1
|
Liu X, Chai B, Wang X, Wu Z, Zou H, Liu Y, Zheng S, Qian G, Ma Z, Lu J. Environmentally Persistent Free Radical Promotes Lung Cancer Progression by Regulating the Expression Profile of miRNAs. Cancer Biother Radiopharm 2024; 39:584-592. [PMID: 35594306 DOI: 10.1089/cbr.2021.0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Environmentally persistent free radicals (EPFRs) are generated in the combustion processes of solid waste and can cause adverse influences on human health, especially lung diseases. Lung cancer is one of the most serious malignancies in recent years, which the global deaths rate is about 1.6 million every year. Methods and Results: In this study, we verified that ZnO/MCB EPFRs promote cell proliferation and migration, impedes cell apoptosis in lung cancer. Furthermore, we found that ZnO/MCB could influence the expression of miRNAs (miR-18a and miR-34a). In vivo, ZnO/MCB and ZnO EPFRs can reduce the weight and survival rate of BALB/c male mice more than that of BALB/c female mice. In the ZnO/MCB exposed group, male mice lung became even smaller, while the female mice the lung increased significantly. Taken together, our results provide evidence for assessing the potential health risks of persistent free radicals on fine particles. Conclusions: This study linked toxicity of EPFRs with miRNAs revealed the potential health hazard to human lung cancer.
Collapse
Affiliation(s)
- Xiaomin Liu
- Shanghai Tobacco Group Corp, Shanghai, P.R. China
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, P.R. China
| | - Binshu Chai
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, P.R. China
| | - Xianyi Wang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, P.R. China
| | - Zong Wu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, P.R. China
| | - Heng Zou
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, P.R. China
| | - Yangyang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, P.R. China
| | | | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, P.R. China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, P.R. China
| | - Jie Lu
- Shanghai Tobacco Group Corp, Shanghai, P.R. China
| |
Collapse
|
2
|
Ekhator OC, Orish FC, Nnadi EO, Ogaji DS, Isuman S, Orisakwe OE. Impact of black soot emissions on public health in Niger Delta, Nigeria: understanding the severity of the problem. Inhal Toxicol 2024; 36:314-326. [PMID: 38145546 DOI: 10.1080/08958378.2023.2297698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/16/2023] [Indexed: 12/27/2023]
Abstract
Rivers State, Niger Delta, Nigeria often referred to as the 'treasure bed of the nation' is the seat of crude oil production activities with the accompanying environmental degradation. The severity of the environmental pollution and contaminated air quality took a new turn for the worse in November 2016, when the residents of Port Harcourt city, Rivers State, a major oil producing State experienced for the first time, aerosol deposition of plumes of black soot. This systematic review paper is aimed at quantifying the severity of this public health challenge. Using appropriate search words, the following databases SCOPUS, PUBMED, Google Scholar, and AJOL were searched from 1990 to 2022 to enable comparative analyses of data before and after the emergence of black soot deposition. Air-related morbidities and mortalities such as cerebrospinal meningitis (CSM), chronic bronchitis, measles, pertussis, hemoptysis, cough, pulmonary tuberculosis, pneumonia, and upper respiratory tract infection (URTI), pneumonia, eye irritation, conjunctivitis, traumatic skin outgrowth, cancers, cardiovascular diseases, and child deformities were compared with levels of air pollutants and particulate matter. The results showed that Port Harcourt city's ambient air quality data were above the standard National Ambient Air Quality data and that of other regulatory agencies having higher levels of both inorganic and organic pollutants. There were significant relationships between air pollutants concentration with morbidities. These correlations were significant in the period covering 2016-2022. Consequently, it is concluded that the black soot emissions in Port Harcourt city, Nigeria has worsened the public health situation in the city.
Collapse
Affiliation(s)
| | | | - Ernest O Nnadi
- School of Energy, Construction & Environment (ECE), Coventry University, Coventry, UK
| | - Daprim Samuel Ogaji
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
| | - Success Isuman
- Department of Science Laboratory Technology, University of Benin, Benin City, Nigeria
| | - Orish Ebere Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
| |
Collapse
|
3
|
Meyer TJ, Tekin N, Hense P, Ehret-Kasemo T, Lodes N, Stöth M, Ickrath P, Gehrke T, Hagen R, Dembski S, Peer M, Steinke MR, Scherzad A, Hackenberg S. Evaluation of the cytotoxic and genotoxic potential of printer toner particles in a 3D air-liquid interface, primary cell-based nasal tissue model. Toxicol Lett 2023; 379:1-10. [PMID: 36907250 DOI: 10.1016/j.toxlet.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Printer toner particles (TPs) are a common, potentially hazardous substance, with an unclear toxicological impact on the respiratory mucosa. Most of the airways surface is covered by a ciliated respiratory mucosa, therefore appropriate tissue models of the respiratory epithelium with a high in vivo correlation are necessary for in vitro evaluation of airborne pollutants toxicology and the impact on the functional integrity. The aim of this study is the evaluation of TPs toxicology in a human primary cell-based air-liquid-interface (ALI) model of respiratory mucosa. The TPs were analyzed and characterized by scanning electron microscopy, pyrolysis and X-ray fluorescence spectrometry. ALI models of 10 patients were created using the epithelial cells and fibroblasts derived from nasal mucosa samples. TPs were applied to the ALI models via a modified Vitrocell® cloud and submerged in the dosing 0.89 - 892.96 µg/ cm2. Particle exposure and intracellular distribution were evaluated by electron microscopy. The MTT assay and the comet assay were used to investigate cytotoxicity and genotoxicity, respectively. The used TPs showed an average particle size of 3 - 8 µm. Mainly carbon, hydrogen, silicon, nitrogen, tin, benzene and benzene derivates were detected as chemical ingredients. By histomorphology and electron microscopy we observed the development of a highly functional, pseudostratified epithelium with a continuous layer of cilia. Using electron microscopy, TPs could be detected on the cilia surface and also intracellularly. Cytotoxicity was detected from 9 µg/ cm2 and higher, but no genotoxicity after ALI and submerged exposure. The ALI with primary nasal cells represents a highly functional model of the respiratory epithelium in terms of histomorphology and mucociliary differentiation. The toxicological results indicate a weak TP-concentration-dependent cytotoxicity. AVAILABILITY OF DATA AND MATERIALS: The datasets used and analysed during the current study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Till Jasper Meyer
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany.
| | - Nursen Tekin
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Peter Hense
- Bochum University of Applied Sciences, Department Civil and Environmental Engineering, Am Hochschulcampus 1, 44801 Bochum, Germany
| | - Totta Ehret-Kasemo
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Nina Lodes
- University Hospital Würzburg, Chair of Tissue Engineering and Regenerative Medicine, Röntgenring 11, 97070 Würzburg, Germany
| | - Manuel Stöth
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Pascal Ickrath
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Thomas Gehrke
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Rudolf Hagen
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Sofia Dembski
- University Hospital Würzburg, Chair of Tissue Engineering and Regenerative Medicine, Röntgenring 11, 97070 Würzburg, Germany; Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| | - Michael Peer
- Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Institute Branch Sulzbach-Rosenberg, An der Maxhütte 1, 92237 Sulzbach-Rosenberg, Germany
| | - Maria R Steinke
- University Hospital Würzburg, Chair of Tissue Engineering and Regenerative Medicine, Röntgenring 11, 97070 Würzburg, Germany; Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| | - Agmal Scherzad
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Stephan Hackenberg
- RWTH Aachen University Hospital, Department of Otorhinolaryngology - Head and Neck Surgery, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
4
|
Aslam I, Roeffaers MBJ. Carbonaceous Nanoparticle Air Pollution: Toxicity and Detection in Biological Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12223948. [PMID: 36432235 PMCID: PMC9698098 DOI: 10.3390/nano12223948] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 05/27/2023]
Abstract
Among the different air pollutants, particulate matter (PM) is of great concern due to its abundant presence in the atmosphere, which results in adverse effects on the environment and human health. The different components of PM can be classified based on their physicochemical properties. Carbonaceous particles (CPs) constitute a major fraction of ultrafine PM and have the most harmful effects. Herein, we present a detailed overview of the main components of CPs, e.g., carbon black (CB), black carbon (BC), and brown carbon (BrC), from natural and anthropogenic sources. The emission sources and the adverse effects of CPs on the environment and human health are discussed. Particularly, we provide a detailed overview of the reported toxic effects of CPs in the human body, such as respiratory effects, cardiovascular effects, neurodegenerative effects, carcinogenic effects, etc. In addition, we also discuss the challenges faced by and limitations of the available analytical techniques for the qualitative and quantitative detection of CPs in atmospheric and biological samples. Considering the heterogeneous nature of CPs and biological samples, a detailed overview of different analytical techniques for the detection of CPs in (real-exposure) biological samples is also provided. This review provides useful insights into the classification, toxicity, and detection of CPs in biological samples.
Collapse
|
5
|
Li H, Tao X, Song E, Song Y. Iron oxide nanoparticles oxidize transformed RAW 264.7 macrophages into foam cells: Impact of pulmonary surfactant component dipalmitoylphosphatidylcholine. CHEMOSPHERE 2022; 300:134617. [PMID: 35430205 DOI: 10.1016/j.chemosphere.2022.134617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Iron oxide nanoparticles (IONPs) are one of the most important components in airborne particulate matter that originally generated from traffic emission, iron ore mining, coal combustion and melting of engine fragments. Once IONPs entered respiratory tract and deposit in the alveoli, they may interact with pulmonary surfactant (PS) that distributed in the alveolar lining. Thereafter, it is necessary to investigate the interaction of inhaled IONPs and PS, which helps the understanding of health risk of respiratory health induced by IONPs. Using dipalmitoyl phosphatidylcholine (DPPC), the major components of PS, as a lipid model, we explored the interaction of DPPC with typical IONPs, Fe3O4 NPs and amino-functionalized analogue (Fe3O4-NH2 NPs). DPPC was readily adsorbed on the surface of both IONPs. Although DPPC corona depressed the cellular uptake of IONPs, IONPs@DPPC complexes caused higher cytotoxicity toward RAW 264.7 macrophages, compared to pristine IONPs. Mechanistic studies have shown that IONPs react with intracellular hydrogen peroxide, which promotes the Fenton reaction, to generate hydroxyl radicals. Iron ions could oxidize lipids to form lipid peroxides, and lipid hydroperoxides will decompose to generate hydroxyl radicals, which further promote cellular oxidative stress, lipid accumulation, foam cell formation, and the release of inflammatory factors. These findings demonstrated the phenomenon of coronal component oxidation, which contributed to IONPs-induced cytotoxicity. This study offered a brand-new toxicological mechanism of IONPs at the molecular level, which is helpful for further understanding the adverse effects of IONPs.
Collapse
Affiliation(s)
- Haidong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Xiaoqi Tao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China.
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing, 100085, China.
| |
Collapse
|
6
|
Bitounis D, Huang Q, Toprani SM, Setyawati MI, Oliveira N, Wu Z, Tay CY, Ng KW, Nagel ZD, Demokritou P. Printer center nanoparticles alter the DNA repair capacity of human bronchial airway epithelial cells. NANOIMPACT 2022; 25:100379. [PMID: 35559885 PMCID: PMC9661631 DOI: 10.1016/j.impact.2022.100379] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 05/26/2023]
Abstract
Nano-enabled, toner-based printing equipment emit nanoparticles during operation. The bioactivity of these nanoparticles as documented in a plethora of published toxicological studies raises concerns about their potential health effects. These include pro-inflammatory effects that can lead to adverse epigenetic alterations and cardiovascular disorders in rats. At the same time, their potential to alter DNA repair pathways at realistic doses remains unclear. In this study, size-fractionated, airborne particles from a printer center in Singapore were sampled and characterized. The PM0.1 size fraction (particles with an aerodynamic diameter less than 100 nm) of printer center particles (PCP) were then administered to human lung adenocarcinoma (Calu-3) or lymphoblastoid (TK6) cells. We evaluated plasma membrane integrity, mitochondrial activity, and intracellular reactive oxygen species (ROS) generation. Moreover, we quantified DNA damage and alterations in the cells' capacity to repair 6 distinct types of DNA lesions. Results show that PCP altered the ability of Calu-3 cells to repair 8oxoG:C lesions and perform nucleotide excision repair, in the absence of acute cytotoxicity or DNA damage. Alterations in DNA repair capacity have been correlated with the risk of various diseases, including cancer, therefore further genotoxicity studies are needed to assess the potential risks of PCP exposure, at both occupational settings and at the end-consumer level.
Collapse
Affiliation(s)
- Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA
| | - Qiansheng Huang
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Sneh M Toprani
- John B. Little Center of Radiation Sciences, Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA 02115, USA
| | - Magdiel I Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nathalia Oliveira
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA
| | - Zhuoran Wu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institution, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore; School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Kee Woei Ng
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institution, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| | - Zachary D Nagel
- John B. Little Center of Radiation Sciences, Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA 02115, USA.
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Gárate-Vélez L, Escudero-Lourdes C, Salado-Leza D, González-Sánchez A, Alvarado-Morales I, Bahena D, Labrada-Delgado GJ, Rodríguez-López JL. Anthropogenic Iron Oxide Nanoparticles Induce Damage to Brain Microvascular Endothelial Cells Forming the Blood-Brain Barrier. J Alzheimers Dis 2021; 76:1527-1539. [PMID: 32716353 DOI: 10.3233/jad-190929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Iron nanoparticles, mainly in magnetite phase (Fe3O4 NPs), are released to the environment in areas with high traffic density and braking frequency. Fe3O4 NPs were found in postmortem human brains and are assumed to get directly into the brain through the olfactory nerve. However, these pollution-derived NPs may also translocate from the lungs to the bloodstream and then, through the blood-brain barrier (BBB), into the brain inducing oxidative and inflammatory responses that contribute to neurodegeneration. OBJECTIVE To describe the interaction and toxicity of pollution-derived Fe3O4 NPs on primary rat brain microvascular endothelial cells (rBMECs), main constituents of in vitro BBB models. METHODS Synthetic bare Fe3O4 NPs that mimic the environmental ones (miFe3O4) were synthesized by co-precipitation and characterized using complementary techniques. The rBMECs were cultured in Transwell® plates. The NPs-cell interaction was evaluated through transmission electron microscopy and standard colorimetric in vitro assays. RESULTS The miFe3O4 NPs, with a mean diameter of 8.45±0.14 nm, presented both magnetite and maghemite phases, and showed super-paramagnetic properties. Results suggest that miFe3O4 NPs are internalized by rBMECs through endocytosis and that they are able to cross the cells monolayer. The lowest miFe3O4 NPs concentration tested induced mid cytotoxicity in terms of 1) membrane integrity (LDH release) and 2) metabolic activity (MTS transformation). CONCLUSION Pollution-derived Fe3O4 NPs may interact and cross the microvascular endothelial cells forming the BBB and cause biological damage.
Collapse
Affiliation(s)
- Lorena Gárate-Vélez
- Advanced Materials Department, IPICYT, A.C., San Luis Potosí, S.L.P., México
| | - Claudia Escudero-Lourdes
- Laboratorio de Inmunotoxicología, Facultad de Ciencias Químicas, Centro de Investigación y Estudios de Posgrado (CIEP), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., México
| | - Daniela Salado-Leza
- Cátedras CONACYT, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., México
| | | | - Ildemar Alvarado-Morales
- Laboratorio de Inmunotoxicología, Facultad de Ciencias Químicas, Centro de Investigación y Estudios de Posgrado (CIEP), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., México
| | - Daniel Bahena
- Laboratorio Avanzado de Nanoscopía Electrónica, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Gustavo A. Madero, México
| | - Gladis Judith Labrada-Delgado
- Advanced Materials Department, IPICYT, A.C., San Luis Potosí, S.L.P., México.,National Laboratory Research for Nanoscience and Nanotechnology (LINAN), IPICYT, A.C., San Luis Potosí, S.L.P., México
| | | |
Collapse
|
8
|
Maher BA, Gonet T. Prolific shedding of magnetite nanoparticles from banknote surfaces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144490. [PMID: 33454475 DOI: 10.1016/j.scitotenv.2020.144490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Here, we use magnetic methods first to quantify the content of strongly magnetic particles of banknotes (US dollars, USD, and British pounds sterling, GBP), and then examine the possibility of their release from handled banknote surfaces. The content of magnetic particles, from magnetic remanence measurements, for the USD and paper GBP banknotes is high; greater, for example, than that in vehicle engine-exhaust emissions, and similar to that for airborne roadside particulate matter (PM). Our magnetic analyses of USD and GBP banknotes, and of the ink pigment widely used in their printing, reveal not only that the banknotes are highly magnetic, but also that strongly magnetic, nano-sized particles are readily and prolifically shed from their surfaces (especially from the USD banknotes). A common practice, prior to increased automation, was for bank tellers to count banknotes by licking a finger to adhere to each successive counted note, and thus speed up the manual counting process. Given the rate of particle shedding reported here, this traditional manual counting procedure must have resulted in prolific transfer of iron-rich nanoparticles both to the fingers and thence to the tongue. We hypothesise that, pre-automation, magnetite and other metal-bearing nanoparticles were repetitively and frequently ingested by bank tellers, and subsequently entered the brain directly via the taste nerve pathway, and/or indirectly via the systemic circulation and the neuroenteric system. This hypothesis may plausibly account for the reported and currently unexplained association between elevated neurodegeneration-related mortality odds ratios and this specific occupation.
Collapse
Affiliation(s)
- Barbara A Maher
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Tomasz Gonet
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom.
| |
Collapse
|
9
|
Variation in the concentration and regional distribution of magnetic nanoparticles in human brains, with and without Alzheimer's disease, from the UK. Sci Rep 2021; 11:9363. [PMID: 33931662 PMCID: PMC8087805 DOI: 10.1038/s41598-021-88725-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023] Open
Abstract
The presence of magnetic nanoparticles (MNPs) in the human brain was attributed until recently to endogenous formation; associated with a putative navigational sense, or with pathological mishandling of brain iron within senile plaques. Conversely, an exogenous, high-temperature source of brain MNPs has been newly identified, based on their variable sizes/concentrations, rounded shapes/surface crystallites, and co-association with non-physiological metals (e.g., platinum, cobalt). Here, we examined the concentration and regional distribution of brain magnetite/maghemite, by magnetic remanence measurements of 147 samples of fresh/frozen tissues, from Alzheimer's disease (AD) and pathologically-unremarkable brains (80-98 years at death) from the Manchester Brain Bank (MBB), UK. The magnetite/maghemite concentrations varied between individual cases, and different brain regions, with no significant difference between the AD and non-AD cases. Similarly, all the elderly MBB brains contain varying concentrations of non-physiological metals (e.g. lead, cerium), suggesting universal incursion of environmentally-sourced particles, likely across the geriatric blood-brain barrier (BBB). Cerebellar Manchester samples contained significantly lower (~ 9×) ferrimagnetic content compared with those from a young (29 years ave.), neurologically-damaged Mexico City cohort. Investigation of younger, variably-exposed cohorts, prior to loss of BBB integrity, seems essential to understand early brain impacts of exposure to exogenous magnetite/maghemite and other metal-rich pollution particles.
Collapse
|
10
|
Nandan A, Siddiqui NA, Kumar P. Estimation of indoor air pollutant during photocopy/printing operation: a computational fluid dynamics (CFD)-based study. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:3543-3573. [PMID: 32405897 DOI: 10.1007/s10653-020-00589-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Population form a homeostat with environment where they live and exchange continuous gas for their respiration, which is the primary pathway for the pollutants to enter into human metabolism. The pollution present indoor is due to multiple sources like electronic and electrical equipment, clothes, furniture and other anthropogenic activity. The concentration of these pollutants changes with time and depends mainly on source type (continuous/intermittent), time of the operation and release/ventilation/wind velocity/pollutant dispersion and anthropogenic activity. It has been observed that equipment like printers, printing machines, photocopiers, etc., releases several pollutants like volatile organic compounds (VOCs), ozone (O3), semi-volatile organic compounds, benzene (C6H6), toluene and suspended particulate matter during operation. This work represents the emissions of VOCs, benzene, and toluene during photocopy. The numerical validation of results was done using Fluent, which is an application-based software which helps in physical modeling describing air flow and effect of multiple parameter on it like temperature and no of printing/photocopy (in proposed experiment) with respect to time. It has been observed from the results that the emissions of VOCs, benzene, and toluene increase from 0.09 to 1.13 PPM, 0.17 to 1.87 PPM and 30 to 235 PPM, respectively, as the operating duration, temperature (35-40 °C) and rate of printing/photocopying increase (120-200/h), and it is because printer/photocopy machine uses heat and pressure to fix an image on the paper surface which subsequently result in higher emission. Multiple adverse health, safety and environmental impacts due to operation of photocopy/printing call for in-depth study, guidance, and monitoring of the workers occupationally associated with this operation for their well-being.
Collapse
Affiliation(s)
- Abhishek Nandan
- University of Petroleum and Energy Studies, Dehradun, India.
| | | | - Pankaj Kumar
- University of Petroleum and Energy Studies, Dehradun, India
| |
Collapse
|
11
|
Maher BA, González-Maciel A, Reynoso-Robles R, Torres-Jardón R, Calderón-Garcidueñas L. Iron-rich air pollution nanoparticles: An unrecognised environmental risk factor for myocardial mitochondrial dysfunction and cardiac oxidative stress. ENVIRONMENTAL RESEARCH 2020; 188:109816. [PMID: 32593898 PMCID: PMC7306213 DOI: 10.1016/j.envres.2020.109816] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/14/2020] [Accepted: 06/09/2020] [Indexed: 05/24/2023]
Abstract
Exposure to particulate air pollution is a major environmental risk factor for cardiovascular mortality and morbidity, on a global scale. Both acute and chronic cardiovascular impacts have so far been attributed to particulate-mediated oxidative stress in the lung and/or via 'secondary' pathways, including endothelial dysfunction, and inflammation. However, increasing evidence indicates the translocation of inhaled nanoparticles to major organs via the circulation. It is essential to identify the composition and intracellular targets of such particles, since these are likely to determine their toxicity and consequent health impacts. Of potential major concern is the abundant presence of iron-rich air pollution nanoparticles, emitted from a range of industry and traffic-related sources. Bioreactive iron can catalyse formation of damaging reactive oxygen species, leading to oxidative stress and cell damage or death. Here, we identify for the first time, in situ, that exogenous nanoparticles (~15-40 nm diameter) within myocardial mitochondria of young, highly-exposed subjects are dominantly iron-rich, and co-associated with other reactive metals including aluminium and titanium. These rounded, electrodense nanoparticles (up to ~ 10 x more abundant than in lower-pollution controls) are located within abnormal myocardial mitochondria (e.g. deformed cristae; ruptured membranes). Measurements of an oxidative stress marker, PrPC and an endoplasmic reticulum stress marker, GRP78, identify significant ventricular up-regulation in the highly-exposed vs lower-pollution controls. In shape/size/composition, the within-mitochondrial particles are indistinguishable from the iron-rich, combustion- and friction-derived nanoparticles prolific in roadside/urban environments, emitted from traffic/industrial sources. Incursion of myocardial mitochondria by inhaled iron-rich air pollution nanoparticles thus appears associated with mitochondrial dysfunction, and excess formation of reactive oxygen species through the iron-catalyzed Fenton reaction. Ventricular oxidative stress, as indicated by PrPC and GRP78 up-regulation, is evident even in children/young adults with minimal risk factors and no co-morbidities. These new findings indicate that myocardial iron overload resulting from inhalation of airborne, metal-rich nanoparticles is a plausible and modifiable environmental risk factor for cardiac oxidative stress and cardiovascular disease, on an international scale.
Collapse
Affiliation(s)
- B A Maher
- Centre for Environmental Magnetism and Palaeomagnetism, Lancaster Environment Centre, University of Lancaster, LA1 4YQ, UK.
| | | | | | - R Torres-Jardón
- Centro de Ciencias de La Atmósfera, Universidad Nacional Autónoma de México,04310, Ciudad de México, Mexico
| | - L Calderón-Garcidueñas
- The University of Montana, Missoula, MT, 59812, USA; Universidad Del Valle de México, 14370, Mexico
| |
Collapse
|
12
|
Gu J, Karrasch S, Salthammer T. Review of the characteristics and possible health effects of particles emitted from laser printing devices. INDOOR AIR 2020; 30:396-421. [PMID: 31944398 DOI: 10.1111/ina.12646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Many studies have shown that the use of laser printing devices (LPDs) contributes to the release of particles into the indoor environment. However, after more than two decades of research, the physicochemical properties of LPD-emitted particles and the possible health effects from exposure to particles are still heavily debated. We therefore carried out a critical review of the published studies around emissions and health effects of LPD-emitted particles, aiming at elucidating the nature of these particles and their potential health risks. Realizing the varying methodologies of the studies, a classification of the reviewed studies is adopted, resulting in three categories of emission studies (chamber experiment, office/room measurement, and photocopy shop measurement), and three types of health studies (in vitro/animal studies, human studies in the real world, and human studies in controlled settings). The strengths and limitations of each type of study are discussed in-depth, which in turn helps to understand the cause of divergent results. Overall, LPD-emitted particles are mainly condensed or secondary-formed semi-volatile organic compounds (SVOCs), while solid toner particles account for a very small fraction. The health risk from exposure to LPD-emitted particles is small compared with the health risk from exposure to ambient particles.
Collapse
Affiliation(s)
- Jianwei Gu
- Department of Material Analysis and Indoor Chemistry, Fraunhofer WKI, Braunschweig, Germany
| | - Stefan Karrasch
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Inner City Clinic, University Hospital of Munich, Ludwig-Maximilians-Universität, Munich, Germany
| | - Tunga Salthammer
- Department of Material Analysis and Indoor Chemistry, Fraunhofer WKI, Braunschweig, Germany
| |
Collapse
|
13
|
Morgan J, Bell R, Jones AL. Endogenous doesn't always mean innocuous: a scoping review of iron toxicity by inhalation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:107-136. [PMID: 32106786 DOI: 10.1080/10937404.2020.1731896] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ambient air pollution is a leading risk factor for the global burden of disease. One possible pathway of particulate matter (PM)-induced toxicity is through iron (Fe), the most abundant metal in the atmosphere. The aim of the review was to consider the complexity of Fe-mediated toxicity following inhalation exposure focusing on the chemical and surface reactivity of Fe as a transition metal and possible pathways of toxicity via reactive oxygen species (ROS) generation as well as considerations of size, morphology, and source of PM. A broad term search of 4 databases identified 2189 journal articles and reports examining exposure to Fe via inhalation in the past 10 years. These were sequentially analyzed by title, abstract and full-text to identify 87 articles publishing results on the toxicity of Fe-containing PM by inhalation or instillation to the respiratory system. The remaining 87 papers were examined to summarize research dealing with in vitro, in vivo and epidemiological studies involving PM containing Fe or iron oxide following inhalation or instillation. The major findings from these investigations are summarized and tabulated. Epidemiological studies showed that exposure to Fe oxide is correlated with an increased incidence of cancer, cardiovascular diseases, and several respiratory diseases. Iron PM was found to induce inflammatory effects in vitro and in vivo and to translocate to remote locations including the brain following inhalation. A potential pathway for the PM-containing Fe-mediated toxicity by inhalation is via the generation of ROS which leads to lipid peroxidation and DNA and protein oxidation. Our recommendations include an expansion of epidemiological, in vivo and in vitro studies, integrating research improvements outlined in this review, such as the method of particle preparation, cell line type, and animal model, to enhance our understanding of the complex biological interactions of these particles.
Collapse
Affiliation(s)
- Jody Morgan
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Robin Bell
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
| | - Alison L Jones
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| |
Collapse
|
14
|
Setyawati MI, Singh D, Krishnan SPR, Huang X, Wang M, Jia S, Goh BHR, Ho CG, Yusoff R, Kathawala MH, Poh TY, Ali NABM, Chotirmall SH, Aitken RJ, Riediker M, Christiani DC, Fang M, Bello D, Demokritou P, Ng KW. Occupational Inhalation Exposures to Nanoparticles at Six Singapore Printing Centers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2389-2400. [PMID: 31967798 DOI: 10.1021/acs.est.9b06984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Laser printers emit high levels of nanoparticles (PM0.1) during operation. Although it is well established that toners contain multiple engineered nanomaterials (ENMs), little is known about inhalation exposures to these nanoparticles and work practices in printing centers. In this report, we present a comprehensive inhalation exposure assessment of indoor microenvironments at six commercial printing centers in Singapore, the first such assessment outside of the United States, using real-time personal and stationary monitors, time-integrated instrumentation, and multiple analytical methods. Extensive presence of ENMs, including titanium dioxide, iron oxide, and silica, was detected in toners and in airborne particles collected from all six centers studied. We document high transient exposures to emitted nanoparticles (peaks of ∼500 000 particles/cm3, lung-deposited surface area of up to 220 μm2/cm3, and PM0.1 up to 16 μg/m3) with complex PM0.1 chemistry that included 40-60 wt % organic carbon, 10-15 wt % elemental carbon, and 14 wt % trace elements. We also record 271.6-474.9 pmol/mg of Environmental Protection Agency-priority polycyclic aromatic hydrocarbons. These findings highlight the potentially high occupational inhalation exposures to nanoparticles with complex compositions resulting from widespread usage of nano-enabled toners in the printing industry, as well as inadequate ENM-specific exposure control measures in these settings.
Collapse
Affiliation(s)
- Magdiel I Setyawati
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Dilpreet Singh
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health , Harvard University , 665 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Sriram P R Krishnan
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
- IOM Singapore , 237 Alexandra Road , 159929 , Singapore
| | - Xian Huang
- IOM Singapore , 237 Alexandra Road , 159929 , Singapore
| | - Mengjing Wang
- School of Civil and Environmental Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Shenglan Jia
- School of Civil and Environmental Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Bernice Huan Rong Goh
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Chin Guan Ho
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Ridhwan Yusoff
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Mustafa H Kathawala
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Tuang Yeow Poh
- Lee Kong Chian School of Medicine , Nanyang Technological University , 11 Mandalay Road , 308232 , Singapore
| | | | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine , Nanyang Technological University , 11 Mandalay Road , 308232 , Singapore
| | | | - Michael Riediker
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
- IOM Singapore , 237 Alexandra Road , 159929 , Singapore
| | - David C Christiani
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health , Harvard University , 665 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Mingliang Fang
- School of Civil and Environmental Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Dhimiter Bello
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health , Harvard University , 665 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Philip Demokritou
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health , Harvard University , 665 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Kee Woei Ng
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health , Harvard University , 665 Huntington Avenue , Boston , Massachusetts 02115 , United States
- Skin Research Institute of Singapore , Biomedical Science Institutes , Immunos, 8A Biomedical Grove , 138648 , Singapore
- Environmental Chemistry & Materials Centre, Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University , 1 Cleantech Loop, CleanTech One , 637141 , Singapore
| |
Collapse
|
15
|
Serfozo N, Ondráček J, Glytsos T, Lazaridis M. Evaluation of nanoparticle emissions from a laser printer in an experimental chamber and estimation of the human particle dose. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:13103-13117. [PMID: 29488200 DOI: 10.1007/s11356-018-1448-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to evaluate the nanoparticle emissions from a laser printer in a chamber in conjunction with emissions from printers in a print room (PR) and to characterize the processes that lead to increased nanoparticle concentrations, as well as to estimate the human particle dose of the printers' users. Measurements were conducted in a small stainless steel environmental chamber under controlled conditions, where the evolution of particle size distributions (PSDs) with time and printed pages was studied in detail. Printer was generating nanoparticles (vast majority ˂ 50 nm with mode on ~ 15 nm) primarily during cold startup. Previously, 1-week sampling was also done in a PR at the Technical University of Crete, where the tested laser printer is installed along with three other printers. Similarly, as it was observed in the chamber study, printers' startup on any given day was characterized by a sharp increase in particle number (PN) concentrations. Average measured PN concentrations during printing hours in PR (5.4 × 103 #/cm3) is similar to the one observed in chamber measurements (6.7 × 103 #/cm3). The ExDoM2 dosimetry model was further applied to calculate the deposition of particles in the human respiratory tract. More precisely, the increase in particle dose for an adult Caucasian male was 14.6- and 24.1-fold at printers' startup, and 1.2- and 5.2-fold during printing in the PR and experimental chamber, respectively, compared to the exposure dose at background concentrations (BCs).
Collapse
Affiliation(s)
- Norbert Serfozo
- School of Environmental Engineering, Technical University of Crete (TUC), Polytechneioupolis, 73100, Chania, Greece.
| | - Jakub Ondráček
- Institute of Chemical Process Fundamentals, v.v.i., Academy of Sciences of the Czech Republic, Rozvojová 135, 16502, Prague, Czech Republic
| | - Thodoros Glytsos
- School of Environmental Engineering, Technical University of Crete (TUC), Polytechneioupolis, 73100, Chania, Greece
| | - Mihalis Lazaridis
- School of Environmental Engineering, Technical University of Crete (TUC), Polytechneioupolis, 73100, Chania, Greece
| |
Collapse
|
16
|
Niranjan R, Thakur AK. The Toxicological Mechanisms of Environmental Soot (Black Carbon) and Carbon Black: Focus on Oxidative Stress and Inflammatory Pathways. Front Immunol 2017; 8:763. [PMID: 28713383 PMCID: PMC5492873 DOI: 10.3389/fimmu.2017.00763] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/16/2017] [Indexed: 12/29/2022] Open
Abstract
The environmental soot and carbon blacks (CBs) cause many diseases in humans, but their underlying mechanisms of toxicity are still poorly understood. Both are formed after the incomplete combustion of hydrocarbons but differ in their constituents and percent carbon contents. For the first time, “Sir Percival Pott” described soot as a carcinogen, which was subsequently confirmed by many others. The existing data suggest three main types of diseases due to soot and CB exposures: cancer, respiratory diseases, and cardiovascular dysfunctions. Experimental models revealed the involvement of oxidative stress, DNA methylation, formation of DNA adducts, and Aryl hydrocarbon receptor activation as the key mechanisms of soot- and CB-induced cancers. Metals including Si, Fe, Mn, Ti, and Co in soot also contribute in the reactive oxygen species (ROS)-mediated DNA damage. Mechanistically, ROS-induced DNA damage is further enhanced by eosinophils and neutrophils via halide (Cl− and Br−) dependent DNA adducts formation. The activation of pulmonary dendritic cells, T helper type 2 cells, and mast cells is crucial mediators in the pathology of soot- or CB-induced respiratory disease. Polyunsaturated fatty acids (PUFAs) were also found to modulate T cells functions in respiratory diseases. Particularly, telomerase reverse transcriptase was found to play the critical role in soot- and CB-induced cardiovascular dysfunctions. In this review, we propose integrated mechanisms of soot- and CB-induced toxicity emphasizing the role of inflammatory mediators and oxidative stress. We also suggest use of antioxidants and PUFAs as protective strategies against soot- and CB-induced disorders.
Collapse
Affiliation(s)
- Rituraj Niranjan
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology Kanpur, Kanpur, India
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
17
|
Pirela SV, Martin J, Bello D, Demokritou P. Nanoparticle exposures from nano-enabled toner-based printing equipment and human health: state of science and future research needs. Crit Rev Toxicol 2017; 47:678-704. [PMID: 28524743 DOI: 10.1080/10408444.2017.1318354] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Toner formulations used by laser printers (LP) and photocopiers (PC), collectively called "toner-based printing equipment" (TPE), are nano-enabled products (NEP) because they contain several engineered nanomaterials (ENM) that improve toner performance. It has been shown that during consumer use (printing), these ENM are released in the air, together with other semi-volatile organic nanoparticles, and newly formed gaseous co-pollutants such as volatile organic compounds (VOC). The aim of this review is to detail and analyze physico-chemical and morphological (PCM), as well as the toxicological properties of particulate matter (PM) emissions from TPE. The review covers evolution of science since the early 2000, when this printing technology first became a subject of public interest, as well as the lagging regulatory framework around it. Important studies that have significantly changed our understanding of these exposures are also highlighted. The review continues with a critical appraisal of the most up-to-date cellular, animal and human toxicological evidence on the potential adverse human health effects of PM emitted from TPE. We highlight several limitations of existing studies, including (i) use of high and often unrealistic doses in vitro or in vivo; (ii) unrealistically high-dose rates in intratracheal instillation studies; (iii) improper use of toners as surrogate for emitted nanoparticles; (iv) lack of or inadequate PCM characterization of exposures; and (v) lack of dosimetry considerations in in vitro studies. Presently, there is compelling evidence that the PM0.1 from TPE are biologically active and capable of inducing oxidative stress in vitro and in vivo, respiratory tract inflammation in vivo (in rats) and in humans, several endpoints of cellular injury in monocultures and co-cultures, including moderate epigenetic modifications in vitro. In humans, limited epidemiological studies report typically 2-3 times higher prevalence of chronic cough, wheezing, nasal blockage, excessive sputum production, breathing difficulties, and shortness of breath, in copier operators relative to controls. Such symptoms can be exacerbated during chronic exposures, and in individuals susceptible to inhaled pollutants. Thus respiratory, immunological, cardiovascular, and other disorders may be developed following such exposures; however, further toxicological and larger scale molecular epidemiological studies must be done to fully understand the mechanism of action of these TPE emitted nanoparticles. Major research gaps have also been identified. Among them, a methodical risk assessment based on "real world" exposures rather than on the toner particles alone needs to be performed to provide the much-needed data to establish regulatory guidelines protective of individuals exposed to TPE emissions at both the occupational and consumer level. Industry-wide molecular epidemiology as well as mechanistic animal and human studies are also urgently needed.
Collapse
Affiliation(s)
- Sandra Vanessa Pirela
- a Department of Environmental Health, Harvard T.H. Chan School of Public Health , Center for Nanotechnology and Nanotoxicology , Boston , MA , USA
| | - John Martin
- b Department of Public Health , UMass Lowell , Lowell , MA , USA
| | - Dhimiter Bello
- a Department of Environmental Health, Harvard T.H. Chan School of Public Health , Center for Nanotechnology and Nanotoxicology , Boston , MA , USA.,b Department of Public Health , UMass Lowell , Lowell , MA , USA
| | - Philip Demokritou
- a Department of Environmental Health, Harvard T.H. Chan School of Public Health , Center for Nanotechnology and Nanotoxicology , Boston , MA , USA
| |
Collapse
|
18
|
Kasi V, Elango N, Ananth S, Vembhu B, Poornima JG. Occupational exposure to photocopiers and their toners cause genotoxicity. Hum Exp Toxicol 2017; 37:205-217. [DOI: 10.1177/0960327117693068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Photocopier machines are inevitable office equipment, but they are also sources of air pollution. Millions of people across the world are involved in the operation and maintenance of photocopiers. We aimed to evaluate the potential genotoxic effects of exposure to photocopiers in photocopier operators and maintenance personnel by Comet assay. This study involved 50 photocopier operators, 61 maintenance personnel and 52 controls. Both the photocopier exposed groups exhibited significantly increased DNA damage when compared to controls. Cumulative exposure to photocopiers was the most significant contributor for genotoxicity ( p < 0.001). Genotoxicity among photocopier maintenance personnel may be due to the presence of carbon black, iron, silicon, magnetite and the high levels of other elements in the photocopier toners. Genotoxicity among photocopier operators might be due to exposure to high levels of particulate matter and volatile organic compounds emitted by photocopiers during operation. Research is essential to improve toner manufacturing processes and chemical composition of toners to reduce genotoxicity. Clean technologies are the need of the day to cut down on particulate matter and volatile organic compound emissions from photocopiers.
Collapse
Affiliation(s)
- V Kasi
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
- Department of Central Research Laboratory, Velammal Medical College Hospital & Research Institute, Anuppanadi, Madurai 625009, Tamil Nadu, India
| | - N Elango
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
- Department of Biochemistry, Dr. N. G. P Arts and Science College, Coimbatore, Tamil Nadu, India
| | - S Ananth
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - B Vembhu
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - JG Poornima
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| |
Collapse
|
19
|
Affiliation(s)
- Reto Gieré
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104-6316
| |
Collapse
|
20
|
Abstract
Biologically formed nanoparticles of the strongly magnetic mineral, magnetite, were first detected in the human brain over 20 y ago [Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Proc Natl Acad Sci USA 89(16):7683-7687]. Magnetite can have potentially large impacts on the brain due to its unique combination of redox activity, surface charge, and strongly magnetic behavior. We used magnetic analyses and electron microscopy to identify the abundant presence in the brain of magnetite nanoparticles that are consistent with high-temperature formation, suggesting, therefore, an external, not internal, source. Comprising a separate nanoparticle population from the euhedral particles ascribed to endogenous sources, these brain magnetites are often found with other transition metal nanoparticles, and they display rounded crystal morphologies and fused surface textures, reflecting crystallization upon cooling from an initially heated, iron-bearing source material. Such high-temperature magnetite nanospheres are ubiquitous and abundant in airborne particulate matter pollution. They arise as combustion-derived, iron-rich particles, often associated with other transition metal particles, which condense and/or oxidize upon airborne release. Those magnetite pollutant particles which are <∼200 nm in diameter can enter the brain directly via the olfactory bulb. Their presence proves that externally sourced iron-bearing nanoparticles, rather than their soluble compounds, can be transported directly into the brain, where they may pose hazard to human health.
Collapse
|
21
|
Pirela SV, Miousse IR, Lu X, Castranova V, Thomas T, Qian Y, Bello D, Kobzik L, Koturbash I, Demokritou P. Effects of Laser Printer-Emitted Engineered Nanoparticles on Cytotoxicity, Chemokine Expression, Reactive Oxygen Species, DNA Methylation, and DNA Damage: A Comprehensive in Vitro Analysis in Human Small Airway Epithelial Cells, Macrophages, and Lymphoblasts. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:210-9. [PMID: 26080392 PMCID: PMC4749083 DOI: 10.1289/ehp.1409582] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 06/12/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Engineered nanomaterials (ENMs) incorporated into toner formulations of printing equipment become airborne during consumer use. Although information on the complex physicochemical and toxicological properties of both toner powders and printer-emitted particles (PEPs) continues to grow, most toxicological studies have not used the actual PEPs but rather have primarily used raw toner powders, which are not representative of current exposures experienced at the consumer level during printing. OBJECTIVES We assessed the biological responses of a panel of human cell lines to PEPs. METHODS Three physiologically relevant cell lines--small airway epithelial cells (SAECs), macrophages (THP-1 cells), and lymphoblasts (TK6 cells)--were exposed to PEPs at a wide range of doses (0.5-100 μg/mL) corresponding to human inhalation exposure durations at the consumer level of 8 hr or more. Following treatment, toxicological parameters reflecting distinct mechanisms were evaluated. RESULTS PEPs caused significant membrane integrity damage, an increase in reactive oxygen species (ROS) production, and an increase in pro-inflammatory cytokine release in different cell lines at doses equivalent to exposure durations from 7.8 to 1,500 hr. Furthermore, there were differences in methylation patterns that, although not statistically significant, demonstrate the potential effects of PEPs on the overall epigenome following exposure. CONCLUSIONS The in vitro findings obtained in this study suggest that laser printer-emitted engineered nanoparticles may be deleterious to lung cells and provide preliminary evidence of epigenetic modifications that might translate to pulmonary disorders.
Collapse
Affiliation(s)
- Sandra V. Pirela
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Isabelle R. Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Xiaoyan Lu
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Vincent Castranova
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Treye Thomas
- Office of Hazard Identification and Reduction, U.S. Consumer Product Safety Commission, Rockville, Maryland, USA
| | - Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Dhimiter Bello
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Department of Work Environment, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Lester Kobzik
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Philip Demokritou
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Address correspondence to P. Demokritou, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Room 1310B, Boston, MA 02115 USA. (617) 432-3481. E-mail:
| |
Collapse
|
22
|
Desmond C, Verdun-Esquer C, Rinaldo M, Courtois A, Labadie M. Mise au point sur les risques toxiques lors de l’utilisation professionnelle des photocopieurs. ARCH MAL PROF ENVIRO 2015. [DOI: 10.1016/j.admp.2015.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Cabanelas ITD, Zwart MVD, Kleinegris DMM, Barbosa MJ, Wijffels RH. Rapid method to screen and sort lipid accumulating microalgae. BIORESOURCE TECHNOLOGY 2015; 184:47-52. [PMID: 25453436 DOI: 10.1016/j.biortech.2014.10.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 05/21/2023]
Abstract
The present work established an efficient staining method for fluorescence activated cell sorting (FACS) with Chlorococcum littorale maintaining cellular viability. The method was designed to detect high-lipid cells and to guarantee cellular viability. BODIPY505/515 (BP) was more suitable to FACS when compared to Nile red. The optimum concentrations were 0.4 μg ml(-1) of BP, 0.1% DMSO or 0.35% ethanol. Both ethanol and DMSO were equally efficient and assured cellular viability after the staining and sorting. Here a method is presented to rapidly screen and sort lipid rich cells of C. littorale with FACS, which can be used to produce new inoculum with increased cellular lipid content.
Collapse
Affiliation(s)
- Iago Teles Dominguez Cabanelas
- Wageningen University, Bioprocess Engineering, AlgaePARC, P.O. Box 8128, 6700 EV Wageningen, Netherlands; Wageningen University and Research Center, Food and Biobased Research, AlgaePARC, Bornsesteeg 10, Building 112, 6721NG Bennekom, Netherlands.
| | - Mathijs van der Zwart
- Wageningen University, Bioprocess Engineering, AlgaePARC, P.O. Box 8128, 6700 EV Wageningen, Netherlands
| | - Dorinde M M Kleinegris
- Wageningen University and Research Center, Food and Biobased Research, AlgaePARC, Bornsesteeg 10, Building 112, 6721NG Bennekom, Netherlands
| | - Maria J Barbosa
- Wageningen University and Research Center, Food and Biobased Research, AlgaePARC, Bornsesteeg 10, Building 112, 6721NG Bennekom, Netherlands
| | - René H Wijffels
- Wageningen University, Bioprocess Engineering, AlgaePARC, P.O. Box 8128, 6700 EV Wageningen, Netherlands
| |
Collapse
|
24
|
Pirela SV, Pyrgiotakis G, Bello D, Thomas T, Castranova V, Demokritou P. Development and characterization of an exposure platform suitable for physico-chemical, morphological and toxicological characterization of printer-emitted particles (PEPs). Inhal Toxicol 2015; 26:400-8. [PMID: 24862974 DOI: 10.3109/08958378.2014.908987] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An association between laser printer use and emissions of particulate matter (PM), ozone and volatile organic compounds has been reported in recent studies. However, the detailed physico-chemical, morphological and toxicological characterization of these printer-emitted particles (PEPs) and possible incorporation of engineered nanomaterials into toner formulations remain largely unknown. In this study, a printer exposure generation system suitable for the physico-chemical, morphological, and toxicological characterization of PEPs was developed and used to assess the properties of PEPs from the use of commercially available laser printers. The system consists of a glovebox type environmental chamber for uninterrupted printer operation, real-time and time-integrated particle sampling instrumentation for the size fractionation and sampling of PEPs and an exposure chamber for inhalation toxicological studies. Eleven commonly used laser printers were evaluated and ranked based on their PM emission profiles. Results show PM peak emissions are brand independent and varied between 3000 to 1 300 000 particles/cm³, with modal diameters ranging from 49 to 208 nm, with the majority of PEPs in the nanoscale (<100 nm) size. Furthermore, it was shown that PEPs can be affected by certain operational parameters and printing conditions. The release of nanoscale particles from a nano-enabled product (printer toner) raises questions about health implications to users. The presented PEGS platform will help in assessing the toxicological profile of PEPs and the link to the physico-chemical and morphological properties of emitted PM and toner formulations.
Collapse
Affiliation(s)
- Sandra V Pirela
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health , Boston, MA , USA
| | | | | | | | | | | |
Collapse
|
25
|
Pirela SV, Sotiriou GA, Bello D, Shafer M, Bunker KL, Castranova V, Thomas T, Demokritou P. Consumer exposures to laser printer-emitted engineered nanoparticles: A case study of life-cycle implications from nano-enabled products. Nanotoxicology 2014; 9:760-8. [PMID: 25387251 DOI: 10.3109/17435390.2014.976602] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It is well established that printers emit nanoparticles during their operation. To-date, however, the physicochemical and toxicological characterization of "real world" printer-emitted nanoparticles (PEPs) remains incomplete, hampering proper risk assessment efforts. Here, we investigate our earlier hypothesis that engineered nanomaterials (ENMs) are used in toners and ENMs are released during printing (consumer use). Furthermore, we conduct a detailed physicochemical and morphological characterization of PEPs in support of ongoing toxicological assessment. A comprehensive suite of state of the art analytical methods and tools was employed for the physicochemical and morphological characterization of 11 toners widely utilized in printers from major printer manufacturers and their PEPs. We confirmed that a number of ENMs incorporated into toner formulations (e.g. silica, alumina, titania, iron oxide, zinc oxide, copper oxide, cerium oxide, carbon black among others) and released into the air during printing. All evaluated toners contained large amounts of organic carbon (OC, 42-89%), metals/metal oxides (1-33%), and some elemental carbon (EC, 0.33-12%). The PEPs possess a composition similar to that of toner and contained 50-90% OC, 0.001-0.5% EC and 1-3% metals. While the chemistry of the PEPs generally reflected that of their toners, considerable differences are documented indicative of potential transformations taking place during consumer use (printing). We conclude that: (i) Routine incorporation of ENMs in toners classifies them as nano-enabled products (NEPs); (ii) These ENMs become airborne during printing; (iii) The chemistry of PEPs is complex and it reflects that of the toner and paper. This work highlights the importance of understanding life-cycle (LC) nano-EHS implications of NEPs and assessing real world exposures and associated toxicological properties rather than focusing on "raw" materials used in the synthesis of an NEP.
Collapse
Affiliation(s)
- Sandra V Pirela
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, School of Public Health, Harvard University , Boston, MA , USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
de Oliveira Alves N, de Souza Hacon S, de Oliveira Galvão MF, Simões Peixotoc M, Artaxo P, de Castro Vasconcellos P, de Medeiros SRB. Genetic damage of organic matter in the Brazilian Amazon: a comparative study between intense and moderate biomass burning. ENVIRONMENTAL RESEARCH 2014; 130:51-58. [PMID: 24525281 DOI: 10.1016/j.envres.2013.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 11/14/2013] [Accepted: 12/24/2013] [Indexed: 06/03/2023]
Abstract
BACKGROUND The biomass burning that occurs in the Amazon region has an adverse effect on environmental and human health. However, in this region, there are limited studies linking atmospheric pollution and genetic damage. OBJECTIVE We conducted a comparative study during intense and moderate biomass burning periods focusing on the genetic damage and physicochemical analyses of the particulate matter (PM). METHOD PM and black carbon (BC) were determined; organic compounds were identified and quantified using gas chromatography with flame ionization detection, the cyto-genotoxicity test was performed using two bioassays: cytokinesis-block micronucleus (CBMN) in A549 cells and Tradescantia pallida micronucleus (Trad-MCN) assay. RESULTS The PM10 concentrations were lower than the World Health Organization air quality standard for 24h. The n-alkanes analyses indicate anthropogenic and biogenic influences during intense and moderate biomass burning periods, respectively. Retene was identified as the most abundant polycyclic aromatic hydrocarbon during both sampling periods. Carcinogenic and mutagenic compounds were identified. The genotoxic analysis through CBMN and Trad-MCN tests showed that the frequency MCN from the intense burning period is significantly higher compared to moderate burning period. CONCLUSIONS This is the first study using human alveolar cells to show the genotoxic effects of organic PM from biomass burning samples collected in Amazon region. The genotoxicity of PM can be associated with the presence of several mutagenic and carcinogenic compounds, mainly benzo[a]pyrene. These findings have potential implications for the development of pollution abatement strategies and can minimize negative impact on health.
Collapse
Affiliation(s)
| | | | | | - Milena Simões Peixotoc
- Cellular Biology and Genetics Department, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Paulo Artaxo
- Institute of Physics, University of São Paulo, São Paulo, Brazil
| | | | - Silvia Regina Batistuzzo de Medeiros
- Biochemistry Department, Federal University of Rio Grande do Norte, Natal, Brazil; Cellular Biology and Genetics Department, Federal University of Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
27
|
Moroni B, Viti C, Cappelletti D. Exposure vs toxicity levels of airborne quartz, metal and carbon particles in cast iron foundries. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2014; 24:42-50. [PMID: 23385294 DOI: 10.1038/jes.2013.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 12/04/2012] [Indexed: 06/01/2023]
Abstract
Aerosol dust samples and quartz raw materials from different working stations in foundry plants were characterized in order to assess the health risk in this working environment. Samples were analysed by scanning and transmission electron microscopy coupled with image analysis and microanalysis, and by cathodoluminescence spectroscopy. In addition, the concentration and the solubility degree of Fe and other metals of potential health effect (Mn, Zn and Pb) in the bulk samples were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). Overall, the results indicate substantial changes in quartz crystal structure and texture when passing from the raw material to the airborne dust, which include lattice defects, non-bridging oxygen hole centres and contamination of quartz grains by metal and/or graphite particles. All these aspects point towards the relevance of surface properties on reactivity. Exposure doses have been estimated based on surface area, and compared with threshold levels resulting from toxicology. The possible synergistic effects of concomitant exposure to inhalable magnetite, quartz and/or graphite particles in the same working environment have been properly remarked.
Collapse
Affiliation(s)
- Beatrice Moroni
- Dipartimento di Ingegneria Civile e Ambientale, University of Perugia, Via Duranti 93, Perugia, Italy
| | - Cecilia Viti
- Dipartimento di Scienze della Terra, University of Siena, Via Laterina 8, Siena, Italy
| | - David Cappelletti
- 1] Dipartimento di Ingegneria Civile e Ambientale, University of Perugia, Via Duranti 93, Perugia, Italy [2] SMAArt Research Center, Dipartimento di Chimica, University of Perugia, Via Elce di Sotto 8, Perugia, Italy
| |
Collapse
|
28
|
Elango N, Kasi V, Vembhu B, Poornima JG. Chronic exposure to emissions from photocopiers in copy shops causes oxidative stress and systematic inflammation among photocopier operators in India. Environ Health 2013; 12:78. [PMID: 24025094 PMCID: PMC3849716 DOI: 10.1186/1476-069x-12-78] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/30/2013] [Indexed: 05/02/2023]
Abstract
BACKGROUND We assessed indoor air quality in photocopier centers and investigated whether occupational exposure to emissions from photocopiers is associated with decline in lung function or changes in haematological parameters, oxidative stress and inflammatory status. METHODS Indoor air quality was monitored in five photocopier centers. Pulmonary function was assessed by spirometry in 81 photocopier operators (64 male and 17 female) and 43 healthy control (31 male and 12 female) subjects. Hematological status, serum thio-barbituric acid reactive substances (TBARS), total ferric reducing antioxidant capacity (FRAC), leukotriene B4 (LTB4), 8-isoprostane, C reactive protein (CRP), interleukin 8 (IL-8), clara cell protein (CC-16), intercellular adhesion molecule 1 (ICAM-1) and eosinophilic cationic protein (ECP) were analyzed. Relationships between cumulative exposure, lung function and inflammatory markers were assessed. RESULTS PM10 and PM2.5 were above the permissible levels in all the photocopier centers, whereas the levels of carbon monoxide, nitrogen oxides, ozone, sulphur dioxide, lead, arsenic, nickel, ammonia, benzene and benzo(a)pyrene were within Indian ambient air quality standards. Lung function was similar in the photocopier operators and control subjects. Serum TBARS was significantly higher and FRAC was lower among photocopier operators when compared to healthy controls. Plasma IL-8, LTB4, ICAM-1 and ECP were significantly higher in the photocopier exposed group. CONCLUSIONS Photocopiers emit high levels of particulate matter. Long term exposure to emissions from photocopiers was not associated with decreased lung function, but resulted in high oxidative stress and systemic inflammation leading to high risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Nithya Elango
- Department of Biochemistry, Biotechnology and Bioinformatics Avinashilingam Institute for Home Science and Higher Education for Women Coimbatore, Tamilnadu, India
| | - Vallikkannu Kasi
- Department of Biochemistry, Biotechnology and Bioinformatics Avinashilingam Institute for Home Science and Higher Education for Women Coimbatore, Tamilnadu, India
| | - Bhuvaneswari Vembhu
- Department of Biochemistry, Biotechnology and Bioinformatics Avinashilingam Institute for Home Science and Higher Education for Women Coimbatore, Tamilnadu, India
| | - Jeyanthi Govindasamy Poornima
- Department of Biochemistry, Biotechnology and Bioinformatics Avinashilingam Institute for Home Science and Higher Education for Women Coimbatore, Tamilnadu, India
| |
Collapse
|
29
|
Khatri M, Bello D, Pal AK, Cohen JM, Woskie S, Gassert T, Lan J, Gu AZ, Demokritou P, Gaines P. Evaluation of cytotoxic, genotoxic and inflammatory responses of nanoparticles from photocopiers in three human cell lines. Part Fibre Toxicol 2013; 10:42. [PMID: 23968360 PMCID: PMC3766213 DOI: 10.1186/1743-8977-10-42] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 08/14/2013] [Indexed: 11/25/2022] Open
Abstract
Background Photocopiers emit nanoparticles with complex chemical composition. Short-term exposures to modest nanoparticle concentrations triggered upper airway inflammation and oxidative stress in healthy human volunteers in a recent study. To further understand the toxicological properties of copier-emitted nanoparticles, we studied in-vitro their ability to induce cytotoxicity, pro-inflammatory cytokine release, DNA damage, and apoptosis in relevant human cell lines. Methods Three cell types were used: THP-1, primary human nasal- and small airway epithelial cells. Following collection in a large volume photocopy center, nanoparticles were extracted, dispersed and characterized in the cell culture medium. Cells were doped at 30, 100 and 300 μg/mL administered doses for up to 24 hrs. Estimated dose delivered to cells, was ~10% and 22% of the administered dose at 6 and 24 hrs, respectively. Gene expression analysis of key biomarkers was performed using real time quantitative PCR (RT-qPCR) in THP-1 cells at 5 μg nanoparticles/mL for 6-hr exposure for confirmation purposes. Results Multiple cytokines, GM-CSF, IL-1β, IL-6, IL-8, IFNγ, MCP-1, TNF-α and VEGF, were significantly elevated in THP-1 cells in a dose-dependent manner. Gene expression analysis confirmed up-regulation of the TNF-α gene in THP-1 cells, consistent with cytokine findings. In both primary epithelial cells, cytokines IL-8, VEGF, EGF, IL-1α, TNF-α, IL-6 and GM-CSF were significantly elevated. Apoptosis was induced in all cell lines in a dose-dependent manner, consistent with the significant up-regulation of key apoptosis-regulating genes P53 and Casp8 in THP-1 cells. No significant DNA damage was found at any concentration with the comet assay. Up-regulation of key DNA damage and repair genes, Ku70 and Rad51, were also observed in THP-1 cells, albeit not statistically significant. Significant up-regulation of the key gene HO1 for oxidative stress, implicates oxidative stress induced by nanoparticles. Conclusions Copier-emitted nanoparticles induced the release of pro-inflammatory cytokines, apoptosis and modest cytotoxicity but no DNA damage in all three-human cell lines. Taken together with gene expression data in THP-1 cells, we conclude that these nanoparticles are directly responsible for inflammation observed in human volunteers. Further toxicological evaluations of these nanoparticles, including across different toner formulations, are warranted.
Collapse
Affiliation(s)
- Madhu Khatri
- Department of Work Environment, One University Avenue, University of Massachusetts Lowell, Lowell, MA 0185, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pirela S, Molina R, Watson C, Cohen JM, Bello D, Demokritou P, Brain J. Effects of copy center particles on the lungs: a toxicological characterization using a Balb/c mouse model. Inhal Toxicol 2013; 25:498-508. [PMID: 23895351 DOI: 10.3109/08958378.2013.806614] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Printers and photocopiers release respirable particles into the air. Engineered nanomaterials (ENMs) have been recently incorporated into toner formulations but their potential toxicological effects have not been well studied. OBJECTIVE To evaluate the biological responses to copier-emitted particles in the lungs using a mouse model. METHODS Particulate matter (PM) from a university copy center was sampled and fractionated into three distinct sizes, two of which (PM0.1 and PM0.1-2.5) were evaluated in this study. The particles were extracted and dispersed in deionized water and RPMI/10% FBS. Hydrodynamic diameter and zeta potential were evaluated by dynamic light scattering. The toxicological potential of these particles was studied using 8-week-old male Balb/c mice. Mice were intratracheally instilled with 0.2, 0.6, 2.0 mg/kg bw of either the PM0.1 and PM0.1-2.5 size fractions. Fe2O3 and welding fumes were used as comparative materials, while RPMI/10% FBS was used as the vehicle control. Bronchoalveolar lavage (BAL) was performed 24 hours post-instillation. The BAL fluid was analyzed for total and differential cell counts, and biochemical markers of injury and inflammation. RESULTS Particle size- and dose-dependent pulmonary effects were found. Specifically, mice instilled with PM0.1 (2.0 mg/kg bw) had significant increases in neutrophil number, lactate dehydrogenase and albumin compared to vehicle control. Likewise, pro-inflammatory cytokines were elevated in mice exposed to PM0.1 (2.0 mg/kg bw) compared to other groups. CONCLUSION Our results indicate that exposure to copier-emitted nanoparticles may induce lung injury and inflammation. Further exposure assessment and toxicological investigations are necessary to address this emerging environmental health pollutant.
Collapse
Affiliation(s)
- Sandra Pirela
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Corsini E, Budello S, Marabini L, Galbiati V, Piazzalunga A, Barbieri P, Cozzutto S, Marinovich M, Pitea D, Galli CL. Comparison of wood smoke PM2.5 obtained from the combustion of FIR and beech pellets on inflammation and DNA damage in A549 and THP-1 human cell lines. Arch Toxicol 2013; 87:2187-99. [DOI: 10.1007/s00204-013-1071-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 05/02/2013] [Indexed: 01/26/2023]
|
32
|
Könczöl M, Weiss A, Stangenberg E, Gminski R, Garcia-Käufer M, Gieré R, Merfort I, Mersch-Sundermann V. Cell-cycle changes and oxidative stress response to magnetite in A549 human lung cells. Chem Res Toxicol 2013; 26:693-702. [PMID: 23607891 DOI: 10.1021/tx300503q] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In a recent study, magnetite was investigated for its potential to induce toxic effects and influence signaling pathways. It was clearly demonstrated that ROS formation leads to mitochondrial damage and genotoxic effects in A549 cells. On the basis of these findings, we wanted to elucidate the origin of magnetite-mediated ROS formation and its influence on the cell cycle of A549 and H1299 human lung epithelial cells. Concentration- and size-dependent superoxide formation, measured by electron paramagnetic resonance (EPR), was observed. Furthermore, we could show that the GSH level decreased significantly after exposure to magnetite particles, while catalase (CAT) activity was increased. These effects were also dependent on particle size, albeit less pronounced than those observed with EPR. We were able to show that incubation of A549 cells prior to particle treatment with diphenyleneiodonium (DPI), a NADPH-oxidase (NOX) inhibitor, leads to decreased ROS formation, but this effect was not observed for the NOX inhibitor apocynin. Soluble iron does not contribute considerably to ROS production. Analysis of cell-cycle distribution revealed a pronounced sub-G1 peak, which cannot be linked to increased cell death. Western blot analysis did not show activation of p53 but upregulation of p21 in A549. Here, we were unexpectedly able to demonstrate that exposure to magnetite leads to p21-mediated G1-like arrest. This has been reported previously only for low concentrations of microtubule stabilization drugs. Importantly, the arrested sub-G1 cells were viable and showed no caspase 3/7 activation.
Collapse
Affiliation(s)
- Mathias Könczöl
- Department of Environmental Health Sciences, University Medical Center Freiburg , Freiburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
The CULTEX RFS: a comprehensive technical approach for the in vitro exposure of airway epithelial cells to the particulate matter at the air-liquid interface. BIOMED RESEARCH INTERNATIONAL 2013; 2013:734137. [PMID: 23509768 PMCID: PMC3581133 DOI: 10.1155/2013/734137] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/23/2012] [Accepted: 12/16/2012] [Indexed: 11/17/2022]
Abstract
The EU Regulation on Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) demands the implementation of alternative methods for analyzing the hazardous effects of chemicals including particulate formulations. In the field of inhalation toxicology, a variety of in vitro models have been developed for such studies. To simulate the in vivo situation, an adequate exposure device is necessary for the direct exposure of cultivated lung cells at the air-liquid interface (ALI). The CULTEX RFS fulfills these requirements and has been optimized for the exposure of cells to atomized suspensions, gases, and volatile compounds as well as micro- and nanosized particles. This study provides information on the construction and functional aspects of the exposure device. By using the Computational Fluid Dynamics (CFD) analysis, the technical design was optimized to realize a stable, reproducible, and homogeneous deposition of particles. The efficiency of the exposure procedure is demonstrated by exposing A549 cells dose dependently to lactose monohydrate, copper(II) sulfate, copper(II) oxide, and micro- and nanoparticles. All copper compounds induced cytotoxic effects, most pronounced for soluble copper(II) sulfate. Micro- and nanosized copper(II) oxide also showed a dose-dependent decrease in the cell viability, whereby the nanosized particles decreased the metabolic activity of the cells more severely.
Collapse
|
34
|
Oxidative stress and inflammatory response to printer toner particles in human epithelial A549 lung cells. Toxicol Lett 2013. [DOI: 10.1016/j.toxlet.2012.11.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
35
|
Switalla S, Knebel J, Ritter D, Dasenbrock C, Krug N, Braun A, Sewald K. Determination of genotoxicity by the Comet assay applied to murine precision-cut lung slices. Toxicol In Vitro 2012; 27:798-803. [PMID: 23274917 DOI: 10.1016/j.tiv.2012.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 12/30/2022]
Abstract
Precision-cut lung slices (PCLSs) are an organotypic lung model that is widely used in pharmacological, physiological, and toxicological studies. Genotoxicity testing, as a pivotal part of early risk assessment, is currently established in vivo in various organs including lung, brain, or liver, and in vitro in cell lines or primary cells. The aim of the present study was to provide the three-dimensional organ culture PCLS as a new ex vivo model for determination of genotoxicity using the Comet assay. Murine PCLS were exposed to increasing concentrations of ethyl methane sulfonate 'EMS' (0.03-0.4%) and formalin (0.5-5mM). Tissue was subsequently dissociated, and DNA single-strand breaks were quantified using the Comet assay. Number of viable dissociated lung cells was between 4×10(5) and 6.7×10(5)cells/slice. Even treatment with EMS did not induce toxicity compared to untreated tissue control. As expected, DNA single-strand breaks were increased dose-dependently and significantly after exposure to EMS. Here, tail length rose from 24μm to 75μm. In contrast, formalin resulted in a significant induction of DNA cross-links. The effects induced by EMS and formalin demonstrate the usefulness of PCLS as a new ex vivo lung model for genotoxicity testing in the early risk assessment of airborne substances in the future.
Collapse
Affiliation(s)
- S Switalla
- Fraunhofer Institute for Toxicology and Experimental Medicine, Airway Immunology, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Könczöl M, Goldenberg E, Ebeling S, Schäfer B, Garcia-Käufer M, Gminski R, Grobéty B, Rothen-Rutishauser B, Merfort I, Gieré R, Mersch-Sundermann V. Cellular uptake and toxic effects of fine and ultrafine metal-sulfate particles in human A549 lung epithelial cells. Chem Res Toxicol 2012; 25:2687-703. [PMID: 23116259 DOI: 10.1021/tx300333z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ambient airborne particulate matter is known to cause various adverse health effects in humans. In a recent study on the environmental impacts of coal and tire combustion in a thermal power station, fine crystals of PbSO(4) (anglesite), ZnSO(4)·H(2)O (gunningite), and CaSO(4) (anhydrite) were identified in the stack emissions. Here, we have studied the toxic potential of these sulfate phases as particulates and their uptake in human alveolar epithelial cells (A549). Both PbSO(4) and CaSO(4) yielded no loss of cell viability, as determined by the WST-1 and NR assays. In contrast, a concentration-dependent increase in cytotoxicity was observed for Zn sulfate. For all analyzed sulfates, an increase in the production of reactive oxygen species (ROS), assessed by the DCFH-DA assay and EPR, was observed, although to a varying extent. Again, Zn sulfate was the most active compound. Genotoxicity assays revealed concentration-dependent DNA damage and induction of micronuclei for Zn sulfate and, to a lower extent, for CaSO(4), whereas only slight effects could be found for PbSO(4). Moreover, changes of the cell cycle were observed for Zn sulfate and PbSO(4). It could be shown further that Zn sulfate increased the nuclear factor kappa-B (NF-κB) DNA binding activity and activated JNK. During our TEM investigations, no effect on the appearance of the A549 cells exposed to CaSO(4) compared to the nonexposed cells was observed, and in our experiments, only one CaSO(4) particle was detected in the cytoplasm. In the case of exposure to Zn sulfate, no particles were found in the cytoplasm of A549 cells, but we observed a concentration-dependent increase in the number and size of dark vesicles (presumably zincosomes). After exposure to PbSO(4), the A549 cells contained isolated particles as well as agglomerates both in vesicles and in the cytoplasm. Since these metal-sulfate particles are emitted into the atmosphere via the flue gas of coal-fired power stations, they may be globally abundant. Therefore, our study is of direct relevance to populations living near such power plants.
Collapse
Affiliation(s)
- Mathias Könczöl
- Department of Environmental Health Sciences, University Medical Center Freiburg , Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tang T, Hurraß J, Gminski R, Mersch-Sundermann V. Fine and ultrafine particles emitted from laser printers as indoor air contaminants in German offices. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:3840-3849. [PMID: 22095199 DOI: 10.1007/s11356-011-0647-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 10/18/2011] [Indexed: 05/28/2023]
Abstract
PURPOSE Various publications indicate that the operation of laser printers and photocopiers may be associated with health effects due to the release of gaseous components and fine and ultrafine particles (UFP). However, only sparse studies are available that evaluate the possible exposure of office workers to printer emissions under real conditions. Therefore, the aim of our study was to assess the exposure of office workers to particulate matter released from laser printers and photocopiers. METHODS Concentrations of fine particles and UFP were measured before, during, and after the operation of laser printing devices in 63 office rooms throughout Germany. Additionally, the particles were characterized by electron microscopy and energy-dispersive X-ray spectroscopy. RESULTS A significant increase of fine particles and UFP was identified in ambient workplace air during and after the printing processes. Particle fractions between 0.23 and 20 μm emitted by the office machines significantly affect particle mass concentrations while printing 500 pages, i.e., during the printing process, PM(0.23-20), PM(2.5), and PM(10) concentrations increased in 43 out of the evaluated 62 office rooms investigated. Additionally, a significant increase was observed in submicrometer particles, with median particle number concentrations of 6,503 particles/cm(3) before and 18,060 particles/cm(3) during the printing process. CONCLUSIONS Our data indicate that laser printers and photocopiers could be a relevant source of fine particles and particularly UFP in office rooms.
Collapse
Affiliation(s)
- Tao Tang
- Department of Environmental Health Sciences, University Medical Center Freiburg, Breisacher Str. 115b, 79106, Freiburg, Germany
| | | | | | | |
Collapse
|
38
|
Bello D, Martin J, Santeufemio C, Sun Q, Lee Bunker K, Shafer M, Demokritou P. Physicochemical and morphological characterisation of nanoparticles from photocopiers: implications for environmental health. Nanotoxicology 2012; 7:989-1003. [PMID: 22551088 DOI: 10.3109/17435390.2012.689883] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Several reports link printing and photocopying with genotoxicity, immunologic and respiratory diseases. Photocopiers and printers emit nanoparticles, which may be involved in these diseases. The physicochemical and morphological composition of these emitted nanoparticles, which is poorly understood and is critical for toxicological evaluations, was assessed in this study using both real-time instrumentation and analytical methods. Tests included elemental composition (40 metals), semi-volatile organics (100 compounds) and single particle analysis, using multiple high-sensitivity/resolution techniques. Identical analyses were performed on the toners and dust collected from copier's exhaust filter. Engineered nanoparticles, including titanium dioxide, iron oxide and fumed silica, and several metals were found in toners and airborne nanoscale fraction. Chemical composition of airborne nanoscale fraction was complex and reflected toner chemistry. These findings are important in understanding the origin and toxicology of such nanoparticles. Further investigation of their chemistry, larger scale exposure studies and thorough toxicological characterisation of emitted nanoparticles is needed.
Collapse
Affiliation(s)
- Dhimiter Bello
- University of Massachusetts Lowell, One University Avenue , Lowell, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Tang T, Gminski R, Könczöl M, Modest C, Armbruster B, Mersch-Sundermann V. Investigations on cytotoxic and genotoxic effects of laser printer emissions in human epithelial A549 lung cells using an air/liquid exposure system. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:125-135. [PMID: 22069140 DOI: 10.1002/em.20695] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/23/2011] [Indexed: 05/31/2023]
Abstract
Exposure to emissions from laser printers during the printing process is commonplace worldwide, both in the home and workplace environment. In the present study, cytotoxic and genotoxic effects of the emission from five low to medium-throughput laser printers were investigated with respect to the release of ozone (O(3) ), volatile organic compounds (VOC), particulate matter (PM), and submicrometer particles (SMP) during standby and operation. Experiments were conducted in a 1 m(3) emission chamber connected to a Vitrocell® exposure system. Cytotoxicity was determined by the WST-1 assay and genotoxicity by the micronucleus test in human A549 lung cells. The five laser printers emitted varying but generally small amounts of O(3) , VOC, and PM. VOC emissions included 13 compounds with total VOC concentrations ranging from 95 to 280 μg/m(3) (e.g., 2-butanone, hexanal, m,p-xylene, and o-xylene). Mean PM concentrations were below 2.4 μg/m(3). SMP number concentration levels during standby ranged from 9 to 26 particles/cm(3). However, three of the printers generated a 90 to 16 × 10(3) -fold increase of SMP during the printing process (maximum 294,460 particles/cm(3)). Whereas none of the printer emissions were found to cause cytotoxicity, emissions from two printers induced formation of micronuclei (P < 0.001), thus providing evidence for genotoxicity. As yet, differences in biological activity cannot be explained on the basis of the specific emission characteristics of the different printers. Because laser printing technology is widely used, studies with additional cytogenetic endpoints are necessary to confirm the DNA-damaging potency and to identify emission components responsible for genotoxicity.
Collapse
Affiliation(s)
- Tao Tang
- Department of Environmental Health Sciences, Freiburg University Medical Center, Institut für Umweltmedizin und Krankenhaushygiene, Freiburg im Breisgau, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Könczöl M, Ebeling S, Goldenberg E, Treude F, Gminski R, Gieré R, Grobéty B, Rothen-Rutishauser B, Merfort I, Mersch-Sundermann V. Cytotoxicity and genotoxicity of size-fractionated iron oxide (magnetite) in A549 human lung epithelial cells: role of ROS, JNK, and NF-κB. Chem Res Toxicol 2011; 24:1460-75. [PMID: 21761924 DOI: 10.1021/tx200051s] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Airborne particulate matter (PM) of varying size and composition is known to cause health problems in humans. The iron oxide Fe(3)O(4) (magnetite) may be a major anthropogenic component in ambient PM and is derived mainly from industrial sources. In the present study, we have investigated the effects of four different size fractions of magnetite on signaling pathways, free radical generation, cytotoxicity, and genotoxicity in human alveolar epithelial-like type-II cells (A549). The magnetite particles used in the exposure experiments were characterized by mineralogical and chemical techniques. Four size fractions were investigated: bulk magnetite (0.2-10 μm), respirable fraction (2-3 μm), alveolar fraction (0.5-1.0 μm), and nanoparticles (20-60 nm). After 24 h of exposure, the A549 cells were investigated by transmission electron microscopy (TEM) to study particle uptake. TEM images showed an incorporation of magnetite particles in A549 cells by endocytosis. Particles were found as agglomerates in cytoplasm-bound vesicles, and few particles were detected in the cytoplasm but none in the nucleus. Increased production of reactive oxygen species (ROS), as determined by the 2',7'-dichlorfluorescein-diacetate assay (DCFH-DA), as well as genotoxic effects, as measured by the cytokinesis block-micronucleus test and the Comet assay, were observed for all of the studied fractions after 24 h of exposure. Moreover, activation of c-Jun N-terminal kinases (JNK) without increased nuclear factor kappa-B (NF-κB)-binding activity but delayed IκB-degradation was observed. Interestingly, pretreatment of cells with magnetite and subsequent stimulation with the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) led to a reduction of NF-κB DNA binding compared to that in stimulation with TNFα alone. Altogether, these experiments suggest that ROS formation may play an important role in the genotoxicity of magnetite in A549 cells but that activation of JNK seems to be ROS-independent.
Collapse
Affiliation(s)
- Mathias Könczöl
- Department of Environmental Health Sciences, University Medical Center Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|