1
|
Kumar R, Kolloli A, Singh P, Shi L, Kupz A, Subbian S. The innate memory response of macrophages to Mycobacterium tuberculosis is shaped by the nature of the antigenic stimuli. Microbiol Spectr 2024; 12:e0047324. [PMID: 38980014 PMCID: PMC11302266 DOI: 10.1128/spectrum.00473-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Innate immune cells, such as macrophages, mount an immune response upon exposure to antigens and pathogens. Emerging evidence shows that macrophages exposed to an antigen can generate a "memory-like" response (a.k.a. trained immunity), which confers a non-specific and enhanced response upon subsequent stimulation with a second antigen/microbe. This trained immunity has been implicated in the enhanced response of macrophages against several invading pathogens. However, the association between the nature of the antigen and the corresponding immune correlate of elicited trained immunity is not fully understood. Similarly, the response of macrophages trained and restimulated with homologous stimulants to subsequent infection by pathogenic Mycobacterium tuberculosis (Mtb) remains unexplored. Here, we report the immune and metabolic profiles of trained immunity in human THP-1-derived macrophages after homologous training and restimulation with BCG, LPS, purified protein Derivative (PPD), heat-killed Mtb strains HN878 (hk-HN), and CDC1551 (hk-CDC). Furthermore, the impact of training on the autophagic and antimicrobial responses of macrophages with or without subsequent infection by clinical Mtb isolates HN878 and CDC1551 was evaluated. Results show that repeated stimulation of macrophages with different antigens displays distinct pro-inflammatory, metabolic, antimicrobial, and autophagy induction profiles. These macrophages also induce a differential antimicrobial response upon infection with clinical Mtb HN878 and CDC1551 isolates. A significantly reduced intracellular bacterial load was noted in the stimulated macrophages, which was augmented by the addition of rapamycin, an autophagy inducer. These observations suggest that the nature of the antigen and the mode of stimulation shape the magnitude and breadth of macrophage innate memory response, which impacts subsequent response to Mtb infection. IMPORTANCE Trained immunity (a.k.a. innate memory response) is a novel concept that has been rapidly emerging as a mechanism underpinning the non-specific immunity of innate immune cells, such as macrophages. However, the association between the nature of the stimuli and the corresponding immune correlate of trained immunity is not fully understood. Similarly, the kinetics of immunological and metabolic characteristics of macrophages upon "training" by the same antigen as primary and secondary stimuli (homologous stimulation) are not fully characterized. Furthermore, the ability of antigens such as purified protein derivative (PPD) and heat-killed-Mtb to induce trained immunity remains unknown. Similarly, the response of macrophages primed and trained by homologous stimulants to subsequent infection by pathogenic Mtb is yet to be reported. In this study, we evaluated the hypothesis that the nature of the stimuli impacts the depth and breadth of trained immunity in macrophages, which differentially affects their response to Mtb infection.
Collapse
Affiliation(s)
- Ranjeet Kumar
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Afsal Kolloli
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Pooja Singh
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Lanbo Shi
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns & Townsville, Queensland, Australia
| | - Selvakumar Subbian
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
2
|
Badaoui A, Sasaninia K, Mohan AS, Beever A, Kachour N, Raien A, Kolloli A, Kumar R, Ramasamy S, Subbian S, Venketaraman V. Immune Responses to Mycobacterium tuberculosis Infection in the Liver of Diabetic Mice. Biomedicines 2024; 12:1370. [PMID: 38927576 PMCID: PMC11202211 DOI: 10.3390/biomedicines12061370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Individuals with uncontrolled diabetes are highly susceptible to tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tb) infection. Novel treatments for TB are needed to address the increased antibiotic resistance and hepatoxicity. Previous studies showed that the administration of liposomal glutathione (L-GSH) can mitigate oxidative stress, bolster a granulomatous response, and diminish the M. tb burden in the lungs of M. tb-infected mice. Nonetheless, the impact of combining L-GSH with conventional TB treatment (RIF) on the cytokine levels and granuloma formation in the livers of diabetic mice remains unexplored. In this study, we evaluated hepatic cytokine profiles, GSH, and tissue pathologies in untreated and L-GSH, RIF, and L-GSH+RIF treated diabetic (db/db) M. tb-infected mice. Our results indicate that treatment of M. tb-infected db/db mice with L-GSH+RIF caused modulation in the levels of pro-inflammatory cytokines and GSH in the liver and mitigation in the granuloma size in hepatic tissue. Supplementation with L-GSH+RIF led to a decrease in the M. tb burden by mitigating oxidative stress, promoting the production of pro-inflammatory cytokines, and restoring the cytokine balance. These findings highlight the potential of L-GSH+RIF combination therapy for addressing active EPTB, offering valuable insights into innovative treatments for M. tb infections.
Collapse
Affiliation(s)
- Ali Badaoui
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (K.S.); (A.S.M.); (A.R.)
| | - Kayvan Sasaninia
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (K.S.); (A.S.M.); (A.R.)
| | - Aishvaryaa Shree Mohan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (K.S.); (A.S.M.); (A.R.)
| | - Abrianna Beever
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO 64106, USA
| | - Nala Kachour
- College of Natural and Agricultural Science, University of California Riverside, Riverside, CA 92521, USA
| | - Anmol Raien
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (K.S.); (A.S.M.); (A.R.)
| | - Afsal Kolloli
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.K.); (R.K.); (S.R.); (S.S.)
| | - Ranjeet Kumar
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.K.); (R.K.); (S.R.); (S.S.)
| | - Santhamani Ramasamy
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.K.); (R.K.); (S.R.); (S.S.)
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.K.); (R.K.); (S.R.); (S.S.)
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (K.S.); (A.S.M.); (A.R.)
| |
Collapse
|
3
|
Klever AM, Alexander KA, Almeida D, Anderson MZ, Ball RL, Beamer G, Boggiatto P, Buikstra JE, Chandler B, Claeys TA, Concha AE, Converse PJ, Derbyshire KM, Dobos KM, Dupnik KM, Endsley JJ, Endsley MA, Fennelly K, Franco-Paredes C, Hagge DA, Hall-Stoodley L, Hayes D, Hirschfeld K, Hofman CA, Honda JR, Hull NM, Kramnik I, Lacourciere K, Lahiri R, Lamont EA, Larsen MH, Lemaire T, Lesellier S, Lee NR, Lowry CA, Mahfooz NS, McMichael TM, Merling MR, Miller MA, Nagajyothi JF, Nelson E, Nuermberger EL, Pena MT, Perea C, Podell BK, Pyle CJ, Quinn FD, Rajaram MVS, Mejia OR, Rothoff M, Sago SA, Salvador LCM, Simonson AW, Spencer JS, Sreevatsan S, Subbian S, Sunstrum J, Tobin DM, Vijayan KKV, Wright CTO, Robinson RT. The Many Hosts of Mycobacteria 9 (MHM9): A conference report. Tuberculosis (Edinb) 2023; 142:102377. [PMID: 37531864 PMCID: PMC10529179 DOI: 10.1016/j.tube.2023.102377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
The Many Hosts of Mycobacteria (MHM) meeting series brings together basic scientists, clinicians and veterinarians to promote robust discussion and dissemination of recent advances in our knowledge of numerous mycobacterial diseases, including human and bovine tuberculosis (TB), nontuberculous mycobacteria (NTM) infection, Hansen's disease (leprosy), Buruli ulcer and Johne's disease. The 9th MHM conference (MHM9) was held in July 2022 at The Ohio State University (OSU) and centered around the theme of "Confounders of Mycobacterial Disease." Confounders can and often do drive the transmission of mycobacterial diseases, as well as impact surveillance and treatment outcomes. Various confounders were presented and discussed at MHM9 including those that originate from the host (comorbidities and coinfections) as well as those arising from the environment (e.g., zoonotic exposures), economic inequality (e.g. healthcare disparities), stigma (a confounder of leprosy and TB for millennia), and historical neglect (a confounder in Native American Nations). This conference report summarizes select talks given at MHM9 highlighting recent research advances, as well as talks regarding the historic and ongoing impact of TB and other infectious diseases on Native American Nations, including those in Southwestern Alaska where the regional TB incidence rate is among the highest in the Western hemisphere.
Collapse
Affiliation(s)
- Abigail Marie Klever
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Kathleen A Alexander
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA; CARACAL/Chobe Research Institute Kasane, Botswana
| | - Deepak Almeida
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD, USA
| | - Matthew Z Anderson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA; Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | | | - Gillian Beamer
- Host Pathogen Interactions and Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Paola Boggiatto
- Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Jane E Buikstra
- Center for Bioarchaeological Research, Arizona State University, Tempe, AZ, USA
| | - Bruce Chandler
- Division of Public Health, Alaska Department of Health, AK, USA
| | - Tiffany A Claeys
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Aislinn E Concha
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Paul J Converse
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD, USA
| | - Keith M Derbyshire
- Division of Genetics, The Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Karen M Dobos
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA
| | - Kathryn M Dupnik
- Center for Global Health, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mark A Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kevin Fennelly
- Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Carlos Franco-Paredes
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA; Hospital Infantil de México Federico Gómez, México, USA
| | | | - Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Don Hayes
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Courtney A Hofman
- Department of Anthropology, University of Oklahoma, Norman, OK, USA; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
| | - Jennifer R Honda
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Natalie M Hull
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Igor Kramnik
- Pulmonary Center, The Department of Medicine, Boston University Chobanian & Aveedisian School of Medicine, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Karen Lacourciere
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Ramanuj Lahiri
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, USA
| | - Elise A Lamont
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Michelle H Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Sandrine Lesellier
- French Agency for Food, Environmental & Occupational Health & Safety (ANSES), Laboratory for Rabies and Wildlife,Nancy, France
| | - Naomi R Lee
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Najmus S Mahfooz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Temet M McMichael
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Marlena R Merling
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Michele A Miller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jyothi F Nagajyothi
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Elizabeth Nelson
- Microbial Paleogenomics Unit, Dept of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Eric L Nuermberger
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD, USA
| | - Maria T Pena
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, USA
| | - Claudia Perea
- Animal & Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, USA
| | - Brendan K Podell
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA
| | - Charlie J Pyle
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Fred D Quinn
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Murugesan V S Rajaram
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Oscar Rosas Mejia
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | | | - Saydie A Sago
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Liliana C M Salvador
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Andrew W Simonson
- Department of Microbiology and Molecular Genetics and the Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John S Spencer
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA
| | - Srinand Sreevatsan
- Pathobiology & Diagnostic Investigation Department, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Selvakumar Subbian
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | | | - David M Tobin
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - K K Vidya Vijayan
- Department of Microbiology and Immunology, Center for AIDS Research, and Children's Research Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caelan T O Wright
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Richard T Robinson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA.
| |
Collapse
|
4
|
Corleis B, Bastian M, Hoffmann D, Beer M, Dorhoi A. Animal models for COVID-19 and tuberculosis. Front Immunol 2023; 14:1223260. [PMID: 37638020 PMCID: PMC10451089 DOI: 10.3389/fimmu.2023.1223260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Respiratory infections cause tremendous morbidity and mortality worldwide. Amongst these diseases, tuberculosis (TB), a bacterial illness caused by Mycobacterium tuberculosis which often affects the lung, and coronavirus disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), stand out as major drivers of epidemics of global concern. Despite their unrelated etiology and distinct pathology, these infections affect the same vital organ and share immunopathogenesis traits and an imperative demand to model the diseases at their various progression stages and localizations. Due to the clinical spectrum and heterogeneity of both diseases experimental infections were pursued in a variety of animal models. We summarize mammalian models employed in TB and COVID-19 experimental investigations, highlighting the diversity of rodent models and species peculiarities for each infection. We discuss the utility of non-human primates for translational research and emphasize on the benefits of non-conventional experimental models such as livestock. We epitomize advances facilitated by animal models with regard to understanding disease pathophysiology and immune responses. Finally, we highlight research areas necessitating optimized models and advocate that research of pulmonary infectious diseases could benefit from cross-fertilization between studies of apparently unrelated diseases, such as TB and COVID-19.
Collapse
Affiliation(s)
- Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Max Bastian
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| |
Collapse
|
5
|
Recent Developments in Mycobacteria-Based Live Attenuated Vaccine Candidates for Tuberculosis. Biomedicines 2022; 10:biomedicines10112749. [PMID: 36359269 PMCID: PMC9687462 DOI: 10.3390/biomedicines10112749] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 02/08/2023] Open
Abstract
Vaccination is an excellent approach to stimulating the host immune response and reducing human morbidity and mortality against microbial infections, such as tuberculosis (TB). Bacillus Calmette-Guerin (BCG) is the most widely administered vaccine in the world and the only vaccine approved by the World Health Organization (WHO) to protect against TB. Although BCG confers "protective" immunity in children against the progression of Mycobacterium tuberculosis (Mtb) infection into active TB, this vaccine is ineffective in protecting adults with active TB manifestations, such as multiple-, extensive-, and total-drug-resistant (MDR/XDR/TDR) cases and the co-existence of TB with immune-compromising health conditions, such as HIV infection or diabetes. Moreover, BCG can cause disease in individuals with HIV infection or other immune compromises. Due to these limitations of BCG, novel strategies are urgently needed to improve global TB control measures. Since live vaccines elicit a broader immune response and do not require an adjuvant, developing recombinant BCG (rBCG) vaccine candidates have received significant attention as a potential replacement for the currently approved BCG vaccine for TB prevention. In this report, we aim to present the latest findings and outstanding questions that we consider worth investigating regarding novel mycobacteria-based live attenuated TB vaccine candidates. We also specifically discuss the important features of two key animal models, mice and rabbits, that are relevant to TB vaccine testing. Our review emphasizes that the development of vaccines that block the reactivation of latent Mtb infection (LTBI) into active TB would have a significant impact in reducing the spread and transmission of Mtb. The results and ideas discussed here are only based on reports from the last five years to keep the focus on recent developments.
Collapse
|
6
|
Beever A, Kachour N, Owens J, Sasaninia K, Kolloli A, Kumar R, Ramasamy S, Sisliyan C, Khamas W, Subbian S, Venketaraman V. L-GSH Supplementation in Conjunction With Rifampicin Augments the Treatment Response to Mycobacterium tuberculosis in a Diabetic Mouse Model. Front Pharmacol 2022; 13:879729. [PMID: 35814213 PMCID: PMC9263396 DOI: 10.3389/fphar.2022.879729] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Both active tuberculosis (TB) and asymptomatic latent Mycobacterium tuberculosis (M. tb) infection (LTBI) cause significant health burdens to humans worldwide. Individuals with immunocompromising health conditions, such as Type 2 Diabetes Mellitus (T2DM), have a weakened ability to control M. tb infection and are more susceptible to reactivation of LTBI to active diseases. T2DM cases are known to have glutathione (GSH) deficiency and impaired immune cell function, including the granulomatous response to M. tb infection. We have previously reported that liposomal glutathione (L-GSH) supplementation can restore the immune cell effector responses of T2DM cases. However, the effects of L-GSH supplementation on the bactericidal activities of first-line anti-TB drug rifampicin (RIF) against M. tb infection have yet to be explored. The aim of this study is to elucidate the effects of L-GSH supplementation in conjunction with RIF treatment during an active M. tb infection in a diabetic mouse model. In this study, we evaluated total and reduced levels of GSH, cytokine profiles, malondialdehyde (MDA) levels, M. tb burden, and granulomatous response in the lungs. We show that L-GSH supplementation caused a significant reduction in M. tb burden in the lungs, decreased oxidative stress, and increased the production of IFN-γ, TNF-α, IL-17, IL-10, and TGF-β1compared to the untreated mice. In addition, L-GSH supplementation in conjunction with RIF treatment achieved better control of M. tb infection in the lungs and significantly reduced the levels of oxidative stress compared to treatment with RIF alone. Moreover, L-GSH in conjunction with RIF significantly increased TGF-β1 levels compared to treatment with RIF alone. These findings suggest potential therapeutic benefits of L-GSH supplementation in conjunction with first-line antibiotic therapy against M. tb infection in individuals with T2DM.
Collapse
Affiliation(s)
- Abrianna Beever
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Nala Kachour
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - James Owens
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Kayvan Sasaninia
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Afsal Kolloli
- Public Health Research Institute(PHRI) Center at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Ranjeet Kumar
- Public Health Research Institute(PHRI) Center at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Santhamani Ramasamy
- Public Health Research Institute(PHRI) Center at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Christina Sisliyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Wael Khamas
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Selvakumar Subbian
- Public Health Research Institute(PHRI) Center at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Vishwanath Venketaraman
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
- *Correspondence: Vishwanath Venketaraman,
| |
Collapse
|
7
|
Effects of Glutathione Diminishment on the Immune Responses against Mycobacterium tuberculosis Infection. APPLIED SCIENCES-BASEL 2022; 11. [PMID: 35371562 PMCID: PMC8972068 DOI: 10.3390/app11178274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mycobacterium tuberculosis (M. tb), the causative agent of tuberculosis (TB), continues to be a global health burden. We have reported that patients with marked deficiency in the production of glutathione (GSH) had impaired granulomatous effector responses against M. tb infection, which were restored when supplementing patients with liposomal GSH (lGSH). However, the effects of GSH deficiency in the lung parenchyma in altering granuloma formation and effector responses against M. tb infection remain unexplored. We aim to elucidate the effects of diethyl maleate (DEM)-induced GSH deficiency during an active M. tb infection in an in vivo mouse model. We assessed for total and reduced GSH levels, malondialdehyde (MDA) levels, cytokine profiles, granuloma formation and M. tb burden. DEM administration significantly diminished total and reduced GSH levels in the lungs and plasma and increased MDA levels in infected mice compared to sham-treated controls. DEM treatment was also associated with an increase in IL-6, TNF-α and ill-formed granulomas in infected mice. Furthermore, M. tb survival was significantly increased along with a higher pulmonary and extrapulmonary bacterial load following DEM treatment. Overall, GSH deficiency led to increased oxidative stress, impaired granuloma response, and increased M. tb survival in infected mice. These findings can provide insight into how GSH deficiency can interfere with the control of M. tb infection and avenues for novel therapeutic approaches.
Collapse
|
8
|
Liposomal Glutathione Helps to Mitigate Mycobacterium tuberculosis Infection in the Lungs. Antioxidants (Basel) 2022; 11:antiox11040673. [PMID: 35453358 PMCID: PMC9031130 DOI: 10.3390/antiox11040673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/13/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb), the causative agent of tuberculosis (TB), is responsible for causing significant morbidity and mortality, especially among individuals with compromised immune systems. We have previously shown that the supplementation of liposomal glutathione (L-GSH) reduces M. tb viability and enhances a Th-1 cytokine response, promoting granuloma formation in human peripheral blood mononuclear cells in vitro. However, the effects of L-GSH supplementation in modulating the immune responses in the lungs during an active M. tb infection have yet to be explored. In this article, we report the effects of L-GSH supplementation during an active M. tb infection in a mouse model of pulmonary infection. We determine the total GSH levels, malondialdehyde (MDA) levels, cytokine profiles, granuloma formation, and M. tb burden in untreated and L-GSH-treated mice over time. In 40 mM L-GSH-supplemented mice, an increase in the total GSH levels was observed in the lungs. When compared to untreated mice, the treatment of M. tb-infected mice with 40 mM and 80 mM L-GSH resulted in a reduction in MDA levels in the lungs. L-GSH treatment also resulted in a significant increase in the levels of IL-12, IFN-γ, IL-2, IL-17, and TNF-α in the lungs, while down-regulating the production of IL-6, IL-10, and TGF-β in the lungs. A reduction in M. tb survival along with a decrease in granuloma size in the lungs of M. tb-infected mice was observed after L-GSH treatment. Our results show that the supplementation of mice with L-GSH led to increased levels of total GSH, which is associated with reduced oxidative stress, increased levels of granuloma-promoting cytokines, and decreased M. tb burden in the lung. These results illustrate how GSH can help mitigate M. tb infection and provide an insight into future therapeutic interventions.
Collapse
|
9
|
Kolloli A, Kumar R, Singh P, Narang A, Kaplan G, Sigal A, Subbian S. Aggregation state of Mycobacterium tuberculosis impacts host immunity and augments pulmonary disease pathology. Commun Biol 2021; 4:1256. [PMID: 34732811 PMCID: PMC8566596 DOI: 10.1038/s42003-021-02769-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/09/2021] [Indexed: 12/27/2022] Open
Abstract
In vitro phagocytosis of Mycobacterium tuberculosis (Mtb) aggregates (Mtb-AG), rather than similar numbers of single bacilli (Mtb-SC), induces host macrophage death and favors bacterial growth. Here, we examined whether aggregation contributes to enhanced Mtb pathogenicity in vivo in rabbit lungs. Rabbits were exposed to infectious aerosols containing mainly Mtb-AG or Mtb-SC. The lung bacterial load, systemic immune response, histology, and immune cell composition were investigated over time. Genome-wide transcriptome analysis, cellular and tissue-level assays, and immunofluorescent imaging were performed on lung tissue to define and compare immune activation and pathogenesis between Mtb-AG and Mtb-SC infection. Lung bacillary loads, disease scores, lesion size, and structure were significantly higher in Mtb-AG than Mtb-SC infected animals. Differences in immune cell distribution and activation were noted in the lungs of the two groups of infected animals. Consistently larger lung granulomas with large aggregates of Mtb, extensive necrotic foci, and elevated matrix metalloproteases expression were observed in Mtb-AG infected rabbits. Our findings suggest that bacillary aggregation increases Mtb fitness for improved growth and accelerates lung inflammation and infected host cell death, thereby exacerbating disease pathology in the lungs.
Collapse
Affiliation(s)
- Afsal Kolloli
- The Public Health Research Institute at New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Ranjeet Kumar
- The Public Health Research Institute at New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Pooja Singh
- The Public Health Research Institute at New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
- Department of Pulmonary, Allergy, and Critical Care Medicine, The University of Alabama at Birmingham, Birmingham, AL35294, USA
| | - Anshika Narang
- The Public Health Research Institute at New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Gilla Kaplan
- University of Cape Town, Cape Town, 7925, South Africa
| | - Alex Sigal
- Africa Health Research Institute, Durban, 4013, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Selvakumar Subbian
- The Public Health Research Institute at New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA.
| |
Collapse
|
10
|
Foster M, Hill PC, Setiabudiawan TP, Koeken VACM, Alisjahbana B, van Crevel R. BCG-induced protection against Mycobacterium tuberculosis infection: Evidence, mechanisms, and implications for next-generation vaccines. Immunol Rev 2021; 301:122-144. [PMID: 33709421 PMCID: PMC8252066 DOI: 10.1111/imr.12965] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/20/2022]
Abstract
The tuberculosis (TB) vaccine Bacillus Calmette-Guérin (BCG) was introduced 100 years ago, but as it provides insufficient protection against TB disease, especially in adults, new vaccines are being developed and evaluated. The discovery that BCG protects humans from becoming infected with Mycobacterium tuberculosis (Mtb) and not just from progressing to TB disease provides justification for considering Mtb infection as an endpoint in vaccine trials. Such trials would require fewer participants than those with disease as an endpoint. In this review, we first define Mtb infection and disease phenotypes that can be used for mechanistic studies and/or endpoints for vaccine trials. Secondly, we review the evidence for BCG-induced protection against Mtb infection from observational and BCG re-vaccination studies, and discuss limitations and variation of this protection. Thirdly, we review possible underlying mechanisms for BCG efficacy against Mtb infection, including alternative T cell responses, antibody-mediated protection, and innate immune mechanisms, with a specific focus on BCG-induced trained immunity, which involves epigenetic and metabolic reprogramming of innate immune cells. Finally, we discuss the implications for further studies of BCG efficacy against Mtb infection, including for mechanistic research, and their relevance to the design and evaluation of new TB vaccines.
Collapse
Affiliation(s)
- Mitchell Foster
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Philip C. Hill
- Centre for International HealthUniversity of OtagoDunedinNew Zealand
| | - Todia Pediatama Setiabudiawan
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
| | - Valerie A. C. M. Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
- Department of Computational Biology for Individualised Infection MedicineCentre for Individualised Infection Medicine (CiiM) & TWINCOREJoint Ventures between The Helmholtz‐Centre for Infection Research (HZI) and The Hannover Medical School (MHH)HannoverGermany
| | - Bachti Alisjahbana
- Tuberculosis Working GroupFaculty of MedicineUniversitas PadjadjaranBandungIndonesia
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
11
|
Yang HJ, Wang D, Wen X, Weiner DM, Via LE. One Size Fits All? Not in In Vivo Modeling of Tuberculosis Chemotherapeutics. Front Cell Infect Microbiol 2021; 11:613149. [PMID: 33796474 PMCID: PMC8008060 DOI: 10.3389/fcimb.2021.613149] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) remains a global health problem despite almost universal efforts to provide patients with highly effective chemotherapy, in part, because many infected individuals are not diagnosed and treated, others do not complete treatment, and a small proportion harbor Mycobacterium tuberculosis (Mtb) strains that have become resistant to drugs in the standard regimen. Development and approval of new drugs for TB have accelerated in the last 10 years, but more drugs are needed due to both Mtb's development of resistance and the desire to shorten therapy to 4 months or less. The drug development process needs predictive animal models that recapitulate the complex pathology and bacterial burden distribution of human disease. The human host response to pulmonary infection with Mtb is granulomatous inflammation usually resulting in contained lesions and limited bacterial replication. In those who develop progressive or active disease, regions of necrosis and cavitation can develop leading to lasting lung damage and possible death. This review describes the major vertebrate animal models used in evaluating compound activity against Mtb and the disease presentation that develops. Each of the models, including the zebrafish, various mice, guinea pigs, rabbits, and non-human primates provides data on number of Mtb bacteria and pathology resolution. The models where individual lesions can be dissected from the tissue or sampled can also provide data on lesion-specific bacterial loads and lesion-specific drug concentrations. With the inclusion of medical imaging, a compound's effect on resolution of pathology within individual lesions and animals can also be determined over time. Incorporation of measurement of drug exposure and drug distribution within animals and their tissues is important for choosing the best compounds to push toward the clinic and to the development of better regimens. We review the practical aspects of each model and the advantages and limitations of each in order to promote choosing a rational combination of them for a compound's development.
Collapse
Affiliation(s)
- Hee-Jeong Yang
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Decheng Wang
- Medical College, China Three Gorges University, Yichang, China.,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Xin Wen
- Medical College, China Three Gorges University, Yichang, China.,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Danielle M Weiner
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, United States
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, United States.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
Subbian S, Singh P, Kolloli A, Nemes E, Scriba T, Hanekom WA, Kaplan G. BCG Vaccination of Infants Confers Mycobacterium tuberculosis Strain-Specific Immune Responses by Leukocytes. ACS Infect Dis 2020; 6:3141-3146. [PMID: 33226778 DOI: 10.1021/acsinfecdis.0c00696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The efficacy of bacille Calmette-Guerin (BCG) vaccination against tuberculosis is highly variable, and protective immunity elicited by BCG is poorly understood. We compared the cytokine/chemokine profiles of peripheral blood mononuclear cells (PBMC) obtained from infants BCG-vaccinated at birth to those of PBMC obtained from infants before (delayed) BCG vaccination. The PBMC from 10-week-old BCG-vaccinated infants released higher levels of pro-inflammatory molecules than PBMCs from the nonvaccinated counterpart. In vitro exposure of PBMCs from BCG-vaccinated infants, but not nonvaccinated infants, to two different Mycobacterium tuberculosis strains showed distinct pro- and anti-inflammatory cytokine/chemokine patterns. Thus, BCG-induced infant immune responses and their potential protective capacity may be shaped by the nature of the infecting Mtb strain.
Collapse
Affiliation(s)
- Selvakumar Subbian
- The Public Health Research Institute at New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, United States
| | - Pooja Singh
- The Public Health Research Institute at New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, United States
- Department of Pulmonary, Allergy, and Critical Care Medicine, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Afsal Kolloli
- The Public Health Research Institute at New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, United States
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Thomas Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Willem A. Hanekom
- Africa Health Research Institute, KwaZulu-Natal Durban 4013, South Africa
| | - Gilla Kaplan
- Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|