1
|
Cabrera M, Capparelli MV, Ortega-Andrade HM, Medina-Villamizar EJ, Rico A. Effects of the insecticide imidacloprid on aquatic invertebrate communities of the Ecuadorian Amazon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124459. [PMID: 38942275 DOI: 10.1016/j.envpol.2024.124459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Imidacloprid is a neonicotinoid insecticide that has received particular attention due to its widespread use and potential adverse effects for aquatic and terrestrial ecosystems. Its toxicity to aquatic organisms has been evaluated in central and southern Europe as well as in (sub-)tropical regions of Africa and Asia, showing high toxic potential for some aquatic insects and zooplankton taxa. However, its toxicity to aquatic organisms representative of tropical regions of Latin America has never been evaluated. To fill this knowledge gap, we carried out a mesocosm experiment to assess the short- and long-term effects of imidacloprid on freshwater invertebrate communities representative of the Ecuadorian Amazon. A mesocosm experiment was conducted with five weekly applications of imidacloprid at four nominal concentrations (0.01 μg/L, 0.1 μg/L, 1 μg/L and 10 μg/L). Toxic effects were evaluated on zooplankton and macroinvertebrate populations and communities, as well as on water quality parameters for 70 days. Given the climatic conditions prevailing in the study area, characterized by a high solar radiation and abundant rainfall that resulted in mesocosm overflow, there was a rapid dissipation of the test compound from the water column (half-life: 4 days). The macroinvertebrate taxa Callibaetis pictus (Ephemeroptera), Chironomus sp. (Diptera), and the zooplankton taxon Macrocyclops sp., showed population declines caused by the imidacloprid treatment, with a 21-d Time Weighted Average No Observed Effect Concentrations (21-d TWA NOEC) of 0.46 μg/L, except for C. pictus which presented a 21-d TWA NOEC of 0.05 μg/L. In general terms, the sensitivity of these taxa to imidacloprid was greater than that reported for surrogate taxa in temperate zones and similar to that reported in other (sub-)tropical regions. These results confirm the high sensitivity of tropical aquatic invertebrates to this compound and suggest the need to establish regulations for the control of imidacloprid contamination in Amazonian freshwater ecosystems.
Collapse
Affiliation(s)
- Marcela Cabrera
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 46980 Paterna, Spain; Grupo de Investigación de Recursos Hídricos y Acuáticos, Facultad de Ciencias de la Vida, Universidad Regional Amazónica Ikiam, Tena, Ecuador
| | - Mariana V Capparelli
- Instituto de Ciencias del Mar y Limnología-Estación El Carmen, Universidad Nacional Autónoma de México, Ciudad del Carmen 24157, Mexico
| | - H Mauricio Ortega-Andrade
- Grupo de Investigación en Biogeografía y Ecología Espacial, Facultad de Ciencias de la Vida, Universidad Regional Amazónica Ikiam, Tena, Ecuador
| | | | - Andreu Rico
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 46980 Paterna, Spain.
| |
Collapse
|
2
|
Khan A, Khan B, Hussain S, Wang Y, Mai W, Hou Y. Permethrin exposure impacts zebrafish lipid metabolism via the KRAS-PPAR-GLUT signaling pathway, which is mediated by oxidative stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107021. [PMID: 38996480 DOI: 10.1016/j.aquatox.2024.107021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Permethrin (Per) is a widely used and frequently detected pyrethroid pesticide in agricultural products and the environment. It may pose potential toxicity to non-target organisms. Per has been reported to affect lipid homeostasis, although the mechanism is undefined. This study aims to explore the characteristic transcriptomic profiles and clarify the underlying signaling pathways of Per-induced lipid metabolism disorder in zebrafish liver. The results showed that environmental exposure to Per caused changes in the liver index, histopathology, and oxidative stress in zebrafish. Moreover, transcriptome results showed that Per heavily altered the pathways involved in metabolism, the immune system, and the endocrine system. We conducted a more in-depth analysis of the genes associated with lipid metabolism. Our findings revealed that exposure to Per led to a disruption in lipid metabolism by activating the KRAS-PPAR-GLUT signaling pathways through oxidative stress. The disruption of lipid homeostasis caused by exposure to Per may also contribute to obesity, hepatitis, and other diseases. The results may provide new insights for the risk of Permethrin to aquatic organisms and new horizons for the pathogenesis of hepatotoxicity.
Collapse
Affiliation(s)
- Afrasyab Khan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013
| | - Bibimaryam Khan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013
| | - Shakeel Hussain
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013
| | - Yuhan Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013
| | - Weijun Mai
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013.
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013.
| |
Collapse
|
3
|
Onen H, Kaddumukasa MA, Kayondo JK, Akol AM, Tripet F. A review of applications and limitations of using aquatic macroinvertebrate predators for biocontrol of the African malaria mosquito, Anopheles gambiae sensu lato. Parasit Vectors 2024; 17:257. [PMID: 38867296 PMCID: PMC11170859 DOI: 10.1186/s13071-024-06332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/25/2024] [Indexed: 06/14/2024] Open
Abstract
Macroinvertebrate predators such as backswimmers (Heteroptera: Notonectidae), dragonflies (Odonata: Aeshnidae), and predatory diving beetles (Coleoptera: Dytiscidae) naturally inhabit aquatic ecosystems. Some aquatic ecosystems inhabited by these macroinvertebrate predator taxa equally form malaria vector larval habitats. The presence of these predators in malaria vector larval habitats can negatively impact on development, adult body size, fecundity, and longevity of the malaria vectors, which form important determinants of their fitness and future vectorial capacity. These potential negative impacts caused by aquatic macroinvertebrate predators on malaria vectors warrant their consideration as biocontrol agents in an integrated program to combat malaria. However, the use of these macroinvertebrate predators in malaria biocontrol is currently constrained by technical bottlenecks linked to their generalist predatory tendencies and often long life cycles, demanding complex rearing systems. We reviewed the literature on the use of aquatic macroinvertebrate predators for biocontrol of malaria vectors from the An. gambiae s.l. complex. The available information from laboratory and semi-field studies has shown that aquatic macroinvertebrates have the potential to consume large numbers of mosquito larvae and could thus offer an additional approaches in integrated malaria vector management strategies. The growing number of semi-field structures available in East and West Africa provides an opportunity to conduct ecological experimental studies to reconsider the potential of using aquatic macroinvertebrate predators as a biocontrol tool. To achieve a more sustainable approach to controlling malaria vector populations, additional, non-chemical interventions could provide a more sustainable approach, in comparison with the failing chemical control tools, and should be urgently considered for integration with the current mosquito vector control campaigns.
Collapse
Affiliation(s)
- Hudson Onen
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, School of Biosciences, Makerere University, P.O Box 7062, Kampala, Uganda.
- Department of Entomology, Uganda Virus Research Institute (UVRI), P.O Box 49, Entebbe, Uganda.
- Department of Biological Sciences, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda.
| | - Martha A Kaddumukasa
- Department of Biological Sciences, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
| | - Jonathan K Kayondo
- Department of Entomology, Uganda Virus Research Institute (UVRI), P.O Box 49, Entebbe, Uganda
| | - Anne M Akol
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, School of Biosciences, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Frédéric Tripet
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Heß S, Hof D, Oetken M, Sundermann A. Macroinvertebrate communities respond strongly but non-specifically to a toxicity gradient derived by effect-based methods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124330. [PMID: 38848961 DOI: 10.1016/j.envpol.2024.124330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Chemical pollution is one of the most important threats to freshwater ecosystems. The plethora of potentially occurring chemicals and their effects in complex mixtures challenge standard monitoring methods. Effect-based methods (EBMs) are proposed as complementary tools for the assessment of chemical pollution and toxic effects. To investigate the effects of chemical pollution, the ecological relevance of EBMs and the potential of macroinvertebrates as toxicity-specific bioindicators, ecological and ecotoxicological data were linked. Baseline toxicity, mutagenicity, dioxin-like and estrogenic activity of water and sediment samples from 30 river sites in central Germany were quantified with four in vitro bioassays. The responses of macroinvertebrate communities at these sites were assessed by calculating 16 taxonomic and functional metrics and by investigating changes in the taxonomic and trait composition. Principal component analysis revealed an increase in toxicity along a joint gradient of chemicals with different modes of action. This toxicity gradient was associated with a decrease in biodiversity and ecological quality, as well as significant changes in taxonomic and functional composition. The strength of the effects suggested a strong impact of chemical pollution and underlined the suitability of EBMs in detecting ecological relevant effects. However, the metrics, taxa, and traits associated with vulnerability or tolerance to toxicity were found to also respond to other stressors in previous studies and thus may have only a low potential as toxicity-specific bioindicators. Because macroinvertebrates respond integratively to all present stressors, linking both ecological and environmental monitoring is necessary to investigate the overall effects but also isolate individual stressors. EBMs have a high potential to separate the toxicity of chemical mixtures from other stressors in a multiple stressor scenario, as well as identifying the presence of chemical groups with specific modes of action.
Collapse
Affiliation(s)
- Sebastian Heß
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystr. 12, 63571, Gelnhausen, Germany; Goethe University Frankfurt, Faculty Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | - Delia Hof
- Goethe University Frankfurt, Faculty Biological Sciences, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Matthias Oetken
- Goethe University Frankfurt, Faculty Biological Sciences, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany
| | - Andrea Sundermann
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystr. 12, 63571, Gelnhausen, Germany; Goethe University Frankfurt, Faculty Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Lares BA, Vignatti AM, Echaniz SA, Cabrera GC, Jofré FC, Gutierrez MF. Sensitivity of Daphnia spinulata Birabén, 1917 to glyphosate at different salinity levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35308-35319. [PMID: 38727975 DOI: 10.1007/s11356-024-33586-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
Daphnia spinulata Birabén, 1917 is an endemic cladoceran species, frequent in the zooplankton communities of the shallow lakes of the Pampean region of Argentina. These lakes have varying salinity levels and, being located in agricultural areas, are frequently subject to pesticide pollution. This study aimed to determine the effects of the herbicide glyphosate (Panzer Gold®) in combination with different salinity levels on the biological parameters of D. spinulata and its recovery ability after a short exposure. Three types of assays were performed: an acute toxicity test, a chronic assessment to determine survival, growth and reproduction, and recovery assays under optimal salinity conditions (1 g L-1). The LC50-48 h of glyphosate was 7.5 mg L-1 (CL 3.15 to 11.72). Longevity and the number of offspring and clutches were significantly reduced due to the combined exposure of glyphosate and increased salinity. The timing of the first offspring did not recover after glyphosate exposure. Our results reveal that D. spinulata is sensitive to the herbicide Panzer Gold® at concentrations well below those indicated in the safety data sheet of this commercial formulation, which causes stronger negative effects in conditions of higher salinity. Further research is needed to shed light on the sensitivity of this cladoceran to glyphosate and its variability under other interactive stress factors.
Collapse
Affiliation(s)
- Betsabé Ailén Lares
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Santa Rosa, La Pampa, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Rosa, La Pampa, Argentina.
| | - Alicia María Vignatti
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Santa Rosa, La Pampa, Argentina
| | - Santiago Andrés Echaniz
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Santa Rosa, La Pampa, Argentina
| | - Gabriela Cecilia Cabrera
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Santa Rosa, La Pampa, Argentina
| | - Florencia Cora Jofré
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Santa Rosa, La Pampa, Argentina
- Instituto de Ciencias de La Tierra y Ambientales de La Pampa (CONICET-UNLPam), Santa Rosa, La Pampa, Argentina
| | - María Florencia Gutierrez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Rosa, La Pampa, Argentina
- Instituto Nacional de Limnología, CONICET-UNL, Paraje El Pozo, Ciudad Universitaria UNL, Santa Fe, Argentina
- Escuela Superior de Sanidad "Dr. Ramón Carrillo" (FBCB-UNL), Ciudad Universitaria, Santa Fe, Argentina
| |
Collapse
|
6
|
Zubrod JP, Galic N, Vaugeois M, Dreier DA. Bio-QSARs 2.0: Unlocking a new level of predictive power for machine learning-based ecotoxicity predictions by exploiting chemical and biological information. ENVIRONMENT INTERNATIONAL 2024; 186:108607. [PMID: 38593686 DOI: 10.1016/j.envint.2024.108607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Practical, legal, and ethical reasons necessitate the development of methods to replace animal experiments. Computational techniques to acquire information that traditionally relied on animal testing are considered a crucial pillar among these so-called new approach methodologies. In this light, we recently introduced the Bio-QSAR concept for multispecies aquatic toxicity regression tasks. These machine learning models, trained on both chemical and biological information, are capable of both cross-chemical and cross-species predictions. Here, we significantly extend these models' applicability. This was realized by increasing the quantity of training data by a factor of approximately 20, accomplished by considering both additional chemicals and aquatic organisms. Additionally, variable test durations and associated random effects were accommodated by employing a machine learning algorithm that combines tree-boosting with mixed-effects modeling (i.e., Gaussian Process Boosting). We also explored various biological descriptors including Dynamic Energy Budget model parameters, taxonomic distances, as well as genus-specific traits and investigated the inclusion of mode-of-action information. Through these efforts, we developed Bio-QSARs for fish and aquatic invertebrates with exceptional predictive power (R squared of up to 0.92 on independent test sets). Moreover, we made considerable strides to make models applicable for a range of use cases in environmental risk assessment as well as research and development of chemicals. Models were made fully explainable by implementing an algorithmic multicollinearity correction combined with SHapley Additive exPlanations. Furthermore, we devised novel approaches for applicability domain construction that take feature importance into account. We are hence confident these models, which are available via open access, will make a significant contribution towards the implementation of new approach methodologies and ultimately have the potential to support "Green Chemistry" and "Green Toxicology".
Collapse
Affiliation(s)
| | - Nika Galic
- Syngenta Crop Protection AG, 4058 Basel, Switzerland
| | | | | |
Collapse
|
7
|
Nowell LH, Moran PW, Waite IR, Schmidt TS, Bradley PM, Mahler BJ, Van Metre PC. Multiple lines of evidence point to pesticides as stressors affecting invertebrate communities in small streams in five United States regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169634. [PMID: 38272727 DOI: 10.1016/j.scitotenv.2023.169634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024]
Abstract
Multistressor studies were performed in five regions of the United States to assess the role of pesticides as stressors affecting invertebrate communities in wadable streams. Pesticides and other chemical and physical stressors were measured in 75 to 99 streams per region for 4 weeks, after which invertebrate communities were surveyed (435 total sites). Pesticides were sampled weekly in filtered water, and once in bed sediment. The role of pesticides as a stressor to invertebrate communities was assessed by evaluating multiple lines of evidence: toxicity predictions based on measured pesticide concentrations, multivariate models and other statistical analyses, and previously published mesocosm experiments. Toxicity predictions using benchmarks and species sensitivity distributions and statistical correlations suggested that pesticides were present at high enough concentrations to adversely affect invertebrate communities at the regional scale. Two undirected techniques-boosted regression tree models and distance-based linear models-identified which pesticides were predictors of (respectively) invertebrate metrics and community composition. To put insecticides in context with known, influential covariates of invertebrate response, generalized additive models were used to identify which individual pesticide(s) were important predictors of invertebrate community condition in each region, after accounting for natural covariates. Four insecticides were identified as stressors to invertebrate communities at the regional scale: bifenthrin, chlordane, fipronil and its degradates, and imidacloprid. Fipronil was particularly important in the Southeast region, and imidacloprid, bifenthrin, and chlordane were important in multiple regions. For imidacloprid, bifenthrin, and fipronil, toxicity predictions were supported by mesocosm experiments that demonstrated adverse effects on naïve aquatic communities when dosed under controlled conditions. These multiple lines of evidence do not prove causality-which is challenging in the field under multistressor conditions-but they make a strong case for the role of insecticides as stressors adversely affecting invertebrate communities in streams within the five sampled regions.
Collapse
Affiliation(s)
- Lisa H Nowell
- U.S. Geological Survey, California Water Science Center, Placer Hall, 6000 J St., Sacramento, CA 95819, USA.
| | - Patrick W Moran
- U.S. Geological Survey, Washington Water Science Center, 934 Broadway, Suite 300, Tacoma, WA 98402, USA
| | - Ian R Waite
- U.S. Geological Survey, Oregon Water Science Center, 601 SW 2nd Ave. Suite 1950, Portland, Oregon 97201, USA
| | - Travis S Schmidt
- U.S. Geological Survey, Wyoming-Montana Water Science Center, 3162 Bozeman Ave., Helena, MT 59601, USA
| | - Paul M Bradley
- U.S. Geological Survey, South Atlantic Water Science Center, 720 Gracern Rd., Suite 129, Columbia, SC 29210, USA
| | - Barbara J Mahler
- U.S. Geological Survey, Oklahoma-Texas Water Science Center, 1505 Ferguson Lane, Austin, TX 78754, USA
| | - Peter C Van Metre
- U.S. Geological Survey, Oklahoma-Texas Water Science Center, 1505 Ferguson Lane, Austin, TX 78754, USA
| |
Collapse
|
8
|
Poyntz-Wright IP, Harrison XA, Johnson A, Zappala S, Tyler CR. Assessment of the impacts of GABA and AChE targeting pesticides on freshwater invertebrate family richness in English Rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169079. [PMID: 38049000 DOI: 10.1016/j.scitotenv.2023.169079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Globally, riverine system biodiversity is threatened by a range of stressors, spanning pollution, sedimentation, alterations to water flow, and climate change. Pesticides have been associated with population level impacts on freshwater invertebrates for acute high-level exposures, but far less is known about the chronic impact of episodic exposure to specific classes of pesticides or their mixtures. Here we employed the use of the UK Environment Agency's monitoring datasets over 40 years (covering years 1980 to 2019) to assess the impacts of AChE (acetylcholinesterase) and GABA (gamma-aminobutyric acid) receptor targeting pesticides on invertebrate family richness at English river sites. Concentrations of AChE and GABA pesticides toxic to freshwater invertebrates occurred (measured) across 18 of the 66 river sites assessed. For one of the three river sites (all found in the Midlands region of England) where data recorded over the past 40 years were sufficient for robust modelling studies, both AChE and GABA pesticides associated with invertebrate family richness. Here, where AChE total pesticide concentrations were classified as high, 46 of 64 invertebrate families were absent, and where GABA total pesticide concentration were classified as high, 16 of 64 invertebrate families were absent. Using a combination of field evidence and laboratory toxicity thresholds for population relevant endpoints we identify families of invertebrates most at risk in the selected English rivers to AChE and GABA pesticides. We, furthermore, provide strong evidence that the absence of the invertebrate family Polycentropodidae (caddisfly) from one field site is due to exposure effects to AChE pesticides.
Collapse
Affiliation(s)
- Imogen P Poyntz-Wright
- Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| | - Xavier A Harrison
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| | - Andrew Johnson
- Centre of Ecology and Hydrology, MacLean Building, Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - Susan Zappala
- JNCC, Quay House, 2 East Station Road, Fletton Quays, Peterborough PE2 8YY, UK
| | - Charles R Tyler
- Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
9
|
Mayer L, Degrendele C, Šenk P, Kohoutek J, Přibylová P, Kukučka P, Melymuk L, Durand A, Ravier S, Alastuey A, Baker AR, Baltensperger U, Baumann-Stanzer K, Biermann T, Bohlin-Nizzetto P, Ceburnis D, Conil S, Couret C, Degórska A, Diapouli E, Eckhardt S, Eleftheriadis K, Forster GL, Freier K, Gheusi F, Gini MI, Hellén H, Henne S, Herrmann H, Holubová Šmejkalová A, Hõrrak U, Hüglin C, Junninen H, Kristensson A, Langrene L, Levula J, Lothon M, Ludewig E, Makkonen U, Matejovičová J, Mihalopoulos N, Mináriková V, Moche W, Noe SM, Pérez N, Petäjä T, Pont V, Poulain L, Quivet E, Ratz G, Rehm T, Reimann S, Simmons I, Sonke JE, Sorribas M, Spoor R, Swart DPJ, Vasilatou V, Wortham H, Yela M, Zarmpas P, Zellweger Fäsi C, Tørseth K, Laj P, Klánová J, Lammel G. Widespread Pesticide Distribution in the European Atmosphere Questions their Degradability in Air. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38323876 PMCID: PMC10882970 DOI: 10.1021/acs.est.3c08488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Risk assessment of pesticide impacts on remote ecosystems makes use of model-estimated degradation in air. Recent studies suggest these degradation rates to be overestimated, questioning current pesticide regulation. Here, we investigated the concentrations of 76 pesticides in Europe at 29 rural, coastal, mountain, and polar sites during the agricultural application season. Overall, 58 pesticides were observed in the European atmosphere. Low spatial variation of 7 pesticides suggests continental-scale atmospheric dispersal. Based on concentrations in free tropospheric air and at Arctic sites, 22 pesticides were identified to be prone to long-range atmospheric transport, which included 15 substances approved for agricultural use in Europe and 7 banned ones. Comparison between concentrations at remote sites and those found at pesticide source areas suggests long atmospheric lifetimes of atrazine, cyprodinil, spiroxamine, tebuconazole, terbuthylazine, and thiacloprid. In general, our findings suggest that atmospheric transport and persistence of pesticides have been underestimated and that their risk assessment needs to be improved.
Collapse
Affiliation(s)
- Ludovic Mayer
- Faculty of Science, RECETOX, Masaryk University, Brno 602 00, Czech Republic
| | - Céline Degrendele
- Faculty of Science, RECETOX, Masaryk University, Brno 602 00, Czech Republic
- Laboratory of Chemistry and Environment (LCE), CNRS, Aix-Marseille University, Marseille 13003, France
| | - Petr Šenk
- Faculty of Science, RECETOX, Masaryk University, Brno 602 00, Czech Republic
| | - Jiři Kohoutek
- Faculty of Science, RECETOX, Masaryk University, Brno 602 00, Czech Republic
| | - Petra Přibylová
- Faculty of Science, RECETOX, Masaryk University, Brno 602 00, Czech Republic
| | - Petr Kukučka
- Faculty of Science, RECETOX, Masaryk University, Brno 602 00, Czech Republic
| | - Lisa Melymuk
- Faculty of Science, RECETOX, Masaryk University, Brno 602 00, Czech Republic
| | - Amandine Durand
- Laboratory of Chemistry and Environment (LCE), CNRS, Aix-Marseille University, Marseille 13003, France
| | - Sylvain Ravier
- Laboratory of Chemistry and Environment (LCE), CNRS, Aix-Marseille University, Marseille 13003, France
| | - Andres Alastuey
- Spanish Research Council (CSIC), Institute of Environmental Assessment and Water Research (IDAEA), Barcelona 08034, Spain
| | - Alex R Baker
- Centre for Ocean and Atmospheric Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Urs Baltensperger
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | | | - Tobias Biermann
- Centre for Environmental and Climate Research, Lund University, Lund 223 62, Sweden
| | | | - Darius Ceburnis
- School of Natural Sciences and Centre for Climate and Air Pollution Studies, Ryan Institute, University of Galway, Galway H91 CF50, Ireland
| | - Sébastien Conil
- DRD/GES Observatoire Pérenne de l'Environnement, ANDRA, Bure 55290, France
| | - Cédric Couret
- German Environment Agency (UBA), Zugspitze 82475 Germany
| | - Anna Degórska
- Institute of Environmental Protection, National Research Institute, Warsaw 02-170, Poland
| | - Evangelia Diapouli
- National Centre of Scientific Research "Demokritos", Institute of Nuclear Radiological Science Technology, Energy and Safety, ENRACT, Agia Paraskevi 15310, Greece
| | - Sabine Eckhardt
- Norwegian Institute for Air Research (NILU), Kjeller 2007, Norway
| | - Konstantinos Eleftheriadis
- National Centre of Scientific Research "Demokritos", Institute of Nuclear Radiological Science Technology, Energy and Safety, ENRACT, Agia Paraskevi 15310, Greece
| | - Grant L Forster
- Centre for Ocean and Atmospheric Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
- National Centre for Atmospheric Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | - François Gheusi
- Laboratoire d'Aérologie, CNRS/IRD, University of Toulouse, Toulouse 31400, France
| | - Maria I Gini
- National Centre of Scientific Research "Demokritos", Institute of Nuclear Radiological Science Technology, Energy and Safety, ENRACT, Agia Paraskevi 15310, Greece
| | - Heidi Hellén
- Finnish Meteorological Institute, Helsinki 00560, Finland
| | - Stephan Henne
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
| | - Hartmut Herrmann
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Adéla Holubová Šmejkalová
- National Atmospheric Observatory Košetice, KošeticeCzech Hydrometeorological Institute, Košetice 395 01, Czech Republic
| | - Urmas Hõrrak
- Institute of Physics, University of Tartu, Tartu 50411, Estonia
| | - Christoph Hüglin
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
| | - Heikki Junninen
- Institute of Physics, University of Tartu, Tartu 50411, Estonia
| | | | - Laurent Langrene
- DRD/GES Observatoire Pérenne de l'Environnement, ANDRA, Bure 55290, France
| | - Janne Levula
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki 00100, Finland
| | - Marie Lothon
- Laboratoire d'Aérologie, CNRS/IRD, University of Toulouse, Toulouse 31400, France
| | | | - Ulla Makkonen
- Finnish Meteorological Institute, Helsinki 00560, Finland
| | | | | | | | | | - Steffen M Noe
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu 51014, Estonia
| | - Noemí Pérez
- Spanish Research Council (CSIC), Institute of Environmental Assessment and Water Research (IDAEA), Barcelona 08034, Spain
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki 00100, Finland
| | - Véronique Pont
- Laboratoire d'Aérologie, CNRS/IRD, University of Toulouse, Toulouse 31400, France
| | - Laurent Poulain
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Etienne Quivet
- Laboratory of Chemistry and Environment (LCE), CNRS, Aix-Marseille University, Marseille 13003, France
| | - Gabriela Ratz
- Bavarian Environment Agency, Augsburg 86179, Germany
| | - Till Rehm
- Environmental Research Station Schneefernerhaus (UFS), Zugspitze 82475, Germany
| | - Stefan Reimann
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
| | - Ivan Simmons
- UK Centre for Ecology and Hydrology, Penicuik EH260QB; United Kingdom
| | - Jeroen E Sonke
- Géosciences Environnement Toulouse, CNRS/IRD, University of Toulouse, Toulouse 31400, France
| | - Mar Sorribas
- Atmospheric Sounding Station El Arenosillo, National Institute for Aerospace Technology (INTA), Huelva 21130, Spain
| | - Ronald Spoor
- National Institute for Public Health and the Environment (RIVM), Bilthoven 3721, MA, the Netherlands
| | - Daan P J Swart
- National Institute for Public Health and the Environment (RIVM), Bilthoven 3721, MA, the Netherlands
| | - Vasiliki Vasilatou
- National Centre of Scientific Research "Demokritos", Institute of Nuclear Radiological Science Technology, Energy and Safety, ENRACT, Agia Paraskevi 15310, Greece
| | - Henri Wortham
- Laboratory of Chemistry and Environment (LCE), CNRS, Aix-Marseille University, Marseille 13003, France
| | - Margarita Yela
- Atmospheric Sounding Station El Arenosillo, National Institute for Aerospace Technology (INTA), Huelva 21130, Spain
| | - Pavlos Zarmpas
- Department of Chemistry, University of Crete, Heraklion 715 00, Greece
| | - Claudia Zellweger Fäsi
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
| | - Kjetil Tørseth
- Norwegian Institute for Air Research (NILU), Kjeller 2007, Norway
| | - Paolo Laj
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki 00100, Finland
- Institut des Géoscience de l'Environnement, University Grenoble Alpes, Grenoble 38058, France
| | - Jana Klánová
- Faculty of Science, RECETOX, Masaryk University, Brno 602 00, Czech Republic
| | - Gerhard Lammel
- Faculty of Science, RECETOX, Masaryk University, Brno 602 00, Czech Republic
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
| |
Collapse
|
10
|
Liang R, Maltby L. Spatial variation in the recovery potential of freshwater macroinvertebrate assemblages: Moving towards spatially defined assemblage vulnerability to chemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168402. [PMID: 37939950 DOI: 10.1016/j.scitotenv.2023.168402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
The vulnerability of freshwater biodiversity to chemical stressors is dependent on its ability to resist chemical stress and recover from any stress-induced effects. Spatial variation in recovery has the potential to exacerbate or mitigate assemblage vulnerability but this has not been explored in detail. By combining information on assemblage-specific recovery potential with information on assemblage-specific chemical sensitivity, we have demonstrated that the vulnerability of 3307 macroinvertebrate assemblages to 18 different chemicals is spatially dependent and that recovery potential may reduce chemical risk. The recovery potential of each assemblage was quantified based on trait information and landscape factors using a weighted sum method, but it did not consider succession processes. Recovery potential varied by river type with assemblages in mid-altitude siliceous rivers with small catchments in the west of England having the lowest recovery potential. For 17 or the 18 chemicals investigated, there was a positive correlation between the recovery potential and sensitivity and this was strongest for assemblages exposed to metals. More sensitive assemblages had a higher recovery potential and were therefore potentially less vulnerable than would be expected based on sensitivity alone. Assemblages in rivers with small catchments were the most vulnerable to chemical exposure. Furthermore, assemblages with high vulnerability to insecticide exposure were more prevalent in mid-altitude rivers with siliceous geology in the west of England, whereas assemblages with high vulnerability to metals were more prevalent in lowland rivers with calcareous or mixed geology in the midlands. This study: (i) highlights the importance of spatial context in determining the risk of chemical pollution to freshwater biodiversity; (ii) demonstrates how spatial variation in taxonomic composition influences both the internal and external recovery of assemblages and how landscape factors modify trait-based recovery capabilities; (iii) provides the foundations for spatially-defined vulnerability assessment by identifying ecological scenarios for assessing chemical risk.
Collapse
Affiliation(s)
- Ruoyu Liang
- School of Biosciences, The University of Sheffield, Alfred Denny Building, Western Bank, S10 2TN Sheffield, United Kingdom.
| | - Lorraine Maltby
- School of Biosciences, The University of Sheffield, Alfred Denny Building, Western Bank, S10 2TN Sheffield, United Kingdom
| |
Collapse
|
11
|
Afonso S, Ferreira V, Moreira-Santos M. Comparing the sensitivity of aquatic organisms relative to Daphnia sp. toward essential oils and crude extracts: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168467. [PMID: 37951254 DOI: 10.1016/j.scitotenv.2023.168467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Interest on aromatic and medicinal plants (AMP)-based products, especially crude extracts (CE) and essential oils (EO), has increased over recent years due to their bioactive and biopesticide properties, though a variety of these compounds is environmentally damaging. Aquatic organisms can easily be exposed to the toxicological risks of AMP-based products, but research exploring existing ecotoxicity data to non-target organisms is limited. The present study aimed to, for the first time, systematically review published evidence on the acute/short-term toxicity (LC50, EC50 or IC50) of CE and EO from AMP, comparing sensitivity of aquatic organisms. Eleven studies that reported the sensitivity of aquatic taxa and Daphnia sp. to CE and/or EO, were included in the review, contributing with 27 effect sizes, calculated as the response ratio R (EcotoxicityAquatTaxa/EcotoxicityDaphnia). Meta-analytic technics were used to estimate the overall sensitivity of aquatic taxa relative to Daphnia sp. while identifying moderators [plant preparation (CE or EO), extraction type, plant part, plant family, and aquatic taxa identity] potentially affecting relative sensitivities. The overall effect size R was 1.51 (95 % CI = 0.97 to 2.34, N = 27), indicating a non-significant difference in the toxicity of CE and EO to aquatic taxa relative to Daphnia sp. However, the high heterogeneity among individual effect sizes (I2 = 99 %) suggested opposing responses of aquatic taxa relative to Daphnia sp. The magnitude of effects (R) was strongly influenced only by plant family. Daphnia sp. arose as a potential model organism for assessing the ecotoxicity of CE and EO, along with the fish Danio rerio and the crustacean Thamnocephalus platyurus, while Artemia sp. seems a relevant alternative for a preliminary screening. Likewise, the current study sheds light on the (underestimated) toxicity of CE and EO to aquatic ecosystems and that much remains to be uncovered, providing insights and recommendations for future research.
Collapse
Affiliation(s)
- Sandra Afonso
- CFE-Centre for Functional Ecology, Science for People and the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| | - Verónica Ferreira
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| | - Matilde Moreira-Santos
- CFE-Centre for Functional Ecology, Science for People and the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
12
|
Adhurya S, Lee DY, Lee DS, Park YS. Functional trait dataset of benthic macroinvertebrates in South Korean streams. Sci Data 2023; 10:838. [PMID: 38017016 PMCID: PMC10684509 DOI: 10.1038/s41597-023-02678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023] Open
Abstract
Functional traits are the result of evolution and adaptation, providing important ecological insights into how organisms interact with their environment. Benthic macroinvertebrates, in particular, have garnered attention as biomonitoring indicators for freshwater ecosystems. This study presents a functional trait dataset for benthic macroinvertebrates, comprising 447 taxa (393 at genus level, 53 at family level and one at class level) from five phyla (Annelida, Arthropoda, Mollusca, Nematomorpha, and Platyhelmenthes), categorized into nine traits related to life history, morphology, and habit. To account for variation in available trait information, we assigned confidence levels to each taxon and functional trait based on the level of evidence using fuzzy coding. Our dataset provides an important resource for understanding the ecology of benthic macroinvertebrates in South Korea, serving as a valuable baseline dataset for studying their biodiversity, conservation, and biomonitoring in freshwater ecosystems.
Collapse
Affiliation(s)
- Sagar Adhurya
- Ecology and Ecological Informatics Laboratory, Department of Biology, College of Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Da-Yeong Lee
- Ecology and Ecological Informatics Laboratory, Department of Biology, College of Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Dae-Seong Lee
- Ecology and Ecological Informatics Laboratory, Department of Biology, College of Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Young-Seuk Park
- Ecology and Ecological Informatics Laboratory, Department of Biology, College of Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
13
|
Zubrod JP, Galic N, Vaugeois M, Dreier DA. Physiological variables in machine learning QSARs allow for both cross-chemical and cross-species predictions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115250. [PMID: 37487435 DOI: 10.1016/j.ecoenv.2023.115250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 07/09/2023] [Indexed: 07/26/2023]
Abstract
A major challenge in ecological risk assessment is estimating chemical-induced effects across taxa without species-specific testing. Where ecotoxicological data may be more challenging to gather, information on species physiology is more available for a broad range of taxa. Physiology is known to drive species sensitivity but understanding about the relative contribution of specific underlying processes is still elusive. Consequently, there remains a need to understand which physiological processes lead to differences in species sensitivity. The objective of our study was to utilize existing knowledge about organismal physiology to both understand and predict differences in species sensitivity. Machine learning models were trained to predict chemical- and species-specific endpoints as a function of both chemical fingerprints/descriptors and physiological properties represented by dynamic energy budget (DEB) parameters. We found that random forest models were able to predict chemical- and species-specific endpoints, and that DEB parameters were relatively important in the models, particularly for invertebrates. Our approach illuminates how physiological properties may drive species sensitivity, which will allow more realistic predictions of effects across species without the need for additional animal testing.
Collapse
Affiliation(s)
| | - Nika Galic
- Syngenta Crop Protection AG, Basel, Switzerland
| | - Maxime Vaugeois
- Syngenta Crop Protection, LLC, Greensboro, NC, United States
| | - David A Dreier
- Syngenta Crop Protection, LLC, Greensboro, NC, United States.
| |
Collapse
|
14
|
Enns D, Cunze S, Baker NJ, Oehlmann J, Jourdan J. Flushing away the future: The effects of wastewater treatment plants on aquatic invertebrates. WATER RESEARCH 2023; 243:120388. [PMID: 37517151 DOI: 10.1016/j.watres.2023.120388] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Wastewater treatment plants (WWTP) are essential infrastructure in our developing world. However, with the development and release of novel entities and without modern upgrades, they are ineffective at fully removing micropollutants before treated effluents are released back into aquatic environments. Thus, WWTPs may represent additional point source impacts to freshwater environments, further pressuring aquatic fauna and already vulnerable insect communities. Previous studies - mostly focusing on single WWTPs - have shown general trends of freshwater invertebrate communities becoming dominated by pollution tolerant taxa. To expand on these findings, the current study is the first to comprehensively investigate data on the effects of 170 WWTPs on invertebrate taxonomic composition. We compared data for several diversity and pollution indices, as well as the taxonomic composition both upstream and downstream of the WWTPs (366 sampling sites). In terms of abundance, the three most frequent and negatively impacted orders were the Plecoptera, Trichoptera and Gastropoda, while the Turbellaria, Hirudinea and Crustacea increased in abundance. Although strong changes in community composition were observed between upstream and downstream sites (mean species turnover of 61%), commonly used diversity indices were not sensitive to these changes, highlighting their potential inadequacy in accurately assessing ecological health. Our results indicate that WWTPs change downstream conditions in favour of pollution tolerant taxa to the detriment of sensitive taxa. Order-level taxonomic responses can be informative but should be interpreted with caution, since they can be driven by a few taxa, or opposing responses of species in the same group can result in an overall low order-level response. Upgrading WWTPs via additional treatment steps or merging may be beneficial, provided upstream sections are unimpacted and/or are in a good chemical and structural condition.
Collapse
Affiliation(s)
- Daniel Enns
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| | - Sarah Cunze
- Goethe University Frankfurt, Department of Integrative Parasitology and Zoophysiology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Nathan Jay Baker
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, LT-08412 Vilnius, Lithuania
| | - Jörg Oehlmann
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Jonas Jourdan
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Su H, Zhang Q, Huang K, Wang WX, Li H, Huang Z, Cheng F, You J. Two-Compartmental Toxicokinetic Model Predicts Interspecies Sensitivity Variation of Imidacloprid to Aquatic Invertebrates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10532-10541. [PMID: 37449839 DOI: 10.1021/acs.est.3c01646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Interspecies sensitivity to the same chemical can be several orders of magnitude different. Quantifying toxicologically internal levels and toxicokinetic (TK) parameters is critical in elucidating the interspecies sensitivity. Herein, a two-compartmental TK model was constructed to characterize the uptake, distribution, and elimination kinetics toward interspecies sensitivity to an insecticide, imidacloprid. Imidacloprid exhibited the highest lethality to the insect Chironomus dilutus, followed by Lumbriculus variegatus, Hyalella azteca, and Daphnia magna. Interspecies sensitivity of imidacloprid to these invertebrates varied by ∼1000 folds based on water concentrations (LC50). Remarkably, the sensitivity variation decreased to ∼50 folds based on the internal residues (LR50), highlighting the critical role of TK in interspecies sensitivity. A one-compartmental TK model failed to simulate the bioaccumulation of imidacloprid in these invertebrates except for D. magna. Instead, a two-compartmental model successfully simulated the slow elimination of imidacloprid in the remaining three species by internally distinguishing the highly dynamic (C1) and toxicologically available (C2) fractions. We further showed that the species sensitivity of the invertebrates to imidacloprid was significantly related to C2, demonstrating that C2 was toxicologically available and responsible for the toxicity of imidacloprid. This mechanistic-based model bridged the internal distribution of organic contaminants in small invertebrates and the associated toxic potency.
Collapse
Affiliation(s)
- Hang Su
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Qingjun Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Kunyang Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Wen-Xiong Wang
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Zhoubing Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Fei Cheng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
16
|
Ács A, Komáromy A, Kovács AW, Fodor I, Somogyvári D, Győri J, Farkas A. Temperature related toxicity features of acute acetamiprid and thiacloprid exposure in Daphnia magna and implications on reproductive performance. Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109601. [PMID: 36906245 DOI: 10.1016/j.cbpc.2023.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/18/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
This study investigated the potential for elevated temperature to alter the toxicity of acetamiprid (ACE) and thiacloprid (Thia) in the ecotoxicity model Daphnia magna. The modulation of CYP450 monooxygenases (ECOD), ABC transporter activity (MXR) and incident cellular reactive oxygen species (ROS) overproduction was screened in premature daphnids following acute (48 h) exposure to sublethal concentrations of ACE and Thia (0.1-, 1.0 μM) at standard 21 °C and elevated 26 °C temperatures. Delayed outcomes of acute exposures were further evaluated based on the reproduction performance of daphnids monitored over 14 days of recovery. Exposures to ACE and Thia at 21o C elicited moderate induction of ECOD activity, pronounced inhibition of MXR activity and severe ROS overproduction in daphnids. In the high thermal regime, treatments resulted in significantly lower induction of ECOD activity and inhibition of MXR activity, suggesting a suppressed metabolism of neonicotinoids and less impaired membrane transport activity in daphnids. Elevated temperature on its own, caused a three-fold rise in ROS levels in control daphnids, while ROS overproduction upon neonicotinoid exposure was less accentuated. Acute exposures to ACE and Thia caused significant decreases also in the reproduction of daphnids, indicating delayed outcomes even at environmentally relevant concentrations. Both the cellular alterations in exposed daphnids and decreases in their reproductive output post exposures evidenced closely similar toxicity patterns and potentials for the two neonicotinoids. While elevated temperature elicited only a shift in baseline cellular alterations evoked by neonicotinoids, it significantly worsened the reproductive performance of daphnids following neonicotinoid exposures.
Collapse
Affiliation(s)
- András Ács
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - András Komáromy
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Attila W Kovács
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - István Fodor
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Dávid Somogyvári
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - János Győri
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Anna Farkas
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary.
| |
Collapse
|
17
|
Theys C, Verheyen J, Janssens L, Tüzün N, Stoks R. Effects of heat and pesticide stress on life history, physiology and the gut microbiome of two congeneric damselflies that differ in stressor tolerance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162617. [PMID: 36871721 DOI: 10.1016/j.scitotenv.2023.162617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The combined impact of toxicants and warming on organisms is getting increased attention in ecotoxicology, but is still hard to predict, especially with regard to heat waves. Recent studies suggested that the gut microbiome may provide mechanistic insights into the single and combined stressor effects on their host. We therefore investigated effects of sequential exposure to a heat spike and a pesticide on both the phenotype (life history and physiology) and the gut microbiome composition of damselfly larvae. We compared the fast-paced Ischnura pumilio, which is more tolerant to both stressors, with the slow-paced I. elegans, to obtain mechanistic insights into species-specific stressor effects. The two species differed in gut microbiome composition, potentially contributing to their pace-of-life differences. Intriguingly, there was a general resemblance between the stressor response patterns in the phenotype and in the gut microbiome, whereby both species responded broadly similar to the single and combined stressors. The heat spike negatively affected the life history of both species (increased mortality, reduced growth rate), which could be explained not only by shared negative effects on physiology (inhibition of acetylcholinesterase, increase of malondialdehyde), but also by shared effects on gut bacterial species' abundances. The pesticide only had negative effects (reduced growth rate, reduced net energy budget) in I. elegans. The pesticide generated shifts in the bacterial community composition (e.g. increased abundance of Sphaerotilus and Enterobacteriaceae in the gut microbiome of I. pumilio), which potentially contributed to the relatively higher pesticide tolerance of I. pumilio. Moreover, in line with the response patterns in the host phenotype, the effects of the heat spike and the pesticide on the gut microbiome were mainly additive. By contrasting two species differing in stress tolerance, our results suggest that response patterns in the gut microbiome may improve our mechanistic understanding of single and combined stressor effects.
Collapse
Affiliation(s)
- Charlotte Theys
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium.
| | - Julie Verheyen
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Lizanne Janssens
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Nedim Tüzün
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium; Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| |
Collapse
|
18
|
Stubblefield WA, Barron M, Bragin G, DeLorenzo ME, de Jourdan B, Echols B, French-McCay DP, Jackman P, Loughery JR, Parkerton TF, Renegar DA, Rodriguez-Gil JL. Improving the design and conduct of aquatic toxicity studies with oils based on 20 years of CROSERF experience. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106579. [PMID: 37300923 DOI: 10.1016/j.aquatox.2023.106579] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 06/12/2023]
Abstract
Laboratory toxicity testing is a key tool used in oil spill science, spill effects assessment, and mitigation strategy decisions to minimize environmental impacts. A major consideration in oil toxicity testing is how to replicate real-world spill conditions, oil types, weathering states, receptor organisms, and modifying environmental factors under laboratory conditions. Oils and petroleum-derived products are comprised of thousands of compounds with different physicochemical and toxicological properties, and this leads to challenges in conducting and interpreting oil toxicity studies. Experimental methods used to mix oils with aqueous test media have been shown to influence the aqueous-phase hydrocarbon composition and concentrations, hydrocarbon phase distribution (i.e., dissolved phase versus in oil droplets), and the stability of oil:water solutions which, in turn, influence the bioavailability and toxicity of the oil containing media. Studies have shown that differences in experimental methods can lead to divergent test results. Therefore, it is imperative to standardize the methods used to prepare oil:water solutions in order to improve the realism and comparability of laboratory tests. The CROSERF methodology, originally published in 2005, was developed as a standardized method to prepare oil:water solutions for testing and evaluating dispersants and dispersed oil. However, it was found equally applicable for use in testing oil-derived petroleum substances. The goals of the current effort were to: (1) build upon two decades of experience to update existing CROSERF guidance for conducting aquatic toxicity tests and (2) to improve the design of laboratory toxicity studies for use in hazard evaluation and development of quantitative effects models that can then be applied in spill assessment. Key experimental design considerations discussed include species selection (standard vs field collected), test substance (single compound vs whole oil), exposure regime (static vs flow-through) and duration, exposure metrics, toxicity endpoints, and quality assurance and control.
Collapse
Affiliation(s)
| | - M Barron
- United States Environmental Protection Agency (retired), USA
| | - G Bragin
- ExxonMobil Biomedical Sciences, Inc., USA
| | - M E DeLorenzo
- National Oceanic and Atmospheric Administration (NOAA), USA
| | - B de Jourdan
- Huntsman Marine Science Centre, St. Andrews, New Brunswick, Canada
| | - B Echols
- Environmental Toxicology Associates LLC, USA
| | | | - P Jackman
- Environment and Climate Change Canada (retired), Canada
| | - J R Loughery
- Huntsman Marine Science Centre, St. Andrews, New Brunswick, Canada
| | | | | | - J L Rodriguez-Gil
- International Institute for Sustainable Development Experimental Lakes Area (IISD-ELA), Canada
| |
Collapse
|
19
|
Rueda‐Cediel P, Galic N, Brain R, Pinto‐Ledezma JN, Rico A, Forbes V. Using life-history trait variation to inform ecological risk assessments for threatened and endangered plant species. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:213-223. [PMID: 35373456 PMCID: PMC10083932 DOI: 10.1002/ieam.4615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Developing population models for assessing risks to terrestrial plant species listed as threatened or endangered under the Endangered Species Act (ESA) is challenging given a paucity of data on their life histories. The purpose of this study was to develop a novel approach for identifying relatively data-rich nonlisted species that could serve as representatives for species listed under the ESA in the development of population models to inform risk assessments. We used the USDA PLANTS Database, which provides data on plants present in the US territories, to create a list of herbaceous plants. A total of 8742 species was obtained, of which 344 were listed under the ESA. Using the most up-to-date phylogeny for vascular plants in combination with a database of matrix population models for plants (COMPADRE) and cluster analyses, we investigated how listed species were distributed across the plant phylogeny, grouped listed and nonlisted species according to their life history, and identified the traits distinguishing the clusters. We performed elasticity analyses to determine the relative sensitivity of population growth rate to perturbations of species' survival, growth, and reproduction and compared these across clusters and between listed and nonlisted species. We found that listed species were distributed widely across the plant phylogeny as well as clusters, suggesting that listed species do not share a common evolution or life-history characteristics that would make them uniquely vulnerable. Lifespan and age at maturity were more important for distinguishing clusters than were reproductive traits. For clusters that were intermediate in their lifespan, listed and nonlisted species responded similarly to perturbations of their life histories. However, for clusters at either extreme of lifespan, the response to survival perturbations varied depending on conservation status. These results can be used to guide the choice of representative species for population model development in the context of ecological risk assessment. Integr Environ Assess Manag 2023;19:213-223. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Pamela Rueda‐Cediel
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Nika Galic
- Syngenta Crop Protection LLCGreensboroNorth CarolinaUSA
| | - Richard Brain
- Syngenta Crop Protection LLCGreensboroNorth CarolinaUSA
| | - Jesús N. Pinto‐Ledezma
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of AlcaláAlcalá de HenaresMadridSpain
- Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of ValenciaPaternaValenciaSpain
| | - Valery Forbes
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
20
|
Ohler K, Schreiner VC, Link M, Liess M, Schäfer RB. Land use changes biomass and temporal patterns of insect cross-ecosystem flows. GLOBAL CHANGE BIOLOGY 2023; 29:81-96. [PMID: 36178427 DOI: 10.1111/gcb.16462] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/05/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Emergent aquatic insects constitute an important food source for higher trophic levels, linking aquatic to terrestrial ecosystems. Little is known about how land use affects the biomass or composition of insect emergence. Previous studies are limited to individual time points or seasons, hampering understanding of annual biomass export patterns and detection of phenological changes. Over 1 year's primary emergence period, we continuously determined the biomass, abundance, and identity of >45,000 aquatic insects and recorded land-use-related environmental variables in 20 stream sites using a paired design with upstream forested sites and downstream agricultural sites. Total insect biomass and abundance were 2-7 mg day-1 m-2 and 7-36 ind day-1 m-2 higher in agricultural than forested sites. However, we found turnover of families between forested and agricultural sites, with more insects with shorter generation time in agriculture, indicating lower sensitivity to land-use-related stress because of higher recovery potential. Except for stoneflies, biomass and abundance of major orders were higher in agriculture, but their phenology differed. For different orders, emergence peaked 30 days earlier to 51 days later in agriculture than forest, whereas total abundance and biomass both peaked earlier in agriculture: 3-5 and 3-19 days, respectively. The most important land-use-related drivers were pesticide toxicity and electrical conductivity, which were differentially associated with different aquatic insect order abundances and biomass. Overall, we found that land use was related to changes in composition and phenology of aquatic insect emergence, which is likely to affect food-web dynamics in a cross-ecosystem context.
Collapse
Affiliation(s)
- Katharina Ohler
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Verena C Schreiner
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Moritz Link
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Matthias Liess
- Department of System-Ecotoxicology, Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Ralf B Schäfer
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| |
Collapse
|
21
|
Ecological Integrity Impairment and Habitat Fragmentation for Neotropical Macroinvertebrate Communities in an Agricultural Stream. TOXICS 2022; 10:toxics10070346. [PMID: 35878251 PMCID: PMC9316105 DOI: 10.3390/toxics10070346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023]
Abstract
The Volcán River watershed in the south Pacific of Costa Rica comprises forests, small urban settlements, cattle fields, and intensive agriculture (mostly pineapple and sugarcane). The ecological integrity and quality of its waters was assessed from 2011–2013 and 2018–2019 by means of physical–chemical parameters (pH, conductivity, temperature, DO, DBO, nitrate, total phosphorus, and pesticide residues) and benthic macroinvertebrate (MI) sampling in eight sites (Volcán, Cañas, and Ángel Rivers, and Peje and Maura streams), resulting in high ecological integrity in all sites except the Peje stream, which is polluted with nitrates and pesticides. Only in this stream was there a marked seasonal variation in the abundance of 16 MI families including Leptohyphidae, Leptophlebiidae, Philopotamidae, Glossossomatidae, and Corydalidae, among others, whose presence was limited exclusively to the dry season (December to April), disappearing from the stream in the rainy season, with corresponding peaks in nitrate (max 20.3 mg/L) and pesticides (mainly herbicides and organophosphate insecticides). The characteristics of the watershed, with large areas of forest and excellent water quality, allow for the re-colonization of organisms into the Peje stream; however, those organisms are incapable of development and growth, providing evidence of a contaminant-driven habitat fragmentation in this stream during the rainy season.
Collapse
|
22
|
Farkas A, Somogyvári D, Kovács AW, Mörtl M, Székács A, Győri J. Physiological and metabolic alterations induced by commercial neonicotinoid formulations in Daphnia magna. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:415-424. [PMID: 35091852 DOI: 10.1007/s10646-022-02520-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Neonicotinoid insecticides are widely used agents in agriculture to control a broad range of insect pests. Although use of neonicotinoid pesticides has resulted in the widespread contamination of surface waters, sublethal toxicity data of these products in relation to non-target aquatic biota are still poor. Therefore, the objective of this study was to assess the effects of two neonicotinoid pesticides with widespread use on the basic physiological functions: the thoracic limb activity and heart rate of Daphnia magna, and to screen for their potential to affect the cytochrome P450 monooxygenase system (ECOD activity) of daphnids. The considered pesticides were the acetamiprid- and thiacloprid based products Mospilan 20 SG and Calypso 480 SC, respectively. The dose-dependent variation in the three biological endpoints considered were assessed following 24 h exposures. The two neonicotinoid formulations elicited significant depression on the thoracic limb activity and heart rate of daphnids at doses close to the immobility thresholds of formulations (48h-EC50: Mospilan 20 SG = 190 mg L-1; Calypso 480 SC = 120 mg L-1), an effect mainly attributable to the overall drop in the general health status of the organisms. The alterations in the physiological traits were significant at exposures to 190 mg L-1 for Mospilan 20 SG and 48 mg L-1 for Calypso 480 SC. The dose related variation in the ECOD activity of daphnids exposed to the selected neonicotinoid formulations followed a biphasic pattern, with starting effective doses for Mospilan 20 SG of 6.3 mg L-1 (=1/20 of 48h-EC50 for Daphnia neonates), and for Calypso 480 SC of 0.034 mg L-1 (=1/4000 of 48h-EC50). Maximal ECOD activity (2.2 fold increase vs. controls) was induced by Mospilan 20 SG in daphnids exposed to 114 mg L-1 product (=48 h-EC20), and by Calypso 480 SC (1.8 fold increase) at 5.2 mg L-1 dose (=1/20 of 48 h-EC50). Our results outlined significant alterations in the physiological traits and ECOD activity in exposed daphnids at concentrations below the immobility thresholds (48 h-EC50) of the products used as benchmarks to rate their toxicity risks to aquatic biota. Therefore, we think our findings might deserve consideration in the environmental risk evaluation of these products.
Collapse
Affiliation(s)
- Anna Farkas
- Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Tihany, Hungary.
| | - Dávid Somogyvári
- Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Tihany, Hungary
| | - Attila W Kovács
- Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Tihany, Hungary
| | - Mária Mörtl
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - János Győri
- Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Tihany, Hungary
| |
Collapse
|
23
|
Bakonyi G, Vásárhelyi T, Szabó B. Pollution impacts on water bugs (Nepomorpha, Gerromorpha): state of the art and their biomonitoring potential. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:301. [PMID: 35344112 PMCID: PMC8960648 DOI: 10.1007/s10661-022-09961-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
As water pollution poses an increasing risk worldwide, it is timely to assess the achievements of the aquatic macroinvertebrate ecotoxicology to provide a sound basis for the discipline's future and support the development of biomonitoring. Aquatic and semi-aquatic bugs (Hemiptera: Nepomorpha, Gerromorpha) are ubiquitous in almost all water types, sometimes in high densities, and play a significant role in organic material turnover and energy flow. Nevertheless, they are ignored in the water pollution biomonitoring schemes. Here, based on 300 papers, we review and evaluate the effects of chemical pesticides, microorganism-derived pesticides, insecticides of plant origin, heavy metals, eutrophication, salinisation and light pollution which are summarised for the first time. Our review encompasses the results of 100 laboratory and 39 semi-field/field experiments with 47 pesticides and 70 active ingredients. Pyrethroids were found to be more toxic than organochlorine, organophosphate and neonicotinoid insecticides to water bugs, like other macroinvertebrate groups. Additionally, in 10 out of 17 cases, the recommended field concentration of the pesticide was higher than the LC50 values, indicating potential hazards to water bugs. The recommended field concentrations of pesticides used in mosquito larvae control were found non-toxic to water bugs. As very few replicated studies are available, other findings on the effects of pesticides cannot be generalised. The microorganism-derived pesticide Bti appears to be safe when used at the recommended field concentration. Data indicates that plant-derived pesticides are safe with a high degree of certainty. We have identified three research areas where water bugs could be better involved in water biomonitoring. First, some Halobates spp. are excellent, and Gerris spp. are promising sentinels for Cd contamination. Second, Micronecta and, to a certain extent, Corixidae species composition is connected to and the indicator of eutrophication. Third, the species composition of the Corixidae is related to salinisation, and a preliminary method to quantify the relationship is already available. Our review highlights the potential of water bugs in water pollution monitoring.
Collapse
Affiliation(s)
- Gábor Bakonyi
- Department of Zoology and Ecology, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary.
| | | | - Borbála Szabó
- Centre for Ecological Research, Institute of Ecology and Botany, "Lendület" Landscape and Conservation Ecology, 2163, Vácrátót, Hungary
| |
Collapse
|
24
|
Onwona Kwakye M, Peng FJ, Hogarh JN, Van den Brink PJ. Linking Macroinvertebrates and Physicochemical Parameters for Water Quality Assessment in the Lower Basin of the Volta River in Ghana. ENVIRONMENTAL MANAGEMENT 2021; 68:928-936. [PMID: 34529125 PMCID: PMC8578086 DOI: 10.1007/s00267-021-01535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 09/02/2021] [Indexed: 05/11/2023]
Abstract
The health of the lower basin of the Volta River in Ghana was evaluated in January-February and May-June 2016 using physicochemical parameters and benthic macroinvertebrates sampled at 10 locations. Selected environmental variables were compared to accepted environmental water quality standard values where applicable. Principal component analysis (PCA) and redundancy analysis (RDA) were used to analyse the association between the benthic macroinvertebrates distribution and physicochemical variables. Pesticide concentrations were generally below the limit of detection 0.01 and 0.005 µg/L for organophosphate/synthetic pyrethroid and organochlorines respectively. Nutrient levels were also generally low; however, significant differences existed between the values of physicochemical parameters at the different sampling sites and seasons (Monte Carlo permutation test; p = 0.002), as well as between the abundance of macroinvertebrates at the different sites and seasons (p = 0.002). The environmental variables dissolved oxygen (DO), phosphate, pH, substratum (p < 0.05), turbidity, conductivity, total dissolved solids, total solids and nitrate (0.05 < p < 0.10) significantly explained the variation in macroinvertebrate composition between sampling stations in the Volta River. Polypedilum fuscipenne, was positively correlated with turbidity and DO concentrations; Physa sp., Centroptilum sp., Centroptiloides sp., Phaon iridipennis and juvenile fish were positively correlated with nitrate concentration and pH and negatively correlated with turbidity and DO. Polluted sites were dominated by the snail Lymnaea glabra. This demonstrates that physicochemical parameters and macroinvertebrates could be applied to describe the water quality and improve the biomonitoring for water resources management and the environmental protection in the Lower Volta River.
Collapse
Affiliation(s)
- Michael Onwona Kwakye
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
- Environmental Protection Agency, P. O. Box M326, Accra, Ghana
| | - Feng-Jiao Peng
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445, Strassen, Luxembourg
| | - Jonathan N Hogarh
- Department of Environmental Science, College of Science, Kwame Nkrumah University of Science and Technology, PMB University Post Office, Kumasi, Ghana
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands.
- Wageningen Environmental Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
25
|
Silva LCM, Moreira RA, Pinto TJS, Vanderlei MR, Athayde DB, Lopes LFP, Ogura AP, Yoshii MPC, Freitas JS, Montagner CC, Goulart BV, Schiesari L, Daam MA, Espíndola ELG. Lethal and sublethal toxicity of pesticides and vinasse used in sugarcane cultivation to Ceriodaphnia silvestrii (Crustacea: Cladocera). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 241:106017. [PMID: 34773901 DOI: 10.1016/j.aquatox.2021.106017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
With the growing use of agrochemicals in Brazil, there is also a growing need for more realistic toxicity assessments that aid in understanding the potential risks of environmental-realistic agrochemical (mixture) exposures in the natural ecosystems. The aim of the present study was therefore to evaluate the lethal and sublethal effects of environmental realistic (single and mixture) concentrations of the pesticides DMA® 806 BR (active ingredient - a.i. 2,4-D) and Regent® 800 WG (a.i. fipronil) and sugarcane vinasse to the Neotropical cladoceran Ceriodaphnia silvestrii. This evaluation was carried out through lethal (survival), sublethal (reproduction and intrinsic rates of population increase - r) and post-exposure (feeding rate and also reproduction) tests conducted in situ and with water from mesocosms contaminated with the recommended doses of these compounds. The results showed high acute toxicity for treatments containing fipronil and vinasse when acting in isolation, with survival rates only returning to control values on the last sampling day (75 days post application). Reproduction of surviving cladocerans was reduced in all treatments until the end of the experiment and were potentiated effect in the mixture of the three test compounds. The intrinsic rates of population increase were reduced in all treatments except the single 2,4-D treatment. Post-exposure feeding rate and reproduction, however, were not impaired under the conditions analyzed. The results show the high toxicity of recommended doses of fipronil and vinasse (and especially their mixture) and the importance of evaluating the risks of agrochemical mixtures at environmental-realistic concentrations.
Collapse
Affiliation(s)
- Laís C M Silva
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, SP 13560-970, Brazil.
| | - Raquel A Moreira
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, SP 13560-970, Brazil
| | - Thandy J S Pinto
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, SP 13560-970, Brazil
| | - Marina R Vanderlei
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, SP 13560-970, Brazil
| | - Danillo B Athayde
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, SP 13560-970, Brazil
| | - Laís F P Lopes
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, SP 13560-970, Brazil
| | - Allan P Ogura
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, SP 13560-970, Brazil
| | - Maria P C Yoshii
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, SP 13560-970, Brazil
| | - Juliane S Freitas
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, SP 13560-970, Brazil
| | - Cassiana C Montagner
- LQA, Institute of Chemistry, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Bianca V Goulart
- LQA, Institute of Chemistry, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Luis Schiesari
- EACH, USP - School of Arts, Sciences and Humanities, University of São Paulo, Av. Arlindo Bétio 1000, São Paulo, SP 03828-000, Brazil
| | - Michiel A Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, Caparica 2829-516, Portugal
| | - Evaldo L G Espíndola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, SP 13560-970, Brazil
| |
Collapse
|
26
|
Schmolke A, Galic N, Feken M, Thompson H, Sgolastra F, Pitts-Singer T, Elston C, Pamminger T, Hinarejos S. Assessment of the Vulnerability to Pesticide Exposures Across Bee Species. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2640-2651. [PMID: 34197661 DOI: 10.1002/etc.5150] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
In many countries, the western honey bee is used as surrogate in pesticide risk assessments for bees. However, uncertainty remains in the estimation of pesticide risk to non-Apis bees because their potential routes of exposure to pesticides, life histories, and ecologies differ from those of honey bees. We applied the vulnerability concept in pesticide risk assessment to 10 bee species including the honey bee, 2 bumble bee species, and 7 solitary bee species with different nesting strategies. Trait-based vulnerability considers the evaluation of a species at the level of both the organism (exposure and effect) and the population (recovery), which goes beyond the sensitivity of individuals to a toxicant assessed in standard laboratory toxicity studies by including effects on populations in the field. Based on expert judgment, each trait was classified by its relationship to the vulnerability to pesticide exposure, effects (intrinsic sensitivity), and population recovery. The results suggested that the non-Apis bees included in our approach are potentially more vulnerable to pesticides than the honey bee due to traits governing exposure and population recovery potential. Our analysis highlights many uncertainties related to the interaction between bee ecology and the potential exposures and population-level effects of pesticides, emphasizing the need for more research to identify suitable surrogate species for higher tier bee risk assessments. Environ Toxicol Chem 2021;40:2640-2651. © 2021 SETAC.
Collapse
Affiliation(s)
| | - Nika Galic
- Syngenta Crop Protection, Greensboro, North Carolina, USA
| | - Max Feken
- Syngenta Crop Protection, Greensboro, North Carolina, USA
| | - Helen Thompson
- Jealott's Hill International Research Station, Syngenta, Bracknell, UK
| | - Fabio Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Bologna, Italy
| | - Theresa Pitts-Singer
- Agricultural Research Service Pollinating Insects Research Unit, US Department of Agriculture, Logan, Utah, USA
| | - Charlotte Elston
- Jealott's Hill International Research Station, Syngenta, Bracknell, UK
| | | | | |
Collapse
|
27
|
Merga LB, Van den Brink PJ. Ecological effects of imidacloprid on a tropical freshwater ecosystem and subsequent recovery dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147167. [PMID: 34088063 DOI: 10.1016/j.scitotenv.2021.147167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate the effect of imidacloprid on structural (invertebrates and primary producers) and functional (organic matter decomposition and physicochemical parameters) characteristics of tropical freshwaters using acute single species and mesocosm studies performed in Ethiopia. The recovery of affected endpoints was also studied by using a mesocosm study period of 21 weeks. Our acute toxicity test showed that Cloeon dipterum (96-h EC50 = 1.5 μg/L) and Caenis horaria (96-h EC50 = 1.9 μg/L) are relatively sensitive arthropods to imidacloprid. The mesocosm experiment evaluated the effects of four applications of imidacloprid with a weekly interval and the results showed that the macroinvertebrate and zooplankton community structure changed significantly due to imidacloprid contamination in mesocosms repeatedly dosed with ≥0.1 and ≥ 0.01 μg/L, respectively (time weighted average concentrations of 112 days (TWA112d) of ≥0.124 and ≥ ≈0.02 μg/L, respectively). The largest responses were found for C. dipterum, C. horaria, Brachionus sp. and Filinia sp. Chlorophyll-a concentrations of periphyton and phytoplankton significantly increased in the ≥0.1 μg/L treatments levels which are indirect effects as a result of the release of grazing pressure. A significant, but quantitatively small, decrease of organic matter decomposition rate was observed in mesocosms treated with repeated doses of 1 μg/L (TWA112d of 2.09 μg/L). No recovery was observed for the macroinvertebrates community during the study period of 21 weeks, but zooplankton recovered after 9 weeks. We observed spatio-temporal related toxicity differences between tropical and temperate aquatic taxa, with tropical taxa generally being more sensitive. This suggests that use of temperate toxicity data for the risk assessment of imidacloprid in tropical region is not recommended.
Collapse
Affiliation(s)
- Lemessa B Merga
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Department of Chemistry, Ambo University, P.O. Box 240, Ambo, Ethiopia
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
28
|
Bijlsma L, Pitarch E, Hernández F, Fonseca E, Marín JM, Ibáñez M, Portolés T, Rico A. Ecological risk assessment of pesticides in the Mijares River (eastern Spain) impacted by citrus production using wide-scope screening and target quantitative analysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125277. [PMID: 33951870 DOI: 10.1016/j.jhazmat.2021.125277] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/15/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
The widespread use of pesticides, especially in agricultural areas, makes necessary to control their presence in surrounding surface waters. The current study was designed to investigate the occurrence and ecological risks of pesticides and their transformation products in a Mediterranean river basin impacted by citrus agricultural production. Nineteen sites were monitored in three campaigns distributed over three different seasons. After a qualitative screening, 24 compounds was selected for subsequent quantitative analysis. As expected, the lower section of the river was most contaminated, with total concentration >5 µg/L in two sites near to the discharge area of wastewater treatment plants. The highest concentrations were found in September, after agricultural applications and when the river flow is reduced. Ecological risks were calculated using two mixture toxicity approaches (Toxic Unit and multi-substance Potentially Affected Fraction), which revealed high acute and chronic risks of imidacloprid to invertebrates, moderate-to-high risks of diuron, simazine and 2,4-D for primary producers, and moderate-to-high risks of thiabendazole for invertebrates and fish. This study shows that intensive agricultural production and the discharge of wastewater effluents containing pesticide residues from post-harvest citrus processing plants are threatening freshwater biodiversity. Further actions are recommended to control pesticide use and to reduce emissions.
Collapse
Affiliation(s)
- Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, Castellón E-12071, Spain
| | - Elena Pitarch
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, Castellón E-12071, Spain.
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, Castellón E-12071, Spain
| | - Eddie Fonseca
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, Castellón E-12071, Spain; Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, P.O. 2060, San José, Costa Rica
| | - José M Marín
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, Castellón E-12071, Spain
| | - María Ibáñez
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, Castellón E-12071, Spain
| | - Tania Portolés
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, Castellón E-12071, Spain
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, Alcalá de Henares, Madrid 28805, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, Paterna, Valencia 46980, Spain
| |
Collapse
|
29
|
Arenas-Sánchez A, Dolédec S, Vighi M, Rico A. Effects of anthropogenic pollution and hydrological variation on macroinvertebrates in Mediterranean rivers: A case-study in the upper Tagus river basin (Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144044. [PMID: 33421783 DOI: 10.1016/j.scitotenv.2020.144044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/30/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Seasonal hydrological variation and chemical pollution represent two main drivers of freshwater biodiversity change in Mediterranean rivers. We investigated to what extent low flow conditions can modify the effects of chemical pollution on macroinvertebrate communities. To that purpose, we selected twelve sampling sites in the upper Tagus river basin (central Spain) having different sources of chemical pollution and levels of seasonal hydrological variation. The sites were classified as natural (high flow variation, low chemical impact), agricultural (high flow variation, high agricultural chemical inputs) and urban (limited flow variation, high urban chemical inputs). In these sites, we measured daily water discharge, nutrients, and contaminant concentrations, and we sampled benthic macroinvertebrates, in spring, summer and autumn. Significant differences related to toxic pressure and nutrient concentrations were observed between the three groups of sites. Seasonal patterns were found for some water quality parameters (e.g. nitrites, ammonia, suspended solids, metal toxicity), particularly in agricultural sites. Taxonomic and functional richness were slightly lower in the polluted sites (agricultural and urban), particularly during low flow periods (summer and early autumn). Functional diversity was significantly lower in sites with seasonal flow variation (agricultural sites) as compared to the more constant ones (urban sites). The frequency of traits such as large size, asexual reproduction, aquatic passive dispersion and the production of cocoons increased in response to pollution during low flow periods. This study shows that the impacts of anthropogenic chemical pollution on taxonomic and functional characteristics of macroinvertebrate communities seem to be larger during low flow periods. Therefore, further studies and monitoring campaigns assessing the effects of chemical pollution within these periods are recommended.
Collapse
Affiliation(s)
- Alba Arenas-Sánchez
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain.
| | - Sylvain Dolédec
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622 Villeurbanne, France
| | - Marco Vighi
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
30
|
Huff Hartz KE, Weston DP, Johanif N, Poynton HC, Connon RE, Lydy MJ. Pyrethroid bioaccumulation in field-collected insecticide-resistant Hyalella azteca. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:514-523. [PMID: 33624205 DOI: 10.1007/s10646-021-02361-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
Wild-type Hyalella azteca are highly sensitive to pyrethroid insecticides and typically do not survive exposure; however, pyrethroid bioaccumulation by insecticide-resistant H. azteca is an important potential risk factor for the transfer of pyrethroids to higher trophic species in aquatic systems. In the current study, four populations of pyrethroid-resistant H. azteca with corresponding sediment samples were sampled throughout the year, and nine-current use pyrethroids (tefluthrin, fenpropathrin, bifenthrin, cyhalothrin, permethrin, cyfluthrin, cypermethrin, esfenvalerate and deltamethrin) were measured. Bifenthrin was detected in every pyrethroid-resistant H. azteca tissue sample, up to 813 ng/g lipid, while cyhalothrin and permethrin were detected in fewer (18 and 28%, respectively) samples. Concurrent sampling of the sediment showed total pyrethroid concentrations exceeding toxic unit thresholds for non-resistant H. azteca survival, and confirmed the ubiquitous presence of bifenthrin at each site and sampling event. Bifenthrin concentrations in H. azteca tended to be higher in samples collected in winter months, and seasonal factors, such as temperature and rainfall, may have contributed to the noted differences in bioaccumulation. Finally, the bifenthrin and permethrin biota-sediment accumulation factors (BSAF) for pyrethroid-resistant H. azteca were similar to the BSAF values for less sensitive invertebrates, and therefore the development of resistance may enable an additional pathway for trophic transfer of pyrethroids in species that would otherwise be too sensitive to survive the exposure.
Collapse
Affiliation(s)
- Kara E Huff Hartz
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, USA
| | - Donald P Weston
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Nadhirah Johanif
- School for the Environment, University of Massachusetts, Boston, MA, USA
| | - Helen C Poynton
- School for the Environment, University of Massachusetts, Boston, MA, USA
| | - Richard E Connon
- School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, USA.
| |
Collapse
|
31
|
Robinson A, Lahive E, Short S, Carter H, Sleep D, Pereira G, Kille P, Spurgeon D. Chemicals with increasingly complex modes of action result in greater variation in sensitivity between earthworm species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115914. [PMID: 33243544 DOI: 10.1016/j.envpol.2020.115914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/28/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
The scale of variation in species sensitivity to toxicants has been theoretically linked to mode of action. Specifically, it has been proposed there will be greater variations for chemicals with a putative specific biological target than for toxicants with a non-specific narcotic mechanism. Here we test the hypothesis that mode of action is related to variation in sensitivity in a specifically designed experiment for species from a single ecologically important terrestrial taxa, namely earthworms. Earthworm toxicity tests were conducted with five species for four chemicals, providing a series of increasingly complex modes of action: a putative narcotic polycyclic aromatic hydrocarbon (fluoranthene), and three insecticides (chlorpyrifos, cypermethrin, imidacloprid) with known neuronal receptor targets. Across all the chemicals, the standard epigeic test species Eisenia fetida and Lumbricus rubellus, were generally among the two least sensitive, while the endogenic Aporrectodea caliginosa and Megascolecidae Amynthas gracilis were generally more sensitive (never being among the two least sensitive species). This indicates a potential for bias in the earthworm ecotoxicology literature, which is dominated by studies in epigeic Lumbricidae, but contains few endogeic or Megascolecidae data. Results confirmed the lowest range of variation in sensitivities for effects on reproduction was for fluoranthene (2.5 fold). All insecticides showed greater variation for species sensitivity (cypermethrin: 7.5 fold, chlorpyrifos: 10.3 fold, imidacloprid: 31.5 fold) consistent with the specific mechanisms of the pesticides. Difference in toxicodynamics, based on mode of action specificity and receptor complexity was reflected in the magnitude of sensitivity variation. However, measurements of tissue concentrations also indicated the potential importance of toxicokinetics in explaining species sensitivity variations for chlorpyrifos and cypermethrin.
Collapse
Affiliation(s)
- Alex Robinson
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Elma Lahive
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Stephen Short
- Cardiff School of Biosciences, BIOSI 1, University of Cardiff, P.O. Box 915, Cardiff, CF10 3TL, UK
| | - Heather Carter
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Av., Bailrigg, Lancaster, LA14AP, UK
| | - Darren Sleep
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Av., Bailrigg, Lancaster, LA14AP, UK
| | - Gloria Pereira
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Av., Bailrigg, Lancaster, LA14AP, UK
| | - Peter Kille
- Cardiff School of Biosciences, BIOSI 1, University of Cardiff, P.O. Box 915, Cardiff, CF10 3TL, UK
| | - David Spurgeon
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK.
| |
Collapse
|
32
|
Peng FJ, Ter Braak CJF, Rico A, Van den Brink PJ. Double constrained ordination for assessing biological trait responses to multiple stressors: A case study with benthic macroinvertebrate communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142171. [PMID: 33254878 DOI: 10.1016/j.scitotenv.2020.142171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 06/12/2023]
Abstract
Benthic macroinvertebrate communities are used as indicators for anthropogenic stress in freshwater ecosystems. To better understand the relationship between anthropogenic stress and changes in macroinvertebrate community composition, it is important to understand how different stressors and species traits are associated, and how these associations influence variation in species occurrence and abundances. Here, we show the capacity of the multivariate technique of double constrained correspondence analysis (dc-CA) to analyse trait-environment relationships, and we compare it with the redundancy analysis method on community weighted mean values of traits (CWM-RDA), which is frequently used for this type of analysis. The analyses were based on available biomonitoring data for macroinvertebrate communities from the Danube River. Results from forward selection of traits and environmental variables using dc-CA analyses showed that aquatic stages, reproduction techniques, dispersal tactics, locomotion and substrate relations, altitude, longitudinal and transversal distribution, and substrate preferendum were significantly related to habitat characteristics, hydromorphological alterations and water quality measurements such as physico-chemical parameters, heavy metals, pesticides and pharmaceuticals. Environmental variables significantly associated with traits using the CWM-RDA method were generally consistent with those found in dc-CA analysis. However, the CWM-RDA does neither test nor explicitly select traits, while dc-CA tests and selects both traits and environmental variables. Moreover, the dc-CA analysis revealed that the set of environmental variables was much better in explaining the community data than the available trait set, a kind of information that can neither be obtained from CWM-RDA nor from RLQ (Environment, Link and Trait data), which is a close cousin of dc-CA but not regression-based. Our results suggest that trait-based analysis based on dc-CA may be useful to assess mechanistic links between multiple anthropogenic stressors and ecosystem health, but more data sets should be analysed in the same manner.
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg.
| | - Cajo J F Ter Braak
- Biometris, Wageningen University & Research, PO Box 16, 6700 AA Wageningen, the Netherlands
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
33
|
van den Berg SJP, Maltby L, Sinclair T, Liang R, van den Brink PJ. Cross-species extrapolation of chemical sensitivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141800. [PMID: 33207462 DOI: 10.1016/j.scitotenv.2020.141800] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Ecosystems are usually populated by many species. Each of these species carries the potential to show a different sensitivity towards all of the numerous chemical compounds that can be present in their environment. Since experimentally testing all possible species-chemical combinations is impossible, the ecological risk assessment of chemicals largely depends on cross-species extrapolation approaches. This review overviews currently existing cross-species extrapolation methodologies, and discusses i) how species sensitivity could be described, ii) which predictors might be useful for explaining differences in species sensitivity, and iii) which statistical considerations are important. We argue that risk assessment can benefit most from modelling approaches when sensitivity is described based on ecologically relevant and robust effects. Additionally, specific attention should be paid to heterogeneity of the training data (e.g. exposure duration, pH, temperature), since this strongly influences the reliability of the resulting models. Regarding which predictors are useful for explaining differences in species sensitivity, we review interspecies-correlation, relatedness-based, traits-based, and genomic-based extrapolation methods, describing the amount of mechanistic information the predictors contain, the amount of input data the models require, and the extent to which the different methods provide protection for ecological entities. We develop a conceptual framework, incorporating the strengths of each of the methods described. Finally, the discussion of statistical considerations reveals that regardless of the method used, statistically significant models can be found, although the usefulness, applicability, and understanding of these models varies considerably. We therefore recommend publication of scientific code along with scientific studies to simultaneously clarify modelling choices and enable elaboration on existing work. In general, this review specifies the data requirements of different cross-species extrapolation methods, aiming to make regulators and publishers more aware that access to raw- and meta-data needs to be improved to make future cross-species extrapolation efforts successful, enabling their integration into the regulatory environment.
Collapse
Affiliation(s)
- Sanne J P van den Berg
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands; Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium.
| | - Lorraine Maltby
- Department of Animal and Plant Sciences, The University of Sheffield, Alfred Denny Building, Western Bank, S10 2TN Sheffield, United Kingdom
| | - Tom Sinclair
- Department of Animal and Plant Sciences, The University of Sheffield, Alfred Denny Building, Western Bank, S10 2TN Sheffield, United Kingdom
| | - Ruoyu Liang
- Department of Animal and Plant Sciences, The University of Sheffield, Alfred Denny Building, Western Bank, S10 2TN Sheffield, United Kingdom
| | - Paul J van den Brink
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
34
|
Sayed SSM, Abdel-Motleb A, Saleh HA, El-Hamid RMA, Kader AA, Abdel-Wareth MTA. Pollution by organochlorine and organophosphorus pesticides residues in watercourses of some Egyptian governorates with reference to the distribution of macroinvertebrates. ACTA ACUST UNITED AC 2020. [DOI: 10.1080/00207233.2020.1851967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Sara S. M. Sayed
- Environmental Research and Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Asmaa Abdel-Motleb
- Environmental Research and Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Hassnaa A. Saleh
- Environmental Research and Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Rania M. Abd El-Hamid
- Central Agricultural Pesticides Laboratory, Agricultural Research Centre, Giza, Egypt
| | - Ahmed Abdel Kader
- Environmental Research and Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Marwa T. A. Abdel-Wareth
- Environmental Research and Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
35
|
Abstract
Indirect effects in ecotoxicology are defined as chemical- or pollutant-induced alterations in the density or behavior of sensitive species that have cascading effects on tolerant species in natural systems. As a result, species interaction networks (e.g., interactions associated with predation or competition) may be altered in such a way as to bring about large changes in populations and/or communities that may further cascade to disrupt ecosystem function and services. Field studies and experimental outcomes as well as models indicate that indirect effects are most likely to occur in communities in which the strength of interactions and the sensitivity to contaminants differ markedly among species, and that indirect effects will vary over space and time as species composition, trophic structure, and environmental factors vary. However, knowledge of indirect effects is essential to improve understanding of the potential for chemical harm in natural systems. For example, indirect effects may confound laboratory-based ecological risk assessment by enhancing, masking, or spuriously indicating the direct effect of chemical contaminants. Progress to better anticipate and interpret the significance of indirect effects will be made as monitoring programs and long-term ecological research are conducted that facilitate critical experimental field and mesocosm investigations, and as chemical transport and fate models, individual-based direct effects models, and ecosystem/food web models continue to be improved and become better integrated.
Collapse
|
36
|
de Almeida LH, Bispo PDC. Perlidae (Plecoptera) from the Paranapiacaba Mountains, Atlantic Forest, Brazil: Diversity and implications of the integrative approach and teneral specimens on taxonomy. PLoS One 2020; 15:e0243393. [PMID: 33301489 PMCID: PMC7728281 DOI: 10.1371/journal.pone.0243393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/20/2020] [Indexed: 11/18/2022] Open
Abstract
The study of complementary sources of biological variation (e.g. morphological, molecular) has allowed a better understanding of biodiversity through the construction of an integrative taxonomy. Using this approach, specimens from the Paranapiacaba Mountains, southeastern Brazil, were studied to update the knowledge on the stonefly family Perlidae from the region, characterize the species, and make associations between nymphs and adults using a fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene. The study also discusses the implications of integrative taxonomy and teneral specimens for the study of South American Perlidae. The molecular data were analyzed using Bayesian inference, Neighbor-joining, and delimiting species methods. Our results revealed that, in general, there was a morphological and molecular congruence between species. In the Paranapiacaba Mountains, three genera and 15 species were recorded: Anacroneuria boraceiensis Froehlich 2004, A. debilis (Pictet 1841) (new record), A. fiorentini De Ribeiro and Froehlich 2007 (new record), A. flintorum Froehlich 2002, A. iporanga Bispo and Froehlich 2004, A. itajaimirim Bispo and Froehlich 2004, A. polita (Burmeister 1913), A. subcostalis Klapálek 1921, A. tupi Bispo and Froehlich 2004 (with a description of the nymph), Kempnyia auberti Froehlich 1996, K. colossica (Navás 1934), K. flava Klapálek 1916, K. neotropica (Jacobson and Bianchi 1905) (including its new junior synonym K. petersorum Froehlich 1996), Kempnyia sp., and Macrogynoplax veneranda Froehlich 1984. COI sequences were obtained for 11 species, five of which had nymphs associated with adults. Among the five associated nymphs, the nymph of A. tupi is described here. The results of this study indicate that the color of adult teneral specimens differs from that of mature specimens. Given this, the synonym of K. neotropica and K. petersorum was proposed since these species have high morphological and molecular similarities and differ only in color patterns. In addition, the previous record of A. petersi Froehlich 2002 from the Paranapiacaba Mountains was invalidated since it was considered a teneral specimen of A. flintorum. These results suggest that the development of an integrative taxonomy is essential to continue advancing the study of Perlidae diversity in South America.
Collapse
Affiliation(s)
- Lucas Henrique de Almeida
- Programa de Pós-Graduação em Entomologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Laboratório de Biologia Aquática, Departamento de Ciências Biológicas, Faculdade de Ciências e Letras de Assis, Universidade Estadual Paulista, Assis, São Paulo, Brazil
| | - Pitágoras da Conceição Bispo
- Laboratório de Biologia Aquática, Departamento de Ciências Biológicas, Faculdade de Ciências e Letras de Assis, Universidade Estadual Paulista, Assis, São Paulo, Brazil
| |
Collapse
|
37
|
Reiber L, Knillmann S, Foit K, Liess M. Species occurrence relates to pesticide gradient in streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:138807. [PMID: 32474246 DOI: 10.1016/j.scitotenv.2020.138807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Freshwater communities are threatened worldwide, with pesticides being one of the main stressors for vulnerable invertebrates. Whereas the effects of pesticides on communities can be quantified by trait-based bioindicators such as SPEARpesticides, single species' responses remain largely unknown. We used the bioindicator SPEARpesticides to predict the toxic pressure from pesticides in 6942 macroinvertebrate samples from 4147 sites during the period 2004 to 2013, obtained by environmental authorities in Germany, and classified all samples according to their magnitude of pesticide pressure. Along this gradient of pesticide pressure, we quantified the occurrence of 139 macroinvertebrate species. We identified 71 species characterized by decreasing occurrence with increasing pesticide pressure. These 'decreasing species', mainly insects, occurred at a frequency of 19.7% at sites with reference conditions and decreased to 1.7% at sites with the highest pesticide pressure. We further determined 55 'nonspecific species' with no strong response as well as 13 'increasing species', mainly Gastropoda, Oligochaeta and Diptera, which showed an increase of frequency from 1.8% at sites with reference conditions to 11.4% at sites with the highest pesticide pressure. Based on the change in frequency we determined the pesticide vulnerability of single species, expressed as Pesticide Associated Response (PARe). Furthermore, a trait analysis revealed that species' occurrence may additionally depend on oxygen demand and, to a lesser extent on substrate preference, whereas no significant effect of feeding and respiration type could be found. Our results provide the first extensive pesticide vulnerability ranking for single macroinvertebrate species based on empirical large-scale field data.
Collapse
Affiliation(s)
- Lena Reiber
- UFZ Helmholtz Centre for Environmental Research, Department System-Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52056 Aachen, Germany.
| | - Saskia Knillmann
- UFZ Helmholtz Centre for Environmental Research, Department System-Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Kaarina Foit
- UFZ Helmholtz Centre for Environmental Research, Department System-Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Matthias Liess
- UFZ Helmholtz Centre for Environmental Research, Department System-Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52056 Aachen, Germany.
| |
Collapse
|
38
|
Van den Berg SJP, Rendal C, Focks A, Butler E, Peeters ETHM, De Laender F, Van den Brink PJ. Potential impact of chemical stress on freshwater invertebrates: A sensitivity assessment on continental and national scale based on distribution patterns, biological traits, and relatedness. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139150. [PMID: 32413660 DOI: 10.1016/j.scitotenv.2020.139150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/09/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Current chemical risk assessment approaches rely on a standard suite of test species to assess toxicity to environmental species. Assessment factors are used to extrapolate from single species to communities and ecosystem effects. This approach is pragmatic, but lacks resolution in biological and environmental parameters. Novel modelling approaches can help improve the biological resolution of assessments by using mechanistic information to identify priority species and priority regions that are potentially most impacted by chemical stressors. In this study we developed predictive sensitivity models by combining species-specific information on acute chemical sensitivity (LC50 and EC50), traits, and taxonomic relatedness. These models were applied at two spatial scales to reveal spatial differences in the sensitivity of species assemblages towards two chemical modes of action (MOA): narcosis and acetylcholinesterase (AChE) inhibition. We found that on a relative scale, 46% and 33% of European species were ranked as more sensitive towards narcosis and AChE inhibition, respectively. These more sensitive species were distributed with higher occurrences in the south and north-eastern regions, reflecting known continental patterns of endemic macroinvertebrate biodiversity. We found contradicting sensitivity patterns depending on the MOA for UK scenarios, with more species displaying relative sensitivity to narcotic MOA in north and north-western regions, and more species with relative sensitivity to AChE inhibition MOA in south and south-western regions. Overall, we identified hotspots of species sensitive to chemical stressors at two spatial scales, and discuss data gaps and crucial technological advances required for the successful application of the proposed methodology to invertebrate scenarios, which remain underrepresented in global conservation priorities.
Collapse
Affiliation(s)
- Sanne J P Van den Berg
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands; Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium.
| | - Cecilie Rendal
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK441LQ, United Kingdom
| | - Andreas Focks
- Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Emma Butler
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK441LQ, United Kingdom
| | - Edwin T H M Peeters
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands
| | - Frederik De Laender
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
39
|
Mörtl M, Vehovszky Á, Klátyik S, Takács E, Győri J, Székács A. Neonicotinoids: Spreading, Translocation and Aquatic Toxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2006. [PMID: 32197435 PMCID: PMC7143627 DOI: 10.3390/ijerph17062006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022]
Abstract
Various environmental and ecotoxicological aspects related to applications of neonicotinoid insecticides are assessed. Dosages of neonicotinoids applied in seed coating materials were determined and are compared to other applications (spray and granule). Environmental levels in soils and affecting factors in translocation are discussed. Excretion of neonicotinoids via guttation from coated maize seeds up to two months upon emergence, as well as cross-contamination of plants emerged from non-coated seeds or weeds nearby have been demonstrated. Contamination of surface waters is discussed in scope of a worldwide review and the environmental fate of the neonicotinoid active ingredients and the formulating surfactant appeared to be mutually affected by each other. Toxicity of neonicotinoid active ingredients and formulations on Daphnia magna completed with some investigations of activity of the detoxifying glutathione S-transferase enzyme demonstrated the modified toxicity due to the formulating agents. Electrophysiological results on identified central neurons of the terrestrial snail Helixpomatia showed acetylcholine antagonist (inhibitory) effects of neonicotinoid insecticide products, but no agonist (ACh-like) effects were recorded. These data also suggested different molecular targets (nicotinergic acetylcholine receptors and acetylcholine esterase enzyme) of neonicotinoids in the snail central nervous system.
Collapse
Affiliation(s)
- Mária Mörtl
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, H-1022 Budapest, Herman O. u. 15, Hungary; (S.K.); (E.T.); (A.S.)
| | - Ágnes Vehovszky
- Department of Experimental Zoology, Centre for Ecological Research, Balaton Limnological Institute, H-8237 Tihany POB 35, Hungary;
| | - Szandra Klátyik
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, H-1022 Budapest, Herman O. u. 15, Hungary; (S.K.); (E.T.); (A.S.)
| | - Eszter Takács
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, H-1022 Budapest, Herman O. u. 15, Hungary; (S.K.); (E.T.); (A.S.)
| | - János Győri
- Department of Experimental Zoology, Centre for Ecological Research, Balaton Limnological Institute, H-8237 Tihany POB 35, Hungary;
| | - András Székács
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, H-1022 Budapest, Herman O. u. 15, Hungary; (S.K.); (E.T.); (A.S.)
| |
Collapse
|
40
|
Sun M, Duker RQ, Gillissen F, Van den Brink PJ, Focks A, Rico A. Influence of pH on the toxicity of ionisable pharmaceuticals and personal care products to freshwater invertebrates. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110172. [PMID: 31978762 DOI: 10.1016/j.ecoenv.2020.110172] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
The majority of pharmaceuticals and personal health-care products are ionisable molecules at environmentally relevant pHs. The ionization state of these molecules in freshwater ecosystems may influence their toxicity potential to aquatic organisms. In this study we evaluated to what extent varying pH conditions may influence the toxicity of the antibiotic enrofloxacin (ENR) and the personal care product ingredient triclosan (TCS) to three freshwater invertebrates: the ephemeropteran Cloeon dipterum, the amphipod Gammarus pulex and the snail Physella acuta. Acute toxicity tests were performed by adjusting the water pH to four nominal levels: 6.5, 7.0, 7.5 and 8.0. Furthermore, we tested the efficiency of three toxicity models with different assumptions regarding the uptake and toxicity potential of ionisable chemicals with the experimental data produced in this study. The results of the toxicity tests indicate that pH fluctuations of only 1.5 units can influence EC50-48 h and EC50-96 h values by a factor of 1.4-2.7. Overall, the model that only focuses on the fraction of neutral chemical and the model that takes into account ion-trapping of the test molecules showed the best performance, although present limitations to perform risk assessments across a wide pH range (i.e., well above or below the substance pKa). Under such conditions, the model that takes into account the toxicity of the neutral and the ionized chemical form is preferred. The results of this study show that pH fluctuations can have a considerable influence on toxicity thresholds, and should therefore be taken into account for the risk assessment of ionisable pharmaceuticals and personal health-care products. Based on our results, an assessment factor of at least three should be used to account for toxicity differences between standard laboratory and field pH conditions. The models evaluated here can be used to perform refined risk assessments by taking into account the influence of temporal and spatial pH fluctuations on aquatic toxicity.
Collapse
Affiliation(s)
- Ming Sun
- Marine Biology Institute of Shandong Province, Qingdao, 266104, PR China
| | - Rahmat Quaigrane Duker
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Frits Gillissen
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Paul J Van den Brink
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Andreas Focks
- Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
41
|
Awkerman J, Raimondo S, Schmolke A, Galic N, Rueda-Cediel P, Kapo K, Accolla C, Vaugeois M, Forbes V. Guidance for Developing Amphibian Population Models for Ecological Risk Assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2020; 16:223-233. [PMID: 31538699 PMCID: PMC8425957 DOI: 10.1002/ieam.4215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/22/2019] [Accepted: 09/10/2019] [Indexed: 05/05/2023]
Abstract
Despite widespread acceptance of the utility of population modeling and advocacy of this approach for a more ecologically relevant perspective, it is not routinely incorporated in ecological risk assessments (ERA). A systematic framework for situation-specific model development is one of the major challenges to broadly adopting population models in ERA. As risk assessors confront the multitude of species and chemicals requiring evaluation, an adaptable stepwise guide for model parameterization would facilitate this process. Additional guidance on interpretation of model output and evaluating uncertainty would further contribute to establishing consensus on good modeling practices. We build on previous work that created a framework and decision guide for developing population models for ERA by focusing on data types, model structure, and extrinsic stressors relevant to anuran amphibians. Anurans have a unique life cycle with varying habitat requirements and high phenotypic plasticity. These species belong to the amphibian class, which is facing global population decline in large part due to anthropogenic stressors, including chemicals. We synthesize information from databases and literature relevant to amphibian risks to identify traits that influence exposure likelihood, inherent sensitivity, population vulnerability, and environmental constraints. We link these concerns with relevant population modeling methods and structure in order to evaluate pesticide effects with appropriate scale and parameterization. A standardized population modeling approach, with additional guidance for anuran ERA, offers an example method for quantifying population risks and evaluating long-term impacts of chemical stressors to populations. Integr Environ Assess Manag 2020;16:223-233. © 2019 SETAC.
Collapse
Affiliation(s)
- Jill Awkerman
- Gulf Ecology Division, US Environmental Protection Agency, Gulf Breeze, Florida
| | - Sandy Raimondo
- Gulf Ecology Division, US Environmental Protection Agency, Gulf Breeze, Florida
| | | | - Nika Galic
- Syngenta Crop Protection, LLC, Greensboro, North Carolina, USA
| | - Pamela Rueda-Cediel
- College of Biological Sciences, University of Minnesota, St Paul, Minnesota, USA
| | | | - Chiara Accolla
- College of Biological Sciences, University of Minnesota, St Paul, Minnesota, USA
| | - Maxime Vaugeois
- College of Biological Sciences, University of Minnesota, St Paul, Minnesota, USA
| | - Valery Forbes
- College of Biological Sciences, University of Minnesota, St Paul, Minnesota, USA
| |
Collapse
|
42
|
Rooney RC, Davy C, Gilbert J, Prosser R, Robichaud C, Sheedy C. Periphyton bioconcentrates pesticides downstream of catchment dominated by agricultural land use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134472. [PMID: 31731130 DOI: 10.1016/j.scitotenv.2019.134472] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/04/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Periphyton provides important ecosystem services in aquatic environments, including supporting diverse consumers. We studied pesticide bioconcentration in periphyton in a coastal marsh on Lake Erie. The marsh is within a protected area (Rondeau Provincial Park) but receives discharge from tributaries draining intensively farmed land. Periphyton bioconcentrated 20 pesticide chemicals above levels observed in adjacent water or sediment. Average bioconcentration factors ranged from 12 times for the herbicide dicamba to 6864 times for the fungicide boscalid on a dry-weight basis. Bioconcentration factors were not linearly related to pesticides' log Kow, log Koc, or water solubility (simple linear regressions, p > 0.43). The removal of pesticides from ambient water represents another valuable ecosystem service provided by periphyton. However, we caution that bioconcentration of pesticides in periphyton provides a mechanism through which contemporary and legacy pesticides may enter wetland food webs.
Collapse
Affiliation(s)
- R C Rooney
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - C Davy
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Peterborough, Ontario K9L 1Z8, Canada; Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - J Gilbert
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - R Prosser
- School of Environmental Sciences, University of Guelph, Room 2226 Bovey Bldg., Guelph, Ontario N1G 2W1, Canada
| | - C Robichaud
- Department of Biology, University of Waterloo, Room B2-251, Waterloo, Ontario N2L 3G1, Canada
| | - C Sheedy
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1(st) Avenue South, Lethbridge, Alberta T1J 4B1, Canada
| |
Collapse
|
43
|
Barmentlo SH, Schrama M, van Bodegom PM, de Snoo GR, Musters CJM, Vijver MG. Neonicotinoids and fertilizers jointly structure naturally assembled freshwater macroinvertebrate communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:36-44. [PMID: 31306875 DOI: 10.1016/j.scitotenv.2019.07.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/20/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
Although it is widely acknowledged that a decline of freshwater biodiversity jeopardizes the functioning of freshwater ecosystems, the large number of (human-induced) pressures jointly acting on these systems hampers managing its biodiversity. To disentangle the magnitude and the temporal effects of these single and interacting pressures, experiments are required that study how these pressures affect the structuring of natural communities. We performed experiments with naturally assembled invertebrate communities in 36 experimental ditches to assess the single and joint effects of environmentally relevant concentrations of two commonly co-occurring stressors: fertilizer inputs and neonicotinoid insecticides, in this case thiacloprid. Specifically, we explored whether these agrochemicals result in sustained changes in community structure by inspecting divergence, convergence and short- /long-lived dissimilarity of communities, when compared to a control treatment. Our results indicate strong impacts on the abundance of different taxa by exposure to the agrochemicals. However, we found no effect of any treatment on total abundance, taxon richness or convergence/divergence (measured as beta dispersion) of the communities. Moreover, we found contrasting responses when both joint stressors were present: when considering abundance of different taxa, we observed that fertilizer additions reduced some of the thiacloprid toxicity. But when assessing the community structure, we found that exposure to both stressors consistently resulted in a more dissimilar community compared to the control. This dissimilarity was persistent up to four months after applying the agrochemicals, even though there was a turnover in taxa explaining this dissimilarity. This turnover indicates that the persistent dissimilarity can potentially be attributed to a rippling effect in the community rather than continued toxicity. Such shifts in natural freshwater invertebrate communities, months after the actual exposure, suggests that stressors may have important long-term repercussions for which may subsequently lead to changes in ecosystem functioning.
Collapse
Affiliation(s)
- S Henrik Barmentlo
- Institute of Environmental Sciences, Leiden University, PO Box 9518, 2300, RA, Leiden, the Netherlands.
| | - Maarten Schrama
- Institute of Environmental Sciences, Leiden University, PO Box 9518, 2300, RA, Leiden, the Netherlands
| | - Peter M van Bodegom
- Institute of Environmental Sciences, Leiden University, PO Box 9518, 2300, RA, Leiden, the Netherlands
| | - Geert R de Snoo
- Institute of Environmental Sciences, Leiden University, PO Box 9518, 2300, RA, Leiden, the Netherlands
| | - C J M Musters
- Institute of Environmental Sciences, Leiden University, PO Box 9518, 2300, RA, Leiden, the Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences, Leiden University, PO Box 9518, 2300, RA, Leiden, the Netherlands
| |
Collapse
|
44
|
Van den Brink PJ, Bracewell SA, Bush A, Chariton A, Choung CB, Compson ZG, Dafforn KA, Korbel K, Lapen DR, Mayer-Pinto M, Monk WA, O'Brien AL, Rideout NK, Schäfer RB, Sumon KA, Verdonschot RCM, Baird DJ. Towards a general framework for the assessment of interactive effects of multiple stressors on aquatic ecosystems: Results from the Making Aquatic Ecosystems Great Again (MAEGA) workshop. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 684:722-726. [PMID: 30857726 DOI: 10.1016/j.scitotenv.2019.02.455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 05/12/2023]
Abstract
A workshop was held in Wageningen, The Netherlands, in September 2017 to collate data and literature on three aquatic ecosystem types (agricultural drainage ditches, urban floodplains, and urban estuaries), and develop a general framework for the assessment of multiple stressors on the structure and functioning of these systems. An assessment framework considering multiple stressors is crucial for our understanding of ecosystem responses within a multiply stressed environment, and to inform appropriate environmental management strategies. The framework consists of two components: (i) problem identification and (ii) impact assessment. Both assessments together proceed through the following steps: 1) ecosystem selection; 2) identification of stressors and quantification of their intensity; 3) identification of receptors or sensitive groups for each stressor; 4) identification of stressor-response relationships and their potential interactions; 5) construction of an ecological model that includes relevant functional groups and endpoints; 6) prediction of impacts of multiple stressors, 7) confirmation of these predictions with experimental and monitoring data, and 8) potential adjustment of the ecological model. Steps 7 and 8 allow the assessment to be adaptive and can be repeated until a satisfactory match between model predictions and experimental and monitoring data has been obtained. This paper is the preface of the MAEGA (Making Aquatic Ecosystems Great Again) special section that includes three associated papers which are also published in this volume, which present applications of the framework for each of the three aquatic systems.
Collapse
Affiliation(s)
- Paul J Van den Brink
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Sally A Bracewell
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Alex Bush
- Environment and Climate Change Canada @ Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton, NB. Canada
| | - Anthony Chariton
- Department of Biological Sciences, Macquarie University, NSW, Australia
| | - Catherine B Choung
- Environment and Climate Change Canada @ Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton, NB. Canada
| | - Zacchaeus G Compson
- Environment and Climate Change Canada @ Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton, NB. Canada
| | | | - Kathryn Korbel
- Department of Biological Sciences, Macquarie University, NSW, Australia
| | - David R Lapen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Mariana Mayer-Pinto
- E&ERC, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, Australia
| | - Wendy A Monk
- Environment and Climate Change Canada, Canadian Rivers Institute, Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB. Canada
| | | | - Natalie K Rideout
- Environment and Climate Change Canada @ Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton, NB. Canada
| | - Ralf B Schäfer
- Quantitative Landscape Ecology, Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Kizar A Sumon
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Ralf C M Verdonschot
- Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Donald J Baird
- Environment and Climate Change Canada @ Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton, NB. Canada
| |
Collapse
|
45
|
Kurek J, MacKeigan PW, Veinot S, Mercer A, Kidd KA. Ecological Legacy of DDT Archived in Lake Sediments from Eastern Canada. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7316-7325. [PMID: 31187621 DOI: 10.1021/acs.est.9b01396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Historic forest management practices led to widespread aerial application of insecticides, such as dichlorodiphenyltrichloroethane (DDT), to North American conifer forests during ∼1950-1970. Lake basins thus may provide an important archive of inputs and aquatic responses to these organochlorines. We use dated sediment cores from five study lakes in multiple watersheds in New Brunswick (NB), Canada, to provide a regional paleo-ecotoxicological perspective on this potential legacy stressor in remote lake ecosystems. Peak sedimentary levels of p, p'- and o, p'-DDT (ΣDDT) and breakdown products ΣDDE (dichlorodiphenyldichloroethylene) and ΣDDD (dichlorodiphenyldichloroethane) generally occurred during the 1970s to 1980s. Sediments exceeded probable effect levels (PELs) by ∼450 times at the most impacted lake. Modern sediments in all study lakes still contained levels of DDT-related compounds that exceed PELs. For the first time, we show that aerial applications of DDT to eastern Canadian forests likely resulted in large shifts to primary consumers within several lake food webs, principally through lake-specific impacts on zooplankton community composition. Modern pelagic zooplankton communities are now much different compared to communities present before DDT use, suggesting that a regional organochlorine legacy may exist in the modern food webs of many remote NB lakes.
Collapse
Affiliation(s)
- Joshua Kurek
- Department of Geography and Environment , Mount Allison University , 144 Main Street , Sackville , New Brunswick E4L 1A7 , Canada
| | - Paul W MacKeigan
- Department of Geography and Environment , Mount Allison University , 144 Main Street , Sackville , New Brunswick E4L 1A7 , Canada
| | - Sarah Veinot
- Canadian Rivers Institute and Department of Biological Sciences , University of New Brunswick , 100 Tucker Park Road , Saint John , New Brunswick E2L 4L5 , Canada
| | - Angella Mercer
- Canadian Rivers Institute and Department of Biological Sciences , University of New Brunswick , 100 Tucker Park Road , Saint John , New Brunswick E2L 4L5 , Canada
| | - Karen A Kidd
- Canadian Rivers Institute and Department of Biological Sciences , University of New Brunswick , 100 Tucker Park Road , Saint John , New Brunswick E2L 4L5 , Canada
- Department of Biology and School of Geography and Earth Sciences , McMaster University , 1280 Main Street West , Hamilton , Ontario L8S 4K1 , Canada
| |
Collapse
|
46
|
Yokoyama A. Assessing Impacts of Insecticides on Different Embryonic Stages of the Nontarget Aquatic Insect Cheumatopsyche brevilineata (Trichoptera: Hydropsychidae). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1434-1445. [PMID: 30883872 DOI: 10.1002/etc.4405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/14/2018] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
Although the egg of aquatic insects is one of the main life stages that can be exposed to contaminants in water, little is known about the detailed impacts of contaminants on eggs of aquatic insects. The present study aimed to clarify the vulnerable embryonic stages of the caddisfly Cheumatopsyche brevilineata exposed to 2 insecticides, etofenprox and diflubenzuron, which are severely harmful to aquatic insects, and to assess the effects of exposure duration on toxicity of etofenprox to the embryonic stage. Eggs obtained from laboratory culture of the insect were exposed to etofenprox for different periods (2, 4, 6, or 8 d) and at different embryonic stages. In experiments with diflubenzuron, eggs were exposed for 2 d at different embryonic stages. These insecticides did not kill the embryos during exposure, but they inhibited hatching post exposure. Diflubenzuron also induced morphological abnormalities of hatchlings and reduced their survival. The overall median lethal concentration (LC50overall ) values varied significantly from 0.0560 to 5.19 μg/L for etofenprox among exposure durations and among embryonic stages, and from 0.442 to 2.89 μg/L for diflubenzuron between embryonic stages. The toxicity of etofenprox to the embryo was more dependent on the embryonic stage at the time of exposure than on the exposure duration. The vulnerable embryonic stage differed between the insecticides. Etofenprox more strongly inhibited hatching of embryos at later stages, whereas sensitivity to diflubenzuron was higher in the following order: stages E3 to E7 > stages E1, E2, and E8. The different responses of C. brevilineata embryos may be attributable to differences in insecticide mode of action and in functional development of insecticide target sites during embryogenesis. Environ Toxicol Chem 2019;38:1434-1445. © 2019 SETAC.
Collapse
Affiliation(s)
- Atsushi Yokoyama
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
47
|
Van den Berg SJP, Baveco H, Butler E, De Laender F, Focks A, Franco A, Rendal C, Van den Brink PJ. Modeling the Sensitivity of Aquatic Macroinvertebrates to Chemicals Using Traits. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6025-6034. [PMID: 31008596 PMCID: PMC6535724 DOI: 10.1021/acs.est.9b00893] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 05/31/2023]
Abstract
In this study, a trait-based macroinvertebrate sensitivity modeling tool is presented that provides two main outcomes: (1) it constructs a macroinvertebrate sensitivity ranking and, subsequently, a predictive trait model for each one of a diverse set of predefined Modes of Action (MOAs) and (2) it reveals data gaps and restrictions, helping with the direction of future research. Besides revealing taxonomic patterns of species sensitivity, we find that there was not one genus, family, or class which was most sensitive to all MOAs and that common test taxa were often not the most sensitive at all. Traits like life cycle duration and feeding mode were identified as important in explaining species sensitivity. For 71% of the species, no or incomplete trait data were available, making the lack of trait data the main obstacle in model construction. Research focus should therefore be on completing trait databases and enhancing them with finer morphological traits, focusing on the toxicodynamics of the chemical (e.g., target site distribution). Further improved sensitivity models can help with the creation of ecological scenarios by predicting the sensitivity of untested species. Through this development, our approach can help reduce animal testing and contribute toward a new predictive ecotoxicology framework.
Collapse
Affiliation(s)
- Sanne J. P. Van den Berg
- Aquatic
Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
- Department
of Biology, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Hans Baveco
- Wageningen
Environmental Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Emma Butler
- Safety
and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK441LQ, United Kingdom
| | - Frederik De Laender
- Department
of Biology, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Andreas Focks
- Wageningen
Environmental Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Antonio Franco
- Safety
and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK441LQ, United Kingdom
| | - Cecilie Rendal
- Safety
and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK441LQ, United Kingdom
| | - Paul J. Van den Brink
- Aquatic
Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
- Wageningen
Environmental Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
48
|
Graf N, Battes KP, Cimpean M, Dittrich P, Entling MH, Link M, Scharmüller A, Schreiner VC, Szöcs E, Schäfer RB. Do agricultural pesticides in streams influence riparian spiders? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:126-135. [PMID: 30639710 DOI: 10.1016/j.scitotenv.2018.12.370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Freshwater ecosystems are coupled with their riparian area. Emerging insects are prey for predators in the riparian zone, enriching the terrestrial ecosystem with energy and nutrients. Stressors associated with agriculture can alter insect communities in water and on land, resulting in complex response patterns of terrestrial predators relying on prey from both systems. Examining the effects from individual agricultural stressors such as pesticides is hampered in landscapes with intensive agriculture where multiple stressors like habitat degradation and typically co-occur. In rural regions of Eastern Europe, traditional low intensity agriculture based on working animals and human labour prevails alongside intensive, mechanised agriculture. Assuming that low-intensity agriculture relies on no or limited pesticide use, whereas fertilizer use is similar across different agricultural intensities, such regions may allow to study in-stream pesticide effects independent from other stressors, such as nutrient input or habitat degradation. We examined the taxonomic and trait response of riparian spider communities to gradients of agricultural stressors and environmental variables in the region around Cluj-Napoca, Romania. Pesticide sampling was done using passive samplers in the streams adjacent to spider sampling sites. To capture spiders with different traits and survival strategies, we used multiple collection methods. Community composition was best explained by in-stream pesticide toxicity and shading of the stream bank, a proxy for the quality of the habitat. Species richness and the number of spider individuals were negatively associated with in-stream pesticide toxicity. In contrast, mean body size and shading preference of spider communities responded strongest to shading, whereas mean niche width (habitat preference for moisture and shading) responded strongest to the other environmental variables. Our study suggests that in-stream pesticide toxicity can influence riparian communities. The identification of mechanisms requires further studies targeting the potential contributions of direct toxicity and indirect effects from reduced aquatic and terrestrial prey availability.
Collapse
Affiliation(s)
- Nadin Graf
- Institue for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany.
| | - Karina P Battes
- Department of Taxonomy and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor Str., 400006 Cluj-Napoca, Romania
| | - Mirela Cimpean
- Department of Taxonomy and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor Str., 400006 Cluj-Napoca, Romania
| | - Pitt Dittrich
- Institue for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Martin H Entling
- Institue for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Moritz Link
- Institue for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Andreas Scharmüller
- Institue for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Verena C Schreiner
- Institue for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Eduard Szöcs
- Institue for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Ralf B Schäfer
- Institue for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany
| |
Collapse
|
49
|
Faber JH, Marshall S, Van den Brink PJ, Maltby L. Priorities and opportunities in the application of the ecosystem services concept in risk assessment for chemicals in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1067-1077. [PMID: 30266052 DOI: 10.1016/j.scitotenv.2018.09.209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 05/20/2023]
Abstract
The ecosystem services approach has gained broad interest in regulatory and policy circles for use in ecological risk assessment. Whilst identifying several challenges, scientific experts from European regulatory authorities, the chemical industry and academia considered the approach applicable to all chemical sectors and potentially contributing to greater ecological relevance for setting and assessing environmental protection goals compared to current European regulatory frameworks for chemicals. These challenges were addressed in workshops to develop a common understanding across stakeholders on how the ecosystem services concept might be used in chemical risk assessment and what would need to be done to implement it. This paper describes the consensus outcome of those discussions. Knowledge gaps and research needs were identified and prioritised, exploring the use of novel approaches from ecology, ecotoxicology and ecological modelling. Where applicable, distinction is made between prospective and retrospective ecological risk assessment. For prospective risk assessment the development of environmental scenarios accounting for chemical exposure and ecological conditions was designated as a top priority. For retrospective risk assessment the top priority research need was development of reference conditions for key ecosystem services and guidance for their derivation. Both prospective and retrospective risk assessment would benefit from guidance on the taxa and measurement endpoints relevant to specific ecosystem services and from improved understanding of the relationships between measurement endpoints from standard toxicity tests and the ecosystem services of interest (i.e. assessment endpoints). The development of mechanistic models, which could serve as ecological production functions, was identified as a priority. A conceptual framework for future chemical risk assessment based on an ecosystem services approach is presented.
Collapse
Affiliation(s)
- Jack H Faber
- Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Stuart Marshall
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Paul J Van den Brink
- Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Lorraine Maltby
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
50
|
Vehovszky Á, Farkas A, Csikós V, Székács A, Mörtl M, Győri J. Neonicotinoid insecticides are potential substrates of the multixenobiotic resistance (MXR) mechanism in the non-target invertebrate, Dreissena sp. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 205:148-155. [PMID: 30384196 DOI: 10.1016/j.aquatox.2018.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Mussels are among the most frequently used invertebrate animals in aquatic toxicology to detect toxic exposure in the environment. The presence and activity of a cellular defence system, the multixenobiotic resistance (MXR) mechanism, was also established in these organisms. In isolated gill tissues of dreissenid mussels (D. bugensis) the MXR activity was assayed after treatment by commercially available insecticides (formulated products) which contain neonicotinoids as their active ingredients: Actara (thiamethoxam), Apacs (clothianidin), Calypso (thiacloprid) and Kohinor (imidacloprid), respectively. While applying the accumulation assay method, 0.5 μM rhodamine B was used as model substrate and 20 μM verapamil as model inhibitor of the MXR mechanism. In acute (in vitro) experiments when isolated gills were co-incubated in graded concentrations of insecticides and rhodamine B simultaneously, Calypso and Kohinor treatment resulted increasing rhodamine accumulation. Chemical analysis of gills in vitro incubated in insecticides demonstrated higher tissue concentrations of thiamethoxam, clothianidin and thiacloprid in the presence of verapamil suggesting that the active ingredients of Actara, Apacs and Calypso are potential substrates of the MXR mediated cellular efflux. In contrast, verapamil did significantly alter the accumulated imidacloprid concentrations in gills, suggesting that the active component of Kohinor is not transported by the MXR mechanism. Chronic (in vivo) exposures of the intact animals in lower, 1, 10 mg/L concentration of neonicotinoid products, resulted in a decreased level of both rhodamine accumulation and verapamil inhibition by the 12th-14th days of treatment. These results suggest an enhancement of MXR activity (chemostimulation), building up gradually in the animals exposed to Actara, Apacs and Kohinor, respectively. Neonicotinoid-type insecticides are generally considered as selective neurotoxins for insects, targeting the nicotinic type acetylcholine receptors (nAChRs) in their central nervous system. Our present results provide the first evidences that neonicotinoid insecticides are also able to alter the transmembrane transport mechanisms related to the MXR system.
Collapse
Affiliation(s)
- Ágnes Vehovszky
- MTA Centre for Ecological Research, Balaton Limnological Institute, Tihany, Hungary.
| | - Anna Farkas
- MTA Centre for Ecological Research, Balaton Limnological Institute, Tihany, Hungary
| | - Vivien Csikós
- MTA Centre for Ecological Research, Balaton Limnological Institute, Tihany, Hungary
| | - András Székács
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary
| | - Mária Mörtl
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary
| | - János Győri
- MTA Centre for Ecological Research, Balaton Limnological Institute, Tihany, Hungary
| |
Collapse
|