1
|
Nagarajan A, Scoggin K, Adams LG, Threadgill D, Andrews-Polymenis H. Identification of a genetic region linked to tolerance to MRSA infection using Collaborative Cross mice. PLoS Genet 2024; 20:e1011378. [PMID: 39178306 PMCID: PMC11407622 DOI: 10.1371/journal.pgen.1011378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 09/17/2024] [Accepted: 07/29/2024] [Indexed: 08/25/2024] Open
Abstract
Staphylococcus aureus (S. aureus) colonizes humans asymptomatically but can also cause opportunistic infections, ranging from mild skin infections to severe life-threatening conditions. Resistance and tolerance are two ways a host can survive an infection. Resistance is limiting the pathogen burden, while tolerance is limiting the health impact of a given pathogen burden. In previous work, we established that collaborative cross (CC) mouse line CC061 is highly susceptible to Methicillin-resistant S. aureus infection (MRSA, USA300), while CC024 is tolerant. To identify host genes involved in tolerance after S. aureus infection, we crossed CC061 mice and CC024 mice to generate F1 and F2 populations. Survival after MRSA infection in the F1 and F2 generations was 65% and 55% and followed a complex dominant inheritance pattern for the CC024 increased survival phenotype. Colonization in F2 animals was more extreme than in their parents, suggesting successful segregation of genetic factors. We identified a Quantitative Trait Locus (QTL) peak on chromosome 7 for survival and weight change after infection. In this QTL, the WSB/EiJ (WSB) allele was present in CC024 mice and contributed to their MRSA tolerant phenotype. Two genes, C5ar1 and C5ar2, have high-impact variants in this region. C5ar1 and C5ar2 are receptors for the complement factor C5a, an anaphylatoxin that can trigger a massive immune response by binding to these receptors. We hypothesize that C5a may have altered binding to variant receptors in CC024 mice, reducing damage caused by the cytokine storm and resulting in the ability to tolerate a higher pathogen burden and longer survival.
Collapse
Affiliation(s)
- Aravindh Nagarajan
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Kristin Scoggin
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - L Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - David Threadgill
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas, United States of America
- Department of Biochemistry & Biophysics and Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
| | - Helene Andrews-Polymenis
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
2
|
Cheng W, Li F, Gao Y, Yang R. Fungi and tumors: The role of fungi in tumorigenesis (Review). Int J Oncol 2024; 64:52. [PMID: 38551162 PMCID: PMC10997370 DOI: 10.3892/ijo.2024.5640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
Fungi inhabit different anatomic sites in the human body. Advances in omics analyses of host‑microbiome interactions have tremendously improved our understanding of the effects of fungi on human health and diseases such as tumors. Due to the significant enrichment of specific fungi in patients with malignant tumors, the associations between fungi and human cancer have attracted an increasing attention in recent years. Indeed, cancer type‑specific fungal profiles have been found in different tumor tissues. Importantly, fungi also influence tumorigenesis through multiple factors, such as host immunity and bioactive metabolites. Microbiome interactions, host factors and fungal genetic and epigenetic factors could be involved in fungal enrichment in tumor tissues and/or in the conversion from a commensal fungus to a pathogenic fungus. Exploration of the interactions of fungi with the bacterial microbiome and the host may enable them to be a target for cancer diagnosis and treatment. In the present review, the associations between fungi and human cancer, cancer type‑specific fungal profiles and the mechanisms by which fungi cause tumorigenesis were discussed. In addition, possible factors that can lead to the enrichment of fungi in tumor tissues and/or the conversion of commensal fungi to pathogenic fungi, as well as potential therapeutic and preventive strategies for tumors based on intratumoral fungi were summarized.
Collapse
Affiliation(s)
- Wenyue Cheng
- Department of Immunology, Nankai University School of Medicine, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
| | - Fan Li
- Department of Immunology, Nankai University School of Medicine, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
- State Key Laboratory of Medicinal Chemical Biology, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
3
|
Mori A, Ohno H, Satoh-Takayama N. Disease pathogenesis and barrier functions regulated by group 3 innate lymphoid cells. Semin Immunopathol 2024; 45:509-519. [PMID: 38305897 DOI: 10.1007/s00281-024-01000-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
The mucosal surface is in constant contact with foreign antigens and is regulated by unique mechanisms that are different from immune responses in the peripheral organs. For the last several decades, only adaptive immune cells such as helper T (Th) cells, Th1, Th2, or Th17 were targeted to study a wide variety of immune responses in the mucosal tissues. However, since their discovery, innate lymphoid cells (ILCs) have been attracting attention as a unique subset of immune cells that provide border defense with various functions and tissue specificity. ILCs are classified into different groups based on cell differentiation and functions. Group 3 innate lymphoid cells (ILC3s) are particularly in close proximity to mucosal surfaces and therefore have the opportunity to be exposed to a variety of bacteria including pathogenic bacteria. In recent years, studies have also provided much evidence that ILC3s contribute to disease pathogenesis as well as the defense of mucosal surfaces by rapidly responding to pathogens and coordinating other immune cells. As the counterpart of helper T cells, ILC3s together with other ILC subsets establish the immune balance between adaptive and innate immunity in protecting us from invasion or encounter with non-self-antigens for maintaining a complex homeostasis. In this review, we summarize recent advances in our understanding of ILCs, with a particular focus on the function of ILC3s in their involvement in bacterial infection and disease pathogenesis.
Collapse
Affiliation(s)
- Ayana Mori
- Immunobiology Laboratory, School of Science, Yokohama City University, 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045, Japan
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro, Tsurumi, Yokohama City, Kanagawa, 230-0045, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro, Tsurumi, Yokohama City, Kanagawa, 230-0045, Japan
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045, Japan
- Laboratory for Immune Regulation, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro, Tsurumi, Yokohama City, Kanagawa, 230-0045, Japan.
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
4
|
Koprivica I, Stanisavljević S, Mićanović D, Jevtić B, Stojanović I, Miljković Đ. ILC3: a case of conflicted identity. Front Immunol 2023; 14:1271699. [PMID: 37915588 PMCID: PMC10616800 DOI: 10.3389/fimmu.2023.1271699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Innate lymphoid cells type 3 (ILC3s) are the first line sentinels at the mucous tissues, where they contribute to the homeostatic immune response in a major way. Also, they have been increasingly appreciated as important modulators of chronic inflammatory and autoimmune responses, both locally and systemically. The proper identification of ILC3 is of utmost importance for meaningful studies on their role in immunity. Flow cytometry is the method of choice for the detection and characterization of ILC3. However, the analysis of ILC3-related papers shows inconsistency in ILC3 phenotypic definition, as different inclusion and exclusion markers are used for their identification. Here, we present these discrepancies in the phenotypic characterization of human and mouse ILC3s. We discuss the pros and cons of using various markers for ILC3 identification. Furthermore, we consider the possibilities for the efficient isolation and propagation of ILC3 from different organs and tissues for in-vitro and in-vivo studies. This paper calls upon uniformity in ILC3 definition, isolation, and propagation for the increased possibility of confluent interpretation of ILC3's role in immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Zhuang YP, Zhou HL, Chen HB, Zheng MY, Liang YW, Gu YT, Li WT, Qiu WL, Zhou HG. Gut microbiota interactions with antitumor immunity in colorectal cancer: From understanding to application. Biomed Pharmacother 2023; 165:115040. [PMID: 37364479 DOI: 10.1016/j.biopha.2023.115040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
Colorectal cancer (CRC) is one of highly prevalent cancer. Immunotherapy with immune checkpoint inhibitors (ICIs) has dramatically changed the landscape of treatment for many advanced cancers, but CRC still exhibits suboptimal response to immunotherapy. The gut microbiota can affect both anti-tumor and pro-tumor immune responses, and further modulate the efficacy of cancer immunotherapy, particularly in the context of therapy with ICIs. Therefore, a deeper understanding of how the gut microbiota modulates immune responses is crucial to improve the outcomes of CRC patients receiving immunotherapy and to overcome resistance in nonresponders. The present review aims to describe the relationship between the gut microbiota, CRC, and antitumor immune responses, with a particular focus on key studies and recent findings on the effect of the gut microbiota on the antitumor immune activity. We also discuss the potential mechanisms by which the gut microbiota influences host antitumor immune responses as well as the prospective role of intestinal flora in CRC treatment. Furthermore, the therapeutic potential and limitations of different modulation strategies for the gut microbiota are also discussed. These insights may facilitate to better comprehend the interplay between the gut microbiota and the antitumor immune responses of CRC patients and provide new research pathways to enhance immunotherapy efficacy and expand the patient population that could be benefited by immunotherapy.
Collapse
Affiliation(s)
- Yu-Pei Zhuang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong-Li Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hai-Bin Chen
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming-Yue Zheng
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Wei Liang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Tian Gu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen-Ting Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wen-Li Qiu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Hong-Guang Zhou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
6
|
Nie Y, Xu L, Bai Z, Liu Y, Wang S, Zeng Q, Gao X, Xia X, Chang D. Prognostic utility of TME-associated genes in pancreatic cancer. Front Genet 2023; 14:1218774. [PMID: 37727377 PMCID: PMC10505756 DOI: 10.3389/fgene.2023.1218774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023] Open
Abstract
Background: Pancreatic cancer (PC) is a deadly disease. The tumor microenvironment (TME) participates in PC oncogenesis. This study focuses on the assessment of the prognostic and treatment utility of TME-associated genes in PC. Methods: After obtaining the differentially expressed TME-related genes, univariate and multivariate Cox analyses and least absolute shrinkage and selection operator (LASSO) were performed to identify genes related to prognosis, and a risk model was established to evaluate risk scores, based on The Cancer Genome Atlas (TCGA) data set, and it was validated by external data sets from the Gene Expression Omnibus (GEO) and Clinical Proteomic Tumor Analysis Consortium (CPTAC). Multiomics analyses were adopted to explore the potential mechanisms, discover novel treatment targets, and assess the sensitivities of immunotherapy and chemotherapy. Results: Five TME-associated genes, namely, FERMT1, CARD9, IL20RB, MET, and MMP3, were identified and a risk score formula constructed. Next, their mRNA expressions were verified in cancer and normal pancreatic cells. Multiple algorithms confirmed that the risk model displayed a reliable ability of prognosis prediction and was an independent prognostic factor, indicating that high-risk patients had poor outcomes. Immunocyte infiltration, gene set enrichment analysis (GSEA), and single-cell analysis all showed a strong relationship between immune mechanism and low-risk samples. The risk score could predict the sensitivity of immunotherapy and some chemotherapy regimens, which included oxaliplatin and irinotecan. Various latent treatment targets (LAG3, TIGIT, and ARID1A) were addressed by mutation landscape based on the risk model. Conclusion: The risk model based on TME-related genes can reflect the prognosis of PC patients and functions as a novel set of biomarkers for PC therapy.
Collapse
Affiliation(s)
- Yuanhua Nie
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Longwen Xu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zilong Bai
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yaoyao Liu
- Geneplus-Beijing, Co., Ltd., Beijing, China
| | - Shilong Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qingnuo Zeng
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xuan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- GenePlus- Shenzhen Clinical Laboratory, Shenzhen, China
| | | | - Dongmin Chang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
7
|
Guo Y, Liu Y, Rui B, Lei Z, Ning X, Liu Y, Li M. Crosstalk between the gut microbiota and innate lymphoid cells in intestinal mucosal immunity. Front Immunol 2023; 14:1171680. [PMID: 37304260 PMCID: PMC10249960 DOI: 10.3389/fimmu.2023.1171680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
The human gastrointestinal mucosa is colonized by thousands of microorganisms, which participate in a variety of physiological functions. Intestinal dysbiosis is closely associated with the pathogenesis of several human diseases. Innate lymphoid cells (ILCs), which include NK cells, ILC1s, ILC2s, ILC3s and LTi cells, are a type of innate immune cells. They are enriched in the mucosal tissues of the body, and have recently received extensive attention. The gut microbiota and its metabolites play important roles in various intestinal mucosal diseases, such as inflammatory bowel disease (IBD), allergic disease, and cancer. Therefore, studies on ILCs and their interaction with the gut microbiota have great clinical significance owing to their potential for identifying pharmacotherapy targets for multiple related diseases. This review expounds on the progress in research on ILCs differentiation and development, the biological functions of the intestinal microbiota, and its interaction with ILCs in disease conditions in order to provide novel ideas for disease treatment in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming Li
- *Correspondence: Yinhui Liu, ; Ming Li,
| |
Collapse
|
8
|
Zhao N, Liu C, Li N, Zhou S, Guo Y, Yang S, Liu H. Role of Interleukin-22 in ulcerative colitis. Biomed Pharmacother 2023; 159:114273. [PMID: 36696801 DOI: 10.1016/j.biopha.2023.114273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Ulcerative Colitis (UC) is a chronic disease, in the progression of which an immune overreaction may play an important role. IL-22 is a member of the IL-10 superfamily of cytokines and is pleiotropic in immune regulation and inflammatory responses. IL-22 can produce protective effects, promote wound healing and tissue regeneration, while it can also induce inflammatory reactions when it is chronically overexpressed. Extensive literatures reported that IL-22 played an essential role in the pathogenic development of UC. IL-22 participates in the whole disease process of UC involving signaling pathways, gene expression regulation, and intestinal flora imbalance, making IL-22 a possible candidate for the treatment of UC. In this paper, the latest knowledge to further elucidate the role of IL-22 in UC was summarized and analyzed.
Collapse
Affiliation(s)
- Nan Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Ning Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Shuang Zhou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Yuting Guo
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Shihua Yang
- Department of Oncology, The Fifth People's Hospital of Jinan, Jinan 250022, PR China.
| | - Huimin Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
9
|
Li M, Wang Z, Jiang W, Lu Y, Zhang J. The role of group 3 innate lymphoid cell in intestinal disease. Front Immunol 2023; 14:1171826. [PMID: 37122757 PMCID: PMC10140532 DOI: 10.3389/fimmu.2023.1171826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Group 3 innate lymphoid cells (ILC3s), a novel subpopulation of lymphocytes enriched in the intestinal mucosa, are currently considered as key sentinels in maintaining intestinal immune homeostasis. ILC3s can secrete a series of cytokines such as IL-22 to eliminate intestinal luminal antigens, promote epithelial tissue repair and mucosal barrier integrity, and regulate intestinal immunity by integrating multiple signals from the environment and the host. However, ILC3 dysfunction may be associated with the development and progression of various diseases in the gut. Therefore, in this review, we will discuss the role of ILC3 in intestinal diseases such as enteric infectious diseases, intestinal inflammation, and tumors, with a focus on recent research advances and discoveries to explore potential therapeutic targets.
Collapse
|
10
|
The Cytokine Network in Colorectal Cancer: Implications for New Treatment Strategies. Cells 2022; 12:cells12010138. [PMID: 36611932 PMCID: PMC9818504 DOI: 10.3390/cells12010138] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent tumor entities worldwide with only limited therapeutic options. CRC is not only a genetic disease with several mutations in specific oncogenes and/or tumor suppressor genes such as APC, KRAS, PIC3CA, BRAF, SMAD4 or TP53 but also a multifactorial disease including environmental factors. Cancer cells communicate with their environment mostly via soluble factors such as cytokines, chemokines or growth factors to generate a favorable tumor microenvironment (TME). The TME, a heterogeneous population of differentiated and progenitor cells, plays a critical role in regulating tumor development, growth, invasion, metastasis and therapy resistance. In this context, cytokines from cancer cells and cells of the TME influence each other, eliciting an inflammatory milieu that can either enhance or suppress tumor growth and metastasis. Additionally, several lines of evidence exist that the composition of the microbiota regulates inflammatory processes, controlled by cytokine secretion, that play a role in carcinogenesis and tumor progression. In this review, we discuss the cytokine networks between cancer cells and the TME and microbiome in colorectal cancer and the related treatment strategies, with the goal to discuss cytokine-mediated strategies that could overcome the common therapeutic resistance of CRC tumors.
Collapse
|
11
|
Genetic and Epigenetic Etiology of Inflammatory Bowel Disease: An Update. Genes (Basel) 2022; 13:genes13122388. [PMID: 36553655 PMCID: PMC9778199 DOI: 10.3390/genes13122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease with periods of exacerbation and remission of the disease. The etiology of IBD is not fully understood. Many studies point to the presence of genetic, immunological, environmental, and microbiological factors and the interactions between them in the occurrence of IBD. The review looks at genetic factors in the context of both IBD predisposition and pharmacogenetics.
Collapse
|
12
|
Castillo-González R, Valle-Noguera A, Gomez-Sánchez MJ, Xia P, Cruz-Adalia A. Innate lymphoid cells type 3 in cancer. Front Immunol 2022; 13:1033252. [PMID: 36341381 PMCID: PMC9627779 DOI: 10.3389/fimmu.2022.1033252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/27/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is a multifactorial chronic illness caused by a combination of genetic and environmental factors. A tumor is more than just a collection of cancer cells, it also contains infiltrating and resident host cells that are constantly interacting with it. Innate lymphoid cells (ILCs) have been recently found to be within the tumor and its microenvironment in close relationship with cancer cells. Although ILCs lack an antigen-specific receptor, they can respond to environmental stress signals, aiding in the fast orchestration of an early immune response. They are tissue resident cells mostly located in mucosa and first barrier organs that have been mainly studied in the defense against pathogens, lymphoid development, and tissue repair, however, current research has begun to elucidate their involvement in carcinogenesis. Nevertheless, among all ILCs, ILC3s have been found to be the most controversial in terms of tumor immunity. It has been found that they enhance anti-tumor immunity by detecting cancerous cells and helping lymphocytes infiltrate tumors. However, some recent studies have revealed that IL-23 stimulating ILC3s may promote tumor growth. In this review, we have incorporated the most recent studies on the involvement of ILC3s in cancer development to offer an overview of the role of ILC3s in cancer emphasis on their particular activity in several organs primarily in the mucosa, but also in breast, pancreas, liver, and skin, realizing that their role likely depends on the tissue microenvironment and the subtype of ILC3s.
Collapse
Affiliation(s)
- Raquel Castillo-González
- Pathology Anatomy Department, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ana Valle-Noguera
- Department of Immunology, Ophthalmology and Ear, Nose and Throat (ENT), Complutense University School of Medicine and Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Maria José Gomez-Sánchez
- Department of Immunology, Ophthalmology and Ear, Nose and Throat (ENT), Complutense University School of Medicine and Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Pu Xia
- National Center for Radiation Research in Oncology (OncoRay) - National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Helmholtz-Zentrum Dresden-Rossendorf, Technische Universität Dresden, Dresden, Germany
| | - Aranzazu Cruz-Adalia
- Department of Immunology, Ophthalmology and Ear, Nose and Throat (ENT), Complutense University School of Medicine and Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- *Correspondence: Aranzazu Cruz-Adalia,
| |
Collapse
|
13
|
Role of IL-22 in intestinal microenvironment and potential targeted therapy through diet. Immunol Res 2022; 71:121-129. [PMID: 36173554 DOI: 10.1007/s12026-022-09325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
IL-22 is a type 2 receptor cytokine in IL-10 family. IL-22 is usually secreted by innate and adaptive immune cells and takes its effects on non-hematopoietic cells. Through activate STAT3 pathway, IL-22 plays an important role in infection clearance and tissue regeneration, which is critical for barrier integrate and homeostasis. Abnormal activation of IL-22 signal was observed in inflammation diseases, autoimmune diseases, and cancers. We review the recent discoveries about the mechanism and regulation of IL-22 signal pathway from the perspective of intestinal micro-environment. Diet-based IL-22 target therapeutic strategies and their potential clinical significance will also be discussed.
Collapse
|
14
|
Danne C, Michaudel C, Skerniskyte J, Planchais J, Magniez A, Agus A, Michel ML, Lamas B, Da Costa G, Spatz M, Oeuvray C, Galbert C, Poirier M, Wang Y, Lapière A, Rolhion N, Ledent T, Pionneau C, Chardonnet S, Bellvert F, Cahoreau E, Rocher A, Arguello RR, Peyssonnaux C, Louis S, Richard ML, Langella P, El-Benna J, Marteyn B, Sokol H. CARD9 in neutrophils protects from colitis and controls mitochondrial metabolism and cell survival. Gut 2022; 72:1081-1092. [PMID: 36167663 DOI: 10.1136/gutjnl-2022-326917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 09/04/2022] [Indexed: 12/08/2022]
Abstract
OBJECTIVES Inflammatory bowel disease (IBD) results from a combination of genetic predisposition, dysbiosis of the gut microbiota and environmental factors, leading to alterations in the gastrointestinal immune response and chronic inflammation. Caspase recruitment domain 9 (Card9), one of the IBD susceptibility genes, has been shown to protect against intestinal inflammation and fungal infection. However, the cell types and mechanisms involved in the CARD9 protective role against inflammation remain unknown. DESIGN We used dextran sulfate sodium (DSS)-induced and adoptive transfer colitis models in total and conditional CARD9 knock-out mice to uncover which cell types play a role in the CARD9 protective phenotype. The impact of Card9 deletion on neutrophil function was assessed by an in vivo model of fungal infection and various functional assays, including endpoint dilution assay, apoptosis assay by flow cytometry, proteomics and real-time bioenergetic profile analysis (Seahorse). RESULTS Lymphocytes are not intrinsically involved in the CARD9 protective role against colitis. CARD9 expression in neutrophils, but not in epithelial or CD11c+cells, protects against DSS-induced colitis. In the absence of CARD9, mitochondrial dysfunction increases mitochondrial reactive oxygen species production leading to the premature death of neutrophilsthrough apoptosis, especially in oxidative environment. The decreased functional neutrophils in tissues might explain the impaired containment of fungi and increased susceptibility to intestinal inflammation. CONCLUSION These results provide new insight into the role of CARD9 in neutrophil mitochondrial function and its involvement in intestinal inflammation, paving the way for new therapeutic strategies targeting neutrophils.
Collapse
Affiliation(s)
- Camille Danne
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France .,Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Gastroentérologie, F-75012 Paris, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Chloé Michaudel
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Jurate Skerniskyte
- CNRS, UPR 9002, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, Strasbourg, France
| | - Julien Planchais
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Aurélie Magniez
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Allison Agus
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Marie-Laure Michel
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Bruno Lamas
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Gregory Da Costa
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Madeleine Spatz
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Cyriane Oeuvray
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Gastroentérologie, F-75012 Paris, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Chloé Galbert
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Gastroentérologie, F-75012 Paris, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Maxime Poirier
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Yazhou Wang
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Alexia Lapière
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Nathalie Rolhion
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Gastroentérologie, F-75012 Paris, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Tatiana Ledent
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Gastroentérologie, F-75012 Paris, France
| | - Cédric Pionneau
- Sorbonne Université, INSERM, UMS PASS, Plateforme Postgénomique de la Pitié Salpêtrière (P3S), Paris, France
| | - Solenne Chardonnet
- Sorbonne Université, INSERM, UMS PASS, Plateforme Postgénomique de la Pitié Salpêtrière (P3S), Paris, France
| | - Floriant Bellvert
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics & Fluxomics (ANR-11INBS-0010), 31077 Toulouse, France
| | - Edern Cahoreau
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics & Fluxomics (ANR-11INBS-0010), 31077 Toulouse, France
| | - Amandine Rocher
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics & Fluxomics (ANR-11INBS-0010), 31077 Toulouse, France
| | - Rafael Rose Arguello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Carole Peyssonnaux
- Institut Cochin, INSERM, CNRS, Université de Paris, Laboratoire d'excellence GR-Ex, Paris, France
| | - Sabine Louis
- Institut Cochin, INSERM, CNRS, Université de Paris, Laboratoire d'excellence GR-Ex, Paris, France
| | - Mathias L Richard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Philippe Langella
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Jamel El-Benna
- Université de Paris, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Benoit Marteyn
- CNRS, UPR 9002, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, Strasbourg, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.,Institut Pasteur, Université de Paris, Inserm 1225 Unité de Pathogenèse des Infections Vasculaires, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Harry Sokol
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France .,Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Gastroentérologie, F-75012 Paris, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| |
Collapse
|
15
|
Zhang L, Chai D, Chen C, Li C, Qiu Z, Kuang T, Parveena M, Dong K, Yu J, Deng W, Wang W. Mycobiota and C-Type Lectin Receptors in Cancers: Know thy Neighbors. Front Microbiol 2022; 13:946995. [PMID: 35910636 PMCID: PMC9326027 DOI: 10.3389/fmicb.2022.946995] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022] Open
Abstract
Numerous studies have demonstrated the importance of gut bacteria in the development of malignancy, while relatively little research has been done on gut mycobiota. As a part of the gut microbiome, the percentage of gut mycobiota is negligible compared to gut bacteria. However, the effect of gut fungi on human health and disease is significant. This review systematically summarizes the research progress on mycobiota, especially gut fungi, in patients with head and neck cancer (HNC), esophageal cancer (EC), gastric cancer (GC), colorectal cancer (CRC), hepatocellular carcinoma (HCC), pancreatic cancer, melanoma, breast cancer, and lung carcinoma-induced cachexia. Moreover, we also describe, for the first time in detail, the role of the fungal recognition receptors, C-type lectin receptors (CLRs) (Dectin-1, Dectin-2, Dectin-3, and Mincle) and their downstream effector caspase recruitment domain-containing protein 9 (CARD9), in tumors to provide a reference for further research on intestinal fungi in the diagnosis and treatment of malignant tumors.
Collapse
Affiliation(s)
- Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Dongqi Chai
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Chen Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunlei Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Zhendong Qiu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Tianrui Kuang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Mungur Parveena
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Keshuai Dong
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jia Yu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Wenhong Deng,
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Weixing Wang,
| |
Collapse
|
16
|
Li M, Zhang R, Li J, Li J. The Role of C-Type Lectin Receptor Signaling in the Intestinal Microbiota-Inflammation-Cancer Axis. Front Immunol 2022; 13:894445. [PMID: 35619716 PMCID: PMC9127077 DOI: 10.3389/fimmu.2022.894445] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
As a subset of pattern recognition receptors (PRRs), C-type lectin-like receptors (CLRs) are mainly expressed by myeloid cells as both transmembrane and soluble forms. CLRs recognize not only pathogen associated molecular patterns (PAMPs), but also damage-associated molecular patterns (DAMPs) to promote innate immune responses and affect adaptive immune responses. Upon engagement by PAMPs or DAMPs, CLR signaling initiates various biological activities in vivo, such as cytokine secretion and immune cell recruitment. Recently, several CLRs have been implicated as contributory to the pathogenesis of intestinal inflammation, which represents a prominent risk factor for colorectal cancer (CRC). CLRs function as an interface among microbiota, intestinal epithelial barrier and immune system, so we firstly discussed the relationship between dysbiosis caused by microbiota alteration and inflammatory bowel disease (IBD), then focused on the role of CLRs signaling in pathogenesis of IBD (including Mincle, Dectin-3, Dectin-1, DCIR, DC-SIGN, LOX-1 and their downstream CARD9). Given that CLRs mediate intricate inflammatory signals and inflammation plays a significant role in tumorigenesis, we finally highlight the specific effects of CLRs on CRC, especially colitis-associated cancer (CAC), hoping to open new horizons on pathogenesis and therapeutics of IBD and CAC.
Collapse
Affiliation(s)
- Muhan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runfeng Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Xu J, Ren X, Liu Y, Zhang Y, Zhang Y, Chen G, Huang Q, Liu Q, Zhou J, Liu Y. Alterations of Fungal Microbiota in Patients With Cholecystectomy. Front Microbiol 2022; 13:831947. [PMID: 35633725 PMCID: PMC9132483 DOI: 10.3389/fmicb.2022.831947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence suggests a high risk of gastrointestinal postoperative comorbidities (such as colorectal cancer) in patients with postcholecystectomy (PC). Although previous studies implicated the role of fungi in colon carcinogenesis, few reports focused on the fungal profile in patients with PC. We enrolled 104 subjects, including 52 patients with PC and 52 non-PC controls (CON), for fecal collection to detect the fungal composition by an internal transcribed spacer (ITS) 1 rDNA sequencing. Data showed that Candida (C.) glabrata and Aspergillus (A.) Unassigned were enriched, and Candida albicans was depleted in patients with PC. In addition, postoperative duration was the main factor to affect the fungal composition. Machine learning identified that C. glabrata, A. Unassigned, and C. albicans were three biomarkers to discriminate patients with PC from CON subjects. To investigate the fungal role in colon carcinogenesis, the subjects of the PC group were divided into two subgroups, namely, patients with PC without (non-CA) and with precancerous lesions or colorectal cancer (preCA_CRC), by histopathological studies. C. glabrata was found to be gradually accumulated in different statuses of patients with PC. In conclusion, we found fungal dysbiosis in patients with cholecystectomy, and the postoperative duration was a potent factor to influence the fungal composition. The accumulation of C. glabrata might be connected with carcinogenesis after cholecystectomy.
Collapse
Affiliation(s)
- Jun Xu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Xinhua Ren
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yun Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Yuanyuan Zhang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Yiwen Zhang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Guodong Chen
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Qing Huang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Qing Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Jianhua Zhou
- Institute of Clinical Molecular Biology and Central Laboratory, Peking University People's Hospital, Beijing, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| |
Collapse
|
18
|
Liu X, Jiang B, Hao H, Liu Z. CARD9 Signaling, Inflammation, and Diseases. Front Immunol 2022; 13:880879. [PMID: 35432375 PMCID: PMC9005907 DOI: 10.3389/fimmu.2022.880879] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Caspase-recruitment domain 9 (CARD9) protein is expressed in many cells especially in immune cells, and is critically involved in the function of the innate and adaptive immune systems through extensive interactions between CARD9 and other signaling molecules including NF-κB and MAPK. CARD9-mediated signaling plays a central role in regulating inflammatory responses and oxidative stress through the productions of important cytokines and chemokines. Abnormalities of CARD9 and CARD9 signaling or CARD9 mutations or polymorphism are associated with a variety of pathological conditions including infections, inflammation, and autoimmune disorders. This review focuses on the function of CARD9 and CARD9-mediated signaling pathways, as well as interactions with other important signaling molecules in different cell types and the relations to specific disease conditions including inflammatory diseases, infections, tumorigenesis, and cardiovascular pathologies.
Collapse
Affiliation(s)
- Xuanyou Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Bimei Jiang
- Department of Pathophysiology, Central South University, Changsha, China
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
19
|
Műzes G, Bohusné Barta B, Sipos F. Colitis and Colorectal Carcinogenesis: The Focus on Isolated Lymphoid Follicles. Biomedicines 2022; 10:biomedicines10020226. [PMID: 35203436 PMCID: PMC8869724 DOI: 10.3390/biomedicines10020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/09/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Gut-associated lymphoid tissue is one of the most diverse and complex immune compartments in the human body. The subepithelial compartment of the gut consists of immune cells of innate and adaptive immunity, non-hematopoietic mesenchymal cells, and stem cells of different origins, and is organized into secondary (and even tertiary) lymphoid organs, such as Peyer's patches, cryptopatches, and isolated lymphoid follicles. The function of isolated lymphoid follicles is multifaceted; they play a role in the development and regeneration of the large intestine and the maintenance of (immune) homeostasis. Isolated lymphoid follicles are also extensively associated with the epithelium and its conventional and non-conventional immune cells; hence, they can also function as a starting point or maintainer of pathological processes such as inflammatory bowel diseases or colorectal carcinogenesis. These relationships can significantly affect both physiological and pathological processes of the intestines. We aim to provide an overview of the latest knowledge of isolated lymphoid follicles in colonic inflammation and colorectal carcinogenesis. Further studies of these lymphoid organs will likely lead to an extended understanding of how immune responses are initiated and controlled within the large intestine, along with the possibility of creating novel mucosal vaccinations and ways to treat inflammatory bowel disease or colorectal cancer.
Collapse
Affiliation(s)
| | | | - Ferenc Sipos
- Correspondence: ; Tel.: +36-20-478-0752; Fax: +36-1-266-0816
| |
Collapse
|
20
|
Cairo C, Webb TJ. Effective Barriers: The Role of NKT Cells and Innate Lymphoid Cells in the Gut. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:235-246. [PMID: 35017213 DOI: 10.4049/jimmunol.2100799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
The critical role of commensal microbiota in regulating the host immune response has been established. In addition, it is known that host-microbial interactions are bidirectional, and this interplay is tightly regulated to prevent chronic inflammatory disease. Although many studies have focused on the role of classic T cell subsets, unconventional lymphocytes such as NKT cells and innate lymphoid cells also contribute to the regulation of homeostasis at mucosal surfaces and influence the composition of the intestinal microbiota. In this review, we discuss the mechanisms involved in the cross-regulation between NKT cells, innate lymphoid cells, and the gut microbiota. Moreover, we highlight how disruptions in homeostasis can lead to immune-mediated disorders.
Collapse
Affiliation(s)
- Cristiana Cairo
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD;
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD
| | - Tonya J Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD; and
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
21
|
Goc J, Lv M, Bessman NJ, Flamar AL, Sahota S, Suzuki H, Teng F, Putzel GG, Eberl G, Withers DR, Arthur JC, Shah MA, Sonnenberg GF. Dysregulation of ILC3s unleashes progression and immunotherapy resistance in colon cancer. Cell 2021; 184:5015-5030.e16. [PMID: 34407392 PMCID: PMC8454863 DOI: 10.1016/j.cell.2021.07.029] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/08/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
Group 3 innate lymphoid cells (ILC3s) regulate immunity and inflammation, yet their role in cancer remains elusive. Here, we identify that colorectal cancer (CRC) manifests with altered ILC3s that are characterized by reduced frequencies, increased plasticity, and an imbalance with T cells. We evaluated the consequences of these changes in mice and determined that a dialog between ILC3s and T cells via major histocompatibility complex class II (MHCII) is necessary to support colonization with microbiota that subsequently induce type-1 immunity in the intestine and tumor microenvironment. As a result, mice lacking ILC3-specific MHCII develop invasive CRC and resistance to anti-PD-1 immunotherapy. Finally, humans with dysregulated intestinal ILC3s harbor microbiota that fail to induce type-1 immunity and immunotherapy responsiveness when transferred to mice. Collectively, these data define a protective role for ILC3s in cancer and indicate that their inherent disruption in CRC drives dysfunctional adaptive immunity, tumor progression, and immunotherapy resistance.
Collapse
Affiliation(s)
- Jeremy Goc
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Mengze Lv
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Nicholas J Bessman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Anne-Laure Flamar
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Sheena Sahota
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Hiroaki Suzuki
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Fei Teng
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory G Putzel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gerard Eberl
- Microenvironment and Immunity Unit, Institut Pasteur, Paris, France
| | - David R Withers
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Janelle C Arthur
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Manish A Shah
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA; Gastrointestinal Oncology Program, Center for Advanced Digestive Care, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory F Sonnenberg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
22
|
Antunes JC, Seabra CL, Domingues JM, Teixeira MO, Nunes C, Costa-Lima SA, Homem NC, Reis S, Amorim MTP, Felgueiras HP. Drug Targeting of Inflammatory Bowel Diseases by Biomolecules. NANOMATERIALS 2021; 11:nano11082035. [PMID: 34443866 PMCID: PMC8401460 DOI: 10.3390/nano11082035] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) is a group of disabling, destructive and incurable immune-mediated inflammatory diseases comprising Crohn’s disease (CD) and ulcerative colitis (UC), disorders that are highly prevalent worldwide and demand a large investment in healthcare. A persistent inflammatory state enables the dysfunction and destruction of healthy tissue, hindering the initiation and endurance of wound healing. Current treatments are ineffective at counteracting disease progression. Further, increased risk of serious side effects, other comorbidities and/or opportunistic infections highlight the need for effective treatment options. Gut microbiota, the key to preserving a healthy state, may, alternatively, increase a patient’s susceptibility to IBD onset and development given a relevant bacterial dysbiosis. Hence, the main goal of this review is to showcase the main conventional and emerging therapies for IBD, including microbiota-inspired untargeted and targeted approaches (such as phage therapy) to infection control. Special recognition is given to existing targeted strategies with biologics (via monoclonal antibodies, small molecules and nucleic acids) and stimuli-responsive (pH-, enzyme- and reactive oxygen species-triggered release), polymer-based nanomedicine that is specifically directed towards the regulation of inflammation overload (with some nanosystems additionally functionalized with carbohydrates or peptides directed towards M1-macrophages). The overall goal is to restore gut balance and decrease IBD’s societal impact.
Collapse
Affiliation(s)
- Joana Costa Antunes
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (J.M.D.); (M.O.T.); (N.C.H.); (M.T.P.A.); (H.P.F.)
- Correspondence: ; Tel.: +351-253-510-289
| | - Catarina Leal Seabra
- Laboratório Associado para a Química Verde (LAQV), Network of Chemistry and Technology (REQUIMTE), Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (C.L.S.); (C.N.); (S.A.C.-L.); (S.R.)
| | - Joana Margarida Domingues
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (J.M.D.); (M.O.T.); (N.C.H.); (M.T.P.A.); (H.P.F.)
| | - Marta Oliveira Teixeira
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (J.M.D.); (M.O.T.); (N.C.H.); (M.T.P.A.); (H.P.F.)
| | - Cláudia Nunes
- Laboratório Associado para a Química Verde (LAQV), Network of Chemistry and Technology (REQUIMTE), Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (C.L.S.); (C.N.); (S.A.C.-L.); (S.R.)
| | - Sofia Antunes Costa-Lima
- Laboratório Associado para a Química Verde (LAQV), Network of Chemistry and Technology (REQUIMTE), Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (C.L.S.); (C.N.); (S.A.C.-L.); (S.R.)
| | - Natália Cândido Homem
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (J.M.D.); (M.O.T.); (N.C.H.); (M.T.P.A.); (H.P.F.)
| | - Salette Reis
- Laboratório Associado para a Química Verde (LAQV), Network of Chemistry and Technology (REQUIMTE), Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (C.L.S.); (C.N.); (S.A.C.-L.); (S.R.)
| | - Maria Teresa Pessoa Amorim
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (J.M.D.); (M.O.T.); (N.C.H.); (M.T.P.A.); (H.P.F.)
| | - Helena Prado Felgueiras
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (J.M.D.); (M.O.T.); (N.C.H.); (M.T.P.A.); (H.P.F.)
| |
Collapse
|
23
|
Yuan X, Rasul F, Nashan B, Sun C. Innate lymphoid cells and cancer: Role in tumor progression and inhibition. Eur J Immunol 2021; 51:2188-2205. [PMID: 34189723 PMCID: PMC8457100 DOI: 10.1002/eji.202049033] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023]
Abstract
Innate lymphoid cells (ILCs), a critical component of the immune system, have recently been nominated as emerging players associated with tumor progression and inhibition. ILCs are classified into five groups: natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer (LTis) cells. NK cells and ILC1s are mainly involved in antitumor activities due to their cytotoxic and cytokine production capabilities, respectively. The current understanding of the heterogeneous behavior of ILC2s and ILC3s in tumors is limited and incomplete. Mostly, their dual roles are modulated by their resident tissues, released cytokines, cancer types, and plasticity. Based on overlap RORγt and cytokine expression, the LTi cells were previously considered part of the ILC3s ontogeny, which are essential for the formation of the secondary lymphoid organs during embryogenesis. Indeed, these facts highlight the urgency in understanding the respective mechanisms that shape the phenotypes and responses of ILCs, either on the repressive or proliferative side in the tumor microenvironment (TME). This review aims to provide an updated view of ILCs biology with respect to tumorigenesis, including a description of ILC plasticity, their interaction with other immune cells and communication with components of the TME. Taken together, targeting ILCs for cancer immunotherapy could be a promising approach against tumors that needs to be further study.
Collapse
Affiliation(s)
- Xiaodong Yuan
- Transplant & Immunology Laboratory, Division of Life Sciences and Medicine, Department of Organ Transplantation Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Faiz Rasul
- Transplant & Immunology Laboratory, Division of Life Sciences and Medicine, Department of Organ Transplantation Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, P. R. China.,Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Björn Nashan
- Transplant & Immunology Laboratory, Division of Life Sciences and Medicine, Department of Organ Transplantation Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Cheng Sun
- Transplant & Immunology Laboratory, Division of Life Sciences and Medicine, Department of Organ Transplantation Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, P. R. China.,Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, P. R. China
| |
Collapse
|
24
|
Zhu Y, Shi T, Lu X, Xu Z, Qu J, Zhang Z, Shi G, Shen S, Hou Y, Chen Y, Wang T. Fungal-induced glycolysis in macrophages promotes colon cancer by enhancing innate lymphoid cell secretion of IL-22. EMBO J 2021; 40:e105320. [PMID: 33591591 PMCID: PMC8167358 DOI: 10.15252/embj.2020105320] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
Incorporation of microbiome data has recently become important for prevention, diagnosis, and treatment of colorectal cancer, and several species of bacteria were shown to be associated with carcinogenesis. However, the role of commensal fungi in colon cancer remains poorly understood. Here, we report that mice lacking the c-type lectin Dectin-3 (Dectin-3-/- ) show increased tumorigenesis and Candida albicans burden upon chemical induction. Elevated C. albicans load triggered glycolysis in macrophages and interleukin-7 (IL-7) secretion. IL-7 induced IL-22 production in RORγt+ (group 3) innate lymphoid cells (ILC3s) via aryl hydrocarbon receptor and STAT3. Consistently, IL-22 frequency in tumor tissues of colon cancer patients positively correlated with fungal burden, indicating the relevance of this regulatory axis in human disease. These results establish a C. albicans-driven crosstalk between macrophages and innate lymphoid cells in the intestine and expand our understanding on how commensal mycobiota regulate host immunity and promote tumorigenesis.
Collapse
Affiliation(s)
- Yanan Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Tao Shi
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Xia Lu
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Zhen Xu
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Junxing Qu
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Zhiyong Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Guoping Shi
- Department of Colorectal SurgeryThe Affiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Yugen Chen
- Department of Colorectal SurgeryThe Affiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
25
|
NK cell and ILC heterogeneity in colorectal cancer. New perspectives from high dimensional data. Mol Aspects Med 2021; 80:100967. [PMID: 33941383 DOI: 10.1016/j.mam.2021.100967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022]
Abstract
Innate lymphoid cells (ILCs) and tissue-resident natural killer (NK) cells ensure immunity at environmental interfaces and help maintain barrier integrity of the intestinal tract. This wide range of innate lymphocytes is able to provide fast and potent inflammatory responses that, when deregulated, have been associated with pathogenesis of inflammatory bowel disease (IBD) and colorectal cancer (CRC). While the presence of tumor-infiltrating NK cells is generally associated with a favorable outcome in CRC patients, emerging evidence reveals distinct roles for ILCs in regulating CRC pathogenesis and progression. Advances in next generation sequencing technology, and in particular of single-cell RNA-seq approaches, along with multidimensional flow cytometry analysis, have helped to deconvolute the complexity and heterogeneity of the ILC system both in homeostatic and pathological contexts. In this review, we discuss the protective and detrimental roles of NK cells and ILCs in the pathogenesis of CRC, focusing on the phenotypic and transcriptional modifications these cells undergo during CRC development and progression.
Collapse
|
26
|
Gut mycobiome: A promising target for colorectal cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188489. [PMID: 33278512 DOI: 10.1016/j.bbcan.2020.188489] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022]
Abstract
The human gut is mainly habited by a staggering amount and abundance of bacteria as well as fungi. Gut dysbiosis is believed as a pivotal factor in colorectal cancer (CRC) development. Lately increasing evidence from animal or clinical studies suggested that fungal disturbance also contributed to CRC development. This review summarized the current status of fungal dysbiosis in CRC and highlighted the potential tumorigenic mechanisms of fungi. Then the fungal markers and some therapeutic strategies for CRC were discussed. It would provide a better understanding of the correlation of mycobiota and CRC, and modulating fungal community would be a promising target against CRC.
Collapse
|
27
|
Song D, Lai L, Ran Z. Metabolic Regulation of Group 3 Innate Lymphoid Cells and Their Role in Inflammatory Bowel Disease. Front Immunol 2020; 11:580467. [PMID: 33193381 PMCID: PMC7649203 DOI: 10.3389/fimmu.2020.580467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic and relapsing inflammatory disorder of the intestine. IBD is associated with complex pathogenesis, and considerable data suggest that innate lymphoid cells contribute to the development and progression of the condition. Group 3 innate lymphoid cells (ILC3s) not only play a protective role in maintaining intestinal homeostasis and gut barrier function, but also a pathogenic role in intestinal inflammation. ILC3s can sense environmental and host-derived signals and combine these cues to modulate cell expansion, migration and function, and transmit information to the broader immune system. Herein, we review current knowledge of how ILC3s can be regulated by dietary nutrients, microbiota and their metabolites, as well as other metabolites. In addition, we describe the phenotypic and functional alterations of ILC3s in IBD and discuss the therapeutic potential of ILC3s in the treatment of IBD.
Collapse
Affiliation(s)
| | | | - Zhihua Ran
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
28
|
Shohan M, Dehghani R, Khodadadi A, Dehnavi S, Ahmadi R, Joudaki N, Houshmandfar S, Shamshiri M, Shojapourian S, Bagheri N. Interleukin-22 and intestinal homeostasis: Protective or destructive? IUBMB Life 2020; 72:1585-1602. [PMID: 32365282 DOI: 10.1002/iub.2295] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/08/2020] [Accepted: 04/11/2020] [Indexed: 12/16/2022]
Abstract
Interleukin (IL)-22 is a member of IL-10 family cytokines with various immunologic functions. As its name implies, IL-22 is known to be secreted mainly by Th22 cells, a recently discovered lineage of CD4+ T cells. Also, Th17, Th1, natural killer cells, γδT cells, and innate immune cells along with some nonlymphoid cells have been confirmed as secondary cellular sources of IL-22. Different cell types such as bronchial and intestinal epithelial cells, keratinocytes, hepatocytes, dermal fibroblasts, and tubular epithelial cells are affected by IL-22. Both pathologic and protective roles have been attributed to IL-22 in maintaining gut homeostasis and inflammation. According to the latest fast-growing investigations, IL-22 is significantly involved in various pathologies including allergic diseases, infection, autoimmunity, and cancer development. Regulating gut immune responses, barrier integrity, and inflammation is dependent on a diverse complex of cytokines and mediators which are secreted by mucosal immune cells. Several investigations have been designed to recognize the role of IL-22 in gastrointestinal immunity. This article tries to discuss the latest knowledge on this issue and clarify the potential of IL-22 to be used in the future therapeutic approaches of intestinal disorders including inflammatory bowel diseases and colon cancer.
Collapse
Affiliation(s)
- Mojtaba Shohan
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Razieh Dehghani
- Department of Pediatrics, Abuzar Children's Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Ahmadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nazanin Joudaki
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sheyda Houshmandfar
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marziye Shamshiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samira Shojapourian
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
29
|
Wang Y, Zhang D, Hou Y, Shen S, Wang T. The adaptor protein CARD9, from fungal immunity to tumorigenesis. Am J Cancer Res 2020; 10:2203-2225. [PMID: 32905547 PMCID: PMC7471374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023] Open
Abstract
The adaptor protein CARD9 is in charge of mediating signals from PRRs of myeloid cells to downstream transcription factor NF-κB. CARD9 plays an indispensable role in innate immunity. Both mice and humans with CARD9 deficiency show increased susceptibility to fungal and bacterial infections. CARD9 signaling not only activates but also shapes adaptive immune responses. The role of this molecule in tumor progression is increasingly being revealed. Our early study found that CARD9 is associated with the development of colon cancer and functions as a regulator of antitumor immunity. In this review, we focus on the upstream and downstream signaling pathways of CARD9, then we summarize the immunological recognition and responses induced by CARD9 signaling. Furthermore, we review the function of CARD9 in multiple aspects of host immunity, ranging from fungal immunity to tumorigenesis.
Collapse
Affiliation(s)
- Ying Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing UniversityNanjing 210093, China
| | - Di Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing UniversityNanjing 210093, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing UniversityNanjing 210093, China
- Jiangsu Key Laboratory of Molecular MedicineNanjing, China
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing UniversityNanjing 210093, China
- Jiangsu Key Laboratory of Molecular MedicineNanjing, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing UniversityNanjing 210093, China
- Jiangsu Key Laboratory of Molecular MedicineNanjing, China
| |
Collapse
|
30
|
Health Impact and Therapeutic Manipulation of the Gut Microbiome. High Throughput 2020; 9:ht9030017. [PMID: 32751130 PMCID: PMC7564083 DOI: 10.3390/ht9030017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022] Open
Abstract
Recent advances in microbiome studies have revealed much information about how the gut virome, mycobiome, and gut bacteria influence health and disease. Over the years, many studies have reported associations between the gut microflora under different pathological conditions. However, information about the role of gut metabolites and the mechanisms by which the gut microbiota affect health and disease does not provide enough evidence. Recent advances in next-generation sequencing and metabolomics coupled with large, randomized clinical trials are helping scientists to understand whether gut dysbiosis precedes pathology or gut dysbiosis is secondary to pathology. In this review, we discuss our current knowledge on the impact of gut bacteria, virome, and mycobiome interactions with the host and how they could be manipulated to promote health.
Collapse
|
31
|
Zhang D, Wang Y, Shen S, Hou Y, Chen Y, Wang T. The mycobiota of the human body: a spark can start a prairie fire. Gut Microbes 2020; 11:655-679. [PMID: 32150513 PMCID: PMC7524315 DOI: 10.1080/19490976.2020.1731287] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mycobiota are inseparable from human health, shaking up the unique position held by bacteria among microorganisms. What is surprising is that this seemingly small species can trigger huge changes in the human body. Dysbiosis and invasion of mycobiota are confirmed to cause disease in different parts of the body. Meanwhile, our body also produces corresponding immune changes upon mycobiota infection. Several recent studies have made a connection between intestinal mycobiota and the human immune system. In this review, we focus on questions related to mycobiota, starting with an introduction of select species, then we summarize the typical diseases caused by mycobiota in different parts of the human body. Moreover, we constructed a framework for the human anti-fungal immune system based on genetics and immunology. Finally, the progression of fungal detection methods is also reviewed.
Collapse
Affiliation(s)
- Di Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China
| | - Ying Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yugen Chen
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China,CONTACT Tingting Wang The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing210093, China
| |
Collapse
|
32
|
Wang S, Wu P, Chen Y, Chai Y. Ambiguous roles and potential therapeutic strategies of innate lymphoid cells in different types of tumor. Oncol Lett 2020; 20:1513-1525. [PMID: 32724393 PMCID: PMC7377136 DOI: 10.3892/ol.2020.11736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
Recent years have witnessed a significant development in the current understanding of innate lymphoid cells (ILCs) and their roles in the innate immune system, where they regulate tissue homeostasis, inflammation, as well as tumor surveillance and tumorigenesis. Based on the limited studies of ILCs in cancer, ILCs may be classified into three subgroups depending on their phenotypic and functional characteristics: Group 1 ILCs, which include natural killer cells and ILC1s; Group 2 ILCs, which only contain ILC2s and Group 3 ILCs, which comprise of LTi cells and ILC3s. Group 1 ILCs predominantly exert antitumor activities, while Group 2 ILCs and Group 3 ILCs are predominantly procarcinogenic in nature. In different types of tumor, each ILC subset behaves differently. Current research is focused on investigating how ILCs may be manipulated and employed as therapeutic strategies for the treatment of cancer. The present review aimed to summarize the characteristics and effects of ILCs in the context of tumor immunology, and provide novel insight into the pro- or anti-tumor activities of ILCs in different types of malignancy, including solid tumors, such as those in the gastrointestinal tract, lung, breast, bladder or prostate, as well as melanoma, further to hematological malignancies, with the aim to highlight potential therapeutic targets for the treatment of cancer.
Collapse
Affiliation(s)
- Shijie Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Pin Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yongyuan Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Ying Chai
- Department of Thoracic Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
33
|
Pan L, Tan Y, Wang B, Qiu W, Yin Y, Ge H, Zhu H. Caspase Recruitment Domain Containing Protein 9 Suppresses Non-Small Cell Lung Cancer Proliferation and Invasion via Inhibiting MAPK/p38 Pathway. Cancer Res Treat 2020; 52:867-885. [PMID: 32164050 PMCID: PMC7373852 DOI: 10.4143/crt.2019.606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/10/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose Caspase recruitment domain containing protein 9 (CARD9) has been demonstrated to be a pro-tumor factor in various cancers. However, our previous study found a significant decrease of CARD9 in malignant pleural effusion compared with benign pleural effusion. So we investigated the role of CARD9 in non-small cell lung cancer (NSCLC) and its working mechanism. Materials and Methods Immunohistochemistry, western blot, and quantitative real-time polymerase chain reaction were used to detect the expression of CARD9 in specimens of NSCLC patients. The Cancer Genome Atlas (TCGA) databasewas also used to analyze the expression of CARD9 in NSCLC and its predicting value for prognosis. Immunofluorescence was used for CARD9 cellular location. Cell growth assay, clonal formation assay, wound healing assay, matrigel invasion assay, and flow cytometry were used to test cell proliferation, migration, invasion, apoptosis, and cycle progression of NSCLC cells with CARD9 knockdown or CARD9 overexpression. Co-immunoprecipitation was used to identify the interaction between CARD9 and B-cell lymphoma 10 (BCL10). SB203580 was used to inhibit p38 activation. Results CARD9 was decreased in NSCLC tissues compared with normal tissues; low CARD9 expression was associated with poor survival. CARD9 was expressed both in tumor cells and macrophages. Downregulation of CARD9 in NSCLC cells enhanced the abilities of proliferation, invasion and migration via activated MAPK/p38 signaling, while overexpression of CARD9 presented antitumor effects. BCL10 was identified to interact with CARD9. Conclusion We demonstrate that CARD9 is an independent prognostic factor in NSCLC patients and inhibits proliferation, migration, and invasion by suppressing MAPK/p38 pathway in NSCLC cells.
Collapse
Affiliation(s)
- Linyue Pan
- Department of Respiratory Medicine, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Yuting Tan
- Department of Respiratory Medicine, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Bin Wang
- Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Wenjia Qiu
- Department of Respiratory Medicine, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Yulei Yin
- Department of Pathology, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Haiyan Ge
- Department of Respiratory Medicine, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Huili Zhu
- Department of Respiratory Medicine, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| |
Collapse
|
34
|
Li J, Wang Y, Wang X, Yang Q. CDK1 and CDC20 overexpression in patients with colorectal cancer are associated with poor prognosis: evidence from integrated bioinformatics analysis. World J Surg Oncol 2020; 18:50. [PMID: 32127012 PMCID: PMC7055103 DOI: 10.1186/s12957-020-01817-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignancies of the digestive system, which causes severe financial burden worldwide. However, the specific mechanisms involved in CRC are still unclear. METHODS To identify the significant genes and pathways involved in the initiation and progression of CRC, the microarray dataset GSE126092 was downloaded from Gene Expression Omnibus (GEO) database, and then, the data was analyzed to identify differentially expressed genes (DEGs). Subsequently, the Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on these DEGs using the DAVID database, and the protein-protein interaction (PPI) network was constructed using the STRING database and analyzed using the Cytoscape software. Finally, hub genes were screened, and the survival analysis was performed on these hub genes using the Kaplan-Meier curves in the cBioPortal database. RESULTS In total, 937 DEGs were obtained, including 316 upregulated genes and 621 downregulated genes. GO analysis revealed that the DEGs were mostly enriched in terms of nuclear division, organelle fission, cell division, and cell cycle process. KEGG pathway analysis showed that the DEGs were mostly enriched in cell cycle, oocyte meiosis, cytokine-cytokine receptor interaction, and cGMP-PKG signaling pathway. The PPI network comprised 608 nodes and 3100 edges, and 4 significant modules and 10 hub genes with the highest degree were identified using the Cytoscape software. Finally, survival analysis showed that overexpression of CDK1 and CDC20 in patients with CRC were statistically associated with worse overall survival. CONCLUSIONS This bioinformatics analysis revealed that CDK1 and CDC20 might be candidate targets for diagnosis and treatment of CRC, which provided valuable clues for CRC.
Collapse
Affiliation(s)
- Jianxin Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yinchun Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xin Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Qingqiang Yang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
35
|
Borriello F, Zanoni I, Granucci F. Cellular and molecular mechanisms of antifungal innate immunity at epithelial barriers: The role of C-type lectin receptors. Eur J Immunol 2020; 50:317-325. [PMID: 31986556 PMCID: PMC10668919 DOI: 10.1002/eji.201848054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/29/2019] [Accepted: 01/24/2020] [Indexed: 12/26/2022]
Abstract
Humans are constantly exposed to fungi, either in the form of commensals at epithelial barriers or as inhaled spores. Innate immune cells play a pivotal role in maintaining commensal relationships and preventing skin, mucosal, or systemic fungal infections due to the expression of pattern recognition receptors that recognize fungal cell wall components and modulate both their activation status and the ensuing adaptive immune response. Commensal fungi also play a critical role in the modulation of homeostasis and disease susceptibility at epithelial barriers. This review will outline cellular and molecular mechanisms of anti-fungal innate immunity focusing on C-type lectin receptors and their relevance in the context of host-fungi interactions at skin and mucosal surfaces in murine experimental models as well as patients susceptible to fungal infections.
Collapse
Affiliation(s)
- Francesco Borriello
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Ivan Zanoni
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Milan, Italy
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi,", Milan, Italy
| |
Collapse
|
36
|
Physiological and Pathological Functions of CARD9 Signaling in the Innate Immune System. Curr Top Microbiol Immunol 2020; 429:177-203. [PMID: 32415389 DOI: 10.1007/82_2020_211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Caspase recruitment domain protein 9 (CARD9) forms essential signaling complexes in the innate immune system that integrate cues from C-type lectin receptors and specific intracellular pattern recognition receptors. These CARD9-mediated signals are pivotal for host defense against fungi, and they mediate immunity against certain bacteria, viruses and parasites. Furthermore, CARD9-regulated pathways are involved in sterile inflammatory responses critical for immune homeostasis and can control pro- and antitumor immunity in cancer microenvironments. Consequently, multiple genetic alterations of human CARD9 are connected to primary immunodeficiencies or prevalent inflammatory disorders in patients. This review will summarize our current understanding of CARD9 signaling in the innate immune system, its physiological and pathological functions and their implications for human immune-mediated diseases.
Collapse
|
37
|
Ma J, Abram CL, Hu Y, Lowell CA. CARD9 mediates dendritic cell-induced development of Lyn deficiency-associated autoimmune and inflammatory diseases. Sci Signal 2019; 12:12/602/eaao3829. [PMID: 31594855 DOI: 10.1126/scisignal.aao3829] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CARD9 is an immune adaptor protein in myeloid cells that is involved in C-type lectin signaling and antifungal immunity. CARD9 is implicated in autoimmune and inflammatory-related diseases, such as rheumatoid arthritis, IgA nephropathy, ankylosing spondylitis, and inflammatory bowel disease (IBD). Given that Lyn-deficient (Lyn-/-) mice are susceptible to both autoimmunity and IBD, we investigated the immunological role of CARD9 in the development of these diseases using the Lyn-/- mouse model. We found that genetic deletion of CARD9 was sufficient to reduce the development of both spontaneous autoimmune disease as well as DSS- or IL-10 deficiency-associated colitis in Lyn-/- mice. Mechanistically, CARD9 was a vital component of the Lyn-mediated regulation of Toll-like receptor (TLR2 and TLR4) signaling in dendritic cells, but not in macrophages. In the absence of Lyn, signaling through a CD11b-Syk-PKCδ-CARD9 pathway was amplified, leading to increased TLR-induced production of inflammatory cytokines. Dendritic cell-specific deletion of CARD9 reversed the development of autoimmune and experimental colitis observed in dendritic cell-specific, Lyn-deficient mice. These findings suggest that targeting CARD9 may suppress the development of colitis and autoimmunity by reducing dendritic cell-driven inflammation.
Collapse
Affiliation(s)
- Jun Ma
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Clare L Abram
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yongmei Hu
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
38
|
Zhong X, Chen B, Liu M, Yang Z. The Role of Adaptor Protein CARD9 in Colitis-Associated Cancer. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:1-6. [PMID: 31650020 PMCID: PMC6804436 DOI: 10.1016/j.omto.2019.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The adaptor protein CARD9 plays an important role in anti-fungal immunity responses, linking detection of fungi by surface receptors to activation of the transcription factor nuclear factor κB (NF-κB). Recent studies indicate that CARD9 also plays different but vital roles during the development of colitis-associated colorectal cancer (CAC). This review summarizes the current understanding of CARD9 functions in CAC, and we discuss its potentially carcinogenic mechanisms.
Collapse
Affiliation(s)
| | - Bin Chen
- Department of Surgery, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Min Liu
- Department of Surgery, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Zhiwen Yang
- Department of Pharmacy, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Preparatory Stage), Shanghai 201600, China
| |
Collapse
|
39
|
Abstract
Innate lymphoid cells (ILCs) are an emerging family of innate immune cells and have been found to have an important role in infection, inflammation and tissue repair. In particular, recent work has identified significant alterations of ILC responses in tumor patients, suggesting potential roles of ILCs in tumor development. In this paper, we have focused on the basic features of ILCs and their interaction with other immune cells. Importantly, as the role of cytotoxic natural killer cells, assigned to ILC1 family, in cancer has been well established, we have summarized the new findings that showcase the potential role and mechanism of helper ILCs in different tumors. Helper ILCs might promote or inhibit tumor growth and metastasis, which depends on tumor type and ILC subset.
Collapse
Affiliation(s)
- Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China.,School of Medicine, Shandong University, Jinan, Shandong, 250012, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China.,Key Laboratory for Kidney Regeneration of Shandong Province, Jinan, Shandong, 250021, China
| |
Collapse
|
40
|
Ouyang W, O'Garra A. IL-10 Family Cytokines IL-10 and IL-22: from Basic Science to Clinical Translation. Immunity 2019; 50:871-891. [PMID: 30995504 DOI: 10.1016/j.immuni.2019.03.020] [Citation(s) in RCA: 600] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/01/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
Abstract
Cytokines are among the most important effector and messenger molecules in the immune system. They profoundly participate in immune responses during infection and inflammation, protecting against or contributing to diseases such as allergy, autoimmunity, and cancer. Manipulating cytokine pathways, therefore, is one of the most effective strategies to treat various diseases. IL-10 family cytokines exert essential functions to maintain tissue homeostasis during infection and inflammation through restriction of excessive inflammatory responses, upregulation of innate immunity, and promotion of tissue repairing mechanisms. Their important functions in diseases are supported by data from many preclinical models, human genetic studies, and clinical interventions. Despite significant efforts, however, there is still no clinically approved therapy through manipulating IL-10 family cytokines. Here, we summarize the recent progress in understanding the biology of this family of cytokines, suggesting more specific strategies to maneuver these cytokines for the effective treatment of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Wenjun Ouyang
- Department of Inflammation and Oncology Research, Amgen, South San Francisco, CA 94080, USA.
| | - Anne O'Garra
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
41
|
Malik A, Sharma D, Malireddi RKS, Guy CS, Chang TC, Olsen SR, Neale G, Vogel P, Kanneganti TD. SYK-CARD9 Signaling Axis Promotes Gut Fungi-Mediated Inflammasome Activation to Restrict Colitis and Colon Cancer. Immunity 2019; 49:515-530.e5. [PMID: 30231985 DOI: 10.1016/j.immuni.2018.08.024] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/20/2018] [Accepted: 08/27/2018] [Indexed: 02/08/2023]
Abstract
Fungi represent a significant proportion of the gut microbiota. Aberrant immune responses to fungi are frequently observed in inflammatory bowel diseases (IBD) and colorectal cancer (CRC), and mutations in the fungal-sensing pathways are associated with the pathogenesis of IBD. Fungal recognition receptors trigger downstream signaling via the common adaptor protein CARD9 and the kinase SYK. Here we found that commensal gut fungi promoted inflammasome activation during AOM-DSS-induced colitis. Myeloid cell-specific deletion of Card9 or Syk reduced inflammasome activation and interleukin (IL)-18 maturation and increased susceptibility to colitis and CRC. IL-18 promoted epithelial barrier restitution and interferon-γ production by intestinal CD8+ T cells. Supplementation of IL-18 or transfer of wild-type myeloid cells reduced tumor burden in AOM-DSS-treated Card9-/- and Sykfl/flLysMCre/+ mice, whereas treatment with anti-fungal agents exacerbated colitis and CRC. CARD9 deletion changes the gut microbial landscape, suggesting that SYK-CARD9 signaling maintains a microbial ecology that promotes inflammasome activation and thereby restrains colitis and colon tumorigenesis.
Collapse
Affiliation(s)
- Ankit Malik
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Deepika Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Clifford S Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ti-Cheng Chang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Scott R Olsen
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter Vogel
- Animal Resources Center and the Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
42
|
Wang T, Fan C, Yao A, Xu X, Zheng G, You Y, Jiang C, Zhao X, Hou Y, Hung MC, Lin X. The Adaptor Protein CARD9 Protects against Colon Cancer by Restricting Mycobiota-Mediated Expansion of Myeloid-Derived Suppressor Cells. Immunity 2019; 49:504-514.e4. [PMID: 30231984 DOI: 10.1016/j.immuni.2018.08.018] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 03/29/2018] [Accepted: 07/06/2018] [Indexed: 01/19/2023]
Abstract
The adaptor protein CARD9 links detection of fungi by surface receptors to the activation of the NF-κB pathway. Mice deficient in CARD9 exhibit dysbiosis and are more susceptible to colitis. Here we examined the impact of Card9 deficiency in the development of colitis-associated colon cancer (CAC). Treatment of Card9-/- mice with AOM-DSS resulted in increased tumor loads as compared to WT mice and in the accumulation of myeloid-derived suppressor cells (MDSCs) in tumor tissue. The impaired fungicidal functions of Card9-/- macrophages led to increased fungal loads and variation in the overall composition of the intestinal mycobiota, with a notable increase in C. tropicalis. Bone marrow cells incubated with C. tropicalis exhibited MDSC features and suppressive functions. Fluconazole treatment suppressed CAC in Card9-/- mice and was associated with decreased MDSC accumulation. The frequency of MDSCs in tumor tissues of colon cancer patients correlated positively with fungal burden, pointing to the relevance of this regulatory axis in human disease.
Collapse
Affiliation(s)
- Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Department of Molecular and Cellular Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Chaogang Fan
- General Surgery, Jinling Hospital affiliated Medical School, Nanjing University, Nanjing 210093, China
| | - Anran Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Xingwei Xu
- General Surgery, Jinling Hospital affiliated Medical School, Nanjing University, Nanjing 210093, China
| | - Guoxing Zheng
- Institute for Immunology, Tsinghua University School of Medicine, Tsinghua, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Yun You
- Department of Molecular and Cellular Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Changying Jiang
- Department of Molecular and Cellular Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xueqiang Zhao
- Institute for Immunology, Tsinghua University School of Medicine, Tsinghua, Beijing 100084, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xin Lin
- Institute for Immunology, Tsinghua University School of Medicine, Tsinghua, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
43
|
Kather JN, Halama N. Harnessing the innate immune system and local immunological microenvironment to treat colorectal cancer. Br J Cancer 2019; 120:871-882. [PMID: 30936499 PMCID: PMC6734657 DOI: 10.1038/s41416-019-0441-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/20/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022] Open
Abstract
Significant progress in the development of new immunotherapies has led to successful clinical trials for malignant melanoma and non-small cell lung cancer; however, for the majority of solid tumours of the gastrointestinal tract, little or no progress has been seen. The efficacy of immunotherapies is limited by the complexities of a diverse set of immune cells, and interactions between the tumour cells and all other cells in the local microenvironment of solid tumours. A large fraction of immune cells present in and around solid tumours derive from the innate arm of the immune system and using these cells against tumours offers an alternative immunotherapeutic option, especially as current strategies largely harness the adaptive arm of the immune system. This option is currently being investigated and attempts at using the innate immune system for gastrointestinal cancers are showing initial results. Several important factors, including cytokines, chemotherapeutics and the microbiome, influence the plasticity and functionality of innate (myeloid) cells in the microenvironment, and this complexity of regulation has limited translation into successful trials so far. In this review, current concepts of the immunobiology of the innate arm in the tumour microenvironment are presented in the context of clinical translation.
Collapse
Affiliation(s)
- Jakob Nikolas Kather
- Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,German Translational Cancer Consortium (DKTK), Heidelberg, Germany.,Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Niels Halama
- Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany. .,Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany. .,Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Helmholtz Institute for Translational Oncology (HI-TRON), Mainz, Germany.
| |
Collapse
|
44
|
Abstract
The significant contribution of intestinal bacteria for the pathogenesis of colorectal cancer is widely accepted by now. In this issue of Immunity, two articles by Malik et al. (2018) and Wang et al. (2018) highlight the role of commensal fungi, which so far have been underestimated.
Collapse
|
45
|
Zhong X, Chen B, Yang L, Yang Z. Card9 as a critical regulator of tumor development. Cancer Lett 2019; 451:150-155. [PMID: 30872079 DOI: 10.1016/j.canlet.2019.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/18/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Caspase recruitment domain-containing protein 9 (Card9) is a myeloid cell-specific signaling protein that plays a critical role in NF-κB and MAPK activation. This leads to initiation of the inflammatory cytokine cascade, and elicits the host immune response against microbial invasion, especially in fungal infection. Current research indicates that Card9 plays an important role in tumor progression. Here, we review the data from preclinical and clinical studies of Card9 and suggest the potential for Card9-targeted interventions in the prevention or treatment of certain tumors.
Collapse
Affiliation(s)
| | - Bin Chen
- Surgery Department, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Liang Yang
- Nanjing Medical University, The Affiliated Changzhou No.2 People's Hospital, Nanjing Medical University, Nanjing, China
| | - Zhiwen Yang
- Department of Pharmacy, Songjiang Hospital Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
46
|
Hartjes L, Ruland J. CARD9 Signaling in Intestinal Immune Homeostasis and Oncogenesis. Front Immunol 2019; 10:419. [PMID: 30906296 PMCID: PMC6418414 DOI: 10.3389/fimmu.2019.00419] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/18/2019] [Indexed: 12/25/2022] Open
Abstract
Intestinal homeostasis requires a balanced interaction between the host innate immune system and the gut microbiota. A dysregulation of this interdependency can result in inflammatory bowel diseases (IBDs), and this dysregulation is a key pathogenic factor during the development of colorectal cancer. CARD9 is a central signaling molecule in the innate immune system, which is essential for host defense against infection. Moreover, polymorphisms in CARD9 are key risk factors for IBD development, indicating that CARD9 signaling is critical for intestinal immune homeostasis. This review summarizes recent insights into the regulation of CARD9 signaling, its pathophysiological role during IBD development via effects on the microbiota and epithelial regeneration and the pro- and antitumor immune functions of CARD9 during intestinal carcinogenesis.
Collapse
Affiliation(s)
- Lara Hartjes
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Center for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
47
|
Atreya I, Kindermann M, Wirtz S. Innate lymphoid cells in intestinal cancer development. Semin Immunol 2019; 41:101267. [PMID: 30772139 DOI: 10.1016/j.smim.2019.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a highly prominent cause of cancer-related deaths worldwide. Although the functions of immune cells in the colorectal tumor microenvironment are complex and heterogeneous, dysregulated changes in the composition and activation state of immune cells are believed to represent key events supporting the establishment of pro- or anti-tumorigenic immune states. Recently, innate lymphoid cells (ILCs) emerged as central innate immune mediators during both gastrointestinal homeostasis and inflammatory pathologies. Hence, ILCs might also represent promising targets in the context of cancer therapy and are increasingly recognized as innate immune cells with potent immunomodulatory properties. In this review, we summarize the pleiotropic roles of the different ILC subsets for intestinal homeostasis and discuss the recent evidence on their potential involvement in the development and growth of intestinal cancers.
Collapse
Affiliation(s)
- Imke Atreya
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| | - Markus Kindermann
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany.
| |
Collapse
|
48
|
Ruland J, Hartjes L. CARD–BCL-10–MALT1 signalling in protective and pathological immunity. Nat Rev Immunol 2018; 19:118-134. [DOI: 10.1038/s41577-018-0087-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Drummond RA, Franco LM, Lionakis MS. Human CARD9: A Critical Molecule of Fungal Immune Surveillance. Front Immunol 2018; 9:1836. [PMID: 30127791 PMCID: PMC6088205 DOI: 10.3389/fimmu.2018.01836] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022] Open
Abstract
CARD9 is a signaling adaptor protein that is involved in the transduction of signals from a variety of innate pattern recognition receptors, including the C-type lectin receptors and intracellular NOD receptors and nucleic acid sensors. As a result, CARD9 has been shown in animal models to be an important regulator of immunity to bacteria, fungi, and viruses. Studies in humans with autosomal recessive CARD9 deficiency have indicated a highly specific role for this molecule in the activation of antifungal immune responses in the central nervous system, the oral mucosa, and the skin. Moreover, CARD9-dependent functions have recently been indicated to modulate the development of autoimmunity, inflammatory bowel diseases, and cancer. In this mini-review, we highlight the recent studies that have identified several novel functions of CARD9 in various disease contexts, and we summarize the contemporary understanding of the genetics and immunology of human CARD9 deficiency.
Collapse
Affiliation(s)
- Rebecca A Drummond
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Luis M Franco
- Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
50
|
Orchestration of intestinal homeostasis and tolerance by group 3 innate lymphoid cells. Semin Immunopathol 2018; 40:357-370. [PMID: 29737384 PMCID: PMC6060788 DOI: 10.1007/s00281-018-0687-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
Abstract
The gastrointestinal tract is the primary site of exposure to a multitude of microbial, environmental, and dietary challenges. As a result, immune responses in the intestine need to be tightly regulated in order to prevent inappropriate inflammatory responses to exogenous stimuli. Intestinal homeostasis and tolerance are mediated through a multitude of immune mechanisms that act to reinforce barrier integrity, maintain the segregation and balance of commensal microbes, and ensure tissue health and regeneration. Here, we discuss the role of group 3 innate lymphoid cells (ILC3) as key regulators of intestinal health and highlight how increasing evidence implicates dysregulation of this innate immune cell population in the onset or progression of a broad range of clinically relevant pathologies. Finally, we discuss how the next generation of immunotherapeutics may be utilized to target ILC3 in disease and restore gastrointestinal tolerance and tissue health.
Collapse
|