGFR was downregulated in all patient groups when compared to healthy controls. Longitudinal data analysis revealed no effect of surgical therapies on EndMT markers. Pulmonary thrombo-endarterectomized samples were devoid of S100A4, while S100A4 tissue expression positively correlated with higher grades of Heath–Edwards histopathological lesions of iPAH-derived lung tissue. Histologically, EGFR was not detectable in CTEPH lungs or in iPAH lesions. Together, our data suggest an intricate role for S100A4 and EGF/EGFR in PH with right heart pathology.
Collapse
|
41
|
Jang YE, Immanuel J, Lee JR, Jang YJ, Kwon YJ, Kwon HS, Shin JW, Yun S. Shinjulactone A Blocks Vascular Inflammation and the Endothelial-Mesenchymal Transition. J Lipid Atheroscler 2022; 11:272-279. [PMID: 36212750 PMCID: PMC9515731 DOI: 10.12997/jla.2022.11.3.272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022] Open
Abstract
Objective Methods Results Conclusion
Collapse
Affiliation(s)
- Ye-eun Jang
- Department of Biotechnology, Inje University, Gimhae, Korea
| | | | - Jin-ri Lee
- Department of Biotechnology, Inje University, Gimhae, Korea
| | - Yu-jin Jang
- Department of Biotechnology, Inje University, Gimhae, Korea
| | - Yun Ju Kwon
- National Institute of Korean Medicine Development, Gyeongsan, Korea
| | - Hyun Sook Kwon
- National Institute of Korean Medicine Development, Gyeongsan, Korea
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, Gimhae, Korea
| | - Sanguk Yun
- Department of Biotechnology, Inje University, Gimhae, Korea
| |
Collapse
|
42
|
Transcriptomic profiling and pathway analysis of cultured human lung microvascular endothelial cells following ionizing radiation exposure. Sci Rep 2021; 11:24214. [PMID: 34930946 PMCID: PMC8688546 DOI: 10.1038/s41598-021-03636-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022] Open
Abstract
The vascular system is sensitive to radiation injury, and vascular damage is believed to play a key role in delayed tissue injury such as pulmonary fibrosis. However, the response of endothelial cells to radiation is not completely understood. We examined the response of primary human lung microvascular endothelial cells (HLMVEC) to 10 Gy (1.15 Gy/min) X-irradiation. HLMVEC underwent senescence (80-85%) with no significant necrosis or apoptosis. Targeted RT-qPCR showed increased expression of genes CDKN1A and MDM2 (10-120 min). Western blotting showed upregulation of p2/waf1, MDM2, ATM, and Akt phosphorylation (15 min-72 h). Low levels of apoptosis at 24-72 h were identified using nuclear morphology. To identify novel pathway regulation, RNA-seq was performed on mRNA using time points from 2 to 24 h post-irradiation. Gene ontology and pathway analysis revealed increased cell cycle inhibition, DNA damage response, pro- and anti- apoptosis, and pro-senescence gene expression. Based on published literature on inflammation and endothelial-to-mesenchymal transition (EndMT) pathway genes, we identified increased expression of pro-inflammatory genes and EndMT-associated genes by 24 h. Together our data reveal a time course of integrated gene expression and protein activation leading from early DNA damage response and cell cycle arrest to senescence, pro-inflammatory gene expression, and endothelial-to-mesenchymal transition.
Collapse
|
43
|
Deb N, Lacerda CMR. Valvular Endothelial Cell Response to the Mechanical Environment-A Review. Cell Biochem Biophys 2021; 79:695-709. [PMID: 34661855 DOI: 10.1007/s12013-021-01039-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/02/2021] [Indexed: 01/08/2023]
Abstract
Heart valve leaflets are complex structures containing valve endothelial cells, interstitial cells, and extracellular matrix. Heart valve endothelial cells sense mechanical stimuli, and communicate amongst themselves and the surrounding cells and extracellular matrix to maintain tissue homeostasis. In the presence of abnormal mechanical stimuli, endothelial cell communication is triggered in defense and such processes may eventually lead to cardiac disease progression. This review focuses on the role of mechanical stimuli on heart valve endothelial surfaces-from heart valve development and maintenance of tissue integrity to disease progression with related signal pathways involved in this process.
Collapse
Affiliation(s)
- Nandini Deb
- Jasper Department of Chemical Engineering, The University of Texas at Tyler, 3900 University Blvd, Tyler, 75799, TX, US
| | - Carla M R Lacerda
- Jasper Department of Chemical Engineering, The University of Texas at Tyler, 3900 University Blvd, Tyler, 75799, TX, US.
| |
Collapse
|
44
|
Ding H, Yao J, Xie H, Wang C, Chen J, Wei K, Ji Y, Liu L. MicroRNA-195-5p Downregulation Inhibits Endothelial Mesenchymal Transition and Myocardial Fibrosis in Diabetic Cardiomyopathy by Targeting Smad7 and Inhibiting Transforming Growth Factor Beta 1-Smads-Snail Pathway. Front Physiol 2021; 12:709123. [PMID: 34658906 PMCID: PMC8514870 DOI: 10.3389/fphys.2021.709123] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a complication of diabetes mellitus, which is associated with fibrosis and microRNAs (miRs). This study estimated the mechanism of miR-195-5p in endothelial mesenchymal transition (EndMT) and myocardial fibrosis in DCM. After the establishment of DCM rat models, miR-195-5p was silenced by miR-195-5p antagomir. The cardiac function-related indexes diastolic left ventricular anterior wall (LVAW, d), systolic LVAW (d), diastolic left ventricular posterior wall (LVPW, d), systolic LVPW (d), left ventricular ejection fraction (LVEF), and fractional shortening (FS) were measured and miR-195-5p expression in myocardial tissue was detected. Myocardial fibrosis, collagen deposition, and levels of fibrosis markers were detected. Human umbilical vein endothelial cells (HUVECs) were exposed to high glucose (HG) and miR-195-5p was silenced. The levels of fibrosis proteins, endothelial markers, fibrosis markers, EndMT markers, and transforming growth factor beta 1 (TGF-β1)/Smads pathway-related proteins were measured in HUVECs. The interaction between miR-195-5p and Smad7 was verified. In vivo, miR-195-5p was highly expressed in the myocardium of DCM rats. Diastolic and systolic LVAW, diastolic and systolic LVPW were increased and LVEF and FS were decreased. Inhibition of miR-195-5p reduced cardiac dysfunction, myocardial fibrosis, collagen deposition, and EndMT, promoted CD31 and VE-cadehrin expressions, and inhibited α-SMA and vimentin expressions. In vitro, HG-induced high expression of miR-195-5p and the expression changes of endothelial markers CD31, VE-cadehrin and fibrosis markers α-SMA and vimentin were consistent with those in vivo after silencing miR-195-5p. In mechanism, miR-195-5p downregulation blocked EndMT by inhibiting TGF-β1-smads pathway. Smad7 was the direct target of miR-195-5p and silencing miR-195-5p inhibited EndMT by promoting Smad7 expression. Collectively, silencing miR-195-5p inhibits TGF-β1-smads-snail pathway by targeting Smad7, thus inhibiting EndMT and alleviating myocardial fibrosis in DCM.
Collapse
Affiliation(s)
- Huaisheng Ding
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Jianhui Yao
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Hongxiang Xie
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Chengyu Wang
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Jing Chen
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Kaiyong Wei
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Yangyang Ji
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Lihong Liu
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| |
Collapse
|
45
|
Pan JA, Zhang H, Lin H, Gao L, Zhang HL, Zhang JF, Wang CQ, Gu J. Irisin ameliorates doxorubicin-induced cardiac perivascular fibrosis through inhibiting endothelial-to-mesenchymal transition by regulating ROS accumulation and autophagy disorder in endothelial cells. Redox Biol 2021; 46:102120. [PMID: 34479089 PMCID: PMC8413906 DOI: 10.1016/j.redox.2021.102120] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
The dose-dependent toxicity to cardiomyocytes has been well recognized as a central characteristic of doxorubicin (DOX)-induced cardiotoxicity (DIC), however, the pathogenesis of DIC in the cardiac microenvironment remains elusive. Irisin is a new hormone-like myokine released into the circulation in response to exercise with distinct functions in regulating apoptosis, inflammation, and oxidative stress. Recent advances revealed the role of irisin as a novel therapeutic method and an important mediator of the beneficial effects of exercise in cardioprotection. Here, by using a low-dose long-term mouse DIC model, we found that the perivascular fibrosis was involved in its myocardial toxicity with the underlying mechanism of endothelial-to-mesenchymal transition (EndMT). Irisin treatment could partially reverse DOX-induced perivascular fibrosis and cardiotoxicity compared to endurance exercise. Mechanistically, DOX stimulation led to excessive accumulation of ROS, which activated the NF-κB-Snail pathway and resulted in EndMT. Besides, dysregulation of autophagy was also found in DOX-treated endothelial cells. Restoring autophagy flux could ameliorate EndMT and eliminate ROS. Irisin treatment significantly alleviated ROS accumulation, autophagy disorder, NF-κB-Snail pathway activation as well as the phenotype of EndMT by targeting uncoupling protein 2 (UCP2). Our results also initially found that irisin was mainly secreted by cardiomyocytes in the cardiac microenvironment, which was significantly reduced by DOX intervention, and had a protective effect on endothelial cells in a paracrine manner. In summary, our study indicated that DOX-induced ROS accumulation and autophagy disorders caused an EndMT in CMECs, which played a role in the perivascular fibrosis of DIC. Irisin treatment could partially reverse this phenomenon by regulating UCP2. Cardiomyocytes were the main source of irisin in the cardiac microenvironment. The current study provides a novel perspective elucidating the pathogenesis and the potential treatment of DIC.
Collapse
Affiliation(s)
- Jian-An Pan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Hui Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China; Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hao Lin
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Lin Gao
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Hui-Li Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Jun-Feng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| | - Chang-Qian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| | - Jun Gu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
46
|
Islam S, Boström KI, Di Carlo D, Simmons CA, Tintut Y, Yao Y, Hsu JJ. The Mechanobiology of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease. Front Physiol 2021; 12:734215. [PMID: 34566697 PMCID: PMC8458763 DOI: 10.3389/fphys.2021.734215] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
Endothelial cells (ECs) lining the cardiovascular system are subjected to a highly dynamic microenvironment resulting from pulsatile pressure and circulating blood flow. Endothelial cells are remarkably sensitive to these forces, which are transduced to activate signaling pathways to maintain endothelial homeostasis and respond to changes in the environment. Aberrations in these biomechanical stresses, however, can trigger changes in endothelial cell phenotype and function. One process involved in this cellular plasticity is endothelial-to-mesenchymal transition (EndMT). As a result of EndMT, ECs lose cell-cell adhesion, alter their cytoskeletal organization, and gain increased migratory and invasive capabilities. EndMT has long been known to occur during cardiovascular development, but there is now a growing body of evidence also implicating it in many cardiovascular diseases (CVD), often associated with alterations in the cellular mechanical environment. In this review, we highlight the emerging role of shear stress, cyclic strain, matrix stiffness, and composition associated with EndMT in CVD. We first provide an overview of EndMT and context for how ECs sense, transduce, and respond to certain mechanical stimuli. We then describe the biomechanical features of EndMT and the role of mechanically driven EndMT in CVD. Finally, we indicate areas of open investigation to further elucidate the complexity of EndMT in the cardiovascular system. Understanding the mechanistic underpinnings of the mechanobiology of EndMT in CVD can provide insight into new opportunities for identification of novel diagnostic markers and therapeutic interventions.
Collapse
Affiliation(s)
- Shahrin Islam
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Kristina I Boström
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,UCLA Molecular Biology Institute, Los Angeles, CA, United States.,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Craig A Simmons
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Yin Tintut
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Department of Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Orthopedic Surgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yucheng Yao
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Jeffrey J Hsu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
47
|
Woo KV, Shen IY, Weinheimer CJ, Kovacs A, Nigro J, Lin CY, Chakinala M, Byers DE, Ornitz DM. Endothelial FGF signaling is protective in hypoxia-induced pulmonary hypertension. J Clin Invest 2021; 131:141467. [PMID: 34623323 DOI: 10.1172/jci141467] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
Hypoxia-induced pulmonary hypertension (PH) is one of the most common and deadliest forms of PH. Fibroblast growth factor receptors 1 and 2 (FGFR1/2) are elevated in patients with PH and in mice exposed to chronic hypoxia. Endothelial FGFR1/2 signaling is important for the adaptive response to several injury types and we hypothesized that endothelial FGFR1/2 signaling would protect against hypoxia-induced PH. Mice lacking endothelial FGFR1/2, mice with activated endothelial FGFR signaling, and human pulmonary artery endothelial cells (HPAECs) were challenged with hypoxia. We assessed the effect of FGFR activation and inhibition on right ventricular pressure, vascular remodeling, and endothelial-mesenchymal transition (EndMT), a known pathologic change seen in patients with PH. Hypoxia-exposed mice lacking endothelial FGFRs developed increased PH, while mice overexpressing a constitutively active FGFR in endothelial cells did not develop PH. Mechanistically, lack of endothelial FGFRs or inhibition of FGFRs in HPAECs led to increased TGF-β signaling and increased EndMT in response to hypoxia. These phenotypes were reversed in mice with activated endothelial FGFR signaling, suggesting that FGFR signaling inhibits TGF-β pathway-mediated EndMT during chronic hypoxia. Consistent with these observations, lung tissue from patients with PH showed activation of FGFR and TGF-β signaling. Collectively, these data suggest that activation of endothelial FGFR signaling could be therapeutic for hypoxia-induced PH.
Collapse
Affiliation(s)
- Kel Vin Woo
- Division of Cardiology, Department of Pediatrics.,Department of Developmental Biology
| | | | | | | | | | | | - Murali Chakinala
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Derek E Byers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
48
|
Savorani C, Malinverno M, Seccia R, Maderna C, Giannotta M, Terreran L, Mastrapasqua E, Campaner S, Dejana E, Giampietro C. A dual role of YAP in driving TGFβ-mediated endothelial-to-mesenchymal transition. J Cell Sci 2021; 134:271139. [PMID: 34338295 PMCID: PMC8353525 DOI: 10.1242/jcs.251371] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) is the biological process through which endothelial cells transdifferentiate into mesenchymal cells. During embryo development, EndMT regulates endocardial cushion formation via TGFβ/BMP signaling. In adults, EndMT is mainly activated during pathological conditions. Hence, it is necessary to characterize molecular regulators cooperating with TGFβ signaling in driving EndMT, to identify potential novel therapeutic targets to treat these pathologies. Here, we studied YAP, a transcriptional co-regulator involved in several biological processes, including epithelial-to-mesenchymal transition (EMT). As EndMT is the endothelial-specific form of EMT, and YAP (herein referring to YAP1) and TGFβ signaling cross-talk in other contexts, we hypothesized that YAP contributes to EndMT by modulating TGFβ signaling. We demonstrate that YAP is required to trigger TGFβ-induced EndMT response, specifically contributing to SMAD3-driven EndMT early gene transcription. We provide novel evidence that YAP acts as SMAD3 transcriptional co-factor and prevents GSK3β-mediated SMAD3 phosphorylation, thus protecting SMAD3 from degradation. YAP is therefore emerging as a possible candidate target to inhibit pathological TGFβ-induced EndMT at early stages. Summary: A new crucial role for YAP as a co-activator of early pathological TGFβ-mediated endothelial-to-mesenchymal transition program and characterization of the underlying molecular mechanism.
Collapse
Affiliation(s)
- Cecilia Savorani
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy
| | - Matteo Malinverno
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy
| | - Roberta Seccia
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy
| | - Claudio Maderna
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy
| | - Monica Giannotta
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy
| | - Linda Terreran
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy
| | - Eleonora Mastrapasqua
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy
| | - Stefano Campaner
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan 20139, Italy
| | - Elisabetta Dejana
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy.,Department of Immunology, Genetics and Pathology, Vascular Biology, Uppsala University, Uppsala 751 85, Sweden
| | - Costanza Giampietro
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy.,Swiss Federal Laboratories for Materials Science and Technology (EMPA), Dübendorf 8600, Switzerland.,Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
49
|
Sofias AM, De Lorenzi F, Peña Q, Azadkhah Shalmani A, Vucur M, Wang JW, Kiessling F, Shi Y, Consolino L, Storm G, Lammers T. Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders. Adv Drug Deliv Rev 2021; 175:113831. [PMID: 34139255 PMCID: PMC7611899 DOI: 10.1016/j.addr.2021.113831] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis is a common denominator in many pathologies and crucially affects disease progression, drug delivery efficiency and therapy outcome. We here summarize therapeutic and diagnostic strategies for fibrosis targeting in atherosclerosis and cardiac disease, cancer, diabetes, liver diseases and viral infections. We address various anti-fibrotic targets, ranging from cells and genes to metabolites and proteins, primarily focusing on fibrosis-promoting features that are conserved among the different diseases. We discuss how anti-fibrotic therapies have progressed over the years, and how nanomedicine formulations can potentiate anti-fibrotic treatment efficacy. From a diagnostic point of view, we discuss how medical imaging can be employed to facilitate the diagnosis, staging and treatment monitoring of fibrotic disorders. Altogether, this comprehensive overview serves as a basis for developing individualized and improved treatment strategies for patients suffering from fibrosis-associated pathologies.
Collapse
Affiliation(s)
- Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO(ABCD)), University Hospital Aachen, Aachen, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Armin Azadkhah Shalmani
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lorena Consolino
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
50
|
Collura S, Ciavarella C, Morsiani C, Motta I, Valente S, Gallitto E, Abualhin M, Pini R, Vasuri F, Franceschi C, Capri M, Gargiulo M, Pasquinelli G. MicroRNA profiles of human peripheral arteries and abdominal aorta in normal conditions: MicroRNAs-27a-5p, -139-5p and -155-5p emerge and in atheroma too. Mech Ageing Dev 2021; 198:111547. [PMID: 34329656 DOI: 10.1016/j.mad.2021.111547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
Atherosclerosis may starts early in life and each artery has peculiar characteristics likely affecting atherogenesis. The primary objective of the work was to underpin the microRNA (miR)-profiling differences in human normal femoral, abdominal aortic, and carotid arteries. The secondary aim was to investigate if those identified miRs, differently expressed in normal conditions, may also have a role in atherosclerotic arteries at adult ages. MiR-profiles were performed on normal tissues, revealing that aorta and carotid arteries are more similar than femoral arteries. MiRs emerging from profiling comparisons, i.e., miR-155-5p, -27a-5p, and -139-5p, were subjected to validation by RT-qPCR in normal arteries and also in pathological/atheroma counterparts, considering all the available 20 artery specimens. The three miRs were confirmed to be differentially expressed in normal femoral vs aorta/carotid arteries. Differential expression of those miRs was also observed in atherosclerotic arteries, together with some miR-target proteins, such as vimentin, CD44, E-cadherin and an additional marker SLUG. The different expression of miRs and targets/markers suggests that aorta/carotid and femoral arteries differently activate molecular drivers of pathological condition, thus conditioning the morphology of atheroma in adult life and likely suggesting the future use of artery-specific treatment to counteract atherosclerosis.
Collapse
Affiliation(s)
- Salvatore Collura
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Carmen Ciavarella
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Cristina Morsiani
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Ilenia Motta
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Sabrina Valente
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Enrico Gallitto
- Unit of Vascular Surgery, IRCCS, Policlinico S. Orsola Hospital, Bologna, Italy
| | - Mohammad Abualhin
- Unit of Vascular Surgery, IRCCS, Policlinico S. Orsola Hospital, Bologna, Italy
| | - Rodolfo Pini
- Unit of Vascular Surgery, IRCCS, Policlinico S. Orsola Hospital, Bologna, Italy
| | - Francesco Vasuri
- Unit of Pathology, IRCCS, Policlinico S. Orsola Hospital, Bologna, Italy
| | - Claudio Franceschi
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Department of Applied Mathematics of the Institute of ITMM, National Research Lobachevsky State University of Nizhny Novgorod, Russian Federation
| | - Miriam Capri
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Interdepartmental Center - Alma Mater Research Institute on Global Challenges and Climate Change - University of Bologna, Bologna, Italy
| | - Mauro Gargiulo
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Unit of Vascular Surgery, IRCCS, Policlinico S. Orsola Hospital, Bologna, Italy
| | - Gianandrea Pasquinelli
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Subcellular Nephro-Vascular Diagnostic Program, Pathology Unit, IRCCS, Policlinico S. Orsola Hospital, Bologna, Italy
| |
Collapse
|