1
|
Akbel E, Kucukkurt I, Ince S, Demirel HH, Acaroz DA, Zemheri-Navruz F, Kan F. Investigation of protective effect of resveratrol and coenzyme Q 10 against cyclophosphamide-induced lipid peroxidation, oxidative stress and DNA damage in rats. Toxicol Res (Camb) 2024; 13:tfad123. [PMID: 38173543 PMCID: PMC10758596 DOI: 10.1093/toxres/tfad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
It is seen that cyclophosphamide, which is used in treating many diseases, especially cancer, causes toxicity in studies, and its metabolites induce oxidative stress. This study aimed to investigate the protective effects of resveratrol and Coenzyme Q10, known for their antioxidant properties, separately and together, against oxidative stress induced by cyclophosphamide. In this study, 35 Wistar albino male rats were divided into five groups. Groups; Control group, cyclophosphamide (CP) group (CP as 75 mg kg i.p. on day 14), coenzyme Q10 (CoQ10) + CP group (20 mg/kg i.p. CoQ10 + 75 mg kg i.p. CP), resveratrol (Res) + CP group (20 mg/kg i.p. Res + 75 mg/kg i.p. CP), CoQ10 + Res + CP group (20 mg/kg i.p Res + 20 mg/kg i.p CoQ10 and 75 mg/kg i.p.CP). At the end of the experiment, the cholesterol, creatinine and urea levels of the group given CP increased, while a decrease was observed in the groups given Res and CoQ10. Malondialdehyde level was high, glutathione level, superoxide dismutase and catalase activities were decreased in the blood and all tissues (liver, kidney, brain, heart and testis) of the CP given group. DNA damage and histopathological changes were also observed. In contrast, Res and CoQ10, both separately and together, reversed the CP-induced altered level and enzyme activities and ameliorated DNA damage and histopathological changes. In this study, the effects of Res and CoQ10 against CP toxicity were examined both separately and together.
Collapse
Affiliation(s)
- Erten Akbel
- Usak Health Training School, Usak University, 64200, Uşak, Turkey
| | - Ismail Kucukkurt
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Sinan Ince
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | | | - Damla Arslan Acaroz
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Fahriye Zemheri-Navruz
- Faculty of Science, Department of Molecular Biology and Genetics, Bartın University, 74110, Bartın, Turkey
| | - Fahriye Kan
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| |
Collapse
|
2
|
Marković K, Kesić A, Novaković M, Grujović M, Simijonović D, Avdović EH, Matić S, Paunović M, Milutinović M, Nikodijević D, Stefanović O, Marković Z. Biosynthesis and characterization of silver nanoparticles synthesized using extracts of Agrimonia eupatoria L. and in vitro and in vivo studies of potential medicinal applications. RSC Adv 2024; 14:4591-4606. [PMID: 38318620 PMCID: PMC10839552 DOI: 10.1039/d3ra07819a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024] Open
Abstract
This research explores the synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) derived from acetone (AgNPs-acetone) and aqueous (AgNPs-H2O) extracts of Agrimonia eupatoria. The nanoparticles exhibit isometric morphology and uniform size distribution, as elucidated through Transmission Electron Microscopy (TEM) and high-resolution TEM (HRTEM) analyses. The utilization of Scanning Transmission Microscopy (STEM) with High-Angle Annular Dark-Field (HAADF) imaging and energy dispersive spectrometry (EDS) confirms the crystalline nature of AgNPs. Fourier Transform Infrared (FTIR) analysis reveals identical functional groups in the plant extracts and their corresponding AgNPs, suggesting the involvement of phytochemicals in the reduction of silver ions. Spectrophotometric monitoring of the synthesis process, influenced by various parameters, provides insights into the kinetics and optimal conditions for AgNP formation. The antioxidant activities of the plant extracts and synthesized AgNPs are evaluated through DPPH and ABTS methods, highlighting AgNPs-acetone as a potent antioxidant. Third-instar larvae exposed to the extracts have differential effects on DNA damage, with the acetone extract demonstrating antigenotoxic properties. Similarly, biosynthesized AgNPs-acetone displays antigenotoxic effects against EMS-induced DNA damage. The genotoxic effect of water extract and AgNPs-acetone was dose-dependent. Hemolytic potential is assessed on rat erythrocytes, revealing that low concentrations of AgNPs-acetone and AgNPs-H2O had a nontoxic effect on erythrocytes. Cytotoxicity assays demonstrate time-dependent and dose-dependent effects, with AgNPs-acetone exhibiting superior cytotoxicity. Proapoptotic activity is confirmed through apoptosis induction, emphasizing the potential therapeutic applications of AgNPs. The antimicrobial activity of AgNPs reveals concentration-dependent effects. AgNPs-H2O display better antibacterial activity, while antifungal activities are comparable between the two nanoparticle types.
Collapse
Affiliation(s)
- Katarina Marković
- University of Kragujevac, Institute for Information Technologies, Department of Science Jovana Cvijica bb 34000 Kragujevac Serbia
| | - Ana Kesić
- University of Kragujevac, Institute for Information Technologies, Department of Science Jovana Cvijica bb 34000 Kragujevac Serbia
| | - Mirjana Novaković
- University of Belgrade, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Department of Atomic Physics Belgrade Serbia
| | - Mirjana Grujović
- University of Kragujevac, Institute for Information Technologies, Department of Science Jovana Cvijica bb 34000 Kragujevac Serbia
| | - Dušica Simijonović
- University of Kragujevac, Institute for Information Technologies, Department of Science Jovana Cvijica bb 34000 Kragujevac Serbia
| | - Edina H Avdović
- University of Kragujevac, Institute for Information Technologies, Department of Science Jovana Cvijica bb 34000 Kragujevac Serbia
| | - Sanja Matić
- University of Kragujevac, Institute for Information Technologies, Department of Science Jovana Cvijica bb 34000 Kragujevac Serbia
| | - Milica Paunović
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology Radoja Damjanovic 12 Kragujevac Serbia
| | - Milena Milutinović
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology Radoja Damjanovic 12 Kragujevac Serbia
| | - Danijela Nikodijević
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology Radoja Damjanovic 12 Kragujevac Serbia
| | - Olgica Stefanović
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology Radoja Damjanovic 12 Kragujevac Serbia
| | - Zoran Marković
- University of Kragujevac, Institute for Information Technologies, Department of Science Jovana Cvijica bb 34000 Kragujevac Serbia
| |
Collapse
|
3
|
Güneş M, Yalçın B, Burgazlı AY, Tagorti G, Yavuz E, Akarsu E, Kaya N, Marcos R, Kaya B. Morphologically different hydroxyapatite nanoparticles exert differential genotoxic effects in Drosophila. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166556. [PMID: 37633389 DOI: 10.1016/j.scitotenv.2023.166556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/03/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Hydroxyapatite (HAP) occurs naturally in sedimentary and metamorphic rocks and constitutes the hard structures in many organisms. Since synthetic nano-sized HAP (HAP-NPs) are used in orthopedic applications and for heavy metal remediation in aquatic and terrestrial media, both environment and humans are exposed to them. Due to the concerns about their potential hazards, the genotoxic effects that round/rod forms of HAP-NPs were investigated in Drosophila using the wing-spot and the comet assays. Furthermore, caspase activities were evaluated to examine the activation of cell death pathways. As a novelty, the expression of 36 genes involved in DNA repair was investigated, as a tool to indirectly determine DNA damage induction. Obtained sizes were 35-60 nm (roundHAP-NPs) and 45-90 nm (rodHAP-NPs) with a low Zeta-potential (-1.65 and 0.37 mV, respectively). Genotoxicity was detected in the wing-spot (round form), and in the comet assay (round and rod-like HA-NPs). In addition, increased expression of Caspases 3/7, 8, and 9 activities were observed. For both HAP forms, increased changes in the expression were observed for mismatch repair genes, while decreased expression was observed for genes involved in ATM, ATR, and cell cycle pathways. The observed changes in the repair pathways would reinforce the view that HAP-NPs have genotoxic potential, although more markedly in the round form. Thus, the environmental presence of engineered nanoparticles, including HAPs, raises concerns about potential effects on human health. It is essential that the effects of their use are carefully assessed and monitored to ensure safety and to mitigate any potential adverse effects.
Collapse
Affiliation(s)
- Merve Güneş
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| | - Burçin Yalçın
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| | | | - Ghada Tagorti
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| | - Emre Yavuz
- Department of Chemistry, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| | - Esin Akarsu
- Department of Chemistry, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| | - Nuray Kaya
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| | - Ricard Marcos
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| | - Bülent Kaya
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
4
|
Wang Z, Zhang L, Wang X. Molecular toxicity and defense mechanisms induced by silver nanoparticles in Drosophila melanogaster. J Environ Sci (China) 2023; 125:616-629. [PMID: 36375944 DOI: 10.1016/j.jes.2021.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/16/2023]
Abstract
The widely use of silver nanoparticles (AgNPs) as antimicrobial agents gives rise to potential environmental risks. AgNPs exposure have been reported to cause toxicity in animals. Nevertheless, the known mechanisms of AgNPs toxicity are still limited. In this study, we systematically investigated the toxicity of AgNPs exposure using Drosophila melanogaster. We show here that AgNPs significantly decreased Drosophila fecundity, the third-instar larvae weight and rates of pupation and eclosion in a dose-dependent manner. AgNPs reduced fat body cell viability in MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. AgNPs caused DNA damage in hemocytes and S2 cells. Interestingly, the mRNA levels of the entire metallothionein gene family were increased under AgNPs exposure as determined by RNA-seq analysis and validated by qRT-PCR, indicating that Drosophila responded to the metal toxicity of AgNPs by producing metallothioneins for detoxification. These findings provide a better understanding of the mechanisms of AgNPs toxicity and may provide clues to effect on other organisms, including humans.
Collapse
Affiliation(s)
- Zhidi Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China
| | - Liying Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China
| | - Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China.
| |
Collapse
|
5
|
Collins A, Møller P, Gajski G, Vodenková S, Abdulwahed A, Anderson D, Bankoglu EE, Bonassi S, Boutet-Robinet E, Brunborg G, Chao C, Cooke MS, Costa C, Costa S, Dhawan A, de Lapuente J, Bo' CD, Dubus J, Dusinska M, Duthie SJ, Yamani NE, Engelward B, Gaivão I, Giovannelli L, Godschalk R, Guilherme S, Gutzkow KB, Habas K, Hernández A, Herrero O, Isidori M, Jha AN, Knasmüller S, Kooter IM, Koppen G, Kruszewski M, Ladeira C, Laffon B, Larramendy M, Hégarat LL, Lewies A, Lewinska A, Liwszyc GE, de Cerain AL, Manjanatha M, Marcos R, Milić M, de Andrade VM, Moretti M, Muruzabal D, Novak M, Oliveira R, Olsen AK, Owiti N, Pacheco M, Pandey AK, Pfuhler S, Pourrut B, Reisinger K, Rojas E, Rundén-Pran E, Sanz-Serrano J, Shaposhnikov S, Sipinen V, Smeets K, Stopper H, Teixeira JP, Valdiglesias V, Valverde M, van Acker F, van Schooten FJ, Vasquez M, Wentzel JF, Wnuk M, Wouters A, Žegura B, Zikmund T, Langie SAS, Azqueta A. Measuring DNA modifications with the comet assay: a compendium of protocols. Nat Protoc 2023; 18:929-989. [PMID: 36707722 PMCID: PMC10281087 DOI: 10.1038/s41596-022-00754-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/05/2022] [Indexed: 01/28/2023]
Abstract
The comet assay is a versatile method to detect nuclear DNA damage in individual eukaryotic cells, from yeast to human. The types of damage detected encompass DNA strand breaks and alkali-labile sites (e.g., apurinic/apyrimidinic sites), alkylated and oxidized nucleobases, DNA-DNA crosslinks, UV-induced cyclobutane pyrimidine dimers and some chemically induced DNA adducts. Depending on the specimen type, there are important modifications to the comet assay protocol to avoid the formation of additional DNA damage during the processing of samples and to ensure sufficient sensitivity to detect differences in damage levels between sample groups. Various applications of the comet assay have been validated by research groups in academia, industry and regulatory agencies, and its strengths are highlighted by the adoption of the comet assay as an in vivo test for genotoxicity in animal organs by the Organisation for Economic Co-operation and Development. The present document includes a series of consensus protocols that describe the application of the comet assay to a wide variety of cell types, species and types of DNA damage, thereby demonstrating its versatility.
Collapse
Affiliation(s)
- Andrew Collins
- Department of Nutrition, University of Oslo, Oslo, Norway
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Soňa Vodenková
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Abdulhadi Abdulwahed
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| | - Diana Anderson
- Biomedical Sciences Department, University of Bradford, Bradford, UK
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Stefano Bonassi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Rome, Italy
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Gunnar Brunborg
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radioactivity (CoE CERAD 223268/50), Oslo, Norway
| | - Christy Chao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Carla Costa
- Environmental Health Department, National Institute of Health, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Solange Costa
- Environmental Health Department, National Institute of Health, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Alok Dhawan
- Centre of BioMedical Research, SGPGIMS Campus, Lucknow, India
| | - Joaquin de Lapuente
- Toxicology Department, AC MARCA Group, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cristian Del Bo'
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Julien Dubus
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, Saint-Paul-Lez-Durance, France
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Susan J Duthie
- School of Pharmacy and Life Sciences, The Robert Gordon University, Aberdeen, Scotland
| | - Naouale El Yamani
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Bevin Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Isabel Gaivão
- Genetics and Biotechnology Department and Veterinary and Animal Research Centre (CECAV), Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Lisa Giovannelli
- Department NEUROFARBA, Section Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Roger Godschalk
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Sofia Guilherme
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Kristine B Gutzkow
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radioactivity (CoE CERAD 223268/50), Oslo, Norway
| | - Khaled Habas
- School of Chemistry and Bioscience, Faculty of Life Sciences, Bradford University, Bradford, UK
| | - Alba Hernández
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Cerdanyola de Vallès, Spain
| | - Oscar Herrero
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Marina Isidori
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Siegfried Knasmüller
- Institute of Cancer Research, Internal Medicine I, Medical University Vienna, Vienna, Austria
| | - Ingeborg M Kooter
- Department Circular Economy and Environment, the Netherlands Organisation for Applied Scientific Research-TNO, Utrecht, The Netherlands
| | | | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
| | - Carina Ladeira
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Blanca Laffon
- Universidade da Coruña, Grupo DICOMOSA, CICA - Centro Interdisciplinar de Química e Bioloxía, Departamento de Psicología, Facultad de Ciencias de la Educación, A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Marcelo Larramendy
- Laboratory of Ecotoxicology, Faculty of Natural Sciences and Museum, National University of La Plata, La Plata, Argentina
| | - Ludovic Le Hégarat
- Anses, French Agency for Food, Environmental and Occupational Health and Safety, Fougeres Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Angélique Lewies
- Department of Cardiothoracic Surgery, University of the Free State, Bloemfontein, South Africa
| | - Anna Lewinska
- Department of Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Guillermo E Liwszyc
- Laboratory of Ecotoxicology, Faculty of Natural Sciences and Museum, National University of La Plata, La Plata, Argentina
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Mugimane Manjanatha
- Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, Jefferson, AR, USA
| | - Ricard Marcos
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Cerdanyola de Vallès, Spain
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Vanessa Moraes de Andrade
- Translational Biomedicine Laboratory, Graduate Program of Health Sciences, University of Southern Santa Catarina, Criciuma, Brazil
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Perugia, Italy
| | - Damian Muruzabal
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Rui Oliveira
- Department of Biology, CBMA-Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal
| | - Ann-Karin Olsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radioactivity (CoE CERAD 223268/50), Oslo, Norway
| | - Norah Owiti
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mário Pacheco
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Alok K Pandey
- Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Stefan Pfuhler
- Global Product Stewardship - Human Safety, The Procter & Gamble Co, Cincinnati, OH, USA
| | - Bertrand Pourrut
- Laboratoire Ecologie fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | | | - Emilio Rojas
- Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CU, Mexico City, Mexico
| | - Elise Rundén-Pran
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Julen Sanz-Serrano
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
| | | | - Ville Sipinen
- Norwegian Scientific Committee for Food and Environment, Oslo, Norway
| | - Karen Smeets
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Vanessa Valdiglesias
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
- Universidade da Coruña, Grupo NanoToxGen, CICA - Centro Interdisciplinar de Química e Bioloxía, Departamento de Biología, Facultad de Ciencias, A Coruña, Spain
| | - Mahara Valverde
- Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CU, Mexico City, Mexico
| | | | - Frederik-Jan van Schooten
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | | | | | - Maciej Wnuk
- Department of Biology, University of Rzeszow, Rzeszow, Poland
| | - Annelies Wouters
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Tomas Zikmund
- Biocev, 1st Medical Faculty, Charles University, Vestec, Czech Republic
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Sabine A S Langie
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain.
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
6
|
Marçal R, Pacheco M, Guilherme S. Unveiling the nexus between parental exposure to toxicants and heritable spermiotoxicity - Is life history a shield or a shadow? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103955. [PMID: 35970510 DOI: 10.1016/j.etap.2022.103955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The knowledge on parental experiences is critical to predict how organisms react to environmental challenges. So, the DNA integrity of Procambarus clarkii spermatozoa exposed ex vivo to the herbicide penoxsulam (Px) or ethyl methanesulfonate (EMS; model genotoxicant) was assessed with and without the influence of in vivo parental exposure to the same agents. The parental exposure alone did not affect the DNA of unexposed spermatozoa. However, the history of Px exposure increased the vulnerability to oxidative lesions in Px-exposed offspring. Otherwise, parental exposure to EMS allowed the development of protection mechanisms expressed when F1 was also exposed to EMS, unveiling life history as a shield. The parental exposure to a different agent adverse and decisively affected Px spermiotoxic potential, pointing out life history as a shadow to progeny. Given the complexity of the aquatic contamination scenarios, involving mixtures, the spermiotoxicity of Px to wild P. clarkii populations emerged as probable.
Collapse
Affiliation(s)
- R Marçal
- Centre for Environmental and Marine Studies (CESAM), Department of Biology University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - M Pacheco
- Centre for Environmental and Marine Studies (CESAM), Department of Biology University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - S Guilherme
- Centre for Environmental and Marine Studies (CESAM), Department of Biology University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Turna Demir F, Demir E. Exposure to boron trioxide nanoparticles and ions cause oxidative stress, DNA damage, and phenotypic alterations in Drosophila melanogaster as an in vivo model. J Appl Toxicol 2022; 42:1854-1867. [PMID: 35837816 DOI: 10.1002/jat.4363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/09/2022] [Accepted: 07/09/2022] [Indexed: 11/09/2022]
Abstract
Boron trioxide nanoparticles (B2 O3 NPs) have recently been widely used in a range of applications including electronic device technologies, acousto-optic apparatus fields and as nanopowder for the production of special glasses. We propose Drosophila melanogaster as a useful in vivo model system to study the genotoxic risks associated with NP exposure. In this study we have conducted a genotoxic evaluation of B2 O3 NPs (size average 55.52 ± 1.41 nm) and its ionic form in D. melanogaster. B2 O3 NPs were supplied to third instar larvae at concentrations ranging from 0.1-10 mM. Toxicity, intracellular oxidative stress (reactive oxygen species, ROS), phenotypic alterations, genotoxic effect (via the wing somatic mutation and recombination test (SMART), and DNA damage (via Comet assay) were the end-points evaluated. B2 O3 NPs did not cause any mutagenic/recombinogenic effects in all tested non-toxic concentrations in Drosophila SMART. Negative data were also obtained with the ionic form. Exposure to B2 O3 NPs and its ionic form (at two highest concentrations, 2.5 and 5 mM) was found to induce DNA damage in Comet assay. Additionally, ROS induction in hemocytes and phenotypic alterations were determined in the mouths and legs of Drosophila. This study is the first study reporting genotoxicity data in the somatic cells of Drosophila larvae, emphasizing the importance of D. melanogaster as a model organism in investigating the different biological effects in a concentration dependent manner caused by B2 O3 NPs and its ionic form. The obtained in vivo results contribute to improvement the genotoxicity database on the B2 O3 NPs.
Collapse
Affiliation(s)
- Fatma Turna Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Antalya, Turkey
| | - Eşref Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Antalya, Turkey
| |
Collapse
|
8
|
Yalçın B, Güneş M, Kurşun AY, Kaya N, Marcos R, Kaya B. Genotoxic hazard assessment of cerium oxide and magnesium oxide nanoparticles in Drosophila. Nanotoxicology 2022; 16:393-407. [PMID: 35818303 DOI: 10.1080/17435390.2022.2098072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The use of metal oxide nanoparticles (NPs) is steadily spreading, leading to increased environmental exposures to many organisms, including humans. To improve our knowledge of this potential hazard, we have evaluated the genotoxic risk of cerium oxide (CeO2NPs) and magnesium oxide (MgONPs) nanoparticle exposures using Drosophila as an in vivo assay model. In this study, two well-known assays, such as the wing somatic mutation and recombination test (wing-spot assay) and the single-cell gel electrophoresis test (comet assay) were used. As a novelty, and for the first time, changes in the expression levels of a wide panel of DNA repair genes were also evaluated. Our results indicate that none of the concentrations of CeO2NPs increased the total spot frequency in the wing-spot assay, while induction was observed at the highest dose of MgONPs. Regarding the comet assay, both tested NPs were unable to induce single DNA strand breaks or oxidative damage in DNA bases. Nevertheless, exposure to CeO2NPs induced significant increases in the expression levels of the Mlh1 and Brca2 genes, which are involved in the double-strand break repair pathway, together with a decrease in the expression levels of the MCPH1 and Rad51D genes. Regarding the effects of MgONPs exposure, the expression levels of the Ercc1, Brca2, Rad1, mu2, and stg genes were significantly increased, while Mlh1 and MCPH1 genes were decreased. Our results show the usefulness of our approach in detecting mild genotoxic effects by evaluating changes in the expression of a panel of genes involved in DNA repair pathways.
Collapse
Affiliation(s)
- Burçin Yalçın
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Merve Güneş
- Department of Biology, Akdeniz University, Antalya, Turkey
| | | | - Nuray Kaya
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Ricard Marcos
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès (Barcelona), Antalya, Spain
| | - Bülent Kaya
- Department of Biology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
9
|
Marçal R, Marques AM, Pacheco M, Guilherme S. Improving knowledge on genotoxicity dynamics in somatic and germ cells of crayfish (Procambarus clarkii). ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:296-307. [PMID: 36054159 DOI: 10.1002/em.22501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The harmful effects of pesticides can be extended beyond the exposure time scale. Appraisals combining exposure and long-term post-exposure periods appear as an unavoidable approach in pesticide risk assessment, thus allowing a better understanding of the real impact of agrochemicals in non-target organisms. This study aimed to evaluate the progression of genetic damage in somatic and germ tissues of the crayfish Procambarus clarkii, also seeking for gender-specificities, following exposure (7 days) to penoxsulam (23 μg L-1 ) and a post-exposure (70 days) period. The same approach was applied to the model genotoxicant ethyl methanesulfonate (EMS; 5 mg L-1 ) as a complementary mean to improve knowledge on genotoxicity dynamics (induction vs. recovery). Penoxsulam induced DNA damage in all tested tissues, disclosing tissue- and gender-specificities, where females showed to be more vulnerable than males in the gills, while males demonstrated higher susceptibility in what concerns internal organs, that is, hepatopancreas and gonad. Crayfish were unable to recover from the DNA damage induced by EMS in gills and hepatopancreas (both genders) as well as in spermatozoa. The genotoxicity in the hepatopancreas was only perceptible in the post-exposure period. Oxidative DNA lesions were identified in hepatopancreas and spermatozoa of EMS-exposed crayfish. The spermatozoa proved to be the most vulnerable cell type. It became clear that the characterization of the genotoxic hazard of a given agent must integrate a complete set of information, addressing different types of DNA damage, tissue- and gender-specificities, as well as a long-term appraisal of temporal progression of damage.
Collapse
Affiliation(s)
- Raquel Marçal
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Ana Margarida Marques
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Mário Pacheco
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Sofia Guilherme
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
10
|
Turna Demir F. In vivo effects of 1,4-dioxane on genotoxic parameters and behavioral alterations in Drosophila melanogaster. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:414-430. [PMID: 35023806 DOI: 10.1080/15287394.2022.2027832] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
1,4-Dioxane (DXN) is used as solvent in different consumer products including cosmetics, paints, surfactants, and waxes. In addition, DXN is released as an unwanted contaminating by-product as a result of some reactions including ethoxylation of alcohols, which occurs with in personal care products. Consequently, DXN pollution was detected in drinking water and is considered as an environmental problem. At present, the genotoxicity effects attributed to DXN are controversial. The present study using an in vivo model organism Drosophila melanogaster aimed to determine the toxic/genotoxic, mutagenic/recombinogenic, oxidative damage as evidenced by ROS production, phenotypic alterations as well as behavioral and developmental alterations that are closely related to neuronal functions. Data demonstrated that nontoxic DXN concentration (0.1, 0.25, 0.5, or 1%) induced mutagenic (1%) and recombinogenic (0.1, 0.25, or 0.5%) effects in wing spot test and genotoxicity in hemocytes using comet assay. The nontoxic concentrations of DXN (0.1, 0.25, 0.5, or 1%) significantly increased oxidative stress, climbing behavior, thermal sensivity and abnormal phenotypic alterations. Our findings show that in contrast to in vitro exposure, DXN using an in vivo model Drosophila melanogaster this compound exerts toxic and genotoxic effects. Data suggest that additional studies using other in vivo models are thus warranted.
Collapse
Affiliation(s)
- Fatma Turna Demir
- Vocational School of Health Services, Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Antalya Bilim University, Antalya, Turkey
| |
Collapse
|
11
|
Tagorti G, Kaya B. Publication trends of somatic mutation and recombination tests research: a bibliometric analysis (1984‒2020). Genomics Inform 2022; 20:e10. [PMID: 35399009 PMCID: PMC9001991 DOI: 10.5808/gi.21083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022] Open
Abstract
Human exposure to pollutants has been on the rise. Thus, researchers have been focused on understanding the effect of these compounds on human health, especially on the genetic information by using various tests, among them the somatic mutation and recombination tests (SMARTs). It is a sensitive and accurate method applicable to genotoxicity analysis. Here, a comprehensive bibliometric analysis of SMART assays in genotoxicity studies was performed to assess publication trends of this field. Data were extracted from the Web of Science database and analyzed by the bibliometric tools HistCite, Biblioshiny (RStudio), VOSViewer, and CiteSpace. Results have shown an increase in the last 10 years in terms of publication. A total of 392 records were published in 96 sources mainly from Brazil, Spain, and Turkey. Research collaboration networks between countries and authors were performed. Based on document co-citation, five large research clusters were identified and analyzed. The youngest research frontier emphasized on nanoparticles. With this study, how research trends evolve over years was demonstrated. Thus, international collaboration could be enhanced, and a promising field could be developed.
Collapse
Affiliation(s)
- Ghada Tagorti
- Department of Biology, Faculty of Sciences, Akdeniz University, 07058 Campus, Antalya, Turkey
| | - Bülent Kaya
- Department of Biology, Faculty of Sciences, Akdeniz University, 07058 Campus, Antalya, Turkey
| |
Collapse
|
12
|
Augustyniak M, Tarnawska M, Dziewięcka M, Kafel A, Rost-Roszkowska M, Babczyńska A. DNA damage in Spodoptera exigua after multigenerational cadmium exposure - A trade-off between genome stability and adaptation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141048. [PMID: 32758757 DOI: 10.1016/j.scitotenv.2020.141048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Human activity is a serious cause of extensive changes in the environment and a constant reason for the emergence of new stress factors. Thus, to survive and reproduce, organisms must constantly implement a program of adaptation to continuously changing conditions. The research presented here is focused on tracking slow changes occurring in Spodoptera exigua (Lepidoptera: Noctuidae) caused by multigenerational exposure to sub-lethal cadmium doses. The insects received food containing cadmium at concentrations of 5, 11, 22 and 44 μg per g of dry mass of food. The level of DNA stability was monitored by a comet assay in subsequent generations up to the 36th generation. In the first three generations, the level of DNA damage was high, especially in the groups receiving higher doses of cadmium in the diet. In the fourth generation, a significant reduction in the level of DNA damage was observed, which could indicate that the desired stability of the genome was achieved. Surprisingly, however, in subsequent generations, an alternating increase and decrease was found in DNA stability. The observed cycles of changing DNA stability were longer lasting in insects consuming food with a lower Cd content. Thus, a transient reduction in genome stability can be perceived as an opportunity to increase the number of genotypes that undergo selection. This phenomenon occurs faster if the severity of the stress factor is high but is low enough to allow the population to survive.
Collapse
Affiliation(s)
- Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland.
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Marta Dziewięcka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Alina Kafel
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
13
|
Marima R, Hull R, Dlamini Z, Penny C. Efavirenz induces DNA damage response pathway in lung cancer. Oncotarget 2020; 11:3737-3748. [PMID: 33110481 PMCID: PMC7566803 DOI: 10.18632/oncotarget.27725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
The cell-cycle related genes are potential gene targets in understanding the effects of efavirenz (EFV) in lung cancer. The present study aimed at investigating the expression changes of cell-cycle related genes in response to EFV drug treatment in human non-small cell lung carcinoma (A549) and normal lung fibroblast (MRC-5) cells. The loss in nuclear integrity in response to EFV was detected by 4', 6-diamidino-2-phenylindole (DAPI) staining. Gene expression profiling was performed using human cell cycle PathwayFinder RT2 Profiler™ PCR Array. The expression changes of 84 genes key to the cell cycle pathway in humans following EFV treatment was examined. The R2 PCR Array analysis revealed a change in expression of selected gene targets (including MAD2L2, CASP3, AURKB). This change in gene expression was at least a two-fold between test (EFV treated) and the control. RT-qPCR confirmed the PCR array data. In addition to this, the ATM signaling pathway was shown to be upregulated following EFV treatment in MRC-5 cells. In particular, ATM's upstream activation resulted in p53 upregulation in normal lung fibroblasts. Interestingly, the p53 signaling pathway was activated irrespective of the repressed ATM pathway in A549 cells as revealed by the Ingenuity Pathway Analysis (IPA). These EFV effects are similar to those of ionizing radiation and this suggests that EFV has anti-tumour properties.
Collapse
Affiliation(s)
- Rahaba Marima
- SA-MRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, Faculty of Health Sciences, University of Pretoria, Hatfield 0028, South Africa.,Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Rodney Hull
- SA-MRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, Faculty of Health Sciences, University of Pretoria, Hatfield 0028, South Africa
| | - Zodwa Dlamini
- SA-MRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, Faculty of Health Sciences, University of Pretoria, Hatfield 0028, South Africa.,Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Clement Penny
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| |
Collapse
|
14
|
Demir E. An in vivo study of nanorod, nanosphere, and nanowire forms of titanium dioxide using Drosophila melanogaster: toxicity, cellular uptake, oxidative stress, and DNA damage. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:456-469. [PMID: 32515692 DOI: 10.1080/15287394.2020.1777236] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The biological impact of nanomaterials (NMs) is determined by several factors such as size and shape, which need to be taken into consideration in any type of analysis. While investigators often prefer to conduct in vitro studies for detection of any possible adverse effects of NMs, in vivo approaches yield more relevant data for risk assessment. For this reason, Drosophila melanogaster was selected as a suitable in vivo model to characterize the potential risks associated with exposure nanorods (NRs), nanospheres (NSs), nanowires (NWs) forms of titanium dioxide (TiO2), and their microparticulated (or bulk) form, as TiO2. Third instar larvae (72 hr old larvae) were fed with TiO2 (NRs, NSs, or NWs) and TiO2 at concentrations ranging from 0.01 to 10 mM. Viability (toxicity), internalization (cellular uptake), intracellular reactive oxygen species (ROS) production, and genotoxicity (Comet assay) were the end-points evaluated in hemocyte D. melanogaster larvae. Significant intracellular oxidative stress and genotoxicity were noted at the highest exposure concentration (10 mM) of TiO2 (NRs, NSs, or NWs), as determined by the Comet assay and ROS analysis, respectively. A concentration-effect relationship was observed in hemocytes exposed to the NMs. Data demonstrated that selected forms of TiO2.-induced genotoxicity in D. melanogaster larvae hemocytes indicating this organism is susceptible for use as a model to examine in vivo NMs-mediated effects.
Collapse
Affiliation(s)
- Eşref Demir
- Vocational School, Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Antalya Bilim University , Antalya, Turkey
| |
Collapse
|
15
|
Abstract
In spite of its pioneer use in detecting mutational processes, Drosophila still plays an important role in those studies aiming to detect and quantify the induction of DNA damage. Here we describe two assays, one detecting primary damage (the Comet assay) and the other detecting somatic mutation and recombination effects (wing-spot test). It is important to emphasize that somatic recombination is a key event in cancer development and no assays exist at present to detect and quantify somatic recombination processes, other than the spot tests developed in Drosophila.
Collapse
|
16
|
Priyadarsini S, Sahoo SK, Sahu S, Mukherjee S, Hota G, Mishra M. Oral administration of graphene oxide nano-sheets induces oxidative stress, genotoxicity, and behavioral teratogenicity in Drosophila melanogaster. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19560-19574. [PMID: 31079296 DOI: 10.1007/s11356-019-05357-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
The current study checks the effect of various concentrations of dietary graphene oxide (GO) nano-sheets on the development of Drosophila melanogaster. GO was synthesized and characterized by XRD, FTIR, FESEM, and TEM analytical techniques. Various concentrations of GO were mixed with the fly food and flies were transferred to the vial. Various behavioral and morphological as well as genetic defects were checked on the different developmental stages of the offspring. In the larval stage of development, the crawling speed and trailing path change significantly than the control. GO induces the generation of oxygen radicals within the larval hemolymph as evidenced by nitroblue tetrazolium assay. GO induces DNA damage within the gut cell, which was detected by Hoechst staining and within hemolymph by comet assay. Adult flies hatched after GO treatment show defective phototaxis and geotaxis behavior. Besides behavior, phenotypic defects were observed in the wing, eye, thorax bristles, and mouth parts. At 300 mg/L concentration, wing spots were observed. Altogether, the current study finds oral administration of GO which acts as a mutagen and causes various behavioral and developmental defects in the offspring. Here for the first time, we are reporting GO, which acts as a teratogen in Drosophila, besides its extensive medical applications.
Collapse
Affiliation(s)
- Subhashree Priyadarsini
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, 769008, India
| | | | - Swetapadma Sahu
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, 769008, India
| | - Sumit Mukherjee
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, 769008, India
| | - Garudadhwaj Hota
- Department of Chemistry, NIT Rourkela, Rourkela, Odisha, 769008, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
17
|
Alaraby M, Romero S, Hernández A, Marcos R. Toxic and Genotoxic Effects of Silver Nanoparticles in Drosophila. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:277-285. [PMID: 30353950 DOI: 10.1002/em.22262] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/01/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
The in vivo model Drosophila melanogaster was used here to determine the detrimental effects induced by silver nanoparticles (AgNPs) exposure. The main aim was to explore its interaction with the intestinal barrier and the genotoxic effects induced in hemocytes. The observed effects were compared with those obtained by silver nitrate, as an agent acting via the release of silver ions. Larvae were fed in food media containing both forms of silver. Results indicated that silver nitrate was more toxic than AgNPs when the viability "egg-to-adult" was determined. Depigmentation was observed in adults including those exposed to nontoxic concentrations, as indicative of exposure action. Interestingly, AgNPs were able to cross the intestinal barrier affecting hemocytes that show significant increases in the levels of intracellular reactive oxygen species. Additionally, significant levels of genotoxic damage, as determined by the comet assay, were also induced. When the expression of different stress-response genes was determined, for both AgNPs and silver nitrate, significant upregulation of Sod2 and p53 genes was observed. Our results confirm for the first time that in an in vivo model as Drosophila, AgNPs are able to cross the intestinal barriers and produce primary DNA damage (comet assay) via oxidative stress induction. In general, the effects induced by silver nitrate were more pronounced than those induced by AgNPs what would emphasize the role of silver ions in the observed effects. Environ. Mol. Mutagen. 60:277-285, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mohamed Alaraby
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Zoology Department, Faculty of Sciences, Sohag University, Sohag, Egypt
| | - Sara Romero
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| |
Collapse
|
18
|
Marques A, Ferreira J, Abreu H, Pereira R, Rego A, Serôdio J, Christa G, Gaivão I, Pacheco M. Searching for antigenotoxic properties of marine macroalgae dietary supplementation against endogenous and exogenous challenges. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:939-956. [PMID: 30156999 DOI: 10.1080/15287394.2018.1507856] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
The functional characterization of marine macroalgae toward their potential to strength genome protection is still scarce. Hence, the aim of this study was to assess the antigenotoxic potential of Ulva rigida, Fucus vesiculosus, and Gracilaria species in Drosophila melanogaster following dietary exposure and adopting the somatic mutation and recombination test (SMART). All macroalgae displayed a genoprotection activity, namely against an exogenous challenge (streptonigrin). The action against subtler endogenous pressures was also noted indicating that supplementation level is a critical factor. Gracilaria species provided ambivalent indications, since 10% of G. vermiculophylla inhibited the egg laying and/or larvae development, while 10% of G. gracilis promoted spontaneous genotoxicity. The effects of U. rigida were modulated (in intensity) by the growing conditions, demonstrating higher genoprotection against streptonigrin-induced damage when grown in an aquaculture-controlled system, while the effectiveness against spontaneous genotoxicity was more apparent in specimens grown under wild conditions. In contrast, F. vesiculosus did not produce significant differences in its potential under varying growing conditions. Overall, these findings shed some light on the macroalgae ability toward genome protection, contributing to the development of algaculture industry, and reinforcing the concept of functional food and its benefits.
Collapse
Affiliation(s)
- Ana Marques
- a Department of Biology and Centre for Environmental and Marine Studies (CESAM) , University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal
| | - João Ferreira
- b Department of Genetics and Biotechnology and Animal and Veterinary Research Centre (CECAV) , University of Trás-os-Montes and Alto Douro , Vila Real , Portugal
| | | | | | | | - João Serôdio
- a Department of Biology and Centre for Environmental and Marine Studies (CESAM) , University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal
| | - Gregor Christa
- a Department of Biology and Centre for Environmental and Marine Studies (CESAM) , University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal
| | - Isabel Gaivão
- b Department of Genetics and Biotechnology and Animal and Veterinary Research Centre (CECAV) , University of Trás-os-Montes and Alto Douro , Vila Real , Portugal
| | - Mário Pacheco
- a Department of Biology and Centre for Environmental and Marine Studies (CESAM) , University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal
| |
Collapse
|
19
|
Affiliation(s)
- Eşref Demir
- Department of Genetics and Bioengineering, Faculty of Engineering, Giresun University, Giresun, Turkey
| | - Ricard Marcos
- Departament de Genètica i de Microbiologia, Grup de Mutagènesi, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| |
Collapse
|
20
|
Mishra N, Srivastava R, Agrawal UR, Tewari RR. An insight into the genotoxicity assessment studies in dipterans. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:220-229. [PMID: 28927530 DOI: 10.1016/j.mrrev.2016.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 09/19/2016] [Accepted: 10/12/2016] [Indexed: 12/15/2022]
Abstract
The dipterans have been widely utilized in genotoxicity assessment studies. Short life span, easy maintenance, production of large number of offspring in a single generation and the tissues with appropriate cell populations make these flies ideal for studies associated to developmental biology, diseases, genetics, genetic toxicology and stress biology in the group. Moreover, their cosmopolitan presence makes them suitable candidate for ecological bio-monitoring. An attempt has been made in the present review to reveal the significance of dipteran flies for assessing alterations in genetic content through various genotoxicity biomarkers and to summarize the gradual advancement in these studies. Recent studies on genotoxicity assays in dipterans have opened up a broader perspective for DNA repair related mechanistic studies, pre-screening of chemicals and environmental bio-monitoring. Studies in dipterans, other than Drosophila may be helpful in using them as an alternative model system for assessment of genotoxicity, especially at the gene level and further extension of these studies give a future insight to develop new strategies for maintaining environment friendly limits of the toxicants.
Collapse
Affiliation(s)
- Nidhi Mishra
- Department of Zoology, University of Allahabad, Allahabad-211 002, India.
| | - Rashmi Srivastava
- Department of Zoology, University of Allahabad, Allahabad-211 002, India
| | - Uma Rani Agrawal
- Department of Zoology, C.M.P. College (A constituent college of University of Allahabad), Mahatma Gandhi Marg, George Town, Allahabad-211002, India.
| | - Raghav Ram Tewari
- Department of Zoology, University of Allahabad, Allahabad-211 002, India
| |
Collapse
|
21
|
de Moraes Filho AV, de Jesus Silva Carvalho C, Verçosa CJ, Gonçalves MW, Rohde C, de Melo e Silva D, Cunha KS, Chen-Chen L. In vivo genotoxicity evaluation of efavirenz (EFV) and tenofovir disoproxil fumarate (TDF) alone and in their clinical combinations in Drosophila melanogaster. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 820:31-38. [DOI: 10.1016/j.mrgentox.2017.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 05/20/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023]
|
22
|
Verçosa CJ, Moraes Filho AVD, Castro ÍFDA, Santos RGD, Cunha KS, Silva DDME, Garcia ACL, Navoni JA, Amaral VSD, Rohde C. Validation of Comet assay in Oregon-R and Wild type strains of Drosophila melanogaster exposed to a natural radioactive environment in Brazilian semiarid region. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:148-153. [PMID: 28340370 DOI: 10.1016/j.ecoenv.2017.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 06/06/2023]
Abstract
Natural radiation of geological origin is a common phenomenon in Brazil, a country where radioactive agents such as uranium may be often found. As an unstable atom, uranium undergoes radioactive decay with the generation of a series of decay by-products, including radon, which may be highly genotoxic and trigger several pathological processes, among which cancer. Because it is a gas, radon may move freely between cracks and gaps in the ground, seeping upwards into the buildings and in the environment. In this study, two Drosophila melanogaster Meigen (Diptera, Drosophilidae) strains called Oregon-R and Wild (collected in a non-radioactive environment) were exposed to atmospheric radiation in the Lajes Pintadas city, in the semiarid zone of northeastern Brazil. After six days of environmental exposure, the organisms presented genetic damage significantly higher than that of the negative control group. The genotoxic effects observed reinforce the findings of other studies carried out in the same region, which warn about the environmental risks related to natural radioactivity occurrence. The results also validate the use of the Comet assay in hemocytes of D. melanogaster as a sensitive test to detect genotoxicity caused by natural radiation, and the use of a recently collected D. melanogaster strain in the environmental of radon.
Collapse
Affiliation(s)
- Cícero Jorge Verçosa
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada, Universidade de Pernambuco (UPE), Brazil; Laboratório de Genética, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (UFPE), Brazil
| | | | - Ícaro Fillipe de Araújo Castro
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada, Universidade de Pernambuco (UPE), Brazil; Laboratório de Genética, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (UFPE), Brazil
| | - Robson Gomes Dos Santos
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada, Universidade de Pernambuco (UPE), Brazil
| | - Kenya Silva Cunha
- Laboratório de Genética Toxicológica, Universidade Federal de Goiás (UFG), Brazil
| | | | - Ana Cristina Lauer Garcia
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada, Universidade de Pernambuco (UPE), Brazil
| | - Julio Alejandro Navoni
- Programa de Pós-Graduação em Desenvolvimento e Meio Ambiente, Universidade Federal do Rio Grande do Norte (UFRN), Brazil
| | - Viviane Souza do Amaral
- Programa de Pós-Graduação em Desenvolvimento e Meio Ambiente, Universidade Federal do Rio Grande do Norte (UFRN), Brazil; Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Brazil
| | - Claudia Rohde
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada, Universidade de Pernambuco (UPE), Brazil; Laboratório de Genética, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (UFPE), Brazil.
| |
Collapse
|
23
|
Demir E, Marcos R. Assessing the genotoxic effects of two lipid peroxidation products (4-oxo-2-nonenal and 4-hydroxy-hexenal) in haemocytes and midgut cells of Drosophila melanogaster larvae. Food Chem Toxicol 2017; 105:1-7. [PMID: 28343031 DOI: 10.1016/j.fct.2017.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/21/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
Lipid peroxidation products can induce tissue damage and are implicated in diverse pathological conditions, including aging, atherosclerosis, brain disorders, cancer, lung and various liver disorders. Since in vivo studies produce relevant information, we have selected Drosophila melanogaster as a suitable in vivo model to characterise the potential risks associated to two lipid peroxidation products namely 4-oxo-2-nonenal (4-ONE) and 4-hydroxy-hexenal (4-HHE). Toxicity, intracellular reactive oxygen species production, and genotoxicity were the end-points evaluated. Haemocytes and midgut cells were the evaluated targets. Results showed that both compounds penetrate the intestine of the larvae, affecting midgut cells, and reaching haemocytes. Significant genotoxic effects, as determined by the comet assay, were observed in both selected cell targets in a concentration/time dependent manner. This study highlights the importance of D. melanogaster as a model organism in the study of the different biological effects caused by lipid peroxidation products entering via ingestion. This is the first study reporting genotoxicity data in haemocytes and midgut cells of D. melanogaster larvae for the two selected compounds.
Collapse
Affiliation(s)
- Eşref Demir
- Giresun University, Faculty of Engineering, Department of Genetics and Bioengineering, 28200-Güre, Giresun, Turkey; Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Spain; CIBER Epidemiología y Salud Pública, ISCIII, Spain.
| |
Collapse
|
24
|
Augustyniak M, Płachetka-Bożek A, Kafel A, Babczyńska A, Tarnawska M, Janiak A, Loba A, Dziewięcka M, Karpeta-Kaczmarek J, Zawisza-Raszka A. Phenotypic Plasticity, Epigenetic or Genetic Modifications in Relation to the Duration of Cd-Exposure within a Microevolution Time Range in the Beet Armyworm. PLoS One 2016; 11:e0167371. [PMID: 27907095 PMCID: PMC5131940 DOI: 10.1371/journal.pone.0167371] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/12/2016] [Indexed: 11/18/2022] Open
Abstract
In the case of the pests inhabiting metal polluted or fields where the use of pesticides is common, a natural selection of resistant individuals can occur. This may pose serious problems for humans, agriculture, as well as the economies of many countries. In this study, the hypothesis that multigenerational (120 generations) exposure to cadmium of a beet armyworm population could be a selecting factor toward a more efficient DNA protection was verified. The hemocytes of individuals from two culture strains (control and Cd-exposed) were treated with H2O2 (a DNA-damaging agent) or PBS (reference). The level of DNA damage was assessed using the Comet assay immediately and 5, 15 and 30 min. after the treatment. The immediate result of the contact with H2O2 was that the level of DNA damage in the hemocytes of the insects from both strains increased significantly. However, in the cells of the Cd-exposed individuals, the level of DNA damage decreased over time, while in the cells from the control insects it remained at the same level with no evidence of repair. These results suggest that efficient defense mechanisms may exist in the cells of insects that have prolonged contact with cadmium. Some evolutionary and trade-off aspects of the phenomenon are discussed. In a wider context, comparing the results obtained in the laboratory with field studies may be beneficial for understanding basic mechanisms of the resistance of an organism. To summarize, the high potential for the repair of DNA damage that was observed in the insects from the cadmium strain may confirm the hypothesis that multigenerational exposure to that metal may possibly contribute to the selection of insects that have a wider tolerance to oxidative stress. However, our investigations of polymorphism using AFLP did not reveal differences between the two main insect strains.
Collapse
Affiliation(s)
- Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
- * E-mail:
| | - Anna Płachetka-Bożek
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | - Alina Kafel
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | - Agnieszka Babczyńska
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | - Monika Tarnawska
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | | | - Anna Loba
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | - Marta Dziewięcka
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | | | | |
Collapse
|
25
|
Matić D, Vlahović M, Kolarević S, Perić Mataruga V, Ilijin L, Mrdaković M, Vuković Gačić B. Genotoxic effects of cadmium and influence on fitness components of Lymantria dispar caterpillars. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:1270-1277. [PMID: 27613326 DOI: 10.1016/j.envpol.2016.08.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
The current study extends our previous findings concerning the sensitivity of Lymantria dispar larvae to cadmium in light of ecotoxicological risk assessment. Here we report the results of the comet assay performed for the first time on this species. We examined the chronic effects of two cadmium concentrations (50 and 100 μg Cd/g dry food) on DNA integrity and haemocyte viability, as well as on fitness-related traits (larval mass and development duration parameters). All parameters were assessed individually and then used to calculate the integrated biomarker response (IBR) index. Egg-masses of L. dispar were collected from two locations in Serbia - the uncontaminated Homolje mountains and a metal-polluted area near Bor copper mines, smelter and refinery. Distinctive patterns in the response of these populations to cadmium exposure were noticed. In haemocytes of larvae from the pollution-free location both cadmium treatments increased the level of DNA damage, although in a similar range. Haemocyte viability and larval mass were reduced, while duration of the fourth instar and total development time were prolonged in a concentration-dependent manner. Cadmium tolerance was noticeable in the population from the metal-contaminated site at all organizational levels. Nevertheless, haemocyte viability in that population was reduced by the stronger treatment. Haemocyte viability was recognized as a promising biomarker due to the evident response of both populations to dietary cadmium. Genotoxicity, fitness-related traits and the IBR index could be used for biomonitoring of sensitive populations not previously exposed to metals.
Collapse
Affiliation(s)
- Dragana Matić
- University of Belgrade, Institute for Biological Research "Siniša Stanković", Department of Insect Physiology and Biochemistry, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia.
| | - Milena Vlahović
- University of Belgrade, Institute for Biological Research "Siniša Stanković", Department of Insect Physiology and Biochemistry, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Stoimir Kolarević
- University of Belgrade, Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Studentski trg 16, 11000 Belgrade, Serbia
| | - Vesna Perić Mataruga
- University of Belgrade, Institute for Biological Research "Siniša Stanković", Department of Insect Physiology and Biochemistry, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Larisa Ilijin
- University of Belgrade, Institute for Biological Research "Siniša Stanković", Department of Insect Physiology and Biochemistry, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Marija Mrdaković
- University of Belgrade, Institute for Biological Research "Siniša Stanković", Department of Insect Physiology and Biochemistry, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Branka Vuković Gačić
- University of Belgrade, Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Studentski trg 16, 11000 Belgrade, Serbia
| |
Collapse
|
26
|
Peraza-Vega RI, Castañeda-Sortibrán AN, Valverde M, Rojas E, Rodríguez-Arnaiz R. Assessing genotoxicity of diuron on Drosophila melanogaster by the wing-spot test and the wing imaginal disk comet assay. Toxicol Ind Health 2016; 33:443-453. [PMID: 27777339 DOI: 10.1177/0748233716670536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The aim of this study was to evaluate the genotoxicity of the herbicide diuron in the wing-spot test and a novel wing imaginal disk comet assay in Drosophila melanogaster. The wing-spot test was performed with standard (ST) and high-bioactivation (HB) crosses after providing chronic 48 h treatment to third instar larvae. A positive dose-response effect was observed in both crosses, but statistically reduced spot frequencies were registered for the HB cross compared with the ST. This latter finding suggests that metabolism differences play an important role in the genotoxic effect of diuron. To verify diuron's ability to produce DNA damage, a wing imaginal disk comet assay was performed after providing 24 h diuron treatment to ST and HB third instar larvae. DNA damage induced by the herbicide had a significantly positive dose-response effect even at very low concentrations in both strains. However, as noted for the wing-spot test, a significant difference between strains was not observed that could be related to the duration of exposure between both assays. A positive correlation between the comet assay and the wing-spot test was found with regard to diuron genotoxicity.
Collapse
Affiliation(s)
- Ricardo I Peraza-Vega
- 1 Faculty of Sciences, National Autonomous University of Mexico, Distrito Federal, Mexico
| | | | - Mahara Valverde
- 2 Institute of Biomedical Investigations, National Autonomous University of Mexico, Distrito Federal, Mexico
| | - Emilio Rojas
- 2 Institute of Biomedical Investigations, National Autonomous University of Mexico, Distrito Federal, Mexico
| | | |
Collapse
|
27
|
Carmona ER, Inostroza-Blancheteau C, Rubio L, Marcos R. Genotoxic and oxidative stress potential of nanosized and bulk zinc oxide particles in Drosophila melanogaster. Toxicol Ind Health 2016; 32:1987-2001. [DOI: 10.1177/0748233715599472] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zinc oxide nanoparticles (ZnONP) are manufactured on a large scale and can be found in a variety of consumer products, such as sunscreens, lotions, paints and food additives. Few studies have been carried out on its genotoxic potential and related mechanisms in whole organisms. In the present study, the in vivo genotoxic activity of ZnONP and its bulk form was assayed using the wing-spot test and comet assay in Drosophila melanogaster. Additionally, a lipid peroxidation analysis using the thiobarbituric acid assay was also performed. Results obtained with the wing-spot test showed a lack of genotoxic activity of both ZnO forms. However, when both particle sizes were tested in the comet assay using larvae haemocytes, a significant increase in DNA damage was observed for ZnONP treatments but only at the higher dose applied. In addition, the lipid peroxidation assay showed significant malondialdehyde (MDA) induction for both ZnO forms, but the induction of MDA for ZnONP was higher for the ZnO bulk, suggesting that the observed DNA strand breaks could be induced by mediated oxidative stress. The overall data suggest that the potential genotoxicity of ZnONP in Drosophila can be considered weak according to the lack of mutagenic and recombinogenic effects and the induction of primary DNA damage only at high toxic doses of ZnONP. This study is the first assessing the genotoxic and oxidative stress potential of nano and bulk ZnO particles in Drosophila.
Collapse
Affiliation(s)
- Erico R Carmona
- Grupo de Genotoxicología, Núcleo de Investigación en Estudios Ambientales, Facultad de Recursos Naturales, Escuela de Medicina Veterinaria, Universidad Católica de Temuco, Temuco, Chile
| | - Claudio Inostroza-Blancheteau
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Escuela de Agronomía, Universidad Católica de Temuco, Temuco, Chile
| | - Laura Rubio
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
28
|
Dziewięcka M, Karpeta-Kaczmarek J, Augustyniak M, Majchrzycki Ł, Augustyniak-Jabłokow MA. Evaluation of in vivo graphene oxide toxicity for Acheta domesticus in relation to nanomaterial purity and time passed from the exposure. JOURNAL OF HAZARDOUS MATERIALS 2016; 305:30-40. [PMID: 26642444 DOI: 10.1016/j.jhazmat.2015.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/31/2015] [Accepted: 11/15/2015] [Indexed: 05/14/2023]
Abstract
Graphene and its oxidized form-graphene oxide (GO) have become exceptionally popular in industry and medicine due to their unique properties. However, there are suspicions that GO can cause adverse effects. Therefore, comprehensive knowledge on its potential toxicity is essential. This research assesses the in vivo toxicity of pure and manganese ion contaminated GO, which were injected into the hemolymph of Acheta domesticus. The activity of catalase (CAT) and gluthiathione peroxidases (GSTPx) as well as heat shock protein (HSP 70) and total antioxidant capacity (TAC) levels were measured at consecutive time points-1h, 24h, 48h and 72h after injection. Neither pure GO nor GO contaminated with manganese were neutral to the organism. The results proved the intensification of oxidative stress after GO injection, which was confirmed by increased enzyme activity. The organism seems to cope with this stress, especially in the first 24h after injection. In the following days, increasing HSP 70 levels were observed, which might suggest the synthesis of new proteins and the removal of old and damaged ones. With that in mind, the potential toxicity of the studied material, which could lead to serious and permanent damage to the organism, should still be taken into consideration.
Collapse
Affiliation(s)
- Marta Dziewięcka
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland.
| | - Julia Karpeta-Kaczmarek
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Łukasz Majchrzycki
- Institute of Physics, Poznan University of Technology, Nieszawska 13a, 60-965 Poznan, Poland; Wielkopolska Centre of Advanced Technology, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland
| | | |
Collapse
|
29
|
Alaraby M, Hernández A, Marcos R. New insights in the acute toxic/genotoxic effects of CuO nanoparticles in thein vivo Drosophilamodel. Nanotoxicology 2016; 10:749-60. [DOI: 10.3109/17435390.2015.1121413] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Augustyniak M, Gladysz M, Dziewięcka M. The Comet assay in insects--Status, prospects and benefits for science. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 767:67-76. [PMID: 27036067 DOI: 10.1016/j.mrrev.2015.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/27/2015] [Accepted: 09/16/2015] [Indexed: 12/24/2022]
Abstract
The Comet assay has been recently adapted to investigate DNA damage in insects. The first reports of its use in Drosophila melanogaster appeared in 2002. Since then, the interest in the application of the Comet assay to studies of insects has been rapidly increasing. Many authors see substantial potential in the use of the Comet assay in D. melanogaster for medical toxicology studies. This application could allow the testing of drugs and result in an understanding of the mechanisms of action of toxins, which could significantly influence the limited research that has been performed on vertebrates. The possible perspectives and benefits for science are considered in this review. In the last decade, the use of the Comet assay has been described in insects other than D. melanogaster. Specifically, methods to prepare a cell suspension from insect tissues, which is a difficult task, were analyzed and compared in detail. Furthermore, attention was paid to any differences and modifications in the research protocols, such as the buffer composition and electrophoresis conditions. Various scientific fields in addition to toxicological and ecotoxicological research were considered. We expect the Comet assay to be used in environmental risk assessments and to improve our understanding of many important phenomena of insect life, such as metamorphosis, molting, diapause and quiescence. The use of this method to study species that are of key importance to humans, such as pests and beneficial insects, appears to be highly probable and very promising. The use of the Comet assay for DNA stability testing in insects will most likely rapidly increase in the future.
Collapse
Affiliation(s)
- Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL 40-007 Katowice, Poland.
| | - Marcin Gladysz
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL 40-007 Katowice, Poland
| | - Marta Dziewięcka
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL 40-007 Katowice, Poland
| |
Collapse
|
31
|
Matić S, Katanić J, Stanić S, Mladenović M, Stanković N, Mihailović V, Boroja T. In vitro and in vivo assessment of the genotoxicity and antigenotoxicity of the Filipendula hexapetala and Filipendula ulmaria methanol extracts. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:287-292. [PMID: 26303017 DOI: 10.1016/j.jep.2015.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/24/2015] [Accepted: 08/20/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The two species of Filipendula genus, Filipendula hexapetala Gilib. and Filipendula ulmaria (L.) Maxim are a traditional herbal medicine widely used to treat haemorrhoids, diarrhoea, fever, rheumatism and arthritic pain, kidney problems, to stop bleeding, and the common cold, as well as food supplements. However, no scientific study has been performed to validate genotoxic and/or antigenotoxic potentials of these two Filipendula species. AIM OF THE STUDY The aim of the present study was to examine the genotoxic and possible in vitro and in vivo DNA protection potential of methanol extracts of F. hexapetala and F. ulmaria. MATERIALS AND METHODS The genotoxicity of different concentrations of F. hexapetala and F. ulmaria methanol extracts from roots and aerial parts (20, 40 and 80 mg/ml), mixed with standard food for Drosophila, was evaluated in vivo in the anterior midgut of Drosophila melanogaster using a modified alkaline comet assay. The protective effects of the highest dose of extracts were observed in somatic cells of third-instar larvae against ethyl methanesulphonate (EMS)-induced genotoxicity. Also, DNA protection activity of methanol extracts from F. hexapetala and F. ulmaria (100, 200, and 400 μg/ml) against hydroxyl radical-induced DNA damage was determined under in vitro conditions. RESULTS The results showed that methanol extracts from the root and aerial part of F. hexapetala at a concentration of 20mg/ml indicated the absence of genotoxicity. Also, there were no statistically significant differences in total scores between any of the groups treated with F. ulmaria root extract and the negative control group, while F. ulmaria aerial part extract possess weak genotoxic effects depending on the concentrations. The percentage reduction in DNA damage was more evident in the group of larvae simultaneously treated with EMS and the highest dose of F. hexapetala root or aerial part extracts and F. ulmaria root extract (91.02, 80.21, and 87.5%, respectively) and less expressive in the group simultaneously treated with F. ulmaria aerial part extract (54.7%). F. hexapetala root and aerial part extracts and F. ulmaria root extract possess strong capabilities to protect DNA from being damaged by hydroxyl radicals. CONCLUSIONS It can be concluded that F. hexapetala root and aerial part extracts and F. ulmaria root extract demonstrated the absence of genotoxic activity. The extracts appeared to have antigenotoxic effect, reducing the levels of DNA damage induced by EMS by more than 80%. Also, F. hexapetala root and aerial part extracts and F. ulmaria root extracts could effectively protect against hydroxyl radical-induced DNA damage.
Collapse
Affiliation(s)
- Sanja Matić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Jelena Katanić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Snežana Stanić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Milan Mladenović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Nevena Stanković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Vladimir Mihailović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Tatjana Boroja
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
32
|
Alaraby M, Annangi B, Hernández A, Creus A, Marcos R. A comprehensive study of the harmful effects of ZnO nanoparticles using Drosophila melanogaster as an in vivo model. JOURNAL OF HAZARDOUS MATERIALS 2015; 296:166-174. [PMID: 25917694 DOI: 10.1016/j.jhazmat.2015.04.053] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/10/2015] [Accepted: 04/19/2015] [Indexed: 06/04/2023]
Abstract
This study planned to determine the range of biological effects associated with ZnO-NP exposure using Drosophila melanogaster as an in vivo model. In addition, ZnCl2 was used to determine the potential role of Zn ions alone. Toxicity, internalization through the intestinal barrier, gene expression changes, ROS production, and genotoxicity were the end-points evaluated. No toxicity or oxidative stress induction was observed in D. melanogaster larvae, whether using ZnO-NPs or ZnCl2. Internalization of ZnO-NPs through the intestinal barrier was observed. No significant changes in the frequency of mutant clones (wing-spot test) or percentage of DNA in tail (comet assay) were observed although significant changes in Hsp70 and p53 gene expression were detected. Our study shows that ZnO-NPs do not induce toxicity or genotoxicity in D. melanogaster, although uptake occurs and altered gene expression is observed.
Collapse
Affiliation(s)
- Mohamed Alaraby
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain; Sohag University, Faculty of Sciences, Zoology Department, 82524-Campus, Sohag, Egypt
| | - Balasubramanyam Annangi
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain; CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| | - Amadeu Creus
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain; CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain; CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain.
| |
Collapse
|
33
|
Alaraby M, Demir E, Hernández A, Marcos R. Assessing potential harmful effects of CdSe quantum dots by using Drosophila melanogaster as in vivo model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:66-75. [PMID: 26026410 DOI: 10.1016/j.scitotenv.2015.05.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/12/2015] [Accepted: 05/17/2015] [Indexed: 06/04/2023]
Abstract
Since CdSe QDs are increasingly used in medical and pharmaceutical sciences careful and systematic studies to determine their biosafety are needed. Since in vivo studies produce relevant information complementing in vitro data, we promote the use of Drosophila melanogaster as a suitable in vivo model to detect toxic and genotoxic effects associated with CdSe QD exposure. Taking into account the potential release of cadmium ions, QD effects were compared with those obtained with CdCl2. Results showed that CdSe QDs penetrate the intestinal barrier of the larvae reaching the hemolymph, interacting with hemocytes, and inducing dose/time dependent significant genotoxic effects, as determined by the comet assay. Elevated ROS production, QD biodegradation, and significant disturbance in the conserved Hsps, antioxidant and p53 genes were also observed. Overall, QD effects were milder than those induced by CdCl2 suggesting the role of Cd released ions in the observed harmful effects of Cd based QDs. To reduce the observed side-effects of Cd based QDs biocompatible coats would be required to avoid cadmium's undesirable effects.
Collapse
Affiliation(s)
- Mohamed Alaraby
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Spain; Sohag University, Faculty of Sciences, Zoology Department, 82524-Campus, Sohag, Egypt
| | - Esref Demir
- Akdeniz University, Faculty of Sciences, Department of Biology, 07058-Campus, Antalya, Turkey
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Spain; CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Spain; CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain.
| |
Collapse
|
34
|
Genotoxicity of copper oxide nanoparticles in Drosophila melanogaster. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 791:1-11. [DOI: 10.1016/j.mrgentox.2015.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 06/19/2015] [Accepted: 07/21/2015] [Indexed: 11/30/2022]
|
35
|
Genotoxic testing of titanium dioxide anatase nanoparticles using the wing-spot test and the comet assay in Drosophila. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 778:12-21. [DOI: 10.1016/j.mrgentox.2014.12.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 12/23/2022]
|
36
|
Alaraby M, Hernández A, Annangi B, Demir E, Bach J, Rubio L, Creus A, Marcos R. Antioxidant and antigenotoxic properties of CeO2 NPs and cerium sulphate: Studies with Drosophila melanogaster as a promising in vivo model. Nanotoxicology 2014; 9:749-59. [PMID: 25358738 DOI: 10.3109/17435390.2014.976284] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although in vitro approaches are the most used for testing the potential harmful effects of nanomaterials, in vivo studies produce relevant information complementing in vitro data. In this context, we promote the use of Drosophila melanogaster as a suitable in vivo model to characterise the potential risks associated to nanomaterials exposure. The main aim of this study was to evaluate different biological effects associated to cerium oxide nanoparticles (Ce-NPs) and cerium (IV) sulphate exposure. The end-points evaluated were egg-to-adult viability, particles uptake through the intestinal barrier, gene expression and intracellular reactive oxygen species (ROS) production by haemocytes, genotoxicity and antigenotoxicity. Transmission electron microscopy images showed internalisation of Ce-NPs by the intestinal barrier and haemocytes, and significant expression of Hsp genes was detected. In spite of these findings, neither toxicity nor genotoxicity related to both forms of cerium were observed. Interestingly, Ce-NPs significantly reduced the genotoxic effect of potassium dichromate and the intracellular ROS production. No morphological malformations were detected after larvae treatment. This study highlights the importance of D. melanogaster as animal model in the study of the different biological effects caused by nanoparticulated materials, at the time that shows its usefulness to study the role of the intestinal barrier in the transposition of nanomaterials entering via ingestion.
Collapse
Affiliation(s)
- Mohamed Alaraby
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra , Cerdanyola del Vallès, Barcelona , Spain
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Gaivão I, Sierra LM. Drosophila comet assay: insights, uses, and future perspectives. Front Genet 2014; 5:304. [PMID: 25221574 PMCID: PMC4148904 DOI: 10.3389/fgene.2014.00304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/14/2014] [Indexed: 11/13/2022] Open
Abstract
The comet assay, a very useful tool in genotoxicity and DNA repair testing, is being applied to Drosophila melanogaster since around 15 years ago, by several research groups. This organism is a valuable model for all kind of processes related to human health, including DNA damage response. The assay has been performed mainly in vivo using different larvae cell types (from brain, midgut, hemolymph, and imaginal disk), but also in vitro with the S2 cell line. Since its first application, it has been used to analyze the genotoxicity and action mechanisms of different chemicals, demonstrating good sensitivity and proving its usefulness. Moreover, it is the only assay that can be used to analyze DNA repair in somatic cells in vivo, comparing the effects of chemicals in different repair strains, and to quantitate repair activities in vitro. Additionally, the comet assay in Drosophila, in vivo and in vitro, has been applied to study the influence of protein overexpression on genome integrity and degradation. Although the assay is well established, it could benefit from some research to determine optimal experimental design to standardize it, and then to allow comparisons among laboratories independently of the chosen cell type.
Collapse
Affiliation(s)
- Isabel Gaivão
- Department of Genetics and Biotechnology, Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro Vila Real, Portugal
| | - L María Sierra
- Área de Genética, Departamento de Biología Funcional, and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| |
Collapse
|
38
|
Marcos R, Carmona ER. The wing-spot and the comet tests as useful assays detecting genotoxicity in Drosophila. Methods Mol Biol 2014; 1044:417-27. [PMID: 23896891 DOI: 10.1007/978-1-62703-529-3_23] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In spite of its pioneer use in detecting mutational processes, Drosophila has yet an important role in studies aiming to detect and quantify the induction of DNA damage. Here we describe two assays, one detecting primary damage (the Comet assay) and the other detecting somatic mutation and recombination effects (wing-spot test). It is important to emphasize that somatic recombination is a key event in cancer and no assays exist to detect and quantify somatic recombination processes, other than the spot tests developed in Drosophila.
Collapse
Affiliation(s)
- Ricard Marcos
- Grup de Mutagènesi, Departament de Genética i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | |
Collapse
|
39
|
Carmona ER, Creus A, Marcos R. Genotoxicity testing of two lead-compounds in somatic cells of Drosophila melanogaster. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 724:35-40. [DOI: 10.1016/j.mrgentox.2011.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/13/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
|