1
|
Vasilakis G, Roidouli C, Karayannis D, Giannakis N, Rondags E, Chevalot I, Papanikolaou S. Study of Different Parameters Affecting Production and Productivity of Polyunsaturated Fatty Acids (PUFAs) and γ-Linolenic Acid (GLA) by Cunninghamella elegans Through Glycerol Conversion in Shake Flasks and Bioreactors. Microorganisms 2024; 12:2097. [PMID: 39458406 PMCID: PMC11510017 DOI: 10.3390/microorganisms12102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Microbial cultures repurposing organic industrial residues for value-added metabolite production is pivotal for sustainable resource use. Highlighting polyunsaturated fatty acids (PUFAs), particularly gamma-linolenic acid (GLA), renowned for their nutritional and therapeutic value. Notably, Zygomycetes' filamentous fungi harbor abundant GLA-rich lipid content, furthering their relevance in this approach. In this study, the strain C. elegans NRRL Y-1392 was evaluated for its capability to metabolize glycerol and produce lipids rich in GLA under different culture conditions. Various carbon-to-nitrogen ratios (C/N = 11.0, 110.0, and 220.0 mol/mol) were tested in batch-flask cultivations. The highest GLA production of 224.0 mg/L (productivity equal to 2.0 mg/L/h) was observed under nitrogen excess conditions, while low nitrogen content promoted lipid accumulation (0.59 g of lipids per g of dry biomass) without yielding more PUFAs and GLA. After improving the C/N ratio at 18.3 mol/mol, even higher PUFA (600 mg/L) and GLA (243 mg/L) production values were recorded. GLA content increased when the fungus was cultivated at 12 °C (15.5% w/w compared to 12.8% w/w at 28 °C), but productivity values decreased significantly due to prolonged cultivation duration. An attempt to improve productivity by increasing the initial spore population did not yield the expected results. The successful scale-up of fungal cultivations is evidenced by achieving consistent results (compared to flask experiments under corresponding conditions) in both laboratory-scale (Working Volume-Vw = 1.8 L; C/N = 18.3 mol/mol) and semi-pilot-scale (Vw = 15.0 L; C/N = 110.0 mol/mol) bioreactor experiments. To the best of our knowledge, cultivation of the fungus Cunninghamella elegans in glycerol-based substrates, especially in 20 L bioreactor experiments, has never been previously reported in the international literature. The successful scale-up of the process in a semi-pilot-scale bioreactor illustrates the potential for industrializing the bioprocess.
Collapse
Affiliation(s)
- Gabriel Vasilakis
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (G.V.); (C.R.); (D.K.); (N.G.)
- Laboratory of Reactions and Chemical Engineering, National School of Agronomy and Food Industries (E.N.S.A.I.A.), University of Lorraine, Cours Léopold 34, 54000 Nancy, France; (E.R.); (I.C.)
| | - Christina Roidouli
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (G.V.); (C.R.); (D.K.); (N.G.)
| | - Dimitris Karayannis
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (G.V.); (C.R.); (D.K.); (N.G.)
- Laboratory of Reactions and Chemical Engineering, National School of Agronomy and Food Industries (E.N.S.A.I.A.), University of Lorraine, Cours Léopold 34, 54000 Nancy, France; (E.R.); (I.C.)
| | - Nikos Giannakis
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (G.V.); (C.R.); (D.K.); (N.G.)
| | - Emmanuel Rondags
- Laboratory of Reactions and Chemical Engineering, National School of Agronomy and Food Industries (E.N.S.A.I.A.), University of Lorraine, Cours Léopold 34, 54000 Nancy, France; (E.R.); (I.C.)
| | - Isabelle Chevalot
- Laboratory of Reactions and Chemical Engineering, National School of Agronomy and Food Industries (E.N.S.A.I.A.), University of Lorraine, Cours Léopold 34, 54000 Nancy, France; (E.R.); (I.C.)
| | - Seraphim Papanikolaou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (G.V.); (C.R.); (D.K.); (N.G.)
- Laboratory of Reactions and Chemical Engineering, National School of Agronomy and Food Industries (E.N.S.A.I.A.), University of Lorraine, Cours Léopold 34, 54000 Nancy, France; (E.R.); (I.C.)
| |
Collapse
|
2
|
Bejenari M, Spedtsberg EML, Mathiesen J, Jeppesen AC, Cernat L, Toussaint A, Apostol C, Stoianov V, Pedersen TB, Nielsen MR, Sørensen JL. First-class - biosynthesis of 6-MSA and bostrycoidin type I polyketides in Yarrowia lipolytica. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1327777. [PMID: 38586602 PMCID: PMC10995274 DOI: 10.3389/ffunb.2024.1327777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/09/2024] [Indexed: 04/09/2024]
Abstract
Fungal polyketides are a large group of secondary metabolites, valuable due to their diverse spectrum of pharmacological activities. Polyketide biosynthesis in filamentous fungi presents some challenges: small yield and low-purity titers. To tackle these issues, we switched to the yeast Yarrowia lipolytica, an easily cultivable heterologous host. As an oleaginous yeast, Y. lipolytica displays a high flux of acetyl- and malonyl-CoA precursors used in lipid synthesis. Likewise, acetyl- and malonyl-CoA are the building blocks of many natural polyketides, and we explored the possibility of redirecting this flux toward polyketide production. Despite its promising prospect, Y. lipolytica has so far only been used for heterologous expression of simple type III polyketide synthases (PKSs) from plants. Therefore, we decided to evaluate the potential of Y. lipolytica by targeting the more complex fungal polyketides synthesized by type I PKSs. We employed a CRISPR-Cas9-mediated genome editing method to achieve markerless gene integration of the genes responsible for bostrycoidin biosynthesis in Fusarium solani (fsr1, fsr2, and fsr3) and 6-methylsalicylic acid (6-MSA) biosynthesis in Aspergillus hancockii (6MSAS). Moreover, we attempted titer optimization through metabolic engineering by overexpressing two enzymes, TGL4 and AOX2, involved in lipid β-oxidation, but we did not observe an effect on polyketide production. With maximum titers of 403 mg/L 6-MSA and 35 mg/L bostrycoidin, the latter being substantially higher than our previous results in Saccharomyces cerevisiae (2.2 mg/L), this work demonstrates the potential of Y. lipolytica as a platform for heterologous production of complex fungal polyketides.
Collapse
Affiliation(s)
- Mihaela Bejenari
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | - Eva Mie Lang Spedtsberg
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
- Department of Energy, Aalborg University, Esbjerg, Denmark
| | - Julie Mathiesen
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | | | - Lucia Cernat
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | - Aouregane Toussaint
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire Végétale, CEA, CNRS, INRA, IRIG-LPCV, Grenoble, France
| | - Cristina Apostol
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | - Victor Stoianov
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | | | - Mikkel Rank Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | | |
Collapse
|
3
|
Gallego-García M, Susmozas A, Negro MJ, Moreno AD. Challenges and prospects of yeast-based microbial oil production within a biorefinery concept. Microb Cell Fact 2023; 22:246. [PMID: 38053171 DOI: 10.1186/s12934-023-02254-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
Biodiesel, unlike to its fossil-based homologue (diesel), is renewable. Its use contributes to greater sustainability in the energy sector, mainly by reducing greenhouse gas emissions. Current biodiesel production relies on plant- and animal-related feedstocks, resulting in high final costs to the prices of those raw materials. In addition, the production of those materials competes for arable land and has provoked a heated debate involving their use food vs. fuel. As an alternative, single-cell oils (SCOs) obtained from oleaginous microorganisms are attractive sources as a biofuel precursor due to their high lipid content, and composition similar to vegetable oils and animal fats. To make SCOs competitive from an economic point of view, the use of readily available low-cost substrates becomes essential. This work reviews the most recent advances in microbial oil production from non-synthetic sugar-rich media, particularly sugars from lignocellulosic wastes, highlighting the main challenges and prospects for deploying this technology fully in the framework of a Biorefinery concept.
Collapse
Affiliation(s)
- María Gallego-García
- Advanced Biofuels and Bioproducts Unit, Department of Energy, Research Center for Energy, Environment and Technology (CIEMAT), Avda. Complutense 40, Madrid, 28040, Spain
- Department of Biomedicine and Biotechnology, University of Alcalá de Henares, Alcalá de Henares, Spain
| | - Ana Susmozas
- Advanced Biofuels and Bioproducts Unit, Department of Energy, Research Center for Energy, Environment and Technology (CIEMAT), Avda. Complutense 40, Madrid, 28040, Spain
| | - María José Negro
- Advanced Biofuels and Bioproducts Unit, Department of Energy, Research Center for Energy, Environment and Technology (CIEMAT), Avda. Complutense 40, Madrid, 28040, Spain.
| | - Antonio D Moreno
- Advanced Biofuels and Bioproducts Unit, Department of Energy, Research Center for Energy, Environment and Technology (CIEMAT), Avda. Complutense 40, Madrid, 28040, Spain
| |
Collapse
|
4
|
Yu Y, Shi S. Development and Perspective of Rhodotorula toruloides as an Efficient Cell Factory. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1802-1819. [PMID: 36688927 DOI: 10.1021/acs.jafc.2c07361] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rhodotorula toruloides is receiving significant attention as a novel cell factory because of its high production of lipids and carotenoids, fast growth and high cell density, as well as the ability to utilize a wide variety of substrates. These attractive traits of R. toruloides make it possible to become a low-cost producer that can be engineered for the production of various fuels and chemicals. However, the lack of understanding and genetic engineering tools impedes its metabolic engineering applications. A number of research efforts have been devoted to filling these gaps. This review focuses on recent developments in genetic engineering tools, advances in systems biology for improved understandings, and emerging engineered strains for metabolic engineering applications. Finally, future trends and barriers in developing R. toruloides as a cell factory are also discussed.
Collapse
Affiliation(s)
- Yi Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Diamantopoulou P, Papanikolaou S. Biotechnological production of sugar-alcohols: focus on Yarrowia lipolytica and edible/medicinal mushrooms. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Shi X, Park HM, Kim M, Lee ME, Jeong WY, Chang J, Cho BH, Han SO. Isopropanol biosynthesis from crude glycerol using fatty acid precursors via engineered oleaginous yeast Yarrowia lipolytica. Microb Cell Fact 2022; 21:168. [PMID: 35986289 PMCID: PMC9392242 DOI: 10.1186/s12934-022-01890-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Isopropanol is widely used as a biofuel and a disinfectant. Chemical preparation of isopropanol destroys the environment, which makes biological preparation of isopropanol necessary. Previous studies focused on the use of expensive glucose as raw material. Therefore, the microbial cell factory that ferments isopropanol with cheap raw materials will provide a greener way to produce isopropanol. Results This study converted crude glycerol into isopropanol using Y. lipolytica. As a microbial factory, the active natural lipid and fatty acid synthesis pathway endows Y. lipolytica with high malonyl-CoA production capacity. Acetoacetyl-CoA synthase (nphT7) and isopropanol synthesis genes are integrated into the Y. lipolytica genome. The nphT7 gene uses the accumulated malonyl-CoA to synthesize acetoacetyl-CoA, which increases isopropanol production. After medium optimization, the best glycerol medium was found and resulted in a 4.47-fold increase in isopropanol production. Fermenter cultivation with pure glycerol medium resulted in a maximum isopropanol production of 1.94 g/L. In a crude glycerol fermenter, 1.60 g/L isopropanol was obtained, 82.53% of that achieved with pure glycerol. The engineered Y. lipolytica in this study has the highest isopropanol titer reported. Conclusions The engineered Y. lipolytica successfully produced isopropanol by using crude glycerol as a cheap carbon source. This is the first study demonstrating the use of Y. lipolytica as a cell factory to produce isopropanol. In addition, this is also a new attempt to accumulate lipid synthesis precursors to synthesize other useful chemicals by integrating exogenous genes in Y. lipolytica. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01890-6.
Collapse
|
7
|
Dobrowolski A, Nawijn W, Mirończuk AM. Brown seaweed hydrolysate as a promising growth substrate for biomass and lipid synthesis of the yeast yarrowia lipolytica. Front Bioeng Biotechnol 2022; 10:944228. [PMID: 36061426 PMCID: PMC9428158 DOI: 10.3389/fbioe.2022.944228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022] Open
Abstract
Biomass of the brown algae Fucus vesiculosus and Saccharina latissima is a promising, renewable feedstock because of the high growth rate, accessibility and content of glucose and mannitol. Saccharification of seaweeds is a simple process due to the lack of lignocellulose in the cell wall. The high content of glucose and mannitol makes these seaweeds an attractive feedstock for lipid production in the yeast Yarrowia lipolytica. This study demonstrated that hydrolysates of brown algae biomass can be applied as a substrate for synthesis of yeast biomass and lipids without any supplementation. To increase the lipid titer in yeast biomass, we employed an engineered strain of Y. lipolytica overexpressing DGA1/DGA2. In consequence, the C/N ratio has a lower impact on lipid synthesis. Moreover, the applied substrates allowed for high synthesis of unsaturated fatty acids (UFA); the level exceeded 90% in the fatty acid pool. Oleic (C18:1) and linoleic acids (C18:2) achieved the highest content. The study showed that Y. lipolytica is able to grow on the seaweed hydrolysate and produces a high content of UFA in the biomass.
Collapse
|
8
|
Jach ME, Malm A. Yarrowia lipolytica as an Alternative and Valuable Source of Nutritional and Bioactive Compounds for Humans. Molecules 2022; 27:2300. [PMID: 35408699 PMCID: PMC9000428 DOI: 10.3390/molecules27072300] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/04/2022] Open
Abstract
Yarrowia lipolytica, an oleagineous species of yeast, is a carrier of various important nutrients. The biomass of this yeast is an extensive source of protein, exogenous amino acids, bioavailable essenctial trace minerals, and lipid compounds as mainly unsaturated fatty acids. The biomass also contains B vitamins, including vitamin B12, and many other bioactive components. Therefore, Y. lipolytica biomass can be used in food supplements for humans as safe and nutritional additives for maintaining the homeostasis of the organism, including for vegans and vegetarians, athletes, people after recovery, and people at risk of B vitamin deficiencies.
Collapse
Affiliation(s)
- Monika Elżbieta Jach
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów Street 1I, 20-708 Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland;
| |
Collapse
|
9
|
Burgstaller L, Löffler S, De Marcellis L, Ghassemi K, Neureiter M. The influence of different carbon sources on growth and single cell oil production in oleaginous yeasts Apiotrichum brassicae and Pichia kudriavzevii. N Biotechnol 2022; 69:1-7. [PMID: 35182781 DOI: 10.1016/j.nbt.2022.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/17/2022]
Abstract
Oleaginous yeasts offer an interesting possibility for renewable lipid production, since the single cell oil accumulated can be based on a wide range of cheap, waste-derived carbon sources. Here, several short chain carboxylic acids and sugars commonly found in these substrates were assessed as carbon sources for Apiotrichum brassicae and Pichia kudriavzevii. While both strains were able to utilize all carbon sources employed, high volumetric lipid productivities (0.4g/Lh) and lipid contents (68%) could be reached particularly with acetic acid as carbon source. Odd-numbered volatile fatty acids led to lower productivities and lipid contents, but the lipids contained unusually high proportions of odd-numbered fatty acids (up to 80% of total fatty acids). These fatty acids are rather uncommon in nature and might offer the possibility for various high value applications. In conclusion both strains are able to utilize a wide range of substrates potentially present in waste-derived substrates. Lipid content and volumetric lipid productivity strongly depend on the carbon source, with even-numbered volatile fatty acids resulting in the highest values. For volatile fatty acids in particular, the carbon source also strongly influences the composition of the lipids produced by the yeast strains.
Collapse
Affiliation(s)
- Lukas Burgstaller
- Department for Agrobiotechnology (IFA-Tulln), Institute for Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Sebastian Löffler
- Department for Agrobiotechnology (IFA-Tulln), Institute for Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Luca De Marcellis
- Department for Agrobiotechnology (IFA-Tulln), Institute for Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Khatereh Ghassemi
- Department for Agrobiotechnology (IFA-Tulln), Institute for Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Markus Neureiter
- Department for Agrobiotechnology (IFA-Tulln), Institute for Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria.
| |
Collapse
|
10
|
Bioconversions of Biodiesel-Derived Glycerol into Sugar Alcohols by Newly Isolated Wild-Type Yarrowia lipolytica Strains. REACTIONS 2021. [DOI: 10.3390/reactions2040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The utilization of crude glycerol, generated as a by-product from the biodiesel production process, for the production of high value-added products represents an opportunity to overcome the negative impact of low glycerol prices in the biodiesel industry. In this study, the biochemical behavior of Yarrowia lipolytica strains FMCC Y-74 and FMCC Y-75 was investigated using glycerol as a carbon source. Initially, the effect of pH value (3.0–7.0) was examined to produce polyols, intracellular lipids, and polysaccharides. At low pH values (initial pH 3.0–5.0), significant mannitol production was recorded. The highest mannitol production (19.64 g L−1) was obtained by Y. lipolytica FMCC Y-74 at pH = 3.0. At pH values ranging between 5.0 and 6.0, intracellular polysaccharides synthesis was favored, while polyols production was suppressed. Subsequently, the effect of crude glycerol and its concentration on polyols production was studied. Y. lipolytica FMCC Y-74 showed high tolerance to impurities of crude glycerol. Initial substrate concentrations influence polyols production and distribution with a metabolic shift toward erythritol production being observed when the initial glycerol concentration (Gly0) increased. The highest total polyols production (=56.64 g L−1) was obtained at Gly0 adjusted to ≈120 g L−1. The highest polyols conversion yield (0.59 g g−1) and productivity (4.36 g L−1 d−1) were reached at Gly0 = 80 g L−1. In fed-batch intermittent fermentation with glycerol concentration remaining ≤60 g L−1, the metabolism was shifted toward mannitol biosynthesis, which was the main polyol produced in significant quantities (=36.84 g L−1) with a corresponding conversion yield of 0.51 g g−1.
Collapse
|
11
|
Gottardi D, Siroli L, Vannini L, Patrignani F, Lanciotti R. Recovery and valorization of agri-food wastes and by-products using the non-conventional yeast Yarrowia lipolytica. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Yarrowia lipolytica Strains and Their Biotechnological Applications: How Natural Biodiversity and Metabolic Engineering Could Contribute to Cell Factories Improvement. J Fungi (Basel) 2021; 7:jof7070548. [PMID: 34356927 PMCID: PMC8307478 DOI: 10.3390/jof7070548] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
Among non-conventional yeasts of industrial interest, the dimorphic oleaginous yeast Yarrowia lipolytica appears as one of the most attractive for a large range of white biotechnology applications, from heterologous proteins secretion to cell factories process development. The past, present and potential applications of wild-type, traditionally improved or genetically modified Yarrowia lipolytica strains will be resumed, together with the wide array of molecular tools now available to genetically engineer and metabolically remodel this yeast. The present review will also provide a detailed description of Yarrowia lipolytica strains and highlight the natural biodiversity of this yeast, a subject little touched upon in most previous reviews. This work intends to fill this gap by retracing the genealogy of the main Yarrowia lipolytica strains of industrial interest, by illustrating the search for new genetic backgrounds and by providing data about the main publicly available strains in yeast collections worldwide. At last, it will focus on exemplifying how advances in engineering tools can leverage a better biotechnological exploitation of the natural biodiversity of Yarrowia lipolytica and of other yeasts from the Yarrowia clade.
Collapse
|
13
|
Lopes M, Miranda SM, Costa AR, Pereira AS, Belo I. Yarrowia lipolytica as a biorefinery platform for effluents and solid wastes valorization - challenges and opportunities. Crit Rev Biotechnol 2021; 42:163-183. [PMID: 34157916 DOI: 10.1080/07388551.2021.1931016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Due to its physiological and enzymatic features, Yarrowia lipolytica produces several valuable compounds from a wide range of substrates. Appointed by some authors as an industrial workhorse, Y. lipolytica has an extraordinary ability to use unrefined and complex low-cost substrates as carbon and nitrogen sources, aiding to reduce the waste surplus and to produce added-value compounds in a cost-effective way. Dozens of review papers regarding Y. lipolytica have been published till now, proving the interest that this yeast arouses in the scientific community. However, most of them are focused on metabolic pathways involved in substrates assimilation and product formation, or the development of synthetic biology tools in order to obtain engineered strains for biotechnological applications. This paper provides an exhaustive and up-to-date revision on the application of Y. lipolytica to valorize liquid effluents and solid wastes and its role in developing cleaner biotechnological approaches, aiming to boost the circular economy. Firstly, a general overview about Y. lipolytica is introduced, describing its intrinsic features and biotechnological applications. Then, an extensive survey of the literature regarding the assimilation of oily wastes (waste cooking oils, oil cakes and olive mill wastewaters), animal fat wastes, hydrocarbons-rich effluents, crude glycerol and agro-food wastes by Y. lipolytica strains will be discussed. This is the first article that brings together the environmental issue of all such residues and their valorization as feedstock for valuable compounds production by Y. lipolytica. Finally, it will demonstrate the potential of this non-conventional yeast to be used as a biorefinery platform.
Collapse
Affiliation(s)
- Marlene Lopes
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Sílvia M Miranda
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ana R Costa
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ana S Pereira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
14
|
Chattopadhyay A, Maiti MK. Lipid production by oleaginous yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2021; 116:1-98. [PMID: 34353502 DOI: 10.1016/bs.aambs.2021.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbial lipid production has been studied extensively for years; however, lipid metabolic engineering in many of the extraordinarily high lipid-accumulating yeasts was impeded by inadequate understanding of the metabolic pathways including regulatory mechanisms defining their oleaginicity and the limited genetic tools available. The aim of this review is to highlight the prominent oleaginous yeast genera, emphasizing their oleaginous characteristics, in conjunction with diverse other features such as cheap carbon source utilization, withstanding the effect of inhibitory compounds, commercially favorable fatty acid composition-all supporting their future development as economically viable lipid feedstock. The unique aspects of metabolism attributing to their oleaginicity are accentuated in the pretext of outlining the various strategies successfully implemented to improve the production of lipid and lipid-derived metabolites. A large number of in silico data generated on the lipid accumulation in certain oleaginous yeasts have been carefully curated, as suggestive evidences in line with the exceptional oleaginicity of these organisms. The different genetic elements developed in these yeasts to execute such strategies have been scrupulously inspected, underlining the major types of newly-found and synthetically constructed promoters, transcription terminators, and selection markers. Additionally, there is a plethora of advanced genetic toolboxes and techniques described, which have been successfully used in oleaginous yeasts in the recent years, promoting homologous recombination, genome editing, DNA assembly, and transformation at remarkable efficiencies. They can accelerate and effectively guide the rational designing of system-wide metabolic engineering approaches pinpointing the key targets for developing industrially suitable yeast strains.
Collapse
Affiliation(s)
- Atrayee Chattopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
15
|
Ning P, Yang G, Hu L, Sun J, Shi L, Zhou Y, Wang Z, Yang J. Recent advances in the valorization of plant biomass. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:102. [PMID: 33892780 PMCID: PMC8063360 DOI: 10.1186/s13068-021-01949-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/07/2021] [Indexed: 05/28/2023]
Abstract
Plant biomass is a highly abundant renewable resource that can be converted into several types of high-value-added products, including chemicals, biofuels and advanced materials. In the last few decades, an increasing number of biomass species and processing techniques have been developed to enhance the application of plant biomass followed by the industrial application of some of the products, during which varied technologies have been successfully developed. In this review, we summarize the different sources of plant biomass, the evolving technologies for treating it, and the various products derived from plant biomass. Moreover, the challenges inherent in the valorization of plant biomass used in high-value-added products are also discussed. Overall, with the increased use of plant biomass, the development of treatment technologies, and the solution of the challenges raised during plant biomass valorization, the value-added products derived from plant biomass will become greater in number and more valuable.
Collapse
Affiliation(s)
- Peng Ning
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lihong Hu
- Institute of Chemical Industry of Forest Products, Key Laboratory of Biomass Energy and Material, CAF, Nanjing, China
| | - Jingxin Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Lina Shi
- Agricultural Integrated Service Center of Zhuyouguan, Longkou, Yantai, China
| | - Yonghong Zhou
- Institute of Chemical Industry of Forest Products, Key Laboratory of Biomass Energy and Material, CAF, Nanjing, China
| | - Zhaobao Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
16
|
Abstract
Abstract
Background
Citric acid, an intermediate product of the Krebs cycle, has a wide usage area in the food industry since it has some functions such as acidulant, flavouring agent, preservative and antioxidant. Although molds are the most commonly used microorganisms in the citric acid production, it is known that there are significant advantages of using yeasts.
Purpose and scope
The microbial citric acid production mechanism needs to be well understood to make production more efficient. In this study, the yeasts used in the production, fermentation types and the factors affecting production were reviewed with studies.
Methodology
Although production of citric acid can be produced by chemical synthesis, the fermentation is preferred because of its low cost and ease of use. More than 90% of citric acid produced in the world is obtained by fermentation.
Results
Yarrowia lipolytica, Candida zeylanoides and Candida oleophila are evaluated for citric acid production with substrates such as molasses, glucose, sucrose and glycerol. On the other hand, there is great interest in developing processes with new substrates and/ or microorganisms.
Conclusion
Although the microbial strain is an important factor, the factors such as carbon, phosphorus and nitrogen sources, aeration, the presence of trace elements and pH are also parameters affecting the production.
Collapse
|
17
|
Park YK, Nicaud JM. Metabolic Engineering for Unusual Lipid Production in Yarrowia lipolytica. Microorganisms 2020; 8:E1937. [PMID: 33291339 PMCID: PMC7762315 DOI: 10.3390/microorganisms8121937] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
Using microorganisms as lipid-production factories holds promise as an alternative method for generating petroleum-based chemicals. The non-conventional yeast Yarrowia lipolytica is an excellent microbial chassis; for example, it can accumulate high levels of lipids and use a broad range of substrates. Furthermore, it is a species for which an array of efficient genetic engineering tools is available. To date, extensive work has been done to metabolically engineer Y. lipolytica to produce usual and unusual lipids. Unusual lipids are scarce in nature but have several useful applications. As a result, they are increasingly becoming the targets of metabolic engineering. Unusual lipids have distinct structures; they can be generated by engineering endogenous lipid synthesis or by introducing heterologous enzymes to alter the functional groups of fatty acids. In this review, we describe current metabolic engineering strategies for improving lipid production and highlight recent researches on unusual lipid production in Y. lipolytica.
Collapse
Affiliation(s)
- Young-Kyoung Park
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78352 Jouy-en-Josas, France;
| | | |
Collapse
|
18
|
Physiological Characterization of a Novel Wild-Type Yarrowia lipolytica Strain Grown on Glycerol: Effects of Cultivation Conditions and Mode on Polyols and Citric Acid Production. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new yeast wild-type Yarrowia lipolytica isolate presented efficient growth on glycerol. During flask cultures, nitrogen limitation led to the secretion of sugar-alcohols as the major metabolites of the process (mannitol, arabitol and erythritol), whereas insignificant quantities of citrate were synthesized. Although in some instances high initial glycerol concentrations were employed (≈150 g/L), remarkable glycerol assimilation and polyol secretion was observed. Total polyols ≈ 52 g/L (conversion yield on glycerol consumed = 0.43 g/g) was recorded in the flask experiments. The sugar-alcohol production bioprocess was successfully simulated with the aid of a modified Velhlust–Aggelis model that fitted very well with the experimental data, while optimized parameter values seemed to be quite consistent. In bioreactor trials, a noticeable metabolic shift towards citric acid production was observed, while simultaneously insignificant polyol quantities were produced. In fed-batch bioreactor experiments, a total citric acid quantity ≈ 102 g/L was recorded—one of the highest in the literature for wild-type Y. lipolytica strains. This metabolic transition was due to higher oxygen saturation into the medium that occurred in the bioreactor experiments compared with the flasks. Cellular lipids produced in the bioreactor trial contained higher concentrations of unsaturated fatty acids compared with those produced in flasks.
Collapse
|
19
|
Carota E, Petruccioli M, D'Annibale A, Crognale S. Mixed glycerol and orange peel-based substrate for fed-batch microbial biodiesel production. Heliyon 2020; 6:e04801. [PMID: 32984573 PMCID: PMC7494470 DOI: 10.1016/j.heliyon.2020.e04801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/12/2020] [Accepted: 08/24/2020] [Indexed: 01/22/2023] Open
Abstract
The aqueous extraction of orange peel waste (OPW), the byproduct of the juice extraction process generated annually in massive amounts (21 Mton), yields a carbohydrate-rich liquid fraction, termed orange peel extract (OPE). Several studies highlight that the combination of glycerol, a biodiesel byproduct, with carbohydrate mixtures might boost microbial lipid production. This study performed first a shaken flask screening of 15 oleaginous yeast strains based on their growth and lipid-producing abilities on OPE- and glycerol-based media. This screening enabled the selection of R. toruloides NRRL 1091 for the assessment of the process transfer in a stirred tank reactor (STR). This assessment relied, in particular, on either single- and double-stage feeding fed-batch (SSF-FB and DSF-FB, respectively) processes where OPE served as the primary medium and nitrogen-containing glycerol-OPE mixtures as the feeding one. The continuous supply mode at low dilution rates (0.02 and 0.01 h-1 for SSF-FB and DSF-FB, respectively) starting from the end of the exponential growth of the initial batch phase enabled the temporal extension of biomass and lipid production. The SSF-FB and DSF-FB processes attained high biomass and lipid volumetric productions (LVP) and ensured significant lipid accumulation on a dry cell basis (YL/X). The SSF-FB process led to LVP of 20.6 g L-1 after 104 h with volumetric productivity (r L) of 0.20 g L-1 h-1 and YL/X of 0.80; the DSF-FB process yielded LVP, r L and YL/X values equal to 15.92 g L-1, 0.11 g L-1 h-1 and 0.65, respectively. The fatty acid profiles of lipids from both fed-batch processes were not significantly different and resembled that of Jatropha oil, a vastly used feedstock for biodiesel production. These results suggest that OPE constitutes an excellent basis for the fed-batch production of R. toruloides lipids, and this process might afford a further option in OPW-based biorefinery.
Collapse
Affiliation(s)
- Eleonora Carota
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Via S. Camillo De Lellis snc, 01100, Viterbo, Italy
| | - Maurizio Petruccioli
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Via S. Camillo De Lellis snc, 01100, Viterbo, Italy
| | - Alessandro D'Annibale
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Via S. Camillo De Lellis snc, 01100, Viterbo, Italy
| | - Silvia Crognale
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Via S. Camillo De Lellis snc, 01100, Viterbo, Italy
| |
Collapse
|
20
|
Hapeta P, Kerkhoven EJ, Lazar Z. Nitrogen as the major factor influencing gene expression in Yarrowia lipolytica. ACTA ACUST UNITED AC 2020; 27:e00521. [PMID: 32923379 PMCID: PMC7476234 DOI: 10.1016/j.btre.2020.e00521] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/29/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
Yarrowia lipolytica is an important industrial microorganism used for the production of oleochemicals. The design of effective biotechnological processes with this cell factory requires an in-depth knowledge of its metabolism. Here we present a transcriptomic study of Y. lipolytica grown in the presence of glycerol and glucose, and mixture of both at different carbon to nitrogen ratios. It emerged that the transcriptomic landscape of Y. lipolytica is more sensitive to the nitrogen availability than to the utilized carbon source, as evidenced by more genes being differentially expressed in lower carbon to nitrogen ratio. Specifically, expression of hexokinase (HXK1) is significantly susceptible to changes in nitrogen concentrations. High HXK1 expression in low nitrogen seems to impact other genes which are implicated in tricarboxylic acid cycle and erythritol biosynthesis. We further show that expression of HXK1 and two genes belonging to the sugar porter family might be controlled by GATA-like zinc-finger proteins.
Collapse
Affiliation(s)
- Piotr Hapeta
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, 51-630 Wroclaw, Poland
| | - Eduard J Kerkhoven
- Department of Biology and Biological Engineering, Division of Systems and Synthetic Biology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, 51-630 Wroclaw, Poland
| |
Collapse
|
21
|
Microbial lipid production by oleaginous yeasts grown on Scenedesmus obtusiusculus microalgae biomass hydrolysate. Bioprocess Biosyst Eng 2020; 43:1629-1638. [PMID: 32347408 PMCID: PMC7378118 DOI: 10.1007/s00449-020-02354-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
Due to increasing oil prices and climate change concerns, biofuels have become increasingly important as potential alternative energy sources. However, the use of arable lands and valuable resources for the production of biofuel feedstock compromises food security and negatively affect the environment. Single cell oils (SCOs), accumulated by oleaginous yeasts, show great promise for efficient production of biofuels. However, the high production costs attributed to feedstocks or raw materials present a major limiting factor. The fermentative conversion of abundant, low-value biomass into microbial oil would alleviate this limitation. Here, we explore the feasibility of utilizing microalgae-based cell residues as feedstock for yeast oil production. We developed an efficient, single-step enzymatic hydrolysis to generate Scenedesmus obtusiusculus hydrolysate (SH) without thermo-chemical pretreatment. With this eco-friendly process, glucose conversion efficiencies reached 90-100%. Cutaneotrichosporon oleaginosus, Cryptococcus curvatus and Rhodosporidium toruloides were cultivated on SH as sole nutrients source. Only C. oleaginosus was able to accumulate intracellular lipids, with a 35% (g lipid/g DCW) content and a yield of 3.6 g/L. Our results demonstrate the potential valorization of algal biomass into desired end-products such as biofuels.
Collapse
|
22
|
Diamantopoulou P, Filippousi R, Antoniou D, Varfi E, Xenopoulos E, Sarris D, Papanikolaou S. Production of added-value microbial metabolites during growth of yeast strains on media composed of biodiesel-derived crude glycerol and glycerol/xylose blends. FEMS Microbiol Lett 2020; 367:5818764. [DOI: 10.1093/femsle/fnaa063] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT
A total of 11 yeast strains of Yarrowia lipolytica, Metschnikowia sp., Rhodotorula sp. and Rhodosporidium toruloides were grown under nitrogen-limited conditions with crude glycerol employed as substrate in shake flasks, presenting interesting dry cell weight (DCW) production. Three of these strains belonging to Metschnikowia sp. accumulated significant quantities of endopolysaccharides (i.e. the strain V.V.-D4 produced 11.0 g/L of endopolysaccharides, with polysaccharides in DCW ≈ 63% w/w). A total of six Y. lipolytica strains produced either citric acid or mannitol. Most of the screened yeasts presented somehow elevated lipid and polysaccharides in DCW values at the early steps of growth despite nitrogen appearance in the fermentation medium. Lipid in DCW values decreased as growth proceeded. R. toruloides DSM 4444 cultivated on media presenting higher glycerol concentrations presented interesting lipid-accumulating capacities (maximum lipid = 12.5 g/L, maximum lipid in DCW = 43.0–46.0% w/w, conversion yield on glycerol = 0.16 g/g). Replacement of crude glycerol by xylose resulted in somehow decreased lipid accumulation. In xylose/glycerol mixtures, xylose was more rapidly assimilated from glycerol. R. toruloides total lipids were mainly composed of triacylglycerols. Total cellular fatty acid composition on xylose presented some differences compared with that on glycerol. Cellular lipids contained mainly oleic and palmitic acid.
Collapse
Affiliation(s)
- Panagiota Diamantopoulou
- Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization – Demeter, 1 Sofokli Venizelou street, 14123 – Lykovryssi, Attiki Greece
| | - Rosanina Filippousi
- Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization – Demeter, 1 Sofokli Venizelou street, 14123 – Lykovryssi, Attiki Greece
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 – Athens, Greece
| | - Dimitrios Antoniou
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 – Athens, Greece
| | - Evaggelia Varfi
- Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization – Demeter, 1 Sofokli Venizelou street, 14123 – Lykovryssi, Attiki Greece
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 – Athens, Greece
| | - Evangelos Xenopoulos
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 – Athens, Greece
| | - Dimitris Sarris
- Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization – Demeter, 1 Sofokli Venizelou street, 14123 – Lykovryssi, Attiki Greece
- Department of Food Science & Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece
| | - Seraphim Papanikolaou
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 – Athens, Greece
| |
Collapse
|
23
|
Sarris D, Sampani Z, Rapti A, Papanikolaou S. Valorization of Crude Glycerol, Residue Deriving from Biodiesel- Production Process, with the Use of Wild-type New Isolated Yarrowia lipolytica Strains: Production of Metabolites with Pharmaceutical and Biotechnological Interest. Curr Pharm Biotechnol 2020; 20:881-894. [PMID: 30747061 DOI: 10.2174/1389201020666190211145215] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/19/2018] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & OBJECTIVE Crude glycerol (Glol), used as substrate for screening eleven natural Yarrowia lipolytica strains in shake-flask experiments. Aim of this study was to assess the ability of the screened strains to produce biomass (dry cell weight; X), lipid (L), citric acid (Cit), mannitol (Man), arabitol (Ara) and erythritol (Ery), compounds presenting pharmaceutical and biotechnological interest, in glycerol-based nitrogen-limited media, in which initial glycerol concentration had been adjusted to 40 g/L. METHODS Citric acid may find use in biomedical engineering (i.e. drug delivery, tissue engineering, bioimaging, orthopedics, medical device coating, wound dressings). Polyols are considered as compounds with non-cariogenic and less calorigenic properties as also with low insulin-mediated response. Microbial lipids containing polyunsaturated fatty acids (PUFA) are medically and dietetically important (selective pharmaceutical and anticancer properties, aid fetal brain development, the sight function of the eye, hormonal balance and the cardio-vascular system, prevent reasons leading to type-2 diabetes, present healing and anti-inflammatory effects). RESULTS All strains presented satisfactory microbial growth (Xmax=5.34-6.26 g/L) and almost complete substrate uptake. The principal metabolic product was citric acid (Citmax=8.5-31.7 g/L). Production of cellular lipid reached the values of 0.33-0.84 g/L. Polyols were also synthesized as strain dependent compounds (Manmax=2.8-6.1 g/L, Aramax ~2.0 g/L, Erymax= 0.5-3.8 g/L). The selected Y. lipolytica strain ACA-DC 5029 presented satisfactory growth along with synthesis of citric acid and polyols, thus, was further grown on media presenting an increased concentration of Glol~75 g/L. Biomass, lipid and citric acid production presented significant enhancement (Xmax=11.80 g/L, Lmax=1.26 g/L, Citmax=30.8 g/L), but conversion yield of citric acid produced per glycerol consumed was decreased compared to screening trials. Erythritol secretion (Erymax=15.6 g/L) was highly favored, suggesting a shift of yeast metabolism from citric acid accumulation towards erythritol production. Maximum endopolysaccharides (IPS) concentration was 4.04 g/L with yield in dry weight 34.2 % w/w. CONCLUSION Y. lipolytica strain ACA-YC 5029 can be considered as a satisfactory candidate grown in high concentrations of crude glycerol to produce added-value compounds that interest pharmaceutical and biotechnology industries.
Collapse
Affiliation(s)
- Dimitris Sarris
- Department of Food Science & Human Nutrition, Agricultural University of Athens, Athens, Greece.,Department of Food Science & Nutrition, School of Environment, University of the Aegean, Lemnos Greece
| | - Zoe Sampani
- Department of Food Science & Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Anna Rapti
- Department of Food Science & Nutrition, School of Environment, University of the Aegean, Lemnos, Greece
| | - Seraphim Papanikolaou
- Department of Food Science & Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
24
|
Russmayer H, Egermeier M, Kalemasi D, Sauer M. Spotlight on biodiversity of microbial cell factories for glycerol conversion. Biotechnol Adv 2019; 37:107395. [DOI: 10.1016/j.biotechadv.2019.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 12/28/2022]
|
25
|
Microbial bioconversion of thermally depolymerized polypropylene by Yarrowia lipolytica for fatty acid production. Appl Microbiol Biotechnol 2019; 103:7729-7740. [DOI: 10.1007/s00253-019-09999-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 12/29/2022]
|
26
|
Filippousi R, Antoniou D, Tryfinopoulou P, Nisiotou A, Nychas G, Koutinas A, Papanikolaou S. Isolation, identification and screening of yeasts towards their ability to assimilate biodiesel‐derived crude glycerol: microbial production of polyols, endopolysaccharides and lipid. J Appl Microbiol 2019; 127:1080-1100. [DOI: 10.1111/jam.14373] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 06/10/2019] [Accepted: 06/24/2019] [Indexed: 01/19/2023]
Affiliation(s)
- R. Filippousi
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - D. Antoniou
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - P. Tryfinopoulou
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - A.A. Nisiotou
- Hellenic Agricultural Organization “Demeter” Institute of Technology of Agricultural Products Lycovryssi Greece
| | - G.‐J. Nychas
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - A.A. Koutinas
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - S. Papanikolaou
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| |
Collapse
|
27
|
Kim GY, Seo YH, Kim I, Han JI. Co-production of biodiesel and alginate from Laminaria japonica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 673:750-755. [PMID: 31003102 DOI: 10.1016/j.scitotenv.2019.04.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
A process to produce both biodiesel and alginate in an integrated manner from a brown seaweed, Laminaria japonica, was established. Mannitol, a major carbon constituent in L. japonica, served to produce neutral lipids via the heterotrophic cultivation of an oleaginous yeast, Cryptococcus sp.; and simultaneously alginate, a high value product, was extracted to enhance the economic feasibility of the entire process. Only autoclave pretreatment, without need of any chemical agents, was enough to recover all the essential nutrients for the yeast cultivation. Specifically, it could recover 6.4 g L-1 of mannitol to a degree comparable to 6.6 g L-1 obtained by acid-aided pretreatment using 1.5% (v/v) of H2SO4. Maximum fatty acids methyl esters (FAME) content was 30.37% with FAME productivity of 0.56 g L-1 d-1, and the produced FAME could meet the biodiesel quality standards. Na2CO3-based method showed the best efficiency of alginate recovery, yielding 21.06% (w/w). This study supports that L. japonica can indeed be a promising low-cost feedstock for biodiesel production, and it is more so when a high-value product alginate is co-produced.
Collapse
Affiliation(s)
- Ga-Yeong Kim
- Department of Civil and Environmental Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yeong Hwan Seo
- Agency for Defense Development, 462 Jochiwon-gil, Yuseong-gu, Daejeon, Republic of Korea
| | - Ilgook Kim
- Decommissioning Technology Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon 305-353, Republic of Korea
| | - Jong-In Han
- Department of Civil and Environmental Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
28
|
Ma YR, Wang KF, Wang WJ, Ding Y, Shi TQ, Huang H, Ji XJ. Advances in the metabolic engineering of Yarrowia lipolytica for the production of terpenoids. BIORESOURCE TECHNOLOGY 2019; 281:449-456. [PMID: 30846235 DOI: 10.1016/j.biortech.2019.02.116] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 05/02/2023]
Abstract
Terpenoids are a large class of natural compounds based on the C5 isoprene unit, with many biological effects such activity against cancer and allergies, while some also have an agreeable aroma. Consequently, they have received extensive attention in the food, pharmaceutical and cosmetic fields. With the identification and analysis of the underlying natural product synthesis pathways, current microbial-based metabolic engineering approaches have yielded new strategies for the production of highly valuable terpenoids. Yarrowia lipolytica is a non-conventional oleaginous yeast that is rapidly emerging as a valuable host for the production of terpenoids due to its own endogenous mevalonate pathway and high oil production capacity. This review aims to summarize the status and strategies of metabolic engineering for the heterologous synthesis of terpenoids in Y. lipolytica in recent years and proposes new methods aiming towards further improvement of terpenoid production.
Collapse
Affiliation(s)
- Yi-Rong Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Kai-Feng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Wei-Jian Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Ying Ding
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tian-Qiong Shi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- College of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China.
| |
Collapse
|
29
|
Guo M, Cheng S, Chen G, Chen J. Improvement of lipid production in oleaginous yeast Rhodosporidium toruloides by ultraviolet mutagenesis. Eng Life Sci 2019; 19:548-556. [PMID: 32625031 DOI: 10.1002/elsc.201800203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/04/2019] [Accepted: 05/22/2019] [Indexed: 11/10/2022] Open
Abstract
The oleaginous yeast Rhodosporidium toruloides AS 2.1389 is viewed as desirable industrial microorganisms that can accumulate a high content of lipids for biodiesel production. In this study, we attempted to improve lipid accumulation in the yeast Rhodosporidium toruloides by UV irradiation mutagenesis and selection based on lithium chloride tolerance or ethanol-H2O2 tolerance. The biomass concentration, lipid yield and glucose consumption of mutant R. toruloides were determined. The transcription levels of lipid accumulation-related genes in the wild-type and mutant strains were also determined. The lithium chloride-tolerant strain R-ZL2 and the ethanol-H2O2-resistant strain R-ZY13 were generated by UV mutagenesis. The two mutant strains showed greater lipid productivity and lipid yield compared to the wild type. Transcriptional analysis revealed that IDP1, GPD1 and GND were expressed at significantly higher levels in the two high-lipid-producing mutants. In conclusion, lipid productivity and lipid yield in R. toruloides were successfully improved via UV mutagenesis and selection. We also identified some lipid accumulation-related genes for improving lipid productivity through genetic engineering.
Collapse
Affiliation(s)
- Minrui Guo
- College of Food Shihezi University Shihezi P. R. China
| | - Shaobo Cheng
- College of Food Shihezi University Shihezi P. R. China
| | - Guogang Chen
- College of Food Shihezi University Shihezi P. R. China
| | - Jiluan Chen
- College of Food Shihezi University Shihezi P. R. China
| |
Collapse
|
30
|
Pretreatment Strategies to Improve Crude Glycerol Utilisation and Metabolite Production by Aspergillus terreus. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1155/2019/2504540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Crude glycerol (CG) can be used as a substrate for microbial bioconversion. However, due to presence of many impurities, many microorganisms are unable to utilise this substrate efficiently. The present study is trying to improve CG using as the feedstock of Aspergillus terreus for the production of lovastatin, (+)-geodin, and sulochrin. The CG was pretreated chemically (solvents) and physically (activated carbon (AC) and water softener (WS)) to separate most of the impurities from the CG. For solvent pretreatments, petroleum ether (PE) produced the largest increase of lovastatin (92.8%) when compared to positive control and pure glycerol (PG) and up to 820% when compared to negative control (CG). In contrast, diethyl ether (DE) produced the largest increase in (+)-geodin at 80.81% (versus CG) and 176.23% (versus PG). The largest increase in toluene (Tol) was observed in sulochrin production, at 67.22% (versus CG) and 183.85% (versus PG). For physical pretreatments, the pattern of metabolite production in AC (lovastatin: 20.65 mg/L, (+)-geodin: 7.42 mg/L, sulochrin: 11.74 mg/L) resembled PG (lovastatin: 21.8 mg/L, (+)-geodin: 8.60 mg/L, sulochrin: 8.18 mg/L), while WS (lovastatin: 11.25 mg/L, (+)-geodin: 15.38 mg/L, sulochrin: 16.85 mg/L) resembled CG (lovastatin: 7.1 mg/L, (+)-geodin: 17.10 mg/L, sulochrin: 14.78 mg/L) at day 6 of fermentation. These results indicate that solvent pretreatments on CG are excellent for metabolites production in A. terreus, depending on the solvents used. In contrast, physical pretreatments are only feasible for (+)-geodin and sulochrin production. Therefore, different strategies can be employed to manipulate the A. terreus bioconversion using improved CG by using a few simple pretreatment strategies.
Collapse
|
31
|
Dobrowolski A, Drzymała K, Rzechonek DA, Mituła P, Mirończuk AM. Lipid Production From Waste Materials in Seawater-Based Medium by the Yeast Yarrowia lipolytica. Front Microbiol 2019; 10:547. [PMID: 30936863 PMCID: PMC6431633 DOI: 10.3389/fmicb.2019.00547] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/04/2019] [Indexed: 01/12/2023] Open
Abstract
The global limitation of fossil fuels impels scientists to search for new energy sources. A good alternative is biodiesel produced from crop plants. However, its production requires huge quantities of farmland, fertilizers and fresh water, which is in conflict with the human demand for water for consumption and land for food production. Thus, production of single cell oil (SCO) by oleaginous microorganisms remains the best solution for the coming years. Whereas most microorganisms require fresh water for proper cell metabolism, in this study we demonstrate that the unconventional yeast Yarrowia lipolytica is able to produce huge quantities of fatty acid in seawater-based medium. Here we shown that Y. lipolytica is able to produce fatty acids in medium based on seawater and crude glycerol as the main carbon source, which allows for low-cost production of SCO, is beneficial for industrial application and is ecologically friendly.
Collapse
Affiliation(s)
- Adam Dobrowolski
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Katarzyna Drzymała
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Dorota A Rzechonek
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Paweł Mituła
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aleksandra M Mirończuk
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
32
|
Kubiak M, Borkowska M, Białas W, Korpys P, Celińska E. Feeding strategy impacts heterologous protein production in
Yarrowia lipolytica
fed‐batch cultures—Insight into the role of osmolarity. Yeast 2019; 36:305-318. [DOI: 10.1002/yea.3384] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/28/2019] [Accepted: 02/05/2019] [Indexed: 01/30/2023] Open
Affiliation(s)
- Monika Kubiak
- Department of Biotechnology and Food MicrobiologyPoznan University of Life Sciences Poznań Poland
| | - Monika Borkowska
- Department of Biotechnology and Food MicrobiologyPoznan University of Life Sciences Poznań Poland
| | - Wojciech Białas
- Department of Biotechnology and Food MicrobiologyPoznan University of Life Sciences Poznań Poland
| | - Paulina Korpys
- Department of Biotechnology and Food MicrobiologyPoznan University of Life Sciences Poznań Poland
| | - Ewelina Celińska
- Department of Biotechnology and Food MicrobiologyPoznan University of Life Sciences Poznań Poland
| |
Collapse
|
33
|
de Jesus Assis D, Santos J, de Jesus CS, de Souza CO, Costa SS, Miranda AL, da Silva JR, Oliveira MBPP, Druzian JI. Valorization of crude glycerol based on biological processes for accumulation of lipophilic compounds. Int J Biol Macromol 2019; 129:728-736. [PMID: 30772411 DOI: 10.1016/j.ijbiomac.2019.02.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 11/17/2022]
Abstract
Bacteria that are capable of accumulating lipids in their cells as storage compounds can also produce polyhydroxyalkanoates of high technological value, depending on the specific culture conditions. The objective of this study was to utilize crude glycerol from biodiesel (CGB) as a substrate, which is a major byproduct from biodiesel production, to produce lipophilic compounds. Bacillus megaterium INCQS 425 was cultivated and evaluated for the production of lipophilic compounds and the properties of these compounds were investigated. Cultivation of the bacteria in a medium with a C:N ratio of 0.60:1 favored the accumulation of lipids by (17.5%) comprising mainly palmitic acid (13.08%), palmitoleic (39.48%), and especially oleic acid (37.02%), which imparts good characteristics to biodiesel. Meanwhile, cultivation of the bacteria in a medium with a C:N ratio of 4:1 favored the accumulation of polyhydroxyalkanoates (PHA) (3.31gL-1) mainly comprising medium and long chain PHA. Low crystallinity (<30%) and excellent thermal properties make them suitable for processes that demand high temperatures, such as extrusion. The lipids produced in the present study had satisfactory oxidative stability for the production of quality biodiesel. The polyhydroxyalkanoates produced in the study are of low cost and have promising thermal properties that justify its technological potential, thereby configuring highly competitive bioproducts.
Collapse
Affiliation(s)
- Denilson de Jesus Assis
- Department of Chemical Engineering, Polytechnic School, Federal University of Bahia, Salvador, BA, Brazil.
| | - Joana Santos
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Cristiane Santos de Jesus
- Department of Chemical Engineering, Polytechnic School, Federal University of Bahia, Salvador, BA, Brazil
| | - Carolina Oliveira de Souza
- Department of Bromatological Analysis, College of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Samantha Serra Costa
- Institute of Health Sciences, RENORBIO, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Andréa Lobo Miranda
- Institute of Health Sciences, RENORBIO, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Jaff Ribeiro da Silva
- Department of Bromatological Analysis, College of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Janice Izabel Druzian
- Department of Bromatological Analysis, College of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
34
|
Rakicka M, Wolniak J, Lazar Z, Rymowicz W. Production of high titer of citric acid from inulin. BMC Biotechnol 2019; 19:11. [PMID: 30744615 PMCID: PMC6371587 DOI: 10.1186/s12896-019-0503-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/31/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Citric acid is considered as the most economically feasible product of microbiological production, therefore studies on cheap and renewable raw materials for its production are highly desirable. In this study citric acid was synthesized by genetically engineered strains of Yarrowia lipolytica from widely available, renewable polysaccharide - inulin. Hydrolysis of inulin by the Y. lipolytica strains was established by expressing the inulinase gene (INU1 gene; GenBank: X57202.1) with its native secretion signal sequence was amplified from genomic DNA from Kluyveromyces marxianus CBS6432. To ensure the maximum citric acid titer, the optimal cultivation strategy-repeated-batch culture was applied. RESULTS The strain Y. lipolytica AWG7 INU 8 secreted more than 200 g dm- 3 of citric acid during repeated-batch culture on inulin, with a productivity of 0.51 g dm- 3 h- 1 and a yield of 0.85 g g- 1. CONCLUSIONS The citric acid titer obtained in the proposed process is the highest value reported in the literature for Yarrowia yeast. The obtained results suggest that citric acid production from inulin by engineered Y. lipolytica may be a very promising technology for industrial citric acid production.
Collapse
Affiliation(s)
- Magdalena Rakicka
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego St, 51-630 Wroclaw, Poland
| | - Jakub Wolniak
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego St, 51-630 Wroclaw, Poland
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego St, 51-630 Wroclaw, Poland
| | - Waldemar Rymowicz
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego St, 51-630 Wroclaw, Poland
| |
Collapse
|
35
|
Sarris D, Rapti A, Papafotis N, Koutinas AA, Papanikolaou S. Production of Added-Value Chemical Compounds through Bioconversions of Olive-Mill Wastewaters Blended with Crude Glycerol by a Yarrowia lipolytica Strain. Molecules 2019; 24:E222. [PMID: 30634450 PMCID: PMC6359483 DOI: 10.3390/molecules24020222] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/21/2018] [Accepted: 12/31/2018] [Indexed: 12/31/2022] Open
Abstract
Olive mill wastewaters (OMW) are the major effluent deriving from olive oil production and are considered as one of the most challenging agro-industrial wastes to treat. Crude glycerol is the main by-product of alcoholic beverage and oleochemical production activities including biodiesel production. The tremendous quantities of glycerol produced worldwide represent a serious environmental challenge. The aim of this study was to assess the ability of Yarrowia lipolytica strain ACA-DC 5029 to grow on nitrogen-limited submerged shake-flask cultures, in crude glycerol and OMW blends as well as in media with high initial glycerol concentration and produce biomass, cellular lipids, citric acid and polyols. The rationale of using such blends was the dilution of concentrated glycerol by OMW to (partially or fully) replace process tap water with a wastewater stream. The strain presented satisfactory growth in blends; citric acid production was not affected by OMW addition (Citmax~37.0 g/L, YCit/Glol~0.55 g/g) and microbial oil accumulation raised proportionally to OMW addition (Lmax~2.0 g/L, YL/X~20% w/w). Partial removal of color (~30%) and phenolic compounds (~10% w/w) of the blended media occurred. In media with high glycerol concentration, a shift towards erythritol production was noted (Erymax~66.0 g/L, YEry/Glol~0.39 g/g) simultaneously with high amounts of produced citric acid (Citmax~79.0 g/L, YCit/Glol~0.46 g/g). Fatty acid analysis of microbial lipids demonstrated that OMW addition in blended media and in excess carbon media with high glycerol concentration favored oleic acid production.
Collapse
Affiliation(s)
- Dimitris Sarris
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece.
- Department of Food Science & Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece.
| | - Anna Rapti
- Department of Food Science & Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece.
| | - Nikolaos Papafotis
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece.
| | - Apostolis A Koutinas
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece.
| | - Seraphim Papanikolaou
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece.
| |
Collapse
|
36
|
Spagnuolo M, Shabbir Hussain M, Gambill L, Blenner M. Alternative Substrate Metabolism in Yarrowia lipolytica. Front Microbiol 2018; 9:1077. [PMID: 29887845 PMCID: PMC5980982 DOI: 10.3389/fmicb.2018.01077] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/07/2018] [Indexed: 11/13/2022] Open
Abstract
Recent advances in genetic engineering capabilities have enabled the development of oleochemical producing strains of Yarrowia lipolytica. Much of the metabolic engineering effort has focused on pathway engineering of the product using glucose as the feedstock; however, alternative substrates, including various other hexose and pentose sugars, glycerol, lipids, acetate, and less-refined carbon feedstocks, have not received the same attention. In this review, we discuss recent work leading to better utilization of alternative substrates. This review aims to provide a comprehensive understanding of the current state of knowledge for alternative substrate utilization, suggest potential pathways identified through homology in the absence of prior characterization, discuss recent work that either identifies, endogenous or cryptic metabolism, and describe metabolic engineering to improve alternative substrate utilization. Finally, we describe the critical questions and challenges that remain for engineering Y. lipolytica for better alternative substrate utilization.
Collapse
Affiliation(s)
- Michael Spagnuolo
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States
| | - Murtaza Shabbir Hussain
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States
| | - Lauren Gambill
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States
- Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, United States
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States
| |
Collapse
|
37
|
Jang IS, Yu BJ, Jang JY, Jegal J, Lee JY. Improving the efficiency of homologous recombination by chemical and biological approaches in Yarrowia lipolytica. PLoS One 2018; 13:e0194954. [PMID: 29566071 PMCID: PMC5864075 DOI: 10.1371/journal.pone.0194954] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/13/2018] [Indexed: 11/18/2022] Open
Abstract
Gene targeting is a challenge in Yarrowia lipolytica (Y. lipolytica) where non-homologous end-joining (NHEJ) is predominant over homologous recombination (HR). To improve the frequency and efficiency of HR in Y. lipolytica, the ku70 gene responsible for a double stand break (DSB) repair in the NHEJ pathway was disrupted, and the cell cycle was synchronized to the S-phase with hydroxyurea, respectively. Consequently, the HR frequency was over 46% with very short homology regions (50 bp): the pex10 gene was accurately deleted at a frequency of 60% and the β-carotene biosynthetic genes were integrated at the correct locus at an average frequency of 53%. For repeated use, the URA3 marker gene was also excised and deleted at a frequency of 100% by HR between the 100 bp homology regions flanking the URA3 gene. It was shown that appropriate combination of these chemical and biological approaches was very effective to promote HR and construct genetically modified Y. lipolytica strains for biotechnological applications.
Collapse
Affiliation(s)
- In-Seung Jang
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Jongga-ro, Jung-gu, Ulsan, Republic of Korea
- Intelligent Sustainable Materials R&D Group, Research Institute of Sustainable Manufacturing System, Korea Institute of Industrial Technology (KITECH), Yandaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si, Chungcheongnam-do, Republic of Korea
| | - Byung Jo Yu
- Intelligent Sustainable Materials R&D Group, Research Institute of Sustainable Manufacturing System, Korea Institute of Industrial Technology (KITECH), Yandaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si, Chungcheongnam-do, Republic of Korea
| | - Ji Yeon Jang
- Intelligent Sustainable Materials R&D Group, Research Institute of Sustainable Manufacturing System, Korea Institute of Industrial Technology (KITECH), Yandaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si, Chungcheongnam-do, Republic of Korea
| | - Jonggeon Jegal
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Jongga-ro, Jung-gu, Ulsan, Republic of Korea
| | - Ju Young Lee
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Jongga-ro, Jung-gu, Ulsan, Republic of Korea
- * E-mail:
| |
Collapse
|
38
|
Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms. Appl Microbiol Biotechnol 2018; 102:2509-2523. [DOI: 10.1007/s00253-018-8813-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
|
39
|
Athenaki M, Gardeli C, Diamantopoulou P, Tchakouteu S, Sarris D, Philippoussis A, Papanikolaou S. Lipids from yeasts and fungi: physiology, production and analytical considerations. J Appl Microbiol 2018; 124:336-367. [DOI: 10.1111/jam.13633] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/20/2017] [Accepted: 10/27/2017] [Indexed: 12/24/2022]
Affiliation(s)
- M. Athenaki
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| | - C. Gardeli
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| | - P. Diamantopoulou
- Laboratory of Edible Fungi; Institute of Technology of Agricultural Products; Hellenic Agricultural Organization ‘Demeter’; Lycovryssi Greece
| | - S.S. Tchakouteu
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| | - D. Sarris
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| | - A. Philippoussis
- Laboratory of Edible Fungi; Institute of Technology of Agricultural Products; Hellenic Agricultural Organization ‘Demeter’; Lycovryssi Greece
| | - S. Papanikolaou
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| |
Collapse
|
40
|
Chen J, Yan S, Zhang X, Tyagi RD, Surampalli RY, Valéro JR. Chemical and biological conversion of crude glycerol derived from waste cooking oil to biodiesel. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 71:164-175. [PMID: 29097125 DOI: 10.1016/j.wasman.2017.10.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
In this study, crude, purified, and pure glycerol were used to cultivate Trichosporon oleaginosus for lipid production which was then used as feedstock of biodiesel production. The purified glycerol was obtained from crude glycerol by removing soap with addition of H3PO4 which converted soap to free fatty acids and then separated from the solution. The results showed that purified glycerol provided similar performance as pure glycerol in lipid accumulation; however, crude glycerol as carbon source had negatively impacted the lipid production of T. oleaginosus. Purified glycerol was later used to determine the optimal glycerol concentration for lipid production. The highest lipid yield 0.19g/g glycerol was obtained at 50g/L purified glycerol in which the biomass concentration and lipid content were 10.75g/L and 47% w/w, respectively. An energy gain of 4150.51MJ could be obtained with 1tonne of the crude glycerol employed for biodiesel production through the process proposed in this study. The biodiesel production cost estimated was 6.32US$/gal. Fatty acid profiles revealed that C16:0 and C18:1 were the major compounds of the biodiesel from the lipid produced by T. oleaginosus cultivated with crude and purified glycerol. The study found that purified glycerol was promising carbon source for biodiesel production.
Collapse
Affiliation(s)
- Jiaxin Chen
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China; INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Song Yan
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China.
| | | | - Rao Y Surampalli
- Department of Civil Engineering, University of Nebraska-Lincoln, N104 SEC, PO Box 886105, Lincoln, NE 68588-6105, USA
| | - J R Valéro
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
41
|
Lopes M, Gomes AS, Silva CM, Belo I. Microbial lipids and added value metabolites production by Yarrowia lipolytica from pork lard. J Biotechnol 2018; 265:76-85. [DOI: 10.1016/j.jbiotec.2017.11.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 11/24/2022]
|
42
|
Park YK, Nicaud JM, Ledesma-Amaro R. The Engineering Potential of Rhodosporidium toruloides as a Workhorse for Biotechnological Applications. Trends Biotechnol 2017; 36:304-317. [PMID: 29132754 DOI: 10.1016/j.tibtech.2017.10.013] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/30/2022]
Abstract
Moving our society towards a bioeconomy requires efficient and sustainable microbial production of chemicals and fuels. Rhodotorula (Rhodosporidium) toruloides is a yeast that naturally synthesizes substantial amounts of specialty chemicals and has been recently engineered to (i) enhance its natural production of lipids and carotenoids, and (ii) produce novel industrially relevant compounds. The use of R. toruloides by companies and research groups has exponentially increased in recent years as a result of recent improvements in genetic engineering techniques and the availability of multiomics information on its genome and metabolism. This review focuses on recent engineering approaches in R. toruloides for bioproduction and explores its potential as a biotechnological chassis.
Collapse
Affiliation(s)
- Young-Kyoung Park
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Jean-Marc Nicaud
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | |
Collapse
|
43
|
Mitrea L, Trif M, Cătoi AF, Vodnar DC. Utilization of biodiesel derived-glycerol for 1,3-PD and citric acid production. Microb Cell Fact 2017; 16:190. [PMID: 29110678 PMCID: PMC5674790 DOI: 10.1186/s12934-017-0807-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/01/2017] [Indexed: 12/29/2022] Open
Abstract
Today, biofuels represent a hot topic in the context of petroleum and adjacent products decrease. As biofuels production increase, so does the production of their major byproduct, namely crude glycerol. The efficient usage of raw glycerol will concur to the biodiesel viability. As an inevitable waste of biodiesel manufacturing, glycerol is potentially an attractive substrate for the production of value-added products by fermentation processes, due to its large amounts, low cost and high degree of reduction. One of the most important usages of glycerol is its bioconversion through microbial fermentation to value-added materials like 1,3-propanediol and citric acid. There is a considerable industrial interest in 1,3-propanediol and citric acid production based on microbial fermentations, as it seems to be in competition with traditional technologies utilized for these products. In the present work, yields and concentrations of 1,3-propanediol and citric acid registered for different isolated strains are also described. Microbial bioconversion of glycerol represents a remarkable choice to add value to the biofuel production chain, allowing the biofuel industry to be more competitive. The current review presents certain ways for the bioconversion of crude glycerol into citric acid and 1,3-propanediol with high yields and concentrations achieved by using isolated microorganisms.
Collapse
Affiliation(s)
- Laura Mitrea
- Department of Food Science, Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Monica Trif
- Department of Food Science, Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Adriana-Florinela Cătoi
- Pathophysiology Department, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dan-Cristian Vodnar
- Department of Food Science, Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
44
|
Cavallo E, Charreau H, Cerrutti P, Foresti ML. Yarrowia lipolytica: a model yeast for citric acid production. FEMS Yeast Res 2017; 17:4587737. [DOI: 10.1093/femsyr/fox084] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/01/2017] [Indexed: 11/12/2022] Open
|
45
|
Abstract
Increasing demand for plant oil for food, feed, and fuel production has led to food-fuel competition, higher plant lipid cost, and more need for agricultural land. On the other hand, the growing global production of biodiesel has increased the production of glycerol as a by-product. Efficient utilization of this by-product can reduce biodiesel production costs. We engineered Yarrowia lipolytica (Y. lipolytica) at various metabolic levels of lipid biosynthesis, degradation, and regulation for enhanced lipid and citric acid production. We used a one-step double gene knock-in and site-specific gene knock-out strategy. The resulting final strain combines the overexpression of homologous DGA1 and DGA2 in a POX-deleted background, and deletion of the SNF1 lipid regulator. This increased lipid and citric acid production in the strain under nitrogen-limiting conditions (C/N molar ratio of 60). The engineered strain constitutively accumulated lipid at a titer of more than 4.8 g/L with a lipid content of 53% of dry cell weight (DCW). The secreted citric acid reached a yield of 0.75 g/g (up to ~45 g/L) from pure glycerol in 3 days of batch fermentation using a 1-L bioreactor. This yeast cell factory was capable of simultaneous lipid accumulation and citric acid secretion. It can be used in fed-batch or continuous bioprocessing for citric acid recovery from the supernatant, along with lipid extraction from the harvested biomass.
Collapse
|
46
|
Liu LP, Zong MH, Hu Y, Li N, Lou WY, Wu H. Efficient microbial oil production on crude glycerol by Lipomyces starkeyi AS 2.1560 and its kinetics. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Sabra W, Bommareddy RR, Maheshwari G, Papanikolaou S, Zeng AP. Substrates and oxygen dependent citric acid production by Yarrowia lipolytica: insights through transcriptome and fluxome analyses. Microb Cell Fact 2017; 16:78. [PMID: 28482902 PMCID: PMC5421321 DOI: 10.1186/s12934-017-0690-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/23/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Unlike the well-studied backer yeast where catabolite repression represents a burden for mixed substrate fermentation, Yarrowia lipolytica, an oleaginous yeast, is recognized for its potential to produce single cell oils and citric acid from different feedstocks. These versatilities of Y. lipolytica with regards to substrate utilization make it an attractive host for biorefinery application. However, to develop a commercial process for the production of citric acid by Y. lipolytica, it is necessary to better understand the primary metabolism and its regulation, especially for growth on mixed substrate. RESULTS Controlling the dissolved oxygen concentration (pO2) in Y. lipolytica cultures enhanced citric acid production significantly in cultures grown on glucose in mono- or dual substrate fermentations, whereas with glycerol as mono-substrate no significant effect of pO2 was found on citrate production. Growth on mixed substrate with glucose and glycerol revealed a relative preference of glycerol utilization by Y. lipolytica. Under optimized conditions with pO2 control, the citric acid titer on glucose in mono- or in dual substrate cultures was 55 and 50 g/L (with productivity of 0.6 g/L*h in both cultures), respectively, compared to a maximum of 18 g/L (0.2 g/L*h) with glycerol in monosubstrate culture. Additionally, in dual substrate fermentation, glycerol limitation was found to trigger citrate consumption despite the presence of enough glucose in pO2-limited culture. The metabolic behavior of this yeast on different substrates was investigated at transcriptomic and 13C-based fluxomics levels. CONCLUSION Upregulation of most of the genes of the pentose phosphate pathway was found in cultures with highest citrate production with glucose in mono- or in dual substrate fermentation with pO2 control. The activation of the glyoxylate cycle in the oxygen limited cultures and the imbalance caused by glycerol limitation might be the reason for the re-consumption of citrate in dual substrate fermentations. This study provides interesting targets for metabolic engineering of this industrial yeast.
Collapse
Affiliation(s)
- Wael Sabra
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, 21071 Hamburg, Germany
| | - Rajesh Reddy Bommareddy
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, 21071 Hamburg, Germany
- Synthetic Biology Research Centre, University of Nottingham, Nottingham, NG7 2RD UK
| | - Garima Maheshwari
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, 21071 Hamburg, Germany
| | - Seraphim Papanikolaou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, 21071 Hamburg, Germany
| |
Collapse
|
48
|
Papanikolaou S, Kampisopoulou E, Blanchard F, Rondags E, Gardeli C, Koutinas AA, Chevalot I, Aggelis G. Production of secondary metabolites through glycerol fermentation under carbon-excess conditions by the yeasts Yarrowia lipolytica
and Rhodosporidium toruloides. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201600507] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Seraphim Papanikolaou
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
- Laboratoire Réactions Génie des Procédés (LRGP-CNRS UMR 7274); Université de Lorraine; Vandoeuvre-lès-Nancy France
| | - Eleni Kampisopoulou
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| | - Fabrice Blanchard
- Laboratoire Réactions Génie des Procédés (LRGP-CNRS UMR 7274); Université de Lorraine; Vandoeuvre-lès-Nancy France
| | - Emmanuel Rondags
- Laboratoire Réactions Génie des Procédés (LRGP-CNRS UMR 7274); Université de Lorraine; Vandoeuvre-lès-Nancy France
| | - Chryssavgi Gardeli
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| | - Apostolis A. Koutinas
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| | - Isabelle Chevalot
- Laboratoire Réactions Génie des Procédés (LRGP-CNRS UMR 7274); Université de Lorraine; Vandoeuvre-lès-Nancy France
| | - George Aggelis
- Unit of Microbiology; Department of Biology; Division of Genetics, Cell, and Development Biology; University of Patras; Patras Greece
| |
Collapse
|
49
|
Sarris D, Stoforos NG, Mallouchos A, Kookos IK, Koutinas AA, Aggelis G, Papanikolaou S. Production of added-value metabolites by Yarrowia lipolytica growing in olive mill wastewater-based media under aseptic and non-aseptic conditions. Eng Life Sci 2017; 17:695-709. [PMID: 32624815 DOI: 10.1002/elsc.201600225] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/29/2016] [Accepted: 01/05/2017] [Indexed: 11/06/2022] Open
Abstract
Yarrowia lipolytica ACA-YC 5033 was grown on glucose-based media in which high amounts of olive mill wastewaters (OMWs) had been added. Besides shake-flask aseptic cultures, trials were also performed in previously pasteurized media while batch bioreactor experiments were also done. Significant decolorization (∼58%) and remarkable removal of phenolic compounds (∼51% w/w) occurred, with the latter being amongst the highest ones reported in the international literature, as far as yeasts were concerned during their growth on phenol-containing media. In nitrogen-limited flask fermentations the microorganism produced maximum citric acid quantity ≈19.0 g/L [simultaneous yield of citric acid produced per unit of glucose consumed (YCit/Glc)≈0.74 g/g]. Dry cell weight (DCW) values decreased at high phenol-containing media, but, on the other hand, the addition of OMWs induced reserve lipid accumulation. Maximum citric acid concentration achieved (≈52.0 g/L; YCit/Glc≈0.64 g/g) occurred in OMW-based high sugar content media (initial glucose added at ≈80.0 g/L). The bioprocess was successfully simulated by a modified logistic growth equation. A satisfactory fitting on the experimental data occurred while the optimized parameter values were found to be similar to those experimentally measured. Finally, a non-aseptic (previously pasteurized) trial was performed and its comparison with the equivalent aseptic experiment revealed no significant differences. Yarrowia lipolytica hence can be considered as a satisfactory candidate for simultaneous OMWs bioremediation and the production of added-value compounds useful for the food industry.
Collapse
Affiliation(s)
- Dimitris Sarris
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - Nikolaos G Stoforos
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - Athanasios Mallouchos
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - Ioannis K Kookos
- Department of Chemical Engineering University of Patras Patras Greece
| | - Apostolis A Koutinas
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - George Aggelis
- Department of Biology Division of Genetics, Cell and Development Biology University of Patras Patras Greece
| | - Seraphim Papanikolaou
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| |
Collapse
|
50
|
Jiang L, Liu H, Mu Y, Sun Y, Xiu Z. High tolerance to glycerol and high production of 1,3-propanediol in batch fermentations by microbial consortium from marine sludge. Eng Life Sci 2017; 17:635-644. [PMID: 32624809 DOI: 10.1002/elsc.201600215] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/10/2016] [Accepted: 12/22/2016] [Indexed: 11/06/2022] Open
Abstract
1,3-Propanediol (1,3-PD) is a versatile bulk chemical and widely used as a monomer to synthesis polymers, such as polyesters, polyethers and polyurethanes. 1,3-PD can be produced by microbial fermentation with the advantages of the environmental protection and sustainable development. Low substrate tolerance and wide by-product profile limit microbial production of 1,3-PD by Klebsiella pneumonia on industrial scale. In this study, microbial consortia were investigated to overcome some disadvantages of pure fermentation by single strain. Microbial consortium named DL38 from marine sludge gave the best performance. Its bacterial community composition was analyzed by 16S rRNA gene amplicon high-throughput sequencing and showed that Enterobacteriaceae was the most abundant family. Compared with three K. pneumonia strains isolated from DL38, the microbial consortium could grow well at an initial glycerol concentration of 200 g/L to produce 81.40 g/L of 1,3-PD with a yield of 0.63 mol/mol. This initial glycerol concentration is twice the highest concentration by single isolated strain and more than the critical value (188 g/L) extrapolated from the fermentation kinetics for K. pneumonia. On the other hand, a small amount of by-products were produced in batch fermentation of microbial consortium DL38, especially no 2,3-butanediol detected. The mixed culture of strain W3, Y5 and Y1 improved the tolerance to glycerol and changed the metabolite profile of single strain W3. The batch fermentation with the natural proportion (W3: Y5: Y1 = 208: 82: 17) was superior to that with other proportions and single strain. This study showed that microbial consortium DL38 possessed excellent substrate tolerance, narrow by-product profile and attractive potential for industrial production of 1,3-PD.
Collapse
Affiliation(s)
- LiLi Jiang
- School of Life Science and Biotechnology Dalian University of Technology Dalian China
| | - HuiFang Liu
- School of Life Science and Biotechnology Dalian University of Technology Dalian China
| | - Ying Mu
- School of Life Science and Biotechnology Dalian University of Technology Dalian China
| | - YaQin Sun
- School of Life Science and Biotechnology Dalian University of Technology Dalian China
| | - ZhiLong Xiu
- School of Life Science and Biotechnology Dalian University of Technology Dalian China
| |
Collapse
|