1
|
Siratavičiūtė V, Pangonytė D, Utkienė L, Jusienė L, Marcinkevičienė J, Stanionienė Z, Radikė R. Myocardial Angiotensin-Converting Enzyme 2 Protein Expression in Ischemic Heart Failure. Int J Mol Sci 2023; 24:17145. [PMID: 38138974 PMCID: PMC10743033 DOI: 10.3390/ijms242417145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
The angiotensin-converting enzyme 2 (ACE2)-angiotensin-(1-7)-Mas receptor axis plays a significant role in regulating myocardial remodeling and the development of heart failure (HF), with ACE2 being the primary focus. However, contemporary understanding of the membrane-bound form of the human ACE2 protein remains insufficient. The purpose of this study was to determine the expression of ACE2 protein in different cells of the left ventricular myocardium in non-diseased hearts and at various stages of ischemic HF. A total of 103 myocardial tissue samples from the left ventricle underwent quantitative and semi-quantitative immunohistochemical analysis. Upon assessing ACE2 immunostaining in all myocardial cells through unselective digital image analysis, there was no change in the stage A HF group. Nevertheless, the expression of ACE2 membrane protein in cardiomyocytes showed a tendency to increase, while non-cardiomyocyte ACE2 expression decreased significantly (p < 0.001). In the stage B HF group, the intensity of ACE2 immunostaining continued to increase with rising cardiomyocyte ACE2 expression (p < 0.001). Non-cardiomyocyte expression, in contrast, remained similar to that observed in the stage A HF group. In the stages C/D HF group, ACE2 expression reached its highest level in cardiomyocytes (p < 0.001), while ACE2 expression in non-cardiomyocytes was the lowest (p < 0.001). These changes in ACE2 protein levels are associated with left ventricular remodeling in ischemic HF.
Collapse
Affiliation(s)
| | - Dalia Pangonytė
- Laboratory of Cardiac Pathology, Institute of Cardiology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (V.S.); (L.U.); (L.J.); (J.M.); (Z.S.); (R.R.)
| | | | | | | | | | | |
Collapse
|
2
|
Nemoto W, Yamagata R, Nakagawasai O, Tan-No K. Angiotensin-Related Peptides and Their Role in Pain Regulation. BIOLOGY 2023; 12:biology12050755. [PMID: 37237567 DOI: 10.3390/biology12050755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Angiotensin (Ang)-generating system has been confirmed to play an important role in the regulation of fluid balance and blood pressure and is essential for the maintenance of biological functions. Ang-related peptides and their receptors are found throughout the body and exhibit diverse physiological effects. Accordingly, elucidating novel physiological roles of Ang-generating system has attracted considerable research attention worldwide. Ang-generating system consists of the classical Ang-converting enzyme (ACE)/Ang II/AT1 or AT2 receptor axis and the ACE2/Ang (1-7)/MAS1 receptor axis, which negatively regulates AT1 receptor-mediated responses. These Ang system components are expressed in various tissues and organs, forming a local Ang-generating system. Recent findings indicate that changes in the expression of Ang system components under pathological conditions are involved in the development of neuropathy, inflammation, and their associated pain. Here, we summarized the effects of changes in the Ang system on pain transmission in various organs and tissues involved in pain development process.
Collapse
Affiliation(s)
- Wataru Nemoto
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Ryota Yamagata
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Osamu Nakagawasai
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Koichi Tan-No
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| |
Collapse
|
3
|
Vieira TN, Saraiva ALL, Guimarães RM, Luiz JPM, Pinto LG, de Melo Rodrigues Ávila V, Goulart LR, Cunha-Junior JP, McNaughton PA, Cunha TM, Ferreira J, Silva CR. Angiotensin type 2 receptor antagonism as a new target to manage gout. Inflammopharmacology 2022; 30:2399-2410. [PMID: 36173505 DOI: 10.1007/s10787-022-01076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND There is a growing search for therapeutic targets in the treatment of gout. The present study aimed to evaluate the analgesic and anti-inflammatory potential of angiotensin type 2 receptor (AT2R) antagonism in an acute gout attack mouse model. METHODS Male wild-type (WT) C57BL/6 mice either with the AT2R antagonist, PD123319 (10 pmol/joint), or with vehicle injections, or AT2R KO mice, received intra-articular (IA) injection of monosodium urate (MSU) crystals (100 µg/joint), that induce the acute gout attack, and were tested for mechanical allodynia, thermal hyperalgesia, spontaneous nociception and ankle edema development at several times after the injections. To test an involvement of AT2R in joint pain, mice received an IA administration of angiotensin II (0.05-5 nmol/joint) with or without PD123319, and were also evaluated for pain and edema development. Ankle joint tissue samples from mice undergoing the above treatments were assessed for myeloperoxidase activity, IL-1β release, mRNA expression analyses and nitrite/nitrate levels, 4 h after injections. RESULTS AT2R antagonism has robust antinociceptive effects on mechanical allodynia (44% reduction) and spontaneous nociception (56%), as well as anti-inflammatory effects preventing edema formation (45%), reducing myeloperoxidase activity (54%) and IL-1β levels (32%). Additionally, Agtr2tm1a mutant mice have largely reduced painful signs of gout. Angiotensin II administration causes pain and inflammation, which was prevented by AT2R antagonism, as observed in mechanical allodynia 4 h (100%), spontaneous nociception (46%), cold nociceptive response (54%), edema formation (83%), myeloperoxidase activity (48%), and IL-1β levels (89%). PD123319 treatment also reduces NO concentrations (74%) and AT2R mRNA levels in comparison with MSU untreated mice. CONCLUSION Our findings show that AT2R activation contributes to acute pain in experimental mouse models of gout. Therefore, the antagonism of AT2R may be a potential therapeutic option to manage gout arthritis.
Collapse
Affiliation(s)
- Thiago Neves Vieira
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38408-100, Brazil
| | - André L Lopes Saraiva
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38408-100, Brazil
| | - Rafaela Mano Guimarães
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - João Paulo Mesquita Luiz
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Larissa Garcia Pinto
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Veridiana de Melo Rodrigues Ávila
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38408-100, Brazil
| | - Luiz Ricardo Goulart
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38408-100, Brazil
| | - Jair Pereira Cunha-Junior
- Department of Immunology, Institute of Sciences Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, 38405-318, Brazil
| | - Peter Anthony McNaughton
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Thiago Mattar Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Juliano Ferreira
- Graduated Program in Pharmacology, Pharmacology Department, Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88049-900, Brazil
| | - Cassia Regina Silva
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38408-100, Brazil.
- LABITOX, Post-Graduated Program in Genetics and Biochemistry, Biotechnology Institute, Federal University of Uberlândia, Av. Pará 1720-Campus Umuarama, Jardim Umuarama-Bloco 2E-Officeroom 224, Uberlândia, MG, 38408-100, Brazil.
| |
Collapse
|
4
|
Sarkar S, Sen R. Insights into Cardiovascular Defects and Cardiac Epigenome in the Context of COVID-19. EPIGENOMES 2022; 6:epigenomes6020013. [PMID: 35645252 PMCID: PMC9150012 DOI: 10.3390/epigenomes6020013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Although few in number, studies on epigenome of the heart of COVID-19 patients show that epigenetic signatures such as DNA methylation are significantly altered, leading to changes in expression of several genes. It contributes to pathogenic cardiac phenotypes of COVID-19, e.g., low heart rate, myocardial edema, and myofibrillar disarray. DNA methylation studies reveal changes which likely contribute to cardiac disease through unknown mechanisms. The incidence of severe COVID-19 disease, including hospitalization, requiring respiratory support, morbidity, and mortality, is disproportionately higher in individuals with co-morbidities. This poses unprecedented strains on the global healthcare system. While their underlying conditions make patients more susceptible to severe COVID-19 disease, strained healthcare systems, lack of adequate support, or sedentary lifestyles from ongoing lockdowns have proved detrimental to their underlying health conditions, thus pushing them to severe risk of congenital heart disease (CHD) itself. Prophylactic vaccines against COVID-19 have ushered new hope for CHD. A common connection between COVID-19 and CHD is SARS-CoV-2’s host receptor ACE2, because ACE2 regulates and protects organs, including the heart, in various ways. ACE2 is a common therapeutic target against cardiovascular disease and COVID-19 which damages organs. Hence, this review explores the above regarding CHDs, cardiovascular damage, and cardiac epigenetics, in COVID-19 patients.
Collapse
Affiliation(s)
- Shreya Sarkar
- New Brunswick Heart Centre, Saint John Regional Hospital, Saint John, NB E2L 4L2, Canada;
| | - Rwik Sen
- Active Motif, Inc., 1914 Palomar Oaks Way, Suite 150, Carlsbad, CA 92008, USA
- Correspondence:
| |
Collapse
|
5
|
Király K, Karádi DÁ, Zádor F, Mohammadzadeh A, Galambos AR, Balogh M, Riba P, Tábi T, Zádori ZS, Szökő É, Fürst S, Al-Khrasani M. Shedding Light on the Pharmacological Interactions between μ-Opioid Analgesics and Angiotensin Receptor Modulators: A New Option for Treating Chronic Pain. Molecules 2021; 26:6168. [PMID: 34684749 PMCID: PMC8537077 DOI: 10.3390/molecules26206168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
The current protocols for neuropathic pain management include µ-opioid receptor (MOR) analgesics alongside other drugs; however, there is debate on the effectiveness of opioids. Nevertheless, dose escalation is required to maintain their analgesia, which, in turn, contributes to a further increase in opioid side effects. Finding novel approaches to effectively control chronic pain, particularly neuropathic pain, is a great challenge clinically. Literature data related to pain transmission reveal that angiotensin and its receptors (the AT1R, AT2R, and MAS receptors) could affect the nociception both in the periphery and CNS. The MOR and angiotensin receptors or drugs interacting with these receptors have been independently investigated in relation to analgesia. However, the interaction between the MOR and angiotensin receptors has not been excessively studied in chronic pain, particularly neuropathy. This review aims to shed light on existing literature information in relation to the analgesic action of AT1R and AT2R or MASR ligands in neuropathic pain conditions. Finally, based on literature data, we can hypothesize that combining MOR agonists with AT1R or AT2R antagonists might improve analgesia.
Collapse
MESH Headings
- Analgesics/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Chronic Pain/drug therapy
- Humans
- Neuralgia/drug therapy
- Nociception/drug effects
- Pain Management/methods
- Proto-Oncogene Mas
- Receptors, Angiotensin/drug effects
- Receptors, Angiotensin/metabolism
- Receptors, Opioid/agonists
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Dávid Á. Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Ferenc Zádor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (T.T.); (É.S.)
| | - Amir Mohammadzadeh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Tamás Tábi
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (T.T.); (É.S.)
| | - Zoltán S. Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Éva Szökő
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (T.T.); (É.S.)
| | - Susanna Fürst
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| |
Collapse
|
6
|
Cascella M, Del Gaudio A, Vittori A, Bimonte S, Del Prete P, Forte CA, Cuomo A, De Blasio E. COVID-Pain: Acute and Late-Onset Painful Clinical Manifestations in COVID-19 - Molecular Mechanisms and Research Perspectives. J Pain Res 2021; 14:2403-2412. [PMID: 34408485 PMCID: PMC8364364 DOI: 10.2147/jpr.s313978] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/01/2021] [Indexed: 01/08/2023] Open
Abstract
Although the respiratory manifestations of COVID-19 are predominant, signs and symptoms of an extra-pulmonary involvement are usually encompassed among the clinical picture of the disease. Several painful manifestations can occur during the acute phase but also as short- or long-term complications. Myalgia, joint pain, sore throat, abdominal pain, chest pain, and headache usually accompany respiratory symptoms, but they can also occur as isolated clinical findings or can be expressed regardless of the severity of COVID-19. On these premises, given the vast spectrum of clinical manifestations and the complexity of their pathogenesis, it would be more appropriate to refer to "COVID-pain", an umbrella term useful for encompassing all these clinical manifestations in a separate chapter of the disease. In this scenario, we addressed the topic from a molecular perspective, trying to provide explanations for the underlying pathophysiological processes. Consequently, this narrative review is aimed at dissecting the mechanisms of acute and chronic painful manifestations, summarizing fundamental concepts on the matter, controversies, current research gaps, and potential developments in this field.
Collapse
Affiliation(s)
- Marco Cascella
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori-IRCCS-“Fondazione G. Pascale”, Naples, 80131, Italy
| | - Alfredo Del Gaudio
- DSC Anestesia e Rianimazione 2, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013, FG, Italy
| | - Alessandro Vittori
- Department of Anesthesiology and Critical Care, ARCO, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Sabrina Bimonte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori-IRCCS-“Fondazione G. Pascale”, Naples, 80131, Italy
| | - Paola Del Prete
- Direzione Scientifica, Istituto Nazionale Tumori-IRCCS-“Fondazione G. Pascale”, Naples, 80131, Italy
| | - Cira Antonietta Forte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori-IRCCS-“Fondazione G. Pascale”, Naples, 80131, Italy
| | - Arturo Cuomo
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori-IRCCS-“Fondazione G. Pascale”, Naples, 80131, Italy
| | - Elvio De Blasio
- DSC Anestesia e Rianimazione 2, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013, FG, Italy
- Multidisciplinary Emergency Unit for COVID-19 Campania, Naples, 80100, Italy
| |
Collapse
|
7
|
Yamagata R, Nemoto W, Fujita M, Nakagawasai O, Tan-No K. Angiotensin (1-7) Attenuates the Nociceptive Behavior Induced by Substance P and NMDA via Spinal MAS1. Biol Pharm Bull 2021; 44:742-746. [PMID: 33952831 DOI: 10.1248/bpb.b20-01004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intrathecal (i.t.) injection of substance P (SP) and N-methyl-D-aspartate (NMDA) induce transient nociceptive response by activating neurokinin (NK) 1 and NMDA receptors, respectively. We have recently reported that angiotensin (Ang) (1-7), an N-terminal fragment of Ang II, could alleviate several types of pain including neuropathic and inflammatory pain by activating spinal MAS1. Here, we investigated whether Ang (1-7) can inhibit the SP- and NMDA-induced nociceptive response. The nociceptive response induced by an i.t. injection of SP or NMDA was assessed by measuring the duration of hindlimb scratching directed toward the flank, biting and/or licking of the hindpaw or the tail for 5 min. Localization of MAS1 and either NK1 or NMDA receptors in the lumbar superficial dorsal horn was determined by immunohistochemical observation. The nociceptive response induced by SP and NMDA was attenuated by the i.t. co-administration of Ang (1-7) (0.03-3 pmol) in a dose-dependent manner. The inhibitory effects of Ang (1-7) (3 pmol) were attenuated by A779 (100 pmol), a MAS1 antagonist. Moreover, immunohistochemical analysis showed that spinal MAS1 co-localized with NK1 receptors and NMDA receptors on cells in the dorsal horn. Taken together, the i.t. injection of Ang (1-7) attenuated the nociceptive response induced by SP and NMDA via spinal MAS1, which co-localized with NK1 and NMDA receptors. Thus, the spinal Ang (1-7)/MAS1 pathway could represent a therapeutic target to effectively attenuate spinal pain transmission caused by the activation of NK1 or NMDA receptors.
Collapse
Affiliation(s)
- Ryota Yamagata
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Wataru Nemoto
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Maho Fujita
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Osamu Nakagawasai
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Koichi Tan-No
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
8
|
Abstract
Growing evidence implicates the renin-angiotensin system (RAS) in multiple facets of neuropathic pain (NP). This narrative review focuses primarily on the major bioactive RAS peptide, Angiotensin II (Ang II), and its receptors, namely type 1 (AT1R) and type 2 (AT2R). Both receptors are involved in the development of NP and represent potential therapeutic targets. We first discuss the potential role of Ang II receptors in modulation of NP in the central nervous system. Ang II receptor expression is widespread in circuits associated with the perception and modulation of pain, but more studies are required to fully characterize receptor distribution, downstream signaling, and therapeutic potential of targeting the central nervous system RAS in NP. We then describe the peripheral neuronal and nonneuronal distribution of the RAS, and its contribution to NP. Other RAS modulators (such as Ang (1-7)) are briefly reviewed as well. AT1R antagonists are analgesic across different pain models, including NP. Several studies show neuronal protection and outgrowth downstream of AT2R activation, which may lead to the use of AT2R agonists in NP. However, blockade of AT2R results in analgesia. Furthermore, expression of the RAS in the immune system and a growing appreciation of neuroimmune crosstalk in NP add another layer of complexity and therapeutic potential of targeting this pathway. A growing number of human studies also hint at the analgesic potential of targeting Ang II signaling. Altogether, Ang II receptor signaling represents a promising, far-reaching, and novel strategy to treat NP.
Collapse
|
9
|
Zhu H, Zhang L, Ma Y, Zhai M, Xia L, Liu J, Yu S, Duan W. The role of SARS-CoV-2 target ACE2 in cardiovascular diseases. J Cell Mol Med 2021; 25:1342-1349. [PMID: 33443816 PMCID: PMC7875924 DOI: 10.1111/jcmm.16239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2, the virus responsible for the global coronavirus disease (COVID-19) pandemic, attacks multiple organs of the human body by binding to angiotensin-converting enzyme 2 (ACE2) to enter cells. More than 20 million people have already been infected by the virus. ACE2 is not only a functional receptor of COVID-19 but also an important endogenous antagonist of the renin-angiotensin system (RAS). A large number of studies have shown that ACE2 can reverse myocardial injury in various cardiovascular diseases (CVDs) as well as is exert anti-inflammatory, antioxidant, anti-apoptotic and anticardiomyocyte fibrosis effects by regulating transforming growth factor beta, mitogen-activated protein kinases, calcium ions in cells and other major pathways. The ACE2/angiotensin-(1-7)/Mas receptor axis plays a decisive role in the cardiovascular system to combat the negative effects of the ACE/angiotensin II/angiotensin II type 1 receptor axis. However, the underlying mechanism of ACE2 in cardiac protection remains unclear. Some approaches for enhancing ACE2 expression in CVDs have been suggested, which may provide targets for the development of novel clinical therapies. In this review, we aimed to identify and summarize the role of ACE2 in CVDs.
Collapse
Affiliation(s)
- Hanzhao Zhu
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| | - Liyun Zhang
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| | - Yubo Ma
- Department of Dermatology and VenereologyPeking University First HospitaBeijingChina
| | - Mengen Zhai
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| | - Lin Xia
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| | - Jincheng Liu
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| | - Shiqiang Yu
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| | - Weixun Duan
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| |
Collapse
|
10
|
Sakuma W, Nakagawasai O, Nemoto W, Odaira T, Ogawa T, Ohta K, Endo Y, Tan-No K. Antidepressant effect of BE360, a new selective estrogen receptor modulator, activated via CREB/BDNF, Bcl-2 signaling pathways in ovariectomized mice. Behav Brain Res 2020; 393:112764. [PMID: 32535181 DOI: 10.1016/j.bbr.2020.112764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/26/2020] [Accepted: 06/07/2020] [Indexed: 12/12/2022]
Abstract
We have previously reported that the carborane compound BE360, a novel selective estrogen receptor modulator, has a therapeutic potential against dementia. This study aimed to explore the effects and underlying mechanisms of BE360 on depression-like behaviors in ovariectomized (OVX) mice subjected to subchronic stress, which are postmenopausal depression models. BE360 was subcutaneously administrated using a mini-osmotic pump, for 2 weeks. Depression-like behaviors were evaluated using the forced swimming test. Neurogenesis in the hippocampal dentate gyrus (DG) was measured by analyzing cells expressing doublecortin (DCX) following 5-bromo-2'-deoxyuridine (BrdU) uptake. The levels of phosphorylated cyclic-AMP response element-binding protein (p-CREB), brain-derived neurotrophic factor (BDNF), and Bcl-2 were measured using immunohistochemistry or immunoblotting. Depression-like behaviors in OVX + Stress-exposed mice improved after chronic treatment with BE360. BE360 treatment in OVX + Stress-exposed mice increased p-CREB, BDNF, and Bcl-2 expressions in the hippocampus. Immunohistochemistry showed that the number of BrdU/DCX double-positive cells in the DG of the hippocampus, which decreased significantly in OVX + Stress-exposed mice, increased after subchronic treatment with BE360. The present study demonstrates that BE360 exerts antidepressant effects via hippocampal neurogenesis, potentially activated through CREB/BDNF, Bcl-2 signaling pathways. These results indicate that BE360 may have therapeutic potential against postmenopausal depression.
Collapse
Affiliation(s)
- Wakana Sakuma
- Department of Pharmacology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Osamu Nakagawasai
- Department of Pharmacology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Wataru Nemoto
- Department of Pharmacology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Takayo Odaira
- Department of Pharmacology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Takumi Ogawa
- Laboratory of Organic and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Kiminori Ohta
- Laboratory of Organic and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Yasuyuki Endo
- Laboratory of Organic and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Koichi Tan-No
- Department of Pharmacology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| |
Collapse
|
11
|
Patel DM, Bose M, Cooper ME. Glucose and Blood Pressure-Dependent Pathways-The Progression of Diabetic Kidney Disease. Int J Mol Sci 2020; 21:ijms21062218. [PMID: 32210089 PMCID: PMC7139394 DOI: 10.3390/ijms21062218] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
The major clinical associations with the progression of diabetic kidney disease (DKD) are glycemic control and systemic hypertension. Recent studies have continued to emphasize vasoactive hormone pathways including aldosterone and endothelin which suggest a key role for vasoconstrictor pathways in promoting renal damage in diabetes. The role of glucose per se remains difficult to define in DKD but appears to involve key intermediates including reactive oxygen species (ROS) and dicarbonyls such as methylglyoxal which activate intracellular pathways to promote fibrosis and inflammation in the kidney. Recent studies have identified a novel molecular interaction between hemodynamic and metabolic pathways which could lead to new treatments for DKD. This should lead to a further improvement in the outlook of DKD building on positive results from RAAS blockade and more recently newer classes of glucose-lowering agents such as SGLT2 inhibitors and GLP1 receptor agonists.
Collapse
Affiliation(s)
- Devang M. Patel
- Department of Diabetes, Monash University Central, Clinical School, Melbourne, VIC 3004, Australia;
- Correspondence: (D.M.P.); (M.E.C.)
| | - Madhura Bose
- Department of Diabetes, Monash University Central, Clinical School, Melbourne, VIC 3004, Australia;
| | - Mark E. Cooper
- Department of Diabetes, Monash University Central, Clinical School, Melbourne, VIC 3004, Australia;
- Department of Endocrinology and Diabetes, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Correspondence: (D.M.P.); (M.E.C.)
| |
Collapse
|
12
|
Nemoto W, Yamagata R, Nakagawasai O, Nakagawa K, Hung WY, Fujita M, Tadano T, Tan-No K. Effect of spinal angiotensin-converting enzyme 2 activation on the formalin-induced nociceptive response in mice. Eur J Pharmacol 2020; 872:172950. [PMID: 31987711 DOI: 10.1016/j.ejphar.2020.172950] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/30/2022]
Abstract
We have previously demonstrated that the phosphorylation of p38 MAPK, through spinal AT1 receptor activation, is involved in formalin-induced nociception and follows accompanied by the increase in spinal angiotensin (Ang) II levels. We have also found that Ang (1-7), an N-terminal fragment of Ang II generated by ACE2, prevents the Ang II-induced nociceptive behavior via spinal MAS1 and the inhibition of p38 MAPK phosphorylation. Here, we examined whether the ACE2 activator diminazene aceturate (DIZE) can prevent the formalin-induced nociception in mice. The i.t. administration of DIZE attenuated the second, but not the first phase of formalin-induced nociceptive response. An increase in the activity of spinal ACE2 was measured following DIZE administration. The inhibitory effect of DIZE on nociception was abolished by the i.t. co-administration of the MAS1 antagonist A779. The i.t. administration of Ang (1-7) showed a similar effect on the second phase of the response which was also attenuated by A779. Furthermore, DIZE and Ang (1-7) each inhibited the formalin-induced phosphorylation of p38 MAPK on the dorsal lumbar spinal cord. This inhibition was again prevented by A779. ACE2 was expressed in neurons and microglia but absent from astrocytes in the superficial dorsal horn. Our data show that the i.t.-administered DIZE attenuates the second phase of the formalin-induced nociception which is accompanied by the inhibition of p38 MAPK phosphorylation. They also suggest the involvement of MAS1 activation on spinal neurons and microglia in response to the increase in Ang (1-7) following ACE2 activation.
Collapse
Affiliation(s)
- Wataru Nemoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan.
| | - Ryota Yamagata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Osamu Nakagawasai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Koharu Nakagawa
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Wan-Yi Hung
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Maho Fujita
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Takeshi Tadano
- Complementary and Alternative Medicine Clinical Research and Development, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Koichi Tan-No
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| |
Collapse
|
13
|
Yamagata R, Nemoto W, Nakagawasai O, Takahashi K, Tan-No K. Downregulation of spinal angiotensin converting enzyme 2 is involved in neuropathic pain associated with type 2 diabetes mellitus in mice. Biochem Pharmacol 2020; 174:113825. [PMID: 31987854 DOI: 10.1016/j.bcp.2020.113825] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/22/2020] [Indexed: 12/30/2022]
Abstract
We have previously reported that the spinal angiotensin (Ang) system is involved in the modulation of streptozotocin (STZ)-induced diabetic neuropathic pain in mice. An important drawback of this model however is the fact that the neuropathic pain is independent of hyperglycemia and produced by the direct stimulation of peripheral nerves. Here, using the leptin deficient ob/ob mouse as a type 2 diabetic model, we examined whether the spinal Ang system was involved in naturally occuring diabetic neuropathic pain. Blood glucose levels were increased in ob/ob mice at 5-15 weeks of age. Following the hyperglycemia, persistent tactile and thermal hyperalgesia were observed at 11-14 and 9-15 weeks of age, respectively, which was ameliorated by insulin treatment. At 12 weeks of age, the expression of Ang-converting enzyme (ACE) 2 in the spinal plasma membrane fraction was decreased in ob/ob mice. Spinal ACE2 was expressed in neurons and microglia but the number of NeuN-positive neurons was decreased in ob/ob mice. In addition, the intrathecal administration of Ang (1-7) and SB203580, a p38 MAPK inhibitor, attenuated hyperalgesia in ob/ob mice. The phosphorylation of spinal p38 MAPK was also attenuated by Ang (1-7) in ob/ob mice. These inhibitory effects of Ang (1-7) were prevented by A779, a Mas receptor antagonist. In conclusion, we revealed that the Ang (1-7)-generating system is downregulated in ob/ob mice and is accompanied by a loss of ACE2-positive neurons. Furthermore, Ang (1-7) decreased the diabetic neuropathic pain through inhibition of p38 MAPK phosphorylation via spinal Mas receptors.
Collapse
Affiliation(s)
- Ryota Yamagata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Wataru Nemoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Osamu Nakagawasai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Kohei Takahashi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Koichi Tan-No
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| |
Collapse
|
14
|
Aykan DA, Koca TT, Yaman S, Eser N. Angiotensin converting enzyme and neprilysin inhibition alter pain response in dexhamethasone-induced hypertensive rats. Pharmacol Rep 2018; 71:306-310. [PMID: 30826571 DOI: 10.1016/j.pharep.2018.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 10/07/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND We hypothesized that renin-angiotensin system and neprilysin (NEP) inhibition can modulate the nociceptive parameters on hypertensive rats. The aim of this study is to assess the preventive and therapeutic effects of ramipril and sacubitril on the pain hypersensitivities, and their interaction mechanisms with high blood pressure. METHODS Antinociceptive effects of ramipril and sacubitril were compared with those of diclofenac. Threshold of pain assesments were recorded before drugs administration. After a 18 days treatment, normotensive and dexamethasone-induced hypertensive rats were evaluated on thermal hyperalgesia and mechanical allodynia tests. Blood pressure of rats were verified by mean arterial pressure measurement. RESULTS Hypertensive rats showed significantly high pain threshold on thermal plantar test compared to that of normotensives. Among hypertensive rats, pain hypersensitivity was lowest in diclofenac group, followed by sacubitril group, while ramipril caused increased thermal and mechanical hypersensitivities. CONCLUSION We found that NEP inhibition may play a role in nociception in hypertensive rats. NEP inhibitors may be suitable choice for the management of hypertension and pain because of their therapeutic and preventive effects on nociception and arterial blood pressure.
Collapse
Affiliation(s)
- Duygun Altıntaş Aykan
- Department of Pharmacology, Kahramanmaras Sutcu Imam University, Faculty of Medicine, Kahramanmaraş, Turkey.
| | - Tuba Tulay Koca
- Department of Physical Medicine and Rehabilitation, Kahramanmaras Sutcu Imam University, Faculty of Medicine, Kahramanmaraş, Turkey.
| | - Selma Yaman
- Department of Biophysics, Kahramanmaras Sutcu Imam University, Faculty of Medicine, Kahramanmaraş, Turkey.
| | - Nadire Eser
- Department of Pharmacology, Kahramanmaras Sutcu Imam University, Faculty of Medicine, Kahramanmaraş, Turkey.
| |
Collapse
|
15
|
Ogata Y, Nemoto W, Yamagata R, Nakagawasai O, Shimoyama S, Furukawa T, Ueno S, Tan‐No K. Anti‐hypersensitive effect of angiotensin (1‐7) on streptozotocin‐induced diabetic neuropathic pain in mice. Eur J Pain 2018; 23:739-749. [DOI: 10.1002/ejp.1341] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Yoshiki Ogata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences Tohoku Medical and Pharmaceutical University Aoba‐ku, Sendai Japan
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Wataru Nemoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences Tohoku Medical and Pharmaceutical University Aoba‐ku, Sendai Japan
| | - Ryota Yamagata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences Tohoku Medical and Pharmaceutical University Aoba‐ku, Sendai Japan
| | - Osamu Nakagawasai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences Tohoku Medical and Pharmaceutical University Aoba‐ku, Sendai Japan
| | - Shuji Shimoyama
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Tomonori Furukawa
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Shinya Ueno
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Koichi Tan‐No
- Department of Pharmacology, Faculty of Pharmaceutical Sciences Tohoku Medical and Pharmaceutical University Aoba‐ku, Sendai Japan
| |
Collapse
|
16
|
Järve A, Todiras M, Lian X, Filippelli-Silva R, Qadri F, Martin RP, Gollasch M, Bader M. Distinct roles of angiotensin receptors in autonomic dysreflexia following high-level spinal cord injury in mice. Exp Neurol 2018; 311:173-181. [PMID: 30315807 DOI: 10.1016/j.expneurol.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022]
Abstract
Autonomic dysreflexia (AD), a syndrome caused by loss of supraspinal control over sympathetic activity and amplified vascular reflex upon sensory stimuli below injury level, is a major health problem in high-level spinal cord injury (SCI). After supraspinal sympathetic control of the vasculature below the lesion is lost, the renin-angiotensin system (RAS) is thought to be involved in AD by regulating blood pressure and vascular reactivity. In this study, we aimed to assess the role of different RAS receptors during AD following SCI. Therefore, we induced AD by colorectal distention (CRD) in wild-type mice and mice deficient in the RAS components angiotensin (Ang) II type 1a receptor (AT1a) (Agtr1a-/-) and Ang-(1-7) receptor Mas (Mas-/-) four weeks after complete transection of spinal cord at thoracic level 4 (T4). Systemic blood pressure measurements and wire myography technique were performed to assess hemodynamics and the reactivity of peripheral arteries, respectively. CRD increased mean arterial blood pressure (MAP) and decreased heart rate (HR) in all three animal groups. However, we found less increases in MAP in Mas-/- mice compared to control mice after CRD, whereas AT1a deficiency did not affect the hemodynamic response. We found that the reactivity of wild-type and Mas-/- mesenteric arteries, which are innervated from ganglia distal but close to thoracic level T4, was diminished in response to Ang II in AD after T4-SCI, but this difference was not observed in the absence of AT1a receptors. CRD did not influence the reactivity of femoral arteries which are innervated from ganglia more distal to thoracic level T4, in response to Ang II in AD. In conclusion, we identified a specific role of the Ang-(1-7) receptor Mas in regulating the systemic blood pressure increase in AD in T4-SCI mice. Furthermore, AT1a signaling is not involved in this hemodynamic response, but underlies increased vascular reactivity in mesenteric arteries in response to Ang II, where it may contribute to adaptive changes in regional blood flow.
Collapse
Affiliation(s)
- Anne Järve
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany.
| | - Mihail Todiras
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Xiaoming Lian
- Experimental and Clinical Research Center (ECRC), Charité Medical Faculty and Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Rafael Filippelli-Silva
- Department of Biophysics, UNIFESP Universidade Federal de São Paulo, São Paulo, São Paulo 04039-032, Brazil
| | - Fatimunnisa Qadri
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Renan P Martin
- Department of Biophysics, UNIFESP Universidade Federal de São Paulo, São Paulo, São Paulo 04039-032, Brazil; Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC), Charité Medical Faculty and Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany; Nephrology/Intensive Care, Virchow Klinikum, Charité - University Medicine, Berlin, Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Institute for Biology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
17
|
Nemoto W. Behavioral and Molecular Pharmacological Study of the Role of Angiotensin II in Spinal Pain Transmission. YAKUGAKU ZASSHI 2018; 138:1235-1240. [DOI: 10.1248/yakushi.18-00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Wataru Nemoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
18
|
Abstract
Many cancerous solid tumors metastasize to the bone and induce pain (cancer-induced bone pain [CIBP]). Cancer-induced bone pain is often severe because of enhanced inflammation, rapid bone degradation, and disease progression. Opioids are prescribed to manage this pain, but they may enhance bone loss and increase tumor proliferation, further compromising patient quality of life. Angiotensin-(1-7) (Ang-(1-7)) binds and activates the Mas receptor (MasR). Angiotensin-(1-7)/MasR activation modulates inflammatory signaling after acute tissue insult, yet no studies have investigated whether Ang-(1-7)/MasR play a role in CIBP. We hypothesized that Ang-(1-7) inhibits CIBP by targeting MasR in a murine model of breast CIBP. 66.1 breast cancer cells were implanted into the femur of BALB/cAnNHsd mice as a model of CIBP. Spontaneous and evoked pain behaviors were assessed before and after acute and chronic administration of Ang-(1-7). Tissues were collected from animals for ex vivo analyses of MasR expression, tumor burden, and bone integrity. Cancer inoculation increased spontaneous pain behaviors by day 7 that were significantly reduced after a single injection of Ang-(1-7) and after sustained administration. Preadministration of A-779 a selective MasR antagonist prevented this reduction, whereas pretreatment with the AT2 antagonist had no effect; an AT1 antagonist enhanced the antinociceptive activity of Ang-(1-7) in CIBP. Repeated Ang-(1-7) administration did not significantly change tumor burden or bone remodeling. Data here suggest that Ang-(1-7)/MasR activation significantly attenuates CIBP, while lacking many side effects seen with opioids. Thus, Ang-(1-7) may be an alternative therapeutic strategy for the nearly 90% of patients with advanced-stage cancer who experience excruciating pain.
Collapse
|
19
|
Nemoto W, Yamagata R, Ogata Y, Nakagawasai O, Tadano T, Tan-No K. Inhibitory effect of angiotensin (1-7) on angiotensin III-induced nociceptive behaviour in mice. Neuropeptides 2017; 65:71-76. [PMID: 28559062 DOI: 10.1016/j.npep.2017.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/24/2017] [Accepted: 05/21/2017] [Indexed: 12/14/2022]
Abstract
We have previously demonstrated that the intrathecal (i.t.) administration of angiotensin (Ang) II into mice produces a nociceptive behaviour consisting of scratching, biting and licking accompanied by the phosphorylation of p38 MAPK in the spinal cord, which was mediated through AT1 receptors. Both the p38 MAPK phosphorylation and subsequent nociceptive behaviour were attenuated by the i.t. co-administration of Ang (1-7), an N-terminal fragment of Ang II, that acted via Mas receptors. On the other hand, a C-terminal fragment of Ang II, namely Ang III, was also shown to induce a nociceptive behaviour by acting upon AT1 receptors on spinal astrocytes and neurons, and was found to be more potent than Ang II. However, the inhibitory effect of Ang (1-7) on the Ang III-induced nociceptive behaviour remains unclear. Thus, here we examined whether Ang (1-7) can attenuate the Ang III-induced nociceptive behaviour and activation of spinal p38 MAPK. The i.t. administration of Ang (1-7) (1-100fmol) dose-dependently attenuated the Ang III (1pmol)-induced nociceptive behaviour in mice. Moreover, the inhibitory effect of Ang (1-7) at a dose of 100fmol was prevented by A779 (30fmol), a Mas receptor antagonist. Western blot analysis showed that the phosphorylation of p38 MAPK induced by the i.t. administration of Ang III (1pmol) was also attenuated by Ang (1-7) (100fmol), and this inhibition was prevented by A779 (30fmol). Furthermore, we showed that in the lumbar superficial dorsal horn, Mas receptors are expressed in neurons and microglia but absent from astrocytes. Together, these results suggest that the i.t. administration of Ang (1-7) attenuates the nociceptive behaviour and accompanying p38 MAPK phosphorylation induced by Ang III, and that this effect is likely mediated through Mas receptors on spinal neurons.
Collapse
Affiliation(s)
- Wataru Nemoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Ryota Yamagata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Yoshiki Ogata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Osamu Nakagawasai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Takeshi Tadano
- Department of Health Care Medical Research, Venture Business Laboratory, Kanazawa University, Kanazawa 920-1192, Japan
| | - Koichi Tan-No
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| |
Collapse
|
20
|
Wang J, He W, Guo L, Zhang Y, Li H, Han S, Shen D. The ACE2-Ang (1-7)-Mas receptor axis attenuates cardiac remodeling and fibrosis in post-myocardial infarction. Mol Med Rep 2017; 16:1973-1981. [PMID: 28656296 PMCID: PMC5561970 DOI: 10.3892/mmr.2017.6848] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
Myocardial remodeling serves an important role in the pathophysiology of coronary heart disease. The angiotensin-converting enzyme (ACE)2-angiotensin-(1–7) [Ang (1–7)]-Mas receptor (MasR) axis is a key regulator in myocardial remodeling and development of heart failure. To investigate how ACE2-Ang-(1–7)-MasR axis function on myocardial remodeling and cardiac fibrosis in post-myocardial infarction (MI), male Sprague-Dawley rats (weight, 200±20 g) were used to establish the model of myocardial infarction by ligating the left coronary artery. The present study suggests that telmisartan (Tel) and olmesartan (Olm) (5 mg/kg/d) can inhibit myocardial remodeling of post-myocardial infarction through the ACE2-Ang (1–7)-MasR pathway. Administration of Tel or Olm was demonstrated to significantly inhibit collagen deposition using Masson staining. In addition, telmisartan and olmesartan was indicated to antagonize angiotensin II (Ang II) and upregulate ACE2, MasR, Ang (1–7) expression in myocardial tissue using immunoassay and ELISA test, and the effect of Olm was more marked than that of Tel at the same dosage. Simultaneously, compared with the MI or Sham group, the mRNA and protein expression of ACE2, Ang II and MasR in myocardial tissue demonstrated a remarkable increase in the Olm group, when compared with the Tel group. Taken together, our data demonstrated that ACE2-Ang (1–7)-MasR axis may present a potential protective role in the development of myocardial remodeling and may provide a new target for drug development of cardiac fibrosis. In conclusion, Olm is superior to Tel in inhibiting myocardial local Ang II level reducing myocardial collagen deposition and improving myocardial remodeling by upregulating the expression of ACE2, Ang (1–7) and MasR.
Collapse
Affiliation(s)
- Juan Wang
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830001, P.R. China
| | - Wen He
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830001, P.R. China
| | - Liping Guo
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830001, P.R. China
| | - Yin Zhang
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830001, P.R. China
| | - Hui Li
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830001, P.R. China
| | - Suxia Han
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830001, P.R. China
| | - Difei Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
21
|
Karnik SS, Singh KD, Tirupula K, Unal H. Significance of angiotensin 1-7 coupling with MAS1 receptor and other GPCRs to the renin-angiotensin system: IUPHAR Review 22. Br J Pharmacol 2017; 174:737-753. [PMID: 28194766 PMCID: PMC5387002 DOI: 10.1111/bph.13742] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
Angiotensins are a group of hormonal peptides and include angiotensin II and angiotensin 1-7 produced by the renin angiotensin system. The biology, pharmacology and biochemistry of the receptors for angiotensins were extensively reviewed recently. In the review, the receptor nomenclature committee was not emphatic on designating MAS1 as the angiotensin 1-7 receptor on the basis of lack of classical G protein signalling and desensitization in response to angiotensin 1-7, as well as a lack of consensus on confirmatory ligand pharmacological analyses. A review of recent publications (2013-2016) on the rapidly progressing research on angiotensin 1-7 revealed that MAS1 and two additional receptors can function as 'angiotensin 1-7 receptors', and this deserves further consideration. In this review we have summarized the information on angiotensin 1-7 receptors and their crosstalk with classical angiotensin II receptors in the context of the functions of the renin angiotensin system. It was concluded that the receptors for angiotensin II and angiotensin 1-7 make up a sophisticated cross-regulated signalling network that modulates the endogenous protective and pathogenic facets of the renin angiotensin system.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
| | | | - Kalyan Tirupula
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
- Biological E Limited, ShamirpetHyderabadIndia
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
- Department of Basic Sciences, Faculty of Pharmacy and Betul Ziya Eren Genome and Stem Cell CenterErciyes UniversityKayseriTurkey
| |
Collapse
|
22
|
Lind AL, Emami Khoonsari P, Sjödin M, Katila L, Wetterhall M, Gordh T, Kultima K. Spinal Cord Stimulation Alters Protein Levels in the Cerebrospinal Fluid of Neuropathic Pain Patients: A Proteomic Mass Spectrometric Analysis. Neuromodulation 2017; 19:549-62. [PMID: 27513633 DOI: 10.1111/ner.12473] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Electrical neuromodulation by spinal cord stimulation (SCS) is a well-established method for treatment of neuropathic pain. However, the mechanism behind the pain relieving effect in patients remains largely unknown. In this study, we target the human cerebrospinal fluid (CSF) proteome, a little investigated aspect of SCS mechanism of action. METHODS Two different proteomic mass spectrometry protocols were used to analyze the CSF of 14 SCS responsive neuropathic pain patients. Each patient acted as his or her own control and protein content was compared when the stimulator was turned off for 48 hours, and after the stimulator had been used as normal for three weeks. RESULTS Eighty-six proteins were statistically significantly altered in the CSF of neuropathic pain patients using SCS, when comparing the stimulator off condition to the stimulator on condition. The top 12 of the altered proteins are involved in neuroprotection (clusterin, gelsolin, mimecan, angiotensinogen, secretogranin-1, amyloid beta A4 protein), synaptic plasticity/learning/memory (gelsolin, apolipoprotein C1, apolipoprotein E, contactin-1, neural cell adhesion molecule L1-like protein), nociceptive signaling (neurosecretory protein VGF), and immune regulation (dickkopf-related protein 3). CONCLUSION Previously unknown effects of SCS on levels of proteins involved in neuroprotection, nociceptive signaling, immune regulation, and synaptic plasticity are demonstrated. These findings, in the CSF of neuropathic pain patients, expand the picture of SCS effects on the neurochemical environment of the human spinal cord. An improved understanding of SCS mechanism may lead to new tracks of investigation and improved treatment strategies for neuropathic pain.
Collapse
Affiliation(s)
- Anne-Li Lind
- Department of Surgical Sciences, Anaesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Payam Emami Khoonsari
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Marcus Sjödin
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala//GE Healthcare, Sweden
| | - Lenka Katila
- Department of Surgical Sciences, Anaesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Magnus Wetterhall
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala//GE Healthcare, Sweden
| | - Torsten Gordh
- Department of Surgical Sciences, Anaesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Ogata Y, Nemoto W, Nakagawasai O, Yamagata R, Tadano T, Tan-No K. Involvement of Spinal Angiotensin II System in Streptozotocin-Induced Diabetic Neuropathic Pain in Mice. Mol Pharmacol 2016; 90:205-13. [DOI: 10.1124/mol.116.104133] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/06/2016] [Indexed: 01/13/2023] Open
|
24
|
Machado-Silva A, Passos-Silva D, Santos RA, Sinisterra RD. Therapeutic uses for Angiotensin-(1-7). Expert Opin Ther Pat 2016; 26:669-78. [PMID: 27121991 DOI: 10.1080/13543776.2016.1179283] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Angiotensin-(1-7) is a key component of the Renin-Angiotensin System, which can counter-regulate several deleterious effects caused by angiotensin II. Due to the potential for therapeutic use, several of its actions are specifically described in patents. AREAS COVERED In this review, the authors describe a plethora of therapeutic uses for Angiotensin-(1-7), claimed and supported by experimental evidence in patent documents and applications. EXPERT OPINION The clinical potential of Angiotensin-(1-7) as a therapeutic agent to treat several pathologies is evidenced by the variety of patents and clinical trials involving this peptide. Cancer treatment is one of the most advanced therapeutic areas, but clinical studies are also available in several other areas, such as cardiovascular, hematological, transplantation, surgical and medical procedures.
Collapse
Affiliation(s)
- Alice Machado-Silva
- a Fundação Oswaldo Cruz , Centro de Desenvolvimento Tecnológico em Saúde (CDTS) , Rio de Janeiro , Brazil
| | - Danielle Passos-Silva
- b Instituto de Ciências Biológicas, Departamento de Fisiologia e Biofísica , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Robson Augusto Santos
- b Instituto de Ciências Biológicas, Departamento de Fisiologia e Biofísica , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Rubén Dario Sinisterra
- c Instituto de Ciências Exatas, Departamento de Química , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
25
|
Nemoto W, Ogata Y, Nakagawasai O, Yaoita F, Tadano T, Tan-No K. Involvement of p38 MAPK activation mediated through AT1 receptors on spinal astrocytes and neurons in angiotensin II- and III-induced nociceptive behavior in mice. Neuropharmacology 2015. [DOI: 10.1016/j.neuropharm.2015.07.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Araiza-Saldaña CI, Pedraza-Priego EF, Torres-López JE, Rocha-González HI, Castañeda-Corral G, Hong-Chong E, Granados-Soto V. Fosinopril Prevents the Development of Tactile Allodynia in a Streptozotocin-Induced Diabetic Rat Model. Drug Dev Res 2015; 76:442-9. [DOI: 10.1002/ddr.21280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/22/2015] [Indexed: 01/01/2023]
Affiliation(s)
| | - Erick Fabián Pedraza-Priego
- División Académica de Ciencias de la Salud; Universidad Juárez Autónoma de Tabasco; Villahermosa Tabasco Mexico
| | - Jorge Elías Torres-López
- División Académica de Ciencias de la Salud; Universidad Juárez Autónoma de Tabasco; Villahermosa Tabasco Mexico
| | - Héctor Isaac Rocha-González
- Sección de Estudios de Posgrado e Investigación; Escuela Superior de Medicina, Instituto Politécnico Nacional; México D.F. Mexico
| | | | - Enrique Hong-Chong
- Departamento de Farmacobiología; Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur.; México D.F. Mexico
| | - Vinicio Granados-Soto
- Departamento de Farmacobiología; Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur.; México D.F. Mexico
| |
Collapse
|
27
|
Mendoza-Torres E, Oyarzún A, Mondaca-Ruff D, Azocar A, Castro PF, Jalil JE, Chiong M, Lavandero S, Ocaranza MP. ACE2 and vasoactive peptides: novel players in cardiovascular/renal remodeling and hypertension. Ther Adv Cardiovasc Dis 2015; 9:217-37. [PMID: 26275770 DOI: 10.1177/1753944715597623] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key component of cardiovascular physiology and homeostasis due to its influence on the regulation of electrolyte balance, blood pressure, vascular tone and cardiovascular remodeling. Deregulation of this system contributes significantly to the pathophysiology of cardiovascular and renal diseases. Numerous studies have generated new perspectives about a noncanonical and protective RAS pathway that counteracts the proliferative and hypertensive effects of the classical angiotensin-converting enzyme (ACE)/angiotensin (Ang) II/angiotensin type 1 receptor (AT1R) axis. The key components of this pathway are ACE2 and its products, Ang-(1-7) and Ang-(1-9). These two vasoactive peptides act through the Mas receptor (MasR) and AT2R, respectively. The ACE2/Ang-(1-7)/MasR and ACE2/Ang-(1-9)/AT2R axes have opposite effects to those of the ACE/Ang II/AT1R axis, such as decreased proliferation and cardiovascular remodeling, increased production of nitric oxide and vasodilation. A novel peptide from the noncanonical pathway, alamandine, was recently identified in rats, mice and humans. This heptapeptide is generated by catalytic action of ACE2 on Ang A or through a decarboxylation reaction on Ang-(1-7). Alamandine produces the same effects as Ang-(1-7), such as vasodilation and prevention of fibrosis, by interacting with Mas-related GPCR, member D (MrgD). In this article, we review the key roles of ACE2 and the vasoactive peptides Ang-(1-7), Ang-(1-9) and alamandine as counter-regulators of the ACE-Ang II axis as well as the biological properties that allow them to regulate blood pressure and cardiovascular and renal remodeling.
Collapse
Affiliation(s)
- Evelyn Mendoza-Torres
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alejandra Oyarzún
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - David Mondaca-Ruff
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrés Azocar
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo F Castro
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile Division Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge E Jalil
- Division Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - María Paz Ocaranza
- Advanced Center for Chronic Diseases(ACCDiS), Facultad de Medicina, PontificiaUniversidad Católica de Chile, Santiago, Chile.Division Enfermedades Cardiovasculares,Facultad de Medicina, Pontificia UniversidadCatólica de Chile, Santiago, Chile
| |
Collapse
|
28
|
Endotoxin-induced skeletal muscle wasting is prevented by angiotensin-(1-7) through a p38 MAPK-dependent mechanism. Clin Sci (Lond) 2015; 129:461-76. [PMID: 25989282 DOI: 10.1042/cs20140840] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/19/2015] [Indexed: 12/19/2022]
Abstract
Skeletal muscle atrophy induced during sepsis syndrome produced by endotoxin in the form of LPS (lipopolysaccharide), is a pathological condition characterized by the loss of strength and muscle mass, an increase in MHC (myosin heavy chain) degradation, and an increase in the expression of atrogin-1 and MuRF-1 (muscle-specific RING-finger protein 1), two ubiquitin E3 ligases belonging to the ubiquitin-proteasome system. Ang-(1-7) [Angiotensin-(1-7)], through its Mas receptor, has beneficial effects in skeletal muscle. We evaluated in vivo the role of Ang-(1-7) and Mas receptor on the muscle wasting induced by LPS injection into C57BL/10J mice. In vitro studies were performed in murine C2C12 myotubes and isolated myofibres from EDL (extensor digitorum longus) muscle. In addition, the participation of p38 MAPK (mitogen-activated protein kinase) in the Ang-(1-7) effect on the LPS-induced muscle atrophy was evaluated. Our results show that Ang-(1-7) prevents the decrease in the diameter of myofibres and myotubes, the decrease in muscle strength, the diminution in MHC levels and the induction of atrogin-1 and MuRF-1 expression, all of which are induced by LPS. These effects were reversed by using A779, a Mas antagonist. Ang-(1-7) exerts these anti-atrophic effects at least in part by inhibiting the LPS-dependent activation of p38 MAPK both in vitro and in vivo. We have demonstrated for the first time that Ang-(1-7) counteracts the skeletal muscle atrophy induced by endotoxin through a mechanism dependent on the Mas receptor that involves a decrease in p38 MAPK phosphorylation. The present study indicates that Ang-(1-7) is a novel molecule with a potential therapeutic use to improve muscle wasting during endotoxin-induced sepsis syndrome.
Collapse
|
29
|
Kaur P, Muthuraman A, Kaur M. The implications of angiotensin-converting enzymes and their modulators in neurodegenerative disorders: current and future perspectives. ACS Chem Neurosci 2015; 6:508-21. [PMID: 25680080 DOI: 10.1021/cn500363g] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Angiotensin converting enzyme (ACE) is a dipeptidyl peptidase transmembrane bound enzyme. Generally, ACE inhibitors are used for the cardiovascular disorders. ACE inhibitors are primary agents for the management of hypertension, so these cannot be avoided for further use. The present Review focuses on the implications of angiotensin converting enzyme inhibitors in neurodegenerative disorders such as dementia, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, stroke, and diabetic neuropathy. ACE inhibitors such as ramipril, captopril, perindopril, quinapril, lisinopril, enalapril, and trandolapril have been documented to ameliorate the above neurodegenerative disorders. Neurodegeneration occurs not only by angiotensin II, but also by other endogenous factors, such as the formation of free radicals, amyloid beta, immune reactions, and activation of calcium dependent enzymes. ACE inhibitors interact with the above cellular mechanisms. Thus, these may act as a promising factor for future medicine for neurological disorders beyond the cardiovascular actions. Central acting ACE inhibitors can be useful in the future for the management of neuropathic pain due to following actions: (i) ACE-2 converts angiotensinogen to angiotensin(1-7) (hepatapeptide) which produces neuroprotective action; (ii) ACE inhibitors downregulate kinin B1 receptors in the peripheral nervous system which is responsible for neuropathic pain. However, more extensive research is required in the field of neuropathic pain for the utilization of ACE inhibitors in human.
Collapse
Affiliation(s)
- Parneet Kaur
- Department of Pharmacology and Toxicology, Neurodegenerative Research Division, Akal College of Pharmacy & Technical Education, Mastuana Sahib, Sangrur-148001, Punjab, India
| | - Arunachalam Muthuraman
- Department of Pharmacology and Toxicology, Neurodegenerative Research Division, Akal College of Pharmacy & Technical Education, Mastuana Sahib, Sangrur-148001, Punjab, India
| | - Manjinder Kaur
- Department of Pharmacology and Toxicology, Neurodegenerative Research Division, Akal College of Pharmacy & Technical Education, Mastuana Sahib, Sangrur-148001, Punjab, India
| |
Collapse
|
30
|
The intrathecal administration of losartan, an AT1 receptor antagonist, produces an antinociceptive effect through the inhibiton of p38 MAPK phosphorylation in the mouse formalin test. Neurosci Lett 2015; 585:17-22. [DOI: 10.1016/j.neulet.2014.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 11/23/2022]
|
31
|
Kaur P, Muthuraman A, Kaur J. Ameliorative potential of angiotensin-converting enzyme inhibitor (ramipril) on chronic constriction injury of sciatic nerve induced neuropathic pain in mice. J Renin Angiotensin Aldosterone Syst 2014; 16:103-12. [DOI: 10.1177/1470320314556171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/09/2014] [Indexed: 01/12/2023] Open
Affiliation(s)
- Parneet Kaur
- Department of Pharmacology, Akal College of Pharmacy & Technical Education, Punjab, India
| | - Arunachalam Muthuraman
- Department of Pharmacology, Akal College of Pharmacy & Technical Education, Punjab, India
| | - Jaspreet Kaur
- Department of Pharmacology, Akal College of Pharmacy & Technical Education, Punjab, India
| |
Collapse
|