1
|
Ono R, Maeda K, Tanioka T, Isozaki T. Monocyte-derived Langerhans cells express Delta-like 4 induced by peptidoglycan and interleukin-4 mediated suppression. Front Immunol 2025; 16:1532620. [PMID: 40018044 PMCID: PMC11865044 DOI: 10.3389/fimmu.2025.1532620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/30/2025] [Indexed: 03/01/2025] Open
Abstract
T cells contribute to immunotherapy and autoimmune pathogenesis and Langerhans cells (LCs) have a substantial ability to activate T cells. In vitro-generated monocyte-derived LCs (Mo-LCs) are useful models to study LC function in autoimmune diseases and to test future LC-based immunotherapies. Although dendritic cells (DCs) expressing high levels of Delta-like 4 (DLL4+ DCs), which is a member of the Notch ligand family, have greater ability than DLL4- DCs to activate T cells, the induction method of human DLL4+ DCs has yet to be determined. The aim of this study is to establish whether Mo-LCs express DLL4 and establish the induction method of antigen presenting cells, which most potently activate T cells, similar to our previously established induction method of human Mo-LCs. We compared the ratios of DLL4 expression and T cell activation via flow cytometry among monocyte-derived cells, which have a greater ability than the resident cells to activate T cells. Here, we discovered that Mo-LCs expressed DLL4, which most potently activated T cells among monocyte-derived cells, and that Mo-LCs and DLL4 expression were induced by DLL4, granulocyte macrophage colony-stimulating factor, and transforming growth factor-β1. Additionally, peptidoglycan was required for DLL4 expression, whereas interleukin-4 repressed it. These findings provide insights into the roles of DLL4-expressing cells such as DLL4+ Mo-LCs in human diseases, which will assist with the development of more effective therapeutic strategies in the future.
Collapse
Affiliation(s)
- Rei Ono
- Department of Pathogenesis and Translational Medicine, Showa University Graduate School of Pharmacy, Tokyo, Japan
| | - Kohei Maeda
- Department of Pathogenesis and Translational Medicine, Showa University Graduate School of Pharmacy, Tokyo, Japan
| | - Toshihiro Tanioka
- Department of Pathogenesis and Translational Medicine, Showa University Graduate School of Pharmacy, Tokyo, Japan
| | - Takeo Isozaki
- Department of Pathogenesis and Translational Medicine, Showa University Graduate School of Pharmacy, Tokyo, Japan
- Department of Rheumatology, Showa University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Peter A, Berneman ZN, Cools N. Cellular respiration in dendritic cells: Exploring oxygen-dependent pathways for potential therapeutic interventions. Free Radic Biol Med 2025; 227:536-556. [PMID: 39643130 DOI: 10.1016/j.freeradbiomed.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells crucial for initiating and regulating adaptive immune responses, making them promising candidates for therapeutic interventions in various immune-mediated diseases. Increasing evidence suggests that the microenvironment in which cells are cultured, as well as the milieu in which they perform their functions, significantly impact their immunomodulatory properties. Among these environmental factors, the role of oxygen in DC biology and its significance for both their in vitro generation and in vivo therapeutic application require investigation. Unlike the atmospheric oxygen level of 21 % commonly used in in vitro assays, physiological oxygen levels are much lower (3-9 %), and hypoxia (<1.3 %) is a prevalent condition of both healthy tissues and disease states. This mismatch between laboratory and physiological conditions underscores the critical need to culture and evaluate therapeutic cells under physiologically relevant oxygen levels to improve their translational relevance and clinical outcomes. This review explores the characteristic hallmarks of human DCs that are influenced by oxygen-dependent pathways, including metabolism, phenotype, cytokine secretion, and migration. Furthermore, we discuss the potential of manipulating oxygen levels to refine the generation and functionality of DCs for therapeutic purposes.
Collapse
Affiliation(s)
- Antonia Peter
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| |
Collapse
|
3
|
Bürdek M, Prinz PU, Mutze K, Tippmer S, Geiger C, Longinotti G, Schendel DJ. Characterization of a 3S PRAME VLD-Specific T Cell Receptor and Its Use in Investigational Medicinal Products for TCR-T Therapy of Patients with Myeloid Malignancies. Cancers (Basel) 2025; 17:242. [PMID: 39858024 PMCID: PMC11763942 DOI: 10.3390/cancers17020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES MDG1011 is an autologous TCR-T therapy developed as a treatment option for patients with myeloid malignancies, including acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and multiple myeloma (MM). It is specific for the target antigen PReferentially expressed Antigen in MElanoma (PRAME). The recombinant TCR used in MDG1011 recognizes PRAME100-108 VLD-peptide presented by HLA-A*02:01-encoded surface molecules. METHODS Two preclinical batches of MDG1011, produced from enriched CD8+ T cells of healthy donors, underwent rigorous evaluation of on-target and off-target recognition of tumor cells and test cells representing healthy tissues. MDG1011 investigational medicinal products (IMPs) were produced for 13 patients. VLD-TCR surface expression was assessed using dual-marker flow cytometry using TCR V-beta-specific antibody and VLD/HLA-A2-specific multimer. Functionality was assessed by interferon-gamma (IFN-γ) secretion and cell-mediated cytotoxicity of target cells. RESULTS Preclinical MDG1011 batches displayed strong VLD-TCR expression, cytokine secretion, and cytotoxicity after antigen-specific activation, while showing no signals of on-target/off-tumor or off-target recognition. All IMPs had good VLD-TCR expression as well as functionality after activation by multiple target cells. CONCLUSIONS Preclinical studies demonstrated that MDG1011 displayed key 3S attributes of high specificity, sensitivity, and safety required for regulatory approval of a first-in-human (FIH) clinical study of patients with myeloid malignancies (CD-TCR-001: ClinicalTrials.gov Identifier: NCT03503968). MDG1011 IMP manufacturing was successful at 92%, even including heavily pretreated elderly patients with very advanced disease. The IMPs applied in nine patients all displayed antigen-specific functionality. Elsewhere, clinical study results for MDG1011 showed no dose-limiting toxicity and signs of biological and/or clinical activity in several patients.
Collapse
Affiliation(s)
- Maja Bürdek
- Medigene Immunotherapies GmbH, 82152 Planegg-Martinsried, Germany; (P.U.P.); (K.M.); (S.T.); (C.G.); (G.L.)
| | - Petra U. Prinz
- Medigene Immunotherapies GmbH, 82152 Planegg-Martinsried, Germany; (P.U.P.); (K.M.); (S.T.); (C.G.); (G.L.)
| | - Kathrin Mutze
- Medigene Immunotherapies GmbH, 82152 Planegg-Martinsried, Germany; (P.U.P.); (K.M.); (S.T.); (C.G.); (G.L.)
| | - Stefanie Tippmer
- Medigene Immunotherapies GmbH, 82152 Planegg-Martinsried, Germany; (P.U.P.); (K.M.); (S.T.); (C.G.); (G.L.)
| | - Christiane Geiger
- Medigene Immunotherapies GmbH, 82152 Planegg-Martinsried, Germany; (P.U.P.); (K.M.); (S.T.); (C.G.); (G.L.)
| | - Giulia Longinotti
- Medigene Immunotherapies GmbH, 82152 Planegg-Martinsried, Germany; (P.U.P.); (K.M.); (S.T.); (C.G.); (G.L.)
| | - Dolores J. Schendel
- Medigene Immunotherapies GmbH, 82152 Planegg-Martinsried, Germany; (P.U.P.); (K.M.); (S.T.); (C.G.); (G.L.)
- Medigene AG, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
4
|
Holtkamp SJ, Lagoda FR, Lister A, Harish P, Kleymann U, Pesch T, Soon CF, Pirmohamed M, Naisbitt D, Trautwein M. Polyfunctional T cells and unique cytokine clusters imprint the anti rAAV2/rAAV9 vector immune response. Front Immunol 2024; 15:1450524. [PMID: 39654900 PMCID: PMC11625739 DOI: 10.3389/fimmu.2024.1450524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Polyfunctional T cells programmed to perform activities such as degranulation of lytic enzymes and simultaneous production of multiple cytokines are associated with more effective control of viral infections. Immune responses to recombinant adeno-associated virus (rAAV) vector delivery systems can critically influence therapeutic efficacy and safety of gene therapy. However, knowledge of polyfunctional T cells in anti-AAV immune responses is scarce. To bridge this knowledge gap, we have investigated the polyfunctionality of primary human CD4 T cells from healthy donors after in-vitro exposure to rAAV2 or rAAV9 vectors. By performing proliferation assays of co-cultured T cells and rAAV pulsed monocyte-derived dendritic cells from healthy donors we demonstrate T cell reactivity of 43% and 50% to rAAV2 and rAAV9 vectors, respectively. We validated this frequency in a second screen using another set of healthy donors measuring CD25 and CD71 T cell activation. Single T cell secretome analysis of reactive donors uncovered a Th1 pro-inflammatory, cytolytic and chemoattractive cytokine release profile after stimulation with rAAV2 or rAAV9 vectors. 12.4% and 9.6% of the stimulated T cells displayed a polyfunctional cytokine response, respectively, including elevated polyfunctional inflammatory indices. These responses were characterized by cytokine clusters such as Granzyme B, MIP1-α and TNF-α released in combination by single T cells. Overall, our results provide insights into adaptive immunity with rAAV vector serotypes which will be important in advancing gene therapy safety, vector selection, immunogenicity assessment and better patient selection for AAV gene therapy.
Collapse
Affiliation(s)
| | | | - Adam Lister
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Pradeep Harish
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | | | - Theresa Pesch
- Drug Discovery Sciences, Bayer AG, Wuppertal, Germany
| | - Chai Fen Soon
- Drug Discovery Sciences, Bayer AG, Wuppertal, Germany
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Dean Naisbitt
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool, United Kingdom
| | | |
Collapse
|
5
|
Luo J, Mo F, Zhang Z, Hong W, Lan T, Cheng Y, Fang C, Bi Z, Qin F, Yang J, Zhang Z, Li X, Que H, Wang J, Chen S, Wu Y, Yang L, Li J, Wang W, Chen C, Wei X. Engineered mitochondria exert potent antitumor immunity as a cancer vaccine platform. Cell Mol Immunol 2024; 21:1251-1265. [PMID: 39164536 PMCID: PMC11528120 DOI: 10.1038/s41423-024-01203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/03/2024] [Indexed: 08/22/2024] Open
Abstract
The preferable antigen delivery profile accompanied by sufficient adjuvants favors vaccine efficiency. Mitochondria, which feature prokaryotic characteristics and contain various damage-associated molecular patterns (DAMPs), are easily taken up by phagocytes and simultaneously activate innate immunity. In the current study, we established a mitochondria engineering platform for generating antigen-enriched mitochondria as cancer vaccine. Ovalbumin (OVA) and tyrosinase-related protein 2 (TRP2) were used as model antigens to synthesize fusion proteins with mitochondria-localized signal peptides. The lentiviral infection system was then employed to produce mitochondrial vaccines containing either OVA or TRP2. Engineered OVA- and TRP2-containing mitochondria (OVA-MITO and TRP2-MITO) were extracted and evaluated as potential cancer vaccines. Impressively, the engineered mitochondria vaccine demonstrated efficient antitumor effects when used as both prophylactic and therapeutic vaccines in murine tumor models. Mechanistically, OVA-MITO and TRP2-MITO potently recruited and activated dendritic cells (DCs) and induced a tumor-specific cell-mediated immunity. Moreover, DC activation by mitochondria vaccine critically involves TLR2 pathway and its lipid agonist, namely, cardiolipin derived from the mitochondrial membrane. The results demonstrated that engineered mitochondria are natively well-orchestrated carriers full of immune stimulants for antigen delivery, which could preferably target local dendritic cells and exert strong adaptive cellular immunity. This proof-of-concept study established a universal platform for vaccine construction with engineered mitochondria bearing alterable antigens for cancers as well as other diseases.
Collapse
Affiliation(s)
- Jingwen Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunju Fang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Furong Qin
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xue Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiayu Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiming Wu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiong Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chong Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Schweiger P, Hamann L, Strobel J, Weisbach V, Wandersee A, Christ J, Kehl S, Weidenthaler F, Antoniadis S, Hackstein H, Cunningham S. Functional Heterogeneity of Umbilical Cord Blood Monocyte-Derived Dendritic Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:115-124. [PMID: 38809115 PMCID: PMC11215632 DOI: 10.4049/jimmunol.2400036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Human umbilical cord blood (UCB) represents a unique resource for hematopoietic stem cell transplantation for children and patients lacking suitable donors. UCB harbors a diverse set of leukocytes such as professional APCs, including monocytes, that could act as a novel source for cellular therapies. However, the immunological properties of UCB monocytes and monocyte-derived dendritic cells (MoDCs) are not fully characterized. In this study, we characterized the phenotype and functions of UCB-MoDCs to gauge their potential for future applications. UCB exhibited higher frequencies of platelets and lymphocytes as well as lower frequencies of neutrophils in comparison with adult whole blood. Leukocyte subset evaluation revealed significantly lower frequencies of granulocytes, NK cells, and CD14+CD16- monocytes. Surface marker evaluation revealed significantly lower rates of costimulatory molecules CD80 and CD83 while chemokine receptors CCR7 and CXCR4, as well as markers for Ag presentation, were similarly expressed. UCB-MoDCs were sensitive to TLR1-9 stimulation and presented quantitative differences in the release of proinflammatory cytokines. UCB-MoDCs presented functional CCR7-, CXCR4-, and CCR5-associated migratory behavior as well as adequate receptor- and micropinocytosis-mediated Ag uptake. When cocultured with allogeneic T lymphocytes, UCB-MoDCs induced weak CD4+ T lymphocyte proliferation, CD71 expression, and release of IFN-γ and IL-2. Taken together, UCB-MoDCs present potentially advantageous properties for future medical applications.
Collapse
Affiliation(s)
- Petra Schweiger
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Livia Hamann
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Julian Strobel
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Volker Weisbach
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Alexandra Wandersee
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Julia Christ
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Sven Kehl
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Filip Weidenthaler
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Sophia Antoniadis
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Sarah Cunningham
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
7
|
Duurland CL, de Gunst T, den Boer HC, van den Bosch MT, Telford BJ, Vos RM, Xie X, Zang M, Wang F, Shao Y, An X, Wang J, Cai J, Bourré L, van Pinxteren LA, Schaapveld RQ, Janicot M, Yahyanejad S. INT-1B3, an LNP formulated miR-193a-3p mimic, promotes anti-tumor immunity by enhancing T cell mediated immune responses via modulation of the tumor microenvironment and induction of immunogenic cell death. Oncotarget 2024; 15:470-485. [PMID: 39007281 PMCID: PMC11247534 DOI: 10.18632/oncotarget.28608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
microRNAs (miRNAs) are small, non-coding RNAs that regulate expression of multiple genes. MiR-193a-3p functions as a tumor suppressor in many cancer types, but its effect on inducing specific anti-tumor immune responses is unclear. Therefore, we examined the effect of our lipid nanoparticle (LNP) formulated, chemically modified, synthetic miR-193a-3p mimic (INT-1B3) on anti-tumor immunity. INT-1B3 inhibited distant tumor metastasis and significantly prolonged survival. INT-1B3-treated animals were fully protected against challenge with autologous tumor cells even in absence of treatment indicating long-term immunization. Protection against autologous tumor cell challenge was hampered upon T cell depletion and adoptive T cell transfer abrogated tumor growth. Transfection of tumor cells with our miR-193a-3p mimic (1B3) resulted in tumor cell death and apoptosis accompanied by increased expression of DAMPs. Co-culture of 1B3-transfected tumor cells and immature DC led to DC maturation and these mature DC were able to stimulate production of type 1 cytokines by CD4+ and CD8+ T cells. CD4-CD8- T cells also produced type 1 cytokines, even in response to 1B3-transfected tumor cells directly. Live cell imaging demonstrated PBMC-mediated cytotoxicity against 1B3-transfected tumor cells. These data demonstrate for the first time that miR-193a-3p induces long-term immunity against tumor development via modulation of the tumor microenvironment and induction of immunogenic cell death.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaolei Xie
- Crown Bioscience Inc., San Diego, CA 92127, USA
| | - Mingfa Zang
- Crown Bioscience Inc., San Diego, CA 92127, USA
| | - Fang Wang
- Crown Bioscience Inc., San Diego, CA 92127, USA
| | | | - Xiaoyu An
- Crown Bioscience Inc., San Diego, CA 92127, USA
| | | | - Jie Cai
- Crown Bioscience Inc., San Diego, CA 92127, USA
| | | | | | | | | | | |
Collapse
|
8
|
Toffoli EC, van Vliet AA, Forbes C, Arns AJ, Verheul HWM, Tuynman J, van der Vliet HJ, Spanholtz J, de Gruijl TD. Allogeneic NK cells induce the in vitro activation of monocyte-derived and conventional type-2 dendritic cells and trigger an inflammatory response under cancer-associated conditions. Clin Exp Immunol 2024; 216:159-171. [PMID: 38330230 PMCID: PMC11036108 DOI: 10.1093/cei/uxae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/27/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
Natural killer (NK) cells are innate lymphocytes capable to recognize and kill virus-infected and cancer cells. In the past years, the use of allogeneic NK cells as anti-cancer therapy gained interest due to their ability to induce graft-versus-cancer responses without causing graft-versus-host disease and multiple protocols have been developed to produce high numbers of activated NK cells. While the ability of these cells to mediate tumor kill has been extensively studied, less is known about their capacity to influence the activity of other immune cells that may contribute to a concerted anti-tumor response in the tumor microenvironment (TME). In this study, we analyzed how an allogeneic off-the-shelf cord blood stem cell-derived NK-cell product influenced the activation of dendritic cells (DC). Crosstalk between NK cells and healthy donor monocyte-derived DC (MoDC) resulted in the release of IFNγ and TNF, MoDC activation, and the release of the T-cell-recruiting chemokines CXCL9 and CXCL10. Moreover, in the presence of prostaglandin-E2, NK cell/MoDC crosstalk antagonized the detrimental effect of IL-10 on MoDC maturation leading to higher expression of multiple (co-)stimulatory markers. The NK cells also induced activation of conventional DC2 (cDC2) and CD8+ T cells, and the release of TNF, GM-CSF, and CXCL9/10 in peripheral blood mononuclear cells of patients with metastatic colorectal cancer. The activated phenotype of MoDC/cDC2 and the increased release of pro-inflammatory cytokines and T-cell-recruiting chemokines resulting from NK cell/DC crosstalk should contribute to a more inflamed TME and may thus enhance the efficacy of T-cell-based therapies.
Collapse
Affiliation(s)
- E C Toffoli
- Department of Medical Oncology, Amsterdam UMC location Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - A A van Vliet
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Glycostem Therapeutics, Oss, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit, Amsterdam, The Netherlands
| | - C Forbes
- Department of Medical Oncology, Amsterdam UMC location Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - A J Arns
- Department of Medical Oncology, Amsterdam UMC location Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - H W M Verheul
- Department of Medical Oncology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - J Tuynman
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - H J van der Vliet
- Department of Medical Oncology, Amsterdam UMC location Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Lava Therapeutics, Utrecht, The Netherlands
| | - J Spanholtz
- Glycostem Therapeutics, Oss, The Netherlands
| | - T D de Gruijl
- Department of Medical Oncology, Amsterdam UMC location Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Gong T, Huang X, Wang Z, Chu Y, Wang L, Wang Q. IL-2 promotes expansion and intratumoral accumulation of tumor infiltrating dendritic cells in pancreatic cancer. Cancer Immunol Immunother 2024; 73:84. [PMID: 38554155 PMCID: PMC10981618 DOI: 10.1007/s00262-024-03669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
This study aims to investigate the diagnostic potential of IL-2 for PDAC and develop a method to improve the dendritic cell (DC) based vaccine against PDAC. The gene expression data and clinical characteristics information for 178 patients with PDAC were obtained from The Cancer Genome Atlas (TCGA). DCs were isolated from Human peripheral blood mononuclear cells (PBMCs) and were cultured in 4 different conditions. DCs were pulsed by tumor cell lysates or KRAS G12D1 - 23 peptide, and then used to activate T cells. The mixture of DCs and T cells were administered to xenograft mouse model through the tail vein. The infiltration of DCs and T cells were detected by immunohistochemistry. The generation of KRAS G12D mutation specific cytotoxic T cells was determined by in vitro killing assay. We observed that PDAC patients with higher IL-2 mRNA levels exhibited improved overall survival and increased infiltration of CD8 + T cells, NK cells, naïve B cells, and resting myeloid DCs in the tumor microenvironment. IL-2 alone did not enhance DC proliferation, antigen uptake, or apoptosis inhibition unless co-cultured with PBMCs. DCs co-cultured with PBMCs in IL-2-containing medium demonstrated the strongest tumor repression effect in vitro and in vivo. Compared to DCs obtained through the traditional method (cultured in medium containing GM-CSF and IL-4), DCs cultured with PBMCs, and IL-2 exhibited increased tumor infiltration capacity, potentially facilitating sustained T cell immunity. DCs cultured in the PBMCs-IL-2 condition could promote the generation of cytotoxic T cells targeting tumor cells carrying KRAS G12D mutation.
Collapse
Affiliation(s)
- Tingting Gong
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xinyang Huang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Zhuoxin Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Ye Chu
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Lifu Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Qi Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
10
|
Liu Y, Huang Y, Cui HW, Wang Y, Ma Z, Xiang Y, Xin HY, Liang JQ, Xin HW. Perspective view of allogeneic IgG tumor immunotherapy. Cancer Cell Int 2024; 24:100. [PMID: 38461238 PMCID: PMC10924995 DOI: 10.1186/s12935-024-03290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/01/2024] [Indexed: 03/11/2024] Open
Abstract
Allogeneic tumors are eradicated by host immunity; however, it is unknown how it is initiated until the report in Nature by Yaron Carmi et al. in 2015. Currently, we know that allogeneic tumors are eradicated by allogeneic IgG via dendritic cells. AlloIgG combined with the dendritic cell stimuli tumor necrosis factor alpha and CD40L induced tumor eradication via the reported and our proposed potential signaling pathways. AlloIgG triggers systematic immune responses targeting multiple antigens, which is proposed to overcome current immunotherapy limitations. The promising perspectives of alloIgG immunotherapy would have advanced from mouse models to clinical trials; however, there are only 6 published articles thus far. Therefore, we hope this perspective view will provide an initiative to promote future discussion.
Collapse
Affiliation(s)
- Ying Liu
- Department of Radiology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434000, Hubei, China
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Yuanyi Huang
- Department of Radiology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434000, Hubei, China
| | - Hong-Wei Cui
- Center for Breast Cancer, Peking University Cancer Hospital at Inner Mongolia Campus and Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010021, Inner Mongolia, China
| | - YingYing Wang
- Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - ZhaoWu Ma
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Ying Xiang
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Hong-Yi Xin
- The Doctoral Scientific Research Center, People's Hospital of Lianjiang, Guangdong, 524400, China.
- The Doctoral Scientific Research Center, People's Hospital of Lianjiang, Guangdong Medical University, Guangdong, 524400, China.
| | - Jun-Qing Liang
- Center for Breast Cancer, Peking University Cancer Hospital at Inner Mongolia Campus and Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010021, Inner Mongolia, China.
| | - Hong-Wu Xin
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China.
- Key Laboratory of Human Genetic Diseases Research of Inner Mongolia, Research Centre of Molecular Medicine, Medical College of Chifeng University, Chifeng, 024000, Inner Mongolian Autonomous Region, China.
| |
Collapse
|
11
|
Cuenca-Escalona J, Flórez-Grau G, van den Dries K, Cambi A, de Vries IJM. PGE2-EP4 signaling steers cDC2 maturation toward the induction of suppressive T-cell responses. Eur J Immunol 2024; 54:e2350770. [PMID: 38088451 DOI: 10.1002/eji.202350770] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Dendritic cells (DCs) shape adaptive immunity in response to environmental cues such as cytokines or lipid mediators, including prostaglandin E2 (PGE2). In cancer, tumors are known to establish an enriched PGE2 microenvironment. Tumor-derived PGE2 primes regulatory features across immune cells, including DCs, facilitating tumor progression. PGE2 shapes DC function by providing signaling via its two so-called E-prostanoid receptors (EPs) EP2 and EP4. Although studies with monocyte-derived DCs have shown the importance of PGE2 signaling, the role of PGE2-EP2/EP4 on conventional DCs type 2 (cDC2s), is still poorly defined. In this study, we investigated the function of EP2 and EP4 using specific EP antagonists on human cDC2s. Our results show that EP2 and EP4 exhibit different functions in cDC2s, with EP4 modulating the upregulation of activation markers (CD80, CD86, CD83, MHC class II) and the production of IL-10 and IL-23. Furthermore, PGE2-EP4 boosts CCR type 7-based migration as well as a higher T-cell expansion capacity, characterized by the enrichment of suppressive rather than pro-inflammatory T-cell populations. Our findings are relevant to further understanding the role of EP receptors in cDC2s, underscoring the benefit of targeting the PGE2-EP2/4 axis for therapeutic purposes in diseases such as cancer.
Collapse
Affiliation(s)
- Jorge Cuenca-Escalona
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, Nijmegen, 6525GA, the Netherlands
| | - Georgina Flórez-Grau
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, Nijmegen, 6525GA, the Netherlands
| | - Koen van den Dries
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, Nijmegen, 6525GA, the Netherlands
| | - Alessandra Cambi
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, Nijmegen, 6525GA, the Netherlands
| | - I Jolanda M de Vries
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, Nijmegen, 6525GA, the Netherlands
| |
Collapse
|
12
|
Tai Y, Chen M, Wang F, Fan Y, Zhang J, Cai B, Yan L, Luo Y, Li Y. The role of dendritic cells in cancer immunity and therapeutic strategies. Int Immunopharmacol 2024; 128:111548. [PMID: 38244518 DOI: 10.1016/j.intimp.2024.111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Dendritic cells (DCs) are asserted as the most potent antigen-presenting cells (APCs) that orchestrate both innate and adaptive immunity, being extremely effective in the induction of robust anti-cancer T cell responses. Hence, the modulation of DCs function represents an attractive target for improving cancer immunotherapy efficacy. A better understanding of the immunobiology of DCs, the interaction among DCs, immune effector cells and tumor cells in tumor microenvironment (TME) and the latest advances in biomedical engineering technology would be required for the design of optimal DC-based immunotherapy. In this review, we focus on elaborating the immunobiology of DCs in healthy and cancer environments, the recent advances in the development of enhancing endogenous DCs immunocompetence via immunomodulators as well as DC-based vaccines. The rapidly developing field of applying nanotechnology to improve DC-based immunotherapy is also highlighted.
Collapse
Affiliation(s)
- Yunze Tai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Man Chen
- Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Fang Wang
- Department of Medical Laboratory, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Yu Fan
- Department of Urology, National Clinical Research Center for Geriatrics and Organ Transplantation Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Junlong Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Yan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yao Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
13
|
Datsi A, Falkowski L, Sorg RV. Generation and quality control of mature monocyte-derived dendritic cells for immunotherapy. Methods Cell Biol 2023; 183:1-31. [PMID: 38548408 DOI: 10.1016/bs.mcb.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Dendritic cell vaccination is a form of active immunotherapy that aims to exploit the crucial role of DC in the initiation of T-cell responses. Numerous vaccination trials have been conducted targeting various tumor entities, including glioblastoma, the most frequent and aggressive malignant brain tumor in adults. They have demonstrated feasibility and safety and suggest improved survival, associated with induction of anti-tumoral immunity. Here, we describe in detail a large-scale 2-step protocol for successive GMP-compliant generation of immature and mature dendritic cells, yielding a highly homogenous population of CD83+ mature DC expressing CD40, CD80, CD86 and HLA-DR at high density, lacking activity of the immunosuppressive enzyme indoleamine-2,3-dioxygenase, migrating towards the chemokine CCL19 and showing highly potent T-cell stimulatory activity. Loaded with autologous tumor lysate, these cells are currently being evaluated in a phase II controlled randomized clinical trial (GlioVax) in glioblastoma patients.
Collapse
Affiliation(s)
- Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Hospital Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Lea Falkowski
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Hospital Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Hospital Düsseldorf, Medical Faculty, Düsseldorf, Germany.
| |
Collapse
|
14
|
Abascal J, Oh MS, Liclican EL, Dubinett SM, Salehi-Rad R, Liu B. Dendritic Cell Vaccination in Non-Small Cell Lung Cancer: Remodeling the Tumor Immune Microenvironment. Cells 2023; 12:2404. [PMID: 37830618 PMCID: PMC10571973 DOI: 10.3390/cells12192404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) remains one of the leading causes of death worldwide. While NSCLCs possess antigens that can potentially elicit T cell responses, defective tumor antigen presentation and T cell activation hinder host anti-tumor immune responses. The NSCLC tumor microenvironment (TME) is composed of cellular and soluble mediators that can promote or combat tumor growth. The composition of the TME plays a critical role in promoting tumorigenesis and dictating anti-tumor immune responses to immunotherapy. Dendritic cells (DCs) are critical immune cells that activate anti-tumor T cell responses and sustain effector responses. DC vaccination is a promising cellular immunotherapy that has the potential to facilitate anti-tumor immune responses and transform the composition of the NSCLC TME via tumor antigen presentation and cell-cell communication. Here, we will review the features of the NSCLC TME with an emphasis on the immune cell phenotypes that directly interact with DCs. Additionally, we will summarize the major preclinical and clinical approaches for DC vaccine generation and examine how effective DC vaccination can transform the NSCLC TME toward a state of sustained anti-tumor immune signaling.
Collapse
Affiliation(s)
- Jensen Abascal
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| | - Michael S. Oh
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| | - Elvira L. Liclican
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| | - Steven M. Dubinett
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095-1690, USA
| | - Ramin Salehi-Rad
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Bin Liu
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| |
Collapse
|
15
|
Li C, Hou Y, He M, Lv L, Zhang Y, Sun S, Zhao Y, Liu X, Ma P, Wang X, Zhou Q, Zhan L. Laponite Lights Calcium Flickers by Reprogramming Lysosomes to Steer DC Migration for An Effective Antiviral CD8 + T-Cell Response. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303006. [PMID: 37638719 PMCID: PMC10602536 DOI: 10.1002/advs.202303006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Indexed: 08/29/2023]
Abstract
Immunotherapy using dendritic cell (DC)-based vaccination is an established approach for treating cancer and infectious diseases; however, its efficacy is limited. Therefore, targeting the restricted migratory capacity of the DCs may enhance their therapeutic efficacy. In this study, the effect of laponite (Lap) on DCs, which can be internalized into lysosomes and induce cytoskeletal reorganization via the lysosomal reprogramming-calcium flicker axis, is evaluated, and it is found that Lap dramatically improves the in vivo homing ability of these DCs to lymphoid tissues. In addition, Lap improves antigen cross-presentation by DCs and increases DC-T-cell synapse formation, resulting in enhanced antigen-specific CD8+ T-cell activation. Furthermore, a Lap-modified cocktail (Lap@cytokine cocktail [C-C]) is constructed based on the gold standard, C-C, as an adjuvant for DC vaccines. Lap@C-C-adjuvanted DCs initiated a robust cytotoxic T-cell immune response against hepatitis B infection, resulting in > 99.6% clearance of viral DNA and successful hepatitis B surface antigen seroconversion. These findings highlight the potential value of Lap as a DC vaccine adjuvant that can regulate DC homing, and provide a basis for the development of effective DC vaccines.
Collapse
Affiliation(s)
- Chenyan Li
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
- BGI college, Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yangyang Hou
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Minwei He
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Liping Lv
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Yulong Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Sujing Sun
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Yan Zhao
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Xingzhao Liu
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Ping Ma
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Xiaohui Wang
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Qianqian Zhou
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Linsheng Zhan
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
- BGI college, Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
16
|
Schendel DJ. Evolution by innovation as a driving force to improve TCR-T therapies. Front Oncol 2023; 13:1216829. [PMID: 37810959 PMCID: PMC10552759 DOI: 10.3389/fonc.2023.1216829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/16/2023] [Indexed: 10/10/2023] Open
Abstract
Adoptive cell therapies continually evolve through science-based innovation. Specialized innovations for TCR-T therapies are described here that are embedded in an End-to-End Platform for TCR-T Therapy Development which aims to provide solutions for key unmet patient needs by addressing challenges of TCR-T therapy, including selection of target antigens and suitable T cell receptors, generation of TCR-T therapies that provide long term, durable efficacy and safety and development of efficient and scalable production of patient-specific (personalized) TCR-T therapy for solid tumors. Multiple, combinable, innovative technologies are used in a systematic and sequential manner in the development of TCR-T therapies. One group of technologies encompasses product enhancements that enable TCR-T therapies to be safer, more specific and more effective. The second group of technologies addresses development optimization that supports discovery and development processes for TCR-T therapies to be performed more quickly, with higher quality and greater efficiency. Each module incorporates innovations layered onto basic technologies common to the field of immunology. An active approach of "evolution by innovation" supports the overall goal to develop best-in-class TCR-T therapies for treatment of patients with solid cancer.
Collapse
Affiliation(s)
- Dolores J. Schendel
- Medigene Immunotherapies GmbH, Planegg, Germany
- Medigene AG, Planegg, Germany
| |
Collapse
|
17
|
Nickles E, Xia R, Sun R, Schwarz H. Methods for generating the CD137L-DC-EBV-VAX anti-cancer vaccine. Methods Cell Biol 2023; 183:187-202. [PMID: 38548412 DOI: 10.1016/bs.mcb.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Dendritic cells (DC) are professional antigen presenting cells (APCs) that can efficiently present captured antigens to cytotoxic T cells and initiate powerful antigen-specific responses. Therefore, DC have been explored for cancer immunotherapy. However, due to the scarcity of DCs in the peripheral blood, ex-vivo expansion is required to generate sufficient DCs before use. The majority of DC-based tumor vaccines utilize monocyte-derived DC (mo-DC) that are generated with GM-CSF and IL-4. Here, we describe the generation of a novel type of DC, CD137L-DC, which are generated from monocytes by stimulation with a CD137 ligand agonist, and that proved to be more potent than classical mo-DC in inducing cytotoxic responses against tumor associated viruses, such as EBV and HBV in vitro. In a phase I clinical trial on patients with locally recurrent or metastatic NPC, a CD137L-DC-EBV vaccine showed good tolerability and prolonged patient survival, providing a basis for further development of CD137L-DC vaccines for immunotherapy.
Collapse
Affiliation(s)
- Emily Nickles
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Runze Xia
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Rui Sun
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
18
|
Fink C, Gevaert JJ, Barrett JW, Dikeakos JD, Foster PJ, Dekaban GA. In vivo tracking of adenoviral-transduced iron oxide-labeled bone marrow-derived dendritic cells using magnetic particle imaging. Eur Radiol Exp 2023; 7:42. [PMID: 37580614 PMCID: PMC10425309 DOI: 10.1186/s41747-023-00359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Despite widespread study of dendritic cell (DC)-based cancer immunotherapies, the in vivo postinjection fate of DC remains largely unknown. Due in part to a lack of quantifiable imaging modalities, this is troubling as the amount of DC migration to secondary lymphoid organs correlates with therapeutic efficacy. Magnetic particle imaging (MPI) has emerged as a suitable modality to quantify in vivo migration of superparamagnetic iron oxide (SPIO)-labeled DC. Herein, we describe a popliteal lymph node (pLN)-focused MPI scan to quantify DC in vivo migration accurately and consistently. METHODS Adenovirus (Ad)-transduced SPIO+ (Ad SPIO+) and SPIO+ C57BL/6 bone marrow-derived DC were generated and assessed for viability and phenotype, then fluorescently labeled and injected into mouse hind footpads (n = 6). Two days later, in vivo DC migration was quantified using whole animal, pLN-focused, and ex vivo pLN MPI scans. RESULTS No significant differences in viability, phenotype and in vivo pLN migration were noted for Ad SPIO+ and SPIO+ DC. Day 2 pLN-focused MPI quantified DC migration in all instances while whole animal MPI only quantified pLN migration in 75% of cases. Ex vivo MPI and fluorescence microscopy confirmed that pLN MPI signal was due to originally injected Ad SPIO+ and SPIO+ DC. CONCLUSION We overcame a reported limitation of MPI by using a pLN-focused MPI scan to quantify pLN-migrated Ad SPIO+ and SPIO+ DC in 100% of cases and detected as few as 1000 DC (4.4 ng Fe) in vivo. MPI is a suitable preclinical imaging modality to assess DC-based cancer immunotherapeutic efficacy. RELEVANCE STATEMENT Tracking the in vivo fate of DC using noninvasive quantifiable magnetic particle imaging can potentially serve as a surrogate marker of therapeutic effectiveness. KEY POINTS • Adenoviral-transduced and iron oxide-labeled dendritic cells are in vivo migration competent. • Magnetic particle imaging is a suitable modality to quantify in vivo dendritic cell migration. • Magnetic particle imaging focused field of view overcomes dynamic range limitation.
Collapse
Affiliation(s)
- Corby Fink
- Biotherapeutics Research Laboratory, Robarts Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Julia J Gevaert
- Cellular and Molecular Imaging Group, Robarts Research Institute, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - John W Barrett
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, ON, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Paula J Foster
- Cellular and Molecular Imaging Group, Robarts Research Institute, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Gregory A Dekaban
- Biotherapeutics Research Laboratory, Robarts Research Institute, London, ON, Canada.
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
19
|
Bödder J, Kok LM, Fauerbach JA, Flórez-Grau G, de Vries IJM. Tailored PGE2 Immunomodulation of moDCs by Nano-Encapsulated EP2/EP4 Antagonists. Int J Mol Sci 2023; 24:ijms24021392. [PMID: 36674907 PMCID: PMC9866164 DOI: 10.3390/ijms24021392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Prostaglandin E2 (PGE2) is an important maturation mediator for dendritic cells (DCs). However, increased PGE2 levels in the tumor exert immunosuppressive effects on DCs by signaling through two E-Prostanoid (EP) receptors: EP2 and EP4. Blocking EP-receptor signaling of PGE2 with antagonists is currently being investigated for clinical applications to enhance anti-tumor immunity. In this study, we investigated a new delivery approach by encapsulating EP2/EP4 antagonists in polymeric nanoparticles. The nanoparticles were characterized for size, antagonist loading, and release. The efficacy of the encapsulated antagonists to block PGE2 signaling was analyzed using monocyte-derived DCs (moDCs). The obtained nanoparticles were sized between 210 and 260 nm. The encapsulation efficacy of the EP2/EP4 antagonists was 20% and 17%, respectively, and was further increased with the co-encapsulation of both antagonists. The treatment of moDCs with co-encapsulation EP2/EP4 antagonists prevented PGE2-induced co-stimulatory marker expression. Even though both antagonists showed a burst release within 15 min at 37 °C, the nanoparticles executed the immunomodulatory effects on moDCs. In summary, we demonstrate the functionality of EP2/EP4 antagonist-loaded nanoparticles to overcome PGE2 modulation of moDCs.
Collapse
Affiliation(s)
- Johanna Bödder
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Leanne M. Kok
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jonathan A. Fauerbach
- R&D Reagents, Chemical Biology Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Georgina Flórez-Grau
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Correspondence:
| |
Collapse
|
20
|
Poirier A, Tremblay ML. Pharmacological potentiation of monocyte-derived dendritic cell cancer immunotherapy. Cancer Immunol Immunother 2022; 72:1343-1353. [DOI: 10.1007/s00262-022-03333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
|
21
|
Lee M, Du H, Winer DA, Clemente-Casares X, Tsai S. Mechanosensing in macrophages and dendritic cells in steady-state and disease. Front Cell Dev Biol 2022; 10:1044729. [PMID: 36467420 PMCID: PMC9712790 DOI: 10.3389/fcell.2022.1044729] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
Macrophages and dendritic cells are myeloid cells that play critical roles in immune responses. Macrophages help to maintain homeostasis through tissue regeneration and the clearance of dead cells, but also mediate inflammatory processes against invading pathogens. As the most potent antigen-presenting cells, dendritic cells are important in connecting innate to adaptive immune responses via activation of T cells, and inducing tolerance under physiological conditions. While it is known that macrophages and dendritic cells respond to biochemical cues in the microenvironment, the role of extracellular mechanical stimuli is becoming increasingly apparent. Immune cell mechanotransduction is an emerging field, where accumulating evidence suggests a role for extracellular physical cues coming from tissue stiffness in promoting immune cell recruitment, activation, metabolism and inflammatory function. Additionally, many diseases such as pulmonary fibrosis, cardiovascular disease, cancer, and cirrhosis are associated with changes to the tissue biophysical environment. This review will discuss current knowledge about the effects of biophysical cues including matrix stiffness, topography, and mechanical forces on macrophage and dendritic cell behavior under steady-state and pathophysiological conditions. In addition, we will also provide insight on molecular mediators and signaling pathways important in macrophage and dendritic cell mechanotransduction.
Collapse
Affiliation(s)
- Megan Lee
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Huixun Du
- Buck Institute for Research on Aging, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Daniel A. Winer
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Pathology, University Health Network, Toronto, ON, Canada
- Buck Institute for Research on Aging, Novato, CA, United States
| | - Xavier Clemente-Casares
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Sue Tsai
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
22
|
Delic M, Boeswald V, Goepfert K, Pabst P, Moehler M. In vitro Characterization of Enhanced Human Immune Responses by GM-CSF Encoding HSV-1-Induced Melanoma Cells. Onco Targets Ther 2022; 15:1291-1307. [PMID: 36310770 PMCID: PMC9606445 DOI: 10.2147/ott.s350136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 09/23/2022] [Indexed: 01/24/2023] Open
Abstract
PURPOSE We studied the innate and adaptive immune response against melanoma cells after JS-1 (wild-type herpes simplex virus 1, wt HSV-1) or Talimogene laherparepvec (T-VEC) infection and evaluated the antitumoral efficacy in human melanoma cells. We analyzed the putative synergistic biological and immunological effects of JS-1 or T-VEC combined with cytostatic drugs in human tumor and immune cells. T-VEC is a genetically modified strain of HSV-1. Genetic modifications (insertion of the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene) were made to attenuate the virus and increase selectivity for cancer cells. In addition to the direct oncolytic effect, we investigated the immune stimulatory effects of T-VEC by comparing it with JS-1. JS-1 is identical T-VEC except for the inserted GM-CSF gene. MATERIALS AND METHODS We analyzed the effects of T-VEC and JS-1 with cytostatic drugs in human tumor-immune cell coculture experiments. After coculture, the surface markers CD80, CD83 and CD86 were measured by fluorescence-activated cell sorting and the cytokines, interleukin (IL)-2, IL-6, tumor necrosis factor (TNF)-α and GM-CSF, by enzyme-linked immunosorbent assays. Furthermore, we analyzed the potential of the viruses to induce T cell activation, measured on the basis of CD4, CD8 and CD69. Analysis of these markers and cytokines allows for conclusions to be drawn concerning the maturation of dendritic cells (DCs) and the immunostimulatory effects of the treatment. RESULTS We documented increased activation of human cytotoxic T lymphocytes after infection by both HSV-1 strains and treatment with cytostatic drugs without significant differences between T-VEC and JS-1. CONCLUSION We demonstrated an immune response as a result of infection with both viruses, but T-VEC was in vitro not stronger than JS-1. The immunostimulatory effects of the viruses could be partially increased by chemotherapy, providing a rationale for future preclinical studies designed to explore T-VEC in combined regimens.
Collapse
Affiliation(s)
- Maike Delic
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Mainz, Germany,Correspondence: Maike Delic, University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Langenbeckstrasse 1, Mainz, 55131, Germany, Tel +49 6131 179803, Fax +49 6131 179657, Email
| | - Veronika Boeswald
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Mainz, Germany
| | - Katrin Goepfert
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Mainz, Germany
| | - Petra Pabst
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Mainz, Germany
| | - Markus Moehler
- University Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Mainz, Germany
| |
Collapse
|
23
|
Nanoscale organization of the MHC I peptide-loading complex in human dendritic cells. Cell Mol Life Sci 2022; 79:477. [PMID: 35947215 PMCID: PMC9365725 DOI: 10.1007/s00018-022-04472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/04/2022] [Accepted: 07/05/2022] [Indexed: 11/03/2022]
Abstract
Dendritic cells (DCs) translate local innate immune responses into long-lasting adaptive immunity by priming antigen-specific T cells. Accordingly, there is an ample interest in exploiting DCs for therapeutic purposes, e.g., in personalized immunotherapies. Despite recent advances in elucidating molecular pathways of antigen processing, in DCs the exact spatial organization of the underlying processes is largely unknown. Here, we unraveled the nanoscale organization of the transporter associated with antigen processing (TAP)-dependent peptide-loading machinery in human monocyte-derived DCs (moDC). We detected an unexpected accumulation of MHC I peptide-loading complexes (PLCs) and TAP-dependent peptide compartmentalization in protrusions of activated DCs. Using single-molecule localization microscopy we revealed that PLCs display homogeneously sized assemblies, independent of the DC activation status or cellular localization. Our data indicate that moDCs show augmentation of subcellular PLC density during DC maturation. We observed a twofold density increase in the cell body, while an even fourfold accumulation was detected in the tips of the protrusions at the mature DC stage in comparison to immature DCs. In these tip regions, PLC assemblies are found along highly compressed tubular ER networks. These findings provide novel insights into nanoscale organization of the antigen presentation machinery, and open new perspectives on the T cell stimulatory capacity of DCs.
Collapse
|
24
|
Generation of Leukaemia-Derived Dendritic Cells (DCleu) to Improve Anti-Leukaemic Activity in AML: Selection of the Most Efficient Response Modifier Combinations. Int J Mol Sci 2022; 23:ijms23158333. [PMID: 35955486 PMCID: PMC9368668 DOI: 10.3390/ijms23158333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DC) and leukaemia derived DC (DCleu) are potent stimulators of anti-leukaemic activity in acute myeloid leukaemia (AML) and can be generated from mononuclear cells in vitro following standard DC/DCleu-generating protocols. With respect to future clinical applications though, DC/DCleu-generating protocols specifically designed for application in a whole-blood-(WB)-environment must be established. Therefore, we developed ten new DC/DCleu-generating protocols (kits; Kit-A/-C/-D/-E/-F/-G/-H/-I/-K/-M) for the generation of DC/DCleu from leukaemic WB, containing calcium-ionophore, granulocyte-macrophage-colony-stimulating-factor (GM-CSF), tumour-necrosis-factor-alpha, prostaglandin-E1 (PGE1), prostaglandin-E2 (PGE2) and/or picibanil (OK-432). All protocols were evaluated regarding their performance in generating DC/DCleu using refined classification and/or ranking systems; DC/DCleu were evaluated regarding their performance in stimulating anti-leukaemic activity using a cytotoxicity fluorolysis assay. Overall, we found the new kits capable to generate (mature) DC/DCleu from leukaemic WB. Through refined classification and ranking systems, we were able to select Kit-I (GM-CSF + OK-432), -K (GM-CSF + PGE2) and -M (GM-CSF + PGE1) as the most efficient kits in generating (mature) DC/DCleu, which are further competent to stimulate immunoreactive cells to show an improved anti-leukaemic cytotoxicity as well. This great performance of Kit-I, -K and -M in mediating DC/DCleu-based anti-leukaemic immunity in a WB-environment in vitro constitutes an important and directive step for translating DC/DCleu-based immunotherapy of AML into clinical application.
Collapse
|
25
|
Chen S, Yang L, Ou X, Li JY, Zi CT, Wang H, Hu JM, Liu Y. A new polysaccharide platform constructs self-adjuvant nanovaccines to enhance immune responses. J Nanobiotechnology 2022; 20:320. [PMID: 35836236 PMCID: PMC9281129 DOI: 10.1186/s12951-022-01533-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Nanovaccines have shown the promising potential in controlling and eradicating the threat of infectious diseases worldwide. There has been a great need in developing a versatile strategy to conveniently construct diverse types of nanovaccines and induce potent immune responses. To that end, it is critical for obtaining a potent self-adjuvant platform to assemble with different types of antigens into nanovaccines. RESULTS In this study, we identified a new natural polysaccharide from the rhizomes of Bletilla striata (PRBS), and used this polysaccharide as a platform to construct diverse types of nanovaccines with potent self-adjuvant property. In the construction process of SARS-CoV-2 nanovaccine, PRBS molecules and RBD protein antigens were assembled into ~ 300 nm nanoparticles by hydrogen bond. For HIV nanovaccine, hydrophobic effect dominantly drove the co-assembly between PRBS molecules and Env expression plasmid into ~ 350 nm nanospheres. Importantly, PRBS can potently activate the behaviors and functions of multiple immune cells such as macrophages, B cells and dendritic cells. Depending on PRBS-mediated immune activation, these self-adjuvant nanovaccines can elicit significantly stronger antigen-specific antibody and cellular responses in vivo, in comparison with their corresponding traditional vaccine forms. Moreover, we also revealed the construction models of PRBS-based nanovaccines by analyzing multiple assembly parameters such as bond energy, bond length and interaction sites. CONCLUSIONS PRBS, a newly-identified natural polysaccharide which can co-assemble with different types of antigens and activate multiple critical immune cells, has presented a great potential as a versatile platform to develop potent self-adjuvant nanovaccines.
Collapse
Affiliation(s)
- Sisi Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650000, Yunnan, China
| | - Liu Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xia Ou
- School of Medicine, Kunming University of Science and Technology, Kunming, 650201, Yunnan, China
| | - Jin-Yu Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Cheng-Ting Zi
- College of Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, CAS Center for Excellence in Nanoscience, Beijing, 100190, China.
| | - Jiang-Miao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Ye Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650000, Yunnan, China.
| |
Collapse
|
26
|
Belyaeva IV, Kosova AN, Vasiliev AG. Tuberculosis and Autoimmunity. PATHOPHYSIOLOGY 2022; 29:298-318. [PMID: 35736650 PMCID: PMC9228380 DOI: 10.3390/pathophysiology29020022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis remains a common and dangerous chronic bacterial infection worldwide. It is long-established that pathogenesis of many autoimmune diseases is mainly promoted by inadequate immune responses to bacterial agents, among them Mycobacterium tuberculosis. Tuberculosis is a multifaceted process having many different outcomes and complications. Autoimmunity is one of the processes characteristic of tuberculosis; the presence of autoantibodies was documented by a large amount of evidence. The role of autoantibodies in pathogenesis of tuberculosis is not quite clear and widely disputed. They are regarded as: (1) a result of imbalanced immune response being reactive in nature, (2) a critical part of TB pathogenicity, (3) a beginning of autoimmune disease, (4) a protective mechanism helping to eliminate microbes and infected cells, and (5) playing dual role, pathogenic and protective. There is no single autoimmunity-mechanism development in tuberculosis; different pathways may be suggested. It may be excessive cell death and insufficient clearance of dead cells, impaired autophagy, enhanced activation of macrophages and dendritic cells, environmental influences such as vitamin D insufficiency, and genetic polymorphism, both of Mycobacterium tuberculosis and host.
Collapse
|
27
|
Hashimoto H, Güngör D, Krickeberg N, Schmitt J, Doll L, Schmidt M, Schleicher S, Criado-Moronati E, Schilbach K. TH1 cytokines induce senescence in AML. Leuk Res 2022; 117:106842. [DOI: 10.1016/j.leukres.2022.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
|
28
|
Αn optimized, simplified and clinically approved culture system to produce, in large scale, dendritic cells capable of priming specific T cells. Differentiation 2022; 125:54-61. [DOI: 10.1016/j.diff.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
|
29
|
Sailer N, Fetzer I, Salvermoser M, Braun M, Brechtefeld D, Krendl C, Geiger C, Mutze K, Noessner E, Schendel DJ, Bürdek M, Wilde S, Sommermeyer D. T-Cells Expressing a Highly Potent PRAME-Specific T-Cell Receptor in Combination with a Chimeric PD1-41BB Co-Stimulatory Receptor Show a Favorable Preclinical Safety Profile and Strong Anti-Tumor Reactivity. Cancers (Basel) 2022; 14:cancers14081998. [PMID: 35454906 PMCID: PMC9030144 DOI: 10.3390/cancers14081998] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary The development of effective adoptive T-cell therapies (ATCs) to treat solid tumors has several challenges: the choice of a suitable target antigen, the generation of a specific T-cell receptor (TCR) directed against this target, and the hostile tumor microenvironment (TME). The cancer/testis antigen Preferentially Expressed Antigen in Melanoma (PRAME) is a promising target for ATCs since it is highly expressed in several solid tumor indications, while its expression in normal tissues is mainly restricted to the testis. Using our well-established high throughput TCR generation and characterization process, we identified a highly potent PRAME-specific TCR. To convert the inhibitory PD-1 signal in T-cells to an activating signal, we designed a chimeric receptor consisting of the extracellular domain of PD-1 and the signaling domain of 4-1BB. Combining this PD1-41BB receptor with our lead PRAME-TCR generated a very promising T-cell product with a favorable preclinical in vitro safety profile and enhanced in vitro and in vivo anti-tumor efficacy. Abstract The hostile tumor microenvironment (TME) is a major challenge for the treatment of solid tumors with T-cell receptor (TCR)-modified T-cells (TCR-Ts), as it negatively influences T-cell efficacy, fitness, and persistence. These negative influences are caused, among others, by the inhibitory checkpoint PD-1/PD-L1 axis. The Preferentially Expressed Antigen in Melanoma (PRAME) is a highly relevant cancer/testis antigen for TCR-T immunotherapy due to broad expression in multiple solid cancer indications. A TCR with high specificity and sensitivity for PRAME was isolated from non-tolerized T-cell repertoires and introduced into T-cells alongside a chimeric PD1-41BB receptor, consisting of the natural extracellular domain of PD-1 and the intracellular signaling domain of 4-1BB, turning an inhibitory pathway into a T-cell co-stimulatory pathway. The addition of PD1-41BB to CD8+ T-cells expressing the transgenic PRAME-TCR enhanced IFN-γ secretion, improved cytotoxic capacity, and prevented exhaustion upon repetitive re-challenge with tumor cells in vitro without altering the in vitro safety profile. Furthermore, a single dose of TCR-Ts co-expressing PD1-41BB was sufficient to clear a hard-to-treat melanoma xenograft in a mouse model, whereas TCR-Ts without PD1-41BB could not eradicate the PD-L1-positive tumors. This cutting-edge strategy supports development efforts to provide more effective TCR-T immunotherapies for the treatment of solid tumors.
Collapse
Affiliation(s)
- Nadja Sailer
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Ina Fetzer
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Melanie Salvermoser
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Monika Braun
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Doris Brechtefeld
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Christian Krendl
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Christiane Geiger
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Kathrin Mutze
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Elfriede Noessner
- Immunoanalytics-Research Group Tissue Control of Immunocytes (TCI), Helmholtz Zentrum München, 81377 Munich, Germany;
| | - Dolores J. Schendel
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
- Medigene AG, 82152 Planegg, Germany
- Correspondence: or
| | - Maja Bürdek
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Susanne Wilde
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Daniel Sommermeyer
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| |
Collapse
|
30
|
Polysaccharides from European Black Elderberry Extract Enhance Dendritic Cell Mediated T Cell Immune Responses. Int J Mol Sci 2022; 23:ijms23073949. [PMID: 35409309 PMCID: PMC8999536 DOI: 10.3390/ijms23073949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022] Open
Abstract
European black elderberry (Sambucus nigra L.) is a popular way to treat common colds or influenza infections. Mechanistically, this might be due to a direct antiviral effect or a stimulatory effect on the immune system of the host. Here, we evaluated the modulatory effects of black elderberry derived water extract (EC15) and its polysaccharide enriched fractions (CPS, BOUND, and UNBOUND) in comparison to a conventional alcoholic extract (EE25), regarding the phenotypical and functional properties of dendritic cells (DCs), which are essential cells to induce potent T cell responses. Interestingly, the water extract and its polysaccharide fractions potently induced DC maturation, while the ethanol extract did not. Moreover, the capacity to stimulate T cells by these matured DCs, as assessed using MLR assays, was statistically higher when induced by the water extracted fractions, compared to immature DCs. On the other hand, the ethanol extract EE25 did not induce T cell stimulation. Finally, the cytokine expression profiles of these DC—T cell cocultures were assessed and correlated well with increased T cell stimulation. Also, the expression of inflammatory cytokines, such as IL-6, TNF-α, and IFN-γ was highly increased in the presence of the elderberry water extract EC15, and the polysaccharide enriched CPS, BOUND, and UNBOUND fractions, but not by EE25. Thus, from these data, we conclude that the polysaccharides present in water-derived elderberry fractions induce potent immune-modulatory effects, which represents the basis for a strong immune-mediated response to viruses including influenza.
Collapse
|
31
|
Dong S, Guo X, Han F, He Z, Wang Y. Emerging role of natural products in cancer immunotherapy. Acta Pharm Sin B 2022; 12:1163-1185. [PMID: 35530162 PMCID: PMC9069318 DOI: 10.1016/j.apsb.2021.08.020] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/05/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy has become a new generation of anti-tumor treatment, but its indications still focus on several types of tumors that are sensitive to the immune system. Therefore, effective strategies that can expand its indications and enhance its efficiency become the key element for the further development of cancer immunotherapy. Natural products are reported to have this effect on cancer immunotherapy, including cancer vaccines, immune-check points inhibitors, and adoptive immune-cells therapy. And the mechanism of that is mainly attributed to the remodeling of the tumor-immunosuppressive microenvironment, which is the key factor that assists tumor to avoid the recognition and attack from immune system and cancer immunotherapy. Therefore, this review summarizes and concludes the natural products that reportedly improve cancer immunotherapy and investigates the mechanism. And we found that saponins, polysaccharides, and flavonoids are mainly three categories of natural products, which reflected significant effects combined with cancer immunotherapy through reversing the tumor-immunosuppressive microenvironment. Besides, this review also collected the studies about nano-technology used to improve the disadvantages of natural products. All of these studies showed the great potential of natural products in cancer immunotherapy.
Collapse
Key Words
- AKT, alpha-serine/threonine-specific protein kinase
- Adoptive immune-cells transfer immunotherapy
- B2M, beta-2-microglobulin
- BMDCs, bone marrow dendritic cells
- BPS, basil polysaccharide
- BTLA, B- and T-lymphocyte attenuator
- CAFs, cancer-associated fibroblasts
- CCL22, C–C motif chemokine 22
- CIKs, cytokine-induced killer cells
- COX-2, cyclooxygenase-2
- CRC, colorectal cancer
- CTL, cytotoxic T cell
- CTLA-4, cytotoxic T lymphocyte antigen-4
- Cancer immunotherapy
- Cancer vaccines
- DAMPs, damage-associated molecular patterns
- DCs, dendritic cells
- FDA, US Food and Drug Administration
- HCC, hepatocellular carcinoma
- HER-2, human epidermal growth factor receptor-2
- HIF-1α, hypoxia-inducible factor-1α
- HMGB1, high-mobility group box 1
- HSPs, heat shock proteins
- ICD, Immunogenic cell death
- ICTs, immunological checkpoints
- IFN-γ, interferon γ
- IL-10, interleukin-10
- Immuno-check points
- Immunosuppressive microenvironment
- LLC, Lewis lung cancer
- MDSCs, myeloid-derived suppressor cells
- MHC, major histocompatibility complex class
- MITF, melanogenesis associated transcription factor
- MMP-9, matrix metalloprotein-9
- Mcl-1, myeloid leukemia cell differentiation protein 1
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NKTs, natural killer T cells
- NSCLC, non-small cell lung cancer
- Natural products
- OVA, ovalbumin
- PD-1, programmed death-1
- PD-L1, programmed death receptor ligand 1
- PGE-2, prostaglandin E2
- PI3K, phosphoinositide 3-kinase
- ROS, reactive oxygen species
- STAT3, signal transducer and activator of transcription 3
- TAMs, tumor-associated macrophages
- TAP, transporters related with antigen processing
- TGF-β, transforming growth factor-β
- TILs, tumor infiltration lymphocytes
- TLR, Toll-like receptor
- TNF-α, tumor necrosis factor α
- TSA, tumor specific antigens
- Teffs, effective T cells
- Th1, T helper type 1
- Tregs, regulatory T cells
- VEGF, vascular endothelial growth factor
- bFGF, basic fibroblast growth factor
- mTOR, mechanistic target of rapamycin
Collapse
Affiliation(s)
- Songtao Dong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiangnan Guo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongjun Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
32
|
Rezaei M, Danilova ND, Soltani M, Savvateeva LV, V Tarasov V, Ganjalikhani-Hakemi M, V Bazhinf A, A Zamyatnin A. Cancer Vaccine in Cold Tumors: Clinical Landscape, Challenges, and Opportunities. Curr Cancer Drug Targets 2022; 22:437-453. [PMID: 35156572 DOI: 10.2174/1568009622666220214103533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022]
Abstract
The idea of cancer immunotherapy is to stimulate the immune system to fight tumors without destroying normal cells. One of the anticancer therapy methods, among many, is based on the use of cancer vaccines that contain tumor antigens in order to induce immune responses against tumors. However, clinical trials have shown that the use of such vaccines as a monotherapy is ineffective in many cases, since they do not cause a strong immune response. Particular tumors are resistant to immunotherapy due to the absence or insufficient infiltration of tumors with CD8+ T cells, and hence, they are called cold or non-inflamed tumors. Cold tumors are characterized by a lack of CD8+ T cell infiltration, the presence of anti-inflammatory myeloid cells, tumor-associated M2 macrophages, and regulatory T cells. It is very important to understand which stage of the antitumor response does not work properly in order to use the right strategy for the treatment of patients. Applying other therapeutic methods alongside cancer vaccines can be more rational for cold tumors which do not provoke the immune system strongly. Herein, we indicate some combinational therapies that have been used or are in progress for cold tumor treatment alongside vaccines.
Collapse
Affiliation(s)
- Mahnaz Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mozhdeh Soltani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Lyudmila V Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mazdak Ganjalikhani-Hakemi
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alexandr V Bazhinf
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
33
|
Swartz AM, Hotchkiss KM, Nair SK, Sampson JH, Batich KA. Generation of Tumor Targeted Dendritic Cell Vaccines with Improved Immunogenic and Migratory Phenotype. Methods Mol Biol 2022; 2410:609-626. [PMID: 34914072 DOI: 10.1007/978-1-0716-1884-4_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Our group has employed methodologies for effective ex vivo generation of dendritic cell (DC) vaccines for patients with primary malignant brain tumors. In order to reliably produce the most potent, most representational vaccinated DC that will engender an antitumor response requires the ability to orchestrate multiple methodologies that address antigen cross-presentation, T-cell costimulation and polarization, and migratory capacity. In this chapter, we describe a novel method for augmenting the immunogenicity and migratory potential of DCs for their use as vaccines. We have elucidated methodologies to avoid the phenomenon known as immunodominance in generating cancer vaccines. We have found that culturing DC progenitors in serum-free conditions for the duration of the differentiation protocol results in a more homogeneously mature population of DCs that exhibit enhanced immunogenicity compared to DCs generated in serum-containing culture conditions. Furthermore, we demonstrate our method for generating high mobility DCs that readily migrate toward lymphoid organ chemoattractants using CCL3 protein. The combination of these two approaches represents a facile and clinically tractable methodology for generating highly mature DCs with excellent migratory capacity.
Collapse
Affiliation(s)
- Adam M Swartz
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Kelly M Hotchkiss
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Smita K Nair
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC, USA
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
| | - John H Sampson
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
| | - Kristen A Batich
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
34
|
Weiss M, Anderluh M, Gobec M. Inhibition of O-GlcNAc Transferase Alters the Differentiation and Maturation Process of Human Monocyte Derived Dendritic Cells. Cells 2021; 10:cells10123312. [PMID: 34943826 PMCID: PMC8699345 DOI: 10.3390/cells10123312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
The O-GlcNAcylation is a posttranslational modification of proteins regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase. These enzymes regulate the development, proliferation and function of cells, including the immune cells. Herein, we focused on the role of O-GlcNAcylation in human monocyte derived dendritic cells (moDCs). Our study suggests that inhibition of OGT modulates AKT and MEK/ERK pathways in moDCs. Changes were also observed in the expression levels of relevant surface markers, where reduced expression of CD80 and DC-SIGN, and increased expression of CD14, CD86 and HLA-DR occurred. We also noticed decreased IL-10 and increased IL-6 production, along with diminished endocytotic capacity of the cells, indicating that inhibition of O-GlcNAcylation hampers the transition of monocytes into immature DCs. Furthermore, the inhibition of OGT altered the maturation process of immature moDCs, since a CD14medDC-SIGNlowHLA-DRmedCD80lowCD86high profile was noticed when OGT inhibitor, OSMI-1, was present. To evaluate DCs ability to influence T cell differentiation and polarization, we co-cultured these cells. Surprisingly, the observed phenotypic changes of mature moDCs generated in the presence of OSMI-1 led to an increased proliferation of allogeneic T cells, while their polarization was not affected. Taken together, we confirm that shifting the O-GlcNAcylation status due to OGT inhibition alters the differentiation and function of moDCs in in vitro conditions.
Collapse
Affiliation(s)
- Matjaž Weiss
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.W.); (M.A.)
| | - Marko Anderluh
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.W.); (M.A.)
| | - Martina Gobec
- The Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-4769-636
| |
Collapse
|
35
|
Kwiecień I, Rutkowska E, Raniszewska A, Rzepecki P, Domagała-Kulawik J. Modulation of the immune response by heterogeneous monocytes and dendritic cells in lung cancer. World J Clin Oncol 2021; 12:966-982. [PMID: 34909393 PMCID: PMC8641004 DOI: 10.5306/wjco.v12.i11.966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/02/2021] [Accepted: 11/05/2021] [Indexed: 02/06/2023] Open
Abstract
Different subpopulations of monocytes and dendritic cells (DCs) may have a key impact on the modulation of the immune response in malignancy. In this review, we summarize the monocyte and DCs heterogeneity and their function in the context of modulating the immune response in cancer. Subgroups of monocytes may play opposing roles in cancer, depending on the tumour growth and progression as well as the type of cancer. Monocytes can have pro-tumour and anti-tumour functions and can also differentiate into monocyte-derived DCs (moDCs). MoDCs have a similar antigen presentation ability as classical DCs, including cross-priming, a process by which DCs activate CD8 T-cells by cross-presenting exogenous antigens. DCs play a critical role in generating anti-tumour CD8 T-cell immunity. DCs have plastic characteristics and show distinct phenotypes depending on their mature state and depending on the influence of the tumour microenvironment. MoDCs and other DC subsets have been attracting increased interest owing to their possible beneficial effects in cancer immunotherapy. This review also highlights key strategies deploying specific DC subpopulations in combination with other therapies to enhance the anti-tumour response and summarizes the latest ongoing and completed clinical trials using DCs in lung cancer.
Collapse
Affiliation(s)
- Iwona Kwiecień
- Department of Internal Medicine and Hematology, Laboratory of Hematology and Flow Cytometry, Military Institute of Medicine, Warsaw 04-141, Poland
| | - Elżbieta Rutkowska
- Department of Internal Medicine and Hematology, Laboratory of Hematology and Flow Cytometry, Military Institute of Medicine, Warsaw 04-141, Poland
| | - Agata Raniszewska
- Department of Internal Medicine and Hematology, Laboratory of Hematology and Flow Cytometry, Military Institute of Medicine, Warsaw 04-141, Poland
| | - Piotr Rzepecki
- Department of Internal Medicine and Hematology, Military Institute of Medicine, Warsaw 04-141, Poland
| | - Joanna Domagała-Kulawik
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw 02-091, Poland
| |
Collapse
|
36
|
Datsi A, Sorg RV. Dendritic Cell Vaccination of Glioblastoma: Road to Success or Dead End. Front Immunol 2021; 12:770390. [PMID: 34795675 PMCID: PMC8592940 DOI: 10.3389/fimmu.2021.770390] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastomas (GBM) are the most frequent and aggressive malignant primary brain tumor and remains a therapeutic challenge: even after multimodal therapy, median survival of patients is only 15 months. Dendritic cell vaccination (DCV) is an active immunotherapy that aims at inducing an antitumoral immune response. Numerous DCV trials have been performed, vaccinating hundreds of GBM patients and confirming feasibility and safety. Many of these studies reported induction of an antitumoral immune response and indicated improved survival after DCV. However, two controlled randomized trials failed to detect a survival benefit. This raises the question of whether the promising concept of DCV may not hold true or whether we are not yet realizing the full potential of this therapeutic approach. Here, we discuss the results of recent vaccination trials, relevant parameters of the vaccines themselves and of their application, and possible synergies between DCV and other therapeutic approaches targeting the immunosuppressive microenvironment of GBM.
Collapse
Affiliation(s)
- Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University Hospital, Medical Faculty, Düsseldorf, Germany
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University Hospital, Medical Faculty, Düsseldorf, Germany
| |
Collapse
|
37
|
Nava S, Lisini D, Frigerio S, Bersano A. Dendritic Cells and Cancer Immunotherapy: The Adjuvant Effect. Int J Mol Sci 2021; 22:ijms222212339. [PMID: 34830221 PMCID: PMC8620771 DOI: 10.3390/ijms222212339] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/01/2023] Open
Abstract
Dendritic cells (DCs) are immune specialized cells playing a critical role in promoting immune response against antigens, and may represent important targets for therapeutic interventions in cancer. DCs can be stimulated ex vivo with pro-inflammatory molecules and loaded with tumor-specific antigen(s). Protocols describing the specific details of DCs vaccination manufacturing vary widely, but regardless of the employed protocol, the DCs vaccination safety and its ability to induce antitumor responses is clearly established. Many years of studies have focused on the ability of DCs to provide overall survival benefits at least for a selection of cancer patients. Lessons learned from early trials lead to the hypothesis that, to improve the efficacy of DCs-based immunotherapy, this should be combined with other treatments. Thus, the vaccine’s ultimate role may lie in the combinatorial approaches of DCs-based immunotherapy with chemotherapy and radiotherapy, more than in monotherapy. In this review, we address some key questions regarding the integration of DCs vaccination with multimodality therapy approaches for cancer treatment paradigms.
Collapse
|
38
|
BRAF and MEK Inhibitors Affect Dendritic-Cell Maturation and T-Cell Stimulation. Int J Mol Sci 2021; 22:ijms222111951. [PMID: 34769379 PMCID: PMC8585071 DOI: 10.3390/ijms222111951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022] Open
Abstract
BRAF and MEK inhibitor (BRAFi/MEKi) combinations are currently the standard treatment for patients with BRAFV600 mutant metastatic melanoma. Since the RAS/RAF/MEK/ERK-pathway is crucial for the function of different immune cells, we postulated an effect on their function and thus interference with anti-tumor immunity. Therefore, we examined the influence of BRAFi/MEKi, either as single agent or in combination, on the maturation of monocyte-derived dendritic cells (moDCs) and their interaction with T cells. DCs matured in the presence of vemurafenib or vemurafenib/cobimetinib altered their cytokine secretion and surface marker expression profile. Upon the antigen-specific stimulation of CD8+ and CD4+ T cells with these DCs or with T2.A1 cells in the presence of BRAFi/MEKi, we detected a lower expression of activation markers on and a lower cytokine secretion by these T cells. However, treatment with any of the inhibitors alone or in combination did not change the avidity of CD8+ T cells in peptide titration assays with T2.A1 cells. T-helper cell/DC interaction is a bi-directional process that normally results in DC activation. Vemurafenib and vemurafenib/cobimetinib completely abolished the helper T-cell-mediated upregulation of CD70, CD80, and CD86 but not CD25 on the DCs. The combination of dabrafenib/trametinib affected DC maturation and activation as well as T-cell activation less than combined vemurafenib/cobimetinib did. Hence, for a potential combination with immunotherapy, our data indicate the superiority of dabrafenib/trametinib treatment.
Collapse
|
39
|
ERK5 modulates IL-6 secretion and contributes to tumor-induced immune suppression. Cell Death Dis 2021; 12:969. [PMID: 34671021 PMCID: PMC8528934 DOI: 10.1038/s41419-021-04257-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
Tumors exhibit a variety of strategies to dampen antitumor immune responses. With an aim to identify factors that are secreted from tumor cells, we performed an unbiased mass spectrometry-based secretome analysis in lung cancer cells. Interleukin-6 (IL-6) has been identified as a prominent factor secreted by tumor cells and cancer-associated fibroblasts isolated from cancer patients. Incubation of dendritic cell (DC) cultures with tumor cell supernatants inhibited the production of IL-12p70 in DCs but not the surface expression of other activation markers which is reversed by treatment with IL-6 antibody. Defects in IL-12p70 production in the DCs inhibited the differentiation of Th1 but not Th2 and Th17 cells from naïve CD4+ T cells. We also demonstrate that the classical mitogen-activated protein kinase, ERK5/MAPK7, is required for IL-6 production in tumor cells. Inhibition of ERK5 activity or depletion of ERK5 prevented IL-6 production in tumor cells, which could be exploited for enhancing antitumor immune responses.
Collapse
|
40
|
Sharma MD, Pacholczyk R, Shi H, Berrong ZJ, Zakharia Y, Greco A, Chang CSS, Eathiraj S, Kennedy E, Cash T, Bollag RJ, Kolhe R, Sadek R, McGaha TL, Rodriguez P, Mandula J, Blazar BR, Johnson TS, Munn DH. Inhibition of the BTK-IDO-mTOR axis promotes differentiation of monocyte-lineage dendritic cells and enhances anti-tumor T cell immunity. Immunity 2021; 54:2354-2371.e8. [PMID: 34614413 PMCID: PMC8516719 DOI: 10.1016/j.immuni.2021.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/19/2021] [Accepted: 09/09/2021] [Indexed: 01/04/2023]
Abstract
Monocytic-lineage inflammatory Ly6c+CD103+ dendritic cells (DCs) promote antitumor immunity, but these DCs are infrequent in tumors, even upon chemotherapy. Here, we examined how targeting pathways that inhibit the differentiation of inflammatory myeloid cells affect antitumor immunity. Pharmacologic inhibition of Bruton's tyrosine kinase (BTK) and the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) or deletion of Btk or Ido1 allowed robust differentiation of inflammatory Ly6c+CD103+ DCs during chemotherapy, promoting antitumor T cell responses and inhibiting tumor growth. Immature Ly6c+c-kit+ precursor cells had epigenetic profiles similar to conventional DC precursors; deletion of Btk or Ido1 promoted differentiation of these cells. Mechanistically, a BTK-IDO axis inhibited a tryptophan-sensitive differentiation pathway driven by GATOR2 and mTORC1, and disruption of the GATOR2 in monocyte-lineage precursors prevented differentiation into inflammatory DCs in vivo. IDO-expressing DCs and monocytic cells were present across a range of human tumors. Thus, a BTK-IDO axis represses differentiation of inflammatory DCs during chemotherapy, with implications for targeted therapies.
Collapse
Affiliation(s)
- Madhav D Sharma
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Rafal Pacholczyk
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zuzana J Berrong
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yousef Zakharia
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Austin Greco
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Chang-Sheng S Chang
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Bioinformatics Shared Resource, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | | | | | - Thomas Cash
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - Roni J Bollag
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ramses Sadek
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Tracy L McGaha
- Department of Immunology, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Paulo Rodriguez
- Immunology Department, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jessica Mandula
- Immunology Department, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Bruce R Blazar
- Department of Pediatrics and Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Theodore S Johnson
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David H Munn
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
41
|
Zhou Q, Gu H, Sun S, Zhang Y, Hou Y, Li C, Zhao Y, Ma P, Lv L, Aji S, Sun S, Wang X, Zhan L. Large-Sized Graphene Oxide Nanosheets Increase DC-T-Cell Synaptic Contact and the Efficacy of DC Vaccines against SARS-CoV-2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102528. [PMID: 34396603 PMCID: PMC8420123 DOI: 10.1002/adma.202102528] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/29/2021] [Indexed: 05/03/2023]
Abstract
Dendritic cell (DC) vaccines are used for cancer and infectious diseases, albeit with limited efficacy. Modulating the formation of DC-T-cell synapses may greatly increase their efficacy. The effects of graphene oxide (GO) nanosheets on DCs and DC-T-cell synapse formation are evaluated. In particular, size-dependent interactions are observed between GO nanosheets and DCs. GOs with diameters of >1 µm (L-GOs) demonstrate strong adherence to the DC surface, inducing cytoskeletal reorganization via the RhoA-ROCK-MLC pathway, while relatively small GOs (≈500 nm) are predominantly internalized by DCs. Furthermore, L-GO treatment enhances DC-T-cell synapse formation via cytoskeleton-dependent membrane positioning of integrin ICAM-1. L-GO acts as a "nanozipper," facilitating the aggregation of DC-T-cell clusters to produce a stable microenvironment for T cell activation. Importantly, L-GO-adjuvanted DCs promote robust cytotoxic T cell immune responses against SARS-CoV-2 spike 1, leading to >99.7% viral RNA clearance in mice infected with a clinically isolated SARS-CoV-2 strain. These findings highlight the potential value of nanomaterials as DC vaccine adjuvants for modulating DC-T-cell synapse formation and provide a basis for the development of effective COVID-19 vaccines.
Collapse
Affiliation(s)
- Qianqian Zhou
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Hongjing Gu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071China
| | - Sujing Sun
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Yulong Zhang
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Yangyang Hou
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Chenyan Li
- BGI collegeZhengzhou UniversityHenan Institute of Medical and Pharmaceutical ScienceZhengzhou UniversityZhengzhou450001P. R. China
| | - Yan Zhao
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Ping Ma
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Liping Lv
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Subi Aji
- Cold Spring Biotech CorporationBeijing110000P. R. China
| | - Shihui Sun
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071China
| | - Xiaohui Wang
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Linsheng Zhan
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
- BGI collegeZhengzhou UniversityHenan Institute of Medical and Pharmaceutical ScienceZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
42
|
Chung JT, Lau CML, Chau Y. The effect of polysaccharide-based hydrogels on the response of antigen-presenting cell lines to immunomodulators. Biomater Sci 2021; 9:6542-6554. [PMID: 34582528 DOI: 10.1039/d1bm00854d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogel presents as foreign material to the host and participates in immune responses, which skew the biofunctions of immunologic loads (antigen and adjuvants) during in situ DC priming. This study aims to investigate the effect of the hydrogel made from different polysaccharides on macrophage (RAW264.7) activation and DC (JAWSII) modulation. We adopted polysaccharides of different sugar chemistry to fabricate hydrogels. Hyaluronate (HA), glycol chitosan (GC) and dextran (DX) were functionalized with vinyl sulfone and chemically cross-linked with dithiothreitol via thiol-click chemistry. We found that HA reduced macrophage adhesion and activation on the hydrogel surface. GC and DX promoted M1 polarization in terms of higher CCR7 expression and TNF-α, IL-6 production. In terms of DC engagement, GC promoted antigen uptake by JAWSII and all hydrogels promoted antigen presentation on MHC-I molecules. GC and DX favoured the generation of immunogenic DC while accommodating immunostimulatory functions of IFN-γ and polyI:C or LPS during co-incubation. Particularly, the co-incubation of IP with GC promoted CCR7 expression on JAWSII. Conversely, HA was more appropriate for the construction of a tolerogenic DC priming platform. We observed that HA did not induce co-stimulatory markers expression on DC but suppressed the action of LPS in inducing TNF-α generation. Moreover, when immunosuppressive cytokines, IL-10 and TGF-β were added, cytokines' immunosuppressive action was amplified by hydrogel bedding, HA, GC and to a less extent DX in suppressing LPS-induced IL-6 generation from JAWSII. We concluded that HA is preferable for tolerogenic DC development while minimizing the macrophage response in conferring foreign body response, whereas DX and GC are more appropriate for immunogenic DC development. This study demonstrates the potential of polysaccharides in conferring in situ DC priming together with antigen and adjuvant loads while addressing the tradeoff between the foreign body responses and DC engagement by selecting appropriate polysaccharides for the hydrogel platform construction.
Collapse
Affiliation(s)
- Jin Teng Chung
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Chi Ming Laurence Lau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Ying Chau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
43
|
Bosch NC, Martin LM, Voskens CJ, Berking C, Seliger B, Schuler G, Schaft N, Dörrie J. A Chimeric IL-15/IL-15Rα Molecule Expressed on NFκB-Activated Dendritic Cells Supports Their Capability to Activate Natural Killer Cells. Int J Mol Sci 2021; 22:ijms221910227. [PMID: 34638566 PMCID: PMC8508776 DOI: 10.3390/ijms221910227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/02/2021] [Accepted: 09/18/2021] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells, members of the innate immune system, play an important role in the rejection of HLA class I negative tumor cells. Hence, a therapeutic vaccine, which can activate NK cells in addition to cells of the adaptive immune system might induce a more comprehensive cellular response, which could lead to increased tumor elimination. Dendritic cells (DCs) are capable of activating and expanding NK cells, especially when the NFκB pathway is activated in the DCs thereby leading to the secretion of the cytokine IL-12. Another prominent NK cell activator is IL-15, which can be bound by the IL-15 receptor alpha-chain (IL-15Rα) to be transpresented to the NK cells. However, monocyte-derived DCs do neither secrete IL-15, nor express the IL-15Rα. Hence, we designed a chimeric protein consisting of IL-15 and the IL-15Rα. Upon mRNA electroporation, the fusion protein was detectable on the surface of the DCs, and increased the potential of NFκB-activated, IL-12-producing DC to activate NK cells in an autologous cell culture system with ex vivo-generated cells from healthy donors. These data show that a chimeric IL-15/IL-15Rα molecule can be expressed by monocyte-derived DCs, is trafficked to the cell surface, and is functional regarding the activation of NK cells. These data represent an initial proof-of-concept for an additional possibility of further improving cellular DC-based immunotherapies of cancer.
Collapse
Affiliation(s)
- Naomi C. Bosch
- Institute of Medical Immunology, Martin-Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany; (N.C.B.); (B.S.)
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.-M.M.); (C.J.V.); (C.B.); (G.S.); (N.S.)
- Comprehensive Cancer Center Erlangen–EMN, NCT WERA, 91054 Erlangen, Germany
| | - Lena-Marie Martin
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.-M.M.); (C.J.V.); (C.B.); (G.S.); (N.S.)
| | - Caroline J. Voskens
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.-M.M.); (C.J.V.); (C.B.); (G.S.); (N.S.)
- Comprehensive Cancer Center Erlangen–EMN, NCT WERA, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.-M.M.); (C.J.V.); (C.B.); (G.S.); (N.S.)
- Comprehensive Cancer Center Erlangen–EMN, NCT WERA, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin-Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany; (N.C.B.); (B.S.)
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany
| | - Gerold Schuler
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.-M.M.); (C.J.V.); (C.B.); (G.S.); (N.S.)
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.-M.M.); (C.J.V.); (C.B.); (G.S.); (N.S.)
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.-M.M.); (C.J.V.); (C.B.); (G.S.); (N.S.)
- Correspondence: ; Tel.: +49-9131-8531127
| |
Collapse
|
44
|
Murine Dendritic Cells Grown in Serum-Free Culture Show Potent Therapeutic Activity when Loaded with Novel Th Epitopes in an Orthotopic Model of HER2 pos Breast Cancer. Vaccines (Basel) 2021; 9:vaccines9091037. [PMID: 34579275 PMCID: PMC8473293 DOI: 10.3390/vaccines9091037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Preferred methods for generating mouse dendritic cells (DC) would encompass qualities of consistency, high yield, and potent function. Serum-free culture is also highly desirable, since this is the standard for cell-based therapies used in humans. We report here a serum-free modification of a culture method generating mature, activated DCs from bone marrow precursors. This is achieved through a two-stage culture comprised of 6-day expansion in Flt3 ligand and IL-6 followed by brief differentiation in a medium containing GM-CSF and IL-4, with subsequent activation using TLR ligands ODN1826 and LPS. The serum-free DCs achieve yields and surface phenotype including IL-12p70 secretion similar to standard serum-replete cultures, display a capacity to sensitize in vivo against both MHC class I- and Class II-restricted antigens, and exhibit some aspects of "killer DC" function against tumor cells. We used these DCs to help identify novel CD4pos Th epitopes on the rat ErbB2/HER-2 protein and demonstrated a subset of these as effective immunogens in a DC-based therapeutic model of HER-2pos breast cancer in Balb/c mice, where they induced powerful Th1-polarized immune responses. This method represents a useful way to efficiently produce large numbers of murine dendritic cells with excellent in vivo function well-suited for use in experimental vaccine studies.
Collapse
|
45
|
Pipperger L, Riepler L, Kimpel J, Siller A, Stoitzner P, Bánki Z, von Laer D. Differential infection of murine and human dendritic cell subsets by oncolytic vesicular stomatitis virus variants. Oncoimmunology 2021; 10:1959140. [PMID: 34484872 PMCID: PMC8409795 DOI: 10.1080/2162402x.2021.1959140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oncolytic viruses (OVs) can eradicate tumor cells and elicit antitumor immunity. VSV-GP, a chimeric vesicular stomatitis virus (VSV) with the glycoprotein (GP) of the lymphocytic choriomeningitis virus, is a promising new OV candidate. However, the interaction of VSV-GP with host immune cells is not fully understood. Dendritic cells (DCs) are essential for inducing efficient antitumor immunity. Thus, we aimed to investigate the interaction of VSV-GP with different murine and human DCs subsets in direct comparison to the less cytopathic variant VSV-dM51-GP and wild type VSV. Immature murine bone marrow-derived DCs (BMDCs) were equally infected and killed by VSV and VSV-GP. Human monocyte-derived DCs (moDCs) were more permissive to VSV. Interestingly, VSV-dM51-GP induced maturation instead of killing in both BMDCs and moDCs as well as a pronounced release of pro-inflammatory cytokines. Importantly, matured BMDCs and moDCs were no longer susceptible to VSV-GP infection. Mouse splenic conventional DC type 1 (cDC1) could be infected ex vivo by VSV and VSV-GP to a higher extent than cDC2. Systemic infection of mice with VSV-GP and VSV-dM51-GP resulted in strong activation of cDCs despite low infection rates in spleen and tumor tissue. Human blood cDC1 were equally infected by VSV and VSV-GP, whereas cDC2 showed preferential infection with VSV. Our study demonstrated differential DC infection, activation, and cytokine production after the treatment with VSV and VSV-GP variants among species and subsets, which should be taken into account when investigating immunological mechanisms of oncolytic virotherapy in mouse models and human clinical trials.
Collapse
Affiliation(s)
- Lisa Pipperger
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lydia Riepler
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Janine Kimpel
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anita Siller
- Central Institute of Blood Transfusion and Immunology, University Hospital Innsbruck, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoltán Bánki
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
46
|
Lin JC, Hsu CY, Chen JY, Fang ZS, Chen HW, Yao BY, Shiau GHM, Tsai JS, Gu M, Jung M, Lee TY, Hu CMJ. Facile Transformation of Murine and Human Primary Dendritic Cells into Robust and Modular Artificial Antigen-Presenting Systems by Intracellular Hydrogelation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101190. [PMID: 34096117 DOI: 10.1002/adma.202101190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/01/2021] [Indexed: 06/12/2023]
Abstract
The growing enthusiasm for cancer immunotherapies and adoptive cell therapies has prompted increasing interest in biomaterials development mimicking natural antigen-presenting cells (APCs) for T-cell expansion. In contrast to conventional bottom-up approaches aimed at layering synthetic substrates with T-cell activation cues, transformation of live dendritic cells (DCs) into artificial APCs (aAPCs) is demonstrated herein using a facile and minimally disruptive hydrogelation technique. Through direct intracellular permeation of poly(ethylene glycol) diacrylate (PEG-DA) hydrogel monomer and UV-activated radical polymerization, intracellular hydrogelation is rapidly accomplished on DCs with minimal influence on cellular morphology and surface antigen display, yielding highly robust and modular cell-gel hybrid constructs amenable to peptide antigen exchange, storable by freezing and lyophilization, and functionalizable with cytokine-releasing carriers for T-cell modulation. The DC-derived aAPCs are shown to induce prolonged T-cell expansion and improve anticancer efficacy of adoptive T-cell therapy in mice compared to nonexpanded control T cells, and the gelation technique is further demonstrated to stabilize primary DCs derived from human donors. The work presents a versatile approach for generating a new class of cell-mimicking biomaterials and opens new venues for immunological interrogation and immunoengineering.
Collapse
Affiliation(s)
- Jung-Chen Lin
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan, 115, Republic of China
| | - Chung-Yao Hsu
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan, 115, Republic of China
| | - Jui-Yi Chen
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan, 115, Republic of China
| | - Zih-Syun Fang
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan, 115, Republic of China
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Da'an District, Taipei, Taiwan, 106, Republic of China
| | - Bing-Yu Yao
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan, 115, Republic of China
| | - Gwo Harn M Shiau
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan, 115, Republic of China
| | - Jeng-Shiang Tsai
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan, 115, Republic of China
| | - Ming Gu
- Celtec Inc., One Broadway, Cambridge, MA, 02142, USA
- Celtec Inc., 15-7F, No 99, Sec 1, Xintai 5th Road, New Taipei City, Taiwan, 22175, Republic of China
| | - Meiying Jung
- Celtec Inc., One Broadway, Cambridge, MA, 02142, USA
- Celtec Inc., 15-7F, No 99, Sec 1, Xintai 5th Road, New Taipei City, Taiwan, 22175, Republic of China
| | - Tong-Young Lee
- Celtec Inc., One Broadway, Cambridge, MA, 02142, USA
- Celtec Inc., 15-7F, No 99, Sec 1, Xintai 5th Road, New Taipei City, Taiwan, 22175, Republic of China
| | - Che-Ming J Hu
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan, 115, Republic of China
| |
Collapse
|
47
|
Hatscher L, Amon L, Heger L, Dudziak D. Inflammasomes in dendritic cells: Friend or foe? Immunol Lett 2021; 234:16-32. [PMID: 33848562 DOI: 10.1016/j.imlet.2021.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022]
Abstract
Inflammasomes are cytosolic multiprotein complexes that crucially contribute to host defense against pathogens but are also involved in the pathogenesis of autoinflammatory diseases. Inflammasome formation leads to activation of effector caspases (caspase-1, 4, 5, or 11), the proteolytic maturation of IL-1β and IL-18 as well as cleavage of the pore-forming protein Gasdermin D. Dendritic cells are major regulators of immune responses as they bridge innate and adaptive immunity. We here summarize the current knowledge on inflammasome expression and formation in murine bone marrow-, human monocyte-derived as well as murine and human primary dendritic cells. Further, we discuss both, the beneficial and detrimental, involvement of inflammasome activation in dendritic cells in cancer, infections, and autoimmune diseases. As inflammasome activation is typically accompanied by Gasdermin d-mediated pyroptosis, which is an inflammatory form of programmed cell death, inflammasome formation in dendritic cells seems ill-advised. Therefore, we propose that hyperactivation, which is inflammasome activation without the induction of pyroptosis, may be a general model of inflammasome activation in dendritic cells to enhance Th1, Th17 as well as cytotoxic T cell responses.
Collapse
Affiliation(s)
- Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany.
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany; Medical Immunology Campus Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Germany; Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Germany.
| |
Collapse
|
48
|
Constitutively Activated DAP12 Induces Functional Anti-Tumor Activation and Maturation of Human Monocyte-Derived DC. Int J Mol Sci 2021; 22:ijms22031241. [PMID: 33513928 PMCID: PMC7865632 DOI: 10.3390/ijms22031241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 01/07/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen presenting cells with a great capacity for cross-presentation of exogenous antigens from which robust anti-tumor immune responses ensue. However, this function is not always available and requires DCs to first be primed to induce their maturation. In particular, in the field of DC vaccine design, currently available methodologies have been limited in eliciting a sustained anti-tumor immune response. Mechanistically, part of the maturation response is influenced by the presence of stimulatory receptors relying on ITAM-containing activating adaptor molecules like DAP12, that modulates their function. We hypothesize that activating DAP12 in DC could force their maturation and enhance their potential anti-tumor activity for therapeutic intervention. For this purpose, we developed constitutively active DAP12 mutants that can promote activation of monocyte-derived DC. Here we demonstrate its ability to induce the maturation and activation of monocyte-derived DCs which enhances migration, and T cell stimulation in vitro using primary human cells. Moreover, constitutively active DAP12 stimulates a strong immune response in a murine melanoma model leading to a reduction of tumor burden. This provides proof-of-concept for investigating the pre-activation of antigen presenting cells to enhance the effectiveness of anti-tumor immunotherapies.
Collapse
|
49
|
Cabeza-Cabrerizo M, Cardoso A, Minutti CM, Pereira da Costa M, Reis E Sousa C. Dendritic Cells Revisited. Annu Rev Immunol 2021; 39:131-166. [PMID: 33481643 DOI: 10.1146/annurev-immunol-061020-053707] [Citation(s) in RCA: 403] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dendritic cells (DCs) possess the ability to integrate information about their environment and communicate it to other leukocytes, shaping adaptive and innate immunity. Over the years, a variety of cell types have been called DCs on the basis of phenotypic and functional attributes. Here, we refocus attention on conventional DCs (cDCs), a discrete cell lineage by ontogenetic and gene expression criteria that best corresponds to the cells originally described in the 1970s. We summarize current knowledge of mouse and human cDC subsets and describe their hematopoietic development and their phenotypic and functional attributes. We hope that our effort to review the basic features of cDC biology and distinguish cDCs from related cell types brings to the fore the remarkable properties of this cell type while shedding some light on the seemingly inordinate complexity of the DC field.
Collapse
Affiliation(s)
- Mar Cabeza-Cabrerizo
- Immunobiology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Ana Cardoso
- Immunobiology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Carlos M Minutti
- Immunobiology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | | | - Caetano Reis E Sousa
- Immunobiology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| |
Collapse
|
50
|
Lou Y, Zheng Y, Xu Y, Lu H, Wang Y, Guo Y. Association of serum chemokine ligand 21 levels with asthma control in adults. Clinics (Sao Paulo) 2021; 76:e1713. [PMID: 33503170 PMCID: PMC7798131 DOI: 10.6061/clinics/2021/e1713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/15/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES The chemokine ligand (CCL) 21 regulates the maturation, migration, and function of dendritic cells, and has been implicated in the pathogenesis of asthma. This study aimed to investigate the association between serum CCL21 levels and asthma control. METHODS The serum levels of CCL21 and other inflammatory cytokines were analyzed in patients with asthma (n=44) and healthy controls (n=35) by enzyme-linked immunosorbent assay. IgE levels and eosinophil counts were determined by turbidimetric inhibition immunoassay and fully automatic blood analysis, respectively. The Asthma Control Test (ACT) questionnaire was used, and spirometry and fractional exhaled nitric oxide (FENO) measurements were performed. A multiple unpaired Student's t-test was performed to analyze the differences in CCL21 and interleukin levels between patients with asthma and healthy controls. The correlation of CCL21 levels with disease severity was evaluated using the Pearson's rank correlation test. RESULTS Serum CCL21 levels were lower in patients with asthma (254.78±95.66 pg/mL) than in healthy controls (382.95±87.77 pg/mL) (p<0.001). Patients with asthma had significantly higher levels of IL-1β (19.74±16.77 vs. 2.63±5.22 pg/mL), IL-6 (7.55±8.65 vs. 2.37±2.47 pg/mL), and tumor necrosis factor-α (12.70±12.03 vs. 4.82±3.97 pg/mL) compared with the controls. CCL21 levels were positively correlated with the ACT score (rs=0.1653, p=0.0062), forced expiratory volume in 1s (FEV1)/forced vital capacity (rs=0.3607, p<0.0001), and FEV1 (rs=0.2753, p=0.0003), and negatively correlated with FENO (rs=0.1060, p=0.0310). CCL21 levels were negatively correlated with serum IgE levels (rs=0.1114, p=0.0268) and eosinophil counts (rs=0.3476, p<0.0001). CONCLUSIONS Serum CCL21 levels may be a new biomarker for assessing asthma control.
Collapse
Affiliation(s)
- Yueyan Lou
- Department of Allergy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Department of Pulmonology, Renji Hospital South Campus, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yu Zheng
- Department of Pulmonology, Renji Hospital South Campus, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanhua Xu
- Department of Allergy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hui Lu
- Department of Allergy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yiwei Wang
- Department of Allergy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yinshi Guo
- Department of Allergy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- *Corresponding author. E-mail:
| |
Collapse
|