1
|
Ismahil MA, Zhou G, Rajasekar S, Gao M, Bansal SS, Patel B, Limdi N, Xie M, Antipenko S, Rokosh G, Hamid T, Prabhu SD. Splenic CD169 +Tim4 + Marginal Metallophilic Macrophages Are Essential for Wound Healing After Myocardial Infarction. Circulation 2025; 151:1712-1729. [PMID: 40289811 PMCID: PMC12165546 DOI: 10.1161/circulationaha.124.071772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Fidelity of wound healing after myocardial infarction (MI) is an important determinant of subsequent adverse cardiac remodeling and failure. Macrophages derived from infiltrating Ly6Chi (lymphocyte antigen 6 complex, locus C) blood monocytes are a key component of this healing response; however, the importance of other macrophage populations is unclear. METHODS We used a variety of in vivo murine models and orthogonal approaches, including surgical MI, flow cytometry and single-cell RNA sequencing, lineage tracing and cell tracking, splenectomy, parabiosis, cell adoptive transfer, and functional characterization, to establish an essential role for splenic CD169+Tim4+ (cluster of differentiation 169+; T cell immunoglobulin- and mucin-domain-containing molecule 4) marginal metallophilic macrophages (MMMs) in post-MI wound healing in mice. Flow cytometry was used to measure circulating CD169+Tim4+ monocytes in humans with ST-segment-elevation MI and control participants with stable coronary artery disease undergoing elective percutaneous coronary intervention. RESULTS Splenic CD169+Tim4+ MMMs circulate in blood as Ly6Clow monocytes expressing macrophage markers and help populate CD169+Tim4+CCR2-LYVE1low macrophages in the naive heart. After acute MI, splenic MMMs augment phagocytosis and CCR (C-C motif chemokine receptor) 3 and CCR4 expression, and robustly mobilize to the heart, resulting in marked expansion of cardiac CD169+Tim4+LYVE1low macrophages with an immunomodulatory and proresolving gene signature. These macrophages are obligatory for apoptotic neutrophil clearance, suppression of inflammation, and induction of a reparative macrophage phenotype in the infarcted heart. Splenic MMMs are both necessary and sufficient for post-MI wound healing, and limit late pathological remodeling. Liver X receptor-α agonist-induced expansion of the splenic marginal zone and MMMs during acute MI alleviates inflammation and improves short- and long-term cardiac remodeling. Humans with acute ST-segment-elevation MI also exhibit expansion of circulating CD169+Tim4+ cells, primarily within the intermediate (CD14+CD16+) monocyte population. CONCLUSIONS Splenic CD169+Tim4+ MMMs are required for proresolving and reparative responses after MI and can be manipulated for therapeutic benefit to limit long-term heart failure.
Collapse
Affiliation(s)
- Mohamed Ameen Ismahil
- Division of Cardiology, Department of Medicine, Washington University in St Louis, MO (M.A.I., S.R., G.R., T.H., S.D.P.)
- Departments of Medicine, Cardiovascular Disease (M.A.I., G.Z., M.G., S.S.B., B.P., M.X., S.A., G.R., T.H., S.D.P.), University of Alabama at Birmingham. Dr Bansal is currently affiliated with the Heart and Vascular Institute, Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey
| | - Guihua Zhou
- Departments of Medicine, Cardiovascular Disease (M.A.I., G.Z., M.G., S.S.B., B.P., M.X., S.A., G.R., T.H., S.D.P.), University of Alabama at Birmingham. Dr Bansal is currently affiliated with the Heart and Vascular Institute, Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey
| | - Shreya Rajasekar
- Division of Cardiology, Department of Medicine, Washington University in St Louis, MO (M.A.I., S.R., G.R., T.H., S.D.P.)
| | - Min Gao
- Departments of Medicine, Cardiovascular Disease (M.A.I., G.Z., M.G., S.S.B., B.P., M.X., S.A., G.R., T.H., S.D.P.), University of Alabama at Birmingham. Dr Bansal is currently affiliated with the Heart and Vascular Institute, Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey
| | - Shyam S. Bansal
- Departments of Medicine, Cardiovascular Disease (M.A.I., G.Z., M.G., S.S.B., B.P., M.X., S.A., G.R., T.H., S.D.P.), University of Alabama at Birmingham. Dr Bansal is currently affiliated with the Heart and Vascular Institute, Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey
| | - Bindiya Patel
- Departments of Medicine, Cardiovascular Disease (M.A.I., G.Z., M.G., S.S.B., B.P., M.X., S.A., G.R., T.H., S.D.P.), University of Alabama at Birmingham. Dr Bansal is currently affiliated with the Heart and Vascular Institute, Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey
| | - Nita Limdi
- Neurology (N.L.), University of Alabama at Birmingham. Dr Bansal is currently affiliated with the Heart and Vascular Institute, Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey
| | - Min Xie
- Departments of Medicine, Cardiovascular Disease (M.A.I., G.Z., M.G., S.S.B., B.P., M.X., S.A., G.R., T.H., S.D.P.), University of Alabama at Birmingham. Dr Bansal is currently affiliated with the Heart and Vascular Institute, Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey
| | - Sergey Antipenko
- Departments of Medicine, Cardiovascular Disease (M.A.I., G.Z., M.G., S.S.B., B.P., M.X., S.A., G.R., T.H., S.D.P.), University of Alabama at Birmingham. Dr Bansal is currently affiliated with the Heart and Vascular Institute, Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey
| | - Gregg Rokosh
- Division of Cardiology, Department of Medicine, Washington University in St Louis, MO (M.A.I., S.R., G.R., T.H., S.D.P.)
- Departments of Medicine, Cardiovascular Disease (M.A.I., G.Z., M.G., S.S.B., B.P., M.X., S.A., G.R., T.H., S.D.P.), University of Alabama at Birmingham. Dr Bansal is currently affiliated with the Heart and Vascular Institute, Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey
| | - Tariq Hamid
- Division of Cardiology, Department of Medicine, Washington University in St Louis, MO (M.A.I., S.R., G.R., T.H., S.D.P.)
- Departments of Medicine, Cardiovascular Disease (M.A.I., G.Z., M.G., S.S.B., B.P., M.X., S.A., G.R., T.H., S.D.P.), University of Alabama at Birmingham. Dr Bansal is currently affiliated with the Heart and Vascular Institute, Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey
| | - Sumanth D. Prabhu
- Division of Cardiology, Department of Medicine, Washington University in St Louis, MO (M.A.I., S.R., G.R., T.H., S.D.P.)
- Departments of Medicine, Cardiovascular Disease (M.A.I., G.Z., M.G., S.S.B., B.P., M.X., S.A., G.R., T.H., S.D.P.), University of Alabama at Birmingham. Dr Bansal is currently affiliated with the Heart and Vascular Institute, Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey
| |
Collapse
|
2
|
Pan Y, Deng B, Wang T, Zhou Z, Wang J, Gao C, He C. Kurarinone ameliorates intestinal mucosal inflammation via regulating T cell immunity. Front Immunol 2025; 16:1587479. [PMID: 40375985 PMCID: PMC12078286 DOI: 10.3389/fimmu.2025.1587479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/11/2025] [Indexed: 05/18/2025] Open
Abstract
Background Inflammatory bowel disease (IBD) has become an increasingly significant global health concern, imposing substantial economic and psychological burdens on society and public health systems. Herbal medicines, which have shown promise in alleviating IBD symptoms and promoting remission through mechanisms such as immune regulation and anti-inflammatory effects, are gaining increasing attention. Kurarinone (KAR) is a major component of the dried roots of Sophora flavescens, which exhibits a range of pharmacological activities, including antioxidant and anti-inflammatory effects. However, research on the therapeutic potential of KAR in IBD, particularly its effect on intestinal mucosal inflammation, remains limited. Methods Colitis was induced by trinitrobenzene sulfonic acid (TNBS) in mice and KAR was intraperitoneally given. Hematoxylin and eosin staining, flow cytometry, and immunofluorescence were used for mucosal inflammation evaluation. Changes in gut microbiota were assessed using 16S rRNA sequencing. RNA sequencing was performed to screen for KAR's therapeutic targets, which was verified by in vitro T cell culture. Results We demonstrated that administration of KAR resulted in a mitigated colonic tissue damage in mice with TNBS-induced colitis and decreased the infiltration of inflammatory cells, including monocytes/macrophages, neutrophils, and T lymphocytes. Moreover, KAR protected TNBS-insulted mice from colonic goblet cell loss and tight junction destruction. Furthermore, KAR treatment led to the restoration of the gut microbiota to a more normal composition. Mechanistically, KAR suppressed T helper (Th) 17 cell response but facilitated interleukin (IL)-10 production via Blimp-1. Conclusion Our study investigated the impact of KAR on mice with TNBS-induced colitis and elucidated its underlying mechanisms, thereby uncovering novel possibilities for clinical interventions in IBD.
Collapse
Affiliation(s)
- Yan Pan
- Department of Gastroenterology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Bolin Deng
- Translational Clinical Immunology Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingting Wang
- Translational Clinical Immunology Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhou Zhou
- Department of Gastroenterology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinxia Wang
- Translational Clinical Immunology Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Caiping Gao
- Department of Gastroenterology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Translational Clinical Immunology Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chong He
- Translational Clinical Immunology Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Yang X, Zhang X, Tian Y, Yang J, Jia Y, Xie Y, Cheng L, Chen S, Wu L, Qin Y, Zhao Z, Zhao D, Wei Y. Srsf3-Dependent APA Drives Macrophage Maturation and Limits Atherosclerosis. Circ Res 2025; 136:985-1009. [PMID: 40160097 DOI: 10.1161/circresaha.124.326111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Circulating monocytes largely contribute to macrophage buildup in atheromata, which is crucial for clearing subendothelial LDLs (low-density lipoproteins) and dead cells; however, the transitional trajectory from monocytes to macrophages in atherosclerotic plaques and the underlying regulatory mechanism remain unclear. Moreover, the role of alternative polyadenylation, a posttranscriptional regulator of cell fate, in monocyte/macrophage fate decisions during atherogenesis is not entirely understood. METHODS To identify monocyte/macrophage subtypes in atherosclerotic lesions and the effect of alternative polyadenylation on these subtypes and atherogenesis, single-cell RNA sequencing, 3'-end sequencing, flow cytometric, and histopathologic analyses were performed on plaques obtained from Apoe-/- mouse arteries with or without myeloid deletion of Srsf3 (serine/arginine-rich splicing factor 3). Cell fractionation, polysome profiling, L-azidohomoalanine metabolic labeling assay, and metabolomic profiling were conducted to disclose the underlying mechanisms. Reprogramming of widespread alternative polyadenylation patterns was estimated in human plaques via bulk RNA sequencing. RESULTS We identified a subset of lesional cells in a monocyte-to-macrophage transitional state, which exhibited high expression of chemokines in mice. Srsf3 deletion caused a maturation delay of these transitional cells and phagocytic impairment of lesional macrophages, aggravating atherosclerosis. Mechanistically, Srsf3 deficiency shortened 3' untranslated regions of mitochondria-associated Aars2 (alanyl-tRNA synthetase 2), disrupting its translation. The resultant impairment of protein synthesis in mitochondria led to mitochondrial dysfunction with declined NAD+ (nicotinamide adenine dinucleotide, oxidized form) levels, activation of the integrated stress response, and metabolic reprogramming in macrophages. Administering an NAD+ precursor nicotinamide mononucleotide or the integrated stress response inhibitor partially restored Srsf3-deficient macrophage maturation, and nicotinamide mononucleotide treatment mitigated the proatherosclerotic effects of Srsf3 deficiency. Consistently, Srsf3 downregulation, global 3' untranslated region shortening, and accumulation of these transitional macrophages were associated with atherosclerosis progression in humans. CONCLUSIONS Our study reveals that Srsf3-dependent generation of long 3' untranslated region is required for efficient mitochondrial translation, which promotes mature phagocytic macrophage formation, thereby playing a protective role in atherosclerosis.
Collapse
Affiliation(s)
- Xian Yang
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Xin Zhang
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Yaru Tian
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Jiaxuan Yang
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Yunhui Jia
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Yuhuai Xie
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Lianping Cheng
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Shenglai Chen
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Linfeng Wu
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Yihong Qin
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Zhen Zhao
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, China (Z.Z.)
- Vascular Center of Shanghai Jiao Tong University, China (Z.Z.)
| | - Dejian Zhao
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT (D.Z.)
| | - Yuanyuan Wei
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
- Shanghai Key Laboratory of Bioactive Small Molecules and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences (Y.W.), Fudan University, Shanghai, China
| |
Collapse
|
4
|
AlAsfoor S, Jessen E, Pullapantula SR, Voisin JR, Hsi LC, Pavelko KD, Farwana S, Patraw JA, Chai XY, Ji S, Strausbauch MA, Cipriani G, Wei L, Linden DR, Hou R, Myers R, Bhattarai Y, Wykosky J, Burns AJ, Dasari S, Farrugia G, Grover M. Mass cytometric analysis of circulating monocyte subsets in a murine model of diabetic gastroparesis. Am J Physiol Gastrointest Liver Physiol 2025; 328:G323-G341. [PMID: 39947648 DOI: 10.1152/ajpgi.00229.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 12/23/2024] [Indexed: 03/14/2025]
Abstract
Circulating monocytes (Mo) are precursors to a subset of gastric resident muscularis macrophages. Changes in muscularis macrophages (MMs) result in delayed gastric emptying (DGE) in diabetic gastroparesis. However, the dynamics of Mo in the development of DGE in an animal model are unknown. Using cytometry by time-of-flight and computational approaches, we show a high heterogeneity within the Mo population. In DGE mice, via unbiased clustering, we identified two reduced Mo clusters that exhibit migratory phenotype (Ly6ChiCCR2hi-intCD62LhiLy6GhiCD45RhiMERTKhiintLGALS3intCD14intCX3CR1lowSiglec-Hint-low) resembling classical Mo (CMo-like). All markers enriched in these clusters are known to regulate cell differentiation, proliferation, adhesion, and migration. Trajectory inference analysis predicted these Mo as precursors to subsequent Mo lineages. In gastric muscle tissue, we demonstrated an increase in the gene expression levels of chemokine receptor C-C chemokine receptor type 2 (Ccr2) and its C-C motif ligand 2 (Ccl2), suggesting increased trafficking of classical-Mo. These findings establish a link between two CMo-like clusters and the development of the DGE phenotype and contribute to a better understanding of the heterogenicity of the Mo population.NEW & NOTEWORTHY Using 32 immune cell surface markers, we identified 23 monocyte clusters in murine blood. Diabetic gastroparesis was associated with a significant decrease in two circulating classical monocyte-like clusters and an upregulation of the Ccr2-Ccl2 axis in the gastric muscularis propria, suggesting increased tissue monocyte migration. This study offers new targets by pointing to a possible role for two classical monocyte subsets connected to the Ccr2-Ccl2 axis.
Collapse
Affiliation(s)
- Shefaa AlAsfoor
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| | - Erik Jessen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, United States
| | | | - Jennifer R Voisin
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
| | - Linda C Hsi
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| | - Kevin D Pavelko
- Immune Monitoring Core, Office of Core Shared Services, Mayo Clinic, Rochester, Minnesota, United States
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States
| | - Samera Farwana
- Immune Monitoring Core, Office of Core Shared Services, Mayo Clinic, Rochester, Minnesota, United States
| | - Jack A Patraw
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
| | - Xin-Yi Chai
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| | - Sihan Ji
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, People's Republic of China
| | - Michael A Strausbauch
- Immune Monitoring Core, Office of Core Shared Services, Mayo Clinic, Rochester, Minnesota, United States
| | - Gianluca Cipriani
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| | - Lai Wei
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| | - David R Linden
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Ruixue Hou
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States
| | - Richard Myers
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., San Diego, California, United States
| | - Yogesh Bhattarai
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., San Diego, California, United States
| | - Jill Wykosky
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States
| | - Alan J Burns
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States
| | - Surendra Dasari
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States
| | - Gianrico Farrugia
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| | - Madhusudan Grover
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
5
|
Chang Y, Chen J, Peng Y, Zhang K, Zhang Y, Zhao X, Wang D, Li L, Zhu J, Liu K, Li Z, Pan S, Huang K. Gut-derived macrophages link intestinal damage to brain injury after cardiac arrest through TREM1 signaling. Cell Mol Immunol 2025; 22:437-455. [PMID: 39984674 PMCID: PMC11955566 DOI: 10.1038/s41423-025-01263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/19/2024] [Accepted: 01/20/2025] [Indexed: 02/23/2025] Open
Abstract
Brain injury is the leading cause of death and disability in survivors of cardiac arrest, where neuroinflammation triggered by infiltrating macrophages plays a pivotal role. Here, we seek to elucidate the origin of macrophages infiltrating the brain and their mechanism of action after cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Wild-type or photoconvertible Cd68-Cre:R26-LSL-KikGR mice were subjected to 10-min CA/CPR, and the migration of gut-derived macrophages into brain was assessed. Transcriptome sequencing was performed to identify the key proinflammatory signal of macrophages infiltrating the brain, triggering receptor expressed on myeloid cells 1 (TREM1). Upon drug intervention, the effects of TREM1 on post-CA/CPR brain injury were further evaluated. 16S rRNA sequencing was used to detect gut dysbiosis after CA/CPR. Through photoconversion experiments, we found that small intestine-derived macrophages infiltrated the brain and played a crucial role in triggering secondary brain injury after CA/CPR. The infiltrating peripheral macrophages showed upregulated TREM1 levels, and we further revealed the crucial role of gut-derived TREM1+ macrophages in post-CA/CPR brain injury through a drug intervention targeting TREM1. Moreover, a close correlation between upregulated TREM1 expression and poor neurological outcomes was observed in CA survivors. Mechanistically, CA/CPR caused a substantial expansion of Enterobacter at the early stage, which ignited intestinal TREM1 signaling via the activation of Toll-like receptor 4 on macrophages through the release of lipopolysaccharide. Our findings reveal essential crosstalk between the gut and brain after CA/CPR and underscore the potential of targeting TREM1+ small intestine-derived macrophages as a novel therapeutic strategy for mitigating post-CA/CPR brain injury.
Collapse
Affiliation(s)
- Yuan Chang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiancong Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuqin Peng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kunxue Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuzhen Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolin Zhao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Di Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Lei Li
- Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juan Zhu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kewei Liu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhentong Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Neurology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China.
| |
Collapse
|
6
|
Hu Y, Schnabl B, Stärkel P. Origin, Function, and Implications of Intestinal and Hepatic Macrophages in the Pathogenesis of Alcohol-Associated Liver Disease. Cells 2025; 14:207. [PMID: 39936998 PMCID: PMC11816606 DOI: 10.3390/cells14030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/13/2025] Open
Abstract
Macrophages are members of the human innate immune system, and the majority reside in the liver. In recent years, they have been recognized as essential players in the maintenance of liver and intestinal homeostasis as well as key guardians of their respective immune systems, and they are increasingly being recognized as such. Paradoxically, they are also likely involved in chronic pathologies of the gastrointestinal tract and potentially in the alteration of the gut-liver axis in alcohol use disorder (AUD) and alcohol-associated liver disease (ALD). To date, the causal relationship between macrophages, the pathogenesis of ALD, and the immune dysregulation of the gut remains unclear. In this review, we will discuss our current understanding of the heterogeneity of intestinal and hepatic macrophages, their ontogeny, the potential factors that regulate their origin, and the evidence of how they are associated with the manifestation of chronic inflammation. We will also illustrate how the micro-environment of the intestine shapes the phenotypes and functionality of the macrophage compartment in both the intestines and liver and how they change during chronic alcohol abuse. Finally, we highlight the obstacles to current research and the prospects for this field.
Collapse
Affiliation(s)
- Yifan Hu
- Laboratory of Hepato-Gastroenterology, Institute of Clinical and Experimental Research, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA;
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Peter Stärkel
- Laboratory of Hepato-Gastroenterology, Institute of Clinical and Experimental Research, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
7
|
Ahn JH, da Silva Pedrosa M, Lopez LR, Tibbs TN, Jeyachandran JN, Vignieri EE, Rothemich A, Cumming I, Irmscher AD, Haswell CJ, Zamboni WC, Yu YRA, Ellermann M, Denson LA, Arthur JC. Intestinal E. coli-produced yersiniabactin promotes profibrotic macrophages in Crohn's disease. Cell Host Microbe 2025; 33:71-88.e9. [PMID: 39701098 DOI: 10.1016/j.chom.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Inflammatory bowel disease (IBD)-associated fibrosis causes significant morbidity. Mechanisms are poorly understood but implicate the microbiota, especially adherent-invasive Escherichia coli (AIEC). We previously demonstrated that AIEC producing the metallophore yersiniabactin (Ybt) promotes intestinal fibrosis in an IBD mouse model. Since macrophages interpret microbial signals and influence inflammation/tissue remodeling, we hypothesized that Ybt metal sequestration disrupts this process. Here, we show that macrophages are abundant in human IBD-fibrosis tissue and mouse fibrotic lesions, where they co-localize with AIEC. Ybt induces profibrotic gene expression in macrophages via stabilization and nuclear translocation of hypoxia-inducible factor 1-alpha (HIF-1α), a metal-dependent immune regulator. Importantly, Ybt-producing AIEC deplete macrophage intracellular zinc and stabilize HIF-1α through inhibition of zinc-dependent HIF-1α hydroxylation. HIF-1α+ macrophages localize to sites of disease activity in human IBD-fibrosis strictures and mouse fibrotic lesions, highlighting their physiological relevance. Our findings reveal microbiota-mediated metal sequestration as a profibrotic trigger targeting macrophages in the inflamed intestine.
Collapse
Affiliation(s)
- Ju-Hyun Ahn
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marlus da Silva Pedrosa
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lacey R Lopez
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Taylor N Tibbs
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joanna N Jeyachandran
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emily E Vignieri
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Aaron Rothemich
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ian Cumming
- Department of Pulmonary and Critical Care Medicine, Duke University, Durham, NC 27710, USA
| | - Alexander D Irmscher
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Corey J Haswell
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William C Zamboni
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yen-Rei A Yu
- Department of Pulmonary and Critical Care Medicine, Duke University, Durham, NC 27710, USA; Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Melissa Ellermann
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Lee A Denson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Janelle C Arthur
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
8
|
Rampado R, Naidu GS, Karpov O, Goldsmith M, Sharma P, Ezra A, Stotsky L, Breier D, Peer D. Lipid Nanoparticles With Fine-Tuned Composition Show Enhanced Colon Targeting as a Platform for mRNA Therapeutics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408744. [PMID: 39585189 PMCID: PMC11744673 DOI: 10.1002/advs.202408744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Lipid Nanoparticles (LNPs) recently emerged as an invaluable RNA delivery platform. With many LNP-based therapeutics in the pre-clinical and clinical pipelines, there is extensive research dedicated to improving LNPs. These efforts focus mainly on the tolerability and transfectability of new ionizable lipids and RNAs, or modulating LNPs biodistribution with active targeting strategies. However, most formulations follow the well-established lipid proportions used in clinically approved products. Nevertheless, investigating the effects of LNPs composition on their biodistribution can expand the toolbox for particle design, leading to improved delivery strategies. Herein, a new LNPs (30-n-LNPs) formulation with increasing amounts of phospholipids is investigated as a possible mRNA delivery system for treating Inflammatory Bowel Diseases. Compared to LNPs with benchmark composition (b-LNPs), n-LNPs containing 30% distearoylphosphatidylcholine (DSPC) are well tolerated following intravenous administration and display natural targeting toward the inflamed colon in dextran sodium sulfate (DSS)-colitis bearing mice, while de-targeting clearing organs such as the liver and spleen. Using interleukin-10-encoding mRNA as therapeutic cargo, n-LNPs demonstrated a reduction of pathological burden in colitis-bearing mice. n-LNPs represent a starting point to further investigate the influence of LNPs composition on systemic biodistribution, ultimately opening new therapeutic modalities in different pathologies.
Collapse
Affiliation(s)
- Riccardo Rampado
- Laboratory of Precision NanomedicineShmunis School of Biomedicine and Cancer ResearchTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Department of Materials Sciences and EngineeringTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Cancer Biology Research CenterTel Aviv UniversityTel Aviv‐Yafo69978Israel
| | - Gonna Somu Naidu
- Laboratory of Precision NanomedicineShmunis School of Biomedicine and Cancer ResearchTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Department of Materials Sciences and EngineeringTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Cancer Biology Research CenterTel Aviv UniversityTel Aviv‐Yafo69978Israel
| | - Olga Karpov
- Laboratory of Precision NanomedicineShmunis School of Biomedicine and Cancer ResearchTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Department of Materials Sciences and EngineeringTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Cancer Biology Research CenterTel Aviv UniversityTel Aviv‐Yafo69978Israel
| | - Meir Goldsmith
- Laboratory of Precision NanomedicineShmunis School of Biomedicine and Cancer ResearchTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Department of Materials Sciences and EngineeringTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Cancer Biology Research CenterTel Aviv UniversityTel Aviv‐Yafo69978Israel
| | - Preeti Sharma
- Laboratory of Precision NanomedicineShmunis School of Biomedicine and Cancer ResearchTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Department of Materials Sciences and EngineeringTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Cancer Biology Research CenterTel Aviv UniversityTel Aviv‐Yafo69978Israel
| | - Assaf Ezra
- Laboratory of Precision NanomedicineShmunis School of Biomedicine and Cancer ResearchTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Department of Materials Sciences and EngineeringTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Cancer Biology Research CenterTel Aviv UniversityTel Aviv‐Yafo69978Israel
| | - Lior Stotsky
- Laboratory of Precision NanomedicineShmunis School of Biomedicine and Cancer ResearchTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Department of Materials Sciences and EngineeringTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Cancer Biology Research CenterTel Aviv UniversityTel Aviv‐Yafo69978Israel
| | - Dor Breier
- Laboratory of Precision NanomedicineShmunis School of Biomedicine and Cancer ResearchTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Department of Materials Sciences and EngineeringTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Cancer Biology Research CenterTel Aviv UniversityTel Aviv‐Yafo69978Israel
| | - Dan Peer
- Laboratory of Precision NanomedicineShmunis School of Biomedicine and Cancer ResearchTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Department of Materials Sciences and EngineeringTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv‐Yafo69978Israel
- Cancer Biology Research CenterTel Aviv UniversityTel Aviv‐Yafo69978Israel
| |
Collapse
|
9
|
Amann L, Fell A, Monaco G, Sankowski R, Wu HZQ, Jordão MJC, Borst K, Fliegauf M, Masuda T, Ardura-Fabregat A, Paterson N, Nent E, Cook J, Staszewski O, Mossad O, Falk T, Louveau A, Smirnov I, Kipnis J, Lämmermann T, Prinz M. Extrasinusoidal macrophages are a distinct subset of immunologically active dural macrophages. Sci Immunol 2024; 9:eadh1129. [PMID: 39705337 DOI: 10.1126/sciimmunol.adh1129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 11/26/2024] [Indexed: 12/22/2024]
Abstract
Although macrophages in the meningeal compartments of the central nervous system (CNS) have been comprehensively characterized under steady state, studying their contribution to physiological and pathological processes has been hindered by the lack of specific targeting tools in vivo. Recent findings have shown that the dural sinus and its adjacent lymphatic vessels act as a neuroimmune interface. However, the cellular and functional heterogeneity of extrasinusoidal dural macrophages outside this immune hub is not fully understood. Therefore, we comprehensively characterized these cells using single-cell transcriptomics, fate mapping, confocal imaging, clonal analysis, and transgenic mouse lines. Extrasinusoidal dural macrophages were distinct from leptomeningeal and CNS parenchymal macrophages in terms of their origin, expansion kinetics, and transcriptional profiles. During autoimmune neuroinflammation, extrasinusoidal dural macrophages performed efferocytosis of apoptotic granulocytes. Our results highlight a previously unappreciated myeloid cell diversity and provide insights into the brain's innate immune system.
Collapse
Affiliation(s)
- Lukas Amann
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Amelie Fell
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gianni Monaco
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center, University of Freiburg, Freiburg, Germany
| | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Huang Zie Quann Wu
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Katharina Borst
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Fliegauf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Takahiro Masuda
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Alberto Ardura-Fabregat
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Neil Paterson
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Elisa Nent
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - James Cook
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ori Staszewski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Omar Mossad
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Thorsten Falk
- Department of Computer Sciences, University of Freiburg, Freiburg, Germany
| | - Antoine Louveau
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Igor Smirnov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Yue N, Hu P, Tian C, Kong C, Zhao H, Zhang Y, Yao J, Wei Y, Li D, Wang L. Dissecting Innate and Adaptive Immunity in Inflammatory Bowel Disease: Immune Compartmentalization, Microbiota Crosstalk, and Emerging Therapies. J Inflamm Res 2024; 17:9987-10014. [PMID: 39634289 PMCID: PMC11615095 DOI: 10.2147/jir.s492079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
The intestinal immune system is the largest immune organ in the human body. Excessive immune response to intestinal cavity induced by harmful stimuli including pathogens, foreign substances and food antigens is an important cause of inflammatory diseases such as celiac disease and inflammatory bowel disease (IBD). Although great progress has been made in the treatment of IBD by some immune-related biotherapeutic products, yet a considerable proportion of IBD patients remain unresponsive or immune tolerant to immunotherapeutic strategy. Therefore, it is necessary to further understand the mechanism of immune cell populations involved in enteritis, including dendritic cells, macrophages and natural lymphocytes, in the steady-state immune tolerance of IBD, in order to find effective IBD therapy. In this review, we discussed the important role of innate and adaptive immunity in the development of IBD. And the relationship between intestinal immune system disorders and microflora crosstalk were also presented. We also focus on the new findings in the field of T cell immunity, which might identify novel cytokines, chemokines or anti-cytokine antibodies as new approaches for the treatment of IBD.
Collapse
Affiliation(s)
- Ningning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Peng Hu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Chengmei Tian
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Chen Kong
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Hailan Zhao
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, People’s Republic of China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Yuqi Wei
- Department of Rehabilitation, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Defeng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Lisheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| |
Collapse
|
11
|
Dao Nyesiga G, Haslund-Vinding JL, Budde J, Lange JF, Blum N, Dukstaite K, Ohlsson L, Mathiesen T, Woetmann A, Vilhardt F. Flow Cytometry Analyses of Meningioma Immune Cell Composition Using a Short, Optimized Digestion Protocol. Cancers (Basel) 2024; 16:3942. [PMID: 39682129 DOI: 10.3390/cancers16233942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Current challenges in meningioma treatment, including post-surgical complications and cognitive impairments, highlight the need for new treatment alternatives. Immunological interventions have shown promise. However, there is a knowledge gap in characterizing infiltrating immune cells in meningioma and their interplay. Further studies on immune cells in single-cell suspensions from digested meningioma tissues could identify targetable mechanisms for non-surgical treatment options with fewer side effects. This study aimed to optimize a protocol for faster digestion of meningioma tissues into viable single-cell suspensions and to identify infiltrating immune cell populations. METHODS We modified a commercial kit intended for whole skin dissociation to digest resected meningioma tissues into viable single-cell suspensions. Tumor-infiltrating immune cell populations were characterized using flow cytometry. RESULTS Flow cytometry analyses revealed that the digested tissue was composed of viable immune cells, including predominantly CD14+ macrophages and CD3+ T cells, with minor populations of CD56+ NK cells and CD19+ B cells. In both of the two patient samples tested, half of the tumor-associated macrophages were TIM-3+, with a small proportion co-expressing CD83. Women were more likely to have a lower proportion of immune cells, B cells, and NK cells. Female patients with a high proportion of immune cells had a higher proportion of macrophages. CONCLUSION We successfully optimized a protocol for generating single-cell suspensions with viable immune cells from meningioma tissues, revealing infiltrating antigen-presenting cells with an immunosuppressive phenotype, and lymphocytes. This short protocol allows advanced analyses of tumor-infiltrating cells using techniques such as single-cell RNA sequencing and flow cytometry, which require live, dissociated cells.
Collapse
Affiliation(s)
- Gillian Dao Nyesiga
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 205 06 Malmo, Sweden
- Department of Neurosurgery, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | | | - Josephine Budde
- Department of Neurosurgery, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Josefine Føns Lange
- Department of Neurosurgery, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Nadja Blum
- Department of Neurosurgery, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kotryna Dukstaite
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lars Ohlsson
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 205 06 Malmo, Sweden
| | - Tiit Mathiesen
- Department of Neurosurgery, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences SUND, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
12
|
Kadyrov FF, Koenig AL, Amrute JM, Dun H, Li W, Weinheimer CJ, Nigro JM, Kovacs A, Bredemeyer AL, Yang S, Das S, Penna VR, Parvathaneni A, Lai L, Hartmann N, Kopecky BJ, Kreisel D, Lavine KJ. Hypoxia sensing in resident cardiac macrophages regulates monocyte fate specification following ischemic heart injury. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1337-1355. [PMID: 39433910 DOI: 10.1038/s44161-024-00553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 09/20/2024] [Indexed: 10/23/2024]
Abstract
Myocardial infarction initiates cardiac remodeling and is central to heart failure pathogenesis. Following myocardial ischemia-reperfusion injury, monocytes enter the heart and differentiate into diverse subpopulations of macrophages. Here we show that deletion of Hif1α, a hypoxia response transcription factor, in resident cardiac macrophages led to increased remodeling and overrepresentation of macrophages expressing arginase 1 (Arg1). Arg1+ macrophages displayed an inflammatory gene signature and may represent an intermediate state of monocyte differentiation. Lineage tracing of Arg1+ macrophages revealed a monocyte differentiation trajectory consisting of multiple transcriptionally distinct states. We further showed that deletion of Hif1α in resident cardiac macrophages resulted in arrested progression through this trajectory and accumulation of an inflammatory intermediate state marked by persistent Arg1 expression. Depletion of the Arg1+ trajectory accelerated cardiac remodeling following ischemic injury. Our findings unveil distinct trajectories of monocyte differentiation and identify hypoxia sensing as an important determinant of monocyte differentiation following myocardial infarction.
Collapse
Affiliation(s)
- Farid F Kadyrov
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrew L Koenig
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Junedh M Amrute
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hao Dun
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Wenjun Li
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Carla J Weinheimer
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jessica M Nigro
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Attila Kovacs
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrea L Bredemeyer
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Steven Yang
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Shibali Das
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Vinay R Penna
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Alekhya Parvathaneni
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Lulu Lai
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Niklas Hartmann
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Benjamin J Kopecky
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kory J Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
13
|
Ohara D, Takeuchi Y, Hirota K. Type 17 immunity: novel insights into intestinal homeostasis and autoimmune pathogenesis driven by gut-primed T cells. Cell Mol Immunol 2024; 21:1183-1200. [PMID: 39379604 PMCID: PMC11528014 DOI: 10.1038/s41423-024-01218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
The IL-23 signaling pathway in both innate and adaptive immune cells is vital for orchestrating type 17 immunity, which is marked by the secretion of signature cytokines such as IL-17, IL-22, and GM-CSF. These proinflammatory mediators play indispensable roles in maintaining intestinal immune equilibrium and mucosal host defense; however, their involvement has also been implicated in the pathogenesis of chronic inflammatory disorders, such as inflammatory bowel diseases and autoimmunity. However, the implications of type 17 immunity across diverse inflammation models are complex. This review provides a comprehensive overview of the multifaceted roles of these cytokines in maintaining gut homeostasis and in perturbing gut barrier integrity, leading to acute and chronic inflammation in various models of gut infection and colitis. Additionally, this review focuses on type 17 immunity interconnecting multiple organs in autoimmune conditions, with a particular emphasis on the pathogenesis of autoimmune arthritis and neuroinflammation driven by T cells primed within the gut microenvironment.
Collapse
Affiliation(s)
- Daiya Ohara
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Takeuchi
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Keiji Hirota
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
- ImmunoSensation Cluster of Excellence, University of Bonn, Bonn, Germany.
| |
Collapse
|
14
|
Liu EG, Yin X, Siniscalco ER, Eisenbarth SC. Dendritic cells in food allergy, treatment, and tolerance. J Allergy Clin Immunol 2024; 154:511-522. [PMID: 38971539 PMCID: PMC11414995 DOI: 10.1016/j.jaci.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 07/08/2024]
Abstract
Food allergy is a growing problem with limited treatment options. It is important to understand the mechanisms of food tolerance and allergy to promote the development of directed therapies. Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) that prime adaptive immune responses, such as those involved in the development of oral tolerance and food allergies. The DC subsets in the gut and skin are defined by their surface markers and function. The default response to an ingested innocuous antigen is oral tolerance, which requires either gut DCs or a subset of newly identified RORγt+ APCs to induce the development of gut peripheral regulatory T cells. However, DCs in the skin, gut, and lung can also promote allergic sensitization when they are activated under certain inflammatory conditions, such as with alarmin release or gut dysbiosis. DCs also play a role in the responses to the various modalities of food immunotherapy. Langerhans cells in the skin appear to be necessary for the response to epicutaneous immunotherapy. It will be important to determine which real-world stimuli activate the DCs that prime allergic sensitization and discover methods to selectively initiate a tolerogenic program in APCs.
Collapse
Affiliation(s)
- Elise G Liu
- Section of Rheumatology, Allergy and Immunology, Department of Medicine, Yale University School of Medicine, New Haven, Conn
| | - Xiangyun Yin
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Emily R Siniscalco
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Stephanie C Eisenbarth
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
15
|
Rogers M, Kamath S, McManus D, Jones M, Gordon C, Navarro S. Schistosoma excretory/secretory products: an untapped library of tolerogenic immunotherapeutics against food allergy. Clin Transl Immunology 2024; 13:e70001. [PMID: 39221178 PMCID: PMC11359118 DOI: 10.1002/cti2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/18/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Food allergy (FA) is considered the 'second wave' of the allergy epidemic in developed countries after asthma and allergic rhinitis with a steadily growing burden of 40%. The absence of early childhood pathogen stimulation embodied by the hygiene hypothesis is one explanation, and in particular, the eradication of parasitic helminths could be at play. Infections with parasites Schistosoma spp. have been found to have a negative correlation with allergic diseases. Schistosomes induce regulatory responses to evade immune detection and ensure their long-term survival. This is achieved via excretory/secretory (E/S) products, consisting of proteins, lipids, metabolites, nucleic acids and extracellular vesicles, representing an untapped therapeutic avenue for the treatment of FA without the unpleasant side-effects and risks associated with live infection. Schistosome-derived immunotherapeutic development is in its infancy and novel discoveries are heavily technology dependent; thus, it is essential to better understand how newly identified molecules interact with host immune systems to ensure safety and successful translation. This review will outline the identified Schistosoma-derived E/S products at all life cycle stages and discuss known mechanisms of action and their ability to suppress FA.
Collapse
Affiliation(s)
- Madeleine Rogers
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Sandip Kamath
- Institute of Pathophysiology and Allergy ResearchMedical University of ViennaViennaAustria
- Australian Institute of Tropical Health and MedicineJames Cook UniversityTownsvilleQLDAustralia
| | - Donald McManus
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Malcolm Jones
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
- Faculty of Science, School of Veterinary ScienceUniversity of QueenslandGattonQLDAustralia
| | - Catherine Gordon
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Severine Navarro
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
- Centre for Childhood Nutrition Research, Faculty of HealthQueensland University of TechnologyBrisbaneQLDAustralia
| |
Collapse
|
16
|
Kulkarni NA, Nanjappa SG. Advances in Dendritic-Cell-Based Vaccines against Respiratory Fungal Infections. Vaccines (Basel) 2024; 12:981. [PMID: 39340013 PMCID: PMC11435842 DOI: 10.3390/vaccines12090981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Ever since the discovery of dendritic cells by Ralph Steinman and Zanvil Cohn in 1973, it is increasingly evident that dendritic cells are integral for adaptive immune responses, and there is an undeniable focus on them for vaccines development. Fungal infections, often thought to be innocuous, are becoming significant threats due to an increased immunocompromised or immune-suppressed population and climate change. Further, the recent COVID-19 pandemic unraveled the wrath of fungal infections and devastating outcomes. Invasive fungal infections cause significant case fatality rates ranging from 20% to 90%. Regrettably, no licensed fungal vaccines exist, and there is an urgent need for preventive and therapeutic purposes. In this review, we discuss the ontogeny, subsets, tissue distribution, and functions of lung dendritic cells. In the latter part, we summarize and discuss the studies on the DC-based vaccines against pulmonary fungal infections. Finally, we highlight some emerging potential avenues that can be incorporated for DC-based vaccines against fungal infections.
Collapse
Affiliation(s)
| | - Som G. Nanjappa
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
17
|
Medina-Rodríguez EM, Martínez-Raga J, Sanz Y. Intestinal Barrier, Immunity and Microbiome: Partners in the Depression Crime. Pharmacol Rev 2024; 76:956-969. [PMID: 39084934 DOI: 10.1124/pharmrev.124.001202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 08/02/2024] Open
Abstract
Depression is a highly prevalent disorder and a leading cause of disability worldwide. It has a major impact on the affected individual and on society as a whole. Regrettably, current available treatments for this condition are insufficient in many patients. In recent years, the gut microbiome has emerged as a promising alternative target for treating and preventing depressive disorders. However, the microbes that form this ecosystem do not act alone but are part of a complicated network connecting the gut and the brain that influences our mood. Host cells that are in intimate contact with gut microbes, such as the epithelial cells forming the gut barrier and the immune cells in their vicinity, play a key role in the process. These cells continuously shape immune responses to maintain healthy communication between gut microbes and the host. In this article, we review how the interplay among epithelial cells, the immune system, and gut microbes mediates gut-brain communication to influence mood. We also discuss how advances in our knowledge of the mechanisms underlying the gut-brain axis could contribute to addressing depression. SIGNIFICANCE STATEMENT: This review does not aim to systematically describe intestinal microbes that might be beneficial or detrimental for depression. We have adopted a novel point of view by focusing on potential mechanisms underlying the crosstalk between gut microbes and their intestinal environment to control mood. These pathways could be targeted by well defined and individually tailored dietary interventions, microbes, or microbial metabolites to ameliorate depression and decrease its important social and economic impact.
Collapse
Affiliation(s)
- Eva M Medina-Rodríguez
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, Valencia, Spain (E.M.M.-R., J.M.-R.); Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain (E.M.M.-R., Y.S.); and University of Valencia, Valencia, Spain (J.M.-R.)
| | - José Martínez-Raga
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, Valencia, Spain (E.M.M.-R., J.M.-R.); Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain (E.M.M.-R., Y.S.); and University of Valencia, Valencia, Spain (J.M.-R.)
| | - Yolanda Sanz
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, Valencia, Spain (E.M.M.-R., J.M.-R.); Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain (E.M.M.-R., Y.S.); and University of Valencia, Valencia, Spain (J.M.-R.)
| |
Collapse
|
18
|
Ismahil MA, Zhou G, Gao M, Bansal SS, Patel B, Limdi N, Xie M, Antipenko S, Rokosh G, Hamid T, Prabhu SD. Splenic CD169 + Tim4 + Marginal Metallophilic Macrophages Are Essential for Wound Healing After Myocardial Infarction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.09.24311769. [PMID: 39211861 PMCID: PMC11361232 DOI: 10.1101/2024.08.09.24311769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Fidelity of wound healing after myocardial infarction (MI) is an important determinant of subsequent adverse cardiac remodeling and failure. Macrophages derived from infiltrating Ly6C hi blood monocytes are a key component of this healing response; however, the importance of other macrophage populations is unclear. Here, using a variety of in vivo murine models and orthogonal approaches, including surgical myocardial infarction, splenectomy, parabiosis, cell adoptive transfer, lineage tracing and cell tracking, RNA sequencing, and functional characterization, we establish in mice an essential role for splenic CD169 + Tim4 + marginal metallophilic macrophages (MMMs) in post-MI wound healing. Splenic CD169 + Tim4 + MMMs circulate in blood as Ly6C low cells expressing macrophage markers and help populate CD169 + Tim4 + CCR2 - LYVE1 low macrophages in the naïve heart. After acute MI, splenic MMMs augment phagocytosis, CCR3 and CCR4 expression, and robustly mobilize to the heart, resulting in marked expansion of cardiac CD169 + Tim4 + LyVE1 low macrophages with an immunomodulatory and pro-resolving gene signature. These macrophages are obligatory for apoptotic neutrophil clearance, suppression of inflammation, and induction of a reparative macrophage phenotype in the infarcted heart. Splenic MMMs are both necessary and sufficient for post-MI wound healing, and limit late pathological remodeling. Liver X receptor-α agonist-induced expansion of the splenic marginal zone and MMMs during acute MI alleviates inflammation and improves short- and long-term cardiac remodeling. Finally, humans with acute ST-elevation MI also exhibit expansion of circulating CD169 + Tim4 + macrophages. We conclude that splenic CD169 + Tim4 + MMMs are required for pro-resolving and reparative responses after MI and can be manipulated for therapeutic benefit to limit long-term heart failure. CLINICAL PERSPECTIVE What is new?: We establish for the first time that metallophilic marginal macrophages (MMMs) from the spleen, expressing the markers CD169 and Tim4, circulate in blood and traffic to the heart to help maintain the CD169 + Tim4 + CCR2 - LYVE1 low macrophage population in the heart. After acute myocardial infarction, splenic MMMs augment cardiac trafficking in response to chemotactic signals, resulting in expansion of CD169 + Tim4 + macrophages in the heart that play an essential role in post-MI efferocytosis, wound healing and repair while limiting longer term adverse cardiac remodeling. Analogous to mice, humans also exhibit circulating CD169 + Tim4 + macrophages in the blood that expand after acute ST segment elevation MI. What are the clinical implications?: This study highlights the importance of the cardiosplenic axis in acute MI, and the splenic marginal zone, in determining the course and outcome of post-MI LV remodeling.Pharmacological expansion of splenic marginal zone macrophages alleviated post-MI adverse LV remodeling and inflammation, suggesting that splenic modulation is a potential translational therapeutic approach for limiting post-MI inflammation and improving heart repair.
Collapse
|
19
|
Lu H, Suo Z, Lin J, Cong Y, Liu Z. Monocyte-macrophages modulate intestinal homeostasis in inflammatory bowel disease. Biomark Res 2024; 12:76. [PMID: 39095853 PMCID: PMC11295551 DOI: 10.1186/s40364-024-00612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Monocytes and macrophages play an indispensable role in maintaining intestinal homeostasis and modulating mucosal immune responses in inflammatory bowel disease (IBD). Although numerous studies have described macrophage properties in IBD, the underlying mechanisms whereby the monocyte-macrophage lineage modulates intestinal homeostasis during gut inflammation remain elusive. MAIN BODY In this review, we decipher the cellular and molecular mechanisms governing the generation of intestinal mucosal macrophages and fill the knowledge gap in understanding the origin, maturation, classification, and functions of mucosal macrophages in intestinal niches, particularly the phagocytosis and bactericidal effects involved in the elimination of cell debris and pathogens. We delineate macrophage-mediated immunoregulation in the context of producing pro-inflammatory and anti-inflammatory cytokines, chemokines, toxic mediators, and macrophage extracellular traps (METs), and participating in the modulation of epithelial cell proliferation, angiogenesis, and fibrosis in the intestine and its accessory tissues. Moreover, we emphasize that the maturation of intestinal macrophages is arrested at immature stage during IBD, and the deficiency of MCPIP1 involves in the process via ATF3-AP1S2 signature. In addition, we confirmed the origin potential of IL-1B+ macrophages and defined C1QB+ macrophages as mature macrophages. The interaction crosstalk between the intestine and the mesentery has been described in this review, and the expression of mesentery-derived SAA2 is upregulated during IBD, which contributes to immunoregulation of macrophage. Moreover, we also highlight IBD-related susceptibility genes (e.g., RUNX3, IL21R, GTF2I, and LILRB3) associated with the maturation and functions of macrophage, which provide promising therapeutic opportunities for treating human IBD. CONCLUSION In summary, this review provides a comprehensive, comprehensive, in-depth and novel description of the characteristics and functions of macrophages in IBD, and highlights the important role of macrophages in the molecular and cellular process during IBD.
Collapse
Affiliation(s)
- Huiying Lu
- Department of Gastroenterology, Huaihe Hospital of Henan University, Henan Province, Kaifeng, 475000, China
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China
| | - Zhimin Suo
- Department of Gastroenterology, Huaihe Hospital of Henan University, Henan Province, Kaifeng, 475000, China
| | - Jian Lin
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China
| | - Yingzi Cong
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Center for Human Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
20
|
Donlan AN, Leslie JL, Simpson ME, Petri WA, Allen JE, Petri WA. IL-13 protects from Clostridioides difficile colitis. Anaerobe 2024; 88:102860. [PMID: 38701912 PMCID: PMC11347079 DOI: 10.1016/j.anaerobe.2024.102860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVES Clostridioides difficile infection (CDI) is the leading hospital-acquired infection in North America. We have previously discovered that antibiotic disruption of the gut microbiota decreases intestinal IL-33 and IL-25 and increases susceptibility to CDI. We further found that IL-33 promotes protection through type 2 Innate Lymphoid Cells (ILC2s), which produce IL-13. However, the contribution of IL-13 to disease has never been explored. METHODS We used a validated model of CDI in mice, in which we neutralized via blocking antibodies, or administered recombinant protein, IL-13 to assess the role of this cytokine during infection using weight and clinical scores. Fluorescent activated cell sorting (FACS) was used to characterize myeloid cell population changes in response to IL-13 manipulation. RESULTS We found that administration of IL-13 protected, and anti-IL-13 exacerbated CDI. Additionally, we observed alterations to the monocyte/macrophage cells following neutralization of IL-13 as early as day three post infection. We also observed elevated accumulation of myeloid cells by day four post-infection following IL-13 neutralization. Neutralization of the decoy receptor, IL-13Rα2, resulted in protection from disease, likely through increased available endogenous IL-13. CONCLUSIONS Our data highlight the protective role of IL-13 in protecting from more severe CDI and the association of poor responses with a dysregulated monocyte-macrophage compartment. These results increase our understanding of type 2 immunity in CDI and may have implications for treating disease in patients.
Collapse
Affiliation(s)
- A N Donlan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, 98109, USA; Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, VA, 22908, USA
| | - J L Leslie
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, VA, 22908, USA
| | - M E Simpson
- Department of Pathology, University of Virginia, Charlottesville, VA, 22908, USA
| | - W A Petri
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, VA, 22908, USA.
| | - J E Allen
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9PL, United Kingdom
| | - W A Petri
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, VA, 22908, USA; Department of Pathology, University of Virginia, Charlottesville, VA, 22908, USA; Department of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|
21
|
Liao X, Liu J, Guo X, Meng R, Zhang W, Zhou J, Xie X, Zhou H. Origin and Function of Monocytes in Inflammatory Bowel Disease. J Inflamm Res 2024; 17:2897-2914. [PMID: 38764499 PMCID: PMC11100499 DOI: 10.2147/jir.s450801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/23/2024] [Indexed: 05/21/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a chronic disease resulting from the interaction of various factors such as social elements, autoimmunity, genetics, and gut microbiota. Alarmingly, recent epidemiological data points to a surging incidence of IBD, underscoring an urgent imperative: to delineate the intricate mechanisms driving its onset. Such insights are paramount, not only for enhancing our comprehension of IBD pathogenesis but also for refining diagnostic and therapeutic paradigms. Monocytes, significant immune cells derived from the bone marrow, serve as precursors to macrophages (Mφs) and dendritic cells (DCs) in the inflammatory response of IBD. Within the IBD milieu, their role is twofold. On the one hand, monocytes are instrumental in precipitating the disease's progression. On the other hand, their differentiated offsprings, namely moMφs and moDCs, are conspicuously mobilized at inflammatory foci, manifesting either pro-inflammatory or anti-inflammatory actions. The phenotypic spectrum of these effector cells, intriguingly, is modulated by variables such as host genetics and the subtleties of the prevailing inflammatory microenvironment. Notwithstanding their significance, a palpable dearth exists in the literature concerning the roles and mechanisms of monocytes in IBD pathogenesis. This review endeavors to bridge this knowledge gap. It offers an exhaustive exploration of monocytes' origin, their developmental trajectory, and their differentiation dynamics during IBD. Furthermore, it delves into the functional ramifications of monocytes and their differentiated progenies throughout IBD's course. Through this lens, we aspire to furnish novel perspectives into IBD's etiology and potential therapeutic strategies.
Collapse
Affiliation(s)
- Xiping Liao
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Ji Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, People’s Republic of China
| | - Xiaolong Guo
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Ruiping Meng
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Wei Zhang
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Jianyun Zhou
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Xia Xie
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Hongli Zhou
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
22
|
Sommer K, Garibagaoglu H, Paap EM, Wiendl M, Müller TM, Atreya I, Krönke G, Neurath MF, Zundler S. Discrepant Phenotyping of Monocytes Based on CX3CR1 and CCR2 Using Fluorescent Reporters and Antibodies. Cells 2024; 13:819. [PMID: 38786041 PMCID: PMC11119841 DOI: 10.3390/cells13100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Monocytes, as well as downstream macrophages and dendritic cells, are essential players in the immune system, fulfilling key roles in homeostasis as well as in inflammatory conditions. Conventionally, driven by studies on reporter models, mouse monocytes are categorized into a classical and a non-classical subset based on their inversely correlated surface expression of Ly6C/CCR2 and CX3CR1. Here, we aimed to challenge this concept by antibody staining and reporter mouse models. Therefore, we took advantage of Cx3cr1GFP and Ccr2RFP reporter mice, in which the respective gene was replaced by a fluorescent reporter protein gene. We analyzed the expression of CX3CR1 and CCR2 by flow cytometry using several validated fluorochrome-coupled antibodies and compared them with the reporter gene signal in these reporter mouse strains. Although we were able to validate the specificity of the fluorochrome-coupled flow cytometry antibodies, mouse Ly6Chigh classical and Ly6Clow non-classical monocytes showed no differences in CX3CR1 expression levels in the peripheral blood and spleen when stained with these antibodies. On the contrary, in Cx3cr1GFP reporter mice, we were able to reproduce the inverse correlation of the CX3CR1 reporter gene signal and Ly6C surface expression. Furthermore, differential CCR2 surface expression correlating with the expression of Ly6C was observed by antibody staining, but not in Ccr2RFP reporter mice. In conclusion, our data suggest that phenotyping strategies for mouse monocyte subsets should be carefully selected. In accordance with the literature, the suitability of CX3CR1 antibody staining is limited, whereas for CCR2, caution should be applied when using reporter mice.
Collapse
Affiliation(s)
- Katrin Sommer
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
| | - Hilal Garibagaoglu
- Department of Medicine 3, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Eva-Maria Paap
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
| | - Maximilian Wiendl
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
| | - Tanja M. Müller
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, 91054 Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, 91054 Erlangen, Germany
| | - Gerhard Krönke
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
- Medical Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Markus F. Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, 91054 Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.S.); (E.-M.P.); (T.M.M.); (I.A.); (G.K.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
23
|
Jennings KC, Johnson KE, Hayward MA, Kristich CJ, Salzman NH. CCR2-dependent CX3CR1+ colonic macrophages promote Enterococcus faecalis dissemination. Infect Immun 2024; 92:e0000624. [PMID: 38629806 PMCID: PMC11075457 DOI: 10.1128/iai.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/29/2024] [Indexed: 05/08/2024] Open
Abstract
Enterococci are common commensal bacteria that colonize the gastrointestinal tracts of most mammals, including humans. Importantly, these bacteria are one of the leading causes of nosocomial infections. This study examined the role of colonic macrophages in facilitating Enterococcus faecalis infections in mice. We determined that depletion of colonic phagocytes resulted in the reduction of E. faecalis dissemination to the gut-draining mesenteric lymph nodes. Furthermore, we established that trafficking of monocyte-derived CX3CR1-expressing macrophages contributed to E. faecalis dissemination in a manner that was not reliant on CCR7, the conventional receptor involved in lymphatic migration. Finally, we showed that E. faecalis mutants with impaired intracellular survival exhibited reduced dissemination, suggesting that E. faecalis can exploit host immune cell migration to disseminate systemically and cause disease. Our findings indicate that modulation of macrophage trafficking in the context of antibiotic therapy could serve as a novel approach for preventing or treating opportunistic infections by disseminating enteric pathobionts like E. faecalis.
Collapse
Affiliation(s)
- Kevin C. Jennings
- Department of Pediatrics, Division of Gastroenterology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kaitlin E. Johnson
- Department of Pediatrics, Division of Gastroenterology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael A. Hayward
- Department of Pediatrics, Division of Gastroenterology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher J. Kristich
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nita H. Salzman
- Department of Pediatrics, Division of Gastroenterology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
24
|
Ignacio A, Czyz S, McCoy KD. Early life microbiome influences on development of the mucosal innate immune system. Semin Immunol 2024; 73:101885. [PMID: 38788491 DOI: 10.1016/j.smim.2024.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
The gut microbiota is well known to possess immunomodulatory capacities, influencing a multitude of cellular signalling pathways to maintain host homeostasis. Although the formation of the immune system initiates before birth in a sterile environment, an emerging body of literature indicates that the neonatal immune system is influenced by a first wave of external stimuli that includes signals from the maternal microbiota. A second wave of stimulus begins after birth and must be tightly regulated during the neonatal period when colonization of the host occurs concomitantly with the maturation of the immune system, requiring a fine adjustment between establishing tolerance towards the commensal microbiota and preserving inflammatory responses against pathogenic invaders. Besides integrating cues from commensal microbes, the neonatal immune system must also regulate responses triggered by other environmental signals, such as dietary antigens, which become more complex with the introduction of solid food during the weaning period. This "window of opportunity" in early life is thought to be crucial for the proper development of the immune system, setting the tone of subsequent immune responses in adulthood and modulating the risk of developing chronic and metabolic inflammatory diseases. Here we review the importance of host-microbiota interactions for the development and maturation of the immune system, particularly in the early-life period, highlighting the known mechanisms involved in such communication. This discussion is focused on recent data demonstrating microbiota-mediated education of innate immune cells and its role in the development of lymphoid tissues.
Collapse
Affiliation(s)
- Aline Ignacio
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sonia Czyz
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
25
|
Sharma G, Sharma A, Kim I, Cha DG, Kim S, Park ES, Noh JG, Lee J, Ku JH, Choi YH, Kong J, Lee H, Ko H, Lee J, Notaro A, Hong SH, Rhee JH, Kim SG, De Castro C, Molinaro A, Shin K, Kim S, Kim JK, Rudra D, Im SH. A dietary commensal microbe enhances antitumor immunity by activating tumor macrophages to sequester iron. Nat Immunol 2024; 25:790-801. [PMID: 38664585 DOI: 10.1038/s41590-024-01816-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/13/2024] [Indexed: 05/04/2024]
Abstract
Innate immune cells generate a multifaceted antitumor immune response, including the conservation of essential nutrients such as iron. These cells can be modulated by commensal bacteria; however, identifying and understanding how this occurs is a challenge. Here we show that the food commensal Lactiplantibacillus plantarum IMB19 augments antitumor immunity in syngeneic and xenograft mouse tumor models. Its capsular heteropolysaccharide is the major effector molecule, functioning as a ligand for TLR2. In a two-pronged manner, it skews tumor-associated macrophages to a classically active phenotype, leading to generation of a sustained CD8+ T cell response, and triggers macrophage 'nutritional immunity' to deploy the high-affinity iron transporter lipocalin-2 for capturing and sequestering iron in the tumor microenvironment. This process induces a cycle of tumor cell death, epitope expansion and subsequent tumor clearance. Together these data indicate that food commensals might be identified and developed into 'oncobiotics' for a multi-layered approach to cancer therapy.
Collapse
Affiliation(s)
- Garima Sharma
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- ImmunoBiome, Bio Open Innovation Center, Pohang, Republic of Korea
| | - Amit Sharma
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Innovation Research Center for Bio-future Technology (B-IRC), Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Inhae Kim
- ImmunoBiome, Bio Open Innovation Center, Pohang, Republic of Korea
| | - Dong Gon Cha
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Somi Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Eun Seo Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jae Gyun Noh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Juhee Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Ja Hyeon Ku
- Department of Urology, College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - JungHo Kong
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Haena Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Haeun Ko
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Juhun Lee
- ImmunoBiome, Bio Open Innovation Center, Pohang, Republic of Korea
| | - Anna Notaro
- Department of Chemical Sciences, University of Napoli Federico II Complesso Universitario Monte Santangelo, Via Cintia 4, I-80126, Naples, Italy
| | - Seol Hee Hong
- Clinical Vaccine R&D Center and Combinatorial Tumor Immunotherapy MRC, Chonnam National University, Hwasun-gun, Republic of Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center and Combinatorial Tumor Immunotherapy MRC, Chonnam National University, Hwasun-gun, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, Seoul, Republic of Korea
| | - Cristina De Castro
- Department of Chemical Sciences, University of Napoli Federico II Complesso Universitario Monte Santangelo, Via Cintia 4, I-80126, Naples, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II Complesso Universitario Monte Santangelo, Via Cintia 4, I-80126, Naples, Italy
| | - Kunyoo Shin
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Dipayan Rudra
- ImmunoBiome, Bio Open Innovation Center, Pohang, Republic of Korea.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- ImmunoBiome, Bio Open Innovation Center, Pohang, Republic of Korea.
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Zhang C, Zhang Y, Zhuang R, Yang K, Chen L, Jin B, Ma Y, Zhang Y, Tang K. Alterations in CX3CL1 Levels and Its Role in Viral Pathogenesis. Int J Mol Sci 2024; 25:4451. [PMID: 38674036 PMCID: PMC11050295 DOI: 10.3390/ijms25084451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
CX3CL1, also named fractalkine or neurotactin, is the only known member of the CX3C chemokine family that can chemoattract several immune cells. CX3CL1 exists in both membrane-anchored and soluble forms, with each mediating distinct biological activities. CX3CL1 signals are transmitted through its unique receptor, CX3CR1, primarily expressed in the microglia of the central nervous system (CNS). In the CNS, CX3CL1 acts as a regulator of microglia activation in response to brain disorders or inflammation. Recently, there has been a growing interest in the role of CX3CL1 in regulating cell adhesion, chemotaxis, and host immune response in viral infection. Here, we provide a comprehensive review of the changes and function of CX3CL1 in various viral infections, such as human immunodeficiency virus (HIV), SARS-CoV-2, influenza virus, and cytomegalovirus (CMV) infection, to highlight the emerging roles of CX3CL1 in viral infection and associated diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (C.Z.); (Y.Z.); (R.Z.); (K.Y.); (L.C.); (B.J.); (Y.M.)
| | - Kang Tang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (C.Z.); (Y.Z.); (R.Z.); (K.Y.); (L.C.); (B.J.); (Y.M.)
| |
Collapse
|
27
|
Wang Y, Li Z, Chen W, Wang J, Huang Z, Yu XJ, Zhang YJ, Zheng L, Xu J. C/EBPα mediates the maturation and antitumor functions of macrophages in human hepatocellular carcinoma. Cancer Lett 2024; 585:216638. [PMID: 38266805 DOI: 10.1016/j.canlet.2024.216638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/29/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Recent studies have suggested that therapeutic upregulation of CCAAT/enhancer binding protein α (C/EBPα) prevents hepatocellular carcinoma (HCC) progression. However, the mechanisms underlying this outcome are not fully understood. In this study, we investigated the expression and functional roles of C/EBPα in human HCC, with a focus on monocytes/macrophages (Mφs). Paraffin-embedded tissues were used to visualize C/EBPα expression and analyze the prognostic value of C/EBPα+ monocytes/Mφs in HCC patients. The underlying regulatory mechanisms were examined using human monocyte-derived Mφs. The results showed that the expression of C/EBPα on monocytes/Mφs was significantly decreased in intra-tumor tissues compared to the corresponding peri-tumor tissues. C/EBPα+ monocytes/Mφs displayed well-differentiation and antitumor capacities, and the accumulation of these cells in tissue was associated with antitumor immune responses and predicted longer overall survival (OS) of HCC patients. Mechanistic studies demonstrated that C/EBPα was required for Mφ maturation and HLA-DR, CD169 and CD86 expression, which initiates antitumor cytotoxic T-cell responses; however, these effects were inhibited by monocyte autocrine IL-6- and IL-1β-induced suppression of mTOR1 signaling. Reprogramming Mφs via the upregulation of C/EBPα may provide a novel strategy for cancer immunotherapy in patients with HCC.
Collapse
Affiliation(s)
- Yongchun Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhixiong Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Weibai Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Junfeng Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhijie Huang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xing-Juan Yu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yao-Jun Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Limin Zheng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Jing Xu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
28
|
Selvakumar B, Sekar P, Samsudin AR. Intestinal macrophages in pathogenesis and treatment of gut leakage: current strategies and future perspectives. J Leukoc Biol 2024; 115:607-619. [PMID: 38198217 DOI: 10.1093/jleuko/qiad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/13/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Macrophages play key roles in tissue homeostasis, defense, disease, and repair. Macrophages are highly plastic and exhibit distinct functional phenotypes based on micro-environmental stimuli. In spite of several advancements in understanding macrophage biology and their different functional phenotypes in various physiological and pathological conditions, currently available treatment strategies targeting macrophages are limited. Macrophages' high plasticity and diverse functional roles-including tissue injury and wound healing mechanisms-mark them as potential targets to mine for efficient therapeutics to treat diseases. Despite mounting evidence on association of gut leakage with several extraintestinal diseases, there is no targeted standard therapy to treat gut leakage. Therefore, there is an urgent need to develop therapeutic strategies to treat this condition. Macrophages are the cells that play the largest role in interacting with the gut microbiota in the intestinal compartment and exert their intended functions in injury and repair mechanisms. In this review, we have summarized the current knowledge on the origins and phenotypes of macrophages. The specific role of macrophages in intestinal barrier function, their role in tissue repair mechanisms, and their association with gut microbiota are discussed. In addition, currently available therapies and the putative tissue repair mediators of macrophages for treating microbiota dysbiosis induced gut leakage are also discussed. The overall aim of this review is to convey the intense need to screen for microbiota induced macrophage-released prorepair mediators, which could lead to the identification of potential candidates that could be developed for treating the leaky gut and associated diseases.
Collapse
Affiliation(s)
- Balachandar Selvakumar
- Department of Microbiota, Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - Priyadharshini Sekar
- Department of Microbiota, Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - A Rani Samsudin
- Department of Microbiota, Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
29
|
Lum FM, Chan YH, Teo TH, Becht E, Amrun SN, Teng KW, Hartimath SV, Yeo NK, Yee WX, Ang N, Torres-Ruesta AM, Fong SW, Goggi JL, Newell EW, Renia L, Carissimo G, Ng LF. Crosstalk between CD64 +MHCII + macrophages and CD4 + T cells drives joint pathology during chikungunya. EMBO Mol Med 2024; 16:641-663. [PMID: 38332201 PMCID: PMC10940729 DOI: 10.1038/s44321-024-00028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Communications between immune cells are essential to ensure appropriate coordination of their activities. Here, we observed the infiltration of activated macrophages into the joint-footpads of chikungunya virus (CHIKV)-infected animals. Large numbers of CD64+MHCII+ and CD64+MHCII- macrophages were present in the joint-footpad, preceded by the recruitment of their CD11b+Ly6C+ inflammatory monocyte precursors. Recruitment and differentiation of these myeloid subsets were dependent on CD4+ T cells and GM-CSF. Transcriptomic and gene ontology analyses of CD64+MHCII+ and CD64+MHCII- macrophages revealed 89 differentially expressed genes, including genes involved in T cell proliferation and differentiation pathways. Depletion of phagocytes, including CD64+MHCII+ macrophages, from CHIKV-infected mice reduced disease pathology, demonstrating that these cells play a pro-inflammatory role in CHIKV infection. Together, these results highlight the synergistic dynamics of immune cell crosstalk in driving CHIKV immunopathogenesis. This study provides new insights in the disease mechanism and offers opportunities for development of novel anti-CHIKV therapeutics.
Collapse
Affiliation(s)
- Fok-Moon Lum
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore.
| | - Yi-Hao Chan
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Teck-Hui Teo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Etienne Becht
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Siti Naqiah Amrun
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Karen Ww Teng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Siddesh V Hartimath
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Nicholas Kw Yeo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Wearn-Xin Yee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Nicholas Ang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Anthony M Torres-Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Siew-Wai Fong
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Julian L Goggi
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Evan W Newell
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Laurent Renia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Guillaume Carissimo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
| | - Lisa Fp Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, L69 7BE, UK.
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZX, UK.
| |
Collapse
|
30
|
Chew C, Brand OJ, Yamamura T, Lawless C, Morais MRPT, Zeef L, Lin IH, Howell G, Lui S, Lausecker F, Jagger C, Shaw TN, Krishnan S, McClure FA, Bridgeman H, Wemyss K, Konkel JE, Hussell T, Lennon R. Kidney resident macrophages have distinct subsets and multifunctional roles. Matrix Biol 2024; 127:23-37. [PMID: 38331051 DOI: 10.1016/j.matbio.2024.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND The kidney contains distinct glomerular and tubulointerstitial compartments with diverse cell types and extracellular matrix components. The role of immune cells in glomerular environment is crucial for dampening inflammation and maintaining homeostasis. Macrophages are innate immune cells that are influenced by their tissue microenvironment. However, the multifunctional role of kidney macrophages remains unclear. METHODS Flow and imaging cytometry were used to determine the relative expression of CD81 and CX3CR1 (C-X3-C motif chemokine receptor 1) in kidney macrophages. Monocyte replenishment was assessed in Cx3cr1CreER X R26-yfp-reporter and shielded chimeric mice. Bulk RNA-sequencing and mass spectrometry-based proteomics were performed on isolated kidney macrophages from wild type and Col4a5-/- (Alport) mice. RNAscope was used to visualize transcripts and macrophage purity in bulk RNA assessed by CIBERSORTx analyses. RESULTS In wild type mice we identified three distinct kidney macrophage subsets using CD81 and CX3CR1 and these subsets showed dependence on monocyte replenishment. In addition to their immune function, bulk RNA-sequencing of macrophages showed enrichment of biological processes associated with extracellular matrix. Proteomics identified collagen IV and laminins in kidney macrophages from wild type mice whilst other extracellular matrix proteins including cathepsins, ANXA2 and LAMP2 were enriched in Col4a5-/- (Alport) mice. A subset of kidney macrophages co-expressed matrix and macrophage transcripts. CONCLUSIONS We identified CD81 and CX3CR1 positive kidney macrophage subsets with distinct dependence for monocyte replenishment. Multiomic analysis demonstrated that these cells have diverse functions that underscore the importance of macrophages in kidney health and disease.
Collapse
Affiliation(s)
- Christine Chew
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom; Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Oliver J Brand
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Tomohiko Yamamura
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Craig Lawless
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Mychel Raony Paiva Teixeira Morais
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Leo Zeef
- Bioinformatics Core Facility, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - I-Hsuan Lin
- Bioinformatics Core Facility, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Gareth Howell
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Sylvia Lui
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Christopher Jagger
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Tovah N Shaw
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh EH9 3FL, United Kingdom
| | - Siddharth Krishnan
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Flora A McClure
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Hayley Bridgeman
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Kelly Wemyss
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Joanne E Konkel
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Tracy Hussell
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom.
| |
Collapse
|
31
|
Lund H, Hunt MA, Kurtović Z, Sandor K, Kägy PB, Fereydouni N, Julien A, Göritz C, Vazquez-Liebanas E, Andaloussi Mäe M, Jurczak A, Han J, Zhu K, Harris RA, Lampa J, Graversen JH, Etzerodt A, Haglund L, Yaksh TL, Svensson CI. CD163+ macrophages monitor enhanced permeability at the blood-dorsal root ganglion barrier. J Exp Med 2024; 221:e20230675. [PMID: 38117255 PMCID: PMC10733632 DOI: 10.1084/jem.20230675] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/04/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023] Open
Abstract
In dorsal root ganglia (DRG), macrophages reside close to sensory neurons and have largely been explored in the context of pain, nerve injury, and repair. However, we discovered that most DRG macrophages interact with and monitor the vasculature by sampling macromolecules from the blood. Characterization of the DRG vasculature revealed a specialized endothelial bed that transformed in molecular, structural, and permeability properties along the arteriovenous axis and was covered by macrophage-interacting pericytes and fibroblasts. Macrophage phagocytosis spatially aligned with peak endothelial permeability, a process regulated by enhanced caveolar transcytosis in endothelial cells. Profiling the DRG immune landscape revealed two subsets of perivascular macrophages with distinct transcriptome, turnover, and function. CD163+ macrophages self-maintained locally, specifically participated in vasculature monitoring, displayed distinct responses during peripheral inflammation, and were conserved in mouse and man. Our work provides a molecular explanation for the permeability of the blood-DRG barrier and identifies an unappreciated role of macrophages as integral components of the DRG-neurovascular unit.
Collapse
Affiliation(s)
- Harald Lund
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matthew A. Hunt
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zerina Kurtović
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paul B. Kägy
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Noah Fereydouni
- Department of Medicine, Rheumatology Unit, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anais Julien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christian Göritz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Vazquez-Liebanas
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Maarja Andaloussi Mäe
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alexandra Jurczak
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jinming Han
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Keying Zhu
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Robert A. Harris
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jon Lampa
- Department of Medicine, Rheumatology Unit, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lisbet Haglund
- Division of Orthopaedic Surgery, Department of Surgery, McGill University, Montreal, Canada
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, CA, USA
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Wohnhaas CT, Baßler K, Watson CK, Shen Y, Leparc GG, Tilp C, Heinemann F, Kind D, Stierstorfer B, Delić D, Brunner T, Gantner F, Schultze JL, Viollet C, Baum P. Monocyte-derived alveolar macrophages are key drivers of smoke-induced lung inflammation and tissue remodeling. Front Immunol 2024; 15:1325090. [PMID: 38348034 PMCID: PMC10859862 DOI: 10.3389/fimmu.2024.1325090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Smoking is a leading risk factor of chronic obstructive pulmonary disease (COPD), that is characterized by chronic lung inflammation, tissue remodeling and emphysema. Although inflammation is critical to COPD pathogenesis, the cellular and molecular basis underlying smoking-induced lung inflammation and pathology remains unclear. Using murine smoke models and single-cell RNA-sequencing, we show that smoking establishes a self-amplifying inflammatory loop characterized by an influx of molecularly heterogeneous neutrophil subsets and excessive recruitment of monocyte-derived alveolar macrophages (MoAM). In contrast to tissue-resident AM, MoAM are absent in homeostasis and characterized by a pro-inflammatory gene signature. Moreover, MoAM represent 46% of AM in emphysematous mice and express markers causally linked to emphysema. We also demonstrate the presence of pro-inflammatory and tissue remodeling associated MoAM orthologs in humans that are significantly increased in emphysematous COPD patients. Inhibition of the IRAK4 kinase depletes a rare inflammatory neutrophil subset, diminishes MoAM recruitment, and alleviates inflammation in the lung of cigarette smoke-exposed mice. This study extends our understanding of the molecular signaling circuits and cellular dynamics in smoking-induced lung inflammation and pathology, highlights the functional consequence of monocyte and neutrophil recruitment, identifies MoAM as key drivers of the inflammatory process, and supports their contribution to pathological tissue remodeling.
Collapse
Affiliation(s)
- Christian T. Wohnhaas
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Kevin Baßler
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Carolin K. Watson
- Immunology & Respiratory Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Yang Shen
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Germán G. Leparc
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Cornelia Tilp
- Immunology & Respiratory Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Fabian Heinemann
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David Kind
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Birgit Stierstorfer
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Denis Delić
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas Brunner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Florian Gantner
- Department of Biology, University of Konstanz, Konstanz, Germany
- Translational Medicine & Clinical Pharmacology, C. H. Boehringer Sohn AG & Co. KG, Biberach, Germany
| | - Joachim L. Schultze
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases (DZNE) and University of Bonn, Bonn, Germany
| | - Coralie Viollet
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Patrick Baum
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
33
|
Abstract
The intestinal macrophage pool represents the largest population of macrophages present within the body. Nevertheless, flow cytometry analysis of intestinal macrophages remains challenging due to historical lack of consensus on surface markers, variations in sample preparation, and a certain capriciousness of the isolation procedure itself. Furthermore, recent studies have uncovered a hitherto unknown heterogeneity of intestinal macrophages, accompanied by a vast increase of subset-identifying surface markers. Here, the isolation procedure for intestinal tissue for flow cytometry analysis is laid out, with particular attention toward the procedures for isolated intestinal layers, and a trouble-shooting section with strategies to avoid common pitfalls and mistakes.
Collapse
Affiliation(s)
- Maria Francesca Viola
- Developmental Biology of the Immune System, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
| | - Guy Boeckxstaens
- Center for Neuro-Immune Interaction, Translational Research Center for Gastro-intestinal Disorders, KU Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Gambirasi M, Safa A, Vruzhaj I, Giacomin A, Sartor F, Toffoli G. Oral Administration of Cancer Vaccines: Challenges and Future Perspectives. Vaccines (Basel) 2023; 12:26. [PMID: 38250839 PMCID: PMC10821404 DOI: 10.3390/vaccines12010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Cancer vaccines, a burgeoning strategy in cancer treatment, are exploring innovative administration routes to enhance patient and medical staff experiences, as well as immunological outcomes. Among these, oral administration has surfaced as a particularly noteworthy approach, which is attributed to its capacity to ignite both humoral and cellular immune responses at systemic and mucosal tiers, thereby potentially bolstering vaccine efficacy comprehensively and durably. Notwithstanding this, the deployment of vaccines through the oral route in a clinical context is impeded by multifaceted challenges, predominantly stemming from the intricacy of orchestrating effective oral immunogenicity and necessitating strategic navigation through gastrointestinal barriers. Based on the immunogenicity of the gastrointestinal tract, this review critically analyses the challenges and recent advances and provides insights into the future development of oral cancer vaccines.
Collapse
Affiliation(s)
- Marta Gambirasi
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS National Cancer Institute, 33081 Aviano, Italy; (M.G.); (I.V.); (F.S.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Amin Safa
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS National Cancer Institute, 33081 Aviano, Italy; (M.G.); (I.V.); (F.S.)
- Doctoral School in Pharmacological Sciences, University of Padua, 35131 Padova, Italy
- Department of Immunology, School of Medicine, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Idris Vruzhaj
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS National Cancer Institute, 33081 Aviano, Italy; (M.G.); (I.V.); (F.S.)
- Doctoral School in Pharmacological Sciences, University of Padua, 35131 Padova, Italy
| | - Aurora Giacomin
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Franca Sartor
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS National Cancer Institute, 33081 Aviano, Italy; (M.G.); (I.V.); (F.S.)
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS National Cancer Institute, 33081 Aviano, Italy; (M.G.); (I.V.); (F.S.)
| |
Collapse
|
35
|
Latour YL, McNamara KM, Allaman MM, Barry DP, Smith TM, Asim M, Williams KJ, Hawkins CV, Jacobse J, Goettel JA, Delgado AG, Piazuelo MB, Washington MK, Gobert AP, Wilson KT. Myeloid deletion of talin-1 reduces mucosal macrophages and protects mice from colonic inflammation. Sci Rep 2023; 13:22368. [PMID: 38102166 PMCID: PMC10724268 DOI: 10.1038/s41598-023-49614-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023] Open
Abstract
The intestinal immune response is crucial in maintaining a healthy gut, but the enhanced migration of macrophages in response to pathogens is a major contributor to disease pathogenesis. Integrins are ubiquitously expressed cellular receptors that are highly involved in immune cell adhesion to endothelial cells while in the circulation and help facilitate extravasation into tissues. Here we show that specific deletion of the Tln1 gene encoding the protein talin-1, an integrin-activating scaffold protein, from cells of the myeloid lineage using the Lyz2-cre driver mouse reduces epithelial damage, attenuates colitis, downregulates the expression of macrophage markers, decreases the number of differentiated colonic mucosal macrophages, and diminishes the presence of CD68-positive cells in the colonic mucosa of mice infected with the enteric pathogen Citrobacter rodentium. Bone marrow-derived macrophages lacking expression of Tln1 did not exhibit a cell-autonomous phenotype; there was no impaired proinflammatory gene expression, nitric oxide production, phagocytic ability, or surface expression of CD11b, CD86, or major histocompatibility complex II in response to C. rodentium. Thus, we demonstrate that talin-1 plays a role in the manifestation of infectious colitis by increasing mucosal macrophages, with an effect that is independent of macrophage activation.
Collapse
Affiliation(s)
- Yvonne L Latour
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 2215B Garland Ave., 1030C MRB IV, Nashville, TN, 37232-0252, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kara M McNamara
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Margaret M Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel P Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thaddeus M Smith
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kamery J Williams
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Caroline V Hawkins
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Justin Jacobse
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 2215B Garland Ave., 1030C MRB IV, Nashville, TN, 37232-0252, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeremy A Goettel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 2215B Garland Ave., 1030C MRB IV, Nashville, TN, 37232-0252, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alberto G Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 2215B Garland Ave., 1030C MRB IV, Nashville, TN, 37232-0252, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keith T Wilson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 2215B Garland Ave., 1030C MRB IV, Nashville, TN, 37232-0252, USA.
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
36
|
McKendrick JG, Jones GR, Elder SS, Watson E, T'Jonck W, Mercer E, Magalhaes MS, Rocchi C, Hegarty LM, Johnson AL, Schneider C, Becher B, Pridans C, Mabbott N, Liu Z, Ginhoux F, Bajenoff M, Gentek R, Bain CC, Emmerson E. CSF1R-dependent macrophages in the salivary gland are essential for epithelial regeneration after radiation-induced injury. Sci Immunol 2023; 8:eadd4374. [PMID: 37922341 DOI: 10.1126/sciimmunol.add4374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/03/2023] [Indexed: 11/05/2023]
Abstract
The salivary glands often become damaged in individuals receiving radiotherapy for head and neck cancer, resulting in chronic dry mouth. This leads to detrimental effects on their health and quality of life, for which there is no regenerative therapy. Macrophages are the predominant immune cell in the salivary glands and are attractive therapeutic targets due to their unrivaled capacity to drive tissue repair. Yet, the nature and role of macrophages in salivary gland homeostasis and how they may contribute to tissue repair after injury are not well understood. Here, we show that at least two phenotypically and transcriptionally distinct CX3CR1+ macrophage populations are present in the adult salivary gland, which occupy anatomically distinct niches. CD11c+CD206-CD163- macrophages typically associate with gland epithelium, whereas CD11c-CD206+CD163+ macrophages associate with blood vessels and nerves. Using a suite of complementary fate mapping systems, we show that there are highly dynamic changes in the ontogeny and composition of salivary gland macrophages with age. Using an in vivo model of radiation-induced salivary gland injury combined with genetic or antibody-mediated depletion of macrophages, we demonstrate an essential role for macrophages in clearance of cells with DNA damage. Furthermore, we show that epithelial-associated macrophages are indispensable for effective tissue repair and gland function after radiation-induced injury, with their depletion resulting in reduced saliva production. Our data, therefore, provide a strong case for exploring the therapeutic potential of manipulating macrophages to promote tissue repair and thus minimize salivary gland dysfunction after radiotherapy.
Collapse
Affiliation(s)
- John G McKendrick
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Gareth-Rhys Jones
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sonia S Elder
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Erin Watson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Wouter T'Jonck
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Ella Mercer
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Marlene S Magalhaes
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Cecilia Rocchi
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Lizi M Hegarty
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Amanda L Johnson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | | | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Clare Pridans
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Neil Mabbott
- Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Marc Bajenoff
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, INSERM, U1104, CNRS UMR7280, Marseille 13288, France
| | - Rebecca Gentek
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Calum C Bain
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Elaine Emmerson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| |
Collapse
|
37
|
Wang Q, Lu Q, Jia S, Zhao M. Gut immune microenvironment and autoimmunity. Int Immunopharmacol 2023; 124:110842. [PMID: 37643491 DOI: 10.1016/j.intimp.2023.110842] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
A variety of immune cells or tissues are present in the gut to form the gut immune microenvironment by interacting with gut microbiota, and to maintain the gut immune homeostasis. Accumulating evidence indicated that gut microbiota dysbiosis might break the homeostasis of the gut immune microenvironment, which was associated with many health problems including autoimmune diseases. Moreover, disturbance of the gut immune microenvironment can also induce extra-intestinal autoimmune disorders through the migration of intestinal pro-inflammatory effector cells from the intestine to peripheral inflamed sites. This review discussed the composition of the gut immune microenvironment and its association with autoimmunity. These findings are expected to provide new insights into the pathogenesis of various autoimmune disorders, as well as novel strategies for the prevention and treatment against related diseases.
Collapse
Affiliation(s)
- Qiaolin Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| | - Ming Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China.
| |
Collapse
|
38
|
Kare AJ, Nichols L, Zermeno R, Raie MN, Tumbale SK, Ferrara KW. OMIP-095: 40-Color spectral flow cytometry delineates all major leukocyte populations in murine lymphoid tissues. Cytometry A 2023; 103:839-850. [PMID: 37768325 PMCID: PMC10843696 DOI: 10.1002/cyto.a.24788] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
High-dimensional immunoprofiling is essential for studying host response to immunotherapy, infection, and disease in murine model systems. However, the difficulty of multiparameter panel design combined with a lack of existing murine tools has prevented the comprehensive study of all major leukocyte phenotypes in a single assay. Herein, we present a 40-color flow cytometry panel for deep immunophenotyping of murine lymphoid tissues, including the spleen, blood, Peyer's patches, inguinal lymph nodes, bone marrow, and thymus. This panel uses a robust set of surface markers capable of differentiating leukocyte subsets without the use of intracellular staining, thus allowing for the use of cells in downstream functional experiments or multiomic analyses. Our panel classifies T cells, B cells, natural killer cells, innate lymphoid cells, monocytes, macrophages, dendritic cells, basophils, neutrophils, eosinophils, progenitors, and their functional subsets by using a series of co-stimulatory, checkpoint, activation, migration, and maturation markers. This tool has a multitude of systems immunology applications ranging from serial monitoring of circulating blood signatures to complex endpoint analysis, especially in pre-clinical settings where treatments can modulate leukocyte abundance and/or function. Ultimately, this 40-color panel resolves a diverse array of immune cells on the axes of time, tissue, and treatment, filling the niche for a modern tool dedicated to murine immunophenotyping.
Collapse
Affiliation(s)
- Aris J. Kare
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Lisa Nichols
- Stanford Shared FACS Facility, Stanford University, Stanford, CA 94305, USA
| | - Ricardo Zermeno
- Stanford Shared FACS Facility, Stanford University, Stanford, CA 94305, USA
| | - Marina N. Raie
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
39
|
Sienkiewicz M, Sroka K, Binienda A, Jurk D, Fichna J. A new face of old cells: An overview about the role of senescence and telomeres in inflammatory bowel diseases. Ageing Res Rev 2023; 91:102083. [PMID: 37802318 DOI: 10.1016/j.arr.2023.102083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
Cellular senescence is a pivotal factor contributing to aging and the pathophysiology of age-related diseases. Despite the presence of inflammation and abnormal immune system function in both inflammatory bowel diseases (IBD) and senescence, the relationship between the two remains largely unexplored. Therefore, our study aimed to investigate the intricate connection between cellular senescence, telomeres, and IBD. The review highlights the presence of senescence markers, particularly p16 and p21, in IBD patients, suggesting their potential association with disease progression and mucosal inflammation. We emphasize the critical role of macrophages in eliminating senescent cells and how disturbance in effective clearance may contribute to persistent senescence and inflammation in IBD. Additionally, we shed light on the involvement of telomeres in IBD, as their dysfunction impairs enterocyte function and disrupts colonic barrier integrity, potentially exacerbating the pathogenesis of the disease. Targeting senescence and telomere dysfunctions holds promise for the development of innovative therapeutic approaches to mitigate intestinal inflammation and alleviate symptoms in IBD patients. By unraveling the precise role of senescence in IBD, we can pave the way for the discovery of novel therapeutic interventions that effectively address the underlying mechanisms of intestinal inflammation, offering hope for improved management and treatment of IBD patients.
Collapse
Affiliation(s)
- Michał Sienkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Kamila Sroka
- Department of Family Medicine and Public Health, University of Opole, Opole, Poland
| | - Agata Binienda
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Diana Jurk
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
40
|
Wu Z, He J, Zhang Z, Li J, Zou H, Tan X, Wang Y, Yao Y, Xiong W. Propionic Acid Driven by the Lactobacillus johnsonii Culture Supernatant Alleviates Colitis by Inhibiting M1 Macrophage Polarization by Modulating the MAPK Pathway in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14951-14966. [PMID: 37788400 DOI: 10.1021/acs.jafc.3c00278] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
In this study, we investigated the effects of Lactobacillus johnsonii on the mouse colitis model. The results showed that the supernatant of the L. johnsonii culture alleviated colitis and remodeled gut microbiota, represented by an increased abundance of bacteria producing short-chain fatty acids, leading to an increased concentration of propionic acid in the intestine. Further studies revealed that propionic acid inhibited activation of the MAPK signaling pathway and polarization of M1 macrophages. Macrophage clearance assays confirmed that macrophages are indispensable for alleviating colitis through propionic acid. In vitro experiments showed that propionic acid directly inhibited the MAPK signaling pathway in macrophages and reduced M1 macrophage polarization, thereby inhibiting the secretion of pro-inflammatory cytokines. These findings improve our understanding of how L. johnsonii attenuates inflammatory bowel disease (IBD) and provide valuable insights for identifying molecular targets for IBD treatment in the future.
Collapse
Affiliation(s)
- Zhifeng Wu
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinhui He
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyue Zhang
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingjing Li
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huicong Zou
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Tan
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuqing Wang
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Yao
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen Xiong
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
41
|
Mooring M, Yeung GA, Luukkonen P, Liu S, Akbar MW, Zhang GJ, Balogun O, Yu X, Mo R, Nejak-Bowen K, Poyurovsky MV, Booth CJ, Konnikova L, Shulman GI, Yimlamai D. Hepatocyte CYR61 polarizes profibrotic macrophages to orchestrate NASH fibrosis. Sci Transl Med 2023; 15:eade3157. [PMID: 37756381 PMCID: PMC10874639 DOI: 10.1126/scitranslmed.ade3157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
Obesity is increasing worldwide and leads to a multitude of metabolic diseases, including cardiovascular disease, type 2 diabetes, nonalcoholic fatty liver disease, and nonalcoholic steatohepatitis (NASH). Cysteine-rich angiogenic inducer 61 (CYR61) is associated with the progression of NASH, but it has been described to have anti- and proinflammatory properties. We sought to examine the role of liver CYR61 in NASH progression. CYR61 liver-specific knockout mice on a NASH diet showed improved glucose tolerance, decreased liver inflammation, and reduced fibrosis. CYR61 polarized infiltrating monocytes promoting a proinflammatory/profibrotic phenotype through an IRAK4/SYK/NF-κB signaling cascade. In vitro, CYR61 activated a profibrotic program, including PDGFa/PDGFb expression in macrophages, in an IRAK4/SYK/NF-κB-dependent manner. Furthermore, targeted-antibody blockade reduced CYR61-driven signaling in macrophages in vitro and in vivo, reducing fibrotic development. This study demonstrates that CYR61 is a key driver of liver inflammation and fibrosis in NASH.
Collapse
Affiliation(s)
- Meghan Mooring
- Department of Cellular and Molecular Pathology, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics; Yale School of Medicine; New Haven, Connecticut 06514, USA
- These authors contributed equally to this work
| | - Grace A. Yeung
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics; Yale School of Medicine; New Haven, Connecticut 06514, USA
- These authors contributed equally to this work
| | - Panu Luukkonen
- Department of Internal Medicine, Yale School of Medicine; New Haven, Connecticut 06514, USA
| | - Silvia Liu
- Department of Pathology, School of Medicine, University of Pittsburgh
- Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
| | - Muhammad Waqas Akbar
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics; Yale School of Medicine; New Haven, Connecticut 06514, USA
| | - Gary J. Zhang
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics; Yale School of Medicine; New Haven, Connecticut 06514, USA
| | - Oluwashanu Balogun
- Department of Cellular and Molecular Pathology, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
- Department of Pathology, School of Medicine, University of Pittsburgh
| | - Xuemei Yu
- Kadmon Corporation, LLC; 450 East 29th Street, New York, New York 10016, USA
| | - Rigen Mo
- Kadmon Corporation, LLC; 450 East 29th Street, New York, New York 10016, USA
| | - Kari Nejak-Bowen
- Department of Cellular and Molecular Pathology, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
- Department of Pathology, School of Medicine, University of Pittsburgh
- Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
| | - Masha V. Poyurovsky
- Kadmon Corporation, LLC; 450 East 29th Street, New York, New York 10016, USA
| | - Carmen J. Booth
- Department of Comparative Medicine; Yale School of Medicine; New Haven, Connecticut 06514, USA
| | - Liza Konnikova
- Section of Neonatology; Department of Pediatrics; Yale School of Medicine; New Haven, Connecticut 06514, USA
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale School of Medicine; New Haven, Connecticut 06514, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine; New Haven, Connecticut 06514, USA
| | - Dean Yimlamai
- Department of Cellular and Molecular Pathology, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics; Yale School of Medicine; New Haven, Connecticut 06514, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
- The Yale Liver Center, Yale School of Medicine; New Haven, Connecticut 06514, USA
| |
Collapse
|
42
|
Heieis GA, Patente TA, Almeida L, Vrieling F, Tak T, Perona-Wright G, Maizels RM, Stienstra R, Everts B. Metabolic heterogeneity of tissue-resident macrophages in homeostasis and during helminth infection. Nat Commun 2023; 14:5627. [PMID: 37699869 PMCID: PMC10497597 DOI: 10.1038/s41467-023-41353-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/01/2023] [Indexed: 09/14/2023] Open
Abstract
Tissue-resident macrophage populations constitute a mosaic of phenotypes, yet how their metabolic states link to the range of phenotypes and functions in vivo is still poorly defined. Here, using high-dimensional spectral flow cytometry, we observe distinct metabolic profiles between different organs and functionally link acetyl CoA carboxylase activity to efferocytotic capacity. Additionally, differences in metabolism are evident within populations from a specific site, corresponding to relative stages of macrophage maturity. Immune perturbation with intestinal helminth infection increases alternative activation and metabolic rewiring of monocyte-derived macrophage populations, while resident TIM4+ intestinal macrophages remain immunologically and metabolically hyporesponsive. Similar metabolic signatures in alternatively-activated macrophages are seen from different tissues using additional helminth models, but to different magnitudes, indicating further tissue-specific contributions to metabolic states. Thus, our high-dimensional, flow-based metabolic analyses indicates complex metabolic heterogeneity and dynamics of tissue-resident macrophage populations at homeostasis and during helminth infection.
Collapse
Affiliation(s)
- Graham A Heieis
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Thiago A Patente
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Luís Almeida
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Frank Vrieling
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708WE, Wageningen, The Netherlands
| | - Tamar Tak
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Georgia Perona-Wright
- School of Infection and Immunity, University of Glasgow, 120 University Place, G12 8TA, Glasgow, UK
| | - Rick M Maizels
- School of Infection and Immunity, University of Glasgow, 120 University Place, G12 8TA, Glasgow, UK
| | - Rinke Stienstra
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708WE, Wageningen, The Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
43
|
Arroyo Portilla C, Fenouil R, Wagner C, Luciani C, Lagier M, Da Silva C, Hidalgo-Villeda F, Spinelli L, Fallet M, Tomas J, Gorvel JP, Lelouard H. Peyer's patch phagocytes acquire specific transcriptional programs that influence their maturation and activation profiles. Mucosal Immunol 2023; 16:527-547. [PMID: 37257775 DOI: 10.1016/j.mucimm.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Peyer's patches (PPs) are secondary lymphoid organs in contact with the external environment via the intestinal lumen, thus combining antigen sampling and immune response initiation sites. Therefore, they provide a unique opportunity to study the entire process of phagocyte differentiation and activation in vivo. Here, we deciphered the transcriptional and spatial landscape of PP phagocyte populations from their emergence in the tissue to their final maturation state at homeostasis and under stimulation. Activation of monocyte-derived Lysozyme-expressing dendritic cells (LysoDCs) differs from that of macrophages by their upregulation of conventional DC (cDC) signature genes such as Ccr7 and downregulation of typical monocyte-derived cell genes such as Cx3cr1. We identified gene sets that distinguish PP cDCs from the villus ones and from LysoDCs. We also identified key immature, early, intermediate, and late maturation markers of PP phagocytes. Finally, exploiting the ability of the PP interfollicular region to host both villous and subepithelial dome emigrated cDCs, we showed that the type of stimulus, the subset, but also the initial location of cDCs shape their activation profile and thus direct the immune response. Our study highlights the importance of targeting the right phagocyte subset at the right place and time to manipulate the immune response.
Collapse
Affiliation(s)
- Cynthia Arroyo Portilla
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France; Departamento de Análisis Clínicos, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Romain Fenouil
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Camille Wagner
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Cécilia Luciani
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Margaux Lagier
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Clément Da Silva
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Fanny Hidalgo-Villeda
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France; Escuela de Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Lionel Spinelli
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Mathieu Fallet
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Julie Tomas
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Jean-Pierre Gorvel
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Hugues Lelouard
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France.
| |
Collapse
|
44
|
Žaloudíková M. Mechanisms and Effects of Macrophage Polarization and Its Specifics in Pulmonary Environment. Physiol Res 2023; 72:S137-S156. [PMID: 37565418 PMCID: PMC10660583 DOI: 10.33549/physiolres.935058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 06/09/2023] [Indexed: 12/01/2023] Open
Abstract
Macrophages are a specific group of cells found in all body tissues. They have specific characteristics in each of the tissues that correspond to the functional needs of the specific environment. These cells are involved in a wide range of processes, both pro-inflammatory and anti-inflammatory ("wound healing"). This is due to their specific capacity for so-called polarization, a phenotypic change that is, moreover, partially reversible compared to other differentiated cells of the human body. This promises a wide range of possibilities for its influence and thus therapeutic use. In this article, we therefore review the mechanisms that cause polarization, the basic classification of polarized macrophages, their characteristic markers and the effects that accompany these phenotypic changes. Since the study of pulmonary (and among them mainly alveolar) macrophages is currently the focus of scientific interest of many researchers and these macrophages are found in very specific environments, given mainly by the extremely high partial pressure of oxygen compared to other locations, which specifically affects their behavior, we will focus our review on this group.
Collapse
Affiliation(s)
- M Žaloudíková
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
45
|
Teh YC, Chooi MY, Chong SZ. Behind the monocyte's mystique: uncovering their developmental trajectories and fates. DISCOVERY IMMUNOLOGY 2023; 2:kyad008. [PMID: 38567063 PMCID: PMC10917229 DOI: 10.1093/discim/kyad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/11/2023] [Accepted: 07/17/2023] [Indexed: 04/04/2024]
Abstract
Monocytes are circulating myeloid cells that are derived from dedicated progenitors in the bone marrow. Originally thought of as mere precursors for the replacement of tissue macrophages, it is increasingly clear that monocytes execute distinct effector functions and may give rise to monocyte-derived cells with unique properties from tissue-resident macrophages. Recently, the advent of novel experimental approaches such as single-cell analysis and fate-mapping tools has uncovered an astonishing display of monocyte plasticity and heterogeneity, which we believe has emerged as a key theme in the field of monocyte biology in the last decade. Monocyte heterogeneity is now recognized to develop as early as the progenitor stage through specific imprinting mechanisms, giving rise to specialized effector cells in the tissue. At the same time, monocytes must overcome their susceptibility towards cellular death to persist as monocyte-derived cells in the tissues. Environmental signals that preserve their heterogenic phenotypes and govern their eventual fates remain incompletely understood. In this review, we will summarize recent advances on the developmental trajectory of monocytes and discuss emerging concepts that contributes to the burgeoning field of monocyte plasticity and heterogeneity.
Collapse
Affiliation(s)
- Ye Chean Teh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ming Yao Chooi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
46
|
Bosch AJT, Rohm TV, AlAsfoor S, Low AJY, Baumann Z, Parayil N, Noreen F, Roux J, Meier DT, Cavelti-Weder C. Diesel Exhaust Particle (DEP)-induced glucose intolerance is driven by an intestinal innate immune response and NLRP3 activation in mice. Part Fibre Toxicol 2023; 20:25. [PMID: 37400850 DOI: 10.1186/s12989-023-00536-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND We previously found that air pollution particles reaching the gastrointestinal tract elicit gut inflammation as shown by up-regulated gene expression of pro-inflammatory cytokines and monocyte/macrophage markers. This inflammatory response was associated with beta-cell dysfunction and glucose intolerance. So far, it remains unclear whether gut inflammatory changes upon oral air pollution exposure are causally linked to the development of diabetes. Hence, our aim was to assess the role of immune cells in mediating glucose intolerance instigated by orally administered air pollutants. METHODS To assess immune-mediated mechanisms underlying air pollution-induced glucose intolerance, we administered diesel exhaust particles (DEP; NIST 1650b, 12 µg five days/week) or phosphate-buffered saline (PBS) via gavage for up to 10 months to wild-type mice and mice with genetic or pharmacological depletion of innate or adaptive immune cells. We performed unbiased RNA-sequencing of intestinal macrophages to elucidate signaling pathways that could be pharmacologically targeted and applied an in vitro approach to confirm these pathways. RESULTS Oral exposure to air pollution particles induced an interferon and inflammatory signature in colon macrophages together with a decrease of CCR2- anti-inflammatory/resident macrophages. Depletion of macrophages, NLRP3 or IL-1β protected mice from air pollution-induced glucose intolerance. On the contrary, Rag2-/- mice lacking adaptive immune cells developed pronounced gut inflammation and glucose intolerance upon oral DEP exposure. CONCLUSION In mice, oral exposure to air pollution particles triggers an immune-mediated response in intestinal macrophages that contributes to the development of a diabetes-like phenotype. These findings point towards new pharmacologic targets in diabetes instigated by air pollution particles.
Collapse
Affiliation(s)
- Angela J T Bosch
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
| | - Theresa V Rohm
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
| | - Shefaa AlAsfoor
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
| | - Andy J Y Low
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
| | - Zora Baumann
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
| | - Neena Parayil
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
| | - Faiza Noreen
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
- Swiss Institute of Bioinformatics, Basel, 4031, Switzerland
| | - Julien Roux
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
- Swiss Institute of Bioinformatics, Basel, 4031, Switzerland
| | - Daniel T Meier
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
| | - Claudia Cavelti-Weder
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland.
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, 4031, Switzerland.
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland.
- University Hospital Zurich, Rämistrasse 100, Zürich, 8009, Switzerland.
| |
Collapse
|
47
|
Vilander AC, Shelton K, LaVoy A, Dean GA. Expression of E. coli FimH Enhances Trafficking of an Orally Delivered Lactobacillus acidophilus Vaccine to Immune Inductive Sites via Antigen-Presenting Cells. Vaccines (Basel) 2023; 11:1162. [PMID: 37514978 PMCID: PMC10384470 DOI: 10.3390/vaccines11071162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The development of lactic acid bacteria as mucosal vaccine vectors requires the identification of robust mucosal adjuvants to increase vaccine effectiveness. The E. coli type I fimbriae adhesion protein FimH is of interest as a mucosal adjuvant as it targets microfold (M) cells enhancing vaccine uptake into Peyer's patches and can activate the innate immune system via Toll-like receptor (TLR) 4 binding. Here, we displayed the N-terminal domain of FimH on the surface of a Lactobacillus acidophilus vaccine vector and evaluated its ability to increase uptake of L. acidophilus into Peyer's patches and activate innate immune responses. FimH was robustly displayed on the L. acidophilus surface but did not increase uptake into the Peyer's patches. FimH did increase trafficking of L. acidophilus to mesenteric lymph nodes by antigen-presenting cells including macrophages and dendritic cells. It also increased transcription of retinaldehyde dehydrogenase and decreased transcription of IL-21 in the Peyer's patches and mesenteric lymph nodes. The N-terminal domain of FimH did not activate TLR4 in vitro, indicating that FimH may stimulate innate immune responses through a not-yet-identified mechanism. These results indicate that E. coli FimH alters the innate immune response to L. acidophilus and should be further studied as an adjuvant for lactic acid bacterial vaccine platforms.
Collapse
Affiliation(s)
- Allison C Vilander
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Kimberly Shelton
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Alora LaVoy
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Gregg A Dean
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
48
|
Chauvin C, Alvarez-Simon D, Radulovic K, Boulard O, Laine W, Delacre M, Waldschmitt N, Segura E, Kluza J, Chamaillard M, Poulin LF. NOD2 in monocytes negatively regulates macrophage development through TNFalpha. Front Immunol 2023; 14:1181823. [PMID: 37415975 PMCID: PMC10320732 DOI: 10.3389/fimmu.2023.1181823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/23/2023] [Indexed: 07/08/2023] Open
Abstract
Objective It is believed that intestinal recruitment of monocytes from Crohn's Disease (CD) patients who carry NOD2 risk alleles may repeatedly give rise to recruitment of pathogenic macrophages. We investigated an alternative possibility that NOD2 may rather inhibit their differentiation from intravasating monocytes. Design The monocyte fate decision was examined by using germ-free mice, mixed bone marrow chimeras and a culture system yielding macrophages and monocyte-derived dendritic cells (mo-DCs). Results We observed a decrease in the frequency of mo-DCs in the colon of Nod2-deficient mice, despite a similar abundance of monocytes. This decrease was independent of the changes in the gut microbiota and dysbiosis caused by Nod2 deficiency. Similarly, the pool of mo-DCs was poorly reconstituted in a Nod2-deficient mixed bone marrow (BM) chimera. The use of pharmacological inhibitors revealed that activation of NOD2 during monocyte-derived cell development, dominantly inhibits mTOR-mediated macrophage differentiation in a TNFα-dependent manner. These observations were supported by the identification of a TNFα-dependent response to muramyl dipeptide (MDP) that is specifically lost when CD14-expressing blood cells bear a frameshift mutation in NOD2. Conclusion NOD2 negatively regulates a macrophage developmental program through a feed-forward loop that could be exploited for overcoming resistance to anti-TNF therapy in CD.
Collapse
Affiliation(s)
- Camille Chauvin
- U1019, Institut Pasteur de Lille, Univ. Lille, Centre National de la Recherche Scientifique, Inserm, Centre Hospitalo- Universitaire Lille, Lille, France
- INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Daniel Alvarez-Simon
- U1019, Institut Pasteur de Lille, Univ. Lille, Centre National de la Recherche Scientifique, Inserm, Centre Hospitalo- Universitaire Lille, Lille, France
| | - Katarina Radulovic
- Unité de Recherche Clinique, Centre Hospitalier de Valenciennes, Valenciennes CEDEX, France
| | | | - William Laine
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University Lille, Lille, France
| | - Myriam Delacre
- U1019, Institut Pasteur de Lille, Univ. Lille, Centre National de la Recherche Scientifique, Inserm, Centre Hospitalo- Universitaire Lille, Lille, France
| | - Nadine Waldschmitt
- Chair of Nutrition and Immunology, School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Elodie Segura
- INSERM U932, Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Jérome Kluza
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University Lille, Lille, France
| | | | | |
Collapse
|
49
|
Stellas D, Karaliota S, Stravokefalou V, Angel M, Nagy BA, Goldfarbmuren KC, Bergamaschi C, Felber BK, Pavlakis GN. Tumor eradication by hetIL-15 locoregional therapy correlates with an induced intratumoral CD103 intCD11b + dendritic cell population. Cell Rep 2023; 42:112501. [PMID: 37178117 PMCID: PMC10758290 DOI: 10.1016/j.celrep.2023.112501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 03/05/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Locoregional monotherapy with heterodimeric interleukin (IL)-15 (hetIL-15) in a triple-negative breast cancer (TNBC) orthotopic mouse model resulted in tumor eradication in 40% of treated mice, reduction of metastasis, and induction of immunological memory against breast cancer cells. hetIL-15 re-shaped the tumor microenvironment by promoting the intratumoral accumulation of cytotoxic lymphocytes, conventional type 1 dendritic cells (cDC1s), and a dendritic cell (DC) population expressing both CD103 and CD11b markers. These CD103intCD11b+DCs share phenotypic and gene expression characteristics with both cDC1s and cDC2s, have transcriptomic profiles more similar to monocyte-derived DCs (moDCs), and correlate with tumor regression. Therefore, hetIL-15, a cytokine directly affecting lymphocytes and inducing cytotoxic cells, also has an indirect rapid and significant effect on the recruitment of myeloid cells, initiating a cascade for tumor elimination through innate and adoptive immune mechanisms. The intratumoral CD103intCD11b+DC population induced by hetIL-15 may be targeted for the development of additional cancer immunotherapy approaches.
Collapse
Affiliation(s)
- Dimitris Stellas
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Sevasti Karaliota
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Vasiliki Stravokefalou
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Pharmacology, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | - Matthew Angel
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Bethany A Nagy
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Katherine C Goldfarbmuren
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
50
|
Hegarty LM, Jones GR, Bain CC. Macrophages in intestinal homeostasis and inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00769-0. [PMID: 37069320 DOI: 10.1038/s41575-023-00769-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/19/2023]
Abstract
Macrophages are essential for the maintenance of intestinal homeostasis, yet appear to be drivers of inflammation in the context of inflammatory bowel disease (IBD). How these peacekeepers become powerful aggressors in IBD is still unclear, but technological advances have revolutionized our understanding of many facets of their biology. In this Review, we discuss the progress made in understanding the heterogeneity of intestinal macrophages, the functions they perform in gut health and how the environment and origin can control the differentiation and longevity of these cells. We describe how these processes might change in the context of chronic inflammation and how aberrant macrophage behaviour contributes to IBD pathology, and discuss how therapeutic approaches might target dysregulated macrophages to dampen inflammation and promote mucosal healing. Finally, we set out key areas in the field of intestinal macrophage biology for which further investigation is warranted.
Collapse
Affiliation(s)
- Lizi M Hegarty
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Queen's Medical Research Institute, Edinburgh, UK
| | - Gareth-Rhys Jones
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Queen's Medical Research Institute, Edinburgh, UK
| | - Calum C Bain
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Queen's Medical Research Institute, Edinburgh, UK.
| |
Collapse
|