1
|
Miryeganeh M, Armitage DW. Epigenetic responses of trees to environmental stress in the context of climate change. Biol Rev Camb Philos Soc 2024. [PMID: 39192567 DOI: 10.1111/brv.13132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
In long-lived tree populations, when environmental change outpaces rates of evolutionary adaptation, plasticity in traits related to stress tolerance, dormancy, and dispersal may be vital for preventing extinction. While a population's genetic background partly determines its ability to adapt to a changing environment, so too do the many types of epigenetic modifications that occur within and among populations, which vary on timescales orders of magnitude faster than the emergence of new beneficial alleles. Consequently, phenotypic plasticity driven by epigenetic modification may be especially critical for sessile, long-lived organisms such as trees that must rely on this plasticity to keep pace with rapid anthropogenic environmental change. While studies have reported large effects of DNA methylation, histone modification, and non-coding RNAs on the expression of stress-tolerance genes and resulting phenotypic responses, little is known about the role of these effects in non-model plants and particularly in trees. Here, we review new findings in plant epigenetics with particular relevance to the ability of trees to adapt to or escape stressors associated with rapid climate change. Such findings include specific epigenetic influences over drought, heat, and salinity tolerance, as well as dormancy and dispersal traits. We also highlight promising findings concerning transgenerational inheritance of an epigenetic 'stress memory' in plants. As epigenetic information is becoming increasingly easy to obtain, we close by outlining ways in which ecologists can use epigenetic information better to inform population management and forecasting efforts. Understanding the molecular mechanisms behind phenotypic plasticity and stress memory in tree species offers a promising path towards a mechanistic understanding of trees' responses to climate change.
Collapse
Affiliation(s)
- Matin Miryeganeh
- Integrative Community Ecology Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - David W Armitage
- Integrative Community Ecology Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| |
Collapse
|
2
|
Zhang Y, Xu X, Zhao B, Li B, Qi Z, Wang Y, Wang G, Li Y, Huang Z, Liu X. Germination characteristics associated with nicosulfuron resistance in Amaranthus retroflexus L. PLoS One 2024; 19:e0308024. [PMID: 39133691 PMCID: PMC11318849 DOI: 10.1371/journal.pone.0308024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Nicosulfuron-resistant biotype (R) and -sensitive biotype (S) Amaranthus retroflexus L. seeds were subjected to different temperature, light, salt, osmotic potential, pH value and burial depth treatments. The difference in germination response of two populations to the above abiotic environmental factors was used to study the fitness cost of nicosulfuron-resistance evolution in A. retroflexus. The aim is to find a powerful tool for weed control in the presence of evolutionary resistance selection. The results of this experiment showed that the germination rate and germination index in S population were generally higher than that in R population. When the salt stress was 80 mM, the water potential was -0.1 Mpa ~ -0.4 Mpa, and under strong acid and alkali conditions, the germination index in S population was prominently higher than that in R population (p<0.05). The delayed seed germination in R population indicated that its nicosulfuron resistance may be linked to seed biochemical compositions that altered seed germination dynamics. The resistant and sensitive biotype of A. retroflexus had differently favourable adaptability in diverse environments. Salt, osmotic potential and pH value are not the major constraints for A. retroflexus germination, however, A. retroflexus are strongly responsive to temperature, light and burial depth. Considering that seeds of A. retroflexus are unable to reach the soil surface beyond the depth of 6 cm, deep inversion tillage before sowing may be an effective and economical weed management tool for the control of nicosulfuron resistant A. retroflexus.
Collapse
Affiliation(s)
- Yingying Zhang
- Key Laboratory of Crop Cultivation Physiology and Green Production of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
- College of Life Sciences, Hebei University, Baoding, China
| | - Xian Xu
- Key Laboratory of Crop Cultivation Physiology and Green Production of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Bochui Zhao
- Key Laboratory of Crop Cultivation Physiology and Green Production of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Binghua Li
- Key Laboratory of Crop Cultivation Physiology and Green Production of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Zhizun Qi
- Key Laboratory of Crop Cultivation Physiology and Green Production of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yu Wang
- Institute of plant protection, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Guiqi Wang
- Key Laboratory of Crop Cultivation Physiology and Green Production of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yaofa Li
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, China
| | - Zhaofeng Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaomin Liu
- Key Laboratory of Crop Cultivation Physiology and Green Production of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| |
Collapse
|
3
|
Zhang B, Wang Z, Zhang S, Zhong S, Sun Y, Liu X. N6-methyloxyadenine-mediated detoxification and ferroptosis confer a trade-off between multi-fungicide resistance and fitness. mBio 2024; 15:e0317723. [PMID: 38294217 PMCID: PMC10936191 DOI: 10.1128/mbio.03177-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 02/01/2024] Open
Abstract
Multi-fungicide resistance (MFR) is a serious environmental problem, which results in the excessive use of fungicides. Fitness penalty, as a common phenomenon in MFR, can partially counteract the issue of resistance due to the weakened vigor of MFR pathogens. Their underlying mechanism and relationship remain unexplained. By Oxford Nanopore Technologies sequencing and dot blot, we found that N6-methyloxyadenine (6mA) modification, the dominate epigenetic marker in Phytophthora capsici, was significantly altered after MFR emerged. Among the differently methylated genes, PcGSTZ1 could efficiently detoxify SYP-14288, a novel uncoupler, through complexing the fungicide with glutathione and induce MFR. Interestingly, PcGSTZ1 overexpression was induced by elevated 6mA levels and chromatin accessibility to its genomic loci. Moreover, the overexpression led to reactive oxygen species burst and ferroptosis in SYP-14288-resistant mutants, which enhanced the resistance and induced fitness penalty in P. capsici through triggering low energy shock adaptive response. Furthermore, this study revealed that the 6mA-PcGSTZ1-ferroptosis axis could mediate intergenerational resistance memory transmission and enabled adaptive advantage to P. capsici. In conclusion, the findings provide new insights into the biological role of 6mA as well as the mechanisms underlying the trade-off between MFR and fitness. These could also benefit disease control through the blockade of the epigenetic axis to resensitize resistant isolates.IMPORTANCEN6-methyloxyadenine (6mA) modification on DNA is correlated with tolerance under different stress in prokaryotes. However, the role of 6mA in eukaryotes remains poorly understood. Our current study reveals that DNA adenine methyltransferase 1 (DAMT1)-mediated 6mA modification at the upstream region of GST zeta 1 (GSTZ1) is elevated in the resistant strain. This elevation promotes the detoxification uncoupler and induces multifungicide resistance (MFR). Moreover, the overexpression led to reactive oxygen species burst and ferroptosis in SYP-14288-resistant mutants, which enhanced the resistance and induced fitness penalty in Phytophthora capsici through triggering low energy shock adaptive response. Furthermore, this study revealed that the 6mA-PcGSTZ1-ferroptosis axis could mediate intergenerational resistance memory transmission and enabled adaptive advantage to P. capsici. Overall, our findings uncover an innovative mechanism underlying 6mA modification in regulating PcGSTZ1 transcription and the ferroptosis pathway in P. capsici.
Collapse
Affiliation(s)
- Borui Zhang
- China Agricultural University, Beijing, China
| | - Zhiwen Wang
- China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | | | - Shan Zhong
- China Agricultural University, Beijing, China
| | - Ye Sun
- China Agricultural University, Beijing, China
| | - Xili Liu
- China Agricultural University, Beijing, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Venios X, Gkizi D, Nisiotou A, Korkas E, Tjamos SE, Zamioudis C, Banilas G. Emerging Roles of Epigenetics in Grapevine and Winegrowing. PLANTS (BASEL, SWITZERLAND) 2024; 13:515. [PMID: 38498480 PMCID: PMC10893341 DOI: 10.3390/plants13040515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
Epigenetics refers to dynamic chemical modifications to the genome that can perpetuate gene activity without changes in the DNA sequence. Epigenetic mechanisms play important roles in growth and development. They may also drive plant adaptation to adverse environmental conditions by buffering environmental variation. Grapevine is an important perennial fruit crop cultivated worldwide, but mostly in temperate zones with hot and dry summers. The decrease in rainfall and the rise in temperature due to climate change, along with the expansion of pests and diseases, constitute serious threats to the sustainability of winegrowing. Ongoing research shows that epigenetic modifications are key regulators of important grapevine developmental processes, including berry growth and ripening. Variations in epigenetic modifications driven by genotype-environment interplay may also lead to novel phenotypes in response to environmental cues, a phenomenon called phenotypic plasticity. Here, we summarize the recent advances in the emerging field of grapevine epigenetics. We primarily highlight the impact of epigenetics to grapevine stress responses and acquisition of stress tolerance. We further discuss how epigenetics may affect winegrowing and also shape the quality of wine.
Collapse
Affiliation(s)
- Xenophon Venios
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Ag. Spyridonos 28, 12243 Athens, Greece; (X.V.); (D.G.); (E.K.)
| | - Danai Gkizi
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Ag. Spyridonos 28, 12243 Athens, Greece; (X.V.); (D.G.); (E.K.)
| | - Aspasia Nisiotou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “Demeter”, Sofokli Venizelou 1, 14123 Lykovryssi, Greece;
| | - Elias Korkas
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Ag. Spyridonos 28, 12243 Athens, Greece; (X.V.); (D.G.); (E.K.)
| | - Sotirios E. Tjamos
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece;
| | - Christos Zamioudis
- Department of Agricultural Development, Democritus University of Thrace, Pantazidou 193, 68200 Orestiada, Greece;
| | - Georgios Banilas
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Ag. Spyridonos 28, 12243 Athens, Greece; (X.V.); (D.G.); (E.K.)
| |
Collapse
|
5
|
Celayir T, Yeni O, Yeşildirek YV, Arıkan B, Kara NT. Molecular Effects of Silicon on Arabidopsis thaliana Seedlings under UV-B Stress. Photochem Photobiol 2023; 99:1393-1399. [PMID: 36719080 DOI: 10.1111/php.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
Silicon-plant interaction studies have shown that silicon reduces the harmful effects of stress in plants. Ultraviolet-B (UV-B) radiation, one of the abiotic stress affecting plants, poses a severe problem due to global warming. In this context, it is crucial to examine silicon's effects on UV-B radiation stress at the molecular level. The experiments were carried out on 17 days old Arabidopsis seedlings that were treated with 800 μWatt cm-2 doses of UV-B for 60 min and harvested on the 28th day. 1 mM orthosilicic acid was applied to the in vitro plant tissue culture for experimental groups. According to the results of the osmolyte accumulation analyses, silicon has been shown to play a role in the osmotic stress response. Gene expression levels of DGK2, CHS, FLC, RAD51, and UVR8 were measured via qPCR, and it has been shown that silicon interacts with these genes under UV-B radiation stress. The result of genomic DNA methylation analysis demonstrated that silicon might affect DNA methylation levels by increasing the 5-mC percentage compared with the control group. This study focused on the molecular effects of silicon application. It supports silicon-plant interaction research by demonstrating that silicon might affect UV-B response at the molecular level.
Collapse
Affiliation(s)
- Tuğçe Celayir
- Institute of Science, Program of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | - Oğuzhan Yeni
- Institute of Science, Program of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | - Yağmur Vecide Yeşildirek
- Institute of Science, Program of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | - Burcu Arıkan
- Faculty of Science, Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | - Neslihan Turgut Kara
- Faculty of Science, Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| |
Collapse
|
6
|
Talukder P, Saha A, Roy S, Ghosh G, Roy DD, Barua S. Role of mi RNA in Phytoremediation of Heavy Metals and Metal Induced Stress Alleviation. Appl Biochem Biotechnol 2023; 195:5712-5729. [PMID: 37389725 DOI: 10.1007/s12010-023-04599-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Anthropogenic activities have contributed hugely in enhancing various types of environmental toxicity. One of these is higher accumulation of toxic heavy metals in soil and plant tissues. Although many heavy metals act as essential component for the growth and development of plants when present in low concentrations but at higher concentrations it becomes cytotoxic. Several innate mechanisms have evolved in plants to cope with it. In recent years the mechanism of using miRNA to combat metal induced toxicity has come to fore front. The miRNA or the microRNA regulates different physiological processes and induces a negative control in expressing the complementary target genes. The cleavage formation by post-transcriptional method and the inhibition of targeted translational mRNA are the two main procedures by which plant miRNAs function. The heavy and enhanced metal accumulation in plants has increased the production of different kinds of free radicals like reactive nitrogen and oxygen which damage the plants oxidatively. Several plant miRNA are capable of targeting and reducing the expression of those genes which are responsible for higher metal accumulation and storage. This can reduce the metal load and hence its negative impact on plant can also be reduced. This review depicts the biogenesis, the mode of action of miRNA, and the control mechanisms of miRNA in metal induced stress response in plant. A detailed review on the role of plant miRNA in alleviation of metal induced stress is discussed in this present study.
Collapse
Affiliation(s)
- Pratik Talukder
- Department of Biotechnology, University of Engineering and Management, Kolkata, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, West Bengal, 700156, Kolkata, India.
| | - Arunima Saha
- Department of Biotechnology, University of Engineering and Management, Kolkata, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, West Bengal, 700156, Kolkata, India
| | - Sohini Roy
- Department of Biotechnology, University of Engineering and Management, Kolkata, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, West Bengal, 700156, Kolkata, India
| | - Gargi Ghosh
- Department of Biotechnology, University of Engineering and Management, Kolkata, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, West Bengal, 700156, Kolkata, India
| | - Debshikha Dutta Roy
- Department of Biotechnology, University of Engineering and Management, Kolkata, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, West Bengal, 700156, Kolkata, India
| | - Snejuti Barua
- Department of Biotechnology, University of Engineering and Management, Kolkata, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, West Bengal, 700156, Kolkata, India
| |
Collapse
|
7
|
Zhu W, Yang C, Liu Q, Peng M, Li Q, Wang H, Chen X, Zhang B, Feng P, Chen T, Zeng D, Zhao Y. Integrated Analysis of DNA Methylome and Transcriptome Reveals Epigenetic Regulation of Cold Tolerance in Litopenaeus vannamei. Int J Mol Sci 2023; 24:11573. [PMID: 37511332 PMCID: PMC10380378 DOI: 10.3390/ijms241411573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
DNA methylation is an important epigenetic modification that has been shown to be associated with responses to non-biological stressors. However, there is currently no research on DNA methylation in response to environmental signals in shrimp. In this study, we conducted a comprehensive comparative analysis of DNA methylation profiles and differentially expressed genes between two strains of Litopenaeus vannamei with significantly different cold tolerance through whole genome bisulfite sequencing (WGBS) and transcriptome sequencing. Between Lv-C and Lv-T (constant temperature of 28 °C and low temperatures of 18 °C and 10 °C) under cytosine-guanine (CG) environments, 39,100 differentially methylated regions (DMRs) were identified, corresponding to 9302 DMR-related genes (DMRGs). The DMRs were mainly located in the gene body (exons and introns). Gene Ontology (GO) analysis showed that these DMRGs were significantly enriched in cell parts, catalytic activity, and metabolic processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed significant enrichment of these DMRGs in pathways such as proteasome (ko03050), oxidative phosphorylation (ko00190), mTOR signaling pathway (ko04150), fatty acid metabolism (ko01212), and fatty acid degradation (ko00071). The comprehensive results suggested that L. vannamei mainly regulates gene expression in response to low temperatures through hypermethylation or demethylation of some genes involved in thermogenesis, glycolysis, the autophagy pathway, the peroxisome, and drug metabolism pathways. These results provide important clues for studying DNA methylation patterns and identifying cold tolerance genes in shrimp.
Collapse
Affiliation(s)
- Weilin Zhu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan 430070, China
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Chunling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Qingyun Liu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Qiangyong Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Huanling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Bin Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Pengfei Feng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Tiancong Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Digang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| |
Collapse
|
8
|
Kumar M, Rani K. Epigenomics in stress tolerance of plants under the climate change. Mol Biol Rep 2023:10.1007/s11033-023-08539-6. [PMID: 37294468 DOI: 10.1007/s11033-023-08539-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Climate change has had a tremendous impact on the environment in general as well as agricultural crops grown in these situations as time passed. Agricultural production of crops is less suited and of lower quality due to disturbances in plant metabolism brought on by sensitivity to environmental stresses, which are brought on by climate change. Abiotic stressors that are specific to climate change, including as drought, extremes in temperature, increasing CO2, waterlogging from heavy rain, metal toxicity, and pH changes, are known to negatively affect an array of species. Plants adapt to these challenges by undergoing genome-wide epigenetic changes, which are frequently accompanied by differences in transcriptional gene expression. The sum of a cell's biochemical modifications to its nuclear DNA, post-translational modifications to histones, and variations in the synthesis of non-coding RNAs is called an epigenome. These modifications frequently lead to variations in gene expression that occur without any alteration in the underlying base sequence. EPIGENETIC MECHANISMS AND MARKS The methylation of homologous loci by three different modifications-genomic (DNA methylation), chromatin (histone modifications), and RNA-directed DNA methylation (RdDM)-could be regarded as epigenetic mechanisms that control the regulation of differential gene expression. Stresses from the environment cause chromatin remodelling, which enables plant cells to adjust their expression patterns temporarily or permanently. EPIGENOMICS' CONSEQUENCES FOR GENOME STABILITY AND GENE EXPRESSION: DNA methylation affects gene expression in response to abiotic stressors by blocking or suppressing transcription. Environmental stimuli cause changes in DNA methylation levels, either upward in the case of hypermethylation or downward in the case of hypomethylation. The type of stress response that occurs as a result also affects the degree of DNA methylation alterations. Stress is also influenced by DRM2 and CMT3 methylating CNN, CNG, and CG. Both plant development and stress reactions depend on histone changes. Gene up-regulation is associated with histone tail phosphorylation, ubiquitination, and acetylation, while gene down-regulation is associated with de-acetylation and biotinylation. Plants undergo a variety of dynamic changes to histone tails in response to abiotic stressors. The relevance of these transcripts against stress is highlighted by the accumulation of numerous additional antisense transcripts, a source of siRNAs, caused by abiotic stresses. The study highlights the finding that plants can be protected from a range of abiotic stresses by epigenetic mechanisms such DNA methylation, histone modification, and RNA-directed DNA methylation. TRANSGENERATIONAL INHERITANCE AND SOURCES OF EPIGENETIC VARIATION: Stress results in the formation of epialleles, which are either transient or enduring epigenetic stress memory in plants. After the stress is gone, the stable memory is kept for the duration of the plant's remaining developmental cycles or passed on to the next generations, leading to plant evolution and adaptability. The bulk of epigenetic changes brought on by stress are temporary and return to normal after the stress has passed. Some of the modifications, however, might be long-lasting and transmitted across mitotic or even meiotic cell divisions. Epialleles often have genetic or non-genetic causes. Epialleles can arise spontaneously due to improper methylation state maintenance, short RNA off-target effects, or other non-genetic causes. Developmental or environmental variables that influence the stability of epigenetic states or direct chromatin modifications may also be non-genetic drivers of epigenetic variation. Transposon insertions that change local chromatin and structural rearrangements, such copy number changes that are genetically related or unrelated, are two genetic sources of epialleles. EPIGENOMICS IN CROP IMPROVEMENT To include epigenetics into crop breeding, it is necessary to create epigenetic variation as well as to identify and evaluate epialleles. Epigenome editing or epi-genomic selection may be required for epiallele creation and identification. In order to combat the challenges given by changing environments, these epigenetic mechanisms have generated novel epialleles that can be exploited to develop new crop types that are more climate-resilient. Numerous techniques can be used to alter the epigenome generally or at specific target loci in order to induce the epigenetic alterations necessary for crop development. Technologies like CRISPR/Cas9 and dCas, which have recently advanced, have opened up new avenues for the study of epigenetics. Epialleles could be employed in epigenomics-assisted breeding in addition to sequence-based markers for crop breeding. CONCLUSIONS AND FUTURE PROSPECTUS A few of the exciting questions that still need to be resolved in the area of heritable epigenetic variation include a better understanding of the epigenetic foundation of characteristics, the stability and heritability of epialleles, and the sources of epigenetic variation in crops. Investigating long intergenic non-coding RNAs (lincRNAs) as an epigenetic process might open up a new path to understanding crop plant's ability to withstand abiotic stress. For many of these technologies and approaches to be more applicable and deployable at a lower cost, technological breakthroughs will also be necessary. Breeders will probably need to pay closer attention to crop epialleles and how they can affect future responses to climate changes. The development of epialleles suitable for particular environmental circumstances may be made possible by creating targeted epigenetic changes in pertinent genes and by comprehending the molecular underpinnings of trans generational epigenetic inheritance. More research on a wider variety of plant species is required in order to fully comprehend the mechanisms that produce and stabilise epigenetic variation in crops. In addition to a collaborative and multidisciplinary effort by researchers in many fields of plant science, this will require a greater integration of the epigenomic data gathered in many crops. Before it may be applied generally, more study is required.
Collapse
Affiliation(s)
- Mithlesh Kumar
- AICRN On Potential Crops, ARS Mandor, Agriculture University, Jodhpur, 342 304, Rajasthan, India.
| | - Kirti Rani
- ICAR-National Bureau of Plant Genetic Resources (NBPGR), Regional Station, Jodhpur, 342 003, Rajasthan, India
| |
Collapse
|
9
|
Liu J, Wei L, Feng S. Research progress of non-coding RNAs in vegetable responses to abiotic stresses. Gene 2023:147537. [PMID: 37301448 DOI: 10.1016/j.gene.2023.147537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Vegetable crops play a crucial role in agricultural production, providing essential vitamins and minerals necessary for a healthy diet. Recently, there has been growing interest in cultivating vegetable varieties with outstanding agricultural and economic traits. However, vegetable production is often exposed to various abiotic stresses like soil drought, temperature fluctuations, and heavy metal stress, which can negatively impact yield and quality. While previous research has investigated the physiological responses of vegetable crops to such stressors, less attention has been given to genetic networks. Plants respond to environmental stress mainly by adapting first and then reacting, thereby enhancing their resistance to stress. Typically, different abiotic stresses trigger epigenetic changes, which can regulate non-coding RNAs. Therefore, studying the epigenetic mechanisms of vegetable crop responses to abiotic stress can provide insights into the molecular response mechanisms of plants under stress. This knowledge has practical applications in breeding vegetable crops for resistance. This article summarizes the primary research findings on the regulation of non-coding RNAs and their expression levels in vegetable crops exposed to abiotic stresses to guide molecular breeding approaches for vegetable crops.
Collapse
Affiliation(s)
- Jipeng Liu
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Liang Wei
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Shengjun Feng
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
10
|
Laanen P, Cuypers A, Saenen E, Horemans N. Flowering under enhanced ionising radiation conditions and its regulation through epigenetic mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:246-259. [PMID: 36731286 DOI: 10.1016/j.plaphy.2023.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
As sessile organisms, plants have to deal with unfavourable conditions by acclimating or adapting in order to survive. Regulation of flower induction is one such mechanism to ensure reproduction and species survival. Flowering is a tightly regulated process under the control of a network of genes, which can be affected by environmental cues and stress. The effects of ionising radiation (IR) on flowering, however, have been poorly studied. Understanding the effects of ionising radiation on flowering, including the timing, gene pathways, and epigenetics involved, is crucial in the continuing effort of environmental radiation protection. The review shows that plants alter their flowering pattern in response to IR, with various flowering related genes (eg. FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT), CONSTANS (CO), GIGANTEA (GI), APETALA1 (AP1), LEAFY (LFY)) and epigenetic processes (DNA methylation, and miRNA expression eg. miRNA169, miR156, miR172) being affected. Thereby, showing a hypothetical IR-induced flowering mechanism. Further research on the interaction between IR and flowering in plants is, however, needed to elucidate the mechanisms behind the stress-induced flowering response.
Collapse
Affiliation(s)
- Pol Laanen
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| | - Ann Cuypers
- Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| | - Eline Saenen
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium.
| | - Nele Horemans
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| |
Collapse
|
11
|
Liu F, Zhang P, Liang Z, Yuan Y, Liu Y, Wu Y. The global dynamic of DNA methylation in response to heat stress revealed epigenetic mechanism of heat acclimation in Saccharina japonica. JOURNAL OF PHYCOLOGY 2023; 59:249-263. [PMID: 36453855 DOI: 10.1111/jpy.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Saccharina japonica is an ecologically and economically important kelp in cold-temperate regions. When it is cultivated on a large scale in the temperate and even subtropical zones, heat stress is a frequent abiotic stress. This study is the first attempt to reveal the regulatory mechanism of the response to heat stress from the perspective of DNA methylation in S. japonica. We firstly obtained the characteristics of variation in the methylome under heat stress, and observed that heat stress caused a slight increase in the overall methylation level and methylation rate, especially in the non-coding regions of the genome. Secondly, we noted that methylation was probably one of factors affecting the expression of genes, and that methylation within the gene body was positively correlated with the gene expression (rho = 0.0784). Moreover, it was found that among the differentially expressed genes regulated by methylation, many genes were related to heat stress response, such as HSP gene family, genes of antioxidant enzymes, genes related to proteasome-ubiquitination pathway, and plant cell signaling pathways. This study demonstrated that DNA methylation is involved in regulating the response to heat stress, laying a foundation for studying the acclimation and adaptation of S. japonica to heat stress from an epigenetic perspective.
Collapse
Affiliation(s)
- Fuli Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education; College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Pengyan Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Zhourui Liang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yanmin Yuan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yi Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yukun Wu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| |
Collapse
|
12
|
Ferrari M, Muto A, Bruno L, Cozza R. DNA Methylation in Algae and Its Impact on Abiotic Stress Responses. PLANTS (BASEL, SWITZERLAND) 2023; 12:241. [PMID: 36678953 PMCID: PMC9861306 DOI: 10.3390/plants12020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Epigenetics, referring to heritable gene regulatory information that is independent of changes in DNA sequences, is an important mechanism involved both in organism development and in the response to environmental events. About the epigenetic marks, DNA methylation is one of the most conserved mechanisms, playing a pivotal role in organism response to several biotic and abiotic stressors. Indeed, stress can induce changes in gene expression through hypo- or hyper-methylation of DNA at specific loci and/or in DNA methylation at the genome-wide level, which has an adaptive significance and can direct genome evolution. Exploring DNA methylation in responses to abiotic stress could have important implications for improving stress tolerance in algae. This article summarises the DNA methylation pattern in algae and its impact on abiotic stress, such as heavy metals, nutrients and temperature. Our discussion provides information for further research in algae for a better comprehension of the epigenetic response under abiotic stress, which could favour important implications to sustain algae growth under abiotic stress conditions, often related to high biosynthesis of interesting metabolites.
Collapse
|
13
|
Katsidi EC, Avramidou EV, Ganopoulos I, Barbas E, Doulis A, Triantafyllou A, Aravanopoulos FA. Genetics and epigenetics of Pinus nigra populations with differential exposure to air pollution. FRONTIERS IN PLANT SCIENCE 2023; 14:1139331. [PMID: 37089661 PMCID: PMC10117940 DOI: 10.3389/fpls.2023.1139331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Forest species in the course of their evolution have experienced several environmental challenges, which since historic times include anthropogenic pollution. The effects of pollution on the genetic and epigenetic diversity in black pine (Pinus nigra) forests were investigated in the Amyntaio - Ptolemais - Kozani Basin, which has been for decades the largest lignite mining and burning center of Greece, with a total installed generating capacity of about 4.5 GW, operating for more than 70 years and resulting in large amounts of primary air pollutant emissions, mainly SO2, NOx and PM10. P. nigra, a biomarker for air pollution and a keystone species of affected natural ecosystems, was examined in terms of phenology (cone and seed parameters), genetics (283 AFLP loci) and epigenetics (606 MSAP epiloci), using two populations (exposed to pollution and control) of the current (mature trees) and future (embryos) stand. It was found that cone, seed, as well as genetic diversity parameters, did not show statistically significant differences between the exposed population and the control. Nevertheless, statistically significant differences were detected at the population epigenetic level. Moreover, there was a further differentiation regarding the intergenerational comparison: while the epigenetic diversity does not substantially change in the two generations assessed in the control population, epigenetic diversity is significantly higher in the embryo population compared to the parental stand in the exposed population. This study sheds a light to genome dynamics in a forest tree population exposed to long term atmospheric pollution burden and stresses the importance of assessing both genetics and epigenetics in biomonitoring applications.
Collapse
Affiliation(s)
- Elissavet Ch. Katsidi
- Laboratory of Forest Genetics & Tree Breeding, Faculty of Agriculture, Forestry & Environmental Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia V. Avramidou
- Laboratory of Forest Genetics & Tree Breeding, Faculty of Agriculture, Forestry & Environmental Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Ganopoulos
- Laboratory of Forest Genetics & Tree Breeding, Faculty of Agriculture, Forestry & Environmental Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelos Barbas
- Laboratory of Forest Genetics & Tree Breeding, Faculty of Agriculture, Forestry & Environmental Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Doulis
- Laboratory of Plant Biotechnology – Genomic Resources, Hellenic Agricultural Organization DEMETER, Institute of Viticulture, Floriculture and Vegetable Crops, Heraklion, Greece
| | - Athanasios Triantafyllou
- Laboratory of Atmospheric Pollution and Environmental Physics (LALEP), Faculty of Engineering, University of Western Macedonia, Kozani, Greece
| | - Filippos A. Aravanopoulos
- Laboratory of Forest Genetics & Tree Breeding, Faculty of Agriculture, Forestry & Environmental Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
- *Correspondence: Filippos A. Aravanopoulos,
| |
Collapse
|
14
|
Liu Y, Wang J, Liu B, Xu ZY. Dynamic regulation of DNA methylation and histone modifications in response to abiotic stresses in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2252-2274. [PMID: 36149776 DOI: 10.1111/jipb.13368] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
DNA methylation and histone modification are evolutionarily conserved epigenetic modifications that are crucial for the expression regulation of abiotic stress-responsive genes in plants. Dynamic changes in gene expression levels can result from changes in DNA methylation and histone modifications. In the last two decades, how epigenetic machinery regulates abiotic stress responses in plants has been extensively studied. Here, based on recent publications, we review how DNA methylation and histone modifications impact gene expression regulation in response to abiotic stresses such as drought, abscisic acid, high salt, extreme temperature, nutrient deficiency or toxicity, and ultraviolet B exposure. We also review the roles of epigenetic mechanisms in the formation of transgenerational stress memory. We posit that a better understanding of the epigenetic underpinnings of abiotic stress responses in plants may facilitate the design of more stress-resistant or -resilient crops, which is essential for coping with global warming and extreme environments.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
15
|
Shi M, Wang C, Wang P, Zhang M, Liao W. Methylation in DNA, histone, and RNA during flowering under stress condition: A review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111431. [PMID: 36028071 DOI: 10.1016/j.plantsci.2022.111431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/07/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Flowering is the most critical transition period in the whole lifecycle of plants, and it is a highly sensitive period to stress. New combinations of temperature, drought stress, carbon dioxide and other abiotic/biotic conditions resulting from contemporary climate change affect the flowering process. Plants have evolved several strategies to deal with environmental stresses, including epigenetic modifications. Numerous studies show that environmental stresses trigger methylation/demethylation during flowering to preserve/accelerate plant lifecycle. What's more, histone and DNA methylation can be induced to respond to stresses, resulting in changes of flowering gene expression and enhancing stress tolerance in plants. Furthermore, RNA methylation may influence stress-regulated flowering by regulating mRNA stability and antioxidant mechanism. Our review presents the involvement of methylation in stress-repressed and stress-induced flowering. The crosstalk between methylation and small RNAs, phytohormones and exogenous substances (such as salicylic acid, nitric oxide) during flowering under different stresses were discussed. The latest regulatory evidence of RNA methylation in stress-regulated flowering was collected for the first time. Meanwhile, the limited evidences of methylation in biotic stress-induced flowering were summarized. Thus, the review provides insights into understanding of methylation mechanism in stress-regulated flowering and makes use for the development of regulating plant flowering at epigenetic level in the future.
Collapse
Affiliation(s)
- Meimei Shi
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Peng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Meiling Zhang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
16
|
Transposable Elements in the Revealing of Polymorphism-Based Differences in the Seeds of Flax Varieties Grown in Remediated Chernobyl Area. PLANTS 2022; 11:plants11192567. [PMID: 36235434 PMCID: PMC9571286 DOI: 10.3390/plants11192567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
The nuclear reactor accident in Chernobyl, Ukraine, resulted in effects both locally and farther away. Most of the contaminated areas were the agricultural fields and forests. Experimental fields were established near Chernobyl—radioactively contaminated fields localized 5 km from Chernobyl Nuclear Power Plant as well as the remediated soil that is localized directly in the Chernobyl town. Two flax varieties growing under chronic exposition to ionizing radiation were used for this study—the local Ukrainian variety Kyivskyi and a commercial variety Bethune. The screening of the length polymorphism generated by transposable elements insertions were performed. All known types of common flax transposon, retrotransposons and iPBS approach were used. In the iPBS multiplex analyze, for the Kyivskyi variety, a unique addition was found in the seeds from the radioactive contaminated field and for the Bethune variety, a total of five amplicon additions were obtained and one deletion. For the TRIM Cassandra fingerprints, two amplicon additions were generated in the seeds from radioactive contaminated fields for the Bethune variety. In summary, the obtained data represent the genetic diversity between control and irradiated subgroups of flax seeds from Chernobyl area and the presence of activated transposable elements due to the irradiation stress.
Collapse
|
17
|
Gudynaitė-Franckevičienė V, Pliūra A. Performance and Genetic Parameters of Poplar Hybrids and Clones in a Field Trial Are Modified by Contrasting Environmental Conditions during the Vegetative Propagation Phase. PLANTS (BASEL, SWITZERLAND) 2022; 11:2401. [PMID: 36145802 PMCID: PMC9505758 DOI: 10.3390/plants11182401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022]
Abstract
This study investigates epigenetics-like phenomena: how performance phenotypic plasticity, genotypic variation, and the heritability of growth traits and total phenolic compounds of Populus hybrids and clones in field trials may be modified by contrasting temperature conditions at their vegetation propagation phase. The significant effect of rooting-growing conditions on further tree performance in field trials was found for height increment in 2020, although the interaction hybrid by rooting-growing conditions was highly significant for phenolic compounds, tree height, and diameter, meaning that the performance of some hybrids was affected by rooting-growing conditions, thus demonstrating epigenetic-like effects. For phenolic compounds, interactions were also significant at the clonal level. High estimates of ecovalency indicate that some hybrids are ecologically sensitive, and epigenetic-like phenomena might occur. Hybrid P. balsamifera × P. trichocarpa is characterized by high ecovalency and specific adaptations according to mean tree height when vegetatively propagated under different rooting-growing conditions. Low estimates of P. deltoides × P. trichocarpa ecovalency demonstrate a general adaptation according to mean tree height in a field trial. Vegetative propagation conditions have also altered the genetic variation of traits in trees being planted in field trials.
Collapse
|
18
|
Azevedo V, Daddiego L, Cardone MF, Perrella G, Sousa L, Santos RB, Malhó R, Bergamini C, Marsico AD, Figueiredo A, Alagna F. Transcriptomic and methylation analysis of susceptible and tolerant grapevine genotypes following Plasmopara viticola infection. PHYSIOLOGIA PLANTARUM 2022; 174:e13771. [PMID: 36053855 PMCID: PMC9826190 DOI: 10.1111/ppl.13771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/05/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Downy mildew, caused by the biotrophic oomycete Plasmopara viticola, is one of the most economically significant grapevine diseases worldwide. Current strategies to cope with this threat rely on the massive use of chemical compounds during each cultivation season. The economic costs and negative environmental impact associated with these applications increased the urge to search for sustainable strategies of disease control. Improved knowledge of plant mechanisms to counteract pathogen infection may allow the development of alternative strategies for plant protection. Epigenetic regulation, in particular DNA methylation, is emerging as a key factor in the context of plant-pathogen interactions associated with the expression modulation of defence genes. To improve our understanding of the genetic and epigenetic mechanisms underpinning grapevine response to P. viticola, we studied the modulation of both 5-mC methylation and gene expression at 6 and 24 h post-infection (hpi). Leaves of two table grape genotypes (Vitis vinifera), selected by breeding activities for their contrasting level of susceptibility to the pathogen, were analysed. Following pathogen infection, we found variations in the 5-mC methylation level and the gene expression profile. The results indicate a genotype-specific response to pathogen infection. The tolerant genotype (N23/018) at 6 hpi exhibits a lower methylation level compared to the susceptible one (N20/020), and it shows an early modulation (at 6 hpi) of defence and epigenetic-related genes during P. viticola infection. These data suggest that the timing of response is an important mechanism to efficiently counteract the pathogen attack.
Collapse
Affiliation(s)
- Vanessa Azevedo
- Faculdade de Ciências, Plant Biology Department, Biosystems & Integrative Sciences Institute (BioISI)Universidade de LisboaLisbonPortugal
| | - Loretta Daddiego
- Energy Technologies and Renewable Sources DepartmentNational Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Trisaia Research CentreRotondellaMateraItaly
| | - Maria Francesca Cardone
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA)TuriBariItaly
| | | | - Lisete Sousa
- Department of Statistics and Operations Research, Faculdade de Ciências; Centre of Statistics and its Applications (CEAUL)Universidade de LisboaLisbonPortugal
| | - Rita B. Santos
- Faculdade de Ciências, Plant Biology Department, Biosystems & Integrative Sciences Institute (BioISI)Universidade de LisboaLisbonPortugal
| | - Rui Malhó
- Faculdade de Ciências, Plant Biology Department, Biosystems & Integrative Sciences Institute (BioISI)Universidade de LisboaLisbonPortugal
| | - Carlo Bergamini
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA)TuriBariItaly
| | - Antonio Domenico Marsico
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA)TuriBariItaly
| | - Andreia Figueiredo
- Faculdade de Ciências, Plant Biology Department, Biosystems & Integrative Sciences Institute (BioISI)Universidade de LisboaLisbonPortugal
| | - Fiammetta Alagna
- Energy Technologies and Renewable Sources DepartmentNational Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Trisaia Research CentreRotondellaMateraItaly
| |
Collapse
|
19
|
Role of Epigenetics in Modulating Phenotypic Plasticity against Abiotic Stresses in Plants. Int J Genomics 2022; 2022:1092894. [PMID: 35747076 PMCID: PMC9213152 DOI: 10.1155/2022/1092894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022] Open
Abstract
Plants being sessile are always exposed to various environmental stresses, and to overcome these stresses, modifications at the epigenetic level can prove vital for their long-term survival. Epigenomics refers to the large-scale study of epigenetic marks on the genome, which include covalent modifications of histone tails (acetylation, methylation, phosphorylation, ubiquitination, and the small RNA machinery). Studies based on epigenetics have evolved over the years especially in understanding the mechanisms at transcriptional and posttranscriptional levels in plants against various environmental stimuli. Epigenomic changes in plants through induced methylation of specific genes that lead to changes in their expression can help to overcome various stress conditions. Recent studies suggested that epigenomics has a significant potential for crop improvement in plants. By the induction and modulation of various cellular processes like DNA methylation, histone modification, and biogenesis of noncoding RNAs, the plant genome can be activated which can help in achieving a quicker response against various plant stresses. Epigenetic modifications in plants allow them to adjust under varied environmental stresses by modulating their phenotypic plasticity and at the same time ensure the quality and yield of crops. The plasticity of the epigenome helps to adapt the plants during pre- and postdevelopmental processes. The variation in DNA methylation in different organisms exhibits variable phenotypic responses. The epigenetic changes also occur sequentially in the genome. Various studies indicated that environmentally stimulated epimutations produce variable responses especially in differentially methylated regions (DMR) that play a major role in the management of stress conditions in plants. Besides, it has been observed that environmental stresses cause specific changes in the epigenome that are closely associated with phenotypic modifications. However, the relationship between epigenetic modifications and phenotypic plasticity is still debatable. In this review, we will be discussing the role of various factors that allow epigenetic changes to modulate phenotypic plasticity against various abiotic stress in plants.
Collapse
|
20
|
Plant DNA Methylation Responds to Nutrient Stress. Genes (Basel) 2022; 13:genes13060992. [PMID: 35741754 PMCID: PMC9222553 DOI: 10.3390/genes13060992] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/16/2022] Open
Abstract
Nutrient stress as abiotic stress has become one of the important factors restricting crop yield and quality. DNA methylation is an essential epigenetic modification that can effectively regulate genome stability. Exploring DNA methylation responses to nutrient stress could lay the foundation for improving plant tolerance to nutrient stress. This article summarizes the plant DNA methylation patterns, the effects of nutrient stress, such as nitrogen, phosphorus, iron, zinc and sulfur stress, on plant DNA methylation and research techniques for plant DNA methylation, etc. Our discussion provides insight for further research on epigenetics response to nutrient stress in the future.
Collapse
|
21
|
Kumari P, Khan S, Wani IA, Gupta R, Verma S, Alam P, Alaklabi A. Unravelling the Role of Epigenetic Modifications in Development and Reproduction of Angiosperms: A Critical Appraisal. Front Genet 2022; 13:819941. [PMID: 35664328 PMCID: PMC9157814 DOI: 10.3389/fgene.2022.819941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 12/28/2022] Open
Abstract
Epigenetics are the heritable changes in gene expression patterns which occur without altering DNA sequence. These changes are reversible and do not change the sequence of the DNA but can alter the way in which the DNA sequences are read. Epigenetic modifications are induced by DNA methylation, histone modification, and RNA-mediated mechanisms which alter the gene expression, primarily at the transcriptional level. Such alterations do control genome activity through transcriptional silencing of transposable elements thereby contributing toward genome stability. Plants being sessile in nature are highly susceptible to the extremes of changing environmental conditions. This increases the likelihood of epigenetic modifications within the composite network of genes that affect the developmental changes of a plant species. Genetic and epigenetic reprogramming enhances the growth and development, imparts phenotypic plasticity, and also ensures flowering under stress conditions without changing the genotype for several generations. Epigenetic modifications hold an immense significance during the development of male and female gametophytes, fertilization, embryogenesis, fruit formation, and seed germination. In this review, we focus on the mechanism of epigenetic modifications and their dynamic role in maintaining the genomic integrity during plant development and reproduction.
Collapse
Affiliation(s)
- Priyanka Kumari
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Sajid Khan
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Ishfaq Ahmad Wani
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Renu Gupta
- Division of Soil Sciences & Agricultural Chemistry, Faculty of Agriculture Sher e Kashmir University of Agricultural Sciences and Technology, Chatha, India
| | - Susheel Verma
- Department of Botany, University of Jammu, Jammu, India
- *Correspondence: Susheel Verma,
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University (PSAU), Alkharj, Saudi Arabia
| | - Abdullah Alaklabi
- Department of Biology, College of Science, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
22
|
Multi-omics data integration reveals link between epigenetic modifications and gene expression in sugar beet (Beta vulgaris subsp. vulgaris) in response to cold. BMC Genomics 2022; 23:144. [PMID: 35176993 PMCID: PMC8855596 DOI: 10.1186/s12864-022-08312-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/13/2022] [Indexed: 12/19/2022] Open
Abstract
Background DNA methylation is thought to influence the expression of genes, especially in response to changing environmental conditions and developmental changes. Sugar beet (Beta vulgaris ssp. vulgaris), and other biennial or perennial plants are inevitably exposed to fluctuating temperatures throughout their lifecycle and might even require such stimulus to acquire floral competence. Therefore, plants such as beets, need to fine-tune their epigenetic makeup to ensure phenotypic plasticity towards changing environmental conditions while at the same time steering essential developmental processes. Different crop species may show opposing reactions towards the same abiotic stress, or, vice versa, identical species may respond differently depending on the specific kind of stress. Results In this study, we investigated common effects of cold treatment on genome-wide DNA methylation and gene expression of two Beta vulgaris accessions via multi-omics data analysis. Cold exposure resulted in a pronounced reduction of DNA methylation levels, which particularly affected methylation in CHH context (and to a lesser extent CHG) and was accompanied by transcriptional downregulation of the chromomethyltransferase CMT2 and strong upregulation of several genes mediating active DNA demethylation. Conclusion Integration of methylomic and transcriptomic data revealed that, rather than methylation having directly influenced expression, epigenetic modifications correlated with changes in expression of known players involved in DNA (de)methylation. In particular, cold triggered upregulation of genes putatively contributing to DNA demethylation via the ROS1 pathway. Our observations suggest that these transcriptional responses precede the cold-induced global DNA-hypomethylation in non-CpG, preparing beets for additional transcriptional alterations necessary for adapting to upcoming environmental changes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08312-2.
Collapse
|
23
|
Mohammad VH, Osborne CP, Freckleton RP. Drought exposure leads to rapid acquisition and inheritance of herbicide resistance in the weed Alopecurus myosuroides. Ecol Evol 2022; 12:e8563. [PMID: 35222951 PMCID: PMC8848470 DOI: 10.1002/ece3.8563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
Globally, herbicide resistance in weeds poses a threat to food security. Resistance evolves rapidly through the co-option of a suite of physiological mechanisms that evolved to allow plants to survive environmental stress. Consequently, we hypothesize that stress tolerance and herbicide resistance are functionally linked. We address two questions: (i) does exposure to stress in a parental generation promote the evolution of resistance in the offspring? (ii) Is such evolution mediated through non-genetic mechanisms? We exposed individuals of a grass weed to drought, and tested whether this resulted in herbicide resistance in the first generation. In terms of both survival and dry mass, we find enhanced resistance to herbicide in the offspring of parents that had been exposed to drought. Our results suggest that exposure of weeds to drought can confer herbicide resistance in subsequent generations, and that the mechanism conferring heritability of herbicide resistance is non-genetic.
Collapse
Affiliation(s)
- Vian H. Mohammad
- Department of Animal & Plant SciencesUniversity of SheffieldSheffieldUK
| | - Colin P. Osborne
- Department of Animal & Plant SciencesUniversity of SheffieldSheffieldUK
| | | |
Collapse
|
24
|
Ma LY, Zhang AP, Liu J, Zhang N, Chen M, Yang H. Minimized Atrazine Risks to Crop Security and Its Residue in the Environment by a Rice Methyltransferase as a Regulation Factor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:87-98. [PMID: 34936355 DOI: 10.1021/acs.jafc.1c04172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Atrazine (ATZ) is an agricultural pesticide for controlling field weeds. ATZ accumulates in many crops, posing high risks to crop production and food safety. Characterizing one of the novel rice MT genes named Oryza sativa atrazine-responsive methyltransferase (OsARM) showed that the expression of OsARM was associated with DNA demethylation (hypomethylation) in its promoter region. The enhancement of OsARM expression was manifested by the attenuated symptoms of ATZ toxicity including better growth and lower ATZ accumulation in plants. The promoted capacity of detoxification was confirmed by transgenic rice overexpression OsARM lines and also functionally proved by CRISPR-Cas9 knockout mutants. The transgenic lines accumulate more ATZ metabolites in rice and lower concentrations in the growth environment, pointing out that ATZ metabolism or degradation can be intensified. The ATZ-induced DNA demethylation is an important hallmark representing the epigenetic mechanism, which is required for the extra OsARM expression to facilitate ATZ disappearance in rice and the environment.
Collapse
Affiliation(s)
- Li Ya Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, China
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ai Ping Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, China
| | - Jintong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, China
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, China
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, China
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
25
|
Can Forest Trees Cope with Climate Change?-Effects of DNA Methylation on Gene Expression and Adaptation to Environmental Change. Int J Mol Sci 2021; 22:ijms222413524. [PMID: 34948318 PMCID: PMC8703565 DOI: 10.3390/ijms222413524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic modifications, including chromatin modifications and DNA methylation, play key roles in regulating gene expression in both plants and animals. Transmission of epigenetic markers is important for some genes to maintain specific expression patterns and preserve the status quo of the cell. This article provides a review of existing research and the current state of knowledge about DNA methylation in trees in the context of global climate change, along with references to the potential of epigenome editing tools and the possibility of their use for forest tree research. Epigenetic modifications, including DNA methylation, are involved in evolutionary processes, developmental processes, and environmental interactions. Thus, the implications of epigenetics are important for adaptation and phenotypic plasticity because they provide the potential for tree conservation in forest ecosystems exposed to adverse conditions resulting from global warming and regional climate fluctuations.
Collapse
|
26
|
Werghi S, Herrero FA, Fakhfakh H, Gorsane F. Auxin drives tomato spotted wilt virus (TSWV) resistance through epigenetic regulation of auxin response factor ARF8 expression in tomato. Gene 2021; 804:145905. [PMID: 34411646 DOI: 10.1016/j.gene.2021.145905] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/26/2022]
Abstract
Tomato spotted wilt virus (TSWV) causes severe losses of tomato crops worldwide. To cope dynamically with such a threat, plants deploy strategies acting at the molecular and the epigenetic levels. We found that tomato symptoms progress in a specific-genotype-manner upon TSWV infection. Susceptible genotypes showed within the Auxin Response Factor (ARF8) promoter coupled to enhanced expression of miRNA167a, reduced ARF8 gene and decreased levels of the hormone auxin. This constitutes a deliberate attempt of TSWV to disrupt plant growth to promote spread in sensitive cultivars. Epigenetic regulation through the level of cytosine methylation and the miR167a-ARF8 module are part of a complex network modulating auxin-triggered synthesis and shaping tomato responses to TSWV. Furthermore, modulation of miR167a-ARF8 regulatory module could be applied in tomato-resistance breeding programs.
Collapse
Affiliation(s)
- Sirine Werghi
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Frederic Aparicio Herrero
- Institute of Molecular and Cellular Biology of Plants (UPV-CSIC), Valencia 46022, Spain; Dept of Biotechnology, ETSIAMN, Universidad Politécnica de Valencia, 46002, Spain
| | - Hatem Fakhfakh
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia; Faculty of Sciences of Bizerte, Zarzouna 702, University of Carthage, Tunisia
| | - Faten Gorsane
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia; Faculty of Sciences of Bizerte, Zarzouna 702, University of Carthage, Tunisia.
| |
Collapse
|
27
|
Cong W, Li N, Wang J, Kang Y, Miao Y, Xu C, Wang Z, Liu T, Gong L, Liu B, Ou X. Genome-wide locus-specific DNA methylation repatterning may facilitate rapid evolution of mercury resistance in rice. Genes Genomics 2021; 44:299-306. [PMID: 34846696 DOI: 10.1007/s13258-021-01192-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Albeit a relatively stable epigenetic modification, DNA methylation in plants can be repatterned and play important roles in response to biotic and abiotic stresses. However, whether DNA methylation dynamics may contribute to cope with mercury (Hg) stress in plants remains to be fully investigated. OBJECTIVE To probe the potential roles of DNA methylation dynamics in coping with Hg stress in rice. METHODS Whole-genome bisulfite sequencing was used to profile the DNA methylation patterns of a rice Hg-resistant line (RHg) selected from a heterozygous mutant of the DNA methyltransferase 1 gene (OsMET1+/-), together with its Hg-sensitive wild-type plants of cv. Nipponbare (Nip) under both normal and Hg stress conditions. RESULTS Genome-wide locus-specific differential methylation regions (DMRs) were detected between RHg and Nip under normal condition, the predominant DMR patterns were CG hypo-DMRs, CHG hypo-DMRs and CHH hyper-DMRs. In both lines, more hyper- than hypo-DMRs were detected at all three sequence contexts (CG, CHG and CHH) under Hg stress relative to normal condition. Comparison of DNA methylation changes in the two lines under Hg stress indicates that RHg had a more dynamic methylome than the control (Nip). Original DMRs in RHg trended to transform to opposite status (from hyper- to hypo- or vice versa) under Hg stress condition. Gene ontology analysis revealed that Hg-resistance-related DMGs were enriched in diverse biological processes. CONCLUSIONS Our results suggest genome-wide locus-specific DNA methylation repatterning can facilitate rapid acquisition of Hg resistance in rice.
Collapse
Affiliation(s)
- Weixuan Cong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jinbin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ying Kang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yiling Miao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ziqi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Tongtong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Xiufang Ou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
28
|
DNA methylation and histone modifications induced by abiotic stressors in plants. Genes Genomics 2021; 44:279-297. [PMID: 34837631 DOI: 10.1007/s13258-021-01191-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/14/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND A review of research shows that methylation in plants is more complex and sophisticated than in microorganisms and animals. Overall, studies on the effects of abiotic stress on epigenetic modifications in plants are still scarce and limited to few species. Epigenetic regulation of plant responses to environmental stresses has not been elucidated. This study summarizes key effects of abiotic stressors on DNA methylation and histone modifications in plants. DISCUSSION Plant DNA methylation and histone modifications in responses to abiotic stressors varied and depended on the type and level of stress, plant tissues, age, and species. A critical analysis of the literature available revealed that 44% of the epigenetic modifications induced by abiotic stressors in plants involved DNA hypomethylation, 40% DNA hypermethylation, and 16% histone modification. The epigenetic changes in plants might be underestimated since most authors used methods such as methylation-sensitive amplification polymorphism (MSAP), High performance liquid chromatography (HPLC), and immunolabeling that are less sensitive compared to bisulfite sequencing and single-base resolution methylome analyses. More over, mechanisms underlying epigenetic changes in plants have not yet been determined since most reports showed only the level or/and distribution of DNA methylation and histone modifications. CONCLUSIONS Various epigenetic mechanisms are involved in response to abiotic stressors, and several of them are still unknown. Integrated analysis of the changes in the genome by omic approaches should help to identify novel components underlying mechanisms involved in DNA methylation and histone modifications associated with plant response to environmental stressors.
Collapse
|
29
|
Pereira C, Castander-Olarieta A, Sales E, Montalbán IA, Canhoto J, Moncaleán P. Heat Stress in Pinus halepensis Somatic Embryogenesis Induction: Effect in DNA Methylation and Differential Expression of Stress-Related Genes. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112333. [PMID: 34834696 PMCID: PMC8622292 DOI: 10.3390/plants10112333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 05/13/2023]
Abstract
In the current context of climate change, plants need to develop different mechanisms of stress tolerance and adaptation to cope with changing environmental conditions. Temperature is one of the most important abiotic stresses that forest trees have to overcome. Recent research developed in our laboratory demonstrated that high temperatures during different stages of conifer somatic embryogenesis (SE) modify subsequent phases of the process and the behavior of the resulting ex vitro somatic plants. For this reason, Aleppo pine SE was induced under different heat stress treatments (40 °C for 4 h, 50 °C for 30 min, and 60 °C for 5 min) in order to analyze its effect on the global DNA methylation rates and the differential expression of four stress-related genes at different stages of the SE process. Results showed that a slight decrease of DNA methylation at proliferating embryonal masses (EMs) can correlate with the final efficiency of the process. Additionally, different expression patterns for stress-related genes were found in EMs and needles from the in vitro somatic plants obtained; the DEHYDRATION INDUCED PROTEIN 19 gene was up-regulated in response to heat at proliferating EMs, whereas HSP20 FAMILY PROTEIN and SUPEROXIDE DISMUTASE [Cu-Zn] were down-regulated in needles.
Collapse
Affiliation(s)
- Cátia Pereira
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal;
- Department of Forestry Science, NEIKER-BRTA, 01080 Arkaute, Spain; (A.C.-O.); (I.A.M.)
| | | | - Ester Sales
- Departament of Ciencias Agrarias y del Medio Natural, Instituto Universitario de Ciencias Ambientales, Universidad de Zaragoza, Escuela Politécnica Superior, 22071 Huesca, Spain;
| | - Itziar A. Montalbán
- Department of Forestry Science, NEIKER-BRTA, 01080 Arkaute, Spain; (A.C.-O.); (I.A.M.)
| | - Jorge Canhoto
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal;
- Correspondence: (J.C.); (P.M.)
| | - Paloma Moncaleán
- Department of Forestry Science, NEIKER-BRTA, 01080 Arkaute, Spain; (A.C.-O.); (I.A.M.)
- Correspondence: (J.C.); (P.M.)
| |
Collapse
|
30
|
Khapilina O, Turzhanova A, Danilova A, Tumenbayeva A, Shevtsov V, Kotukhov Y, Kalendar R. Primer Binding Site (PBS) Profiling of Genetic Diversity of Natural Populations of Endemic Species Allium ledebourianum Schult. BIOTECH 2021; 10:23. [PMID: 35822797 PMCID: PMC9245474 DOI: 10.3390/biotech10040023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/25/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022] Open
Abstract
Endemic species are especially vulnerable to biodiversity loss caused by isolation or habitat specificity, small population size, and anthropogenic factors. Endemic species biodiversity analysis has a critically important global value for the development of conservation strategies. The rare onion Allium ledebourianum is a narrow-lined endemic species, with natural populations located in the extreme climatic conditions of the Kazakh Altai. A. ledebourianum populations are decreasing everywhere due to anthropogenic impact, and therefore, this species requires preservation and protection. Conservation of this rare species is associated with monitoring studies to investigate the genetic diversity of natural populations. Fundamental components of eukaryote genome include multiple classes of interspersed repeats. Various PCR-based DNA fingerprinting methods are used to detect chromosomal changes related to recombination processes of these interspersed elements. These methods are based on interspersed repeat sequences and are an effective approach for assessing the biological diversity of plants and their variability. We applied DNA profiling approaches based on conservative sequences of interspersed repeats to assess the genetic diversity of natural A. ledebourianum populations located in the territory of Kazakhstan Altai. The analysis of natural A. ledebourianum populations, carried out using the DNA profiling approach, allowed the effective differentiation of the populations and assessment of their genetic diversity. We used conservative sequences of tRNA primer binding sites (PBS) of the long-terminal repeat (LTR) retrotransposons as PCR primers. Amplification using the three most effective PBS primers generated 628 PCR amplicons, with an average of 209 amplicons. The average polymorphism level varied from 34% to 40% for all studied samples. Resolution analysis of the PBS primers showed all of them to have high or medium polymorphism levels, which varied from 0.763 to 0.965. Results of the molecular analysis of variance showed that the general biodiversity of A. ledebourianum populations is due to interpopulation (67%) and intrapopulation (33%) differences. The revealed genetic diversity was higher in the most distant population of A. ledebourianum LD64, located on the Sarymsakty ridge of Southern Altai. This is the first genetic diversity study of the endemic species A. ledebourianum using DNA profiling approaches. This work allowed us to collect new genetic data on the structure of A. ledebourianum populations in the Altai for subsequent development of preservation strategies to enhance the reproduction of this relict species. The results will be useful for the conservation and exploitation of this species, serving as the basis for further studies of its evolution and ecology.
Collapse
Affiliation(s)
- Oxana Khapilina
- National Center for Biotechnology, Korgalzhin Hwy 13/5, Nur-Sultan 010000, Kazakhstan; (A.T.); (A.T.); (V.S.)
| | - Ainur Turzhanova
- National Center for Biotechnology, Korgalzhin Hwy 13/5, Nur-Sultan 010000, Kazakhstan; (A.T.); (A.T.); (V.S.)
| | - Alevtina Danilova
- Altai Botanical Garden, Yermakova Str 1, Ridder 070000, Kazakhstan; (A.D.); (Y.K.)
| | - Asem Tumenbayeva
- National Center for Biotechnology, Korgalzhin Hwy 13/5, Nur-Sultan 010000, Kazakhstan; (A.T.); (A.T.); (V.S.)
| | - Vladislav Shevtsov
- National Center for Biotechnology, Korgalzhin Hwy 13/5, Nur-Sultan 010000, Kazakhstan; (A.T.); (A.T.); (V.S.)
| | - Yuri Kotukhov
- Altai Botanical Garden, Yermakova Str 1, Ridder 070000, Kazakhstan; (A.D.); (Y.K.)
| | - Ruslan Kalendar
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, Viikinkaari 1, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
31
|
Wang MR, Bi W, Shukla MR, Ren L, Hamborg Z, Blystad DR, Saxena PK, Wang QC. Epigenetic and Genetic Integrity, Metabolic Stability, and Field Performance of Cryopreserved Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:1889. [PMID: 34579422 PMCID: PMC8467502 DOI: 10.3390/plants10091889] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 11/28/2022]
Abstract
Cryopreservation is considered an ideal strategy for the long-term preservation of plant genetic resources. Significant progress was achieved over the past several decades, resulting in the successful cryopreservation of the genetic resources of diverse plant species. Cryopreservation procedures often employ in vitro culture techniques and require the precise control of several steps, such as the excision of explants, preculture, osmo- and cryoprotection, dehydration, freeze-thaw cycle, unloading, and post-culture for the recovery of plants. These processes create a stressful environment and cause reactive oxygen species (ROS)-induced oxidative stress, which is detrimental to the growth and regeneration of tissues and plants from cryopreserved tissues. ROS-induced oxidative stresses were documented to induce (epi)genetic and somatic variations. Therefore, the development of true-to-type regenerants of the source germplasm is of primary concern in the application of plant cryopreservation technology. The present article provides a comprehensive assessment of epigenetic and genetic integrity, metabolic stability, and field performance of cryopreserved plants developed in the past decade. Potential areas and the directions of future research in plant cryopreservation are also proposed.
Collapse
Affiliation(s)
- Min-Rui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling District, Xianyang 712100, China;
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Wenlu Bi
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON N1G 2W1, Canada; (W.B.); (M.R.S.); (P.K.S.)
| | - Mukund R. Shukla
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON N1G 2W1, Canada; (W.B.); (M.R.S.); (P.K.S.)
| | - Li Ren
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Zhibo Hamborg
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), 1431 Ås, Norway; (Z.H.); (D.-R.B.)
| | - Dag-Ragnar Blystad
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), 1431 Ås, Norway; (Z.H.); (D.-R.B.)
| | - Praveen K. Saxena
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON N1G 2W1, Canada; (W.B.); (M.R.S.); (P.K.S.)
| | - Qiao-Chun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling District, Xianyang 712100, China
| |
Collapse
|
32
|
Lephatsi MM, Meyer V, Piater LA, Dubery IA, Tugizimana F. Plant Responses to Abiotic Stresses and Rhizobacterial Biostimulants: Metabolomics and Epigenetics Perspectives. Metabolites 2021; 11:457. [PMID: 34357351 PMCID: PMC8305699 DOI: 10.3390/metabo11070457] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023] Open
Abstract
In response to abiotic stresses, plants mount comprehensive stress-specific responses which mediate signal transduction cascades, transcription of relevant responsive genes and the accumulation of numerous different stress-specific transcripts and metabolites, as well as coordinated stress-specific biochemical and physiological readjustments. These natural mechanisms employed by plants are however not always sufficient to ensure plant survival under abiotic stress conditions. Biostimulants such as plant growth-promoting rhizobacteria (PGPR) formulation are emerging as novel strategies for improving crop quality, yield and resilience against adverse environmental conditions. However, to successfully formulate these microbial-based biostimulants and design efficient application programs, the understanding of molecular and physiological mechanisms that govern biostimulant-plant interactions is imperatively required. Systems biology approaches, such as metabolomics, can unravel insights on the complex network of plant-PGPR interactions allowing for the identification of molecular targets responsible for improved growth and crop quality. Thus, this review highlights the current models on plant defence responses to abiotic stresses, from perception to the activation of cellular and molecular events. It further highlights the current knowledge on the application of microbial biostimulants and the use of epigenetics and metabolomics approaches to elucidate mechanisms of action of microbial biostimulants.
Collapse
Affiliation(s)
- Motseoa M. Lephatsi
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
| | - Vanessa Meyer
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa;
| | - Lizelle A. Piater
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
- International Research and Development Division, Omnia Group, Ltd., Johannesburg 2021, South Africa
| |
Collapse
|
33
|
Abstract
Quercus species (oaks) have been an integral part of the landscape in the northern hemisphere for millions of years. Their ability to adapt and spread across different environments and their contributions to many ecosystem services is well documented. Human activity has placed many oak species in peril by eliminating or adversely modifying habitats through exploitative land usage and by practices that have exacerbated climate change. The goal of this review is to compile a list of oak species of conservation concern, evaluate the genetic data that is available for these species, and to highlight the gaps that exist. We compiled a list of 124 Oaks of Concern based on the Red List of Oaks 2020 and the Conservation Gap Analysis for Native U.S. Oaks and their evaluations of each species. Of these, 57% have been the subject of some genetic analysis, but for most threatened species (72%), the only genetic analysis was done as part of a phylogenetic study. While nearly half (49%) of published genetic studies involved population genetic analysis, only 16 species of concern (13%) have been the subject of these studies. This is a critical gap considering that analysis of intraspecific genetic variability and genetic structure are essential for designing conservation management strategies. We review the published population genetic studies to highlight their application to conservation. Finally, we discuss future directions in Quercus conservation genetics and genomics.
Collapse
|
34
|
Yin L, Zhu Z, Huang L, Luo X, Li Y, Xiao C, Yang J, Wang J, Zou Q, Tao L, Kang Z, Tang R, Wang M, Fu S. DNA repair- and nucleotide metabolism-related genes exhibit differential CHG methylation patterns in natural and synthetic polyploids (Brassica napus L.). HORTICULTURE RESEARCH 2021; 8:142. [PMID: 34193846 PMCID: PMC8245426 DOI: 10.1038/s41438-021-00576-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 05/03/2023]
Abstract
Polyploidization plays a crucial role in the evolution of angiosperm species. Almost all newly formed polyploids encounter genetic or epigenetic instabilities. However, the molecular mechanisms contributing to genomic instability in synthetic polyploids have not been clearly elucidated. Here, we performed a comprehensive transcriptomic and methylomic analysis of natural and synthetic polyploid rapeseeds (Brassica napus). Our results showed that the CHG methylation levels of synthetic rapeseed in different genomic contexts (genes, transposon regions, and repeat regions) were significantly lower than those of natural rapeseed. The total number and length of CHG-DMRs between natural and synthetic polyploids were much greater than those of CG-DMRs and CHH-DMRs, and the genes overlapping with these CHG-DMRs were significantly enriched in DNA damage repair and nucleotide metabolism pathways. These results indicated that CHG methylation may be more sensitive than CG and CHH methylation in regulating the stability of the polyploid genome of B. napus. In addition, many genes involved in DNA damage repair, nucleotide metabolism, and cell cycle control were significantly differentially expressed between natural and synthetic rapeseeds. Our results highlight that the genes related to DNA repair and nucleotide metabolism display differential CHG methylation patterns between natural and synthetic polyploids and reveal the potential connection between the genomic instability of polyploid plants with DNA methylation defects and dysregulation of the DNA repair system. In addition, it was found that the maintenance of CHG methylation in B. napus might be partially regulated by MET1. Our study provides novel insights into the establishment and evolution of polyploid plants and offers a potential idea for improving the genomic stability of newly formed Brassica polyploids.
Collapse
Affiliation(s)
- Liqin Yin
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China.
- College of Life Sciences, Sichuan University, 29 Wangjiang Road, Chengdu, China.
| | - Zhendong Zhu
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Liangjun Huang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
- Agricultural College, Sichuan Agricultural University, 211 Huimin Road, Chengdu, China
| | - Xuan Luo
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
- Agricultural College, Sichuan Agricultural University, 211 Huimin Road, Chengdu, China
| | - Yun Li
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Chaowen Xiao
- College of Life Sciences, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Jin Yang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Jisheng Wang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Qiong Zou
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Lanrong Tao
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Zeming Kang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Rong Tang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Maolin Wang
- College of Life Sciences, Sichuan University, 29 Wangjiang Road, Chengdu, China.
| | - Shaohong Fu
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China.
| |
Collapse
|
35
|
|
36
|
Das MC, Devi SD, Kumaria S, Reed BM. Looking for a way forward for the cryopreservation of orchid diversity. Cryobiology 2021; 102:1-14. [PMID: 34081925 DOI: 10.1016/j.cryobiol.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
The family Orchidaceae, with over 25,000 species, includes five subfamilies and nearly 700 genera. Loss of plants in the wild has resulted from clearing of forests and excessive collection for various purposes. Moreover, the requirement of symbiotic association during seed germination under natural conditions adds a certain level of difficulty in retaining the orchid resources in the wild. Cryopreservation is an important arena in conservation science due to its potential of storing genetic resources without altering the genetic makeup. Cryopreserved orchids are a very small percentage of the species, and are also not representative of most genera. Finding effective protocols for the various explant types is of prime importance in conserving orchid diversity. Seed is the most commonly stored and directly useful explant, and direct plunging in liquid nitrogen or PVS2 vitrification appear to be suitable for most tested species. The myriad of other species should be screened as they become available, with special emphasis on seed maturity and moisture content. Studies of protocorms and protocorm-like bodies mostly employ desiccation, PVS2 vitrification or encapsulation-dehydration. Pollinia are generally stored successfully following desiccation or slow cooling. There are too few examples of shoot tip cryopreservation to make a determination, however vitrification techniques are likely the most useful for a range of genera. A systematic and coordinated effort is needed to screen all available species in as many taxa as possible, initially with seed, protocorms and pollinia. It is a charge to the orchid research community to organize this effort and fill in the required data for the large number of untested taxa. In addition, providing stored samples to established orchid cryo collections would greatly increase preservation of these endangered treasures.
Collapse
Affiliation(s)
- Meera Chettri Das
- Plant Biotechnology Laboratory, Department of Botany, Centre for Advanced Studies, North-Eastern Hill University, Shillong, 793022, Meghalaya, India.
| | - Seram Devika Devi
- Plant Biotechnology Laboratory, Department of Botany, Centre for Advanced Studies, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Suman Kumaria
- Plant Biotechnology Laboratory, Department of Botany, Centre for Advanced Studies, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Barbara M Reed
- USDA National Clonal Germplasm Repository Corvallis, OR, USA
| |
Collapse
|
37
|
Fan X, Liu L, Qian K, Chen J, Zhang Y, Xie P, Xu M, Hu Z, Yan W, Wu Y, Xu G, Fan X. Plant DNA methylation is sensitive to parent seed N content and influences the growth of rice. BMC PLANT BIOLOGY 2021; 21:211. [PMID: 33975546 PMCID: PMC8111971 DOI: 10.1186/s12870-021-02953-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Nitrogen (N) is an important nutrient for plant growth, development, and agricultural production. Nitrogen stress could induce epigenetic changes in plants. In our research, overexpression of the OsNAR2.1 line was used as a testing target in rice plants with high nitrogen-use efficiency to study the changes of rice methylation and growth in respond of the endogenous and external nitrogen stress. RESULTS Our results showed that external N deficiency could decrease seed N content and plant growth of the overexpression line. During the filial growth, we found that the low parent seed nitrogen (LPSN) in the overexpression line could lead to a decrease in the filial seed nitrogen content, total plant nitrogen content, yield, and OsNAR2.1 expression (28, 35, 23, and 55%, respectively) compared with high parent seed nitrogen (HPSN) in high nitrogen external supply. However, such decreases were not observed in wild type. Furthermore, methylation sequencing results showed that LPSN caused massive gene methylation changes, which enriched in over 20 GO pathways in the filial overexpression line, and the expression of OsNAR2.1 in LPSN filial overexpression plants was significantly reduced compared to HPSN filial plants in high external N, which was not shown in wild type. CONCLUSIONS We suggest that the parent seed nitrogen content decreased induced DNA methylation changes at the epigenetic level and significantly decreased the expression of OsNAR2.1, resulting in a heritable phenotype of N deficiency over two generations of the overexpression line.
Collapse
Affiliation(s)
- Xiaoru Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
- College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Laihua Liu
- Vazyme Biotech Co Ltd, Nanjing, 210033, China
| | - Kaiyun Qian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
- College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingguang Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuyue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
- College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
- College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Man Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
- College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
- College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - WenKai Yan
- Bioinformatics Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yufeng Wu
- Bioinformatics Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
- College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China.
- College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
38
|
Tyczewska A, Gracz-Bernaciak J, Szymkowiak J, Twardowski T. Herbicide stress-induced DNA methylation changes in two Zea mays inbred lines differing in Roundup® resistance. J Appl Genet 2021; 62:235-248. [PMID: 33512663 PMCID: PMC8032638 DOI: 10.1007/s13353-021-00609-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 01/18/2023]
Abstract
DNA methylation plays a crucial role in the regulation of gene expression, activity of transposable elements, defense against foreign DNA, and inheritance of specific gene expression patterns. The link between stress exposure and sequence-specific changes in DNA methylation was hypothetical until it was shown that stresses can induce changes in the gene expression through hypomethylation or hypermethylation of DNA. To detect changes in DNA methylation under herbicide stress in two local Zea mays inbred lines exhibiting differential susceptibility to Roundup®, the methylation-sensitive amplified polymorphism (MSAP) technique was used. The overall DNA methylation levels were determined at approximately 60% for both tested lines. The most significant changes were observed for the more sensitive Z. mays line, where 6 h after the herbicide application, a large increase in the level of DNA methylation (attributed to the increase in fully methylated bands (18.65%)) was noted. DNA sequencing revealed that changes in DNA methylation profiles occurred in genes encoding heat shock proteins, membrane proteins, transporters, kinases, lipases, methyltransferases, zinc-finger proteins, cytochromes, and transposons. Herbicide stress-induced changes depended on the Z. mays variety, and the large increase in DNA methylation level in the sensitive line resulted in a lower ability to cope with stress conditions.
Collapse
Affiliation(s)
- Agata Tyczewska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | | | - Jakub Szymkowiak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Tomasz Twardowski
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
39
|
Waseem M, Huang F, Wang Q, Aslam MM, Abbas F, Ahmad F, Ashraf U, Hassan W, Fiaz S, Ye X, Yu L, Ke Y. Identification, methylation profiling, and expression analysis of stress-responsive cytochrome P450 genes in rice under abiotic and phytohormones stresses. GM CROPS & FOOD 2021; 12:551-563. [PMID: 33877001 PMCID: PMC8820252 DOI: 10.1080/21645698.2021.1908813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The cytochrome P450 (CYP) is a large and complex eukaryotic gene superfamily with enzymatic activities involved in several physiological and regulatory processes. As an objective, an in-silico genome-wide DNA methylation (5mC) analysis was performed in rice (Oryza sativa cv. Zhonghua11), and the epigenetic role of CYPs in two abiotic stresses was observed. Being a stable representative mark, DNA-methylation alters the gene expression under stressful environmental conditions. Rice plants under salinity and drought stresses were analyzed through MeDIP-chip hybridization, and 14 unique genes of the CYP family were identified in the rice genome with varying degrees of methylation. The gene structure, promoter sequences, and phylogenetic analysis were performed. Furthermore, the responses of CYPs to various abiotic stresses, including salinity, drought, and cold were revealed. Similarly, the expression profile of potential CYPs was also investigated under various phytohormone stresses, which revealed the potential involvement of CYPs to hormone regulations. Overall, the current study provides evidence for CYP's stress regulation and fundamental for further characterization and understanding their epigenetic roles in gene expression regulation and environmental stress regulation in higher plants.
Collapse
Affiliation(s)
- Muhammad Waseem
- College of Horticulture, South China Agricultural University, P.R. China
| | - Feiyan Huang
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Centre, Kunming University, Kunming China
| | - Qiyu Wang
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Centre, Kunming University, Kunming China
| | - Mehtab Muhammad Aslam
- College of Life Sciences, Joint International Research Laboratory of Water and 5 Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Farhat Abbas
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou P.R. China
| | - Fiaz Ahmad
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University , Nanjing PR China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education Lahore, Punjab, Pakistan
| | - Waseem Hassan
- Institute of Environment and Sustainable Development in Agricultural, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Xianwen Ye
- Kunming Tobacco Corporation of Yunnan Province, Kunming China
| | - Lei Yu
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Centre, Kunming University, Kunming China
| | - Yanguo Ke
- College of Economics and Management, Kunming University, Kunming China
| |
Collapse
|
40
|
Slc7a11 downregulation is rapidly reversed after cessation of competitive social stress in zebra finches. Mol Biol Rep 2021; 48:3007-3010. [PMID: 33740177 DOI: 10.1007/s11033-021-06256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
Gene expression can be modulated by epigenetic modifications, which may lead to a rapid adaptation to environmental stress. After stress cessation, changes in gene expression could be reversed, which would allow organisms to maintain their phenotype under transient environments, but this mechanism is poorly understood. Social stress downregulates a gene directly involved in pheomelanin synthesis (Slc7a11) by changing DNA m5C levels, avoiding cellular damage caused by stress. We thus investigated if Slc7a11 expression is reversed in melanocytes of growing flank feathers to avoid changes in the pigmentation phenotype. We measured the expression level of Slc7a11 at three time points: before stress exposure, immediately after stress exposure and six weeks after stress cessation in 37 male zebra finches (Taeniopygia guttata). No differences in Slc7a11 expression were detected between birds exposed to stress and controls six weeks after stress elimination, indicating that stress removal led to a cessation of Slc7a11 downregulation. Reversibility in Slc7a11 expression, probably mediated by reversible changes in DNA methylation, may thus avoid altering the pigmentation phenotype during transient stressful conditions. This is one of the few studies in vertebrates supporting the idea that reversible gene expression responses allow organisms adapting to changing environmental conditions.
Collapse
|
41
|
Laanen P, Saenen E, Mysara M, Van de Walle J, Van Hees M, Nauts R, Van Nieuwerburgh F, Voorspoels S, Jacobs G, Cuypers A, Horemans N. Changes in DNA Methylation in Arabidopsis thaliana Plants Exposed Over Multiple Generations to Gamma Radiation. FRONTIERS IN PLANT SCIENCE 2021; 12:611783. [PMID: 33868326 PMCID: PMC8044457 DOI: 10.3389/fpls.2021.611783] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/09/2021] [Indexed: 05/05/2023]
Abstract
Previous studies have found indications that exposure to ionising radiation (IR) results in DNA methylation changes in plants. However, this phenomenon is yet to be studied across multiple generations. Furthermore, the exact role of these changes in the IR-induced plant response is still far from understood. Here, we study the effect of gamma radiation on DNA methylation and its effect across generations in young Arabidopsis plants. A multigenerational set-up was used in which three generations (Parent, generation 1, and generation 2) of 7-day old Arabidopsis thaliana plants were exposed to either of the different radiation treatments (30, 60, 110, or 430 mGy/h) or to natural background radiation (control condition) for 14 days. The parental generation consisted of previously non-exposed plants, whereas generation 1 and generation 2 plants had already received a similar irradiation in the previous one or two generations, respectively. Directly after exposure the entire methylomes were analysed with UPLC-MS/MS to measure whole genome methylation levels. Whole genome bisulfite sequencing was used to identify differentially methylated regions (DMRs), including their methylation context in the three generations and this for three different radiation conditions (control, 30 mGy/h, and 110 mGy/h). Both intra- and intergenerational comparisons of the genes and transposable elements associated with the DMRs were made. Taking the methylation context into account, the highest number of changes were found for cytosines followed directly by guanine (CG methylation), whereas only limited changes in CHG methylation occurred and no changes in CHH methylation were observed. A clear increase in IR-induced DMRs was seen over the three generations that were exposed to the lowest dose rate, where generation 2 had a markedly higher number of DMRs than the previous two generations (Parent and generation 1). Counterintuitively, we did not see significant differences in the plants exposed to the highest dose rate. A large number of DMRs associated with transposable elements were found, the majority of them being hypermethylated, likely leading to more genetic stability. Next to that, a significant number of DMRs were associated with genes (either in their promoter-associated region or gene body). A functional analysis of these genes showed an enrichment for genes related to development as well as various stress responses, including DNA repair, RNA splicing, and (a)biotic stress responses. These observations indicate a role of DNA methylation in the regulation of these genes in response to IR exposure and shows a possible role for epigenetics in plant adaptation to IR over multiple generations.
Collapse
Affiliation(s)
- Pol Laanen
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
| | - Eline Saenen
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Mohamed Mysara
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Jorden Van de Walle
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
| | - May Van Hees
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Robin Nauts
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
- NXTGNT, Ghent University, Ghent, Belgium
| | | | - Griet Jacobs
- Vlaamse Instelling voor Technologisch Onderzoek, VITO, Mol, Belgium
| | - Ann Cuypers
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
| | - Nele Horemans
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
- *Correspondence: Nele Horemans,
| |
Collapse
|
42
|
Castander-Olarieta A, Pereira C, Sales E, Meijón M, Arrillaga I, Cañal MJ, Goicoa T, Ugarte MD, Moncaleán P, Montalbán IA. Induction of Radiata Pine Somatic Embryogenesis at High Temperatures Provokes a Long-Term Decrease in DNA Methylation/Hydroxymethylation and Differential Expression of Stress-Related Genes. PLANTS 2020; 9:plants9121762. [PMID: 33322106 PMCID: PMC7762990 DOI: 10.3390/plants9121762] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Based on the hypothesis that embryo development is a crucial stage for the formation of stable epigenetic marks that could modulate the behaviour of the resulting plants, in this study, radiata pine somatic embryogenesis was induced at high temperatures (23 °C, eight weeks, control; 40 °C, 4 h; 60 °C, 5 min) and the global methylation and hydroxymethylation levels of emerging embryonal masses and somatic plants were analysed using LC-ESI-MS/ MS-MRM. In this context, the expression pattern of six genes previously described as stress-mediators was studied throughout the embryogenic process until plant level to assess whether the observed epigenetic changes could have provoked a sustained alteration of the transcriptome. Results indicated that the highest temperatures led to hypomethylation of both embryonal masses and somatic plants. Moreover, we detected for the first time in a pine species the presence of 5-hydroxymethylcytosine, and revealed its tissue specificity and potential involvement in heat-stress responses. Additionally, a heat shock protein-coding gene showed a down-regulation tendency along the process, with a special emphasis given to embryonal masses at first subculture and ex vitro somatic plants. Likewise, the transcripts of several proteins related with translation, oxidative stress response, and drought resilience were differentially expressed.
Collapse
Affiliation(s)
| | - Cátia Pereira
- Department of Forestry Science, NEIKER, 01192 Arkaute, Spain; (A.C.-O.); (C.P.)
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Ester Sales
- Departament of Ciencias Agrarias y del Medio Natural, Instituto Universitario de Ciencias Ambientales, Universidad de Zaragoza, Escuela Politécnica Superior, 22071 Huesca, Spain;
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, 33006 Oviedo, Spain; (M.M.); (M.J.C.)
| | - Isabel Arrillaga
- Departamento de Biología Vegetal, Facultad de Farmacia, Instituto BiotecMed, Universidad de Valencia, 46100 Burjassot, Spain;
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, 33006 Oviedo, Spain; (M.M.); (M.J.C.)
| | - Tomás Goicoa
- Department of Statistics, Computer Science and Mathematics, Universidad Pública de Navarra, 31006 Pamplona, Spain; (T.G.); (M.D.U.)
- INAMAT2 (Institute for Advanced Materials and Mathematics), Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - María Dolores Ugarte
- Department of Statistics, Computer Science and Mathematics, Universidad Pública de Navarra, 31006 Pamplona, Spain; (T.G.); (M.D.U.)
- INAMAT2 (Institute for Advanced Materials and Mathematics), Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Paloma Moncaleán
- Department of Forestry Science, NEIKER, 01192 Arkaute, Spain; (A.C.-O.); (C.P.)
- Correspondence: (P.M.); (I.A.M.)
| | - Itziar A. Montalbán
- Department of Forestry Science, NEIKER, 01192 Arkaute, Spain; (A.C.-O.); (C.P.)
- Correspondence: (P.M.); (I.A.M.)
| |
Collapse
|
43
|
Eckert S, Herden J, Stift M, Joshi J, van Kleunen M. Manipulation of cytosine methylation does not remove latitudinal clines in two invasive goldenrod species in Central Europe. Mol Ecol 2020; 30:222-236. [PMID: 33150604 DOI: 10.1111/mec.15722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/03/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022]
Abstract
Invasive species frequently differentiate phenotypically in novel environments within a few generations, often even with limited genetic variation. For the invasive plants Solidago canadensis and S. gigantea, we tested whether such differentiation might have occurred through heritable epigenetic changes in cytosine methylation. In a 2-year common-garden experiment, we grew plants from seeds collected along a latitudinal gradient in their non-native Central European range to test for trait differentiation and whether differentiation disappeared when seeds were treated with the demethylation agent zebularine. Microsatellite markers revealed no population structure along the latitudinal gradient in S. canadensis, but three genetic clusters in S. gigantea. Solidago canadensis showed latitudinal clines in flowering phenology and growth. In S. gigantea, the number of clonal offspring decreased with latitude. Although zebularine had a significant effect on early growth, probably through effects on cytosine methylation, latitudinal clines remained (or even got stronger) in plants raised from seeds treated with zebularine. Thus, our experiment provides no evidence that epigenetic mechanisms by selective cytosine methylation contribute to the observed phenotypic differentiation in invasive goldenrods in Central Europe.
Collapse
Affiliation(s)
- Silvia Eckert
- Biodiversity Research/Systematic Botany, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Jasmin Herden
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Marc Stift
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Jasmin Joshi
- Biodiversity Research/Systematic Botany, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Institute for Landscape and Open Space, Eastern Switzerland University of Applied Sciences, Rapperswil, Switzerland.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany.,Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| |
Collapse
|
44
|
Sultana N, Islam S, Juhasz A, Yang R, She M, Alhabbar Z, Zhang J, Ma W. Transcriptomic Study for Identification of Major Nitrogen Stress Responsive Genes in Australian Bread Wheat Cultivars. Front Genet 2020; 11:583785. [PMID: 33193713 PMCID: PMC7554635 DOI: 10.3389/fgene.2020.583785] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
High nitrogen use efficiency (NUE) in bread wheat is pivotal to sustain high productivity. Knowledge about the physiological and transcriptomic changes that regulate NUE, in particular how plants cope with nitrogen (N) stress during flowering and the grain filling period, is crucial in achieving high NUE. Nitrogen response is differentially manifested in different tissues and shows significant genetic variability. A comparative transcriptome study was carried out using RNA-seq analysis to investigate the effect of nitrogen levels on gene expression at 0 days post anthesis (0 DPA) and 10 DPA in second leaf and grain tissues of three Australian wheat (Triticum aestivum) varieties that were known to have varying NUEs. A total of 12,344 differentially expressed genes (DEGs) were identified under nitrogen stress where down-regulated DEGs were predominantly associated with carbohydrate metabolic process, photosynthesis, light-harvesting, and defense response, whereas the up-regulated DEGs were associated with nucleotide metabolism, proteolysis, and transmembrane transport under nitrogen stress. Protein–protein interaction and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis further revealed that highly interacted down-regulated DEGs were involved in light-harvesting and photosynthesis, and up-regulated DEGs were mostly involved in steroid biosynthesis under N stress. The common down-regulated genes across the cultivars included photosystem II 10 kDa polypeptide family proteins, plant protein 1589 of uncharacterized protein function, etc., whereas common up-regulated genes included glutamate carboxypeptidase 2, placenta-specific8 (PLAC8) family protein, and a sulfate transporter. On the other hand, high NUE cultivar Mace responded to nitrogen stress by down-regulation of a stress-related gene annotated as beta-1,3-endoglucanase and pathogenesis-related protein (PR-4, PR-1) and up-regulation of MYB/SANT domain-containing RADIALIS (RAD)-like transcription factors. The medium NUE cultivar Spitfire and low NUE cultivar Volcani demonstrated strong down-regulation of Photosystem II 10 kDa polypeptide family protein and predominant up-regulation of 11S globulin seed storage protein 2 and protein transport protein Sec61 subunit gamma. In grain tissue, most of the DEGs were related to nitrogen metabolism and proteolysis. The DEGs with high abundance in high NUE cultivar can be good candidates to develop nitrogen stress-tolerant variety with improved NUE.
Collapse
Affiliation(s)
- Nigarin Sultana
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Shahidul Islam
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Angela Juhasz
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia.,School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Rongchang Yang
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Maoyun She
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Zaid Alhabbar
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Jingjuan Zhang
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Wujun Ma
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| |
Collapse
|
45
|
Rehman M, Tanti B. Understanding epigenetic modifications in response to abiotic stresses in plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
46
|
Omony J, Nussbaumer T, Gutzat R. DNA methylation analysis in plants: review of computational tools and future perspectives. Brief Bioinform 2020; 21:906-918. [PMID: 31220217 DOI: 10.1093/bib/bbz039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/28/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
Genome-wide DNA methylation studies have quickly expanded due to advances in next-generation sequencing techniques along with a wealth of computational tools to analyze the data. Most of our knowledge about DNA methylation profiles, epigenetic heritability and the function of DNA methylation in plants derives from the model species Arabidopsis thaliana. There are increasingly many studies on DNA methylation in plants-uncovering methylation profiles and explaining variations in different plant tissues. Additionally, DNA methylation comparisons of different plant tissue types and dynamics during development processes are only slowly emerging but are crucial for understanding developmental and regulatory decisions. Translating this knowledge from plant model species to commercial crops could allow the establishment of new varieties with increased stress resilience and improved yield. In this review, we provide an overview of the most commonly applied bioinformatics tools for the analysis of DNA methylation data (particularly bisulfite sequencing data). The performances of a selection of the tools are analyzed for computational time and agreement in predicted methylated sites for A. thaliana, which has a smaller genome compared to the hexaploid bread wheat. The performance of the tools was benchmarked on five plant genomes. We give examples of applications of DNA methylation data analysis in crops (with a focus on cereals) and an outlook for future developments for DNA methylation status manipulations and data integration.
Collapse
Affiliation(s)
- Jimmy Omony
- Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Nussbaumer
- Institute of Network Biology, Department of Environmental Science, Helmholtz Center Munich, Neuherberg, Germany.,Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Augsburg, Germany; CK CARE Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Ruben Gutzat
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
47
|
Lancíková V, Žiarovská J. Inter-retrotransposon amplified polymorphism markers revealed long terminal repeat retrotransposon insertion polymorphism in flax cultivated on the experimental fields around Chernobyl. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:957-963. [PMID: 32378983 DOI: 10.1080/10934529.2020.1760016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Ionizing radiation in environment comes from various natural and anthropogenic sources. The effect of radioactivity released after the CNPP (Chernobyl Nuclear Power Plant) on plant systems remains of great interest. Even now, more than three decades after the nuclear accident, the long-lived radionuclides represent a strong stress factor. Herein, the emphasis has been placed on analysis of genetic variability represented by activation of LTR (Long Terminal Repeat)-retrotransposons. Polymorphism in LTR-retrotransposon insertions has been investigated throughout the genome of two flax varieties, Kyivskyi and Bethune. For this purpose, two retrotransposon-based marker techniques, IRAP (Inter-Retrotransposon Amplified Polymorphism) and iPBS (inter-Primer Binding Site), have been employed. The hypothesis that chronic radioactive stress may induce mechanism of retransposition has been supported by the activation of FL9, FL11 and FL12 LTR-retrotransposons in flax seeds harvested from radioactive environment. Out of two retrotransposon-based approaches, IRAP appears to be more suitable for identification of LTR-retrotransposon polymorphism. Even though the LTR-retrotransposon polymorphism was identified, the results suggest the high level of plant adaptation in the radioactive Chernobyl area. However, it is not really surprising that plants developed an effective strategy to survive in radio-contaminated environment over the past 30 years.
Collapse
Affiliation(s)
- Veronika Lancíková
- Plant Science and Biodiversity Center, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
| | - Jana Žiarovská
- Department of Genetics and Plant Breeding, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia
| |
Collapse
|
48
|
Turgut-Kara N, Arikan B, Celik H. Epigenetic memory and priming in plants. Genetica 2020; 148:47-54. [PMID: 32356021 DOI: 10.1007/s10709-020-00093-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/16/2020] [Indexed: 12/17/2022]
Abstract
In nature, plants are regularly exposed to biotic and abiotic stress conditions. These conditions create potential risks for survival. Plants have evolved in order to compete with these stress conditions through physiological adjustments that are based on epigenetic background. Thus, the ecological signals create different levels of stress memory. Recent studies have shown that this stress-induced environmental memory is mediated by epigenetic mechanisms that have fundamental roles in the aspect of controlling gene expression via DNA methylation, histone modifications and, small RNAs and these modifications could be transmitted to the next generations. Thus, they provide alternative mechanisms to constitute stress memories in plants. In this review, we summarized the epigenetic memory mechanisms related with biotic and abiotic stress conditions, and relationship between priming and epigenetic memory in plants by believing that it can be useful for analyzing memory mechanisms and see what is missing out in order to develop plants more resistant and productive under diverse environmental cues.
Collapse
Affiliation(s)
- Neslihan Turgut-Kara
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey.
| | - Burcu Arikan
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey
| | - Haluk Celik
- Program of Molecular Biology and Genetics, Institute of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
49
|
Identification of Structural Variants in Two Novel Genomes of Maize Inbred Lines Possibly Related to Glyphosate Tolerance. PLANTS 2020; 9:plants9040523. [PMID: 32325671 PMCID: PMC7238182 DOI: 10.3390/plants9040523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/29/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022]
Abstract
To study genetic variations between genomes of plants that are naturally tolerant and sensitive to glyphosate, we used two Zea mays L. lines traditionally bred in Poland. To overcome the complexity of the maize genome, two sequencing technologies were employed: Illumina and Single Molecule Real-Time (SMRT) PacBio. Eleven thousand structural variants, 4 million SNPs and approximately 800 thousand indels differentiating the two genomes were identified. Detailed analyses allowed to identify 20 variations within the EPSPS gene, but all of them were predicted to have moderate or unknown effects on gene expression. Other genes of the shikimate pathway encoding bifunctional 3-dehydroquinate dehydratase/shikimate dehydrogenase and chorismate synthase were altered by variants predicted to have a high impact on gene expression. Additionally, high-impact variants located within the genes involved in the active transport of glyphosate through the cell membrane encoding phosphate transporters as well as multidrug and toxic compound extrusion have been identified.
Collapse
|
50
|
Moradpour M, Abdulah SNA. CRISPR/dCas9 platforms in plants: strategies and applications beyond genome editing. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:32-44. [PMID: 31392820 PMCID: PMC6920162 DOI: 10.1111/pbi.13232] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 05/19/2023]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) and Cas9-associated protein systems provide a powerful genetic manipulation tool that can drive plant research forward. Nuclease-dead Cas9 (dCas9) is an enzymatically inactive mutant of Cas9 in which its endonuclease activity is non-functional. The applications of CRISPR/dCas9 have expanded and diversified in recent years. Originally, dCas9 was used as a CRISPR/Cas9 re-engineering tool that enables targeted expression of any gene or multiple genes through recruitment of transcriptional effector domains without introducing irreversible DNA-damaging mutations. Subsequent applications have made use of its ability to recruit modifying enzymes and reporter proteins to DNA target sites. In this paper, the most recent progress in the applications of CRISPR/dCas9 in plants, which include gene activation and repression, epigenome editing, modulation of chromatin topology, live-cell chromatin imaging and DNA-free genetic modification, will be reviewed. The associated strategies for exploiting the CRISPR/dCas9 system for crop improvement with a dimer of the future of the CRISPR/dCas9 system in the functional genomics of crops and the development of traits will be briefly discussed.
Collapse
Affiliation(s)
- Mahdi Moradpour
- Laboratory of Science and TechnologyInstitute of Plantation StudiesUniversiti Putra MalaysiaSerdangSelangorMalaysia
| | - Siti Nor Akmar Abdulah
- Laboratory of Science and TechnologyInstitute of Plantation StudiesUniversiti Putra MalaysiaSerdangSelangorMalaysia
- Department of Agricultural TechnologyFaculty of AgricultureUniversiti Putra MalaysiaSerdangSelangorMalaysia
| |
Collapse
|