1
|
Du Q, Dickinson A, Nakuleswaran P, Maghami S, Alagoda S, Hook AL, Ghaemmaghami AM. Targeting Macrophage Polarization for Reinstating Homeostasis following Tissue Damage. Int J Mol Sci 2024; 25:7278. [PMID: 39000385 PMCID: PMC11242417 DOI: 10.3390/ijms25137278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Tissue regeneration and remodeling involve many complex stages. Macrophages are critical in maintaining micro-environmental homeostasis by regulating inflammation and orchestrating wound healing. They display high plasticity in response to various stimuli, showing a spectrum of functional phenotypes that vary from M1 (pro-inflammatory) to M2 (anti-inflammatory) macrophages. While transient inflammation is an essential trigger for tissue healing following an injury, sustained inflammation (e.g., in foreign body response to implants, diabetes or inflammatory diseases) can hinder tissue healing and cause tissue damage. Modulating macrophage polarization has emerged as an effective strategy for enhancing immune-mediated tissue regeneration and promoting better integration of implantable materials in the host. This article provides an overview of macrophages' functional properties followed by discussing different strategies for modulating macrophage polarization. Advances in the use of synthetic and natural biomaterials to fabricate immune-modulatory materials are highlighted. This reveals that the development and clinical application of more effective immunomodulatory systems targeting macrophage polarization under pathological conditions will be driven by a detailed understanding of the factors that regulate macrophage polarization and biological function in order to optimize existing methods and generate novel strategies to control cell phenotype.
Collapse
Affiliation(s)
- Qiran Du
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Anna Dickinson
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Pruthvi Nakuleswaran
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK;
| | - Savindu Alagoda
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Andrew L. Hook
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Amir M. Ghaemmaghami
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
2
|
Singh P, Bajpai P, Maheshwari D, Chawla YM, Saini K, Reddy ES, Gottimukkala K, Nayak K, Gunisetty S, Aggarwal C, Jain S, Verma C, Singla P, Soneja M, Wig N, Murali-Krishna K, Chandele A. Functional and transcriptional heterogeneity within the massively expanding HLADR +CD38 + CD8 T cell population in acute febrile dengue patients. J Virol 2023; 97:e0074623. [PMID: 37855600 PMCID: PMC10688317 DOI: 10.1128/jvi.00746-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/17/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE CD8 T cells play a crucial role in protecting against intracellular pathogens such as viruses by eliminating infected cells and releasing anti-viral cytokines such as interferon gamma (IFNγ). Consequently, there is significant interest in comprehensively characterizing CD8 T cell responses in acute dengue febrile patients. Previous studies, including our own, have demonstrated that a discrete population of CD8 T cells with HLADR+ CD38+ phenotype undergoes massive expansion during the acute febrile phase of natural dengue virus infection. Although about a third of these massively expanding HLADR+ CD38+ CD8 T cells were also CD69high when examined ex vivo, only a small fraction of them produced IFNγ upon in vitro peptide stimulation. Therefore, to better understand such functional diversity of CD8 T cells responding to dengue virus infection, it is important to know the cytokines/chemokines expressed by these peptide-stimulated HLADR+CD38+ CD8 T cells and the transcriptional profiles that distinguish the CD69+IFNγ+, CD69+IFNγ-, and CD69-IFNγ- subsets.
Collapse
Affiliation(s)
- Prabhat Singh
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Deepti Maheshwari
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Yadya M. Chawla
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Keshav Saini
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Kamalvishnu Gottimukkala
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kaustuv Nayak
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sivaram Gunisetty
- Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Charu Aggarwal
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shweta Jain
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Chaitanya Verma
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Paras Singla
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Manish Soneja
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Naveet Wig
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
3
|
Chen W, Song T, Zou F, Xia Y, Xing J, Yu W, Rao T, Zhou X, Li C, Ning J, Zhao S, Ruan Y, Cheng F. Prognostic and immunological roles of IL18RAP in human cancers. Aging (Albany NY) 2023; 15:9059-9085. [PMID: 37698530 PMCID: PMC10522399 DOI: 10.18632/aging.205017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023]
Abstract
Across several cancers, IL18 receptor accessory protein (IL18RAP) is abnormally expressed, and this abnormality is related to tumor immunity and heterogeneous clinical outcomes. In this study, based on bioinformatics analysis, we discovered that IL18RAP is related to the human tumor microenvironment and promotes various immune cells infiltration. Additionally, the multiple immunofluorescence staining revealed that with the increased expression of IL18RAP, the number of infiltrated M1 macrophages increased. This finding was confirmed by coculture migration analysis using three human cancer cell lines (MDA-MB-231, U251, and HepG2) with IL18RAP knockdown. We discovered a positive link between IL18RAP and the majority of immunostimulators, immunoinhibitors, major histocompatibility complex (MHC) molecules, chemokines, and chemokine receptor genes using Spearman correlation analysis. Additionally, functional IL18RAP's gene set enrichment analysis (GSEA) revealed that it is related to a variety of immunological processes, such as positive regulation of interferon gamma production and positive regulation of NK cell-mediated immunity. Moreover, we used single-cell RNA sequencing analysis to detect that IL18RAP was mainly expressed in immune cells, and HALLMARK analysis confirmed that the INF-γ gene set expression was upregulated in CD8Tex cells. In addition, in human and mouse cancer cohorts, we found that the level of IL18RAP can predict the immunotherapy response. In short, our study showed that IL18RAP is a new tumor biomarker and may become a potential immunotherapeutic target in cancer.
Collapse
Affiliation(s)
- Wu Chen
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Tianbao Song
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Fan Zou
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Yuqi Xia
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Ji Xing
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Weimin Yu
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Ting Rao
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Xiangjun Zhou
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Chenglong Li
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Jinzhuo Ning
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Sheng Zhao
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Yuan Ruan
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Fan Cheng
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| |
Collapse
|
4
|
Potential Therapeutic Mechanism of Scutellaria baicalensis Georgi against Ankylosing Spondylitis Based on a Comprehensive Pharmacological Model. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9887012. [PMID: 36588535 PMCID: PMC9797298 DOI: 10.1155/2022/9887012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Background Scutellaria baicalensis Georgi (SBG) has significant anti-inflammatory and immune-modulating activities and is widely used in the treatment of inflammatory and autoimmune diseases. However, the mechanism of SBG in the treatment of ankylosing spondylitis (AS) remains to be elucidated. Methods Differentially expressed genes (DEGs) related to AS were analyzed based on two GEO gene chips. The DEGs were merged with the data derived from OMIM, GeneCards, and PharmGKB databases to ascertain AS-related targets. Active components of SBG and their targets were acquired from the TCMSP database. After overlapping the targets of AS and SBG, the action targets were acquired. Subsequently, protein-protein interaction (PPI) network and core target screening were conducted using the STRING database and Cytoscape software. Moreover, the DAVID platform was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of action targets. Finally, the affinity of major active components and core targets was validated with molecular docking. Results A total of 36 active components of SBG were acquired from TCMSP database. Among these, the main active components were baicalein, wogonin, and oroxylin A. The PPI network and screening showed TNF, IL-6, CXCL8, PTGS2, and VEGFA as core targets associated SBG against AS. GO and KEGG analyses indicated that SBG participated in various biological processes, via regulating IL-17, TNF, and NF-κB signaling pathways. Molecular docking results confirmed a strong binding activity between the main active components and the core targets. Conclusion The therapeutic mechanism of SBG associated with AS can be characterized as a multicomponent, multitarget, and multipathway mechanism. SBG may be a promising therapeutic candidate for AS.
Collapse
|
5
|
IL-33 Deficiency Attenuates Lung Inflammation by Inducing Th17 Response and Impacting the Th17/Treg Balance in LPS-Induced ARDS Mice via Dendritic Cells. J Immunol Res 2022; 2022:9543083. [PMID: 36570798 PMCID: PMC9788894 DOI: 10.1155/2022/9543083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022] Open
Abstract
Objectives The characteristic pathophysiological feature of acute respiratory distress syndrome (ARDS) is a dysregulated inflammatory response. T helper 17 (Th17) cells in the lung are inflammatory cells that contribute to pulmonary inflammatory cascades. In addition, Th17/regulatory T cells (Treg cells) also play an important role in the inflammatory process. Dendritic cells (DCs) can regulate the differentiation of CD4+ T cells, including Th17 and Treg cells. Recent evidence revealed that interleukin-33 (IL-33) signaling could activate and mature DCs. Therefore, the aim of this study was to investigate the effects of IL-33 on inflammation and immunoregulation by inducing the Th17 response and influencing the Th17/Treg balance in LPS-induced ARDS. Methods IL-33 gene knockout mice and the administration of recombinant mouse IL-33 (rmIL-33) were used to investigate the role of IL-33 and the underlying mechanisms in an LPS-induced ARDS model. Hematoxylin and eosin (H&E) staining, wet/dry (W/D) weight ratios, cell counts, and the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-17 (IL-17), and interleukin-10 (IL-10) in bronchoalveolar lavage fluid (BALF) were investigated. The levels of IL-33, orphan nuclear receptor gamma t (RORγt), and forkhead transcription factor protein 3 (FOXP3) protein in lung tissue were evaluated by Western blotting. The mRNA expression levels of IL-33 and RORγt were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Th17 and Treg cell frequencies were determined by flow cytometry. The levels of IL-6 in the supernatant in a dendritic cell culture system were examined by ELISA. Results Increased expression of IL-33 was observed in mice with LPS-induced ARDS. IL-33 deficiency significantly inhibited inflammation and attenuated LPS-induced ARDS, whereas pretreatment with rmIL-33 aggravated pulmonary inflammatory response. Furthermore, depletion of IL-33 inhibited Th17 cells, significantly decreased RORγt mRNA and protein expression and IL-17 levels in BALF, and led to less differentiation of T cells into Th17 cells than Treg cells. Moreover, IL-33-/- DCs secreted less IL-6 and IL-23 than normal control DCs. Conclusion IL-33 deficiency alleviated lung injury in the LPS-induced ARDS model, which was closely related to suppressing Th17 responses and regulating the Th17/Treg balance. The expansion of Th17 cells and imbalance in Th17/Treg cells may be associated with IL-6 and IL-23 secreted from IL-33-activated DCs.
Collapse
|
6
|
Mitchell AJ, Khambadkone SG, Dunn G, Bagley J, Tamashiro KLK, Fair D, Gustafsson H, Sullivan EL. Maternal Western-style diet reduces social engagement and increases idiosyncratic behavior in Japanese macaque offspring. Brain Behav Immun 2022; 105:109-121. [PMID: 35809877 PMCID: PMC9987715 DOI: 10.1016/j.bbi.2022.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 01/27/2023] Open
Abstract
Recent evidence in humans and animals indicates an association between maternal obesity and offspring behavioral outcomes. In humans, increased maternal body mass index has been linked to an increased risk of children receiving a diagnosis of early-emerging neurodevelopmental disorders such as Attention Deficit/Hyperactivity Disorder (ADHD) and/or Autism Spectrum Disorder (ASD). However, a limited number of preclinical studies have examined associations between maternal Western-Style Diet (mWSD) exposure and offspring social behavior. To our knowledge, this is the first study to investigate relationships between mWSD exposure and social behavior in non-human primates. Since aberrant social behavior is a diagnostic criterion for several neurodevelopmental disorders, the current study focuses on examining the influence of maternal nutrition and metabolic state on offspring social behavior in Japanese macaques (Macaca fuscata). We found that mWSD offspring initiated less affiliative social behaviors as well as proximity to a peer. Using path analysis, we found that the association between mWSD consumption and reduced offspring social engagement was statistically mediated by increased maternal interleukin (IL)-12 during the third trimester of pregnancy. Additionally, mWSD offspring displayed increased idiosyncratic behavior, which was related to alterations in maternal adiposity and leptin in the third trimester. Together, these results suggest that NHP offspring exposed to mWSD exhibit behavioral phenotypes similar to what is described in some early-emerging neurodevelopmental disorders. These results provide evidence that mWSD exposure during gestation may be linked to increased risk of neurodevelopmental disorders and provides targets for prevention and intervention efforts.
Collapse
Affiliation(s)
- A J Mitchell
- Oregon National Primate Research Center, Division of Neuroscience, Beaverton, OR, USA; Oregon Health & Science University, Department of Behavioral Neuroscience, Portland, OR, USA
| | - Seva G Khambadkone
- Johns Hopkins University, School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD, USA
| | - Geoffrey Dunn
- University of Oregon, Department of Human Physiology, Eugene, OR, USA
| | - Jennifer Bagley
- Oregon National Primate Research Center, Division of Neuroscience, Beaverton, OR, USA
| | - Kellie L K Tamashiro
- Johns Hopkins University, School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD, USA
| | - Damien Fair
- University of Minnesota School of Medicine, Masonic Institute of Child Development, Minneapolis, MN, USA
| | - Hanna Gustafsson
- Oregon Health & Science University, Department of Psychiatry, Portland, OR, USA
| | - Elinor L Sullivan
- Oregon National Primate Research Center, Division of Neuroscience, Beaverton, OR, USA; Oregon Health & Science University, Department of Behavioral Neuroscience, Portland, OR, USA; University of Oregon, Department of Human Physiology, Eugene, OR, USA; Oregon Health & Science University, Department of Psychiatry, Portland, OR, USA.
| |
Collapse
|
7
|
Mehana NA, Ghaiad HR, Hassan M, Elsabagh YA, Labib S, Abd-Elmawla MA. LncRNA MEG3 regulates the interplay between Th17 and Treg cells in Behçet's disease and systemic lupus erythematosus. Life Sci 2022; 309:120965. [PMID: 36155183 DOI: 10.1016/j.lfs.2022.120965] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Behçet's disease (BD) and systemic lupus erythematosus (SLE) are two autoimmune inflammatory diseases of indefinite etiology. However, up till now, no study has explored the exact regulatory mechanisms of lncRNA maternally expressed gene-3 (MEG3) over the balance between regulatory T-cells (Treg) and T helper-17 (Th17) cells in BD and SLE. AIM The current study aimed to investigate the role of lncRNA MEG3 in the interplay between the anti-inflammatory Treg/transcription factor forkhead box P3 (FOXP3) axis versus the pro-inflammatory Th17/retinoic acid orphan receptor-γt (RORγt) axis. MAIN METHODS 100 subjects, 35 with BD and 35 with SLE in addition to 30 healthy participants were included in the study. Gene expression analysis was performed and ShinyGO database was utilized for in-depth analysis and graphical visualization of the gene ontology (GO) and pathway enrichment analysis for lncRNA and the other target genes. KEY FINDINGS The current results demonstrate the upregulation of lncRNA MEG3 in BD but not SLE patients. Moreover, significant differences in RORγt and FOXP3 were found between BD and SLE patients. The present findings linked lncRNA MEG3 to BD activity scores as well as CRP levels. Finally, lncRNA MEG3 showed excellent diagnostic power for BD, in addition to adequate discriminative power that can be used to differentiate between BD and SLE. SIGNIFICANCE The current study objectively elucidated a framework for the involvement of Treg/Th17 through transcription factors RORγt and FOXP3, in addition to their links to the downstream cytokines network including TGF-ꞵ, IL-10, IL-17 and IL-23 in BD and SLE pathogenesis and activity.
Collapse
Affiliation(s)
- Noha A Mehana
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba R Ghaiad
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mariam Hassan
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Yumn A Elsabagh
- Internal Medicine Department (Rheumatology and Clinical Immunology unit), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Safa Labib
- Internal Medicine Department (Rheumatology and Clinical Immunology unit), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Ma J, Zhang T, Wang W, Chen Y, Cai W, Zhu B, Xu L, Gao H, Zhang L, Li J, Gao X. Comparative Transcriptome Analyses of Gayal (Bos frontalis), Yak (Bos grunniens), and Cattle (Bos taurus) Reveal the High-Altitude Adaptation. Front Genet 2022; 12:778788. [PMID: 35087567 PMCID: PMC8789257 DOI: 10.3389/fgene.2021.778788] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Gayal and yak are well adapted to their local high-altitude environments, yet the transcriptional regulation difference of the plateau environment among them remains obscure. Herein, cross-tissue and cross-species comparative transcriptome analyses were performed for the six hypoxia-sensitive tissues from gayal, yak, and cattle. Gene expression profiles for all single-copy orthologous genes showed tissue-specific expression patterns. By differential expression analysis, we identified 3,020 and 1,995 differentially expressed genes (DEGs) in at least one tissue of gayal vs. cattle and yak vs. cattle, respectively. Notably, we found that the adaptability of the gayal to the alpine canyon environment is highly similar to the yak living in the Qinghai-Tibet Plateau, such as promoting red blood cell development, angiogenesis, reducing blood coagulation, immune system activation, and energy metabolism shifts from fatty acid β-oxidation to glycolysis. By further analyzing the common and unique DEGs in the six tissues, we also found that numerous expressed regulatory genes related to these functions are unique in the gayal and yak, which may play important roles in adapting to the corresponding high-altitude environment. Combined with WGCNA analysis, we found that UQCRC1 and COX5A are the shared differentially expressed hub genes related to the energy supply of myocardial contraction in the heart-related modules of gayal and yak, and CAPS is a shared differential hub gene among the hub genes of the lung-related module, which is related to pulmonary artery smooth muscle contraction. Additionally, EDN3 is the unique differentially expressed hub gene related to the tracheal epithelium and pulmonary vasoconstriction in the lung of gayal. CHRM2 is a unique differentially expressed hub gene that was identified in the heart of yak, which has an important role in the autonomous regulation of the heart. These results provide a basis for further understanding the complex transcriptome expression pattern and the regulatory mechanism of high-altitude domestication of gayal and yak.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Junya Li
- *Correspondence: Junya Li, ; Xue Gao,
| | - Xue Gao
- *Correspondence: Junya Li, ; Xue Gao,
| |
Collapse
|
9
|
Ma X, Hu J, Wang C, Gu Y, Cao S, Huang X, Wen Y, Zhao Q, Wu R, Zuo Z, Yu S, Shen L, Zhong Z, Peng G, Ling S. Innate and mild Th17 cutaneous immune responses elicited by subcutaneous infection of immunocompetent mice with Cladosporium cladosporioides. Microb Pathog 2021; 163:105384. [PMID: 34974124 DOI: 10.1016/j.micpath.2021.105384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 10/19/2020] [Accepted: 12/28/2021] [Indexed: 01/02/2023]
Abstract
Cladosporium cladosporioides is a dematiaceous hyphomycete that is pathogenic in the superficial and deep tissues of both immunodeficient and immunocompetent humans and animals. Our aim was to evaluate the antifungal immune responses elicited by C. cladosporioides in immunocompetent mice. Hence, we subcutaneously injected suspensions of C. cladosporioides spores into immunocompetent mice to investigate the anti-fungal immune responses in the skin. We collected skin tissue samples for histopathological examination, immunofluorescence staining, and quantitative real-time polymerase chain reaction analysis. We observed subcutaneous abscesses in mice after subcutaneous injection of C. cladosporioides. A large number of inflammatory cells, including dendritic cells, macrophages, and neutrophils, infiltrated the focal abscess, with comparatively few infiltrating inflammatory cells in the epidermal and dermal layers of the skin. We detected the expression of CD54 in the abscesses and the skin. Gene expression of the pattern recognition receptors Dectin-1 and TLR-2 was higher in infected mice than in controls. Gene expression of the cytokines IL-6, IL-1β, and IL-17A also increased after infection, suggesting that the Th17 signaling pathway may be involved in the anti-fungal response. Although the pathogenicity of C. cladosporioides in healthy mice was weak after subcutaneous infection, resulting in few serious pathological phenomena, it appears that innate and Th17 immune responses play important roles in the cutaneous host response to C. cladosporioides. These findings lay a foundation for further study of the pathogenic mechanism and treatment of C. cladosporioides infection.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jing Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chengdong Wang
- China Conservation and Research Center for the Giant Panda, Chengdu, Sichuan, 611800, China.
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Sanjie Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaobo Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yiping Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qin Zhao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rui Wu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shumin Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liuhong Shen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shanshan Ling
- China Conservation and Research Center for the Giant Panda, Chengdu, Sichuan, 611800, China
| |
Collapse
|
10
|
Thomas JM, Ling YH, Huuskes B, Jelinic M, Sharma P, Saini N, Ferens DM, Diep H, Krishnan SM, Kemp-Harper BK, O'Connor PM, Latz E, Arumugam TV, Guzik TJ, Hickey MJ, Mansell A, Sobey CG, Vinh A, Drummond GR. IL-18 (Interleukin-18) Produced by Renal Tubular Epithelial Cells Promotes Renal Inflammation and Injury During Deoxycorticosterone/Salt-Induced Hypertension in Mice. Hypertension 2021; 78:1296-1309. [PMID: 34488433 DOI: 10.1161/hypertensionaha.120.16437] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
IL-18 (interleukin-18) is elevated in hypertensive patients, but its contribution to high blood pressure and end-organ damage is unknown. We examined the role of IL-18 in the development of renal inflammation and injury in a mouse model of low-renin hypertension. Hypertension was induced in male C57BL6/J (WT) and IL-18−/− mice by uninephrectomy, deoxycorticosterone acetate (2.4 mg/d, s.c.) and 0.9% drinking saline (1K/DOCA/salt). Normotensive controls received uninephrectomy and placebo (1K/placebo). Blood pressure was measured via tail cuff or radiotelemetry. After 21 days, kidneys were harvested for (immuno)histochemical, quantitative-PCR and flow cytometric analyses of fibrosis, inflammation, and immune cell infiltration. 1K/DOCA/salt-treated WT mice developed hypertension, renal fibrosis, upregulation of proinflammatory genes, and accumulation of CD3+ T cells in the kidneys. They also displayed increased expression of IL-18 on tubular epithelial cells. IL-18−/− mice were profoundly protected from hypertension, renal fibrosis, and inflammation. Bone marrow transplantation between WT and IL-18−/− mice revealed that IL-18-deficiency in non-bone marrow-derived cells alone afforded equivalent protection against hypertension and renal injury as global IL-18 deficiency. IL-18 receptor subunits—interleukin-18 receptor 1 and IL-18R accessory protein—were upregulated in kidneys of 1K/DOCA/salt-treated WT mice and localized to T cells and tubular epithelial cells. T cells from kidneys of 1K/DOCA/salt-treated mice produced interferon-γ upon ex vivo stimulation with IL-18, whereas those from 1K/placebo mice did not. In conclusion, IL-18 production by tubular epithelial cells contributes to elevated blood pressure, renal inflammation, and fibrosis in 1K/DOCA/salt-treated mice, highlighting it as a promising therapeutic target for hypertension and kidney disease.
Collapse
Affiliation(s)
- Jordyn M Thomas
- Centre for Cardiovascular Biology and Disease Research and Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Australia (J.M.T., B.M.H., M.J., P.S., N.S., H.D., T.V.A., C.G.S., A.V., G.R.D.)
| | - Yeong H Ling
- Department of Pharmacology, Biomedicine Discovery Institute, Cardiovascular Disease Program, Monash University, Clayton, Australia (Y.H.L., D.M.F., S.M.K., B.K.K.-H.)
| | - Brooke Huuskes
- Centre for Cardiovascular Biology and Disease Research and Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Australia (J.M.T., B.M.H., M.J., P.S., N.S., H.D., T.V.A., C.G.S., A.V., G.R.D.)
| | - Maria Jelinic
- Centre for Cardiovascular Biology and Disease Research and Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Australia (J.M.T., B.M.H., M.J., P.S., N.S., H.D., T.V.A., C.G.S., A.V., G.R.D.)
| | - Prerna Sharma
- Centre for Cardiovascular Biology and Disease Research and Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Australia (J.M.T., B.M.H., M.J., P.S., N.S., H.D., T.V.A., C.G.S., A.V., G.R.D.)
| | - Narbada Saini
- Centre for Cardiovascular Biology and Disease Research and Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Australia (J.M.T., B.M.H., M.J., P.S., N.S., H.D., T.V.A., C.G.S., A.V., G.R.D.)
| | - Dorota M Ferens
- Department of Pharmacology, Biomedicine Discovery Institute, Cardiovascular Disease Program, Monash University, Clayton, Australia (Y.H.L., D.M.F., S.M.K., B.K.K.-H.)
| | - Henry Diep
- Centre for Cardiovascular Biology and Disease Research and Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Australia (J.M.T., B.M.H., M.J., P.S., N.S., H.D., T.V.A., C.G.S., A.V., G.R.D.)
| | - Shalini M Krishnan
- Department of Pharmacology, Biomedicine Discovery Institute, Cardiovascular Disease Program, Monash University, Clayton, Australia (Y.H.L., D.M.F., S.M.K., B.K.K.-H.)
| | - Barbara K Kemp-Harper
- Department of Pharmacology, Biomedicine Discovery Institute, Cardiovascular Disease Program, Monash University, Clayton, Australia (Y.H.L., D.M.F., S.M.K., B.K.K.-H.)
| | - Paul M O'Connor
- Department of Physiology, Medical College of Georgia, Augusta University (P.M.O.)
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, Germany (E.L.)
- German Center for Neurodegenerative Diseases, Bonn, Germany (E.L.)
| | - Thiruma V Arumugam
- Centre for Cardiovascular Biology and Disease Research and Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Australia (J.M.T., B.M.H., M.J., P.S., N.S., H.D., T.V.A., C.G.S., A.V., G.R.D.)
| | - Tomasz J Guzik
- Department of Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland (T.J.G.)
- BHF Centre of Research Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (T.J.G.)
| | - Michael J Hickey
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Australia (M.J.H.)
| | - Ashley Mansell
- Hudson Institute of Medical Research, Clayton, Australia (A.M.)
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research and Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Australia (J.M.T., B.M.H., M.J., P.S., N.S., H.D., T.V.A., C.G.S., A.V., G.R.D.)
- Baker Heart and Diabetes Institute, Prahran, Australia (C.G.S., G.R.D.)
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research and Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Australia (J.M.T., B.M.H., M.J., P.S., N.S., H.D., T.V.A., C.G.S., A.V., G.R.D.)
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research and Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Australia (J.M.T., B.M.H., M.J., P.S., N.S., H.D., T.V.A., C.G.S., A.V., G.R.D.)
- Baker Heart and Diabetes Institute, Prahran, Australia (C.G.S., G.R.D.)
| |
Collapse
|
11
|
Wang L, Yang F, Qiu Y, Ye L, Song D, Huang D. The Potential Roles of T Cells in Periapical Lesions. J Endod 2021; 48:70-79. [PMID: 34627784 DOI: 10.1016/j.joen.2021.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Periapical lesions are inflammatory diseases mainly caused by microbial infection from the root canal system, affecting the integrity of alveolar bone, periapical cementum, and periodontal ligament. The invasion of pathogenic microorganisms activates local inflammation and host immune response, especially the recruitment and differentiation of T cells. Many studies have discussed the fundamental roles of T cell-related immunological regulation and the possible clinical significance of cytokine disorders in periapical lesions. However, oral pathogen-mediated T cell immune response is far more clarified. Therefore, the aim of this study was to discuss the research status of T cell-related immunology involved in the progression of periapical lesions and potential future directions. METHODS We conducted a literature review focusing on T cell-related immunology in periapical lesions by searching PubMed, Web of Science, Scopus and ScienceDirect online databases. RESULTS In total 108 articles were involved in this narrative review. During the development of periapical lesions, the infiltrated number of different types of T cells and the secretion of T cell-related cytokines in root apex region reflected the inflammatory status of periapical lesions. In addition, it was also highly correlated with the periapical bone destruction. Future study could attempt to provide a wider and deeper study on the expression profile and regulatory function of T cells in the development of periapical lesions. CONCLUSION This review would help us understand the essence of the T cell-related pathology of periapical lesions and raise the potential therapeutic targets for the treatment of apical periodontitis.
Collapse
Affiliation(s)
- Liu Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Qiu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Dingming Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Nakamizo S, Dutertre CA, Khalilnezhad A, Zhang XM, Lim S, Lum J, Koh G, Foong C, Yong PJA, Tan KJ, Sato R, Tomari K, Yvan-Charvet L, He H, Guttman-Yassky E, Malleret B, Shibuya R, Iwata M, Janela B, Goto T, Lucinda TS, Tang MBY, Theng C, Julia V, Hacini-Rachinel F, Kabashima K, Ginhoux F. Single-cell analysis of human skin identifies CD14+ type 3 dendritic cells co-producing IL1B and IL23A in psoriasis. J Exp Med 2021; 218:212481. [PMID: 34279540 PMCID: PMC8292131 DOI: 10.1084/jem.20202345] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/03/2021] [Accepted: 06/15/2021] [Indexed: 12/27/2022] Open
Abstract
Inflammatory skin diseases including atopic dermatitis (AD) and psoriasis (PSO) are underpinned by dendritic cell (DC)-mediated T cell responses. Currently, the heterogeneous human cutaneous DC population is incompletely characterized, and its contribution to these diseases remains unclear. Here, we performed index-sorted single-cell flow cytometry and RNA sequencing of lesional and nonlesional AD and PSO skin to identify macrophages and all DC subsets, including the newly described mature LAMP3+BIRC3+ DCs enriched in immunoregulatory molecules (mregDC) and CD14+ DC3. By integrating our indexed data with published skin datasets, we generated a myeloid cell universe of DC and macrophage subsets in healthy and diseased skin. Importantly, we found that CD14+ DC3s increased in PSO lesional skin and co-produced IL1B and IL23A, which are pathological in PSO. Our study comprehensively describes the molecular characteristics of macrophages and DC subsets in AD and PSO at single-cell resolution, and identifies CD14+ DC3s as potential promoters of inflammation in PSO.
Collapse
Affiliation(s)
- Satoshi Nakamizo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore.,Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Charles-Antoine Dutertre
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore.,Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore.,Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore
| | - Ahad Khalilnezhad
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore.,Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Xiao Meng Zhang
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Shawn Lim
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Josephine Lum
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Geraldine Koh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | | | | | - Kahbing Jasmine Tan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore.,Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Reiko Sato
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore.,Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kaori Tomari
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale U1065, Centre Mediterraneen de Medecine Moleculaire, Atip-Avenir, Nice, France
| | - Helen He
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore.,Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Rintaro Shibuya
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masashi Iwata
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Baptiste Janela
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | | | | | | | | | | | - Kenji Kabashima
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore.,Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore.,Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore.,Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Ghaebi M, Tahmasebi S, Jozghorbani M, Sadeghi A, Thangavelu L, Zekiy AO, Esmaeilzadeh A. Risk factors for adverse outcomes of COVID-19 patients: Possible basis for diverse responses to the novel coronavirus SARS-CoV-2. Life Sci 2021; 277:119503. [PMID: 33865882 PMCID: PMC8046708 DOI: 10.1016/j.lfs.2021.119503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
Severe coronavirus disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) is characterized by an unpredictable disease course, with variable presentations of different organ systems. The clinical manifestations of COVID-19 are highly variable ranging from mild presentations to severe, life-threatening symptoms and the wide individual variability may be due to the broad heterogeneity in the underlying pathologies. There is no doubt that early management may have a major influence on the outcome. This led the scientists to search for ways to monitor disease progression or to predict outcomes in COVID-19. Although it is not yet possible to predict who will progress to the severe forms or in what time, numerous prospective and longitudinal studies represent the evidence for determining the potential immunological risk factors of COVID-19 critical disease and death. The kinetics and breadth of immune responses during COVID-19 appear to follow a trend which is consistent to the predominant pathological alterations. Recent publications have used these biomarkers to help identify patients who will develop the severe acute COVID-19. Of particular interest is the relationship between the kinetics of peripheral leukocytes and clinical progress of the disease in COVID-19. Although research is ongoing in this area, we present details about the current status of the evaluation. Understanding of the COVID-19 related alterations of the innate and adaptive immune responses may help to promote the vaccine development and immunological interventions.
Collapse
Affiliation(s)
- Mahnaz Ghaebi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Department of Immunology, Health Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Jozghorbani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Alireza Sadeghi
- Department of Internal Medicine, Vali-e-Asr Hospital, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
14
|
Ma X, Hu J, Yu Y, Wang C, Gu Y, Cao S, Huang X, Wen Y, Zhao Q, Wu R, Zuo Z, Deng J, Ren Z, Yu S, Shen L, Zhong Z, Peng G. Assessment of the pulmonary adaptive immune response to Cladosporium cladosporioides infection using an experimental mouse model. Sci Rep 2021; 11:909. [PMID: 33441700 PMCID: PMC7806624 DOI: 10.1038/s41598-020-79642-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/10/2020] [Indexed: 01/29/2023] Open
Abstract
Cladosporium cladosporioides causes asthma and superficial and deep infections, mostly in immunodeficient individuals and animals. This study aimed to investigate whether C. cladosporioides spores can enter the lungs through pulmonary circulation and influence pulmonary immune response. We intravenously injected mice with C. cladosporioides spore suspension and conducted several assays on the lungs. Pulmonary hemorrhage symptoms and congestion were most severe on days 1, 2, and 3 post-inoculation (PI). Extensive inflammatory cell infiltration occurred throughout the period of infection. More spores and hyphae colonizing the lungs were detected on days 1, 2, and 3 PI, and fewer spores and hyphae were observed within 21 d of infection. Numerous macrophages, dendritic cells, and neutrophils were observed on day 5 PI, along with upregulation of CD54, an intercellular adhesion molecule. Th1 and Th2 cells increased after infection; specifically, Th2 cells increased considerably on day 5 PI. These results suggest that days 2 and 5 PI represent the inflammatory peak in the lungs and that the Th2 and Th1 signaling pathways are potentially involved in pulmonary immune responses. In conclusion, the further adaptive immune responses played important roles in establishing effective pulmonary immunity against C. cladosporioides systemic infections based on innate immune responses.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chengdong Wang
- China Conservation and Research Center for the Giant Panda, Chengdu, 611800, Sichuan, China.
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Sanjie Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaobo Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yiping Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qin Zhao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rui Wu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shumin Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liuhong Shen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
15
|
Giudice V, Cardamone C, Triggiani M, Selleri C. Bone Marrow Failure Syndromes, Overlapping Diseases with a Common Cytokine Signature. Int J Mol Sci 2021; 22:ijms22020705. [PMID: 33445786 PMCID: PMC7828244 DOI: 10.3390/ijms22020705] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 12/19/2022] Open
Abstract
Bone marrow failure (BMF) syndromes are a heterogenous group of non-malignant hematologic diseases characterized by single- or multi-lineage cytopenia(s) with either inherited or acquired pathogenesis. Aberrant T or B cells or innate immune responses are variously involved in the pathophysiology of BMF, and hematological improvement after standard immunosuppressive or anti-complement therapies is the main indirect evidence of the central role of the immune system in BMF development. As part of this immune derangement, pro-inflammatory cytokines play an important role in shaping the immune responses and in sustaining inflammation during marrow failure. In this review, we summarize current knowledge of cytokine signatures in BMF syndromes.
Collapse
Affiliation(s)
- Valentina Giudice
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (V.G.); (C.C.); (C.S.)
- Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Chiara Cardamone
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (V.G.); (C.C.); (C.S.)
- Internal Medicine and Clinical Immunology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Massimo Triggiani
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (V.G.); (C.C.); (C.S.)
- Internal Medicine and Clinical Immunology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Correspondence: ; Tel.: +39-089-672810
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (V.G.); (C.C.); (C.S.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
16
|
Zhou L, Wang Y, Wan Q, Wu F, Barbon J, Dunstan R, Gauld S, Konrad M, Leys L, McCarthy R, Namovic M, Nelson C, Overmeyer G, Perron D, Su Z, Wang L, Westmoreland S, Zhang J, Zhu R, Veldman G. A non-clinical comparative study of IL-23 antibodies in psoriasis. MAbs 2021; 13:1964420. [PMID: 34460338 PMCID: PMC8409790 DOI: 10.1080/19420862.2021.1964420] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 10/25/2022] Open
Abstract
Four antibodies that inhibit interleukin (IL)-23 are approved for the treatment of moderate-to-severe plaque psoriasis. Here, we present non-clinical data comparing ustekinumab, guselkumab, tildrakizumab and risankizumab with regard to thermostability, IL-23 binding affinity, inhibitory-binding mode, in vitro potency and in vivo efficacy. Risankizumab and guselkumab exhibited 5-fold higher affinity for IL-23 and showed more potent inhibition of IL-23 signaling than ustekinumab and tildrakizumab. Risankizumab and guselkumab completely blocked the binding of IL-23 to IL-23Rα as expected, whereas tildrakizumab did not. In vitro, risankizumab and guselkumab blocked the terminal differentiation of TH17 cells in a similar manner, while tildrakizumab had minimal impact on TH17 differentiation. In a human IL-23-induced ear-swelling mouse model, risankizumab and guselkumab were more effective than ustekinumab and tildrakizumab at reducing IL-17, IL-22, and keratinocyte gene expression. Our results indicate that the four clinically approved antibodies targeting IL-23 differ in affinity and binding epitope. These attributes contribute to differences in in vitro potency, receptor interaction inhibition mode and in vivo efficacy in preclinical studies as described in this report, and similarly may affect the clinical performance of these drugs.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/metabolism
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibody Affinity
- Binding Sites, Antibody
- Cells, Cultured
- Disease Models, Animal
- Drug Stability
- Epitopes
- Female
- Hot Temperature
- Humans
- Interleukin-23/antagonists & inhibitors
- Interleukin-23/immunology
- Interleukin-23/metabolism
- Mice, Inbred C57BL
- Protein Denaturation
- Protein Stability
- Psoriasis/drug therapy
- Psoriasis/immunology
- Psoriasis/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Ustekinumab/immunology
- Ustekinumab/metabolism
- Ustekinumab/pharmacology
- Mice
Collapse
Affiliation(s)
- Li Zhou
- Abbvie Bioresearch Center, Worcester
| | | | - Qi Wan
- Abbvie Bioresearch Center, Worcester
| | - Fei Wu
- Abbvie Bioresearch Center, Worcester
| | | | | | | | | | | | | | | | | | | | | | - Zhi Su
- Abbvie, North Chicago, USA
| | - Leyu Wang
- Abbvie Bioresearch Center, Worcester
| | | | - Jun Zhang
- Abbvie Bioresearch Center, Worcester
| | - Rui Zhu
- Abbvie Bioresearch Center, Worcester
| | | |
Collapse
|
17
|
Midgley A, Barakat D, Braitch M, Nichols C, Nebozhyn M, Edwards LJ, Fox SC, Gran B, Robins RA, Showe LC, Constantinescu CS. PAF-R on activated T cells: Role in the IL-23/Th17 pathway and relevance to multiple sclerosis. Immunobiology 2021; 226:152023. [PMID: 33278709 PMCID: PMC11131414 DOI: 10.1016/j.imbio.2020.152023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/26/2020] [Accepted: 10/18/2020] [Indexed: 12/27/2022]
Abstract
IL-23 is a potent stimulus for Th17 cells. These cells have a distinct developmental pathway from Th1 cells induced by IL-12 and are implicated in autoimmune and inflammatory disorders including multiple sclerosis (MS). TGF-β, IL-6, and IL-1, the transcriptional regulator RORγt (RORC) and IL-23 are implicated in Th17 development and maintenance. In human polyclonally activated T cells, IL-23 enhances IL-17 production. The aims of our study were: 1). To validate microarray results showing preferential expression of platelet activating factor receptor (PAF-R) on IL-23 stimulated T cells. 2). To determine whether PAF-R on activated T cells is functional, whether it is co-regulated with Th17-associated molecules, and whether it is implicated in Th17 function. 3). To determine PAF-R expression in MS. We show that PAF-R is expressed on activated T cells, and is inducible by IL-23 and IL-17, which in turn are induced by PAF binding to PAF-R. PAF-R is co-expressed with IL-17 and regulated similarly with Th17 markers IL-17A, IL-17F, IL-22 and RORC. PAF-R is upregulated on PBMC and T cells of MS patients, and levels correlate with IL-17 and with MS disability scores. Our results show that PAF-R on T cells is associated with the Th17 phenotype and function. Clinical Implications Targeting PAF-R may interfere with Th17 function and offer therapeutic intervention in Th17-associated conditions, including MS.
Collapse
Affiliation(s)
- Angela Midgley
- Division of Clinical Neuroscience, Section of Clinical Neurology, University of Nottingham, Nottingham NG7 2UH, United Kingdom; The Academy, University of Liverpool, Liverpool, United Kingdom
| | - Dina Barakat
- Division of Clinical Neuroscience, Section of Clinical Neurology, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Manjit Braitch
- Division of Clinical Neuroscience, Section of Clinical Neurology, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | | | | | - Laura J Edwards
- Division of Clinical Neuroscience, Section of Clinical Neurology, University of Nottingham, Nottingham NG7 2UH, United Kingdom; Division of Rehabilitation, University of Nottingham, Derby Royal Hospital, Derby DE22 3NE, United Kingdom
| | - Susan C Fox
- Division of Clinical Neuroscience, Section of Cardiovascular and Stroke Medicine, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Bruno Gran
- Division of Clinical Neuroscience, Section of Clinical Neurology, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - R Adrian Robins
- Division of Molecular and Clinical Immunology, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | | | - Cris S Constantinescu
- Division of Clinical Neuroscience, Section of Clinical Neurology, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| |
Collapse
|
18
|
Cole S, Murray J, Simpson C, Okoye R, Tyson K, Griffiths M, Baeten D, Shaw S, Maroof A. Interleukin (IL)-12 and IL-18 Synergize to Promote MAIT Cell IL-17A and IL-17F Production Independently of IL-23 Signaling. Front Immunol 2020; 11:585134. [PMID: 33329560 PMCID: PMC7714946 DOI: 10.3389/fimmu.2020.585134] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022] Open
Abstract
IL-23 is considered a critical regulator of IL-17 in Th17 cells; however, its requirement for inducing IL-17 production in other human immune subsets remains incompletely understood. Mucosal associated invariant T (MAIT) cells uniformly express retinoic acid receptor-related orphan receptor gamma t (RORγt) but only a minor population have been shown to produce IL-17A. Here we show that IL-17F is the dominant IL-17 isoform produced by MAIT cells, not IL-17A. For optimal MAIT cell derived IL-17A and IL-17F production, T cell receptor (TCR) triggering, IL-18 and monocyte derived IL-12 signaling is required. Unlike Th17 cells, this process is independent of IL-23 signaling. Using an in vitro skin cell activation assay, we demonstrate that dual neutralization of both IL-17A and IL-17F resulted in greater suppression of inflammatory proteins than inhibition of IL-17A alone. Finally, we extend our findings by showing that other innate-like lymphocytes such as group 3 innate lymphoid cells (ILC3) and gamma delta (γδ) T cells are also capable of IL-23 independent IL-17A and IL-17F production. These data indicate both IL-17F and IL-17A production from MAIT cells may contribute to tissue inflammation independently of IL-23, in part explaining the therapeutic disconnect between targeting IL-17 or IL-23 in certain inflammatory diseases.
Collapse
|
19
|
de Jesús-Gil C, Ruiz-Romeu E, Ferran M, Sagristà M, Chiriac A, García P, Celada A, Pujol RM, Santamaria-Babí LF. IL-15 and IL-23 synergize to trigger Th17 response by CLA + T cells in psoriasis. Exp Dermatol 2020; 29:630-638. [PMID: 32476200 DOI: 10.1111/exd.14113] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 11/28/2022]
Abstract
IL-15 has emerged as a potentially relevant target in the IL-17 response in psoriasis. However, its mechanism is poorly characterized in humans. IL-15 and IL-23 are constitutively expressed in the psoriatic lesion. Also, IL-15 is considered a susceptibility-associated gene in psoriasis, as are IL-23R, and HLACW6. Here, we studied the effect of IL-15 and IL-23 stimulation on the cytokine response of CLA+/CLA- T cells from 9 psoriasis patients and 3 healthy control subjects. To this end, CLA + and CLA- T cells from blood samples were cultured with epidermal cells from skin biopsies and treated with IL-15 and IL-23. After five days of culture, cytokines in supernatant were measured by ELISA or fluorescent bead-based immunoassay. There was a statistically significant increase in IL-17F and IL-17A production (P < .001) in cocultures of psoriasis skin-homing CLA + T cells with epidermal cells when stimulated with IL-15 and IL-23, but this effect was not observed in the cells of healthy controls. Interestingly, this response was reduced by around 50 to 80% by blocking HLA class I and II molecules. Our results point to the synergic action of IL-15 and IL-23 selectively for CLA + cells in psoriasis, leading to the induction of Th17 cell-related cytokines.
Collapse
Affiliation(s)
- Carmen de Jesús-Gil
- Translational Immunology, Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Spain
| | - Ester Ruiz-Romeu
- Translational Immunology, Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Spain
| | - Marta Ferran
- Department of Dermatology, Hospital del Mar Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Marc Sagristà
- Department of Dermatology, Hospital del Mar Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Anca Chiriac
- Department of DermatoPhysiology, Apollonia University, Iasi, Romania.,Dermatology Department, Nicolina Medical Center, Iasi, Romania
| | - Pablo García
- Department of Dermatology, Hospital del Mar Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Antonio Celada
- Macrophage Biology, Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Spain
| | - Ramon M Pujol
- Department of Dermatology, Hospital del Mar Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Luis F Santamaria-Babí
- Translational Immunology, Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Spain
| |
Collapse
|
20
|
Yadav J, Dikshit N, Ismaeel S, Qadri A. Innate Activation of IFN-γ-iNOS Axis During Infection With Salmonella Represses the Ability of T Cells to Produce IL-2. Front Immunol 2020; 11:514. [PMID: 32269573 PMCID: PMC7109407 DOI: 10.3389/fimmu.2020.00514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/06/2020] [Indexed: 12/28/2022] Open
Abstract
Pathogenic Salmonella serovars are a major cause of enteric illness in humans and animals, and produce clinical manifestations ranging from localized gastroenteritis to systemic disease. T cells are a critical component of immunity against this intracellular pathogen. The mechanisms by which Salmonella modulates T-cell—mediated immune responses in order to establish systemic infection are not completely understood. We show that infection of mice with Salmonella enterica serovar Typhimurium (S. Typhimurium) suppresses IL-2 and increases IFN-γ and IL-17 production from T cells activated in vivo or ex vivo through the T cell receptor. Infection with S. Typhimurium brings about recruitment of CD11b+Gr1+ suppressor cells to the spleen. Ex vivo depletion of these cells restores the ability of activated T cells to produce IL-2 and brings secretion of IFN-γ and IL-17 from these cells back to basal levels. The reduction in IL-2 secretion is not seen in IFN-γ−/− and iNOS−/− mice infected with Salmonella. Our findings demonstrate that sustained innate activated IFN-γ production during progression of infection with Salmonella reduces IL-2—secreting capability of T cells through an iNOS-mediated signaling pathway that can adversely affect long term immunity against this pathogen.
Collapse
Affiliation(s)
- Jitender Yadav
- Hybridoma Laboratory, National Institute of Immunology, New Delhi, India
| | - Neha Dikshit
- Hybridoma Laboratory, National Institute of Immunology, New Delhi, India
| | - Sana Ismaeel
- Hybridoma Laboratory, National Institute of Immunology, New Delhi, India
| | - Ayub Qadri
- Hybridoma Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
21
|
Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Gonzalez-Granado JM. Immunobiology of Atherosclerosis: A Complex Net of Interactions. Int J Mol Sci 2019; 20:E5293. [PMID: 31653058 PMCID: PMC6862594 DOI: 10.3390/ijms20215293] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality worldwide, and atherosclerosis the principal factor underlying cardiovascular events. Atherosclerosis is a chronic inflammatory disease characterized by endothelial dysfunction, intimal lipid deposition, smooth muscle cell proliferation, cell apoptosis and necrosis, and local and systemic inflammation, involving key contributions to from innate and adaptive immunity. The balance between proatherogenic inflammatory and atheroprotective anti-inflammatory responses is modulated by a complex network of interactions among vascular components and immune cells, including monocytes, macrophages, dendritic cells, and T, B, and foam cells; these interactions modulate the further progression and stability of the atherosclerotic lesion. In this review, we take a global perspective on existing knowledge about the pathogenesis of immune responses in the atherosclerotic microenvironment and the interplay between the major innate and adaptive immune factors in atherosclerosis. Studies such as this are the basis for the development of new therapies against atherosclerosis.
Collapse
Affiliation(s)
- Beatriz Herrero-Fernandez
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
| | - Raquel Gomez-Bris
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | | | - Jose Maria Gonzalez-Granado
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain.
| |
Collapse
|
22
|
Yuan N, Yu G, Liu D, Wang X, Zhao L. An emerging role of interleukin-23 in rheumatoid arthritis. Immunopharmacol Immunotoxicol 2019; 41:185-191. [PMID: 31072166 DOI: 10.1080/08923973.2019.1610429] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune, chronic inflammatory disease and is characterized by destruction of the articular cartilage. A number of pro-inflammatory cytokines work sequentially and in concert with one another to induce the development of RA. IL-23, a member of IL-12 family, is composed of p19 and p40 subunits and it interacts with IL-23 receptor complex to trigger plethora of biochemical actions. A number of preclinical studies have shown the role of IL-23 in the development of RA in rodents. IL-23 receptor signaling is primarily linked to the activation of JAK-STAT, tyrosine kinase 2, NF-kB, and retinoic acid receptor-related orphan receptors. IL-23 produces its osteoclastogenic effects, mainly through IL-17 and Th17 cells suggesting the importance of IL-23/IL-17/Th17 in the joint inflammation and destruction in RA. Monoclonal antibodies targeted against IL-23, including tildrakizumab and guselkumab have been developed and evaluated in clinical trials. However, there are very limited clinical studies regarding the use of IL-23 modulators in RA patients. The present review discusses the different aspects of IL-23 including its structural features, signal transduction pathway, preclinical, and clinical role in RA.
Collapse
Affiliation(s)
- Na Yuan
- a Department of Rheumatology , The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun , China
| | - Guimei Yu
- a Department of Rheumatology , The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun , China
| | - Di Liu
- a Department of Rheumatology , The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun , China
| | - Xiancheng Wang
- b Department of Cardiology , The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun , China
| | - Ling Zhao
- c Department of Rheumatology , The First Hospital of Jilin University , Changchun , China
| |
Collapse
|
23
|
Pharmacological effects of TAK-828F: an orally available RORγt inverse agonist, in mouse colitis model and human blood cells of inflammatory bowel disease. Inflamm Res 2019; 68:493-509. [DOI: 10.1007/s00011-019-01234-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
|
24
|
Bank S, Julsgaard M, Abed OK, Burisch J, Broder Brodersen J, Pedersen NK, Gouliaev A, Ajan R, Nytoft Rasmussen D, Honore Grauslund C, Roug S, Galsgaard J, Sprogøe Høyer Finsen D, Lindby K, Sørensen J, Larsen L, Rohr Andersen M, Brandslund I, Thomassen M, Green A, Bo Bojesen A, Bek Sørensen S, Vogel U, Andersen V. Polymorphisms in the NFkB, TNF-alpha, IL-1beta, and IL-18 pathways are associated with response to anti-TNF therapy in Danish patients with inflammatory bowel disease. Aliment Pharmacol Ther 2019; 49:890-903. [PMID: 30811631 DOI: 10.1111/apt.15187] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/02/2018] [Accepted: 01/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Anti-tumor necrosis factor-α (TNF-α) is used for the treatment of severe cases of IBD, including Crohn's disease (CD) and ulcerative colitis (UC). However, one-third of the patients do not respond to the treatment. We have previously investigated whether single nucleotide polymorphisms (SNPs) in genes involved in inflammation were associated with response to anti-TNF therapy among patients with CD or UC. AIM A new cohort of patients was established for replication of the previous findings and to identify new SNPs associated with anti-TNF response. METHODS Fifty-three SNPs assessed previously in cohort 1 (482 CD and 256 UC patients) were genotyped in cohort 2 (587 CD and 458 UC patients). The results were analysed using logistic regression (adjusted for age and gender). RESULTS Ten SNPs were associated with anti-TNF response either among patients with CD (TNFRSF1A(rs4149570) (OR: 1.92, 95% CI: 1.02-3.60, P = 0.04), IL18(rs187238) (OR: 1.35, 95% CI: 1.00-1.82, P = 0.05), and JAK2(rs12343867) (OR: 1.35, 95% CI: 1.02-1.78, P = 0.03)), UC (TLR2(rs11938228) (OR: 0.55, 95% CI: 0.33-0.92, P = 0.02), TLR4(rs5030728) (OR: 2.23, 95% CI: 1.24-4.01, P = 0.01) and (rs1554973) (OR: 0.49, 95% CI: 0.27-0.90, P = 0.02), NFKBIA(rs696) (OR: 1.45, 95% CI: 1.06-2.00, P = 0.02), and NLRP3(rs4612666) (OR: 0.63, 95% CI: 0.44-0.91, P = 0.01)) or in the combined cohort of patient with CD and UC (IBD) (TLR4(rs5030728) (OR: 1.46, 95% CI: 1.01-2.11, P = 0.04) and (rs1554973)(OR: 0.80, 95% CI: 0.65-0.98, P = 0.03), NFKBIA(rs696) (OR: 1.25, 95% CI: 1.01-1.54, P = 0.04), NLRP3(rs4612666) (OR: 0.73, 95% CI: 0.57-0.95, P = 0.02), IL1RN(rs4251961) (OR: 0.81, 95% CI: 0.66-1.00, P = 0.05), IL18(rs1946518) (OR: 1.24, 95% CI: 1.01-1.53, P = 0.04), and JAK2(rs12343867) (OR: 1.24, 95% CI: 1.01-1.53, P = 0.04)). CONCLUSIONS The results support that polymorphisms in genes involved in the regulation of the NFκB pathway (TLR2, TLR4, and NFKBIA), the TNF-α signalling pathway (TNFRSF1A), and other cytokine pathways (NLRP3, IL1RN, IL18, and JAK2) were associated with response to anti-TNF therapy. Our multi-SNP model predicted response rate of more than 82% (in 9% of the CD patients) and 75% (in 15% of the UC patients), compared to 71% and 64% in all CD and UC patients, respectively. More studies are warranted to predict response for use in the clinic.
Collapse
|
25
|
Czesnikiewicz-Guzik M, Nosalski R, Mikolajczyk TP, Vidler F, Dohnal T, Dembowska E, Graham D, Harrison DG, Guzik TJ. Th1-type immune responses to Porphyromonas gingivalis antigens exacerbate angiotensin II-dependent hypertension and vascular dysfunction. Br J Pharmacol 2018; 176:1922-1931. [PMID: 30414380 PMCID: PMC6534780 DOI: 10.1111/bph.14536] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/15/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022] Open
Abstract
Background and Purpose Emerging evidence indicates that hypertension is mediated by immune mechanisms. We hypothesized that exposure to Porphyromonas gingivalis antigens, commonly encountered in periodontal disease, can enhance immune activation in hypertension and exacerbate the elevation in BP, vascular inflammation and vascular dysfunction. Experimental Approach Th1 immune responses were elicited through immunizations using P. gingivalis lysate antigens (10 μg) conjugated with aluminium oxide (50 μg) and IL‐12 (1 μg). The hypertension and vascular endothelial dysfunction evoked by subpressor doses of angiotensin II (0.25 mg·kg−1·day−1) were studied, and vascular inflammation was quantified by flow cytometry and real‐time PCR. Key Results Systemic T‐cell activation, a characteristic of hypertension, was exacerbated by P. gingivalis antigen stimulation. This translated into increased aortic vascular inflammation with enhanced leukocyte, in particular, T‐cell and macrophage infiltration. The expression of the Th1 cytokines, IFN‐γ and TNF‐α, and the transcription factor, TBX21, was increased in aortas of P. gingivalis/IL‐12/aluminium oxide‐immunized mice, while IL‐4 and TGF‐β were unchanged. These immune changes in mice with induced T‐helper‐type 1 immune responses were associated with an enhanced elevation of BP and endothelial dysfunction compared with control mice in response to 2 week infusion of a subpressor dose of angiotensin II. Conclusions and Implications These results support the concept that Th1 immune responses induced by bacterial antigens such as P. gingivalis can increase sensitivity to subpressor pro‐hypertensive insults such as low‐dose angiotensin II, thus providing a mechanistic link between chronic infection, such as periodontitis, and hypertension. Linked Articles This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc
Collapse
Affiliation(s)
- Marta Czesnikiewicz-Guzik
- Department of Periodontology and Oral Sciences Research Group, University of Glasgow Dental School and Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.,Department of Dental Prophylaxis and Experimental Dentistry, Jagiellonian University School of Medicine, Kraków, Poland
| | - Ryszard Nosalski
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Tomasz P Mikolajczyk
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Francesca Vidler
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Tomasz Dohnal
- Department of Dental Prophylaxis and Experimental Dentistry, Jagiellonian University School of Medicine, Kraków, Poland
| | - Elzbieta Dembowska
- Department of Periodontology, Pomeranian Medical University, Szczecin, Poland
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - David G Harrison
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.,Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
26
|
Nakamura Y, Igaki K, Komoike Y, Yokoyama K, Tsuchimori N. Malt1 inactivation attenuates experimental colitis through the regulation of Th17 and Th1/17 cells. Inflamm Res 2018; 68:223-230. [DOI: 10.1007/s00011-018-1207-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 01/01/2023] Open
|
27
|
O'Rielly DD, Rahman P. A review of ixekizumab in the treatment of psoriatic arthritis. Expert Rev Clin Immunol 2018; 14:993-1002. [PMID: 30360663 DOI: 10.1080/1744666x.2018.1540931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Psoriatic arthritis (PsA) is a heterogeneous inflammatory disorder with articular, peri-articular, and extra-articular features along with selected co-morbidities as a sequela to chronic inflammation. There is accumulating evidence that the Th-17 signaling pathway is of critical importance in PsA pathogenesis. Areas covered: Ixekizumab (IXE) is a humanized immunoglobulin G subclass 4 (IgG4) monoclonal antibody directed against IL-17A. Two phase III randomized clinical trials, SPIRIT-P1 and SPIRIT-P2, unequivocally demonstrated superiority of IXE (80 mg every two or 4 weeks) dosing over placebo in moderate-to-severe PsA patients that failed either NSAIDs, conventional disease-modifying anti-rheumatic drugs (csDMARDs), or tumor necrosis factor-α inhibitors (TNFi) for numerous articular and cutaneous parameters. IXE also delayed structural progression of PsA. No new safety signals were identified as compared with chronic plaque psoriasis studies which included many more patients. Expert opinion: IXE is a highly effective treatment for moderate to severe PsA patients, including those that have been previously exposed to csDMARD and TNFi. Most domains of PsA significantly improved with IXE treatment and disease modification was achieved.
Collapse
Affiliation(s)
- Darren D O'Rielly
- a Faculty of Medicine , Memorial University of Newfoundland , St. John's , Newfoundland and Labrador , Canada
| | - Proton Rahman
- a Faculty of Medicine , Memorial University of Newfoundland , St. John's , Newfoundland and Labrador , Canada
| |
Collapse
|
28
|
Mylle S, Grine L, Speeckaert R, Lambert JLW, van Geel N. Targeting the IL-23/IL-17 Pathway in Psoriasis: the Search for the Good, the Bad and the Ugly. Am J Clin Dermatol 2018; 19:625-637. [PMID: 30003497 DOI: 10.1007/s40257-018-0366-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
New promising treatments have been developed for psoriasis that target different parts of the interleukin (IL)-23/IL-17 pathway. This approach is believed to be more disease specific, and sparing the T helper 1 pathway might prevent serious long-term adverse events. Moreover, superior Psoriasis Area and Severity Index improvements are observed, which has redefined treatment goals in psoriasis. The new molecules can be divided into different categories, according to the target: blocking agents can target the upstream cytokine IL-23 or the downstream IL-17. In the latter, a variety of targets exist, such as the ligands IL-17A and IL-17F, or a combination thereof, or a subunit of the receptor, IL-17RA. Each target seems to have its own set of advantages and pitfalls, which will impact the treatment decision in clinical practice. In this review, we summarize the current knowledge on the different inhibitors of the IL-23/IL-17 pathway. Furthermore, we briefly discuss the role of IL-17 in other diseases and comorbidities. Finally, we discuss how comprehensive knowledge is needed for the prescribing physician in order to make the most appropriate therapeutic choice for each individual patient.
Collapse
Affiliation(s)
- Sofie Mylle
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - Lynda Grine
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - Reinhart Speeckaert
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Jo L W Lambert
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - Nanja van Geel
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| |
Collapse
|
29
|
Sode J, Bank S, Vogel U, Andersen PS, Sørensen SB, Bojesen AB, Andersen MR, Brandslund I, Dessau RB, Hoffmann HJ, Glintborg B, Hetland ML, Locht H, Heegaard NH, Andersen V. Genetically determined high activities of the TNF-alpha, IL23/IL17, and NFkB pathways were associated with increased risk of ankylosing spondylitis. BMC MEDICAL GENETICS 2018; 19:165. [PMID: 30208882 PMCID: PMC6136164 DOI: 10.1186/s12881-018-0680-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
Abstract
Background Ankylosing spondylitis (AS) results from the combined effects of susceptibility genes and environmental factors. Polymorphisms in genes regulating inflammation may explain part of the heritability of AS. Methods Using a candidate gene approach in this case-control study, 51 mainly functional single nucleotide polymorphisms (SNPs) in genes regulating inflammation were assessed in 709 patients with AS and 795 controls. Data on the patients with AS were obtained from the DANBIO registry where patients from all of Denmark are monitored in routine care during treatment with conventional and biologic disease modifying anti-rheumatic drugs (bDMARDs). The results were analyzed using logistic regression (adjusted for age and sex). Results Nine polymorphisms were associated with risk of AS (p < 0.05). The polymorphisms were in genes regulating a: the TNF-α pathway (TNF -308 G > A (rs1800629), and − 238 G > A (rs361525); TNFRSF1A -609 G > T (rs4149570), and PTPN22 1858 G > A (rs2476601)), b: the IL23/IL17 pathway (IL23R G > A (rs11209026), and IL18–137 G > C (rs187238)), or c: the NFkB pathway (TLR1 743 T > C (rs4833095), TLR4 T > C (rs1554973), and LY96–1625 C > G (rs11465996)). After Bonferroni correction the homozygous variant genotype of TLR1 743 T > C (rs4833095) (odds ratios (OR): 2.59, 95% confidence interval (CI): 1.48–4.51, p = 0.04), and TNFRSF1A -609 G > T (rs4149570) (OR: 1.79, 95% CI: 1.31–2.41, p = 0.01) were associated with increased risk of AS and the combined homozygous and heterozygous variant genotypes of TNF -308 G > A (rs1800629) (OR: 0.56, 95% CI: 0.44–0.72, p = 0.0002) were associated with reduced risk of AS. Conclusion We replicated associations between AS and the polymorphisms in TNF (rs1800629), TNFRSF1A (rs4149570), and IL23R (rs11209026). Furthermore, we identified novel risk loci in TNF (rs361525), IL18 (rs187238), TLR1 (rs4833095), TLR4 (rs1554973), and LY96 (rs11465996) that need validation in independent cohorts. The results suggest that genetically determined high activity of the TNF-α, IL23/IL17, and NFkB pathways increase risk of AS.
Collapse
Affiliation(s)
- Jacob Sode
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark.,Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark.,Department of Rheumatology, Frederiksberg Hospital, Frederiksberg, Denmark.,Department of Rheumatology, Skåne University Hospital, Lund, Sweden
| | - Steffen Bank
- Focused Research Unit for Molecular Diagnostic and Clinical Research, Hospital of Southern Jutland, Aabenraa, Denmark. .,Medical Department, Viborg Regional Hospital, Viborg, Denmark.
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Paal Skytt Andersen
- Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark.,Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| | - Signe Bek Sørensen
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark.,Focused Research Unit for Molecular Diagnostic and Clinical Research, Hospital of Southern Jutland, Aabenraa, Denmark.,Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anders Bo Bojesen
- Focused Research Unit for Molecular Diagnostic and Clinical Research, Hospital of Southern Jutland, Aabenraa, Denmark
| | - Malene Rohr Andersen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Hellerup, Denmark
| | - Ivan Brandslund
- Department of Biochemistry, Hospital of Lillebaelt, Vejle, Denmark
| | - Ram Benny Dessau
- Department of Clinical Microbiology, Slagelse Hospital, Slagelse, Denmark
| | - Hans Jürgen Hoffmann
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Respiratory Diseases B, Aarhus University Hospital, Aarhus, Denmark
| | - Bente Glintborg
- Department of Rheumatology, Gentofte and Herlev Hospital, Hellerup, Denmark.,The DANBIO Registry, Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup, Denmark
| | - Merete Lund Hetland
- The DANBIO Registry, Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henning Locht
- Department of Rheumatology, Frederiksberg Hospital, Frederiksberg, Denmark
| | - Niels Henrik Heegaard
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark.,Clinical Biochemistry, Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Vibeke Andersen
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark.,Focused Research Unit for Molecular Diagnostic and Clinical Research, Hospital of Southern Jutland, Aabenraa, Denmark.,Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,OPEN Odense Patient Data Explorative Network, Odense University Hospital, Odense, Denmark
| |
Collapse
|
30
|
Conway R, O'Neill L, McCarthy GM, Murphy CC, Fabre A, Kennedy S, Veale DJ, Wade SM, Fearon U, Molloy ES. Interleukin 12 and interleukin 23 play key pathogenic roles in inflammatory and proliferative pathways in giant cell arteritis. Ann Rheum Dis 2018; 77:1815-1824. [PMID: 30097452 DOI: 10.1136/annrheumdis-2018-213488] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 01/30/2023]
Abstract
OBJECTIVES The pathogenesis of giant cell arteritis (GCA) remains unclear. TH1 and TH17 pathways are implicated, but the proximal initiators and effector cytokines are unknown. Our aim was to assess the role of interleukin 12 (IL-12) and interleukin 23 (IL-23) in GCA pathogenesis. METHODS IL-12 and IL-23 expression were quantified by immunohistochemistry in temporal artery biopsies (TABs). Temporal artery (TA) explant, peripheral blood mononuclear cell (PBMC) and myofibroblast outgrowth culture models were established. PBMCs and TA explants were cultured for 24 hours in the presence or absence of IL-12 (50 ng/mL) or IL-23 (10 ng/mL). Gene expression in TA was quantified by real-time PCR and cytokine secretion by ELISA. Myofibroblast outgrowths were quantified following 28-day culture. RESULTS Immunohistochemistry demonstrated increased expression of interleukin 12p35 (IL-12p35) and interleukin 23p19 (IL-23p19) in biopsy-positive TAs, localised to inflammatory cells. IL-12p35 TA expression was significantly increased in those with cranial ischaemic complications (p=0.026) and large vessel vasculitis (p=0.006). IL-23p19 TA expression was increased in those with two or more relapses (p=0.007). In PBMC cultures, exogenous IL-12 significantly increased interleukin 6 (IL-6) (p=0.009), interleukin 22 (IL-22) (p=0.003) and interferon γ (IFN-γ) (p=0.0001) and decreased interleukin 8 (IL-8) (p=0.0006) secretion, while exogenous IL-23 significantly increased IL-6 (p=0.029), IL-22 (p=0.001), interleukin 17A (IL-17A) (p=0.0003) and interleukin 17F (IL-17F) (p=0.012) secretion. In ex vivo TA explants, IL-23 significantly increased gene expression of IL-8 (p=0.0001) and CCL-20 (p=0.027) and protein expression of IL-6 (p=0.002) and IL-8 (p=0.004). IL-12 (p=0.0005) and IL-23 (p<0.0001) stimulation increased the quantity of myofibroblast outgrowths from TABs. CONCLUSION IL-12 and IL-23 play central and distinct roles in stimulating inflammatory and proliferative pathways relevant to GCA pathogenesis.
Collapse
Affiliation(s)
- Richard Conway
- Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital Dublin, Academic Medical Centre, Dublin 4, Ireland.,CARD Newman Research Fellow, University College Dublin, Dublin, Ireland
| | - Lorraine O'Neill
- Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital Dublin, Academic Medical Centre, Dublin 4, Ireland
| | - Geraldine M McCarthy
- Mater Misericordiae University Hospital, Dublin Academic Medical Centre, Dublin, Ireland
| | - Conor C Murphy
- RCSI Department of Ophthalmology, Royal College of Surgeons of Ireland, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Aurelie Fabre
- Department of Pathology, St Vincent's University Hospital, Dublin, Ireland
| | - Susan Kennedy
- Department of Pathology, St Vincent's University Hospital, Dublin, Ireland
| | - Douglas J Veale
- Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital Dublin, Academic Medical Centre, Dublin 4, Ireland
| | - Sarah M Wade
- Department of Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ursula Fearon
- Department of Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Eamonn S Molloy
- Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital Dublin, Academic Medical Centre, Dublin 4, Ireland
| |
Collapse
|
31
|
Kanashiro A, Shimizu Bassi G, de Queiróz Cunha F, Ulloa L. From neuroimunomodulation to bioelectronic treatment of rheumatoid arthritis. ACTA ACUST UNITED AC 2018; 1:151-165. [PMID: 30740246 DOI: 10.2217/bem-2018-0001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuronal stimulation is an emerging field in modern medicine to control organ function and reestablish physiological homeostasis during illness. The nervous system innervates most of the peripheral organs and provides a fine tune to control the immune system. Most of these studies have focused on vagus nerve stimulation and the physiological, cellular and molecular mechanisms regulating the immune system. Here, we review the new results revealing afferent vagal signaling pathways, immunomodulatory brain structures, spinal cord-dependent circuits, neural and non-neural cholinergic/catecholaminergic signals and their respective receptors contributing to neuromodulation of inflammation in rheumatoid arthritis. These new neuromodulatory networks and structures will allow the design of innovative bioelectronic or pharmacological approaches for safer and low-cost treatment of arthritis and related inflammatory disorders.
Collapse
Affiliation(s)
- Alexandre Kanashiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Physiological Sciences, Federal University of São Carlos (UFSCAR), São Carlos, SP, Brazil
| | - Gabriel Shimizu Bassi
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fernando de Queiróz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis Ulloa
- Department of Surgery, Center of Immunology & Inflammation, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ 07101, USA
| |
Collapse
|
32
|
Geha M, Tsokos MG, Bosse RE, Sannikova T, Iwakura Y, Dalle Lucca JJ, De Waal Malefyt R, Tsokos GC. IL-17A Produced by Innate Lymphoid Cells Is Essential for Intestinal Ischemia-Reperfusion Injury. THE JOURNAL OF IMMUNOLOGY 2017; 199:2921-2929. [PMID: 28877988 DOI: 10.4049/jimmunol.1700655] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/11/2017] [Indexed: 12/19/2022]
Abstract
Ischemia-reperfusion (IR) injury to the small intestine following clamping of the superior mesenteric artery results in an intense local inflammatory response that is characterized by villous damage and neutrophil infiltration. IL-17A, a cytokine produced by a variety of cells in response to inflammatory cytokines released following tissue injury, has been implicated in IR injury. Using Il17a-/- , Il23r-/- , and Rorc-/- mice and administration of anti-IL-17A and anti-IL-23 neutralizing Abs to wild-type mice, we demonstrate that intestinal IR injury depends on IL-17A and that IL-17A is downstream of the binding of autoantibody to ischemia-conditioned tissues and subsequent complement activation. Using bone marrow chimeras, we demonstrate that the IL-17A required for intestinal IR injury is derived from hematopoietic cells. Finally, by transferring autoantibody-rich sera into Rag2γc-/- and Rag2-/- mice, we demonstrate that innate lymphoid cells are the main producers of IL-17A in intestinal IR injury. We propose that local production of IL-17A by innate lymphoid cells is crucial for the development of intestinal IR injury and may provide a therapeutic target for clinical exploitation.
Collapse
Affiliation(s)
- Mayya Geha
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Maria G Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Robin E Bosse
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Tatyana Sannikova
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Jurandir J Dalle Lucca
- Translational Medical Division, Department of Chemical and Biological Technologies, Defense Threat Reduction Agency, Fort Belvoir, VA 22060; and
| | | | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
33
|
Vyas SP, Goswami R. Striking the right immunological balance prevents progression of tuberculosis. Inflamm Res 2017; 66:1031-1056. [PMID: 28711989 DOI: 10.1007/s00011-017-1081-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Tuberculosis (TB) caused by infection with Mycobacterium tuberculosis (Mtb) is a major burden for human health worldwide. Current standard treatments for TB require prolonged administration of antimycobacterial drugs leading to exaggerated inflammation and tissue damage. This can result in the reactivation of latent TB culminating in TB progression. Thus, there is an unmet need to develop therapies that would shorten the duration of anti-TB treatment and to induce optimal protective immune responses to control the spread of mycobacterial infection with minimal lung pathology. FINDINGS Granulomata is the hallmark structure formed by the organized accumulation of immune cells including macrophages, natural killer cells, dendritic cells, neutrophils, T cells, and B cells to the site of Mtb infection. It safeguards the host by containing Mtb in latent form. However, granulomata can undergo caseation and contribute to the reactivation of latent TB, if the immune responses developed to fight mycobacterial infection are not properly controlled. Thus, an optimal balance between innate and adaptive immune cells might play a vital role in containing mycobacteria in latent form for prolonged periods and prevent the spread of Mtb infection from one individual to another. CONCLUSION Optimal and well-regulated immune responses against Mycobacterium tuberculosis may help to prevent the reactivation of latent TB. Moreover, therapies targeting balanced immune responses could help to improve treatment outcomes among latently infected TB patients and thereby limit the dissemination of mycobacterial infection.
Collapse
Affiliation(s)
| | - Ritobrata Goswami
- School of Bio Science, IIT Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
34
|
Braun M, Vaibhav K, Saad NM, Fatima S, Vender JR, Baban B, Hoda MN, Dhandapani KM. White matter damage after traumatic brain injury: A role for damage associated molecular patterns. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2614-2626. [PMID: 28533056 DOI: 10.1016/j.bbadis.2017.05.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and long-term morbidity worldwide. Despite decades of pre-clinical investigation, therapeutic strategies focused on acute neuroprotection failed to improve TBI outcomes. This lack of translational success has necessitated a reassessment of the optimal targets for intervention, including a heightened focus on secondary injury mechanisms. Chronic immune activation correlates with progressive neurodegeneration for decades after TBI; however, significant challenges remain in functionally and mechanistically defining immune activation after TBI. In this review, we explore the burgeoning evidence implicating the acute release of damage associated molecular patterns (DAMPs), such as adenosine 5'-triphosphate (ATP), high mobility group box protein 1 (HMGB1), S100 proteins, and hyaluronic acid in the initiation of progressive neurological injury, including white matter loss after TBI. The role that pattern recognition receptors, including toll-like receptor and purinergic receptors, play in progressive neurological injury after TBI is detailed. Finally, we provide support for the notion that resident and infiltrating macrophages are critical cellular targets linking acute DAMP release with adaptive immune responses and chronic injury after TBI. The therapeutic potential of targeting DAMPs and barriers to clinical translational, in the context of TBI patient management, are discussed.
Collapse
Affiliation(s)
- Molly Braun
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States; Department of Medical Laboratory, Imaging & Radiologic Sciences, College of Allied Health Science, Augusta University, Augusta, GA, United States
| | - Nancy M Saad
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Sumbul Fatima
- Department of Medical Laboratory, Imaging & Radiologic Sciences, College of Allied Health Science, Augusta University, Augusta, GA, United States
| | - John R Vender
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Babak Baban
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA, United States; Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Md Nasrul Hoda
- Department of Medical Laboratory, Imaging & Radiologic Sciences, College of Allied Health Science, Augusta University, Augusta, GA, United States; Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States.
| |
Collapse
|
35
|
Mourik BC, Lubberts E, de Steenwinkel JEM, Ottenhoff THM, Leenen PJM. Interactions between Type 1 Interferons and the Th17 Response in Tuberculosis: Lessons Learned from Autoimmune Diseases. Front Immunol 2017; 8:294. [PMID: 28424682 PMCID: PMC5380685 DOI: 10.3389/fimmu.2017.00294] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 01/04/2023] Open
Abstract
The classical paradigm of tuberculosis (TB) immunity, with a central protective role for Th1 responses and IFN-γ-stimulated cellular responses, has been challenged by unsatisfactory results of vaccine strategies aimed at enhancing Th1 immunity. Moreover, preclinical TB models have shown that increasing IFN-γ responses in the lungs is more damaging to the host than to the pathogen. Type 1 interferon signaling and altered Th17 responses have also been associated with active TB, but their functional roles in TB pathogenesis remain to be established. These two host responses have been studied in more detail in autoimmune diseases (AID) and show functional interactions that are of potential interest in TB immunity. In this review, we first identify the role of type 1 interferons and Th17 immunity in TB, followed by an overview of interactions between these responses observed in systemic AID. We discuss (i) the effects of GM-CSF-secreting Th17.1 cells and type 1 interferons on CCR2+ monocytes; (ii) convergence of IL-17 and type 1 interferon signaling on stimulating B-cell activating factor production and the central role of neutrophils in this process; and (iii) synergy between IL-17 and type 1 interferons in the generation and function of tertiary lymphoid structures and the associated follicular helper T-cell responses. Evaluation of these autoimmune-related pathways in TB pathogenesis provides a new perspective on recent developments in TB research.
Collapse
Affiliation(s)
- Bas C Mourik
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jurriaan E M de Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Pieter J M Leenen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
36
|
Loghmani A, Raoofi R, Ownagh A, Delirezh N. Alternaria alternata acts on human Monocyte-derived Dendritic cells to mediate Th2/Th17 polarisation. Allergol Immunopathol (Madr) 2017; 45:175-182. [PMID: 27823917 DOI: 10.1016/j.aller.2016.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/05/2016] [Accepted: 07/08/2016] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Although the mechanism of asthma is not precisely understood in humans, clinical and epidemiological studies have offered a potential relationship between exposure to environmental fungi, such as Alternaria alternata (A. alternata) and the development and exacerbation of asthma. The aim of this project is to investigate the mechanisms of Th2 responses by A. alternata as a clinically relevant model for the environmental exposure. MATERIALS AND METHODS Plastic adherent monocytes were cultured with granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4) to convert these cells into Monocyte-derived Dendritic cells (MoDc) and then matured in the presence of Monocyte-Conditioned Medium (MCM) as the control group and MCM+ A. alternata extract as the inductive groups. RESULTS The results indicated that the expression of CD14 decreased and CD83 and anti-human leukocyte antigen-DR (HLA-DR) increased in the inductive groups in comparison with the control group. More importantly, A. alternata inhibited IL-12 production by activated dendritic cells (DCs), and the DCs exposed to A. alternata enhanced the Th2 polarisation of CD4+ T cells. The production amount of IL-10 overcame IL-12 as well as Il-23 increased significantly, and hand in T cells the production of cytokines Interferon-γ (IFN-γ) decreased. However, both IL-17 and IL-4 increased (p<0.05). Phagocytic activity in the inductive groups decreased significantly compared with the control group. CONCLUSION The asthma-related environmental fungus A. alternata, with an effect on dendritic cells profile mediates TH2/TH17. Such immunodysregulation properties of causative environmental fungi may explain their strong relationship with human asthma and allergic diseases.
Collapse
Affiliation(s)
- A Loghmani
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - R Raoofi
- Department of Infectious Diseases, University of Jahrom Medical Science, Jahrom, Iran
| | - A Ownagh
- Department of Infectious Diseases, University of Jahrom Medical Science, Jahrom, Iran
| | - N Delirezh
- Department of Infectious Diseases, University of Jahrom Medical Science, Jahrom, Iran
| |
Collapse
|
37
|
Karimi MH, Shariat A, Yaghobi R, Mokhtariazad T, Moazzeni SM. Role of cytomegalovirus on the maturation and function of monocyte derived dendritic cells of liver transplant patients. World J Transplant 2016; 6:336-346. [PMID: 27358779 PMCID: PMC4919738 DOI: 10.5500/wjt.v6.i2.336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/24/2016] [Accepted: 04/22/2016] [Indexed: 02/05/2023] Open
Abstract
AIM: To study the impact of association between cytomegalovirus (CMV) pathogenesis with dendritic cell (DC) maturation and function was evaluated in CMV reactivated liver transplanted patients in comparing with non-reactivated ones, and healthy controls.
METHODS: Monocyte derived dendritic cells (MoDCs) was generated from collected ethylenediaminetetraacetic acid-treated blood samples from patient groups and controls. In these groups, expression rates and mean fluorescent intensity of DC markers were evaluated using flowcytometry technique. Secretion of cytokines including: interleukin (IL)-6, IL-12 and IL-23 were determined using enzyme-linked immunosorbent assay methods. The gene expression of toll-like receptor 2 (TLR2), TLR4 and IL-23 were analyzed using in-house real-time polymerase chain reaction protocols.
RESULTS: Results have been shown significant decreases in: Expression rates of MoDC markers including CD83, CD1a and human leukocyte antigen DR (HLA-DR), the mean fluorescence intensitys for CD1a and HLA-DR, and secretion of IL-12 in CMV reactivated compared with non-reactivated liver transplanted patients. On the other hand, significant increases have been shown in the secretions of IL-6 and IL-23 and gene expression levels of TLR2, TLR4 and IL-23 from MoDCs in CMV reactivated compared with non-reactivated liver transplanted recipients.
CONCLUSION: DC functional defects in CMV reactivated recipients, such as decrease in expression of DC maturation markers, increase in secretion of proinflammatory cytokines, and TLRs can emphasize on the importance of CMV infectivity in development of liver rejection in transplanted patients.
Collapse
|
38
|
Neela VSK, Devalraju KP, Pydi SS, Sunder SR, Adiraju KR, Singh SS, Anandaraj MPJS, Valluri VL. Mycobacterial r32-kDa antigen-specific T-cell responses correlate with successful treatment and a heightened anti-microbial response in human leprosy patients. Int Immunol 2016; 28:435-41. [DOI: 10.1093/intimm/dxw009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/22/2016] [Indexed: 11/13/2022] Open
|
39
|
Hu Y, Wang X, Yu S, Hou Y, Ma D, Hou M. Neutralizations of IL-17A and IL-21 regulate regulatory T cell/T-helper 17 imbalance via T-helper 17-associated signaling pathway in immune thrombocytopenia. Expert Opin Ther Targets 2016; 19:723-32. [PMID: 25976230 DOI: 10.1517/14728222.2015.1016499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The imbalance of regulatory T cell/T-helper 17 (Treg/Th17) is critical for the pathogenesis of immune thrombocytopenia (ITP) and IL-17A and IL-21 are overexpressed in ITP. The effects and mechanisms of IL-17A and IL-21 in Treg/Th17 imbalance and ITP pathophysiology are not clarified. METHODS Peripheral blood mononuclear cells (PBMCs) and CD3(+) T cells from ITP patients and healthy controls were treated with cytokines or antibodies to increase or neutralize IL-17A or IL-21 levels for 72 h. Treg/Th17 differentiation, apoptosis, proliferation and Th17 differentiation-associated transcriptional factors were analyzed. RESULTS Natural Treg/Th17 decreased in newly diagnosed ITP patients and recovered after remission. IL-17A or IL-21 increased Th17, decreased Tregs and downregulated Treg/Th17 in vitro. Conversely, neutralization of IL-17A or IL-21 decreased Th17, increased Tregs and up-regulated Treg/Th17. The reverse effects of IL-17A or IL-21 were mediated by Th17-associated transcriptional factors. IL-17A or IL-21 enhanced STAT-1, STAT-3, STAT-5 or RAR-related orphan receptor C (RORC), whereas anti-IL-17A or anti-IL-21 mAb downregulated STAT-1, STAT-5 or RORC transcripts in ITP PBMCs. Proliferation showed no significant difference. IL-21 inhibited apoptosis in ITP PBMCs. CONCLUSION IL-17A and IL-21 induce Th17 and inhibit Tregs re-differentiation via Th17-associated signaling pathway in ITP patients in vitro. It highlights the potential value of IL-17A or IL-21 blockade as a novel therapeutic target for ITP.
Collapse
Affiliation(s)
- Yu Hu
- Shandong University, Qilu Hospital, Department of Hematology , Jinan , China
| | | | | | | | | | | |
Collapse
|
40
|
Bank S, Andersen PS, Burisch J, Pedersen N, Roug S, Galsgaard J, Ydegaard Turino S, Broder Brodersen J, Rashid S, Kaiser Rasmussen B, Avlund S, Bastholm Olesen T, Hoffmann HJ, Andersen Nexø B, Sode J, Vogel U, Andersen V. Polymorphisms in the Toll-Like Receptor and the IL-23/IL-17 Pathways Were Associated with Susceptibility to Inflammatory Bowel Disease in a Danish Cohort. PLoS One 2015; 10:e0145302. [PMID: 26698117 PMCID: PMC4689491 DOI: 10.1371/journal.pone.0145302] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 12/02/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The inflammatory bowel diseases (IBD), Crohn's disease (CD) and ulcerative colitis (UC), result from the combined effects of susceptibility genes and environmental factors. Previous studies have shown that polymorphisms in the Toll-like receptor (TLR), the apoptosis, the IL-23/IL-17 and the interferon gamma (IFNG) pathways are associated with risk of both CD and UC. METHODS Using a candidate gene approach, 21 functional single nucleotide polymorphisms (SNPs) in 15 genes were assessed in a clinical homogeneous group of severely diseased ethnic Danish patients consisting of 624 patients with CD, 411 patients with UC and 795 controls. The results were analysed using logistic regression. RESULTS The polymorphisms TLR5 (rs5744174) and IL12B (rs6887695) were associated with risk of CD, and TLR1 (rs4833095) and IL18 (rs187238) were associated with risk of both CD and UC (p<0.05). After Bonferroni correction for multiple testing, the homozygous variant genotype of TLR1 743 T>C (rs4833095) was associated with increased risk CD (OR: 3.15, 95% CI: 1.59-6.26, p = 0.02) and CD and UC combined (OR: 2.96, 95% CI: 1.64-5.32, p = 0.005). CONCLUSION Our results suggest that genetically determined high activity of TLR1 and TLR5 was associated with increased risk of both CD and UC and CD, respectively. This supports that the host microbial composition or environmental factors in the gut are involved in risk of IBD. Furthermore, genetically determined high activity of the IL-23/IL-17 pathway was associated with increased risk of CD and UC. Overall, our results support that genetically determined high inflammatory response was associated with increased risk of both CD and UC.
Collapse
Affiliation(s)
- Steffen Bank
- Medical Department, Viborg Regional Hospital, Viborg, Denmark
- Biomedicine, University of Aarhus, Aarhus, Denmark
- * E-mail:
| | - Paal Skytt Andersen
- Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
- Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| | - Johan Burisch
- Department of Gastroenterology, Herlev Hospital, Herlev, Denmark
| | - Natalia Pedersen
- Department of Gastroenterology, Herlev Hospital, Herlev, Denmark
| | - Stine Roug
- Department of Gastroenterology, Hvidovre Hospital, Hvidovre, Denmark
| | | | | | - Jacob Broder Brodersen
- Medical Department, Sydvestjysk Hospital, Esbjerg, Denmark
- Department of medical Gastroenterology, Odense University Hospital, Odense, Denmark
| | - Shaista Rashid
- Medical Department, Bispebjerg Hospital, Bispebjerg, Denmark
| | | | - Sara Avlund
- Medical Department V, Aarhus University Hospital, Aarhus, Denmark
| | | | - Hans Jürgen Hoffmann
- Department of Respiratory Diseases B, Institute for Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jacob Sode
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark
- Department of Rheumatology, Frederiksberg Hospital, Frederiksberg, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Vibeke Andersen
- Medical Department, Viborg Regional Hospital, Viborg, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Research unit for Molecular Diagnostic, Hospital of Southern Jutland Aabenraa, Aabenraa, Denmark
- OPEN Odense Patient data Explorative Network, Odense University Hospital, Odense, Denmark
| |
Collapse
|
41
|
Renard E, Gaudin A, Bienvenu G, Amiaud J, Farges J, Cuturi M, Moreau A, Alliot-Licht B. Immune Cells and Molecular Networks in Experimentally Induced Pulpitis. J Dent Res 2015; 95:196-205. [DOI: 10.1177/0022034515612086] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Dental pulp is a dynamic tissue able to resist external irritation during tooth decay by using immunocompetent cells involved in innate and adaptive responses. To better understand the immune response of pulp toward gram-negative bacteria, we analyzed biological mediators and immunocompetent cells in rat incisor pulp experimentally inflamed by either lipopolysaccharide (LPS) or saline solution (phosphate-buffered saline [PBS]). Untreated teeth were used as control. Expression of pro- and anti-inflammatory cytokines, chemokine ligands, growth factors, and enzymes were evaluated at the transcript level, and the recruitment of the different leukocytes in pulp was measured by fluorescence-activated cell-sorting analysis after 3 h, 9 h, and 3 d post-PBS or post-LPS treatment. After 3 d, injured rat incisors showed pulp wound healing and production of reparative dentin in both LPS and PBS conditions, testifying to the reversible pulpitis status of this model. IL6, IL1-β, TNF-α, CCL2, CXCL1, CXCL2, MMP9, and iNOS gene expression were significantly upregulated after 3 h of LPS stimulation as compared with PBS. The immunoregulatory cytokine IL10 was also upregulated after 3 h, suggesting that LPS stimulates not only inflammation but also immunoregulation. Fluorescence-activated cell-sorting analysis revealed a significant, rapid, and transient increase in leukocyte levels 9 h after PBS and LPS stimulation. The quantity of dendritic cells was significantly upregulated with LPS versus PBS. Interestingly, we identified a myeloid-derived suppressor cell–enriched cell population in noninjured rodent incisor dental pulp. The percentage of this population, known to regulate immune response, was higher 9 h after inflammation triggered with PBS and LPS as compared with the control. Taken together, these data offer a better understanding of the mechanisms involved in the regulation of dental pulp immunity that may be elicited by gram-negative bacteria.
Collapse
Affiliation(s)
- E. Renard
- INSERM, Center for Research in Transplantation and Immunology, UMR 1064, Nantes, France
| | - A. Gaudin
- INSERM, Center for Research in Transplantation and Immunology, UMR 1064, Nantes, France
- Faculty of Odontology, University of Nantes, Nantes, France
| | - G. Bienvenu
- INSERM, Center for Research in Transplantation and Immunology, UMR 1064, Nantes, France
- Faculty of Odontology, University of Nantes, Nantes, France
| | | | - J.C. Farges
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305, and Faculty of Odontology, Lyon, France
| | - M.C. Cuturi
- INSERM, Center for Research in Transplantation and Immunology, UMR 1064, Nantes, France
| | - A. Moreau
- INSERM, Center for Research in Transplantation and Immunology, UMR 1064, Nantes, France
| | - B. Alliot-Licht
- INSERM, Center for Research in Transplantation and Immunology, UMR 1064, Nantes, France
- Faculty of Odontology, University of Nantes, Nantes, France
| |
Collapse
|
42
|
Abstract
Sarcoidosis is a disease with highly variable presentation and progression; although it is hypothesized that disease phenotype is related to genetic variation, how much of this variability is driven by genetic factors is not known. The HLA region is the most strongly and consistently associated genetic risk factor for sarcoidosis, supporting the notion that sarcoidosis is an exposure-mediated immunologic disease. Most of the genetic etiology of sarcoidosis remains unknown in terms of the specific variants that increase risk in various populations, their biologic functions, and how they interact with environmental exposures.
Collapse
Affiliation(s)
| | - Nabeel Hamzeh
- Division of Environmental Occupational Health and Sciences, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA; Division of Pulmonary and Critical Care Sciences, Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Lisa A Maier
- Division of Environmental Occupational Health and Sciences, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA; Division of Pulmonary and Critical Care Sciences, Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| |
Collapse
|
43
|
Cauli A, Piga M, Floris A, Mathieu A. Current perspective on the role of the interleukin-23/interleukin-17 axis in inflammation and disease (chronic arthritis and psoriasis). Immunotargets Ther 2015; 4:185-90. [PMID: 27471723 PMCID: PMC4918258 DOI: 10.2147/itt.s62870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
TH17 is a lymphocyte subset, which is characterized by its polarization to secrete interleukin (IL)-17. IL-23 is the pivotal mediator responsible for TH17 differentiation and the IL-23/IL-17 axis has been strongly implicated in the pathogenesis of several immune mediated diseases, in particular chronic arthritis and skin psoriasis. This review will summarize the basic immunology and the new monoclonal antibodies, which antagonize this pathway allowing a new therapeutic approach.
Collapse
Affiliation(s)
- Alberto Cauli
- Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Monserrato, Cagliari, Italy
| | - Matteo Piga
- Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Monserrato, Cagliari, Italy
| | - Alberto Floris
- Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Monserrato, Cagliari, Italy
| | - Alessandro Mathieu
- Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Monserrato, Cagliari, Italy
| |
Collapse
|
44
|
Stenderup K, Rosada C, Shanebeck K, Brady W, Van Brunt MP, King G, Marelli M, Slagle P, Xu H, Nairn NW, Johnson J, Wang AA, Li G, Thornton KC, Dam TN, Grabstein KH. AZ17: a new bispecific drug targeting IL-6 and IL-23 with potential clinical use—improves psoriasis in a human xenograft transplantation model. Protein Eng Des Sel 2015; 28:467-80. [DOI: 10.1093/protein/gzv034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 07/10/2015] [Indexed: 12/20/2022] Open
|
45
|
Megnekou R, Lissom A, Bigoga JD, Djontu JC. Effects of Pregnancy-associated Malaria on T Cell Cytokines in Cameroonian Women. Scand J Immunol 2015; 81:508-14. [PMID: 25736985 DOI: 10.1111/sji.12286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 03/02/2015] [Indexed: 01/29/2023]
Abstract
Although Th17 cells subsets improve immunity against extra and intracellular pathogens, and in modulating Th1 and other immune responses, its role on pregnancy-associated malaria (PAM) is unknown. This study aims to investigate the effects of PAM on Th1 (IFN-γ, TNF-α), IL-10 family (IL-10, IL-19, IL-22), Th17 (IL-17A, IL-23) cytokines and on CXCL-10 chemokine profiles in pregnant women. Between 2010 and 2011, venous blood specimens from 107 volunteer pregnant Cameroonian women was used to determine parasitaemia microscopically and haemoglobin levels using HemoCue analyzer. Plasma levels of the biomarkers were determined by ELISA. Parasitaemia was higher in women with low haemoglobin levels, parity and mother's age. IL-10 and CXCL-10 plasma levels were higher in the malaria infected and in anaemic women while IFN-γ and IL-17A levels were higher in malaria non-infected and in non-anaemic women. Parasitaemia correlated positively with IL-10 and CXCL-10 levels but inversely with IFN-γ and IL-17A. Haemoglobin levels were higher in women with low IL-10 and CXCL-10 levels, and in group with high IFN-γ, IL-17A and IL-23 levels. Only IL-10 levels associated negatively with parity. Positive correlations were observed between Th17 (IL-17A) and Th1 (IFN-γ, TNF-α), IL-10 family (IL-19 and IL-22) and Th17 (IL-23) cytokines. Multivariate analysis showed association between: mother's age and IFN-γ levels, parasitaemia and IL-10 and CXCL-10 levels and haemoglobin levels, gestational age and IL-17A levels. In conclusion, during PAM, CXCL-10 and IL-10 responses are implicated in the pathogenesis while Th17 and Th1 immune responses, via IL-17A and IFN-γ might play protective roles.
Collapse
Affiliation(s)
- R Megnekou
- The Biotechnology Center, University of Yaounde I, Yaounde, Cameroon.,Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaounde I, Yaoundé, Cameroon
| | - A Lissom
- The Biotechnology Center, University of Yaounde I, Yaounde, Cameroon.,Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaounde I, Yaoundé, Cameroon
| | - J D Bigoga
- The Biotechnology Center, University of Yaounde I, Yaounde, Cameroon.,Department of Biochemistry, Faculty of Science, University of Yaounde I, Yaoundé, Cameroon
| | - J C Djontu
- The Biotechnology Center, University of Yaounde I, Yaounde, Cameroon.,Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaounde I, Yaoundé, Cameroon
| |
Collapse
|
46
|
How Can We Manipulate the IL-23/IL-17 Axis? CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2015. [DOI: 10.1007/s40674-015-0017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Multiplex Analysis of Pro- or Anti-Inflammatory Serum Cytokines and Chemokines in relation to Gender and Age among Tanzanian Tuberculous Lymphadenitis Patients. Tuberc Res Treat 2015; 2015:561490. [PMID: 26060581 PMCID: PMC4427821 DOI: 10.1155/2015/561490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/02/2015] [Accepted: 04/13/2015] [Indexed: 11/17/2022] Open
Abstract
Objectives. Tuberculous lymphadenitis is the most common form of extrapulmonary tuberculosis (TB) with a female and paediatric preponderance, postulated to be due to differences in the immune response. The aim of this study was to analyze the differences in the serum cytokine levels of tuberculous lymphadenitis patients with respect to age and gender. Methods. A multiplex bead-based enzyme-linked immunosorbent assay was used to measure IFN-γ, TNF-α, GM-CSF, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-15, and IL-17 levels in sera of patients (n = 86) and healthy controls (n = 23). Results. Levels of IFN-γ, TNF-α, GM-CSF, IL-1β, IL-2, IL-4, and IL-6 were higher in adult patients than in controls, while those of IL-12 were lower (P < 0.05). Children had lower levels of TNF-α, GM-CSF, and IL-5 and higher levels of IL-2 compared with adult patients (P < 0.05). The male adult patients had higher levels of IL-17 and lower levels of IL-12 compared with female adult patients (P < 0.05). Conclusion. There were significant differences in the levels of circulating cytokines with respect to gender and age. Children had generally lower levels of cytokines as compared to adults, which could make them more susceptible. Findings do not support that female preponderance is due to differences in immune response.
Collapse
|
48
|
Zheng Y, Zhong D, Chen H, Ma S, Sun Y, Wang M, Liu Q, Li G. Pivotal role of cerebral interleukin-23 during immunologic injury in delayed cerebral ischemia in mice. Neuroscience 2015; 290:321-31. [PMID: 25637493 DOI: 10.1016/j.neuroscience.2015.01.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/18/2014] [Accepted: 01/06/2015] [Indexed: 10/24/2022]
Abstract
BACKGROUND Interleukin-23 (IL-23) is required for T helper 17 (Th17) cell responses and IL-17 production in ischemic stroke. We previously showed that the IL-23/IL-17 axis aggravates immune injury after cerebral infarction in mice. However, IL-23 might activate other cytokines and transcription factor forkhead box P3 (Foxp3) production in cerebral ischemia. We aimed to determine whether IL-23p19 knockdown prevents cerebral ischemic injury by reducing ischemic-induced inflammation. METHODS Ischemic stroke models were established by permanent middle cerebral arterial occlusion (pMCAO) in male C57BL/6 mice. In vivo gene knockdown was achieved by intravenous delivery of lentiviral vectors (LVs) encoding IL-23p19 short hairpin RNA (LV-IL-23p19 shRNA). Enzyme-linked immunoassay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR) confirmed inhibitory efficiency. Behavioral deficits were evaluated by adhesive-removal somatic-sensory test. Brain infarct volume was measured at day 5 after pMCAO by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Expression of IL-17, IL-4, interferon (IFN)-γ and Foxp3 in ischemic brain tissues were detected by qRT-PCR and Western blotting, respectively. Additionally, immunohistochemical staining located cytokines in ischemic brain tissues. RESULTS RNA interference knockdown of IL-23p19 resulted in improved neurological function and reduced infarct volume. IL-23p19 knockdown suppressed IL-17 gene and protein expression. Moreover, IL-23p19 deficiency enhanced IFN-γ and Foxp3 expressions in delayed cerebral ischemic mice, and did not impact IL-4 expression. Immunohistochemical staining showed that IL-17, IL-4, IFN-γ and Foxp3-positive cells were located around ischemic lesions of the ipsilateral hemisphere. CONCLUSIONS IL-23p19 knockdown prevents delayed cerebral ischemic injury by dampening the ischemia-induced inflammation, and is a promising approach for clinically managing ischemic stroke.
Collapse
Affiliation(s)
- Y Zheng
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilong Jiang Province, PR China
| | - D Zhong
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilong Jiang Province, PR China
| | - H Chen
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilong Jiang Province, PR China
| | - S Ma
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilong Jiang Province, PR China
| | - Y Sun
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilong Jiang Province, PR China
| | - M Wang
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilong Jiang Province, PR China
| | - Q Liu
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilong Jiang Province, PR China
| | - G Li
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilong Jiang Province, PR China.
| |
Collapse
|
49
|
Zhang M, Qiu X, Zhang H, Yang X, Hong N, Yang Y, Chen H, Yu C. Faecalibacterium prausnitzii inhibits interleukin-17 to ameliorate colorectal colitis in rats. PLoS One 2014; 9:e109146. [PMID: 25275569 PMCID: PMC4183556 DOI: 10.1371/journal.pone.0109146] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/28/2014] [Indexed: 12/17/2022] Open
Abstract
Background and Aims It has been shown that Faecalibacterium prausnitzii (F. prausnitzii), one of the dominant intestinal bacterial flora, may protect colonic mucosa against the development of inflammation and subsequent inflammatory bowel disease (IBD), with the underlying mechanisms being unclear. Methods The impacts of F. prausnitzii and its metabolites on IL-23/Th17/IL-17 pathway markers were determined in human monocytes and a rat model of colitis induced by 2,4,6-trinitrobenzene sulfonic acid. F. prausnitzii and its culture medium (containing complete metabolites) were used to treat the rats in vivo, as well as rat splenocytes and human monocytes in vitro. Inflammatory cytokines were measured in colon tissue, plasma and cell culture medium. Results The culture supernatant of F. prausnitzii increased plasma anti-Th17 cytokines (IL-10 and IL-12)and suppressed IL-17 levels in both plasma and colonic mucosa, with ameliorated colonic colitis lesions. This inhibition of IL-17 release has also been observed in both rat splenocytes and human venous monocytes in vitro. The culture supernatant of F. prausnitzii also suppressed Th17 cell differentiation induced by cytokines (TGF-ß and IL-6) and bone marrow-derived dendritic cells (BMDCs) in vitro. The metabolites of F. prausnitzii in the culture supernatant exert a stronger anti-inflammatory effect than the bacterium itself. F. prausnitzii protected the colon mucosa against the development of IBD by its metabolites, suggesting a promising potential for the use of F. prausnitzii and its metabolic products in the treatment of IBD.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinyun Qiu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hao Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaotong Yang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Na Hong
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hui Chen
- School of Medical and Molecular Biosciences, Centre for Health Technology Faculty of Science, University of Technology, Sydney, NSW, Australia
| | - Chenggong Yu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
50
|
|