1
|
Park SE, Shin K, Song D, Nam SO, Kim KM, Lyu SY, Kim YA, Kong J, Kim YM, Yeon GM, Lee YJ. Comparison of Cerebrospinal Fluid Cytokine Levels in Children of Enteroviral Meningitis With Versus Without Pleocytosis. J Interferon Cytokine Res 2018; 38:348-355. [PMID: 30052102 DOI: 10.1089/jir.2018.0002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In viral meningitis, proinflammatory cytokines were detected at higher levels in the cerebrospinal fluid (CSF) and might play an important role in the inflammatory process. Our goal was to compare the cytokine profiles in the CSF of children of enteroviral meningitis (EVM) with versus without CSF pleocytosis. In total, 158 patients were enrolled in this prospective cohort study and were classified as EVM (group-A, n = 101), nonenteroviral aseptic meningitis (group-B, n = 27), and control (group-C, n = 30) groups. Of the 101 children with EVM, 71 had CSF pleocytosis (group-A1) and 30 had CSF nonpleocytosis (group-A2). Fifteen cytokines/chemokines in the CSF were measured simultaneously by immunoassay. Significant differences were found in interleukin (IL)-2, IL-6, and IL-8 levels in the CSF across the 3 groups, with the highest levels in group-A, followed by group-B and group-C. The levels of IL-1β, IL-2, IL-6, IL8, IL-10, interferon-γ, and tumor necrosis factor-α were significantly higher in the CSF of group-A1 than in that of group-A2. Group-A2 was significantly younger than group-A1 (3.4 ± 2.8 years versus 5.5 ± 3.2 years, P = 0.016). Significant differences between CSF pleocytosis and nonpleocytosis in EVM appear to be associated with distinct levels of CSF cytokines.
Collapse
Affiliation(s)
- Su Eun Park
- 1 Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine , Yangsan, Korea.,2 Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital , Yangsan, Korea
| | - Kyunghwa Shin
- 3 Department of Laboratory Medicine, Pusan National University Yangsan Hospital , Yangsan, Korea
| | - Duyeal Song
- 3 Department of Laboratory Medicine, Pusan National University Yangsan Hospital , Yangsan, Korea
| | - Sang Ook Nam
- 1 Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine , Yangsan, Korea.,2 Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital , Yangsan, Korea
| | - Kyung Min Kim
- 4 Department of Pediatrics, Good Gang-An Hospital , Busan, Korea
| | - Soo Young Lyu
- 1 Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine , Yangsan, Korea
| | - Young A Kim
- 1 Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine , Yangsan, Korea.,2 Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital , Yangsan, Korea
| | - Juhyun Kong
- 1 Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine , Yangsan, Korea
| | - Young Mi Kim
- 5 Department of Pediatrics, Pusan National University Hospital , Busan, Korea
| | - Gyu Min Yeon
- 6 Department of Pediatrics, Kosin University Gospel Hospital, Kosin University , Busan, Korea
| | - Yun-Jin Lee
- 1 Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine , Yangsan, Korea.,2 Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital , Yangsan, Korea
| |
Collapse
|
2
|
A role for viral infections in Parkinson's etiology? Neuronal Signal 2018; 2:NS20170166. [PMID: 32714585 PMCID: PMC7373231 DOI: 10.1042/ns20170166] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/06/2018] [Accepted: 03/19/2018] [Indexed: 02/06/2023] Open
Abstract
Despite over 200 years since its first description by James Parkinson, the cause(s) of most cases of Parkinson's disease (PD) are yet to be elucidated. The disparity between the current understanding of PD symptomology and pathology has led to numerous symptomatic therapies, but no strategy for prevention or disease cure. An association between certain viral infections and neurodegenerative diseases has been recognized, but largely ignored or dismissed as controversial, for decades. Recent epidemiological studies have renewed scientific interest in investigating microbial interactions with the central nervous system (CNS). This review examines past and current clinical findings and overviews the potential molecular implications of viruses in PD pathology.
Collapse
|
3
|
Neurovirulence and immunogenicity of attenuated recombinant vesicular stomatitis viruses in nonhuman primates. J Virol 2014; 88:6690-701. [PMID: 24696472 DOI: 10.1128/jvi.03441-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In previous work, a prototypic recombinant vesicular stomatitis virus Indiana serotype (rVSIV) vector expressing simian immunodeficiency virus (SIV) gag and human immunodeficiency virus type 1 (HIV-1) env antigens protected nonhuman primates (NHPs) from disease following challenge with an HIV-1/SIV recombinant (SHIV). However, when tested in a stringent NHP neurovirulence (NV) model, this vector was not adequately attenuated for clinical evaluation. For the work described here, the prototypic rVSIV vector was attenuated by combining specific G protein truncations with either N gene translocations or mutations (M33A and M51A) that ablate expression of subgenic M polypeptides, by incorporation of temperature-sensitive mutations in the N and L genes, and by deletion of the VSIV G gene to generate a replicon that is dependent on trans expression of G protein for in vitro propagation. When evaluated in a series of NHP NV studies, these attenuated rVSIV variants caused no clinical disease and demonstrated a very significant reduction in neuropathology compared to wild-type VSIV and the prototypic rVSIV vaccine vector. In spite of greatly increased in vivo attenuation, some of the rVSIV vectors elicited cell-mediated immune responses that were similar in magnitude to those induced by the much more virulent prototypic vector. These data demonstrate novel approaches to the rational attenuation of VSIV NV while retaining vector immunogenicity and have led to identification of an rVSIV N4CT1gag1 vaccine vector that has now successfully completed phase I clinical evaluation. IMPORTANCE The work described in this article demonstrates a rational approach to the attenuation of vesicular stomatitis virus neurovirulence. The major attenuation strategy described here will be most likely applicable to other members of the Rhabdoviridae and possibly other families of nonsegmented negative-strand RNA viruses. These studies have also enabled the identification of an attenuated, replication-competent rVSIV vector that has successfully undergone its first clinical evaluation in humans. Therefore, these studies represent a major milestone in the development of attenuated rVSIV, and likely other vesiculoviruses, as a new vaccine platform(s) for use in humans.
Collapse
|
4
|
Olsson T. Role of cytokines in multiple sclerosis and experimental autoimmune encephalomyelitis. Eur J Neurol 2013; 1:7-19. [PMID: 24283424 DOI: 10.1111/j.1468-1331.1994.tb00045.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T Olsson
- Division of Neurology, Department of Clinical Neuroscience and Family Medicine, Karolinska Institute, Huddinge Hospital, S-141 86 Huddinge, Sweden
| |
Collapse
|
5
|
Effect of interferon-β on neuroinflammation, brain injury and neurological outcome after experimental subarachnoid hemorrhage. Neurocrit Care 2013; 18:96-105. [PMID: 22434548 DOI: 10.1007/s12028-012-9692-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Aneurysmal subarachnoid hemorrhage (SAH) has a poor outcome, particularly attributed to progressive injury after the initial incident. Several studies suggest a critical role for inflammation in lesion progression after SAH. Our goal was to test whether treatment with anti-inflammatory interferon-β, which has shown promise as a therapeutic agent in experimental ischaemic stroke, can protect the brain after SAH. METHODS SAH was induced in adult male Wistar rats by puncturing the intracranial bifurcation of the right internal carotid artery. Treatment effects of daily interferon-β (n = 16) or vehicle (n = 14) injections were serially evaluated with multiparametric MRI and behavioral tests from day 0 to 7, in compliance with recent recommendations for pre-clinical drug testing. Outcome measures included neurological status, brain lesion volume, blood-brain barrier (BBB) leakage, and levels of inflammatory markers. RESULTS In animals that survived up to 7 days post-SAH, we found no significant differences between vehicle- and interferon-β-treated animals with respect to final neurological score (14.3 ± 1.0 vs. 13.0 ± 2.2), brain lesion size on T(2)-weighted MR images (59 ± 83 vs. 124 ± 99 mm(3)), BBB leakage (0.26 ± 0.05 vs. 0.22 ± 0.08 contrast-induced relative MR signal change), upregulation of brain RNA for cytokines, chemokines and cell adhesion molecules, and increased neutrophil activation. CONCLUSIONS In contrast to previously published findings in experimental ischemic stroke models, interferon-β has no clear efficacy to protect the brain after SAH. In line with recent highlighting of the significance of negative findings, our data currently do not recommend clinical testing of interferon-β to prevent neurological damage in SAH patients.
Collapse
|
6
|
Cytokine immunopathogenesis of enterovirus 71 brain stem encephalitis. Clin Dev Immunol 2012; 2012:876241. [PMID: 22956971 PMCID: PMC3432373 DOI: 10.1155/2012/876241] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/27/2012] [Indexed: 12/19/2022]
Abstract
Enterovirus 71 (EV71) is one of the most important causes of herpangina and hand, foot, and mouth disease. It can also cause severe complications of the central nervous system (CNS). Brain stem encephalitis with pulmonary edema is the severe complication that can lead to death. EV71 replicates in leukocytes, endothelial cells, and dendritic cells resulting in the production of immune and inflammatory mediators that shape innate and acquired immune responses and the complications of disease. Cytokines, as a part of innate immunity, favor the development of antiviral and Th1 immune responses. Cytokines and chemokines play an important role in the pathogenesis EV71 brain stem encephalitis. Both the CNS and the systemic inflammatory responses to infection play important, but distinctly different, roles in the pathogenesis of EV71 pulmonary edema. Administration of intravenous immunoglobulin and milrinone, a phosphodiesterase inhibitor, has been shown to modulate inflammation, to reduce sympathetic overactivity, and to improve survival in patients with EV71 autonomic nervous system dysregulation and pulmonary edema.
Collapse
|
7
|
Huang HI, Weng KF, Shih SR. Viral and host factors that contribute to pathogenicity of enterovirus 71. Future Microbiol 2012; 7:467-79. [DOI: 10.2217/fmb.12.22] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The single-stranded RNA virus enterovirus 71 (EV71), which belongs to the Picornaviridae family, has caused epidemics worldwide, particularly in the Asia–Pacific region. Most EV71 infections result in mild clinical symptoms, including herpangina and hand, foot and mouth disease. However, serious pathological complications have also been reported, especially for young children. The mechanisms of EV71 disease progression remain unclear. The pathogenesis of adverse clinical outcomes may relate to many factors, including cell tropism, cell death and host immune responses. This article reviews the recent advances in the identification of factors determining EV71 cell tropism, the associated mechanisms of viral infection-induced cell death and the interplay between EV71 and immunity.
Collapse
Affiliation(s)
- Hsing-I Huang
- Research Center for Emerging Viral Infections, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
- Department of Medical Biotechnology & Laboratory Science, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
| | - Kuo-Feng Weng
- Research Center for Emerging Viral Infections, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
- The Center for Molecular & Clinical Immunology, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
- Department of Medical Biotechnology & Laboratory Science, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
| |
Collapse
|
8
|
Gonçalves J, Baptista S, Martins T, Milhazes N, Borges F, Ribeiro CF, Malva JO, Silva AP. Methamphetamine-induced neuroinflammation and neuronal dysfunction in the mice hippocampus: preventive effect of indomethacin. Eur J Neurosci 2010; 31:315-26. [PMID: 20074221 DOI: 10.1111/j.1460-9568.2009.07059.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methamphetamine (METH) causes irreversible damage to brain cells leading to neurological and psychiatric abnormalities. However, the mechanisms underlying life-threatening effects of acute METH intoxication remain unclear. Indeed, most of the hypotheses focused on intra-neuronal events, such as dopamine oxidation, oxidative stress and excitotoxicity. Yet, recent reports suggested that glia may contribute to METH-induced neuropathology. In the present study, we investigated the hippocampal dysfunction induced by an acute high dose of METH (30 mg/kg; intraperitoneal injection), focusing on the inflammatory process and changes in several neuronal structural proteins. For that, 3-month-old male wild-type C57BL/6J mice were killed at different time-points post-METH. We observed that METH caused an inflammatory response characterized by astrocytic and microglia reactivity, and tumor necrosis factor (TNF) system alterations. Indeed, glial fibrillary acidic protein (GFAP) and CD11b immunoreactivity were upregulated, likewise TNF-alpha and TNF receptor 1 protein levels. Furthermore, the effect of METH on hippocampal neurons was also investigated, and we observed a downregulation in beta III tubulin expression. To clarify the possible neuronal dysfunction induced by METH, several neuronal proteins were analysed. Syntaxin-1, calbindin D28k and tau protein levels were downregulated, whereas synaptophysin was upregulated. We also evaluated whether an anti-inflammatory drug could prevent or diminish METH-induced neuroinflammation, and we concluded that indomethacin (10 mg/kg; i.p.) prevented METH-induced glia activation and both TNF system and beta III tubulin alterations. In conclusion, we demonstrated that METH triggers an inflammatory process and leads to neuronal dysfunction in the hippocampus, which can be prevented by an anti-inflammatory treatment.
Collapse
Affiliation(s)
- Joana Gonçalves
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Smith C, Kruger MJ, Smith RM, Myburgh KH. The inflammatory response to skeletal muscle injury: illuminating complexities. Sports Med 2009; 38:947-69. [PMID: 18937524 DOI: 10.2165/00007256-200838110-00005] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Injury of skeletal muscle, and especially mechanically induced damage such as contusion injury, frequently occurs in contact sports, as well as in accidental contact sports, such as hockey and squash. The large variations with regard to injury severity and affected muscle group, as well as non-specificity of reported symptoms, complicate research aimed at finding suitable treatments. Therefore, in order to increase the chances of finding a successful treatment, it is important to understand the underlying mechanisms inherent to this type of skeletal muscle injury and the cellular processes involved in muscle healing following a contusion injury. Arguably the most important of these processes is inflammation since it is a consistent and lasting response. The inflammatory response is dependent on two factors, namely the extent of actual physical damage and the degree of muscle vascularization at the time of injury. However, long-term anti-inflammatory treatment is not necessarily effective in promoting healing, as indicated by various studies on NSAID treatment. Because of the factors named earlier, human studies on the inflammatory response to contusion injury are limited, but several experimental animal models have been designed to study muscle damage and regeneration. The early recovery phase is characterized by the overlapping processes of inflammation and occurrence of secondary damage. Although neutrophil infiltration has been named as a contributor to the latter, no clear evidence exists to support this claim. Macrophages, although forming part of the inflammatory response, have been shown to have a role in recovery, rather than in exacerbating secondary damage. Several probable roles for this cell type in the second phase of recovery, involving resolution processes, have been identified and include the following: (i) phagocytosis to remove cellular debris; (ii) switching from a pro- to anti-inflammatory phenotype in regenerating muscle; (iii) preventing muscle cells from undergoing apoptosis; (iv) releasing factors to promote muscle precursor cell activation and growth; and (v) secretion of cytokines and growth factors to facilitate vascular and muscle fibre repair. These many different roles suggest that a single treatment with one specific target cell population (e.g. neutrophils, macrophages or satellite cells) may not be equally effective in all phases of the post-injury response. To find the optimal targeted, but time-course-dependent, treatments requires substantial further investigations. However, the techniques currently used to induce mechanical injury vary considerably in terms of invasiveness, tools used to induce injury, muscle group selected for injury and contractile status of the muscle, all of which have an influence on the immune and/or cytokine responses. This makes interpretation of the complex responses more difficult. After our review of the literature, we propose that a standardized non-invasive contusion injury is the ideal model for investigations into the immune responses to mechanical skeletal muscle injury. Despite its suitability as a model, the currently available literature with respect to the inflammatory response to injury using contusion models is largely inadequate. Therefore, it may be premature to investigate highly targeted therapies, which may ultimately prove more effective in decreasing athlete recovery time than current therapies that are either not phase-specific, or not administered in a phase-specific fashion.
Collapse
Affiliation(s)
- Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Matieland, South Africa.
| | | | | | | |
Collapse
|
10
|
Kim CS, Lee SY, Cho SH, Ko YM, Kim BH, Kim HJ, Park JC, Kim DK, Ahn H, Kim BO, Lim SH, Chun HS, Kim DK. Cordyceps militaris induces the IL-18 expression via its promoter activation for IFN-gamma production. JOURNAL OF ETHNOPHARMACOLOGY 2008; 120:366-371. [PMID: 18929637 DOI: 10.1016/j.jep.2008.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cordyceps militaris, one of traditional herbal ingredient in oriental medicine, has been known to promote anticancer and immunomodulatory activities in vitro and in vivo. However, the biological mechanism of anticancer activity has been unknown. OBJECTIVE To investigate the effect of Cordyceps militaris extract on expression of interferon gamma (IFN-gamma) through interlukin-18 (IL-18) induction and its biological mechanism in vitro and in vivo. MATERIALS AND METHODS Mice were administrated orally with solution extracted from Cordyceps militaris. The transcription level of IL-18 and IFN-gamma production were measured by reverse transcriptase polymerase chain reaction (RT-PCR) and immunohistochemistry. RAW 264.7 cells were transiently transfected with pCATp1 and pCATp2 for IL-18 promoter functional analysis. RESULTS Cordyceps militaris extracts treatment significantly induced level of IL-18 transcription in mouse brain and liver and enhanced IL-18 transcription level and activated the IFN-gamma production in RAW 264.7 cells. Furthermore, Cordyceps militaris extract led to increase the activity of pCATp1 construct containing the 5' franking region of IL-18 promoter in RAW 264.7 cells. CONCLUSION Cordyceps militaris extract induced IL-18 mRNA level via enhancing of P1 promoter region result in activation of IFN-gamma production, indicating its potential as an immune activator or anticancer drug.
Collapse
Affiliation(s)
- Chun Sung Kim
- Oral Biology Research Institute and The second stage of BK21, Chosun University College of Dentistry, Gwangju 501-759, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang SM, Lei HY, Su LY, Wu JM, Yu CK, Wang JR, Liu CC. Cerebrospinal fluid cytokines in enterovirus 71 brain stem encephalitis and echovirus meningitis infections of varying severity. Clin Microbiol Infect 2007; 13:677-82. [PMID: 17441979 DOI: 10.1111/j.1469-0691.2007.01729.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Taiwan has experienced several outbreaks of enterovirus 71 (EV71) infections since 1998. This study examined the quantitative relationship between specific cytokines in the cerebrospinal fluid (CSF) and the severity of EV71 brain stem encephalitis (BE), and investigated whether the CSF cytokine response differed from that to uncomplicated echovirus meningitis (EM). The study included 57 children with EV71 BE, of whom 24 had isolated BE, 24 had autonomic nervous system (ANS) dysregulation, and nine had pulmonary oedema (PE), and 15 children with EM. All were confirmed by virus culture. Mean CSF glucose, total protein and lactate levels were increased significantly in association with the severity of EV71 BE. The mean CSF concentration of interleukin (IL)-1beta in children with EV71 PE was significantly higher than in those with isolated BE. IL-6 and interferon (IFN)-gamma levels were significantly higher for EV71 PE and ANS dysregulation than for isolated BE. In contrast, EM was associated with high levels of IL-1beta and low levels of IFN-gamma. Cytokines in the central nervous system, as well as in blood, appear to be involved in the pathogenesis of EV71 BE.
Collapse
MESH Headings
- Brain Stem/immunology
- Brain Stem/physiopathology
- Brain Stem/virology
- Child, Preschool
- Cytokines/cerebrospinal fluid
- Disease Outbreaks
- Echovirus Infections/epidemiology
- Echovirus Infections/immunology
- Echovirus Infections/physiopathology
- Echovirus Infections/virology
- Encephalitis, Viral/epidemiology
- Encephalitis, Viral/immunology
- Encephalitis, Viral/physiopathology
- Encephalitis, Viral/virology
- Enterovirus/immunology
- Enterovirus/pathogenicity
- Enterovirus B, Human/immunology
- Enterovirus B, Human/pathogenicity
- Enterovirus Infections/epidemiology
- Enterovirus Infections/immunology
- Enterovirus Infections/physiopathology
- Enterovirus Infections/virology
- Female
- Humans
- Infant
- Male
- Meningitis, Viral/epidemiology
- Meningitis, Viral/immunology
- Meningitis, Viral/physiopathology
- Meningitis, Viral/virology
- Severity of Illness Index
- Taiwan/epidemiology
Collapse
Affiliation(s)
- S-M Wang
- Department of Emergency Medicine, National Cheng Kung University & Hospital, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
12
|
Vikman KS, Duggan AW, Siddall PJ. Interferon-gamma induced disruption of GABAergic inhibition in the spinal dorsal horn in vivo. Pain 2007; 133:18-28. [PMID: 17407800 DOI: 10.1016/j.pain.2007.02.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 02/01/2007] [Accepted: 02/01/2007] [Indexed: 01/26/2023]
Abstract
The proinflammatory cytokine interferon-gamma (IFN-gamma), which can be present in elevated levels in the central nervous system during pathological conditions, may be involved in the generation of persistent pain states by inducing neuronal hyperexcitability. The aim of the present study was to examine whether loss of dorsal horn GABAergic inhibition may underlie this IFN-gamma-mediated neuronal hyperexcitability. Repetitive intrathecal injections of recombinant rat IFN-gamma (1000 U) or control buffer were administered to rats every second day for eight days. Electrophysiological recordings from lumbar dorsal horn neurons (n=46) were performed under halothane anaesthesia. Cellular responses were recorded before, during and after microiontophoretic application of the GABA antagonist bicuculline. In control animals, all cellular responses studied were significantly enhanced in the presence of bicuculline, including increased spontaneous activity, enhanced responses to innocuous and noxious mechanical stimulation and reduced paired-pulse depression. In contrast, in IFN-gamma-treated animals, bicuculline ejection had little or no facilitating effect on neuronal responses and instead a significant proportion of neurons displayed reduced responses. Seventy-four percent of cells from IFN-gamma treated animals showed a reduction in the response to noxious stimulation and 47% of the cells showed increased rather than reduced paired-pulse depression in the presence of bicuculline, thus suggesting IFN-gamma-induced excitatory actions by GABA. These findings show that the prolonged presence of increased levels of IFN-gamma in the central nervous system may contribute to the generation of central sensitization and persistent pain by reducing inhibitory tone in the dorsal horn. This implies a potential link between disinhibition and cytokine action in the spinal cord.
Collapse
Affiliation(s)
- Kristina S Vikman
- Pain Management Research Institute, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
| | | | | |
Collapse
|
13
|
Peterson LK, Fujinami RS. Inflammation, demyelination, neurodegeneration and neuroprotection in the pathogenesis of multiple sclerosis. J Neuroimmunol 2006; 184:37-44. [PMID: 17196667 PMCID: PMC1933528 DOI: 10.1016/j.jneuroim.2006.11.015] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 11/17/2006] [Indexed: 12/31/2022]
Abstract
Although axonal loss has been observed in demyelinated multiple sclerosis (MS) lesions, there has been a major focus on understanding mechanisms of demyelination. However, identification of markers for axonal damage and development of new imaging techniques has enabled detection of subtle changes in axonal pathology and revived interest in the neurodegenerative component of MS. Axonal loss is generally accepted as the main determinant of permanent clinical disability. However, the role of axonal loss early in disease or during relapsing-remitting disease is still under investigation, as are the interactions and interdependency between inflammation, demyelination, neurodegeneration and neuroprotection in the pathogenesis of MS.
Collapse
Affiliation(s)
- Lisa K Peterson
- Department of Neurology, University of Utah School of Medicine, 30 North 1900 East, 3R330 SOM, Salt Lake City, UT 84132-2305, USA
| | | |
Collapse
|
14
|
Kawanokuchi J, Mizuno T, Takeuchi H, Kato H, Wang J, Mitsuma N, Suzumura A. Production of interferon-gamma by microglia. Mult Scler 2006; 12:558-64. [PMID: 17086900 DOI: 10.1177/1352458506070763] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neural cells do not usually interact with immune cells because of the lack of major histocompatibility complex (MHC) antigen expression. Interferon-gamma (IFN-gamma) enables this interaction via induction of MHC antigen expression in neural cells. Thus, IFN-gamma is a critical cytokine for the development of central nervous system (CNS) pathologies. IFN-gamma, however, is considered to be produced exclusively by lymphoid cells. Here, we show for the first time that murine microglia produce IFN-gamma in response to IL-12 and/or IL-18, using RT-PCR detection of IFN-gamma mRNA and Western blotting and immunohistochemical analysis for cytoplasmic expression of IFN-gamma. Stimulation of microglia with IL-12 and IL-18 resulted in MHC class II mRNA expression in microglia. Since IL-12 and IL-18 are produced in the CNS by glial cells, these cytokines may play a critical role in the initiation of neural-immune cell interaction and the induction of autoimmune processes in the CNS via induction of IFN-gamma and MHC antigens.
Collapse
Affiliation(s)
- J Kawanokuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Miyatake Y, Ikeda H, Ishizu A, Baba T, Ichihashi T, Suzuki A, Tomaru U, Kasahara M, Yoshiki T. Role of neuronal interferon-gamma in the development of myelopathy in rats infected with human T-cell leukemia virus type 1. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:189-99. [PMID: 16816372 PMCID: PMC1698768 DOI: 10.2353/ajpath.2006.051225] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of not only adult T-cell leukemia but also HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Among the rat strains infected with HTLV-1, chronic progressive myelopathy, named HAM rat disease, occurs exclusively in WKAH rats. In the present study, we found that HTLV-1 infection induces interferon (IFN)-gamma production in the spinal cords of HAM-resistant strains but not in those of WKAH rats. Neurons were the major cells that produced IFN-gamma in HTLV-1-infected, HAM-resistant strains. Administration of IFN-gamma suppressed expression of pX, the gene critically involved in the onset of HAM rat disease, in an HTLV-1-immortalized rat T-cell line, indicating that IFN-gamma protects against the development of HAM rat disease. The inability of WKAH spinal cord neurons to produce IFN-gamma after infection appeared to stem from defects in signaling through the interleukin (IL)-12 receptor. Specifically, WKAH-derived spinal cord cells were unable to up-regulate the IL-12 receptor beta2 gene in response to IL-12 stimulation. We suggest that the failure of spinal cord neurons to produce IFN-gamma through the IL-12 pathway is involved in the development of HAM rat disease.
Collapse
Affiliation(s)
- Yukiko Miyatake
- Department of Pathology/Pathophysiology, Division of Pathophysiological Science, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
SILVERMAN MARNIN, PEARCE BRADD, BIRON CHRISTINEA, MILLER ANDREWH. Immune modulation of the hypothalamic-pituitary-adrenal (HPA) axis during viral infection. Viral Immunol 2005; 18:41-78. [PMID: 15802953 PMCID: PMC1224723 DOI: 10.1089/vim.2005.18.41] [Citation(s) in RCA: 325] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Compelling data has been amassed indicating that soluble factors, or cytokines, emanating from the immune system can have profound effects on the neuroendocrine system, in particular the hypothalamic- pituitary-adrenal (HPA) axis. HPA activation by cytokines (via the release of glucocorticoids), in turn, has been found to play a critical role in restraining and shaping immune responses. Thus, cytokine-HPA interactions represent a fundamental consideration regarding the maintenance of homeostasis and the development of disease during viral infection. Although reviews exist that focus on the bi-directional communication between the immune system and the HPA axis during viral infection (188,235), others have focused on the immunomodulatory effects of glucocorticoids during viral infection (14,225). This review, however, concentrates on the other side of the bi-directional loop of neuroendocrine-immune interactions, namely, the characterization of HPA axis activity during viral infection and the mechanisms employed by cytokines to stimulate glucocorticoid release.
Collapse
Affiliation(s)
- MARNI N. SILVERMAN
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - BRAD D. PEARCE
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - CHRISTINE A. BIRON
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, Rhode Island
| | - ANDREW H. MILLER
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Address reprint requests to: Dr. Andrew H. Miller, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 101 Woodruff Circle, WMRB Suite 4000, Atlanta, Georgia 30322, E-mail:
| |
Collapse
|
17
|
Ramírez G, Toro R, Döbeli H, von Bernhardi R. Protection of rat primary hippocampal cultures from Aβ cytotoxicity by pro-inflammatory molecules is mediated by astrocytes. Neurobiol Dis 2005; 19:243-54. [PMID: 15837580 DOI: 10.1016/j.nbd.2005.01.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 12/06/2004] [Accepted: 01/04/2005] [Indexed: 11/24/2022] Open
Abstract
The brain of Alzheimer's disease patients shows abundant dystrophic neurites in close proximity to fibrillar beta-amyloid (A beta) plaques, and activated glial cells. We evaluated the influence of pro-inflammatory molecules (LPS + IFN-gamma) on A beta(1-42) neurotoxicity. 2 microM A beta(1-42) induced apoptosis of hippocampal cells and LPS + IFN-gamma reduced the apoptosis induced by A beta. However, LPS + IFN-gamma prevented apoptosis only in hippocampal cultures containing astrocytes. Also, LPS + IFN-gamma induced the secretion of TGF beta, a cytokine having neuroprotective effects, only in hippocampal cultures that contained astrocytes. Astrocytes had a regulatory effect over microglial and neuronal responses to A beta. The results suggest that LPS + IFN-gamma, traditionally considered as pro-apoptotic, reduced apoptosis induced by A beta through the activation of neuroprotective mechanisms mediated by astrocytes. We propose that astrocytes are pivotal in the modulation of inflammation of the CNS. The impairment of the regulatory functions performed by activated astrocytes could represent an important pathogenic mechanism for neurodegenerative diseases.
Collapse
Affiliation(s)
- Gigliola Ramírez
- Faculty of Medicine, Department of Neurology, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | | | | | | |
Collapse
|
18
|
Vikman KS, Siddall PJ, Duggan AW. Increased responsiveness of rat dorsal horn neurons in vivo following prolonged intrathecal exposure to interferon-γ. Neuroscience 2005; 135:969-77. [PMID: 16125859 DOI: 10.1016/j.neuroscience.2005.06.059] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 06/17/2005] [Accepted: 06/22/2005] [Indexed: 11/20/2022]
Abstract
Prolonged increases in the level of the pro-inflammatory cytokine interferon-gamma occur in the CNS during some disease states associated with persistent pain. Administration of interferon-gamma to both humans and rodents has produced pain or pain-related behavior but the underlying mechanisms are unknown. The present study examined the effects of repeated intrathecal administration of interferon-gamma on dorsal horn neuronal responses under in vivo conditions. In addition, behavioral effects of interferon-gamma treatment were studied. Intrathecal cannulae were implanted into anesthetized rats. Animals then received either 1000 U of recombinant rat interferon-gamma in 10 microl buffer intrathecally, repeated four times over 8 days, or similarly administered buffer (controls). Interferon-gamma-treated animals showed a significant reduction in paw withdrawal threshold to mechanical stimulation of the hind paw. Electrophysiological experiments were performed under halothane anesthesia. Extracellular recordings of spontaneous and evoked responses were obtained from dorsal horn neurons (n=64) in the lumbar spinal cord. There was a significantly higher proportion of spontaneously active neurons in the interferon-gamma-treated animals (50%) when compared with controls (19%). A significantly increased proportion of neurons from interferon-gamma-treated animals displayed afterdischarges following both innocuous and noxious mechanical stimulation of the receptive field (brush: 21% in interferon-gamma-treated, 3% in controls; pinch: 97% in interferon-gamma-treated, 50% in controls). Neurons from interferon-gamma-treated animals also showed significantly increased wind-up of action potentials in response to repeated electrical stimulation of the sciatic nerve at C-fiber strength at both 0.5 and 1 Hz. Paired-pulse inhibition, evoked through electrical stimulation of the cutaneous receptive field, was significantly decreased in neurons from interferon-gamma-treated animals at 50 and 100 ms inter-stimulus intervals. We propose that this demonstrated reduction in inhibition may underlie the enhanced excitatory responses. Such interferon-gamma-induced changes in evoked responses may contribute to persistent pain following damage or disease states in the nervous system.
Collapse
Affiliation(s)
- K S Vikman
- Pain Management Research Institute, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia.
| | | | | |
Collapse
|
19
|
Tomita M, Khan RL, Blehm BH, Santoro TJ. The potential pathogenetic link between peripheral immune activation and the central innate immune response in neuropsychiatric systemic lupus erythematosus. Med Hypotheses 2004; 62:325-35. [PMID: 14975498 DOI: 10.1016/j.mehy.2003.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Accepted: 10/26/2003] [Indexed: 10/26/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease of unknown etiology. Neuropsychiatric disturbances unexplained by drugs or by other untoward manifestations of disease are present in up to one-half of SLE patients and have profound economic and social impact. In patients with neuropsychiatric SLE, structural lesions have been identified in the hippocampus and proinflammatory cytokines have been detected in the cerebrospinal fluid. Similarly, murine models of lupus, such as MRL-lpr/lpr mice display behavioral disturbances which map to the hippocampus and exhibit overexpression of proinflammatory cytokine genes in hippocampal homogenates. Neuropsychiatric SLE typically occurs in the presence of serologically and clinically active lupus. In animal models of SLE, such as MRL-lpr/lpr, NZB, BXSB, and [NZB x NZW]F(1), uncontrolled autoreactivity in the periphery is accompanied by behavioral disturbances that are chronic and progressive. These observations suggest the hypothesis that central nervous system disease in SLE is driven by cross-talk between the peripheral immune system and the brain's innate immune system, which results in the inexorable activation of astrocytes, microglia, and/or neurons within the hippocampus. This leads to overproduction of brain cytokines, which induce the synthesis of pro-oxidant molecules, such as eicosanoids and reactive oxygen species, with resultant tissue injury. The cascade becomes self-perpetuating and eventuates in neuronal death, which is followed by impaired cognition. A better understanding of the molecular events that operate in the pathogenesis of neuropsychiatric SLE may provide the basis for a more rational therapeutic approach to this incompletely understood disease.
Collapse
Affiliation(s)
- Michiyo Tomita
- Department of Internal Medicine, University of North Dakota School of Medicine, 1919 North Elm Street, Fargo, ND 58102, USA.
| | | | | | | |
Collapse
|
20
|
Chavarria A, Alcocer-Varela J. Is damage in central nervous system due to inflammation? Autoimmun Rev 2004; 3:251-60. [PMID: 15246020 DOI: 10.1016/j.autrev.2003.09.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 09/28/2003] [Indexed: 12/25/2022]
Abstract
The aim of this work was to review the inflammatory factors involved in central nervous system (CNS) inflammation and the damage associated to their participation in an inflammatory disease of CNS, multiple sclerosis in humans and experimental allergic encephalomyelitis in the murine model. Inflammation has an important repairing function, nevertheless frequently in the CNS inflammation is the cause of damage and it does not fulfill this repairing function as it happens in other compartments of the body. The inflammatory response in the CNS involves the participation of different cellular types of the immune system (macrophages, mast cells, T and B lymphocytes, dendritic cells) and resident cells of the CNS (microglia, astrocytes, neurons), adhesion molecules, cytokines and chemokines among other proteic components. During neuroinflammation chemotaxis is an important event in the recruitment of cells to the CNS. The lymphocyte recruitment implies the presence of chemokines and chemokine receptors, the expression of adhesion molecules, the interaction between lymphocytes and the bloodbrain barrier (BBB) endothelium, and finally their passage through the BBB to arrive at the site of inflammation. If this process is not controlled, is prolonged, inflammation loses its repairing function and can be the cause of damage. Usually neuroinflammation has the tendency to decline to damage, which would explain most of the CNS pathologies.
Collapse
Affiliation(s)
- A Chavarria
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, UNAM, AP70228, Mexico DF 04510, Mexico
| | | |
Collapse
|
21
|
Arduini RM, Li Z, Rapoza A, Gronke R, Hess DM, Wen D, Miatkowski K, Coots C, Kaffashan A, Viseux N, Delaney J, Domon B, Young CN, Boynton R, Chen LL, Chen L, Betzenhauser M, Miller S, Gill A, Pepinsky RB, Hochman PS, Baker DP. Expression, purification, and characterization of rat interferon-β, and preparation of an N-terminally PEGylated form with improved pharmacokinetic parameters. Protein Expr Purif 2004; 34:229-42. [PMID: 15003256 DOI: 10.1016/j.pep.2003.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 11/11/2003] [Indexed: 11/21/2022]
Abstract
To identify potential new clinical uses and routes of administration for human interferon-beta-1a (IFN-beta-1a), we have developed an expression and purification procedure for the preparation of highly purified rat interferon-beta (IFN-beta) suitable for testing in rat models of human disease. An expression vector containing the rat IFN-beta signal sequence and structural gene was constructed and transfected into Chinese hamster ovary (CHO) cells. The protein was purified from CHO cell conditioned medium and purified to > 99.5% purity using standard chromatographic techniques. Analytical characterization indicated that the protein was a heavily glycosylated monomeric protein, with two of the four predicted N-glycosylation sites occupied. Analysis of the attached oligosaccharides showed them to be a complex mixture of bi-antennary, tri-antennary, and tetra-antennary structures with a predominance of sialylated tri-antennary and tetra-antennary structures. Peptide mapping, N-terminal sequencing, and mass spectrometry confirmed the identity and integrity of the purified protein. The purified protein had a specific activity of 2.1x10(8)U/mg when assayed on rat RATEC cells, which is similar in magnitude to the potencies observed for murine IFN-beta and human IFN-beta-1a assayed on murine and human cells, respectively. We also prepared an N-terminally PEGylated form of rat IFN-beta in which a 20 kDa methoxy polyethylene glycol (PEG)-propionaldehyde was attached to the N-terminal alpha-amino group of Ile-1. The PEGylated protein, which retained essentially full in vitro antiviral activity, had improved pharmacokinetic parameters in rats as compared to the unmodified protein. Both the unmodified and PEGylated forms of rat IFN-beta will be useful for testing in rat models of human disease.
Collapse
|
22
|
Veldhuis WB, Floris S, van der Meide PH, Vos IMP, de Vries HE, Dijkstra CD, Bär PR, Nicolay K. Interferon-beta prevents cytokine-induced neutrophil infiltration and attenuates blood-brain barrier disruption. J Cereb Blood Flow Metab 2003; 23:1060-9. [PMID: 12973022 DOI: 10.1097/01.wcb.0000080701.47016.24] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inflammation can contribute to brain injury, such as that resulting from ischemia or trauma. The authors have previously shown that the cytokine interferon-beta (IFN-beta) affords protection against ischemic brain injury, which was associated with a diminished infiltration of neutrophils and a reduction in blood-brain barrier (BBB) disruption. The goal of the current study was to directly assess the effects of IFN-beta on neutrophil infiltration, with the use of an in vivo assay of neutrophil infiltration with relevance to ischemic brain injury. Intrastriatal injection of recombinant rat cytokine-induced neutrophil chemoattractant-1, a member of the interleukin-8 family (1 microg in 1 microl), triggered massive infiltration of neutrophils and extensive BBB disruption 6 hours later, as measured using immunofluorescence microscopy and magnetic resonance imaging in the rat, respectively. Depleting the animals of neutrophils before interleukin-8 injection prevented BBB disruption. Treatment with IFN-beta (5 x 106 U/kg) almost completely prevented neutrophil infiltration and attenuated BBB damage. Gelatinase zymography showed matrix metalloproteinase-9 expression in the ipsilateral striatum after interleukin-8 injection. Both neutrophil depletion and IFN-beta treatment downregulated matrix metalloproteinase-9. IFN-beta has already been approved for human use as a treatment for the chronic inflammatory disorder multiple sclerosis. The potential value of IFN-beta as a treatment that can attenuate acute brain inflammation is considered.
Collapse
Affiliation(s)
- Wouter B Veldhuis
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Veldhuis WB, Derksen JW, Floris S, Van Der Meide PH, De Vries HE, Schepers J, Vos IMP, Dijkstra CD, Kappelle LJ, Nicolay K, Bär PR. Interferon-beta blocks infiltration of inflammatory cells and reduces infarct volume after ischemic stroke in the rat. J Cereb Blood Flow Metab 2003; 23:1029-39. [PMID: 12973019 DOI: 10.1097/01.wcb.0000080703.47016.b6] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The inflammatory response that exacerbates cerebral injury after ischemia is an attractive therapeutic target: it progresses over days and strongly contributes to worsening of the neurologic outcome. The authors show that, after transient ischemic injury to the rat brain, systemic application of interferon-beta (IFN-beta), a cytokine with antiinflammatory properties, attenuated the development of brain infarction. Serial magnetic resonance imaging (MRI) showed that IFN-beta treatment reduced lesion volume on diffusion-weighted MRI by 70% (P < 0.01) at 1 day after stroke. IFN-beta attenuated the leakage of contrast agent through the blood-brain barrier (P < 0.005), indicating a better-preserved blood-brain barrier integrity. Both control and IFN-beta-treated animals showed a similar degree of relative hyperperfusion of the lesioned hemisphere, indicating that neuroprotection by IFN-beta was not mediated by improved cerebral perfusion as assessed 24 hours after stroke onset. IFN-beta treatment resulted in an 85% reduction (P < 0.0001) in infarct volume 3 weeks later, as determined from T2-weighted MRI and confirmed by histology. This effect was achieved even when treatment was started 6 hours after stroke onset. Quantitative immunohistochemistry at 24 hours after stroke onset showed that IFN-beta almost completely prevented the infiltration of neutrophils and monocytes into the brain. Gelatinase zymography showed that this effect was associated with a decrease in matrix metalloproteinase-9 expression. In conclusion, treatment with the antiinflammatory cytokine IFN-beta affords significant neuroprotection against ischemia/reperfusion injury, and within a relatively long treatment window. Because IFN-beta has been approved for clinical use, it may be rapidly tested in a clinical trial for its efficacy against human stroke.
Collapse
Affiliation(s)
- Wouter B Veldhuis
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hunot S, Hirsch EC. Neuroinflammatory processes in Parkinson's disease. Ann Neurol 2003; 53 Suppl 3:S49-58; discussion S58-60. [PMID: 12666098 DOI: 10.1002/ana.10481] [Citation(s) in RCA: 279] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Parkinson's disease (PD) is a movement disorder characterized by the progressive degeneration of dopaminergic neurons in the midbrain. To date, its cause remains unknown and the mechanism of nerve cell death uncertain. Apart from the massive loss of dopaminergic neurons, PD brains also show a conspicuous glial reaction together with signs of a neuroinflammatory reaction manifested by elevated cytokine levels and upregulation of inflammatory-associated factors such as cyclooxygenase-2 and inducible nitric oxide synthase. Mounting evidence also suggests a possible deleterious effect of these neuroinflammatory processes in experimental models of the disease. We propose that, in PD, neuroinflammation plays a role in the cascade of events leading to nerve cell death, thus propagating the neurodegenerative process. In this review, we summarize and discuss the latest findings regarding neuroinflammatory aspects in PD.
Collapse
|
25
|
Genc S, Kizildag S, Genc K, Ates H, Atabey N, Kizyldag S. Interferon gamma and lipopolysaccharide upregulate TNF-related apoptosis-inducing ligand expression in murine microglia. Immunol Lett 2003; 85:271-4. [PMID: 12663142 DOI: 10.1016/s0165-2478(02)00245-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, it is reported that neonatal murine microglia and N9 murine microglial cell line express tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). TRAIL protein and mRNA expression in murine microglia greatly upregulate upon stimulation with interferon gamma (IFNgamma) or lipopolysaccharide (LPS) as revealed by immunoprecipitation-immunoblotting, reverse transcriptase-polymerase chain reaction (RT-PCR) and flow cytometry techniques. IFNgamma and LPS act synergistically to induce TRAIL expression on both translational and transcriptional levels. The upregulated microglial TRAIL in inflammatory conditions may involve in the cytotoxic effect of these cells and play a role in neurodegenerative processes.
Collapse
Affiliation(s)
- Sermin Genc
- Department of Medical Biology and Medical Genetics, School of Medicine, Dokuz Eylul University, Inciralti, 35340, Izmir, Turkey.
| | | | | | | | | | | |
Collapse
|
26
|
Chesler DA, Reiss CS. The role of IFN-gamma in immune responses to viral infections of the central nervous system. Cytokine Growth Factor Rev 2002; 13:441-54. [PMID: 12401479 DOI: 10.1016/s1359-6101(02)00044-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Interferon (IFN)-gamma, is not only a marker of T(H)1 CD4, CD8 and natural killer (NK) cells, it is also a critical antiviral mediator which is central to the elimination of viruses from the CNS. In this review, we describe IFN-gamma, its receptor, signal transduction from receptor engagement, and antiviral downstream mediators. We demonstrate that although neurons are post-mitotic and non-renewing, they respond to IFN-gamma in a fashion similar to peripheral fibroblasts or lymphocytes. We have illustrated this review with details about studies on the role(s) of IFN-gamma in the pathogenesis of measles virus (MV), herpes simplex virus (HSV) type 1, and vesicular stomatitis virus (VSV) infections of the CNS. For VSV infection, IFN-gamma signals through Jaks 1 and 2 and STAT1 to activate (interferon regulatory factor) IRF-1; although viral protein synthesis is inhibited, PKR is not a critical mediator in the antiviral response to VSV in murine neurons. In contrast, induction of nitric oxide synthase (NOS) type 1 and its production of nitric oxide is essential in the elimination of viruses from neurons.
Collapse
Affiliation(s)
- David A Chesler
- Department of Biology, New York University, 1009 Main Building, 100 Washington Square East, New York, NY 10003, USA
| | | |
Collapse
|
27
|
Skurkovich SV, Skurkovich B, Kelly JA. Anticytokine therapy--new approach to the treatment of autoimmune and cytokine-disturbance diseases. Med Hypotheses 2002; 59:770-80. [PMID: 12445524 DOI: 10.1016/s0306-9877(02)00346-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We pioneered the theory (Nature, 1974) that hyperproduced interferons (cytokines) can bring autoimmune diseases (AD) and neutralizing these cytokines can be therapeutic. In 1975 we first performed successful anticytokine therapy using anti-IFN-alpha antibodies in patients with rheumatoid arthritis (RA). In 1989 we proposed also treating AD including AIDS by removing TNF-alpha and IFN-alpha. Our theory has been widely confirmed: injections of IFN-alpha and -gamma can exacerbate AD, while antibodies to IFN-alpha and -gamma and TNF-alpha can be therapeutic. Anti-IFN-gamma may be a universal treatment for Th1 AD. We had good results using anti-IFN-gamma to treat RA, multiple sclerosis (MS), transplant rejection, alopecia areata, vitiligo, psoriatic arthritis, psoriasis and others. For Th1/Th2 diseases, antagonists to cortisol could prevent the Th1-Th2 shift and allow treatment as a Th1 disease. Anticytokine therapy can also be therapeutic in many neuropsychiatric diseases. Every disturbance of homeostasis may lead to cytokine disturbance. IL-10 may restore homeostasis by inhibiting the production of certain Th1 cytokines and could be used to treat some embryonic disturbances and AD including MS.
Collapse
Affiliation(s)
- S V Skurkovich
- Advanced Biotherapy Labs, Rockville, Maryland 20852, USA.
| | | | | |
Collapse
|
28
|
Franciosi S, Choi HB, Kim SU, McLarnon JG. Interferon-gamma acutely induces calcium influx in human microglia. J Neurosci Res 2002; 69:607-13. [PMID: 12210826 DOI: 10.1002/jnr.10331] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The acute actions of the cytokine, interferon-gamma (IFN-gamma), on intracellular calcium [Ca(2+)](i) levels in human microglia were investigated. In the presence of a calcium-containing physiological solution (Ca(2+)-PSS), IFN-gamma caused a progressive increase in [Ca(2+)](i) to a plateau level with a mean rate of increase of 0.81 +/- 0.17 nM/s and mean amplitude of 102 +/- 12 nM (n = 67 cells). Washout of the cytokine did not alter the plateau established with IFN-gamma in Ca(2+)-PSS; however, introduction of a Ca(2+)-free PSS diminished [Ca(2+)](i) to baseline levels. The decrease in [Ca(2+)](i) with Ca(2+)-free PSS would indicate that the response to IFN-gamma was mediated by an influx pathway. This result was confirmed in separate experiments showing the lack of an induced change in [Ca(2+)](i) with IFN-gamma applied in Ca(2+)-free PSS. The increase in [Ca(2+)](i) induced in Ca(2+)-PSS was reduced to near baseline levels when the external solution contained low Cl(-) in the maintained presence of IFN-gamma suggesting that cellular depolarization inhibited the cytokine mediated entry pathway. The compound SKF96365, which blocks store operated influx of Ca(2+) in human microglia, was ineffective in altering the increase in [Ca(2+)](i), however, La(3+) completely inhibited the Ca(2+) response induced by IFN-gamma. Whole-cell patch clamp studies showed no effect of IFN-gamma to alter outward currents and inward rectifier K(+) currents. The influx of Ca(2+) may serve a signaling role in microglia linking IFN-gamma to functional responses of the cells to infiltrating T lymphocytes into the central nervous system (CNS) during inflammatory processes.
Collapse
Affiliation(s)
- Sonia Franciosi
- Department of Pharmacology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
29
|
Chen N, Restivo A, Reiss CS. Selective inhibition of COX-2 is beneficial to mice infected intranasally with VSV. Prostaglandins Other Lipid Mediat 2002; 67:143-55. [PMID: 11936620 DOI: 10.1016/s0090-6980(01)00185-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclooxygenase (COX) is the key enzyme for prostaglandin (PG) synthesis. PGs are mediators of many critical physiological and inflammatory responses. There are two isoforms, COX-1 and COX-2, both of which are constitutively expressed in the central nervous system (CNS). Studies have shown that COX-1 and COX-2 are involved in physiological and pathological conditions of the brain. However, little is known about the role(s) of COX in the host defense system against a viral infection in the CNS. In this report, we used Vesicular Stomatitis Virus (VSV) induced acute encephalitis to distinguish between the contribution(s) of the two isoforms. COX-2 activity was inhibited with a COX-2 selective drug, celecoxib (Celebrex), and COX-1 was antagonized with SC560. We found that inhibition of COX-2 led to decreased viral titers, while COX-1 antagonism did not have the same effect at day 1 post infection. 5-lipooxygenase (5-LO) expression and neutrophil recruitment in the CNS were increased in celecoxib-inhibited mice. Furthermore, mice treated with celecoxib expressed more Nitric Oxide Synthase-1 (NOS-1), a crucial component of the innate immune system in the restriction of VSV propagation. The expression of type 1 cytokines, IFN-gamma and IL-12, were also increased in celecoxib-treated mice.
Collapse
Affiliation(s)
- Nannan Chen
- Department of Biology, New York University, NY 10003, USA
| | | | | |
Collapse
|
30
|
|
31
|
Mori I, Hossain MJ, Takeda K, Okamura H, Imai Y, Kohsaka S, Kimura Y. Impaired microglial activation in the brain of IL-18-gene-disrupted mice after neurovirulent influenza A virus infection. Virology 2001; 287:163-70. [PMID: 11504551 DOI: 10.1006/viro.2001.1029] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Knockout of the interleukin-18 (IL-18) gene predisposed mice to impaired clearance of neurovirulent influenza A virus-infected neurons from the brain. In wild-type mice, IL-18 molecule-producing microglia/macrophages emerged in virally attacked regions as early as day 3 after infection. Microglial transformation into macrophages culminated at day 7 to 9, with upregulated expression of Iba1, a novel calcium-binding protein that controls phagocytic functions of microglia/macrophages. In IL-18-/- mice, microglial transformation was interrupted with reduced Iba1 expression. Interferon-gamma (IFN-gamma)-immunopositive neurons appeared in and around virally invaded regions in wild-type mice, peaking in number at day 7, whereas such cells were barely detected in IL-18-/- mice. Stereotaxic microinjection of recombinant IFN-gamma triggered microglial transformation in IL-18-/- mice and upregulated Iba1 expression, leading to effective eradication of virally infected neurons. Collectively, these results suggest that IL-18 plays a key role in activating microglial functions directed against the influenza virus infection by inducing neuronal IFN-gamma in the brain parenchyma.
Collapse
Affiliation(s)
- I Mori
- Department of Microbiology, Fukui Medical University School of Medicine, Fukui, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Wakita T, Shintani F, Yagi G, Asai M, Nozawa S. Combination of inflammatory cytokines increases nitrite and nitrate levels in the paraventricular nucleus of conscious rats. Brain Res 2001; 905:12-20. [PMID: 11423074 DOI: 10.1016/s0006-8993(01)02346-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inflammatory cytokines stimulate glial cells in vitro to produce nitric oxide (NO) from inducible NO synthase (iNOS). Whether the stimulation with cytokines produces NO derived from iNOS has not hitherto been demonstrated in the vivo brain. Nitrite and nitrate (NOx(-)) levels in the rat paraventricular nucleus (PVN) were measured before and after intraparenchymal microinjection of cytokines with a microdialysis technique. The cytokines, tumor necrosis factor (TNF)-alpha (10 ng), interleukin (IL)-1 beta (2 ng), and interferon (IFN)-gamma (2 ng) were microinjected. None of the cytokines alone had any effect on the NOx(-) levels for 8 h. But a combination of TNF-alpha and IFN-gamma gradually increased NOx(-) levels beginning at 140 min after the microinjection, and NOx(-) levels reached 1.8 times the basal level at 380 min. A combination of TNF-alpha and IL-1 beta increased NOx(-) beginning at 340 min, reaching 1.7 times the basal level at 440 min, whereas a combination of IL-1 beta and IFN-gamma had no effect. Microinjection of a mixture of all three cytokines increased NOx(-) levels beginning at 120 min, reaching 3.3 times the basal level at 400 min. Aminoguanidine, which is a selective inhibitor of iNOS, reduced NOx(-) levels induced by the mixed cytokine treatment. Semi-quantitative RT-PCR for iNOS mRNA was done. The intensity of the iNOS mRNA band for the cytokine-treated PVN was stronger than that for the vehicle-treated PVN. These results suggest that the increased NOx(-) after the treatment with mixed cytokines were dependent on iNOS activity. This is the first report to indicate that only cytokines induce NOS in vivo in the brain.
Collapse
Affiliation(s)
- T Wakita
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | | | | | | | | |
Collapse
|
33
|
Blasko I, Ransmayr G, Veerhuis R, Eikelenboom P, Grubeck-Loebenstein B. Does IFNgamma play a role in neurodegeneration? J Neuroimmunol 2001; 116:1-4. [PMID: 11311323 DOI: 10.1016/s0165-5728(01)00279-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- I Blasko
- Department of Neurology, University Hospital of Innsbruck, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
34
|
Blasko I, Veerhuis R, Stampfer-Kountchev M, Saurwein-Teissl M, Eikelenboom P, Grubeck-Loebenstein B. Costimulatory effects of interferon-gamma and interleukin-1beta or tumor necrosis factor alpha on the synthesis of Abeta1-40 and Abeta1-42 by human astrocytes. Neurobiol Dis 2000; 7:682-9. [PMID: 11114266 DOI: 10.1006/nbdi.2000.0321] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic inflammation and astrocytosis are characteristic histopathological features of Alzheimer's Disease (AD). Astrocytes are one of the predominant cell types in the brain. In AD they are activated and produce inflammatory components such as complement components, acute phase proteins, and cytokines. In this study we analyzed the effect of cytokines on the production of amyloid beta (Abeta) in the astrocytoma cell line U373 and in primary human astrocytes isolated postmortem from healthy aged persons as well as from patients with AD. Astrocytes did not produce Abeta in the absence of stimuli or following stimulation with IL-1beta, TNFalpha, IL-6, and TGF-beta1. Neither did combinations of TNFalpha and IL-1beta, IL-6 or TGF-beta1, or the coadministration of IFNgamma and IL-6 or TGF-beta1 induce Abeta production. In contrast, pronounced production of Abeta1-40 and Abeta1-42 was observed when primary astrocytes or astrocytoma cells were stimulated with combinations of IFNgamma and TNFalpha or IFNgamma and IL-1beta. Induction of Abeta production was accompanied by decreased glycosylation of APP as well as by increased secretion of APPsbeta. Our results suggest that astrocytes may be an important source of Abeta in the presence of certain combinations of inflammatory cytokines. IFNgamma in combination with TNFalpha or IL-1beta seems to trigger Abeta production by supporting beta-secretase cleavage of the immature APP molecule.
Collapse
Affiliation(s)
- I Blasko
- Institute for Biomedical Aging Research of the Austrian Academy of Sciences, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
35
|
Hallam DM, Capps NL, Travelstead AL, Brewer GJ, Maroun LE. Evidence for an interferon-related inflammatory reaction in the trisomy 16 mouse brain leading to caspase-1-mediated neuronal apoptosis. J Neuroimmunol 2000; 110:66-75. [PMID: 11024535 DOI: 10.1016/s0165-5728(00)00289-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The trisomy of human chromosome 21 (Down syndrome) is the leading genetic cause of learning difficulties in children, and predisposes this population to the early onset of the neurodegeneration of Alzheimer's disease. Down syndrome is associated with increased interferon (IFN) sensitivity resulting in unexpectedly high levels of IFN inducible gene products including Fas, complement factor C3, and neuronal HLA I which could result in a damaging inflammatory reaction in the brain. Consistent with this possibility, we report here that the trisomy 16 mouse fetus has significantly increased whole brain IFN-gamma and Fas receptor immunoreactivity and that cultured whole brain trisomy 16 mouse neurons have increased basal levels of caspase 1 activity and altered homeostasis of intracellular calcium and pH. The trisomic neurons also showed a heightened sensitivity to the increase in both Fas receptor levels and caspase 1 activity we observed when IFN-gamma was added to the neuron culture media. Because of the autoregulatory nature of IFN activity, and the IFN inducing capability of caspase-1-activated cytokine activity, our data argue in favor of the possibility of an interferon-mediated, self-perpetuating, inflammatory response in the trisomy brain that could subserve the loss of neuron viability seen in this trisomy 16 mouse model for Down syndrome.
Collapse
Affiliation(s)
- D M Hallam
- Department of Medical Microbiology and Immunology, Southern Illinois University School of Medicine, P.O. Box 19626, Springfield, IL 62794-9626, USA
| | | | | | | | | |
Collapse
|
36
|
Abendroth A, Simmons A, Efstathiou S, Pereira RA. Infection with an H2 recombinant herpes simplex virus vector results in expression of MHC class I antigens on the surfaces of human neuroblastoma cells in vitro and mouse sensory neurons in vivo. J Gen Virol 2000; 81:2375-2383. [PMID: 10993925 DOI: 10.1099/0022-1317-81-10-2375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The majority of neurons in herpes simplex virus (HSV)-infected murine sensory ganglia are transiently induced to express MHC-I antigens at the cell surface, whereas only a minority are themselves productively infected. The aim of the current work was to determine whether MHC-I antigens can be expressed on the surfaces of infected neurons in addition to their uninfected neighbours. To address this aim a recombinant HSV type 1 strain, S-130, was used to deliver a mouse H2K(d) gene, under control of the HCMV IE-1 promoter/enhancer, into human neuroblastoma cells in vitro and mouse primary sensory neurons in vivo. S-130 expressed H2K(d) antigens on the surfaces of IMR-32 cells, a human neuroblastoma cell line that expresses very low levels of MHC-I constitutively. In K562 cells, which do not express MHC-I constitutively, H2K(d) and beta(2)-microglobulin (beta(2)m) were shown to be co-expressed at the cell surface following S-130 infection. This observation was taken as evidence that class I heavy chain (alphaC) molecules encoded by the expression cassette in the HSV genome were transported to the cell surface as stable complexes with beta(2)m. Significantly, after introduction of S-130 into flank skin, H2K(d) antigens were detected on the surfaces of primary sensory neurons in ganglia innervating the inoculation site. Our data show that HSV-infected murine primary sensory neurons and human neuroblastoma cells are capable of expressing cell-surface MHC-I molecules encoded by a transgene. From this, we infer that up-regulation of alphaC expression is, in principle, sufficient to overcome potential impediments to neuronal cell surface expression of MHC-I complexes.
Collapse
Affiliation(s)
- Allison Abendroth
- Infectious Diseases Laboratories, Institute of Medical and Veterinary Science, Frome Road, Adelaide, South Australia 5000, Australia1
| | - Anthony Simmons
- Infectious Diseases Laboratories, Institute of Medical and Veterinary Science, Frome Road, Adelaide, South Australia 5000, Australia1
| | - Stacey Efstathiou
- Infectious Diseases Laboratories, Institute of Medical and Veterinary Science, Frome Road, Adelaide, South Australia 5000, Australia1
| | - Rosemarie A Pereira
- Infectious Diseases Laboratories, Institute of Medical and Veterinary Science, Frome Road, Adelaide, South Australia 5000, Australia1
| |
Collapse
|
37
|
Wei YP, Kita M, Shinmura K, Yan XQ, Fukuyama R, Fushiki S, Imanishi J. Expression of IFN-gamma in cerebrovascular endothelial cells from aged mice. J Interferon Cytokine Res 2000; 20:403-9. [PMID: 10805375 DOI: 10.1089/107999000312342] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recently, it has become clear that interferon-gamma (IFN-gamma) plays a role in the central nervous system (CNS) as well as in the immune system. However, the reason for the alteration in IFN-gamma production in the brain with aging remains unknown. In this study, we investigated the expression of IFN-gamma in the brain in terms of both mRNA and protein and compared the expression in young adult brain with that in aged mice. The cerebrum and cerebellum were collected from young adult (8-10 weeks old) and aged (24-26 months old) BALB/c mice, and the expressions of IFN-gamma and IFN-gamma receptor-1 (IFNGR-1) mRNA were examined by RT-PCR. Expression of IFN-gamma mRNA was detected in the brains from aged mice but not in those from young adult mice. However, IFNGR-1 mRNA was expressed in the brains from both young adult and aged mice. Moreover, IFN-gamma levels in the cerebrum and cerebellum from aged mice were detectable by ELISA, but IFN-gamma was undetectable in these tissues from young adult mice. To identify the cellular source of IFN-gamma in the brain of aged mice, immunostaining using antimouse IFN-gamma monoclonal antibody (mAb) was done. Immunoreactivity of IFN-gamma appeared to be located in cerebrovascular endothelial cells, including the choroid plexus of the cerebellum from aged mice. Expression of IFN-gamma and IFNGR-1 was also identified in isolated microvessels from brains. These results suggest that IFN-gamma plays a role in age-associated changes.
Collapse
Affiliation(s)
- Y P Wei
- Department of Microbiology, Research Institute for Neurological Diseases and Geriatrics, Kyoto Prefectural University of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Aloisi F. The role of microglia and astrocytes in CNS immune surveillance and immunopathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 468:123-33. [PMID: 10635024 DOI: 10.1007/978-1-4615-4685-6_10] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- F Aloisi
- Neurophysiology Unit, Istituto Superiore di Sanità, Roma, Italy
| |
Collapse
|
39
|
Cantin E, Tanamachi B, Openshaw H, Mann J, Clarke K. Gamma interferon (IFN-gamma) receptor null-mutant mice are more susceptible to herpes simplex virus type 1 infection than IFN-gamma ligand null-mutant mice. J Virol 1999; 73:5196-200. [PMID: 10233988 PMCID: PMC112570 DOI: 10.1128/jvi.73.6.5196-5200.1999] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/1998] [Accepted: 02/22/1999] [Indexed: 11/20/2022] Open
Abstract
Mouse strains with null mutations in the gamma interferon gene (Ifng) or the gamma interferon receptor gene (Ifngr) have been engineered. The use of these strains as animal models of viral and bacterial infections has enhanced our understanding of the role of gamma interferon (IFN-gamma) in the host immune response. However, direct comparisons between Ifng-/- (GKO) and Ifngr-/- (RGKO) mice have been problematic because previously available strains of these mice have had different genetic backgrounds (i.e., C57BL/6 and BALB/c for GKO mice and 129/Sv//Ev for RGKO mice). To enable direct comparison of herpes simplex virus type 1 (HSV-1) infections in GKO and RGKO mice, we introduced the IFN-gamma null mutation into the 129/Sv//Ev background. We report that, after HSV-1 inoculation, mortality was significantly greater in RGKO mice than in GKO mice (38 versus 23%, P = 0.0001). Similarly, the mortality from vaccinia virus challenge was significantly greater in RGKO mice than in GKO mice. With differences in genetic background excluded as a confounding issue, these results are consistent with the existence of an alternative ligand(s) for the IFN-gamma receptor that is also capable of mediating protection against viral challenge.
Collapse
Affiliation(s)
- E Cantin
- Department of Neurology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California 91010, USA.
| | | | | | | | | |
Collapse
|
40
|
Zou LP, Ma DH, Wei L, van der Meide PH, Mix E, Zhu J. IFN-beta suppresses experimental autoimmune neuritis in Lewis rats by inhibiting the migration of inflammatory cells into peripheral nervous tissue. J Neurosci Res 1999; 56:123-30. [PMID: 10494101 DOI: 10.1002/(sici)1097-4547(19990415)56:2<123::aid-jnr2>3.0.co;2-g] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The putative prophylactic and therapeutic effect of interferon-beta (IFN-beta) on autoimmune inflammation of the peripheral nervous system was evaluated in experimental autoimmune neuritis (EAN), a well-known animal model of the human Guillain-Barré syndrome (GBS). We report that treatment of rats with 300,000 U of recombinant rat IFN-beta (rrIFN-beta) given every other day starting at the day of immunization prevented clinical signs of EAN. When treatment was started at the onset of disease development, the cytokine clearly ameliorated EAN. Both B- and T-cell responses towards peripheral myelin were suppressed by the IFN-beta, and immunohistochemical analyses revealed a strong decrease in the numbers of infiltrating CD4(+) T cells, macrophages, and other inflammatory cells as well as a significant reduction in MHC class II antigen expression and monocyte chemotactic protein-1 (MCP-1) production, which induces chemotaxis and chemokinesis of leukocytes from blood. It is concluded that the observed suppression of EAN by rrIFN-beta is associated with a decrease in the migration of inflammatory cells into peripheral nervous tissue.
Collapse
Affiliation(s)
- L P Zou
- Division of Geriatric Medicine, Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
41
|
Muñoz-Fernández MA, Fresno M. The role of tumour necrosis factor, interleukin 6, interferon-gamma and inducible nitric oxide synthase in the development and pathology of the nervous system. Prog Neurobiol 1998; 56:307-40. [PMID: 9770242 DOI: 10.1016/s0301-0082(98)00045-8] [Citation(s) in RCA: 285] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proinflammatory cytokines, tumour necrosis factor (TNF)-alpha, interferon (IFN)-gamma and interleukin (IL)-6, have multiple effects in the central nervous system (CNS) not strictly cytotoxic being involved in controlling neuronal and glial activation, proliferation, differentiation and survival, thus influencing neuronal and glial plasticity, degeneration as well as development and regeneration of the nervous system. Moreover, they can contribute to CNS disorders, including multiple sclerosis. Alzheimer's disease and human immunodeficiency virus-associated dementia complex. Recent results with deficient mice in the expression of those cytokines indicate that they are in general more sensible to insults resulting in neural damage. Some of the actions induced by TNF-alpha, and IFN-gamma, including both beneficial and detrimental, are mediated by inducible nitric oxide synthase (iNOS)-derived nitric oxide (NO) production. NO produced by iNOS may be beneficial by promoting the differentiation and survival of neurons. IL-6 does not induce iNOS, explaining why this cytokine is less often involved in this dual role protection pathology. Some of the proinflammatory as well as the neurotrophic effects of those cytokines also involve upregulation of cell adhesion molecules (CAM). Those apparently conflicting results may be reconciled considering that proinflammatory cytokines are involved in promoting the disease, mostly by inducing expression of CAM leading to alteration of the blood-brain barrier integrity, whereas they have a protective role once disease is established due to its immunosuppressive or neurotrophic role. Understanding the dichotomy pathogenesis/neuroprotection of those cytokines may provide a rationale for better therapeutic strategies.
Collapse
Affiliation(s)
- M A Muñoz-Fernández
- Division of Immunology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | |
Collapse
|
42
|
Abstract
Cytokines and chemokines have been implicated in contributing to the initiation, propagation and regulation of immune and inflammatory responses. Also, these soluble mediators have important roles in contributing to a wide array of neurological diseases such as multiple sclerosis, AIDS Dementia Complex, stroke and Alzheimer's disease. Cytokines and chemokines are synthesized within the central nervous system by glial cells and neurons, and have modulatory functions on these same cells via interactions with specific cell-surface receptors. In this article, I will discuss the ability of glial cells and neurons to both respond to, and synthesize, a variety of cytokines. The emphasize will be on three select cytokines; interferon-gamma (IFN-gamma), a cytokine with predominantly proinflammatory effects; interleukin-6 (IL-6), a cytokine with both pro- and anti-inflammatory properties; and transforming growth factor-beta (TGF-beta), a cytokine with predominantly immunosuppressive actions. The significance of these cytokines to neurological diseases with an immunological component will be discussed.
Collapse
Affiliation(s)
- E N Benveniste
- Department of Cell Biology, University of Alabama at Birmingham, 35294-0005, USA.
| |
Collapse
|
43
|
Hallam DM, Maroun LE. Anti-gamma interferon can prevent the premature death of trisomy 16 mouse cortical neurons in culture. Neurosci Lett 1998; 252:17-20. [PMID: 9756348 DOI: 10.1016/s0304-3940(98)00541-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous reports have indicated that human trisomy 21 and mouse trisomy 16 neurons exhibit decreased viability in culture when compared to euploid control cultures and that trisomic cells are significantly more sensitive to the anti-cellular effects of the interferons. In the study reported here, cortical neurons from euploid and trisomy 16 mouse fetuses were treated with either anti-gamma-interferon or non-specific IgG and neuron morphology and viability measured photographically. The addition of anti-gamma-interferon IgG to the culture media had no effect on euploid neurons, but significantly increased trisomy neuron viability throughout the 5-day culture period. Assay of both DNA fragmentation and phosphatidylserine externalization suggested that the trisomic neurons were undergoing apoptosis at a significantly higher rate than their euploid counterparts and that this increase in apoptosis could be almost completely prevented by addition of either ligand purified monoclonal or ligand purified polyclonal anti-gamma-interferon IgG. Taken together, these data suggest that endogenous interferon plays an important role in the premature death of the trisomy neuron.
Collapse
Affiliation(s)
- D M Hallam
- Department of Medical Microbiology and Immunology, Southern Illinois University School of Medicine, Springfield 62794-1220, USA
| | | |
Collapse
|
44
|
Yang P, de Vos AF, Kijlstra A. Interferon gamma immunoreactivity in iris nerve fibres during endotoxin induced uveitis in the rat. Br J Ophthalmol 1998; 82:695-9. [PMID: 9797675 PMCID: PMC1722634 DOI: 10.1136/bjo.82.6.695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AIMS Previous studies have implied that interferon gamma (IFN-gamma) is involved in the pathogenesis of endotoxin induced uveitis (EIU) in the rat. This study investigated the source of IFN-gamma in the iris during EIU. METHODS Whole mounts of iris were isolated from Lewis rats before and at different times (from 4 hours to 14 days) after foot pad injection of 200 micrograms Salmonella typhimurium lipopolysaccharide (LPS). Immunohistological analysis was performed using monoclonal antibodies (mAbs) specific to rat IFN-gamma (DB12 and DB13). mAbs specific to monocytes, macrophages, and dendritic cells and MHC class II were used to asses the inflammatory response in the eye (ED-1, ED-2, and OX-6). An antibody specific to neurofilaments (2H3) was used to stain nerve fibres in the normal iris. RESULTS LPS administration induced acute intraocular inflammation, characterised by a massive infiltration of monocytes/macrophages and increased numbers of MHC class II positive cells in the iris. IFN-gamma immunoreactive cells were not detected in iris whole mounts of control rats. Strikingly, IFN-gamma immunoreactivity was found in fibres from 4 hours until 10 days after LPS injection, with the most intense staining at 48-72 hours. Other DB12 or DB13 positive cells were not detected in the iris. The pattern of DB12 and DB13 staining in the inflamed iris was similar to the 2H3 staining of neurons in the iris of control rats. CONCLUSION These results show that systemic LPS administration induces IFN-gamma immunoreactivity in iris fibres and suggest that iris nerve fibres may be a source of IFN-gamma during EIU. The IFN-gamma immunoreactive material in the iris nerve fibres may be identical to neuronal IFN-gamma.
Collapse
Affiliation(s)
- P Yang
- Netherlands Ophthalmic Research Institute, Amsterdam, Netherlands
| | | | | |
Collapse
|
45
|
Lindå H, Hammarberg H, Cullheim S, Levinovitz A, Khademi M, Olsson T. Expression of MHC class I and beta2-microglobulin in rat spinal motoneurons: regulatory influences by IFN-gamma and axotomy. Exp Neurol 1998; 150:282-95. [PMID: 9527898 DOI: 10.1006/exnr.1997.6768] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The low expression of MHC antigens is believed to be one factor of importance contributing to the immune-privileged status of CNS neurons. We here describe that motoneurons, in contrast to other nerve cells in the lumbar spinal cord of the adult rat, express both MHC class I and beta2-microglobulin mRNA. The motoneurons also display in situ hybridization signal for IFN-gamma receptor mRNA. After a peripheral axotomy, the motoneurons show a clear upregulation of beta2-microglobulin mRNA. IFN-gamma treatment of cultured rat embryonic spinal motoneurons causes a similar upregulation of especially beta2-microglobulin. Based on these facts, we propose that spinal motoneurons can be influenced by IFN-gamma and recognized by cytotoxic CD8+ T-cells. These findings could be of relevance in the search for pathogenetic mechanisms in motoneuron-specific diseases, such as ALS.
Collapse
Affiliation(s)
- H Lindå
- Department of Neurology, Huddinge Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
46
|
van der Meide PH, de Labie MC, Ruuls SR, Groenestein RJ, Botman CA, Olsson T, Dijkstra CD. Discontinuation of treatment with IFN-beta leads to exacerbation of experimental autoimmune encephalomyelitis in Lewis rats. Rapid reversal of the antiproliferative activity of IFN-beta and excessive expansion of autoreactive T cells as disease promoting mechanisms. J Neuroimmunol 1998; 84:14-23. [PMID: 9600704 DOI: 10.1016/s0165-5728(97)00207-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
IFN-beta has recently been shown to exert remarkable beneficial effects on disease development in patients with early stage relapsing-remitting MS. The specific immune mechanism(s) by which IFN-beta ameliorates this human demyelinating disease is at present undefined. One potential mechanism may reside in the antiproliferative activity of IFN-beta which may inhibit the expansion of autoaggressive T cells thereby limiting disease progression. In the present study we investigated whether the administration of recombinant rat IFN-beta (rrIFN-beta) to Lewis rats with actively induced experimental autoimmune encephalomyelitis (EAE) inhibits the expansion of encephalitogenic T cells in lymphoid organs and as such may contribute to suppression of disease activity in this widely used animal model for MS. Our data show that daily administrations of > or = 3 x 10(5) u rrIFN-beta to EAE rats, starting two days before MBP sensitization and continued for 10 days led to a dramatic and dose-dependent reduction in encephalitogenic T cells in both spleen and inguinal lymph nodes at day 8 post-immunization (p.i.). However, the rrIFN-beta-mediated reduction in effector T cells did not ameliorate paralytic disease as expected but significantly enhanced the severity of EAE. Analyses of lymphoid organs in the remission phase of EAE revealed strongly elevated numbers of encephalitogenic T cells in rrIFN-beta-treated versus control rats suggesting a rapid reversal of the antiproliferative action of rrIFN-beta followed by an overshoot in the subsequent expansion of these effector T cells. In conformity with higher numbers of encephalitogenic T cells and worsening of disease, animals also showed significantly greater perivascular inflammation in the CNS. The relevance of our findings in relation to the beneficial effects of IFN-beta in MS is discussed.
Collapse
Affiliation(s)
- P H van der Meide
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Cytokines are a diverse family of intercellular signaling proteins that influence the movement, proliferation, differentiation, metabolism and membrane processes of target cells. Synthesis and release of cytokines from leukocytes in response to microbial stimuli are well known. This review, however, will present evidence that non-infectious stimuli can induce cytokine secretion from leukocytes and other cells (including muscle cells) following myocellular injury. The biological actions and potential adaptive values of these cytokines through the course of muscle necrosis and regeneration will be described.
Collapse
Affiliation(s)
- J G Cannon
- Department of Kinesiology, Pennsylvania State University, University Park 16802-6900, USA
| | | |
Collapse
|
48
|
Neumann H, Schmidt H, Wilharm E, Behrens L, Wekerle H. Interferon gamma gene expression in sensory neurons: evidence for autocrine gene regulation. J Exp Med 1997; 186:2023-31. [PMID: 9396771 PMCID: PMC2199162 DOI: 10.1084/jem.186.12.2023] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/1997] [Revised: 10/03/1997] [Indexed: 02/05/2023] Open
Abstract
We explored expression and possible function of interferon-gamma (IFN-gamma) in cultured fetal (E15) rat dorsal root ganglion neurons combining whole cell patch-clamp electrophysiology with single cell reverse transcriptase polymerase chain reaction and confocal laser immunocytochemistry. Morphologically, we located IFN-gamma protein in the cytoplasm of the neurons in culture as well as in situ during peri- and postnatal development. Transcripts for classic IFN-gamma and for its receptor were determined in probes of cytoplasm sampled from individual cultured neurons, which had been identified by patch clamp electrophysiology. In addition, the cultured neurons expressed both chains of the IFN-gamma receptor. Locally produced IFN-gamma acts back on its cellular source. Phosphorylation and nuclear translocation of the IFN-inducible transcriptional factor STAT1 as well as IFN-gamma-dependent expression of major histocompatibility complex class I molecules on the neuronal membrane were noted in untreated cultures. However, both processes were substantially blocked in the presence of antibodies neutralizing IFN-gamma. Our findings indicate a role of IFN-gamma in autocrine regulation of sensory neurons.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- DNA-Binding Proteins/metabolism
- Ganglia, Spinal/cytology
- Ganglia, Spinal/embryology
- Gene Expression
- Gene Expression Regulation, Developmental
- Interferon-gamma/analysis
- Interferon-gamma/genetics
- Microscopy, Phase-Contrast
- Neurons, Afferent/chemistry
- Neurons, Afferent/metabolism
- Polymerase Chain Reaction
- Rats
- Receptors, Interferon/analysis
- Receptors, Interferon/metabolism
- STAT1 Transcription Factor
- Signal Transduction
- Trans-Activators/metabolism
- Transcription, Genetic
- Interferon gamma Receptor
Collapse
Affiliation(s)
- H Neumann
- Department of Neuroimmunology, Max-Planck-Institute for Psychiatry, D-82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
49
|
Pitossi F, del Rey A, Kabiersch A, Besedovsky H. Induction of cytokine transcripts in the central nervous system and pituitary following peripheral administration of endotoxin to mice. J Neurosci Res 1997; 48:287-98. [PMID: 9169855 DOI: 10.1002/(sici)1097-4547(19970515)48:4<287::aid-jnr1>3.0.co;2-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The regional distribution and inducibility of cytokines in the normal brain is still a matter of controversy. As an attempt to clarify this issue, we studied the constitutive and induced expression of interleukin (IL)-1beta, IL-6, tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma mRNAs in the brain, pituitary, and spleen of mice using qualitative and semiquantitative reverse-transcription polymerase chain reaction. The contribution of nonbrain cells to the cytokine transcripts detected was considered. With the exception of IFN-gamma mRNA, transcripts for the other cytokines were found to be constitutively present in the brain. Following i.p. injection of lipopolysaccharide (LPS) at a dose below those described to disrupt the blood-brain barrier (BBB), cytokine mRNA expression was increased in the spleen, the pituitary, and the brain. In the brain, the onset of transcription varied from 45 min (IL-1beta, TNF-alpha) to 4 hr (IFN-gamma), and the peak of mRNA accumulation was observed at different times depending on the cytokine and the brain region studied. IL-1 and IL-6 were highly expressed in the hypothalamus and hippocampus, while TNF-alpha expression was more marked in the thalamus-striatum. The cortex was the region in which cytokines were less inducible. The inducible expression of cytokine mRNAs in the brain was paralleled by stimulation of the hypothalamus-pituitary-adrenal axis. These results show the capacity of brain cells to synthesize different cytokine mRNAs in vivo and define the kinetics of their expression in several brain areas and in the periphery in parallel to the activation of a neuroendocrine pathway by endotoxin.
Collapse
Affiliation(s)
- F Pitossi
- Institute of Physiology, Medical Faculty, Philipps University, Marburg, Germany
| | | | | | | |
Collapse
|
50
|
Pousset F, Fournier J, Keane PE. Expression of cytokine genes during ontogenesis of the central nervous system. Ann N Y Acad Sci 1997; 814:97-107. [PMID: 9160963 DOI: 10.1111/j.1749-6632.1997.tb46149.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- F Pousset
- Department of Neuropsychiatry Research, Sanofi Recherche, Toulouse, France
| | | | | |
Collapse
|