1
|
M Y G, I S T, N V L, E Y V, R A K, N D F, G A K, N P O, R L S. Catechol-derived Mannich bases: radical regulatory properties, cytotoxicity and interaction with biomolecules. Free Radic Res 2024; 58:770-781. [PMID: 39602367 DOI: 10.1080/10715762.2024.2433985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/22/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Free radicals are ubiquitous in biological systems, being responsible for pathogenesis of degenerative diseases and participating in vitally important biochemical processes, which are mediated by radical regulatory agents. The effects of the aliphatic amine substituents in the catechol-derived Mannich bases on their antioxidant and pro-oxidant activity were investigated. It has been found that the presence of catechol moiety in the structure of Mannich bases allows them to act as Cu(II) reductants, efficient Fe(II) chelators and potent DPPH radical scavengers. It has been found that the plausible mechanism of the DPPH radical scavenging proceeds via quinone formation, followed by their interaction with ethanol via the Michael addition reaction. In the neutrophil respiratory burst assay, several compounds have demonstrated a weak antioxidant activity at the micromolar level (0.1-10 µM), whereas at the millimolar level (0.1 mМ) a strong pro-oxidant effect has been observed. Additionally, at the highest used concentrations a pronounced cytotoxicity against dermal fibroblasts DF-2 and an immunosuppressive effect against T-lymphocytes have been observed for all the synthesized compounds. It has been demonstrated that the oxidation of catechols in the presence of low-molecular thiols results in the formation of covalent adducts, which provides an insight into their cytotoxicity and detoxification pathways.
Collapse
Affiliation(s)
- Gvozdev M Y
- Faculty of Chemistry, Belarusian State University, Minsk, Belarus
| | - Turomsha I S
- Faculty of Chemistry, Belarusian State University, Minsk, Belarus
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus
| | - Loginova N V
- Faculty of Chemistry, Belarusian State University, Minsk, Belarus
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus
| | - Varfolomeeva E Y
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russia
| | - Kovalev R A
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russia
| | - Fedorova N D
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russia
| | - Ksendzova G A
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus
| | - Osipovich N P
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus
| | - Sverdlov R L
- Faculty of Chemistry, Belarusian State University, Minsk, Belarus
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus
| |
Collapse
|
2
|
Zhou X, He S, He J, Xiong Y, Hu Z, Xian H, Guo G, Tan S, Ouyang D, Liu R, Gao Z, Zhu X, Abulimiti A, Zheng S, Hu D. HUC-MSC-derived exosomes repaired the damage induced by hydroquinone to 16HBE cells via miR-221/PTEN pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117120. [PMID: 39357375 DOI: 10.1016/j.ecoenv.2024.117120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Mesenchymal stem cell - originated exosomes (MSC-exo) are promising non-cellular treatment agents for various diseases. The present study aimed to explore whether human umbilical cord MSC - originated exosomes (HUC-MSC-exo) have the function of protecting human cells (16HBE) against the damage caused by HQ and the related mechanism. HUC-MSC-exo was isolated with differential gradient ultracentrifugation method and characterized by using transmission electron microscope (TEM). 16HBE cells were used as the tool cells and co-cultured with HUC-MSC-exo. Confocal laser scanning microscope was employed to confirm the ingestion of HUC-MSC-exo by 16HBE. Cell proliferation, migration, oxidative stress, DNA and chromosome damages of 16HBE were analyzed under HQ stress, and the role of miR-221/PTEN axis was investigated. Our data showed that under HQ stress, different groups of cells exhibited significantly decreased proliferation and migration abilities, and significant oxidative stress, DNA and chromosome damage effects. HUC-MSC-exo could alleviate the cytotoxic, oxidative stress and genotoxic damage effects of HQ on 16HBE cells. Mechanistically, HQ exposure up-regulated the level of miR-221 and down-regulated PTEN, while HUC-MSC-exo could significantly reduce the level of miR-221 and promote PTEN expression, which was involved in alleviating the toxic effects of HQ on 16HBE cells. Our data indicates that HUC-MSC-exo can alleviate the oxidative stress, cytotoxic and genotoxic effects of HQ on 16HBE cells via miR-221/PTEN pathway, and it may be a promising agent for protecting against the toxicity of HQ.
Collapse
Affiliation(s)
- Xiaotao Zhou
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China; Public Health Service Centre of Baoan District, Shenzhen City 518000, PR China
| | - Shanshan He
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Jiayi He
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Yiren Xiong
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Zuqing Hu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Hongyi Xian
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Guoqiang Guo
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China; Public Health Service Centre of Baoan District, Shenzhen City 518000, PR China
| | - Suqin Tan
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Di Ouyang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Renyi Liu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Zhenjie Gao
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Xiaoqi Zhu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Abudumijiti Abulimiti
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Sujin Zheng
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Dalin Hu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China.
| |
Collapse
|
3
|
Yli-Öyrä J, Juvonen RO, Lehtonen M, Herrala M, Finel M, Räisänen R, Rysä J. Anthraquinone biocolourant dermocybin is metabolized whereas dermorubin is not in in vitro liver fractions and recombinant metabolic enzymes. Basic Clin Pharmacol Toxicol 2024; 134:846-857. [PMID: 38664998 DOI: 10.1111/bcpt.14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/29/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024]
Abstract
Fungal anthraquinones dermocybin and dermorubin are attractive alternatives for synthetic dyes but their metabolism is largely unknown. We conducted a qualitative in vitro study to identify their metabolism using human liver microsomes and cytosol, as well as recombinant human cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT) enzymes. Additionally, liver microsomal and cytosolic fractions from rat, mouse and pig were used. Following incubations of the biocolourants with the enzymes in the presence of nicotinamide adenine dinucleotide phosphate, UDP-glucuronic acid, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) or S-adenosyl methionine (SAM) to enable CYP oxidation, glucuronidation, sulfonation or methylation, we observed several oxidation and conjugation metabolites for dermocybin but none for dermorubin. Human CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4 and 3A7 catalysed dermocybin oxidation. The formation of dermocybin glucuronides was catalysed by human UGT1A1, 1A3, 1A7, 1A8, 1A9, 1A10 and 2B15. Human SULT1B1, 1C2 and 2A1 sulfonated dermocybin. Dermocybin oxidation was faster than conjugation in human liver microsomes. Species differences were seen in dermocybin glucuronidation between human, rat, mouse and pig. In conclusion, many CYP and conjugation enzymes metabolized dermocybin, whereas dermorubin was not metabolized in human liver fractions in vitro. The results indicate that dermocybin would be metabolized in humans in vivo.
Collapse
Affiliation(s)
- Johanna Yli-Öyrä
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Risto O Juvonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Mikko Herrala
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Moshe Finel
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | - Jaana Rysä
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
4
|
Cheng Q, Liu QQ, Lu CA. A state-of-the-science review of using mitochondrial DNA copy number as a biomarker for environmental exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123642. [PMID: 38402934 DOI: 10.1016/j.envpol.2024.123642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Mitochondria are bioenergetic, biosynthetic, and signaling organelles in eukaryotes, and contain their own genomes, mitochondrial DNA (mtDNA), to supply energy to cells by generating ATP via oxidative phosphorylation. Therefore, the threat to mitochondria' integrity and health resulting from environmental exposure could induce adverse health effects in organisms. In this review, we summarized the association between mtDNA copy number (mtDNAcn), and environmental exposures as reported in the literature. We conducted a literature search in the Web of Science using [Mitochondrial DNA copy number] and [Exposure] as two keywords and employed three selection criteria for the final inclusion of 97 papers for review. The consensus of data was that mtDNAcn could be used as a plausible biomarker for cumulative exposures to environmental chemical and physical agents. In order to furtherly expand the application of mtDNAcn in ecological and environmental health research, we suggested a series of algorithms aiming to standardize the calculation of mtDNAcn based on the PCR results in this review. We also discussed the pitfalls of using whole blood/plasma samples for mtDNAcn measurements and regard buccal cells a plausible and practical alternative. Finally, we recognized the importance of better understanding the mechanistic analysis and regulatory mechanism of mtDNAcn, in particular the signals release and regulation pathways. We believe that the development of using mtDNAcn as an exposure biomarker will revolutionize the evaluation of chronic sub-lethal toxicity of chemicals to organisms in ecological and environmental health research that has not yet been implemented.
Collapse
Affiliation(s)
- Qing Cheng
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Qing Qing Liu
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Chensheng Alex Lu
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China; School of Public Health, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
5
|
Scibetta S, Miceli M, Iuliano M, Stefanuto L, Carbone E, Piscopo P, Petrozza V, Romeo G, Mangino G, Calogero A, Gasperi T, Rosa P. In Vitro Evaluation of the Antioxidant Capacity of 3,3-Disubstituted-3H-benzofuran-2-one Derivatives in a Cellular Model of Neurodegeneration. Life (Basel) 2024; 14:422. [PMID: 38672695 PMCID: PMC11051253 DOI: 10.3390/life14040422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Oxidative stress represents a hallmark for many degenerative pathologies of the Central Nervous System. Throughout life, the constant pressure of noxious stimuli and/or episodes of traumatic events may expose the brain to a microenvironment where the non-balanced reactive oxygen species inevitably lead to neuronal loss and cognitive decline. HO-1, a 32 kDa heat-shock protein catalyzing the degradation of heme into carbon monoxide (CO), iron and biliverdin/bilirubin is considered one of the main antioxidant defense mechanisms playing pivotal roles in neuroprotection. Restoring the redox homeostasis is the goal of many natural or synthetic antioxidant molecules pursuing beneficial effects on brain functions. Here, we investigated the antioxidant capacity of four selected benzofuran-2-one derivatives in a cellular model of neurodegeneration represented by differentiated SH-SY5Y cells exposed to catechol-induced oxidative stress. Our main results highlight how all the molecules have antioxidant properties, especially compound 9, showing great abilities in reducing intracellular ROS levels and protecting differentiated SH-SY5Y cells from catechol-induced death. This compound above all seems to boost HO-1 mRNA and perinuclear HO-1 protein isoform expression when cells are exposed to the oxidative insult. Our findings open the way to consider benzofuran-2-ones as a novel and promising adjuvant antioxidant strategy for many neurodegenerative disorders.
Collapse
Affiliation(s)
- Sofia Scibetta
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Polo Pontino, 04100 Latina, Italy; (S.S.); (M.I.); (V.P.); (G.R.); (G.M.); (A.C.)
| | - Martina Miceli
- Department of Science, University of Roma Tre, 00146 Rome, Italy; (M.M.); (L.S.)
| | - Marco Iuliano
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Polo Pontino, 04100 Latina, Italy; (S.S.); (M.I.); (V.P.); (G.R.); (G.M.); (A.C.)
| | - Luca Stefanuto
- Department of Science, University of Roma Tre, 00146 Rome, Italy; (M.M.); (L.S.)
| | - Elena Carbone
- Department of Neuroscience, Italian National Institute of Health, 00161 Rome, Italy; (E.C.); (P.P.)
| | - Paola Piscopo
- Department of Neuroscience, Italian National Institute of Health, 00161 Rome, Italy; (E.C.); (P.P.)
| | - Vincenzo Petrozza
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Polo Pontino, 04100 Latina, Italy; (S.S.); (M.I.); (V.P.); (G.R.); (G.M.); (A.C.)
- Istituto Chirurgico Ortopedico Traumatologico (ICOT), 04100 Latina, Italy
| | - Giovanna Romeo
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Polo Pontino, 04100 Latina, Italy; (S.S.); (M.I.); (V.P.); (G.R.); (G.M.); (A.C.)
| | - Giorgio Mangino
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Polo Pontino, 04100 Latina, Italy; (S.S.); (M.I.); (V.P.); (G.R.); (G.M.); (A.C.)
| | - Antonella Calogero
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Polo Pontino, 04100 Latina, Italy; (S.S.); (M.I.); (V.P.); (G.R.); (G.M.); (A.C.)
- Istituto Chirurgico Ortopedico Traumatologico (ICOT), 04100 Latina, Italy
| | - Tecla Gasperi
- Department of Science, University of Roma Tre, 00146 Rome, Italy; (M.M.); (L.S.)
- National Institute of Biostructures and Biosystems (INBB), 00136 Rome, Italy
| | - Paolo Rosa
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Polo Pontino, 04100 Latina, Italy; (S.S.); (M.I.); (V.P.); (G.R.); (G.M.); (A.C.)
- Istituto Chirurgico Ortopedico Traumatologico (ICOT), 04100 Latina, Italy
| |
Collapse
|
6
|
Baek S, Park E, Park EY. Association of Urinary Benzene Metabolite and the Ratio of Triglycerides to High-Density Lipoprotein Cholesterol: A Cross-Sectional Study Using the Korean National Environmental Health Survey (2018-2020). TOXICS 2023; 11:985. [PMID: 38133386 PMCID: PMC10747580 DOI: 10.3390/toxics11120985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
The aim of this study was to investigate the association between benzene and toluene, and the ratio of triglycerides to high-density lipoprotein cholesterol (TG/HDL-C). This cross-sectional study analyzed 1928 adults using nationally representative data from the Korean National Environmental Health Survey (KoNEHS) Cycle 4 (2018-2020). Urinary trans, trans-muconic acid (t,t-MA) and benzylmercapturic acid (BMA) were measured by high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS), and high-density lipoprotein cholesterol (HDL-C) and triglycerides (TGs) were analyzed by colorimetry. Survey logistic regression analysis was applied to examine the association between urinary t,t-MA and BMA and the TG/HDL-C ratio. Urinary t,t-MA is significantly associated with an elevated TG/HDL-C ratio in both men and women (for men, OR [95% (CI)]: 2nd quartile: 2.10 [1.04, 4.22]; 3rd quartile: 2.13 [0.98, 4.62]; 4th quartile: 2.39 [1.05, 5.45]; for women, OR [95% (CI)]: 2nd quartile: 1.21 [0.71, 2.06]; 3rd quartile: 1.65 [0.94, 2.90]; 4th quartile: 1.78 [1.01, 3.11]), with significant dose-response relationships (P for trend: for men, 0.029; women, 0.024). This study shows that environmental exposure to benzene is associated with the TG/HDL-C ratio in the Korean general population. This suggests that more stringent environmental health policies are needed to reduce benzene exposure.
Collapse
Affiliation(s)
- Seungju Baek
- Department of Public Health, Korea University Graduate School, Seoul 02814, Republic of Korea;
| | - Eunjung Park
- Department of Cancer Control and Population Health, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang 10408, Republic of Korea;
| | - Eun Young Park
- Department of Public Health, Korea University Graduate School, Seoul 02814, Republic of Korea;
- Department of Preventive Medicine, Korea University College of Medicine, Seoul 02814, Republic of Korea
| |
Collapse
|
7
|
Guyot C, Malaret T, Touani Kameni F, Cerruti M, Lerouge S. How to Design Catechol-Containing Hydrogels for Cell Encapsulation Despite Catechol Toxicity. ACS APPLIED BIO MATERIALS 2023. [PMID: 37339251 DOI: 10.1021/acsabm.3c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Catechol (cat) is a highly adhesive diphenol that can be chemically grafted to polymers such as chitosan (CH) to make them adhesive as well. However, catechol-containing materials experimentally show a large variability of toxicity, especially in vitro. While it is unclear how this toxicity emerges, most concerns are directed toward the oxidation of catechol into quinone that releases reactive oxygen species (ROS) which can, in turn, cause cell apoptosis through oxidative stress. To better understand the mechanisms at play, we examined the leaching profiles, hydrogen peroxide (H2O2) production, and in vitro cytotoxicity of several cat-chitosan (cat-CH) hydrogels that were prepared with different oxidation levels and cross-linking methods. To create cat-CH with different propensities toward oxidation, we grafted either hydrocaffeic acid (HCA, more prone to oxidation) or dihydrobenzoic acid (DHBA, less prone to oxidation) to the backbone of CH. Hydrogels were cross-linked either covalently, using sodium periodate (NaIO4) to trigger oxidative cross-linking, or physically, using sodium bicarbonate (SHC). While using NaIO4 as a cross-linker increased the oxidation levels of the hydrogels, it also significantly reduced in vitro cytotoxicity, H2O2 production, and catechol and quinone leaching in the media. For all gels tested, cytotoxicity could be directly related to the release of quinones rather than H2O2 production or catechol release, showing that oxidative stress may not be the main reason for catechol cytotoxicity, as other pathways of quinone toxicity come into play. Results also suggest that the indirect cytotoxicity of cat-CH hydrogels fabricated through carbodiimide chemistry can be reduced if (i) catechol groups are chemically bound to the polymer backbone to prevent leaching or (ii) the chosen cat-bearing molecule has a high resistance to oxidation. Coupled with the use of other cross-linking chemistries or more efficient purification methods, these strategies can be adopted to synthesize various types of cytocompatible cat-containing scaffolds.
Collapse
Affiliation(s)
- Capucine Guyot
- Department of Mechanical Engineering, Ecole de Technologie Superieure, Montreal H3C 1K3, Canada
- Laboratory of Endovascular Biomaterials, Centre de Recherche du CHUM, Montreal H2X 0A9, Canada
| | - Tommy Malaret
- Department of Mechanical Engineering, Ecole de Technologie Superieure, Montreal H3C 1K3, Canada
- Laboratory of Endovascular Biomaterials, Centre de Recherche du CHUM, Montreal H2X 0A9, Canada
| | - Francesco Touani Kameni
- Laboratory of Endovascular Biomaterials, Centre de Recherche du CHUM, Montreal H2X 0A9, Canada
| | - Marta Cerruti
- Biointerface Lab, Department of Materials Engineering, McGill University, Montreal H3A 2B2, Canada
| | - Sophie Lerouge
- Department of Mechanical Engineering, Ecole de Technologie Superieure, Montreal H3C 1K3, Canada
- Laboratory of Endovascular Biomaterials, Centre de Recherche du CHUM, Montreal H2X 0A9, Canada
| |
Collapse
|
8
|
Caro-León FJ, López-Donaire ML, Vázquez R, Huerta-Madroñal M, Lizardi-Mendoza J, Argüelles-Monal WM, Fernández-Quiroz D, García-Fernández L, San Roman J, Vázquez-Lasa B, García P, Aguilar MR. DEAE/Catechol-Chitosan Conjugates as Bioactive Polymers: Synthesis, Characterization, and Potential Applications. Biomacromolecules 2023; 24:613-627. [PMID: 36594453 DOI: 10.1021/acs.biomac.2c01012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This work provides the first description of the synthesis and characterization of water-soluble chitosan (Cs) derivatives based on the conjugation of both diethylaminoethyl (DEAE) and catechol groups onto the Cs backbone (Cs-DC) in order to obtain a Cs derivative with antioxidant and antimicrobial properties. The degree of substitution [DS (%)] was 35.46% for DEAE and 2.53% for catechol, determined by spectroscopy. Changes in the molecular packing due to the incorporation of both pendant groups were described by X-ray diffraction and thermogravimetric analysis. For Cs, the crystallinity index was 59.46% and the maximum decomposition rate appeared at 309.3 °C, while for Cs-DC, the values corresponded to 16.98% and 236.4 °C, respectively. The incorporation of DEAE and catechol groups also increases the solubility of the polymer at pH > 7 without harming the antimicrobial activity displayed by the unmodified polymer. The catecholic derivatives increase the radical scavenging activity in terms of the half-maximum effective concentration (EC50). An EC50 of 1.20 μg/mL was found for neat hydrocaffeic acid (HCA) solution, while for chitosan-catechol (Cs-Ca) and Cs-DC solutions, concentrations equivalent to free HCA of 0.33 and 0.41 μg/mL were required, respectively. Cell culture results show that all Cs derivatives have low cytotoxicity, and Cs-DC showed the ability to reduce the activity of reactive oxygen species by 40% at concentrations as low as 4 μg/mL. Polymeric nanoparticles of Cs derivatives with a hydrodynamic diameter (Dh) of around 200 nm, unimodal size distributions, and a negative ζ-potential were obtained by ionotropic gelation and coated with hyaluronic acid in aqueous suspension, providing the multifunctional nanoparticles with higher stability and a narrower size distribution.
Collapse
Affiliation(s)
- Francisco J Caro-León
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, 28006Madrid, Spain.,Biopolymers Research Group, Centro de Investigación en Alimentación y Desarrollo A. C. (CIAD), 83304Hermosillo, México
| | | | - Roberto Vázquez
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040Madrid, Spain.,Networking Biomedical Research Centre in Respiratory Diseases, CIBERES, C/Monforte de Lemos 3-5, Pabellón 11, 28029Madrid, Spain
| | - Miguel Huerta-Madroñal
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, 28006Madrid, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029Madrid, Spain
| | - Jaime Lizardi-Mendoza
- Biopolymers Research Group, Centro de Investigación en Alimentación y Desarrollo A. C. (CIAD), 83304Hermosillo, México
| | - Waldo Manuel Argüelles-Monal
- Biopolymers Research Group, Centro de Investigación en Alimentación y Desarrollo A. C. (CIAD), 83304Hermosillo, México
| | - Daniel Fernández-Quiroz
- Department of Chemical Engineering and Metallurgy, Universidad de Sonora, 83000Hermosillo, México
| | - Luis García-Fernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, 28006Madrid, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029Madrid, Spain
| | - Julio San Roman
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, 28006Madrid, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029Madrid, Spain
| | - Blanca Vázquez-Lasa
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, 28006Madrid, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029Madrid, Spain
| | - Pedro García
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040Madrid, Spain.,Networking Biomedical Research Centre in Respiratory Diseases, CIBERES, C/Monforte de Lemos 3-5, Pabellón 11, 28029Madrid, Spain
| | - Maria Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, 28006Madrid, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029Madrid, Spain
| |
Collapse
|
9
|
Tanabe P, Pampanin DM, Tiruye HM, Jørgensen KB, Hammond RI, Gadepalli RS, Rimoldi JM, Schlenk D. Relationships between Isomeric Metabolism and Regioselective Toxicity of Hydroxychrysenes in Embryos of Japanese Medaka ( Oryzias latipes). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:539-548. [PMID: 36573895 PMCID: PMC9835889 DOI: 10.1021/acs.est.2c06774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are ubiquitous contaminants that can be formed through oxidation of parent PAHs. Our previous studies found 2-hydroxychrysene (2-OHCHR) to be significantly more toxic to Japanese medaka embryos than 6-hydroxychrysene (6-OHCHR), an example of regioselective toxicity. We have also previously identified a sensitive developmental window to 2-OHCHR toxicity that closely coincided with liver development, leading us to hypothesize that differences in metabolism may play a role in the regioselective toxicity. To test this hypothesis, Japanese medaka embryos were treated with each isomer for 24 h during liver development (52-76 hpf). Although 6-OHCHR was absorbed 97.2 ± 0.18% faster than 2-OHCHR, it was eliminated 57.7 ± 0.36% faster as a glucuronide conjugate. Pretreatment with cytochrome P450 inhibitor, ketoconazole, reduced anemia by 96.8 ± 3.19% and mortality by 95.2 ± 4.76% in 2-OHCHR treatments. Formation of chrysene-1,2-diol (1,2-CAT) was also reduced by 64.4 ± 2.14% by ketoconazole pretreatment. While pretreatment with UDP-glucuronosyltransferase inhibitor, nilotinib, reduced glucuronidation of 2-OHCHR by 52.4 ± 2.55% and of 6-OHCHR by 63.7 ± 3.19%, it did not alter toxicity for either compound. These results indicate that CYP-mediated activation, potentially to 1,2-CAT, may explain the isomeric differences in developmental toxicity of 2-OHCHR.
Collapse
Affiliation(s)
- Philip Tanabe
- Environmental
Toxicology Graduate Program, University
of California, Riverside, California92521, United States
- Department
of Environmental Sciences, University of
California, Riverside, California92521, United States
| | - Daniela M. Pampanin
- Department
of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger4021, Norway
| | - Hiwot M. Tiruye
- Department
of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger4021, Norway
| | - Kåre B. Jørgensen
- Department
of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger4021, Norway
| | - Rachel I. Hammond
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois61801, United States
| | - Rama S. Gadepalli
- Department
of Biomolecular Sciences, The University
of Mississippi School of Pharmacy, The University of Mississippi, University, Mississippi38677, United States
| | - John M. Rimoldi
- Department
of Biomolecular Sciences, The University
of Mississippi School of Pharmacy, The University of Mississippi, University, Mississippi38677, United States
| | - Daniel Schlenk
- Department
of Environmental Sciences, University of
California, Riverside, California92521, United States
| |
Collapse
|
10
|
Cordiano R, Papa V, Cicero N, Spatari G, Allegra A, Gangemi S. Effects of Benzene: Hematological and Hypersensitivity Manifestations in Resident Living in Oil Refinery Areas. TOXICS 2022; 10:678. [PMID: 36355969 PMCID: PMC9697938 DOI: 10.3390/toxics10110678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Literature is teeming with publications on industrial pollution. Over the decades, the main industrial pollutants and their effects on human health have been widely framed. Among the various compounds involved, benzene plays a leading role in the onset of specific diseases. Two systems are mainly affected by the adverse health effects of benzene exposure, both acute and chronic: the respiratory and hematopoietic systems. The most suitable population targets for a proper damage assessment on these systems are oil refinery workers and residents near refining plants. Our work fits into this area of interest with the aim of reviewing the most relevant cases published in the literature related to the impairment of the aforementioned systems following benzene exposure. We perform an initial debate between the two clinical branches that see a high epidemiological expression in this slice of the population examined: residents near petroleum refinery areas worldwide. In addition, the discussion expands on highlighting the main immunological implications of benzene exposure, finding a common pathophysiological denominator in inflammation, oxidative stress, and DNA damage, thus helping to set the basis for an increasingly detailed characterization aimed at identifying common molecular patterns between the two clinical fields discussed.
Collapse
Affiliation(s)
- Raffaele Cordiano
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Giovanna Spatari
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
11
|
Badetti E, Brunelli A, Faraggiana E, Kalman J, Bettiol C, Izzo FC, Navas JM, Marcomini A. Cytotoxicity inhibition of catechol's type molecules by grafting on TiO 2 and Fe 2O 3 nanoparticles surface. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106291. [PMID: 36099779 DOI: 10.1016/j.aquatox.2022.106291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/03/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
The potential toxicity deriving from the interaction between chemicals and manufactured nanoparticles (NPs) represents an emerging threat to the environment and human health. Several studies have focused on the risks and (eco)toxicity of manufactured NPs as a consequence of their extensive use in recent years, however, there is still a limited understanding of the combined effects caused by manufactured NPs in the presence of other environmental contaminants. This is particularly relevant to aquatic environments, where many types of pollutants are inevitably released and can be involved in many kinds of reactions. In this context, the interaction between catecholate type ligands and two different nanomaterials, namely TiO2 and Fe2O3 NPs, was investigated by performing cytotoxicity assays with the topminnow fish hepatoma cell line (PLHC-1) using: i) the original organic molecules, ii) pristine NPs alone, and iii) modified NPs obtained by grafting the ligands on the NPs surface. Cytotoxic effects were explored at three different levels, specifically on cellular metabolism, membrane integrity and lysosomal activity. The outcomes from these assays showed cytotoxicity only for the free catechol type ligands, while in general no significant decrease in cell viability was observed for pristine NPs, as well as for the modified NPs, regardless the initial cytotoxicity level of the organic ligands These results suggest that the binding of catechols on the NPs' surface inhibited their cytotoxicity, indicating that TiO2 and Fe2O3 NPs may act as sorbents of these contaminants, thus reducing their possible detrimental effects.
Collapse
Affiliation(s)
- Elena Badetti
- DAIS - Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30170 Venice Mestre, Italy.
| | - Andrea Brunelli
- DAIS - Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30170 Venice Mestre, Italy
| | - Eleonora Faraggiana
- DAIS - Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30170 Venice Mestre, Italy
| | - Judit Kalman
- INIA - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña, km 7, 5, 28040 Madrid, Spain
| | - Cinzia Bettiol
- DAIS - Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30170 Venice Mestre, Italy
| | - Francesca Caterina Izzo
- DAIS - Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30170 Venice Mestre, Italy
| | - José Maria Navas
- INIA - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña, km 7, 5, 28040 Madrid, Spain
| | - Antonio Marcomini
- DAIS - Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30170 Venice Mestre, Italy
| |
Collapse
|
12
|
Kim YE, Kim J. ROS-Scavenging Therapeutic Hydrogels for Modulation of the Inflammatory Response. ACS APPLIED MATERIALS & INTERFACES 2021; 14:23002-23021. [PMID: 34962774 DOI: 10.1021/acsami.1c18261] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although reactive oxygen species (ROS) are essential for cellular processes, excessive ROS could be a major cause of various inflammatory diseases because of the oxidation of proteins, DNA, and membrane lipids. It has recently been suggested that the amount of ROS could thus be regulated to treat such physiological disorders. A ROS-scavenging hydrogel is a promising candidate for therapeutic applications because of its high biocompatibility, 3D matrix, and ability to be modified. Approaches to conferring antioxidant properties to normal hydrogels include embedding ROS-scavenging catalytic nanoparticles, modifying hydrogel polymer chains with ROS-adsorbing organic moieties, and incorporating ROS-labile linkers in polymer backbones. Such therapeutic hydrogels can be used for wound healing, cardiovascular diseases, bone repair, ocular diseases, and neurodegenerative disorders. ROS-scavenging hydrogels could eliminate oxidative stress, accelerate the regeneration process, and show synergetic effects with other drugs or therapeutic molecules. In this review, the mechanisms by which ROS are generated and scavenged in the body are outlined, and the effects of high levels of ROS and the resulting oxidative stress on inflammatory diseases are described. Next, the mechanism of ROS scavenging by hydrogels is explained depending on the ROS-scavenging agents embedded within the hydrogel. Lastly, the recent achievements in the development of ROS-scavenging hydrogels to treat various inflammation-associated diseases are presented.
Collapse
Affiliation(s)
- Ye Eun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
13
|
Yang EH, Nam DJ, Lee HC, Shin SS, Ryoo JH. Association between urinary trans,trans-muconic acid and diabetes: a cross-sectional analysis of data from Korean National Environmental Health Survey (KoNEHS) cycle 3 (2015-2017). Ann Occup Environ Med 2021; 33:e35. [PMID: 35096399 PMCID: PMC8770538 DOI: 10.35371/aoem.2021.33.e35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/21/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Benzene is a ubiquitous air pollutant that is well known to cause hematopoietic effects in humans including leukemia. Recently, several studies have discussed its non-carcinogenic effects such as diabetes. This study aimed to investigate the association between diabetes and urinary trans,trans-muconic acid (t,t-MA), one of benzene metabolite, using adult data from Korean National Environmental Health Survey (KoNEHS) cycle 3 (2015-2017). METHODS This study analyzed 3,777 adults (1,645 men and 2,132 women) from the KoNEHS cycle 3 (2015-2017). The distribution and fraction of each independent variable were presented separately according to the urinary benzene metabolite levels (t,t-MA quartiles) and diabetes to determine the general characteristics of the subjects. Odds ratios (ORs) were calculated using logistic regression after stratification by gender and smoking status to identify the association between urinary t,t-MA and diabetes. RESULTS Compared with the first quartile (reference), the risk of diabetes significantly increased above the 4th (1.834 [1.107-3.039]) quartile in men and above the 3rd (1.826 [1.095-3.044]) and 4th (2.243 [1.332-3.776]) quartiles in women after adjustment. Stratified analysis based on smoking revealed that the ORs for the 3rd (1.847 [1.146-2.976]) and 4th (1.862 [1.136-3.052]) quartiles in non-smokers and those for the 2nd (1.721 [1.046-2.832]), 3rd (1.797 [1.059-3.050]), and 4th (2.546 [1.509-4.293]) quartiles in smokers were significantly higher. CONCLUSIONS We confirmed that urinary t,t-MA is significantly associated with diabetes regardless of gender and smoking status. And further studies are necessary to access the clinical impacts of this findings.
Collapse
Affiliation(s)
- Eun Hye Yang
- Department of Occupational & Environmental Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Do Jin Nam
- Department of Occupational & Environmental Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Hyo Choon Lee
- Department of Occupational & Environmental Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Soon Su Shin
- Department of Occupational & Environmental Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Jae-Hong Ryoo
- Department of Occupational & Environmental Medicine, Kyung Hee University Hospital, Seoul, Korea
- Department of Occupational & Environmental Medicine, College of Medicine Kyung Hee University, Seoul, Korea
| |
Collapse
|
14
|
Guyot C, Adoungotchodo A, Taillades W, Cerruti M, Lerouge S. A catechol-chitosan-based adhesive and injectable hydrogel resistant to oxidation and compatible with cell therapy. J Mater Chem B 2021; 9:8406-8416. [PMID: 34676861 DOI: 10.1039/d1tb00807b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Injectable hydrogels designed for cell therapy need to be adhesive to the surrounding tissues to maximize their retention and the communication between the host and the encapsulated cells. Catechol grafting is an efficient and well-known strategy to improve the adhesive properties of various polymers, including chitosan. However, catechol groups are also known to be cytotoxic as they oxidize into quinones in alkaline environments. Usually, hydrogels made from catechol-grafted chitosan (cat-CH) oxidize quickly, which tends to limit adhesion and prevent cell encapsulation. In this work, we limited oxidation and improved the cytocompatibility of cat-CH hydrogels by grafting chitosan with dihydroxybenzoic acid (DHBA), a small cat-bearing molecule known to have a high resistance to oxidation. We show that DHBA-grafted CH (dhba-CH) oxidized significantly slower and to a lesser extent that cat-CH made with hydrocaffeic acid (hca-CH). By combining dhba-CH with sodium bicarbonate and phosphate buffer, we fabricated thermosensitive injectable hydrogels with higher mechanical properties, quicker gelation and significantly lower oxidation than previously designed cat-CH systems. The resulting gels are highly adhesive on inorganic substrates and support L929 fibroblast encapsulation with high viability (≥90% after 24 hours), something that was not possible in any previously designed cat-CH gel system. These properties make the dhba-CH hydrogels excellent candidates for minimally invasive and targeted cell therapy in applications that require high adhesive strength.
Collapse
Affiliation(s)
- Capucine Guyot
- Department of Mechanical Engineering, Ecole de technologie superieure (ETS), 1100 Notre-Dame W Street, Montreal, QC H3C 1K3, Canada. .,Centre de Recherche du CHUM, 900 Saint-Denis Street, Montreal, QC H2X 0A9, Canada
| | - Atma Adoungotchodo
- Department of Mechanical Engineering, Ecole de technologie superieure (ETS), 1100 Notre-Dame W Street, Montreal, QC H3C 1K3, Canada. .,Centre de Recherche du CHUM, 900 Saint-Denis Street, Montreal, QC H2X 0A9, Canada
| | - Werner Taillades
- Centre de Recherche du CHUM, 900 Saint-Denis Street, Montreal, QC H2X 0A9, Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, QC H3A 0C5, Canada
| | - Sophie Lerouge
- Department of Mechanical Engineering, Ecole de technologie superieure (ETS), 1100 Notre-Dame W Street, Montreal, QC H3C 1K3, Canada. .,Centre de Recherche du CHUM, 900 Saint-Denis Street, Montreal, QC H2X 0A9, Canada
| |
Collapse
|
15
|
Mechanistic Insights into the Inhibition of SARS-CoV-2 Main Protease by Clovamide and Its Derivatives: In Silico Studies. BIOPHYSICA 2021. [DOI: 10.3390/biophysica1040028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The novel coronavirus SARS-CoV-2 Main Protease (Mpro) is an internally encoded enzyme that hydrolyzes the translated polyproteins at designated sites. The protease directly mediates viral replication processes; hence, a promising target for drug design. Plant-based natural products, especially polyphenols and phenolic compounds, provide the scaffold for many effective antiviral medications, and have recently been shown to be able to inhibit Mpro of SARS-CoV-2. Specifically, polyphenolic compounds found in cacao and chocolate products have been shown by recent experimental studies to have strong inhibitory effects against Mpro activities. This work aims to uncover the inhibition processes of Mpro by a natural phenolic compound found in cacao and chocolate products, clovamide. Clovamide (caffeoyl-DOPA) is a naturally occurring caffeoyl conjugate that is found in the phenolic fraction of Theobroma Cacao L. and a potent radical-scavenging antioxidant as suggested by previous studies of our group. Here, we propose inhibitory mechanisms by which clovamide may act as a Mpro inhibitor as it becomes oxidized by scavenging reactive oxygen species (ROS) in the body, or becomes oxidized as a result of enzymatic browning. We use molecular docking, annealing-based molecular dynamics, and Density Functional Theory (DFT) calculations to study the interactions between clovamide with its derivatives and Mpro catalytic and allosteric sites. Our molecular modelling studies provide mechanistic insights of clovamide inhibition of Mpro, and indicate that clovamide may be a promising candidate as a drug lead molecule for COVID-19 treatments.
Collapse
|
16
|
Ramírez‐Lopera V, Uribe‐Castro D, Bautista‐Amorocho H, Silva‐Sayago JA, Mateus‐Sánchez E, Ardila‐Barbosa WY, Pérez‐Cala TL. The effects of genetic polymorphisms on benzene-exposed workers: A systematic review. Health Sci Rep 2021; 4:e327. [PMID: 34295994 PMCID: PMC8284097 DOI: 10.1002/hsr2.327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND AND AIMS Benzene is a group I carcinogen, which has been associated with leukemia and myelodysplastic syndrome. Moreover, it has been proposed that polymorphisms in benzene metabolizing genes influence the outcomes of benzene exposure in the human body. This systematic review aims to elucidate the existent relationship between genetic polymorphisms and the risk of developing adverse health effects in benzene-exposed workers. METHODS Three databases were systematically searched until April 2020. The preferred reporting items for systematic reviews and meta-analyses method was used to select articles published between 2005 and 2020. Quality assessment and risk of bias were evaluated by the Newcastle-Ottawa scale. RESULTS After full-text evaluation, 36 articles remained out of 645 initially screened. The most studied health effects within the reviewed papers were chronic benzene poisoning, hematotoxicity, altered urinary biomarkers of exposure, micronucleus/chromosomal aberrations, and gene methylation. Furthermore, some polymorphisms on NQO1, GSTT1, GSTM1, MPO, and CYP2E1, among other genes, showed a statistically significant relationship with an increased risk of developing at least one of these effects on benzene-exposed workers. However, there was no consensus among the reviewed papers on which specific polymorphisms were the ones associated with the adverse health-related outcomes, except for the NQO1 rs1800566 and the GSTT1 null genotypes. Additionally, the smoking habit was identified as a confounder, demonstrating worse health outcomes in exposed workers that smoked. CONCLUSION Though there is a positive relationship between genetic polymorphisms and detrimental health outcomes for benzene-exposed workers, broader benzene-exposed cohorts that take into account the genetic diversity of the population are needed in order to determine which specific polymorphisms incur in health risks.
Collapse
Affiliation(s)
- Verónica Ramírez‐Lopera
- Bacterias & Cáncer Group, Microbiology and Parasitology, Faculty of MedicineUniversidad de AntioquiaMedellínColombia
| | - Daniel Uribe‐Castro
- Bacterias & Cáncer Group, Microbiology and Parasitology, Faculty of MedicineUniversidad de AntioquiaMedellínColombia
| | - Henry Bautista‐Amorocho
- Bacterias & Cáncer Group, Microbiology and Parasitology, Faculty of MedicineUniversidad de AntioquiaMedellínColombia
- Grupo de Investigación en Desarrollo Humano, Tejido Social e Innovaciones Tecnológicas—GIDTI, Programa Administración en Salud OcupacionalCentro Regional Bucaramanga, Corporación Universitaria Minuto de DiosBucaramangaColombia
| | - Jorge Alexander Silva‐Sayago
- Grupo de Investigación en Desarrollo Humano, Tejido Social e Innovaciones Tecnológicas—GIDTI, Programa Administración en Salud OcupacionalCentro Regional Bucaramanga, Corporación Universitaria Minuto de DiosBucaramangaColombia
| | - Enrique Mateus‐Sánchez
- Grupo de Investigación en Desarrollo Humano, Tejido Social e Innovaciones Tecnológicas—GIDTI, Programa de PsicologíaCentro Regional Bucaramanga, Corporación Universitaria Minuto de DiosBucaramangaColombia
| | - Wilman Yesid Ardila‐Barbosa
- Grupo de Investigación en Desarrollo Humano, Tejido Social e Innovaciones Tecnológicas—GIDTI, Programa Administración en Salud OcupacionalCentro Regional Bucaramanga, Corporación Universitaria Minuto de DiosBucaramangaColombia
| | - Tania Liseth Pérez‐Cala
- Bacterias & Cáncer Group, Microbiology and Parasitology, Faculty of MedicineUniversidad de AntioquiaMedellínColombia
| |
Collapse
|
17
|
Shamovsky I, Ripa L, Narjes F, Bonn B, Schiesser S, Terstiege I, Tyrchan C. Mechanism-Based Insights into Removing the Mutagenicity of Aromatic Amines by Small Structural Alterations. J Med Chem 2021; 64:8545-8563. [PMID: 34110134 DOI: 10.1021/acs.jmedchem.1c00514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aromatic and heteroaromatic amines (ArNH2) are activated by cytochrome P450 monooxygenases, primarily CYP1A2, into reactive N-arylhydroxylamines that can lead to covalent adducts with DNA nucleobases. Hereby, we give hands-on mechanism-based guidelines to design mutagenicity-free ArNH2. The mechanism of N-hydroxylation of ArNH2 by CYP1A2 is investigated by density functional theory (DFT) calculations. Two putative pathways are considered, the radicaloid route that goes via the classical ferryl-oxo oxidant and an alternative anionic pathway through Fenton-like oxidation by ferriheme-bound H2O2. Results suggest that bioactivation of ArNH2 follows the anionic pathway. We demonstrate that H-bonding and/or geometric fit of ArNH2 to CYP1A2 as well as feasibility of both proton abstraction by the ferriheme-peroxo base and heterolytic cleavage of arylhydroxylamines render molecules mutagenic. Mutagenicity of ArNH2 can be removed by structural alterations that disrupt geometric and/or electrostatic fit to CYP1A2, decrease the acidity of the NH2 group, destabilize arylnitrenium ions, or disrupt their pre-covalent transition states with guanine.
Collapse
|
18
|
Sirotkin AV, Macejková M, Tarko A, Fabova Z, Alrezaki A, Alwasel S, Harrath AH. Effects of benzene on gilts ovarian cell functions alone and in combination with buckwheat, rooibos, and vitex. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3434-3444. [PMID: 32915450 DOI: 10.1007/s11356-020-10739-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
We aimed to examine the influence of benzene and of three dimethyl sulfoxide (DMSO) plant extracts-buckwheat (Fagopyrum Esculentum), rooibos (Aspalathus linearis), and vitex, (Vitex Agnus-Castus), and the combination of benzene with these three plant extracts on basic ovarian cell functions. Specifically, the study investigated the influence of benzene (0, 10, 100, or 1000 ng/mL) with and without these three plant additives on porcine ovarian granulosa cells cultured during 2 days with and without these additives. Cell viability, proliferation (accumulation of proliferating cell nuclear antigen, PCNA), apoptosis (accumulation of Bcl-2-associated X protein , bax), and the release of progesterone (P) and estradiol (E) were analyzed by the Trypan blue test, quantitative immunocytochemistry, and enzyme-linked immunosorbent assay, respectively. Benzene reduced cell viability, as well as P and E release. Plant extracts, given alone, were able directly promote or suppress ovarian cell functions. Furthermore, buckwheat and rooibos, but not vitex prevented the inhibitory action of benzene on cell viability. Buckwheat induced the stimulatory action of benzene on proliferation. Rooibos and vitex promoted benzene effect on cell apoptosis. All these plant additives were able to promote suppressive action of benzene on ovarian steroidogenesis.These observations show that benzene may directly suppress ovarian cell viability, P, and E release and that buckwheat, rooibos, and vitex can directly influence ovarian cell functions and modify the effects of benzene-prevent toxic influence of benzene on cell viability and induce stimulatory action of benzene on ovarian cell proliferation, apoptosis, and steroidogenesis. The observed direct effects of benzene and these plants on ovarian cells functions, as well as the functional interrelationships of benzene and these plants, should be taken into account in their future applications.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Constantine The Philosopher University in Nitra, Tr. A. Hlinku 1, 949 74, Nitra, Slovakia.
| | - Martina Macejková
- Constantine The Philosopher University in Nitra, Tr. A. Hlinku 1, 949 74, Nitra, Slovakia
| | - Adam Tarko
- Constantine The Philosopher University in Nitra, Tr. A. Hlinku 1, 949 74, Nitra, Slovakia
| | - Zuzana Fabova
- Constantine The Philosopher University in Nitra, Tr. A. Hlinku 1, 949 74, Nitra, Slovakia
| | - Abdulkarem Alrezaki
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
19
|
Moro AM, Sauer E, Brucker N, Charão MF, Gauer B, do Nascimento SN, Goethel G, Duarte MMMF, Garcia SC. Evaluation of immunological, inflammatory, and oxidative stress biomarkers in gasoline station attendants. BMC Pharmacol Toxicol 2019; 20:75. [PMID: 31852532 PMCID: PMC6921377 DOI: 10.1186/s40360-019-0355-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Gasoline is a complex mixture of saturated and unsaturated hydrocarbons, in which aromatic compounds, such as BTX (benzene, toluene, and xylene) feature as the main constituents. Simultaneous exposure to these aromatic hydrocarbons causes a significant impact on benzene toxicity. In order to detect early alterations caused in gasoline station attendants exposed to BTX compounds, immunological, inflammatory, and oxidative stress biomarkers were evaluated. Methods A total of 66 male subjects participated in this study. The gasoline station attendants (GSA) group consisted of 38 gasoline station attendants from Rio Grande do Sul, Brazil. The non-exposed group consisted of 28 subjects who were non-smokers and who had no history of occupational exposure. Environmental and biological monitoring of BTX exposure was performed using blood and urine. Results The GSA group showed increased BTX concentrations in relation to the non-exposed group (p < 0.001). The GSA group showed elevated protein carbonyl (PCO) levels and pro-inflammatory cytokines, decreased expression of CD80 and CD86 in monocytes, and reduced glutathione S-transferase (GST) activity compared to the non-exposed group (p < 0.05). BTX levels and trans,trans-muconic acid levels were positively correlated with pro-inflammatory cytokines and negatively correlated with interleukin-10 contents (p < 0.001). Increased levels of pro-inflammatory cytokines were accompanied by increased PCO contents and decreased GST activity (p < 0.001). Furthermore, according to the multiple linear regression analysis, benzene exposure was the only factor that significantly contributed to the increased pro-inflammatory cytokines (p < 0.05). Conclusions Taken together, these findings show the influence of exposure to BTX compounds, especially benzene, on the immunological, inflammatory, and oxidative stress biomarkers evaluated. Furthermore, the data suggest the relationship among the evaluated biomarkers of effect, which could contribute to providing early signs of damage to biomolecules in subjects occupationally exposed to BTX compounds.
Collapse
Affiliation(s)
- Angela Maria Moro
- Laboratory of Toxicology (LATOX), Department of Analysis, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Specialized Faculty in the Health Area of Rio Grande do Sul (FASURGS), Passo Fundo, RS, Brazil
| | - Elisa Sauer
- Laboratory of Toxicology (LATOX), Department of Analysis, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Natália Brucker
- Laboratory of Toxicology (LATOX), Department of Analysis, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Mariele Feiffer Charão
- Laboratory of Toxicology (LATOX), Department of Analysis, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil
| | - Bruna Gauer
- Laboratory of Toxicology (LATOX), Department of Analysis, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Sabrina Nunes do Nascimento
- Laboratory of Toxicology (LATOX), Department of Analysis, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Gabriela Goethel
- Laboratory of Toxicology (LATOX), Department of Analysis, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | | | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Department of Analysis, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil.
| |
Collapse
|
20
|
Nitiss KC, Nitiss JL, Hanakahi LA. DNA Damage by an essential enzyme: A delicate balance act on the tightrope. DNA Repair (Amst) 2019; 82:102639. [PMID: 31437813 DOI: 10.1016/j.dnarep.2019.102639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 01/07/2023]
Abstract
DNA topoisomerases are essential for DNA metabolic processes such as replication and transcription. Since DNA is double stranded, the unwinding needed for these processes results in DNA supercoiling and catenation of replicated molecules. Changing the topology of DNA molecules to relieve supercoiling or resolve catenanes requires that DNA be transiently cut. While topoisomerases carry out these processes in ways that minimize the likelihood of genome instability, there are several ways that topoisomerases may fail. Topoisomerases can be induced to fail by therapeutic small molecules such as by fluoroquinolones that target bacterial topoisomerases, or a variety of anti-cancer agents that target the eukaryotic enzymes. Increasingly, there have been a large number of agents and processes, including natural products and their metabolites, DNA damage, and the intrinsic properties of the enzymes that can lead to long-lasting DNA breaks that subsequently lead to genome instability, cancer, and other diseases. Understanding the processes that can interfere with topoisomerases and how cells respond when topoisomerases fail will be important in minimizing the consequences when enzymes need to transiently interfere with DNA integrity.
Collapse
Affiliation(s)
- Karin C Nitiss
- University of Illinois College of Medicine, Department of Biomedical Sciences, Rockford, IL, 61107, United States; University of Illinois College of Pharmacy, Biopharmaceutical Sciences Department, Rockford IL, 61107, United States
| | - John L Nitiss
- University of Illinois College of Pharmacy, Biopharmaceutical Sciences Department, Rockford IL, 61107, United States.
| | - Leslyn A Hanakahi
- University of Illinois College of Pharmacy, Biopharmaceutical Sciences Department, Rockford IL, 61107, United States.
| |
Collapse
|
21
|
Bouknana D, Jodeh S, Sbaa M, Hammouti B, Arabi M, Darmous A, Slamini M, Haboubi K. A phytotoxic impact of phenolic compounds in olive oil mill wastewater on fenugreek "Trigonella foenum-graecum". ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:405. [PMID: 31144085 DOI: 10.1007/s10661-019-7541-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
The objective of this study is the determination of the chemical structure of nine phenolic molecules responsible for the phytotoxic action on the germination of the plant species "Trigonella foenum-graecum". The phytotoxic action was evaluated by calculating the germination index of the plant species for a period of 5 days of incubation. The analysis of the physicochemical properties of phenolic molecules shows that hydrophobicity is a key factor in phytotoxicity. The sublethal concentration varies as follows: hydroquinone (0.91 mM), 4-aminophenol (0.85 mM), phenol (0.75 mM), gallic acid (0.59 mM), caffeic acid (0.56 mM), 3,5-di-tert-butylcatechol (0,45 mM), quercetin (0.33 mM), oleuropein (0.3 mM), and catechol (0.13 mM). Phytotoxicity varies depending on the nature and position of the substituents on the aromatic ring. The reactivity of this type of molecule is partly linked to the presence of catechol function that can play the main role in phytotoxicity of the Fenugreek.
Collapse
Affiliation(s)
- Driss Bouknana
- Department of Chemistry, Laboratory of Applied Analytical Chemistry, Materials and Environment, Faculty of Sciences, University Mohammed first, BP 4808, 60046, Oujda, Morocco.
- Department of Biology, Laboratory of Water Sciences, Ecology and Sustainable Development (LWESD), Faculty of Sciences, University Mohammed first, BC 717, 60000, Oujda, Morocco.
| | - Shehdeh Jodeh
- Department of Chemistry, An-Najah National University, P. O. Box 7, Nablus, State of Palestine, Palestine.
| | - Mohamed Sbaa
- Department of Biology, Laboratory of Water Sciences, Ecology and Sustainable Development (LWESD), Faculty of Sciences, University Mohammed first, BC 717, 60000, Oujda, Morocco
| | - Belkheir Hammouti
- Department of Chemistry, Laboratory of Applied Analytical Chemistry, Materials and Environment, Faculty of Sciences, University Mohammed first, BP 4808, 60046, Oujda, Morocco
| | - Mourad Arabi
- Department of Biology, Laboratory of Water Sciences, Ecology and Sustainable Development (LWESD), Faculty of Sciences, University Mohammed first, BC 717, 60000, Oujda, Morocco
| | - Ahmed Darmous
- Department of Biology, Laboratory of Water Sciences, Ecology and Sustainable Development (LWESD), Faculty of Sciences, University Mohammed first, BC 717, 60000, Oujda, Morocco
| | - Maryam Slamini
- Department of Biology, Laboratory of Water Sciences, Ecology and Sustainable Development (LWESD), Faculty of Sciences, University Mohammed first, BC 717, 60000, Oujda, Morocco
| | - Khadija Haboubi
- Head of the Research Team "Materials, Energy and Environment" National School of Applied Sciences, Al Hoceima, Morocco
| |
Collapse
|
22
|
Wang Z, Xu X, He B, Guo J, Zhao B, Zhang Y, Zhou Z, Zhou X, Zhang R, Abliz Z. The impact of chronic environmental metal and benzene exposure on human urinary metabolome among Chinese children and the elderly population. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:232-239. [PMID: 30448706 DOI: 10.1016/j.ecoenv.2018.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
The health effects of metals and benzene exposure have been extensively investigated; however, information on the impact of chronic environmental metal and benzene exposure on human urinary metabolome is limited. In this study, a total of 566 participants, including 352 elderly and 214 children, were split into the "exposed" and "control" groups. The urine samples of all the participants were collected and stored at - 80 °C until analysis. The urinary levels of 17 metals and S-phenylmercapturic acid (S-PMA) were determined by the ICP-MS and LC-MS/MS methods to comprehensively assess the personal metal and benzene exposure levels, respectively. Then, the individual levels of metal and benzene exposure were correlated to the metabolic consequences of ambient pollutant exposure, which were previously observed in our metabolomics study. As a result, multiple metals, including Cd, Co, Cr, Cu, Fe, Hg, Li, Mo, Ni, Pb, Se, and Zn, exhibited a significant linear dose-dependent association with one or more urinary metabolites, including two amino acids (pyroglutamic acid and 3-methylhistidine), three organic acids (azelaic acid, decenedioic acid, and hydroxytetradecanedioic acid), ten medium-chainacylcarnitines (heptenedioylcarnitine, octenedioylcarnitine, nonenedioylcarnitine, decenedioylglucuronide, 3-hydroxydecanoylcarnitine, dodecanedioylcarnitine, nonanoylcarnitine, decadienylcarnitine, hydroxydodecenoylcarnitine, dodecadienylcarnitine, and dodecenoylcarnitine), and one glucuronide conjugate (decenedioylglucuronide). These observations indicate that the increased environmental metal exposure has caused various oxidative stress-related effects, including the depletion of antioxidants, accelerated muscle proteolysis, elevated activity of UGTs, increased lipid peroxidation, and the disorder of mitochondrial lipid metabolism among exposed children and the elderly. The current study provides new insights into the biological effects induced by metal exposure in the environment.
Collapse
Affiliation(s)
- Zhonghua Wang
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Xiaoyu Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of MateriaMedica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, China
| | - Bingshu He
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Jinghua Guo
- Analytical and Testing Center, Beijing Normal University, Beijing 100875, China
| | - Baoxin Zhao
- Taiyuan Centre for Disease Control and Prevention, Taiyuan 030012, China
| | - Yanping Zhang
- Taiyuan Centre for Disease Control and Prevention, Taiyuan 030012, China
| | - Zhi Zhou
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Xia Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of MateriaMedica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of MateriaMedica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, China.
| | - Zeper Abliz
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of MateriaMedica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing 100050, China.
| |
Collapse
|
23
|
Shim YH, Ock JW, Kim YJ, Kim Y, Kim SY, Kang D. Association between Heavy Metals, Bisphenol A, Volatile Organic Compounds and Phthalates and Metabolic Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16040671. [PMID: 30823556 PMCID: PMC6406723 DOI: 10.3390/ijerph16040671] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
Abstract
The incidence of metabolic syndrome (MetS), which causes heart disease and stroke, has increased significantly worldwide. Although many studies have revealed the relationship between heavy metals (cadmium, mercury, and lead), the sum of metabolites of di(2-ethylhexyl) phthalate (DEHP), and MetS, the results remain inconsistent. No study has reported the association between various volatile organic compounds (VOCs) and phthalate metabolites with MetS. This cross-sectional study of a representative sample of adult South Koreans aimed to evaluate the relationship between heavy metals, VOC metabolites, phthalate metabolites, bisphenol A and MetS after adjusting for demographic variables. Data from the Korean National Environmental Health Survey II (2012–2014) (n = 5251) were used in the analysis. Multiple logistic regression analysis was performed for MetS with log-transformed hazardous material quartiles after covariate adjustment. Urine muconic acid (MuA) and mono- (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) levels were significantly associated with MetS after adjusting for confounders (odds ratio: 1.34 and 1.39, respectively). Urine MuA and MEHHP levels were significantly associated with MetS. Because of the rarity of this study, which investigated the relationship between each VOC and phthalate metabolite with MetS and the strict definition of all indirect measures of MetS components, further research is needed.
Collapse
Affiliation(s)
- Yun Hwa Shim
- Department of Premedicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Korea.
| | - Jung Won Ock
- Department of Premedicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Korea.
| | - Yoon-Ji Kim
- Department of Preventive, and Occupational & Environmental Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Korea.
| | - Youngki Kim
- Department of Preventive, and Occupational & Environmental Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Korea.
- Department of Occupational and Environmental Medicine, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612, Korea.
| | - Se Yeong Kim
- Department of Occupational and Environmental Medicine, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612, Korea.
| | - Dongmug Kang
- Department of Preventive, and Occupational & Environmental Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Korea.
- Department of Occupational and Environmental Medicine, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612, Korea.
| |
Collapse
|
24
|
Mosonik BC, Kibet JK, Ngari SM, Nyamori VO. Environmentally persistent free radicals and particulate emissions from the thermal degradation of Croton megalocarpus biodiesel. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24807-24817. [PMID: 29926331 DOI: 10.1007/s11356-018-2546-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/13/2018] [Indexed: 05/28/2023]
Abstract
Pyrolysis of biodiesel at high temperatures may result in the formation of transient and stable free radicals immobilized on particulate emissions. Consequently, free radicals adsorbed on particulates are believed to be precursors for health-related illnesses such as cancer, cardiac arrest, and oxidative stress. This study explores the nature of free radicals and particulate emissions generated when Croton megalocarpus biodiesel is pyrolyzed at 600 °C in an inert environment of flowing nitrogen at a residence time of 0.5 s at 1 atm. The surface morphology of thermal emissions were imaged using a field emission gun scanning electron microscope (FEG SEM) while the radical characteristics were investigated using an electron paramagnetic resonance spectrometer (EPR). A g-value of 2.0024 associated with a narrow ∆Hp-p of 3.65 G was determined. The decay rate constant for the radicals was low (1.86 × 10-8 s-1) while the half-life was long ≈ 431 days. The observed EPR characterization of Croton megalocarpus thermal particulates revealed the existence of free radicals typical of those found in coal. The low g-value and low decay rate constant suggests that the free radicals in particulates are possibly carbon-centered. The mechanistic channel for the formation of croton char from model biodiesel component (9-dodecenoic acid, methyl ester) has been proposed in this study.
Collapse
Affiliation(s)
- Bornes C Mosonik
- Department of Chemistry, Egerton University, PO Box 536 -20115, Egerton, Kenya
| | - Joshua K Kibet
- Department of Chemistry, Egerton University, PO Box 536 -20115, Egerton, Kenya.
| | - Silas M Ngari
- Department of Chemistry, Egerton University, PO Box 536 -20115, Egerton, Kenya
| | - Vincent O Nyamori
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
25
|
Montero-Montoya R, López-Vargas R, Arellano-Aguilar O. Volatile Organic Compounds in Air: Sources, Distribution, Exposure and Associated Illnesses in Children. Ann Glob Health 2018; 84:225-238. [PMID: 30873816 PMCID: PMC6748254 DOI: 10.29024/aogh.910] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Toxic volatile organic compounds (VOC), like benzene, toluene, ethylbenzene and xylenes (BTEX), are atmospheric pollutants representing a threat to human health. They are released into the environment from mobile sources in urban settings, but newly polluted areas are gaining importance in countries where accelerated industrialization is taking place in suburban or rural settings. METHODS The review includes studies done in Mexico and Latin-America and countries considered to have emerging economies and are compared with similar studies in developed countries. Data about environmental VOC levels and exposure of children have been included. Also, information about health effects was reviewed. Articles were searched in PubMed and Scopus, and information was also obtained from the United States Environmental Protection Agency (EPA), the EPAs Integrated Risk Information System (IRIS-EPA) and state reports on air quality of Mexican cities. RESULTS VOC or BTEX levels reported in industrial and suburban areas were found to be higher due to the burning of fossil fuels and waste emission; whereas, in big cities, VOC emissions were mainly due to mobile sources. Even though TEX levels were under reference values, benzene was found at levels several times over this value in cities and even higher in industrial zones. Elevated VOC emissions were also reported in cities with industrial development in their peripheral rural areas.Public health relevance: Industrial activities have changed the way of life of small towns, which previously had no concern about environmental pollution and chemicals. No air monitoring is done in these places where toxic chemicals are released into rivers and the atmosphere. This work demonstrates the need for environmental monitors to protect human life in suburban and rural areas where industrial growth occurs without planning and ecological or health protection, compromising the health of new generations beginning in fetal development.
Collapse
Affiliation(s)
| | - Rocío López-Vargas
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, MX
| | | |
Collapse
|
26
|
SALEM E, EL-GARAWANI I, ALLAM H, EL-AAL BA, HEGAZY M. Genotoxic effects of occupational exposure to benzene in gasoline station workers. INDUSTRIAL HEALTH 2018; 56:132-140. [PMID: 29070767 PMCID: PMC5889931 DOI: 10.2486/indhealth.2017-0126] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Benzene, a hazardous component of gasoline, is a genotoxic class I human carcinogen. This study evaluated the genotoxic effects of occupational exposure to benzene in gasoline stations. Genotoxicity of exposure to benzene was assessed in peripheral blood leucocytes of 62 gasoline station workers and compared with an equal numbers of matched controls using total genomic DNA fragmentation, micronucleus test and cell viability test. An ambient air samples were collected and analyzed for Monitoring of benzene, toluene, ethyl benzene and xylene (BTEX) in work environment and control areas. DNA fragmentation, micronucleus and dead cells percent were significantly higher in exposed workers than controls. Level of benzene, Toluene, Ethyl benzene and xylene in the work environment were higher than the control areas and the permissible limits. Gasoline station workers occupationally exposed to benzene are susceptible to genotoxic effects indicated by increased DNA fragmentation, higher frequency of micronucleus and decreased leukocytes viability.
Collapse
Affiliation(s)
- Eman SALEM
- Public Health and Community Medicine Department, Faculty of Medicine, Menoufia University, Egypt
| | | | - Heba ALLAM
- Public Health and Community Medicine Department, Faculty of Medicine, Menoufia University, Egypt
- *To whom correspondence should be addressed. E-mail:
| | - Bahiga Abd EL-AAL
- Community Health Nursing Department, Faculty of Nursing, Menoufia University, Egypt
| | - Mofrih HEGAZY
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Menoufia University, Egypt
| |
Collapse
|
27
|
Chen Y, Chen S, Liang H, Yang H, Liu L, Zhou K, Xu L, Liu J, Yun L, Lai B, Song L, Luo H, Peng J, Liu Z, Xiao Y, Chen W, Tang H. Bcl-2 protects TK6 cells against hydroquinone-induced apoptosis through PARP-1 cytoplasm translocation and stabilizing mitochondrial membrane potential. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:49-59. [PMID: 28843007 DOI: 10.1002/em.22126] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
B cell leukemia/lymphoma-2 (Bcl-2) suppresses apoptosis by binding the BH3 domain of proapoptotic factors and thereby regulating mitochondrial membrane potential (MMP). This study aimed to investigate the role of Bcl-2 in controlling the mitochondrial pathway of apoptosis during hydroquinone (HQ)-induced TK6 cytotoxicity. In this study, HQ, one metabolite of benzene, decreased the MMP in a concentration-dependent manner and induced the generation of reactive oxygen species (ROS), the activation of the DNA damage marker γ-H2AX, and production of the DNA damage-responsive enzyme poly(ADP-ribose)polymerase-1 (PARP-1). Exposure of TK6 cells to HQ leads to an increase in Bcl-2 and co-localization with PARP-1 in the cytoplasm. Inhibition of Bcl-2 using the BH3 mimetic, ABT-737, suppressed the PARP-1 nuclear to cytoplasm translocation and sensitized TK6 cells to HQ-induced apoptosis through depolarization of the MMP. Western blot analysis indicated that ABT-737 combined with HQ increased the levels of cleaved PARP and γ-H2AX, but significantly decreased the level of P53. Thus, ABT-737 can influence PARP-1 translocation and induce apoptosis via mitochondria-mediated apoptotic pathway, independently of P53. In addition, we found that knockdown of PARP-1 attenuated the HQ-induced production of cleaved PARP and P53. These results identify Bcl-2 as a protective mediator of HQ-induced apoptosis and show that upregulation of Bcl-2 helps to localize PARP-1 to the cytoplasm and stabilize MMP. Environ. Mol. Mutagen. 59:49-59, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuting Chen
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Shaoyun Chen
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Hairong Liang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Hui Yang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Linhua Liu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Kairu Zhou
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Longmei Xu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Jiaxian Liu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Lin Yun
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Bei Lai
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Li Song
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Hao Luo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Jianming Peng
- Huizhou Prevention and Treatment Centre for Occupational Disease, Huizhou, 516000, China
| | - Zhidong Liu
- Huizhou Prevention and Treatment Centre for Occupational Disease, Huizhou, 516000, China
| | - Yongmei Xiao
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Huanwen Tang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
28
|
Negritto MC, Valdez C, Sharma J, Rosenberg C, Selassie CR. Growth Inhibition and DNA Damage Induced by X-Phenols in Yeast: A Quantitative Structure-Activity Relationship Study. ACS OMEGA 2017; 2:8568-8579. [PMID: 29302629 PMCID: PMC5748281 DOI: 10.1021/acsomega.7b01200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/14/2017] [Indexed: 05/07/2023]
Abstract
Phenolic compounds and their derivatives are ubiquitous constituents of numerous synthetic and natural chemicals that exist in the environment. Their toxicity is mostly attributed to their hydrophobicity and/or the formation of free radicals. In a continuation of the study of phenolic toxicity in a systematic manner, we have examined the biological responses of Saccharomyces cerevisiae to a series of mostly monosubstituted phenols utilizing a quantitative structure-activity relationship (QSAR) approach. The biological end points included a growth assay that determines the levels of growth inhibition induced by the phenols as well as a yeast deletion (DEL) assay that assesses the ability of X-phenols to induce DNA damage or DNA breaks. The QSAR analysis of cell growth patterns determined by IC50 and IC80 values indicates that toxicity is delineated by a hydrophobic, parabolic model. The DEL assay was then utilized to detect genomic deletions in yeast. The increase in the genotoxicity was enhanced by the electrophilicity of the phenolic substituents that were strong electron donors as well as by minimal hydrophobicity. The electrophilicities are represented by Brown's sigma plus values that are a variant of the Hammett sigma constants. A few mutant strains of genes involved in DNA repair were separately exposed to 2,6-di-tert-butyl-4-methyl-phenol (BHT) and butylated hydroxy anisole (BHA). They were subsequently screened for growth phenotypes. BHA-induced growth defects in most of the DNA repair null mutant strains, whereas BHT was unresponsive.
Collapse
Affiliation(s)
- M. Cristina Negritto
- Molecular
Biology Program, Department of Biology/Department of Chemistry, Pomona College, 175 West 6th Street, Claremont, California 91711, United States
| | - Clarissa Valdez
- Molecular
Biology Program, Department of Biology/Department of Chemistry, Pomona College, 175 West 6th Street, Claremont, California 91711, United States
| | - Jasmine Sharma
- Molecular
Biology Program, Department of Biology/Department of Chemistry, Pomona College, 175 West 6th Street, Claremont, California 91711, United States
| | - Christa Rosenberg
- Chemistry
Department, Pomona College, 645 North College Avenue, Claremont, California 91711, United States
| | - Cynthia R. Selassie
- Chemistry
Department, Pomona College, 645 North College Avenue, Claremont, California 91711, United States
- E-mail: (C.R.S.)
| |
Collapse
|
29
|
Chen S, Liang H, Hu G, Yang H, Zhou K, Xu L, Liu J, Lai B, Song L, Luo H, Peng J, Liu Z, Xiao Y, Chen W, Tang H. Differently expressed long noncoding RNAs and mRNAs in TK6 cells exposed to low dose hydroquinone. Oncotarget 2017; 8:95554-95567. [PMID: 29221148 PMCID: PMC5707042 DOI: 10.18632/oncotarget.21481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023] Open
Abstract
Previous studies have shown that long noncoding RNAs (lncRNAs) were related to human carcinogenesis and might be designated as diagnosis and prognosis biomarkers. Hydroquinone (HQ), as one of the metabolites of benzene, was closely relevant to occupational benzene poisoning and occupational leukemia. Using high-throughput sequencing technology, we investigated differences in lncRNA and mRNA expression profiles between experimental group (HQ 20 μmol/L) and control group (PBS). Compared to control group, a total of 65 lncRNAs and 186 mRNAs were previously identified to be aberrantly expressed more than two fold change in experimental group. To validate the sequencing results, we selected 10 lncRNAs and 10 mRNAs for quantitative real-time PCR (qRT-PCR). Through GO annotation and KEGG pathway analysis, we obtained 3 mainly signaling pathways, including P53 signaling pathway, which plays an important role in tumorigenesis and progression. After that, 25 lncRNAs and 32 mRNAs formed the lncRNA-mRNA co-expression network were implemented to play biological functions of the dysregulated lncRNAs transcripts by regulating gene expression. The lncRNAs target genes prediction provided a new idea for the study of lncRNAs. Finally, we have another important discovery, which is screened out 11 new lncRNAs without annotated. All these results uncovered that lncRNA and mRNA expression profiles in TK6 cells exposed to low dose HQ were different from control group, helping to further study the toxicity mechanisms of HQ and providing a new direction for the therapy of leukemia.
Collapse
Affiliation(s)
- Shaoyun Chen
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Hairong Liang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Gonghua Hu
- Department of Preventive Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Hui Yang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Kairu Zhou
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Longmei Xu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Jiaxian Liu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Bei Lai
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Li Song
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Hao Luo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Jianming Peng
- Huizhou Prevention and Treatment Centre for Occupational Disease, Huizhou, 516000, China
| | - Zhidong Liu
- Huizhou Prevention and Treatment Centre for Occupational Disease, Huizhou, 516000, China
| | - Yongmei Xiao
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Huanwen Tang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
30
|
Hossain E, Deng SM, Gozem S, Krylov AI, Wang XB, Wenthold PG. Photoelectron Spectroscopy Study of Quinonimides. J Am Chem Soc 2017; 139:11138-11148. [DOI: 10.1021/jacs.7b05197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ekram Hossain
- The
Department of Chemistry Purdue University West Lafayette, Indiana 47906, United States
| | - Shihu M. Deng
- Physical
Sciences Division, Pacific Northwest National Laboratory P.O. Box 999, MS k8-88 Richland, Washington 99352, United States
| | - Samer Gozem
- Department
of Chemistry University of Southern California Los Angeles, 90089, United States
| | - Anna I. Krylov
- Department
of Chemistry University of Southern California Los Angeles, 90089, United States
| | - Xue-Bin Wang
- Physical
Sciences Division, Pacific Northwest National Laboratory P.O. Box 999, MS k8-88 Richland, Washington 99352, United States
| | - Paul G. Wenthold
- The
Department of Chemistry Purdue University West Lafayette, Indiana 47906, United States
| |
Collapse
|
31
|
Fenga C, Gangemi S, Teodoro M, Rapisarda V, Golokhvast K, Docea AO, Tsatsakis AM, Costa C. 8-Hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in workers exposed to low-dose benzene. Toxicol Rep 2017; 4:291-295. [PMID: 28959652 PMCID: PMC5615153 DOI: 10.1016/j.toxrep.2017.05.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/23/2017] [Accepted: 05/27/2017] [Indexed: 01/25/2023] Open
Abstract
Gasoline station attendants have higher urinary t,t,-MA and 8-OHdG levels. There is strong correlation between 8-OHdG and benzene exposure level. 8-OHdG levels are significantly correlated also with job seniority. Low-level chronic exposure to benzene can determine oxidative damage on DNA.
The present study aims to investigate the relation between exposure to low-dose benzene and the occurrence of oxidative DNA damage in gasoline station workers, as well as the possible role of interfering or confounding factors. Urine levels of 8-OHdG were evaluated by a competitive immunoassay in a group of 80 men, employed in gasoline stations located in East Sicily and compared with a control group (n = 63) of male office employees not occupationally exposed to benzene. Information regarding socio-demographic characteristics, lifestyle and job-related records were provided through a questionnaire. Significantly higher (p < 0.05) urinary t,t,-MA and 8-OHdG levels were observed in gasoline station attendants compared to subjects not exposed to benzene. Pearson’s test demonstrated a strong correlation (r = 0.377, p < 0.001) between 8-OHdG and benzene exposure level. 8-OHdG significantly correlated also with job seniority, (r = 0.312, p < 0.01), whereas the relation with age resulted weaker (r = 0.242, p < 0.05). Multiple linear regression analysis, performed to exclude a role for confounding factors, showed that variables like gender, smoking habit, alcohol consumption and BMI did not have a significant influence on the measured biomarkers. No subject enrolled in the study presented signs or symptoms of work-related disease or other illness linked to oxidative stress. These results suggest that low-level chronic exposure to benzene among gasoline station attendants can determine oxidative damage on DNA, as indicated by alteration of 8-OHdG which may represent a non-invasive biomarker of early genotoxic damage in exposed subjects.
Collapse
Affiliation(s)
- Concettina Fenga
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging - Occupational Medicine Section - University of Messina, 98125 Messina, Italy
| | - Silvia Gangemi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging - Occupational Medicine Section - University of Messina, 98125 Messina, Italy
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging - Occupational Medicine Section - University of Messina, 98125 Messina, Italy
| | - Venerando Rapisarda
- Department of Clinical and Experimental Medicine - Occupational Medicine Section - University of Catania, 95131 Catania, Italy
| | - Kirill Golokhvast
- Scientific Educational Center of Nanotechnology, Far Eastern Federal University, Vladivostok 690001, Russia
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Aristidis M Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece
| | - Chiara Costa
- Department of Clinical and Experimental Medicine - University of Messina, Messina 98125, Italy
| |
Collapse
|
32
|
Oxidative Stress Biomarkers: Establishment of Reference Values for Isoprostanes, AOPP, and NPBI in Cord Blood. Mediators Inflamm 2017; 2017:1758432. [PMID: 28512386 PMCID: PMC5420435 DOI: 10.1155/2017/1758432] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/19/2017] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress (OS) is a common pathogenic factor involved in the onset of several diseases in humans, from immunologic disorders to malignancy, being a serious public health problem. In perinatal period, OS has been associated with adverse outcome of pregnancy and neonatal diseases. Dangerous effects of OS are mediated by increased production of free radicals (FRs) following various mechanisms, such as hypoxia, ischemia reperfusion, hyperoxia, inflammation, mitochondrial dysfunction, Fenton chemistry, and prostaglandin metabolism. FRs have short half-life, and their measurement in vivo is faced with many challenges. However, oxyradical derivatives are stable and thus may be measured and monitored repeatedly. The quantification of OS is based on the measurement of specific biomarkers in biologic fluids and tissues, which reflect induced oxidative damage to lipids, proteins, and DNA. Prostanoids, non–protein-bound iron (NPBI), and advanced oxidation protein products (AOPP) are actually considered truly specific and reliable for neonatal injury. Defining reference values for these biomarkers is necessary to investigate their role in neonatal diseases or also to evaluate the success of treatments. In this work, we wanted to define laboratory reference values for biomarkers of OS in a healthy population of term newborns.
Collapse
|
33
|
Falzone L, Marconi A, Loreto C, Franco S, Spandidos DA, Libra M. Occupational exposure to carcinogens: Benzene, pesticides and fibers (Review). Mol Med Rep 2016; 14:4467-4474. [PMID: 27748850 PMCID: PMC5101963 DOI: 10.3892/mmr.2016.5791] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023] Open
Abstract
It is well known that the occupational exposure to contaminants and carcinogens leads to the development of cancer in exposed workers. In the 18th century, Percivall Pott was the first to hypothesize that chronic exposure to dust in the London chimney sweeps was associated with an increased risk of developing cancer. Subsequently a growing body of evidence indicated that other physical factors were also responsible for oncogenic mutations. Over the past decades, many carcinogens have been found in the occupational environment and their presence is often associated with an increased incidence of cancer. Occupational exposure involves several factors and the association between carcinogens, occupational exposure and cancer is still unclear. Only a fraction of factors is recognized as occupational carcinogens and for each factor, there is an increased risk of cancer development associated with a specific work activity. According to the International Agency for Research on Cancer (IARC), the majority of carcinogens are classified as 'probable' and 'possible' human carcinogens, while, direct evidence of carcinogenicity is provided in epidemiological and experimental studies. In the present review, exposures to benzene, pesticides and mineral fibers are discussed as the most important cancer risk factors during work activities.
Collapse
Affiliation(s)
- Luca Falzone
- Department of Biomedical and Biotechnological Sciences, Section of General and Clinical Pathology and Oncology, University of Catania, I-95124 Catania, Italy
| | - Andrea Marconi
- Section of Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, I-95124 Catania, Italy
| | - Carla Loreto
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, I-95124 Catania, Italy
| | - Sabrina Franco
- Department of Medical, Surgical and Advanced Technology Sciences ‘G.F. Ingrassia’, University of Catania, I-95124 Catania, Italy
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Section of General and Clinical Pathology and Oncology, University of Catania, I-95124 Catania, Italy
| |
Collapse
|
34
|
Lovreglio P, Doria D, Fracasso ME, Barbieri A, Sabatini L, Drago I, Violante FS, Soleo L. DNA damage and repair capacity in workers exposed to low concentrations of benzene. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:151-158. [PMID: 26646167 DOI: 10.1002/em.21990] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/12/2015] [Indexed: 06/05/2023]
Abstract
DNA damage and cellular repair capacity were studied in 18 male fuel tanker drivers and 13 male filling-station attendants exposed to low and very low concentrations of benzene, respectively, and compared to 20 males with no occupational exposure (controls). Exposure to airborne benzene was measured using passive personal samplers, and internal doses were assayed through the biomarkers t,t-muconic acid, S-phenylmercapturic acid and urinary benzene. DNA damage was evaluated using tail intensity (TI) determined by the comet assay in peripheral lymphocytes. Urinary 7-hydro-8-oxo-2'-deoxyguanosine (8-oxodG) was measured as a biomarker of oxidative damage. DNA repair kinetics were assessed using the comet assay in lymphocytes sampled 20 and 60 min post H2O2 exposure. Benzene exposure differed significantly between the drivers (median 246.3 µg/m(3)), attendants (median 13.8 µg/m(3)), and controls (median 4.1 µg/m(3)). There were no differences in TI and 8-oxodG among the three groups, or between smokers and non-smokers. DNA repair kinetics were similar among the drivers, attendants and controls, although the comet assay on H2 O2 -damaged lymphocytes after 60 min revealed significantly lower levels of TI only in drivers. The DNA repair process in smokers was similar to that observed in drivers. In conclusion, this study found no relationship between low levels of benzene exposure and DNA damage, although there was evidence that exposure interferes with DNA repair kinetics. The biological impact of this finding on the onset of genotoxic effects in exposed workers has still to be ascertained.
Collapse
Affiliation(s)
- Piero Lovreglio
- Interdisciplinary Department of Medicine, Section of Occupational Medicine "E.C. Vigliani," University of Bari, Bari, Italy
| | - Denise Doria
- Department of Public Health and Community Medicine, Section of Pharmacology, University of Verona, Verona, Italy
| | - Maria Enrica Fracasso
- Department of Public Health and Community Medicine, Section of Pharmacology, University of Verona, Verona, Italy
| | - Anna Barbieri
- Department of Medical and Surgical Science, Section of Occupational Medicine, University of Bologna, Bologna, Italy
| | - Laura Sabatini
- Department of Medical and Surgical Science, Section of Occupational Medicine, University of Bologna, Bologna, Italy
| | - Ignazio Drago
- Interdisciplinary Department of Medicine, Section of Occupational Medicine "E.C. Vigliani," University of Bari, Bari, Italy
| | - Francesco S Violante
- Department of Medical and Surgical Science, Section of Occupational Medicine, University of Bologna, Bologna, Italy
| | - Leonardo Soleo
- Interdisciplinary Department of Medicine, Section of Occupational Medicine "E.C. Vigliani," University of Bari, Bari, Italy
| |
Collapse
|
35
|
Costa C, Ozcagli E, Gangemi S, Schembri F, Giambò F, Androutsopoulos V, Tsatsakis A, Fenga C. Molecular biomarkers of oxidative stress and role of dietary factors in gasoline station attendants. Food Chem Toxicol 2016; 90:30-5. [PMID: 26827788 DOI: 10.1016/j.fct.2016.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/17/2016] [Accepted: 01/22/2016] [Indexed: 12/20/2022]
Abstract
Exposure to benzene promotes oxidative stress through the production of ROS, which can damage biological structures with the formation of new metabolites which can be used as markers of oxidant/antioxidant imbalance. This study aims to assess modifications in circulating levels of advanced oxidation protein products (AOPP), advanced glycation end-products (AGE) and serum reactive oxygen metabolites (ROMs) in a group of gasoline station attendants exposed to low-dose benzene and to evaluate the influence of antioxidant food intake on these biomarkers of oxidative stress. The diet adopted by the population examined consisted of compounds belonging to the classes of terpenoids, stilbenes and flavonoids, notably resveratrol, lycopene and apigenin. Ninety one gasoline station attendants occupationally exposed to benzene and 63 unexposed male office workers were recruited for this study. Urinary trans, trans-muconic acid (t,t-MA) concentration, determined to assess individual exposure level, resulted significantly higher in exposed workers. In subjects exposed to benzene, we observed a significant increase (p < 0.001) in ROMs and AOPP levels, which were also negatively correlated with fruit and vegetables consumption. By contrast, AGE did not show a significant increase and consequently any relation with antioxidant food intake. Only ROMs, representing a global biomarker of oxidative status, resulted correlated to t,t-MA levels (p < 0.01), probably due to low-dose exposure. Increase of ROS induced by reactive benzene metabolites may promote specific biochemical pathways with a major production of AOPP, which seem to represent a more sensitive biochemical marker of oxidative stress in workers exposed to benzene compared to AGE. Furthermore, this is the first study demonstrating ROMs increment in subject exposed to benzene. These biomarkers may be useful for screening purposes in gasoline station workers and other subjects exposed to low-dose benzene. Moreover, a diet rich in fruits and vegetables demonstrated an inverse association with the levels of oxidative stress markers, suggesting a protective role of antioxidant food intake in workers exposed to oxidant agents.
Collapse
Affiliation(s)
- Chiara Costa
- Department of Clinical and Experimental Medicine, University of Messina. University Hospital "G. Martino", 98125 Messina, Italy.
| | - Eren Ozcagli
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Turkey
| | - Silvia Gangemi
- Department of Biomedical and Dental Sciences and Morpho-functional Imaging, Occupational Medicine Section - University of Messina, University Hospital "G. Martino", 98125 Messina, Italy
| | - Federico Schembri
- Department of Biomedical and Dental Sciences and Morpho-functional Imaging, Occupational Medicine Section - University of Messina, University Hospital "G. Martino", 98125 Messina, Italy
| | - Federica Giambò
- Department of Biomedical and Dental Sciences and Morpho-functional Imaging, Occupational Medicine Section - University of Messina, University Hospital "G. Martino", 98125 Messina, Italy
| | - Vasilis Androutsopoulos
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences and Morpho-functional Imaging, Occupational Medicine Section - University of Messina, University Hospital "G. Martino", 98125 Messina, Italy
| |
Collapse
|
36
|
Sazontova TG, Stryapko NV, Arkhipenko YV. Addition of Hyperoxic Component to Adaptation to Hypoxia Prevents Impairments Induced by Low Doses of Toxicants (Free Radical Oxidation and Proteins of HSP Family). Bull Exp Biol Med 2016; 160:304-7. [DOI: 10.1007/s10517-016-3157-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Indexed: 01/23/2023]
|
37
|
Dang Y, Zhai Y, Yang L, Peng Z, Cheng N, Zhou Y. Selective electrochemical detection of hydroquinone and catechol at a one-step synthesised pine needle-like nano-CePO4 modified carbon paste electrode. RSC Adv 2016. [DOI: 10.1039/c6ra18601g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A pine needle-like nano-CePO4 modified carbon paste electrode was successfully constructed for simultaneous detection of hydroquinone and catechol sensitively and selectively.
Collapse
Affiliation(s)
- Yuan Dang
- School of Science
- Xi'an University of Architecture and Technology
- Xi'an
- China
| | - Yanyan Zhai
- School of Science
- Xi'an University of Architecture and Technology
- Xi'an
- China
| | - Lehui Yang
- School of Science
- Xi'an University of Architecture and Technology
- Xi'an
- China
| | - Zhenli Peng
- School of Science
- Xi'an University of Architecture and Technology
- Xi'an
- China
| | - Nan Cheng
- School of Science
- Xi'an University of Architecture and Technology
- Xi'an
- China
| | - Yuanzhen Zhou
- School of Science
- Xi'an University of Architecture and Technology
- Xi'an
- China
| |
Collapse
|
38
|
Mascelloni M, Delgado-Saborit JM, Hodges NJ, Harrison RM. Study of gaseous benzene effects upon A549 lung epithelial cells using a novel exposure system. Toxicol Lett 2015; 237:38-45. [DOI: 10.1016/j.toxlet.2015.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 04/13/2015] [Accepted: 05/21/2015] [Indexed: 11/30/2022]
|
39
|
Yang J, Bai WL, Chen YJ, Gao A. 1,4-benzoquinone-induced STAT-3 hypomethylation in AHH-1 cells: Role of oxidative stress. Toxicol Rep 2015; 2:864-869. [PMID: 28962422 PMCID: PMC5598509 DOI: 10.1016/j.toxrep.2015.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/13/2015] [Accepted: 05/29/2015] [Indexed: 11/19/2022] Open
Abstract
Benzene, a known occupational and environmental contaminant, is associated with increased risk of leukemia. The objectives of this study were to elucidate the regulatory mechanism of the hypomethylated STAT3 involved in benzene toxicity in vitro. As 1,4-benzoquinone (1,4-BQ) is one of benzene’s major toxic metabolites, AHH-1 cells were treated by 1,4-BQ for 24 h with or without pretreatment of the antioxidant a-LA or the methyltransferase inhibitor, 5-aza-2′ deoxycytidine (5-aza). The cell viability was investigated using the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. ROS was determined via 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA) flow cytometric assays. The level of oxidative stress marker 8-OHdG was measured by enzyme-linked immunosorbent assay. Methylation-specific PCR was used to detect the methylation status of STAT3. Results indicated the significantly increasing expression of ROS and 8-OHdG which accompanied with STAT3 hypomethylation in 1,4-BQ-treated AHH-1 cells. α-LA suppressed the expression of both ROS and 8-OHdG, simultaneously reversed 1,4-BQ-induced STAT3 hypomethylation. However, although the methylation inhibitor, 5-aza reduced the expression level of ROS and 8-OHdG, but had no obvious inhibiting effect on STAT3 methylation level. Taken together, oxidative stress are involved 1,4-BQ-induced STAT3 methylation expression.
Collapse
Key Words
- 1,4-BQ, 1,4-benzoquinone
- 1,4-benzoquinone
- 5-aza, 5-aza-2′ deoxycytidine
- 8-OHdG, 8-hydroxy deoxyguanosine adduct
- DCFH-DA, 2,7-dichlorofluorescein diacetate
- DMSO, dimethylsulfoxide
- DNMT, DNA methyltransferase
- ELISA, enzyme-linked immunosorbent assay
- MSP, methylation-specific PCR
- Methylation
- Oxidative stress
- PBS, phosphate buffered saline
- ROS, reactive oxygen species
- STAT3
- α-LA, alpha lipoic acid
Collapse
Affiliation(s)
- Jing Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Wen-lin Bai
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yu-jiao Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
- Corresponding author at: Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China. Tel.: +86 10 83911509.
| |
Collapse
|
40
|
Barreto GE, Iarkov A, Moran VE. Beneficial effects of nicotine, cotinine and its metabolites as potential agents for Parkinson's disease. Front Aging Neurosci 2015; 6:340. [PMID: 25620929 PMCID: PMC4288130 DOI: 10.3389/fnagi.2014.00340] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/04/2014] [Indexed: 01/10/2023] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder, which is characterized by neuroinflammation, dopaminergic neuronal cell death and motor dysfunction, and for which there are no proven effective treatments. The negative correlation between tobacco consumption and PD suggests that tobacco-derived compounds can be beneficial against PD. Nicotine, the more studied alkaloid derived from tobacco, is considered to be responsible for the beneficial behavioral and neurological effects of tobacco use in PD. However, several metabolites of nicotine, such as cotinine, also increase in the brain after nicotine administration. The effect of nicotine and some of its derivatives on dopaminergic neurons viability, neuroinflammation, and motor and memory functions, have been investigated using cellular and rodent models of PD. Current evidence shows that nicotine, and some of its derivatives diminish oxidative stress and neuroinflammation in the brain and improve synaptic plasticity and neuronal survival of dopaminergic neurons. In vivo these effects resulted in improvements in mood, motor skills and memory in subjects suffering from PD pathology. In this review, we discuss the potential benefits of nicotine and its derivatives for treating PD.
Collapse
Affiliation(s)
- George E Barreto
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana Bogotá, D. C., Colombia
| | - Alexander Iarkov
- Center of Research in Biomedical Sciences, Universidad Autónoma de Chile Santiago, Chile ; Research & Development Service, Bay Pines VA Healthcare System Bay Pines, FL, USA
| | - Valentina Echeverria Moran
- Center of Research in Biomedical Sciences, Universidad Autónoma de Chile Santiago, Chile ; Research & Development Service, Bay Pines VA Healthcare System Bay Pines, FL, USA ; Research Service, James A Haley Veterans' Hospital Tampa, FL, USA ; Department of Molecular Medicine, Morsani College of Medicine, University of South Tampa, FL, USA
| |
Collapse
|
41
|
DNA damage induced by hydroquinone can be prevented by fungal detoxification. Toxicol Rep 2014; 1:1096-1105. [PMID: 28962321 PMCID: PMC5598254 DOI: 10.1016/j.toxrep.2014.10.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/25/2014] [Accepted: 10/28/2014] [Indexed: 01/03/2023] Open
Abstract
Hydroquinone is a benzene metabolite with a wide range of industrial applications, which has potential for widespread human exposure; however, the toxicity of hydroquinone on human cells remains unclear. The aims of this study are to investigate the cytotoxicity and genotoxicity of hydroquinone in human primary fibroblasts and human colon cancer cells (HCT116). Low doses of hydroquinone (227-454 μM) reduce the viability of fibroblasts and HCT116 cells, determined by resazurin conversion, and induce genotoxic damage (DNA strand breaks), as assessed by alkaline comet assays. Bioremediation may provide an excellent alternative to promote the degradation of hydroquinone, however few microorganisms are known that efficiently degrade it. Here we also investigate the capacity of a halotolerant fungus, Penicillium chrysogenum var. halophenolicum, to remove hydroquinone toxicity under hypersaline condition. The fungus is able to tolerate high concentrations of hydroquinone and can reverse these noxious effects via degradation of hydroquinone to completion, even when the initial concentration of this compound is as high as 7265 μM. Our findings reveal that P. chrysogenum var. halophenolicum efficiently degrade hydroquinone under hypersaline conditions, placing this fungus among the best candidates for the detoxification of habitats contaminated with this aromatic compound.
Collapse
|
42
|
Sojo LE, Chahal N, Keller BO. Oxidation of catechols during positive ion electrospray mass spectrometric analysis: evidence for in-source oxidative dimerization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:2181-2190. [PMID: 25178722 DOI: 10.1002/rcm.7011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/25/2014] [Accepted: 08/03/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE Catechols are an important class of analytes occurring in many natural and synthetic products. Electrospray ionization in negative mode is the preferred way of ion generation for these compounds; however, studies in positive ion mode can reveal their potential for in-source oxidation and further structural changes, some of which may also occur in the solution phase. Therefore in-source oxidation can provide a forward look into the potential for solution oxidation. METHODS 1:1 Acetonitrile/water solutions of catechol (Cat), 4,5-dichlorocatechol (4,5-DCC), 3,4-dichlorocatechol (3,4-DCC) and tetrachlorocatechol (TCC) were analyzed by positive ion ultrahigh-performance liquid chromatography (UHPLC/ESI-MS) and UHPLC/ESI-MS/MS under various emitter voltages to assess their liability towards in-source oxidation. Structural information for in-source generated compounds was obtained through the use of product ion scans. RESULTS Using catechols as probe compounds, we have demonstrated that under the conditions used in many analytical laboratories in-source oxidation can severely affect the sensitivity and response functions of an analyte. Under standard UHPLC conditions (300 μL/min flow rate), Cat, 3,4-DCC, 4,5-DCC and TCC can undergo in-source oxidation. The extent of oxidation is dependent either on the instrument or on the characteristics of the emitter. This is evident by a change in the isotopic pattern of these compounds and the generation of ions at lower m/z values due to a loss of 1 and/or 2 hydrogens and electrons. In the case of catechol, the formation of a dimer resulting from in-source oxidation reactions was observed. This dimer has the same fragmentation pattern as the dimer generated by oxidation in the solution phase. CONCLUSIONS The present work demonstrates the potential of positive ion ESI for oxidizing electroactive compounds during regular analytical operation using commercially available mass spectrometers. Using Cat and some of its chlorinated analogues as probe compounds, we have demonstrated that under the conditions used in many analytical laboratories in-source oxidation and dimerization can and does take place.
Collapse
Affiliation(s)
- Luis E Sojo
- Compound Properties Group, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada, V5G 4W8; Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | | | | |
Collapse
|
43
|
Chao MW, Erkekoglu P, Tseng CY, Ye W, Trudel LJ, Skipper PL, Tannenbaum SR, Wogan GN. Intracellular generation of ROS by 3,5-dimethylaminophenol: persistence, cellular response, and impact of molecular toxicity. Toxicol Sci 2014; 141:300-13. [PMID: 24973092 DOI: 10.1093/toxsci/kfu127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Epidemiological studies have demonstrated extensive human exposure to the monocyclic aromatic amines, particularly to 3,5-dimethylaniline, and found an association between exposure to these compounds and risk for bladder cancer. Little is known about molecular mechanisms that might lead to the observed risk. We previously suggested that the hydroxylated 3,5-dimethylaniline metabolite, 3,5-dimethylaminophenol (3,5-DMAP), played a central role in effecting genetic change through the generation of reactive oxygen species (ROS) in a redox cycle with 3,5-dimethylquinoneimine. Experiments here characterize ROS generation by 3,5-DMAP exposure in nucleotide repair-proficient and -deficient Chinese hamster ovary cells as a function of time. Besides, various cellular responses discussed herein indicate that ROS production is the principal cause of cytotoxicity. Fluorescence microscopy of cells exposed to 3,5-DMAP confirmed that ROS production occurs in the nuclear compartment, as suggested by a previous study demonstrating covalent linkage between 3,5-DMAP and histones. 3,5-DMAP was also compared with 3,5-dimethylhydroquinone to determine whether substitution of one of the phenolic hydroxyl groups by an amino group had a significant effect on some of the investigated parameters. The comparatively much longer duration of observable ROS produced by 3,5-DMAP (7 vs. 1 day) provides further evidence that 3,5-DMAP becomes embedded in the cellular matrix in a form capable of continued redox cycling. 3,5-DMAP also induced dose-dependent increase of H2O2 and ·OH, which were determined as the major free radicals contributing to the cytotoxicity and apoptosis mediated via caspase-3 activation. Overall, this study provides insight into the progression of alkylaniline-induced toxicity.
Collapse
Affiliation(s)
- Ming-Wei Chao
- Department of Bioscience Technology, Chung Yuan Christian University, Chungli City, Taoyuan 32023, Taiwan Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Pinar Erkekoglu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Sihhiye-Ankara, Turkey
| | - Chia-Yi Tseng
- Department of Biomedical Engineering, Chung Yuan Christian University, Chungli City, Taoyuan 32023, Taiwan
| | - Wenjie Ye
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Laura J Trudel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Paul L Skipper
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Steven R Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Gerald N Wogan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
44
|
Trevisan P, da Silva JN, da Silva AP, Rosa RFM, Paskulin GA, Thiesen FV, de Oliveira CAV, Zen PRG. Evaluation of genotoxic effects of benzene and its derivatives in workers of gas stations. ENVIRONMENTAL MONITORING AND ASSESSMENT 2014; 186:2195-2204. [PMID: 24292950 DOI: 10.1007/s10661-013-3529-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 11/06/2013] [Indexed: 06/02/2023]
Abstract
The search for reliable biomarkers of human exposure to benzene and its derivatives is still subject of research. Many of the proposed biomarkers have limitations ranging from the low sensitivity to the wide variability of results. Thus, the aim of our study was to assess the frequencies of chromosomal abnormalities (CA) and sister chromatid exchanges (SCE) in workers of gas stations, with (cases, n = 19) and without (local controls, n = 6) risk of exposure to benzene and its derivatives, comparing them with the results from the general population (external controls, n = 38). The blood dosages of benzene, toluene, and xylenes were measured in all participants. Blood solvent levels were compared with the findings obtained in cytogenetic evaluation and a research protocol which included data of the workplace, lifestyle, and health of the individuals. We did not detect the presence of benzene and its derivatives and did not find chromosomal damage that may be associated with the gas station activity in cases. Moreover, although we found an association of increased SCE and the working time in the local controls, the values found for SCE are within normal limits. Thus, our evaluation of SCE and CA reflected the levels of benzene and its derivatives observed in the blood. We believe, therefore, that SCE and CA may actually constitute possible tests for the evaluation of these exposures. However, we believe that further studies, including individuals at risk, are important to confirm this assertion.
Collapse
Affiliation(s)
- Patrícia Trevisan
- Postgraduation Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Assessment of genotoxicity of catecholics using impedimetric DNA-biosensor. Biosens Bioelectron 2014; 53:43-50. [DOI: 10.1016/j.bios.2013.09.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 11/19/2022]
|
46
|
McHale CM, Smith MT, Zhang L. Application of toxicogenomic profiling to evaluate effects of benzene and formaldehyde: from yeast to human. Ann N Y Acad Sci 2014; 1310:74-83. [PMID: 24571325 DOI: 10.1111/nyas.12382] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetic variation underlies a significant proportion of the individual variation in human susceptibility to toxicants. The primary current approaches to identify gene-environment (GxE) associations, genome-wide association studies and candidate gene association studies, require large exposed and control populations and an understanding of toxicity genes and pathways, respectively. This limits their application in the study of GxE associations for the leukemogens benzene and formaldehyde, whose toxicity has long been a focus of our research. As an alternative approach, our published work has applied innovative in vitro functional genomics testing systems, including unbiased functional screening assays in yeast and a near-haploid human bone marrow cell line. Through comparative genomic and computational analyses of the resulting data, human genes and pathways that may modulate susceptibility to benzene and formaldehyde were identified, and the roles of several genes in mammalian cell models were validated. In populations occupationally exposed to low levels of benzene, we applied peripheral blood mononuclear cell transcriptomics and chromosome-wide aneuploidy studies in lymphocytes. In this review, we describe our comprehensive toxicogenomic approach and the potential mechanisms of toxicity and susceptibility genes identified for benzene and formaldehyde, as well as related studies conducted by other researchers.
Collapse
Affiliation(s)
- Cliona M McHale
- Genes and Environment Laboratory, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California
| | | | | |
Collapse
|
47
|
Influence of acetylsalicylic acid on hematotoxicity of benzene. Int J Occup Med Environ Health 2013; 26:802-12. [PMID: 24249093 DOI: 10.2478/s13382-013-0144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 09/05/2013] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES The aim of the study was to evaluate the influence of acetylsalicylic acid (ASA) on benzene hematotoxicity in rats. MATERIALS AND METHODS The study was carried out on rats exposed for 2, 4 and 8 weeks to benzene vapour at a concentration of 1.5 or 4.5 mmol/m(3) of air (5 days per week, 6 hours per day) alone or together with ASA at the doses of 5, 150 or 300 mg/kg body weight (per os). RESULTS Benzene at a concentration of 4.5 mmol/m(3) caused a slight lymphopenia, granulocytosis and reticulocytosis in blood. In bone marrow traits of megaloblastic renewal, presence of undifferentiated cells and giant forms of granulocytes as well as an increase in myeloperoxidase and decrease in chloroacetate esterase activity and lipids content were noted. ASA (150 and 300 mg/kg b.w.) influenced some of hematological parameters, altered by benzene intoxication. ASA limited the solvent-induced alteration in blood reticulocyte count and in the case of bone marrow in the erythroblasts count. Traits of megaloblastic renewal in bone marrow were less pronounced. Besides, higher activity of myeloperoxidase and the decrease in the level of lipids in granulocytes were noted. CONCLUSION Our results suggest that ASA limited the benzene-induced hematotoxicity.
Collapse
|
48
|
Petriccione M, Forte V, Valente D, Ciniglia C. DNA integrity of onion root cells under catechol influence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:4859-4871. [PMID: 23307075 DOI: 10.1007/s11356-012-1422-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/10/2012] [Indexed: 06/01/2023]
Abstract
Catechol is a highly toxic organic pollutant, usually abundant in the waste effluents of industrial processes and agricultural activities. The environmental sources of catechol include pesticides, wood preservatives, tanning lotion, cosmetic creams, dyes, and synthetic intermediates. Genotoxicity of catechol at a concentration range 5 × 10(-1)-5 mM was evaluated by applying random amplified polymorphic DNA (RAPD) and time-lapse DNA laddering tests using onion (Allium cepa) root cells as the assay system. RAPD analysis revealed polymorphisms in the nucleotidic sequence of DNA that reflected the genotoxic potential of catechol to provoke point mutations, or deletions, or chromosomal rearrangements. Time-lapse DNA laddering test provided evidence that catechol provoked DNA necrosis and apoptosis. Acridine orange/ethidium bromide staining could distinguish apoptotic from necrotic cells in root cells of A. cepa.
Collapse
|
49
|
Moro AM, Charão MF, Brucker N, Durgante J, Baierle M, Bubols G, Goethel G, Fracasso R, Nascimento S, Bulcão R, Gauer B, Barth A, Bochi G, Moresco R, Gioda A, Salvador M, Farsky S, Garcia SC. Genotoxicity and oxidative stress in gasoline station attendants. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 754:63-70. [DOI: 10.1016/j.mrgentox.2013.04.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 12/15/2022]
|
50
|
Benes P, Alexova P, Knopfova L, Spanova A, Smarda J. Redox state alters anti-cancer effects of wedelolactone. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:515-524. [PMID: 22733624 DOI: 10.1002/em.21712] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 05/23/2012] [Indexed: 06/01/2023]
Abstract
Wedelolactone is one of the active plant polyphenolic compounds. Anti-tumor effects of this drug have been demonstrated recently. We have described that wedelolactone acts as catalytic inhibitor of DNA topoisomerase IIα. The aim of this study was to further characterize the mechanism of its anti-tumor effects. We showed that wedelolactone inhibits binding of DNA topoisomerase IIα to plasmid DNA and antagonizes formation of etoposide-induced DNA cleavage complex. The inhibition of topoisomerase IIα by wedelolactone is reversible by excess of the enzyme but not DNA. The in vitro inhibitory effect of wedelolactone on the topoisomerase IIα activity is redox-dependent as it diminished in the presence of reducing agents. Cytotoxicity of wedelolactone was partially inhibited by N-acetylcysteine and glutathione ethyl ester in breast cancer MDA-MB-231 and MDA-MB-468 cells while the inhibitory effect of catalase was observed only in the former cell line. Finally, we found that wedelolactone can be oxidized in the presence of copper ions resulting in DNA strand break and abasic site formation in vitro. However, wedelolactone induced neither DNA damage in MDA-MB-231 cells nor mutations in bacterial cells detectable by Ames test suggesting that wedelolactone may not be an effective inducer of DNA damage. We conclude that the topoisomerase IIα inhibitory- and DNA damaging activities of wedelolactone in vitro depend on its redox state. Pro-oxidant activity could, however, explain only part of wedelolactone-induced cytotoxicity. Therefore, the major cellular target(s) of wedelolactone and the exact mechanism of wedelolactone-induced cytotoxicity still remain to be identified.
Collapse
Affiliation(s)
- Petr Benes
- Department of Experimental Biology, Masaryk University, Czech Republic.
| | | | | | | | | |
Collapse
|