1
|
Freitas TR, Peron RADS, Oliveira Filho LCID, Campos ML, Klauberg-Filho O, Baretta D. Copper prevention values in Brazilian subtropical soils. CHEMOSPHERE 2025; 372:144079. [PMID: 39761702 DOI: 10.1016/j.chemosphere.2025.144079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
The Brazilian National Environmental Council (CONAMA) Resolution 420/2009 establishes soil quality guideline values for copper, as the prevention value (PV). It defines the maximum concentrations of chemical substances permitted in the soil. Thus, the aim of the present research was to evaluate the effectiveness of the copper PV adopted at the national level by conducting exposure assays with enchytraeids (Enchytraeus crypticus, Enchytraeus bigeminus and Enchytraeus dudichi) and springtails (Folsomia candida, Proisotoma minuta and Sinella curviseta) in two Brazilian subtropical soils: a Latosol and an Argisol. Results revealed that copper reduces the reproductive capacity of all organisms as its concentration increases in the evaluated soils. Argisol presented the lowest effective concentration of 20% (EC20) and 50% (EC50) in species reproduction for all organisms evaluated. The most sensitive organism was the enchytraeid E. bigeminus, with EC20 values of 58 mg kg⁻1 in Latosol and 30 mg kg⁻1 in Argisol, and EC50 values of 155 mg kg⁻1 in Latosol and 91 mg kg⁻1 in Argisol. Among the springtails, S. curviseta exhibited the highest EC20, with values of 230 mg kg⁻1 in Latosol and 136 mg kg⁻1 in Argisol. Conversely, the highest values of EC50 were recorded for the species P. minuta (526 mg kg⁻1 in Latosol and 415 mg kg⁻1 in Argisol). Based on the species sensitivity distribution (SSD) approach, the PVs calculated were 172 mg kg⁻1 for Latosol and 106 mg kg⁻1 for Argisol, derived from EC50 data. For EC20 data, the PV values calculated were 158 mg kg⁻1 in Latosol and 100 mg kg⁻1 in Argisol. By comparing the PV with the Brazilian adopted PV for copper (60 mg kg-1), it was observed the efficacy of the CONAMA Resolution.
Collapse
Affiliation(s)
- Thiago Ramos Freitas
- Santa Catarina State University, Center for Agroveterinary Sciences, Department of Soils and Natural Resources, Lages, Santa Catarina, Brazil
| | - Rafaela Alves Dos Santos Peron
- Santa Catarina State University, Center for Agroveterinary Sciences, Department of Soils and Natural Resources, Lages, Santa Catarina, Brazil
| | - Luis Carlos Iuñes de Oliveira Filho
- Santa Catarina State University, Center for Agroveterinary Sciences, Department of Soils and Natural Resources, Lages, Santa Catarina, Brazil
| | - Mari Lucia Campos
- Santa Catarina State University, Center for Agroveterinary Sciences, Department of Soils and Natural Resources, Lages, Santa Catarina, Brazil
| | - Osmar Klauberg-Filho
- Santa Catarina State University, Center for Agroveterinary Sciences, Department of Soils and Natural Resources, Lages, Santa Catarina, Brazil
| | - Dilmar Baretta
- Santa Catarina State University, Center for Higher Education of the West, Department of Animal Science, Chapecó, Santa Catarina, Brazil.
| |
Collapse
|
2
|
Bai Y, Ma R, Cui Z, Liu L, Ding D, Hu Q, Xia B, Li Z, Zhang H, Qu K. Ecological risk assessment for BDE-47 in marine environment based on species sensitivity distribution method. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106967. [PMID: 39827713 DOI: 10.1016/j.marenvres.2025.106967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/03/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
BDE-47 is the most abundant and toxic congener in the marine environment. Assessing the ecological risk of BDE-47 in seawater is of great importance to protect the marine species. However, the ecological risks of BDE-47 on marine species is still limited. In the present study, the hazardous concentrations for 5 % of species (HC5) values of BDE-47 were derived by species sensitivity distributions (SSD), the short-term water quality criteria (SWQC) and long-term water quality criteria (LWQC) were acquired from HC5. Moreover, the marine ecological risk of BDE-47 was assessed by the risk quotient (RQ) method in the coastal area of China. The SWQC and LWQC were 1.06 μg/L and 0.61 μg/L, respectively. According to published literature, the concentrations of BDE-47 ranged from undetected to 9.06 ng/L, BDE-47 has no risk to marine species in most coastal areas, but might show low risk for a long exposure time in the coastal mariculture area of China. This study provides a new approach for the derivation of the WQC and the ecological risk assessment of BDE-47, which is essential for the protection of marine species and provides guidance to manage the concentration of BDE-47 for administrative department.
Collapse
Affiliation(s)
- Ying Bai
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China
| | - Ruijie Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China; School of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Zhengguo Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China.
| | - Liping Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China
| | - Dongsheng Ding
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China
| | - Qingjing Hu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China
| | - Bin Xia
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China
| | - Zhaochuan Li
- National Marine Environmental Monitoring Center, Dalian, Liaoning, 116023, China
| | - Haibo Zhang
- National Marine Environmental Monitoring Center, Dalian, Liaoning, 116023, China
| | - Keming Qu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China
| |
Collapse
|
3
|
Bai L, Xu WH. Improved printed circuit board defect detection scheme. Sci Rep 2025; 15:2389. [PMID: 39827199 PMCID: PMC11742724 DOI: 10.1038/s41598-025-85245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025] Open
Abstract
In this paper, an improved printed circuit board(PCB)defect detection scheme named PD-YOLOv8 is proposed, which is specialized in the common and challenging problem of small target recognition in PCB inspection. This improved scheme mainly relies on the basic framework of YOLOv8n, and effectively enhances the detection performance of PCB small defects through multiple innovative designs. First, we incorporate the Efficient Channel Attention Network (ECANet) attention mechanism into the backbone network of YOLOv8, which improves the performance of small-target detection by adaptively enhancing the expressiveness of key features, so that the network possesses higher sensitivity and focus on tiny details in PCB images. Second, we optimize and upgraded the neck structure. On the one hand, the [Formula: see text] module is introduced to facilitate cross-layer feature fusion to ensure that the rich texture information at the lower layer and the abstract semantic information at the higher layer complement each other, which is conducive to improving the contextual understanding of small target detection; on the other hand, a detection head specialized for small targets is designed and added to enhance the ability of locating and identifying tiny defects. Furthermore, in order to further enhance the interaction and fusion of multi-scale features, we also add a SlimNeck module to the neck structure, which realizes efficient information transfer through streamlined design and reduces computational complexity at the same time. In addition, we draw on the advanced BiFPN structure, which enables the bidirectional flow of feature information between multiple layers and greatly improves the capture and integration of small target features. Compared to the original YOLOv8 algorithm, this algorithm improves the average accuracy on small targets by [Formula: see text] for mAP50.
Collapse
Affiliation(s)
- Lufeng Bai
- School of Computer Engineering , Jiangsu Second Normal University, Nanjing, Jiangsu, 211200, China
| | - Wen Hao Xu
- School of Computer Engineering , Jiangsu Second Normal University, Nanjing, Jiangsu, 211200, China.
| |
Collapse
|
4
|
Luo W, Li Z, Yi R, Han L, Zhu S. Temporal and Spatial Analysis of Trace Metal Ecotoxicity in Sediments of Chaohu Lake, China. TOXICS 2024; 12:923. [PMID: 39771138 PMCID: PMC11728552 DOI: 10.3390/toxics12120923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
The species sensitivity distribution (SSD) analysis for aquatic ecosystems has been increasingly used in risk assessment. However, existing analyses of the impact of trace metals in lake sediments on aquatic organisms often neglect the spatiotemporal variability of trace metal release. This oversight can result in ecological risk assessments that lack specificity. To address this gap, we collected 32 core sediment samples from Lake Chaohu to systematically investigate the ecological toxicological risks posed by the release of eight trace metal indicators into the overlying water column under four hydrological scenarios throughout the year. Results indicated that only Cu, Pb, and Zn exhibit persistent toxicological risks. The comprehensive ecological toxicological risk of sediment trace metals showed spatial differences, increasing from the western region to the eastern region, i.e., western region < central region < eastern region. Seasonally, the risk levels are ordered as follows: May < September < November to April of the following year < June to August. The eastern region in summer (June to August) was identified as the high-risk area and period for trace metal pollution in sediments. Based on these conclusions, it is recommended to implement pollution control and environmental monitoring measures in the eastern region during the summer to effectively control the pollution and ecological risks of trace metals.
Collapse
Affiliation(s)
- Wenguang Luo
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China
| | - Zongjun Li
- Jingjiang Bureau of Hydrology and Water Resources Survey, Changjiang Water Resources Commission, Jingzhou 434000, China;
| | - Ran Yi
- Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, China;
| | - Lijuan Han
- College of Hydro Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
| | - Senlin Zhu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Banjare P, Murmu A, Matore BW, Singh J, Papa E, Roy PP. Unveiling the interspecies correlation and sensitivity factor analysis of rat and mouse acute oral toxicity of antimicrobial agents: first QSTR and QTTR Modeling report. Toxicol Res (Camb) 2024; 13:tfae191. [PMID: 39559274 PMCID: PMC11569388 DOI: 10.1093/toxres/tfae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
This study aims to identify toxic potential and environmental hazardousness of antimicrobials. In this regard, the available experimental toxicity data with rat and mouse acute oral toxicity have been gathered from ChemID Plus database (n = 202) and subjected to data curation. Upon the data curation 51 and 68 compounds were left for the rat and mouse respectively for the modeling. The quantitative structure toxicity relationship (QSTR) and interspecies correlation analysis by quantitative toxicity-toxicity relationship (QTTR) modeling was approached in this study. The models were developed from 2D descriptors under OECD guidelines by using multiple linear regressions (MLR) with genetic algorithm (GA) for feature selection as a chemometric tool. The developed models were robust (Q 2 LOO = 0.600-0.679) and predictive enough (Q 2 F n = 0.626-0.958, CCC Ext = 0.840-0.893). The leverage approach of applicability domain (ad) analysis assures the model's reliability. The antimicrobials without experimental toxicity values were classified as high, moderate and low toxic based on prediction and ad. The occurrence of the same classification from QSTR and QTTR models revealed the reliability of QTTR models.Finally, the applied "sensitivity factor analysis" typifies the sensitivity of chemicals toward each species. Overall, the first report will be helpful in the toxicity assessment of upcoming antimicrobials in rodents.
Collapse
Affiliation(s)
- Purusottam Banjare
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur Chhattisgarh-495009, India
| | - Anjali Murmu
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur Chhattisgarh-495009, India
| | - Balaji Wamanrao Matore
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur Chhattisgarh-495009, India
| | - Jagadish Singh
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur Chhattisgarh-495009, India
| | - Ester Papa
- QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Theoretical and Applied Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Partha Pratim Roy
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur Chhattisgarh-495009, India
| |
Collapse
|
6
|
Markich SJ, Hall JP, Dorsman JM, Brown PL. Toxicity of rare earth elements (REEs) to marine organisms: Using species sensitivity distributions to establish water quality guidelines for protecting marine life. ENVIRONMENTAL RESEARCH 2024; 261:119708. [PMID: 39089443 DOI: 10.1016/j.envres.2024.119708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
A lack of chronic rare earth element (REE) toxicity data for marine organisms has impeded the establishment of numerical REE water quality benchmarks (e.g., guidelines) to protect marine life and assess ecological risk. This study determined the chronic no (significant) effect concentrations (N(S)ECs) and median-effect concentrations (EC50s) of eight key REEs (yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), gadolinium (Gd), dysprosium (Dy) and lutetium (Lu)) for 30 coastal marine organisms (encompassing 22 phyla and five trophic levels from temperate and tropical habitats). Organisms with calcifying life stages were most vulnerable to REEs, which competitively inhibit calcium uptake. The most sensitive organism was a sea urchin, with N(S)ECs ranging from 0.64 μg/L for Y to 1.9 μg/L for La and Pr, and EC50s ranging from 4.3 μg/L for Y to 14.4 μg/L for Pr. Conversely, the least sensitive organism was a cyanobacterium, with N(S)ECs ranging from 121 μg/L for Y to 469 μg/L for Pr, and EC50s ranging from 889 μg/L for Y to 3000 μg/L for Pr. Median sensitivity varied 215-fold across all organisms. The two-fold difference in median toxicity (μmol/L EC50) among REEs (Y ∼ Gd > Lu ∼ Nd ∼ Dy ∼ Ce > La ∼ Pr) was attributed to offset differences in binding affinity (log K) to cell surface receptors and the percentage of free metal ion (REE3+) in the test waters. The toxicity (EC50) of the remaining REEs (samarium, europium, terbium, holmium, thulium and ytterbium) was predicted using a combination of physicochemical data and measured EC50s for the eight tested REEs, with good agreement between predicted and measured EC50s for selected organisms. Numerical REE water quality guidelines to protect marine life were established using species sensitivity distributions (e.g., for 95 % species protection, values ranged from 1.1 μg/L for Y to 3.0 μg/L for La, Pr or Lu).
Collapse
Affiliation(s)
- Scott J Markich
- Aquatic Solutions International, Long Reef, NSW, 2097, Australia; School of Natural Sciences, Macquarie University, Macquarie Park, NSW, 2109, Australia.
| | - Jeremy P Hall
- Aquatic Solutions International, Airlie Beach, QLD, 4802, Australia
| | - Jude M Dorsman
- Aquatic Solutions International, Long Reef, NSW, 2097, Australia
| | | |
Collapse
|
7
|
Quan T, Huang C, Yao Z, Liu Z, Ma X, Han D, Qi Y. Community-level risk assessments on organophosphate esters in the sediments from the Bohai Sea of China based on multimodal species sensitivity distributions coupled with the equilibrium partitioning method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174162. [PMID: 38909807 DOI: 10.1016/j.scitotenv.2024.174162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Organophosphate esters (OPEs), increasingly used as alternatives to brominated flame retardants, are ubiquitous in the global aquatic environment. Despite their potential toxicological impact on ecosystems, community-level risk assessments for OPEs in sediments remain scarce. This study investigated OPE occurrences and composition characteristics in the Bohai Sea's sediments and appraised both individual and joint ecological risks posed by characteristic OPE homologs using ten commonly used species sensitivity distribution (SSD) models, integrating acute-to-chronic conversion and phase equilibrium partitioning. OPEs were detected across all sediment samples, with total concentrations ranging from 0.213 ng/g dry weight (dw) to 91.1 ng/g dw. The predominant congeners included tri-n-butyl phosphate (TnBP), triisobutyl phosphate (TiBP), tri(2-ethylhexyl) phosphate, tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), tris(1, 3-dichloro-2-propyl) phosphate (TDCIPP), and triphenylphosphine oxide. Best-fit SSD models varied among TnBP, TiBP, TCEP, TCPP, and TDCIPP, demonstrating Sigmoid, Burr III, Sigmoid, Burr III, and Burr III, respectively. The same parametric model demonstrated variability in the fitting process for different OPE congeners, which also happened to the fitting results of ten parametric models for the same specific characteristic congener, underscoring the necessity of employing multiple models for precise community-level risk assessments. Hazard concentrations for a 5% cumulative probability were 0.116 mg/L, 2.88 mg/L, 1.30 mg/L, 1.44 mg/L, and 1.85 mg/L for each respective congener. The resulting risk quotients (RQ) and overall hazard index (HI) were selected as criteria to assess the individual and joint ecological risks of OPEs in sediments from the Bohai Sea, respectively. RQ and HI were both below 0.1, indicating a low risk to the local ecosystems. Multi-model SSD analysis could provide refined data for community-level risk evaluation, offering valuable insights for the development of evidence-based environmental standards and pollution control strategies.
Collapse
Affiliation(s)
- Tianyi Quan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chunliang Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ziwei Yao
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Zhenyang Liu
- New Energy Research Institute, China Renewable Energy Engineering Institute, Beijing 100120, China
| | - Xindong Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Dongfei Han
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yanjie Qi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
8
|
Ding R, Wu Y, Liao Z, Lu Y, Wei D, Chen Z, Hu H. Application of the Biological Toxicity Effect Ratio (BER) Method for Advancing Water Quality Criteria Derivation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39145989 DOI: 10.1021/acs.est.4c06110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Water quality criteria (WQC) serve as a scientific foundation for pollutant risk assessment and control in aquatic ecosystems. The development of regionally differentiated WQC tailored to specific regional characteristics has become an emerging trend. However, the current WQC is constrained by a lack of regional species toxicity data. To address these limitations, this study proposes the biological toxicity effect ratio (BER) method, which indirectly reflects the toxicity sensitivity of the overall aquatic ecosystem through the toxicity information on a limited number of species, enabling rapid WQC prediction. Using the established WQC in China and the USA as a case study, we combined mathematical derivation and data validation to evaluate the BER method. Among various species-taxon groups of freshwater organisms, planktonic crustaceans demonstrated the highest predictive accuracy. Our analysis further revealed that species toxicity sensitivity and regional variability jointly influence the prediction accuracy. Regardless of the evaluation indexes, planktonic crustaceans emerged as the most suitable species-taxon group for the BER method. Additionally, the BER method is particularly applicable to pollutants with conserved mechanisms across species. This study systematically explores the feasibility of using the BER method and offers new insights for deriving regionally differentiated WQC.
Collapse
Affiliation(s)
- Ren Ding
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yinhu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zitong Liao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yun Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dongbin Wei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China
| |
Collapse
|
9
|
Yan X, Huang H, Chen W, Li H, Chen Y, Liang Y, Zeng H. Industrial effluents and N-nitrosamines in karst aquatic systems: a study on distribution and ecological implications. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:255. [PMID: 38884657 DOI: 10.1007/s10653-024-02034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024]
Abstract
The discharge of electroplating wastewater, containing high concentrations of N-nitrosamines, poses significant risks to human health and aquatic ecosystems. Karst aquatic environment is easily impacted by N-nitrosamines due to the fragile surface ecosystem. However, it's still unclear in understanding N-nitrosamine transformation in karst water systems. To explore the response and transport of nine N-nitrosamines in electroplating effluent within both karst surface water and groundwater, different river and groundwater samples were collected from both the upper and lower reaches of the effluent discharge areas in a typical karst industrial catchment in Southwest China. Results showed that the total average concentrations of N-nitrosamines (∑NAs) in electroplating effluent (1800 ng/L) was significantly higher than that in the receiving river water (130 ng/L) and groundwater (70 ng/L). The dynamic nature of karst aquifers resulted in comparable average concentrations of ∑NAs in groundwater (70 ng/L) and river water (79 ng/L) at this catchment. Based on the principal component analysis and multiple linear regression analysis, the electroplating effluent contributed 89% and 53% of N-nitrosamines to the river water and groundwater, respectively. The results based on the species sensitivity distribution model revealed N-nitrosodibutylamine as a particularly toxic compound to aquatic organisms. Furthermore, the average N-nitrosamine carcinogenic risk was significantly higher in lower groundwater reaches compared to upper reaches. This study represents a pioneering effort in considering specific N-nitrosamine properties in evaluating their toxicity and constructing species sensitivity curves. It underscores the significance of electroplating effluent as a primary N-nitrosamine source in aquatic environments, emphasizing their swift dissemination and significant accumulation in karst groundwater.
Collapse
Affiliation(s)
- Xiaoyu Yan
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Huanfang Huang
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution ControlSouth China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Wenwen Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Yingjie Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yanpeng Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Honghu Zeng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
10
|
Huang Y, Zhang N, Ge Z, Lv C, Zhu L, Ding C, Liu C, Peng P, Wu T, Wang Y. Determining soil conservation strategies: Ecological risk thresholds of arsenic and the influence of soil properties. ECO-ENVIRONMENT & HEALTH 2024; 3:238-246. [PMID: 38693960 PMCID: PMC11061221 DOI: 10.1016/j.eehl.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 05/03/2024]
Abstract
The establishment of ecological risk thresholds for arsenic (As) plays a pivotal role in developing soil conservation strategies. However, despite many studies regarding the toxicological profile of As, such thresholds varying by diverse soil properties have rarely been established. This study aims to address this gap by compiling and critically examining an extensive dataset of As toxicity data sourced from existing literature. Furthermore, to augment the existing information, experimental studies on As toxicity focusing on barley-root elongation were carried out across various soil types. The As concentrations varied from 12.01 to 437.25 mg/kg for the effective concentrations that inhibited 10% of barley-root growth (EC10). The present study applied a machine-learning approach to investigate the complex associations between the toxicity thresholds of As and diverse soil properties. The results revealed that Mn-/Fe-ox and clay content emerged as the most influential factors in predicting the EC10 contribution. Additionally, by using a species sensitivity distribution model and toxicity data from 21 different species, the hazardous concentration for x% of species (HCx) was calculated for four representative soil scenarios. The HC5 values for acidic, neutral, alkaline, and alkaline calcareous soils were 80, 47, 40, and 28 mg/kg, respectively. This study establishes an evidence-based methodology for deriving soil-specific guidance concerning As toxicity thresholds.
Collapse
Affiliation(s)
- Yihang Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Naichi Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixuan Ge
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chen Lv
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Linfang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changfeng Ding
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Cun Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peiqin Peng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tongliang Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yujun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Sun T, Ji C, Li F, Wu H. Time Is Ripe for Targeting Per- and Polyfluoroalkyl Substances-Induced Hormesis: Global Aquatic Hotspots and Implications for Ecological Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9314-9327. [PMID: 38709515 DOI: 10.1021/acs.est.4c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Globally implemented ecological risk assessment (ERA) guidelines marginalize hormesis, a biphasic dose-response relationship characterized by low-dose stimulation and high-dose inhibition. The present study illuminated the promise of hormesis as a scientific dose-response model for ERA of per- and polyfluoroalkyl substances (PFAS) represented by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). A total of 266 hormetic dose-response relationships were recompiled from 1237 observations, covering 30 species from nine representative taxonomic groups. The standardized hormetic amplitudes followed the log-normal probability distribution, being subject to the limits of biological plasticity but independent of stress inducers. The SHapley Additive exPlanations algorithm revealed that the target endpoint was the most important variable explaining the hormetic amplitudes. Subsequently, quantitative frameworks were established to incorporate hormesis into the predicted no-effect concentration levels, with a lower induction dose and a zero-equivalent point but a broader hormetic zone for PFOS. Realistically, 10,117 observed concentrations of PFOA and PFOS were gathered worldwide, 4% of which fell within hormetic zones, highlighting the environmental relevance of hormesis. Additionally, the hormesis induction potential was identified in other legacy and emerging PFAS as well as their alternatives and mixtures. Collectively, it is time to incorporate the hormesis concept into PFAS studies to facilitate more realistic risk characterizations.
Collapse
Affiliation(s)
- Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, P. R. China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, P. R. China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, P. R. China
| |
Collapse
|
12
|
Feng Y, Ru Y, Wang J, Zhang X, Tian H, Lei S, Zhao Z, Ru S. Ecological risk assessment of heavy metals in desulfurized seawater discharged from a coal-fired power plant in Qingdao. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:239-252. [PMID: 38573560 DOI: 10.1007/s10646-024-02735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 04/05/2024]
Abstract
Despite the prevalence of discharge of large volumes of heavy-metal-bearing seawater from coal-fired power plants into adjacent seas, studies on the associated ecological risks remain limited. This study continuously monitored concentrations of seven heavy metals (i.e. As, Cd, Cr, Cu, Hg, Pb, and Zn) in surface seawater near the outfall of a coal-fired power plant in Qingdao, China over three years. The results showed average concentrations of As, Cd, Cr, Cu, Hg, Pb, and Zn of 2.63, 0.33, 2.97, 4.63, 0.008, 0.85, and 25.00 μg/L, respectively. Given the lack of data on metal toxicity to local species, this study investigated species composition and biomass near discharge outfalls and constructed species sensitivity distribution (SSD) curves with biological flora characteristics. Hazardous concentrations for 5% of species (HC5) for As, Cd, Cr, Cu, Hg, Pb, and Zn derived from SSDs constructed from chronic toxicity data for native species were 3.23, 2.22, 0.06, 2.83, 0.66, 4.70, and 11.07 μg/L, respectively. This study further assessed ecological risk of heavy metals by applying the Hazard Quotient (HQ) and Joint Probability Curve (JPC) based on long-term heavy metal exposure data and chronic toxicity data for local species. The results revealed acceptable levels of ecological risk for As, Cd, Hg, and Pb, but unacceptable levels for Cr, Cu, and Zn. The order of studied heavy metals in terms of ecological risk was Cr > Cu ≈ Zn > As > Cd ≈ Pb > Hg. The results of this study can guide the assessment of ecological risk at heavy metal contaminated sites characterized by relatively low heavy metal concentrations and high discharge volumes, such as receiving waters of coal-fired power plant effluents.
Collapse
Affiliation(s)
- Yongliang Feng
- Foundation Department, Tangshan University, Tangshan, 063000, China
| | - Yiran Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
| | - Shuhe Lei
- School of Mathematical Sciences, Ocean University of China, Qingdao, 266000, China
| | - Ziang Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China.
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China.
| |
Collapse
|
13
|
Kingsbury M, Marteinson S, Ryall E, Hamoutene D. Considerations and data update for the inference of environmental quality standards for two avermectins widely used in salmon aquaculture. MARINE POLLUTION BULLETIN 2024; 201:116213. [PMID: 38460434 DOI: 10.1016/j.marpolbul.2024.116213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
We have updated and reviewed toxicity data for Emamectin benzoate (EMB) and Ivermectin (IVER), two in-feed drugs used to treat sea lice in farmed Atlantic salmon, and inferred new Environmental Quality Standards (EQS) using a deterministic approach or Species Sensitivity Distributions (SSDs) based on available data. We used a SSD model averaging approach and inferred a water acute EQS value of 24.9 ng/L (SSD) for EMB, while previously established chronic water EQS of 0.17 ng/L and sediment benthic EQS of 131 ng/kg dry weight remained unchanged. For IVER, both a water acute EQS of 8.04 ng/L and a chronic water EQS of 3.98 ng/L were inferred using SSDs as well as a benthic EQS of 290 ng/kg dry weight using a deterministic approach. In light of the lack of solubility and tendency of both avermectins to sorb to material benthic EQSs remain the most relevant value to consider for regulators.
Collapse
Affiliation(s)
- M Kingsbury
- St. Andrews Biological Station, Fisheries and Oceans Canada, St. Andrews, NB E5B 0E4, Canada
| | - S Marteinson
- National Contaminants Advisory Group, Fisheries and Oceans Canada, Ottawa, ON K2P 2J8, Canada
| | - E Ryall
- Aquaculture, Biotechnology and Aquatic Animal Health Science Branch, Fisheries and Oceans Canada, ON K2P 2J8, Canada
| | - D Hamoutene
- St. Andrews Biological Station, Fisheries and Oceans Canada, St. Andrews, NB E5B 0E4, Canada.
| |
Collapse
|
14
|
Binet MT, Golding LA, Adams MS, Robertson T, Elsdon TS. Advantages of model averaging of species sensitivity distributions used for regulating produced water discharges. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:498-517. [PMID: 37466036 DOI: 10.1002/ieam.4817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/10/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023]
Abstract
Produced water (PW) generated by Australian offshore oil and gas activities is typically discharged to the ocean after treatment. These complex mixtures of organic and inorganic compounds can pose significant environmental risk to receiving waters, if not managed appropriately. Oil and gas operators in Australia are required to demonstrate that environmental impacts of their activity are managed to levels that are as low as reasonably practicable, for example, through risk assessments comparing predicted no-effect concentrations (PNECs) with predicted environmental concentrations of PW. Probabilistic species sensitivity distribution (SSD) approaches are increasingly being used to derive PW PNECs and subsequently calculating dilutions of PW (termed "safe" dilutions) required to protect a nominated percentage of species in the receiving environment (e.g., 95% and 99% or PC95 and PC99, respectively). Limitations associated with SSDs include fitting a single model to small (six to eight species) data sets, resulting in large uncertainty (very wide 95% confidence limits) in the region associated with PC99 and PC95 results. Recent advances in SSD methodology, in the form of model averaging, claim to overcome some of these limitations by applying the average model fit of multiple models to a data set. We assessed the advantages and limitations of four different SSD software packages for determining PNECs for five PWs from a gas and condensate platform off the North West Shelf of Australia. Model averaging reduced occurrences of extreme uncertainty around PC95 and PC99 values compared with single model fitting and was less prone to the derivation of overly conservative PC99 and PC95 values that resulted from lack of fit to single models. Our results support the use of model averaging for improved robustness in derived PNEC and subsequent "safe" dilution values for PW discharge management and risk assessment. In addition, we present and discuss the toxicity of PW considering the paucity of such information in peer-reviewed literature. Integr Environ Assess Manag 2024;20:498-517. © 2023 Commonwealth Scientific and Industrial Research Organisation. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | | | | | - Tim Robertson
- Chevron Australia, Perth, Western Australia, Australia
| | - Travis S Elsdon
- Chevron Energy Technology Pty. Ltd., Perth, Western Australia, Australia
| |
Collapse
|
15
|
Zhang P, Meng F, Xia Y, Leng Y, Cui J. Deriving seawater quality criteria of tris(2-chloroethyl) phosphate for ecological risk assessment in China seas through species sensitivity distributions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119482. [PMID: 37939474 DOI: 10.1016/j.jenvman.2023.119482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/01/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
Tris(2-chloroethyl) phosphate (TCEP), one of the widely used organophosphorus flame retardants (OPFRs), has been frequently detected in the marine environment in the seas off China. The existing freshwater biotoxicity data are not suited to derivation of the seawater quality criteria of TCEP and evaluating the associated ecological risks. This study aimed at deriving water quality criteria (WQC) of TCEP for marine organisms based on species sensitivity distribution (SSD) approach using the acute toxicity data generated from multispecies bioassays and chronic toxicity data by converting acute data with the acute-to-chronic ratios (ACRs); the derived WQC were then used to evaluate the ecological risk for TCEP in China Seas. According to median effective concentration (EC50) and median lethal concentration (LC50), TCEP had a moderate or low toxicity to eight marine species selected, among which mysid Neomysis awatschensis (96h-LC50 of 39.65 mg/L) and green alga Platymonas subcordiformis (96-h EC50 of 395.42 mg/L) were the most sensitive and the most tolerant, respectively. The acute and chronic hazardous concentrations of TCEP for 5% of marine species (HC5) were estimated to be 29.55 and 2.68 mg/L, respectively. The short-term and long-term WQC were derived to be 9.85 and 0.89 mg/L, respectively. The risk quotient (RQ) values indicated that TECP at current levels poses a negligible risk to marine ecosystems in China. These results will provide valuable reference for the government to establish a seawater quality standard for TCEP.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Yufan Xia
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yu Leng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jiali Cui
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
16
|
Pinto R, Zanette J. Integrative ecotoxicity evaluation of Cd, Cu, Zn and Ni in aquatic animals reveals high tolerance of Artemia franciscana. CHEMOSPHERE 2023; 341:140059. [PMID: 37673183 DOI: 10.1016/j.chemosphere.2023.140059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/14/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Heavy metals pose a significant threat to animals in aquatic environments due to the adverse effects they exert. Species of the genus Artemia have been described as heavy metal tolerant, but the sensitivity/tolerance range for these species has not been established. In the present study, the toxicity of Cd, Cu, Zn and Ni as reported in the ECOTOX and Web of Science databases was examined for Artemia franciscana and compared with other species and taxonomic groups using an integrative ecotoxicity evaluation. The hazard concentration for 5% of the species (HC5) of acute toxicity tests (24-96 h), obtained through a species sensitivity distribution (SSD) indicated that Cu (0.02 mg/L) and Cd (0.03 mg/L) were the metals with the highest toxicity to aquatic animals followed by Zn (0.15 mg/L) and Ni (0.23 mg/L). In addition to the higher hazard of Cu and Cd to aquatic animals, the comparison of acute LC50 values for A. franciscana indicates lower toxicity of Cd followed by Cu, Zn, and Ni (200.0, 14.5, 9.5, and 0.6 mg/L, respectively). Using the SSD and physiological sensitivity (S) approaches, it was demonstrated that A. franciscana is relatively tolerant to Cd (SSD= HC99; S = 2.21), Cu (SSD= HC97; S = 2.00), Zn (SSD= HC90; S = 1.29) and Ni (SSD= HC83; S = 0.96) compared with other species and taxonomic groups. It appears that tolerance to the metals Cd, Cu, Zn and Ni is unique to the family Artemiidae within the order Anostraca, as the families Streptocephalidae and Thamnocephalidae are not tolerant (have negative S values). Our study confirmed that as expected, A. franciscana presents higher tolerance to Cd, Cu, Zn, and Ni than other aquatic animals. Our findings confirm that A. franciscana can be used as a model organism to understand mechanisms involved in tolerance to heavy metals, mainly Cd and Cu, which are considered highly toxic to other animals.
Collapse
Affiliation(s)
- Rafael Pinto
- Programa de Pós-graduação em Oceanografia Biológica, Instituto de Oceanografia (IO), Universidade Federal do Rio Grande (FURG), Av. Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Juliano Zanette
- Programa de Pós-graduação em Oceanografia Biológica, Instituto de Oceanografia (IO), Universidade Federal do Rio Grande (FURG), Av. Itália Km 8, Rio Grande, RS, 96203-900, Brazil; Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande (FURG), Av. Itália Km 8, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
17
|
Alloy M, Sundaravadivelu D, Conmy R, Meyer P, Barron MG. Determination of aquatic hazard concentrations for the oil spill response product class of surface washing agents using species sensitivity distributions. MARINE POLLUTION BULLETIN 2023; 193:115063. [PMID: 37302201 PMCID: PMC10870308 DOI: 10.1016/j.marpolbul.2023.115063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
Surface washing agents (SWAs) are a diverse class of oil spill response products intended to facilitate removal of stranded oil from shorelines. This class of agents has high application rates relative to other categories of spill response products, but global toxicity data is generally limited to two standard test species: inland silverside and mysid shrimp. Here, we provide a framework to maximize the utility of limited toxicity data across a product class. To characterize species sensitivity to SWAs, the toxicity of three agents spanning a range of chemical and physical properties were tested in eight species. The relative sensitivity of mysids shrimp and inland silversides as surrogate test organisms was determined. Toxicity normalized species sensitivity distributions (SSDn) were used to estimate fifth centile hazard concentration (HC5) values for SWAs with limited toxicity data. Chemical toxicity distributions (CTD) of SWA HC5 values were used to compute a fifth centile chemical hazard distribution (HD5) to provide a more comprehensive assessment of hazard across a spill response product class with limited toxicity data than traditional single species or single agent approaches can give.
Collapse
Affiliation(s)
- Matthew Alloy
- Oak Ridge Institute for Science and Education, Cincinnati, OH, USA
| | | | - Robyn Conmy
- Office of Research & Development, US EPA, Cincinnati, OH, USA.
| | | | - Mace G Barron
- Office of Research & Development, US EPA, Gulf Breeze, FL, USA
| |
Collapse
|
18
|
Malnes D, Waara S, Figuière R, Ahrens L, Wiberg K, Köhler SJ, Golovko O. Hazard screening of contaminants of emerging concern (CECs) in Sweden's three largest lakes and their associated rivers. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131376. [PMID: 37094447 DOI: 10.1016/j.jhazmat.2023.131376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Persistent, mobile, and toxic (PMT) substances have recently garnered increased attention by environmental researchers, the water sector and environmental protection agencies. In this study, acute and chronic species sensitivity distributions (SSDs) were retrieved from literature data for previously quantified contaminants of emerging concern (CECs) in Swedish surface waters (n = 92) and risk quotients (RQ) were calculated. To better understand the characteristics of the detected CECs in non-urban lake sites (n = 71), these compounds were checked against established criteria for potentially toxic PMs (PM(T)s) and occurrence in the aquatic environment, respectively. For the CECs with missing SSDs (n = 15 [acute], n = 41 [chronic]), ecotoxicity data were extracted for eight taxonomic groups, and if data were sufficient (n ≥ 3), SSDs were derived. The retrieved and newly developed SSDs were then used in an environmental hazard assessment (EHA) in the investigated Swedish rivers and lakes. In the rivers, 8 CECs had RQ> 1 in at least one location, and 20 CECs posed a moderate risk (0.01 < RQ < 1). In total, 21 of the 71 detected substances had already been identified as PM(T)/vPvM substances. Our study shows the importance of studying field data at large spatial scale to reveal potential environmental hazards far from source areas.
Collapse
Affiliation(s)
- Daniel Malnes
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-750 07 Uppsala, Sweden.
| | - Sylvia Waara
- Rydberg Laboratory of Applied Sciences, Department of Environmental and Biosciences, Halmstad University, SE-301 18, Halmstad, Sweden
| | - Romain Figuière
- Department of Environmental Science, Stockholm University (ACES), SE-106 91 Stockholm, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-750 07 Uppsala, Sweden
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-750 07 Uppsala, Sweden
| | - Stephan J Köhler
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-750 07 Uppsala, Sweden
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-750 07 Uppsala, Sweden
| |
Collapse
|
19
|
Zhang S, Zeng X, Sun P, Ni T. Ecological risk characteristics of sediment-bound heavy metals in large shallow lakes for aquatic organisms: The case of Taihu Lake, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118253. [PMID: 37295144 DOI: 10.1016/j.jenvman.2023.118253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/02/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Heavy metal contamination in the surface sediments of large shallow lakes in China is becoming increasingly serious. However, more attention has been paid to the human health risk of heavy metals in the past, while little consideration has been given to aquatic organisms. Taking Taihu Lake as an example, we explored the spatial and temporal heterogeneity of the potential ecological risks of seven heavy metals (Cd, As, Cu, Pb, Cr, Ni, and Zn) to species at different taxonomic scales using an improved species sensitivity distribution (SSD) method. The results showed that all six heavy metals, except Cr, were exceeded to some extent compared to background levels, with Cd being the most severe exceedance. Based on the hazardous concentration for 5% of the species (HC5), Cd had the lowest HC5 value, implying the highest ecological risk of toxicity. Ni and Pb had the highest HC5 values and the lowest risk. Cu, Cr, As and Zn were at a relatively moderate levels. For the different groups of aquatic organisms, the ecological risk of most heavy metals was generally lower for vertebrates than for the whole species. The risk for invertebrates and algae was higher than that for all species. Zn and Cu had the highest potentially affected fractions (PAFs) for all classification cases, with mean PAFs of 30.25% and 47.2%, respectively. Spatially, the high ecological risk of sediment heavy metals was significantly related to the spatial characteristics of the type and intensity of human activities in the catchment. Administratively, the environmental quality standards for freshwater sediments proposed by America and Canada are insufficient to protected against the ecological risks of heavy metals in Taihu Lake. In the absence of such standards, China urgently needs to establish an approptiate system of environmental quality standards for heavy metals in lake sediments.
Collapse
Affiliation(s)
- Shaoxuan Zhang
- School of Geography and Ocean Science of Nanjing University, Nanjing, 210023, PR China.
| | - Xia Zeng
- School of Geography and Ocean Science of Nanjing University, Nanjing, 210023, PR China.
| | - Ping Sun
- School of Environment, Nanjing University, Nanjing, 210023, PR China.
| | - Tianhua Ni
- School of Geography and Ocean Science of Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
20
|
Tang Z, Liu X, Niu X, Yin H, Liu M, Zhang D, Guo H. Ecological risk assessment of aquatic organisms induced by heavy metals in the estuarine waters of the Pearl River. Sci Rep 2023; 13:9145. [PMID: 37277502 DOI: 10.1038/s41598-023-35798-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/24/2023] [Indexed: 06/07/2023] Open
Abstract
With the rapid economic development of China's coastal areas and the growth of industry and population, the problem of heavy metal contamination in estuarine waters is increasing in sensitivity and seriousness. In order to accurately and quantitatively describe the current status of heavy metal contamination and identify sensitive aquatic organisms with high ecological risks, five heavy metals in eight estuaries of the Pearl River were monitored at monthly intervals from January to December in 2020, and the ecological risks of aquatic organisms induced by heavy metals were evaluated using Risk quotients (RQ) and species sensitivity distributions (SSD) methods. The results showed that the concentrations of As, Cu, Pb, Hg and Zn in estuaries of the Pearl River were (0.65-9.25) μg/L, (0.07-11.57) μg/L, (0.05-9.09) μg/L, (< 0.40) μg/L and (0.67-86.12) μg/L, respectively. With the exception of Hg in Jiaomen water, the other heavy metals in each sampling site met or exceed the water quality standard of Grade II. The aquatic ecological risks of As, Pb and Hg were generally low in the waters of the Pearl River estuary, but individual aquatic organisms are subject to elevated ecological risks due to Cu and Zn. The content of Zn has a lethal effect on the crustaceans Temora Stylifera, and the content of Cu has a serious impact on the mollusks Corbicula Fluminea and has a certain impact on the crustaceans Corophium sp. and the fish Sparus aurata. Heavy metal levels and joint ecological risks (msPAF) in the Humen, Jiaomen, Hongqimen, and Hengmen estuaries were slightly higher than in other estuaries, and the Yamen estuary had the lowest contration of heavy metals and ecological risk. Research findings can serve as a basis for formulating water quality standards for heavy metals and for protecting aquatic biodiversity in the Pearl River Estuary.
Collapse
Affiliation(s)
- Zhihua Tang
- Integrated Technology Center, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Xinyu Liu
- Bureau of Hydrology and Water Resources, Pearl River Water Resources Commission of Ministry of Water Resources, Guangzhou, 510611, China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Hua Yin
- Integrated Technology Center, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Minru Liu
- Integrated Technology Center, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Huafang Guo
- Integrated Technology Center, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
21
|
Jiang R, Wang M, Xie T, Chen W. Site-specific ecological effect assessment at community level for polymetallic contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130531. [PMID: 36495636 DOI: 10.1016/j.jhazmat.2022.130531] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Current ecological risk assessment (ERA) is based more on book-keeping than on science especially for terrestrial ecosystems due to the lack of relevance to real field. Accordingly, site-specific ecological effect assessment is critical for ERA, especially at high tiers. This study developed procedures to assess ecological effect at community level based on field data. As a case study, we assessed ecological effect of polymetallic contamination in soil in the surrounding of an abandoned mining and smelting site in Hunan, China. Firstly, Zn was identified as the dominant contaminant in soil and slope gradient (SG) and pH as environmental impact factors using distance-based redundancy analysis(db-RDA). Secondly, sensitive endpoints were screened using correlation analysis between Zn and parameters of plant community composition and functional traits. Thirdly, exposure-effect curves between Zn and screened endpoints were developed by taking SG and pH as covariates using Bayesian kernel machine regression analysis (BKMR), based on which half-effect concentrations (EC50s) and 10 %-effect concentrations (EC10s) of soil Zn for each endpoint were calculated. Finally, site-specific hazardous concentrations (HC50s) of Zn were estimated. It was revealed site-specific EC50s and EC10s for soil Zn ranged 80.5-201 mg kg-1 and 342-893 mgkg-1, respectively, and HC50s based on EC10s and EC50s ranged 104-110 mg kg-1 and 595-612 mg kg-1, respectively, which are more specific and inclusive than those obtained based on crop and vegetable seed germination and seedling growth toxicity experiments.
Collapse
Affiliation(s)
- Rong Jiang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meie Wang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Tian Xie
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weiping Chen
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
22
|
Luo HW, Lin M, Bai XX, Xu B, Li M, Ding JJ, Hong WJ, Guo LH. Water quality criteria derivation and tiered ecological risk evaluation of antifouling biocides in marine environment. MARINE POLLUTION BULLETIN 2023; 187:114500. [PMID: 36586200 DOI: 10.1016/j.marpolbul.2022.114500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/18/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
This study provides a comprehensive compilation of published toxicological and environmental data further used to assess the ecological risks of six antifouling biocides, including tributyltin (TBT), Irgarol 1051, Diuron, Chlorothalonil, 4,5-Dichloro-N-octyl-3(2H)-isothiazolone (DCOIT), and Dichlofluanid. The standard maximum concentration and standard continuous concentration of antifouling biocides were derived by the species susceptibility distribution method. Following that, the ecological risk assessment of antifouling biocides in the aquatic environment was conducted using the hazard quotient, margin of safety, joint probability curve, and Monte Carlo random sampling method. The following is a concise list of the antifouling biocide dangers associated with acute and chronic risks: Irgarol 1051 > TBT > Diuron > DCOIT > Chlorothalonil > Dichlofluanid. It is strongly advised that systematic and ongoing monitoring of these biocides in coastal areas take place, as well as the creation of acceptable and efficient environmental protection measures, to safeguard the coastal environment's services and functions.
Collapse
Affiliation(s)
- Hai-Wei Luo
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Min Lin
- Hangzhou Jiasu Environmental Monitoring Co., Ltd, Hangzhou, Zhejiang 311199, China
| | - Xin-Xin Bai
- Hangzhou Jiasu Environmental Monitoring Co., Ltd, Hangzhou, Zhejiang 311199, China
| | - Bin Xu
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Jin-Jian Ding
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Wen-Jun Hong
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
23
|
Hamoutene D, Marteinson S, Kingsbury M, McTavish K. Species sensitivity distributions for two widely used anti-sea lice chemotherapeutants in the salmon aquaculture industry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159574. [PMID: 36272477 DOI: 10.1016/j.scitotenv.2022.159574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
The main objective of the present study is to construct acute aquatic species sensitivity distributions (SSD) and generate proposed HC5 values (i.e. the hazardous concentration for which 5 % of species are affected or potentially affected) for two aquaculture anti-sea lice bath pesticides, azamethiphos, and hydrogen peroxide. These values could be used as the basis for the establishment of environmental quality standards (EQS). We have generated SSDs and inferred HC5 values for mortality and sublethal endpoints using LC50, EC50, and NOEC/LOEC data points separately and for each bath pesticide. Through the examination of literature data on the toxicity of both compounds, we opted to use tests with limited exposure times to ensure environmental relevance for bath pesticides. We also separated life stages for some of the sensitive taxa to account for differences in sensitivities and risk of exposure. The resulting threshold concentrations in environmental seawater are 0.10 μg/L for azamethiphos and 0.15 mg/L for hydrogen peroxide. These suggested azamethiphos and hydrogen peroxide thresholds are comparable to some previously reported EQS values. Further considerations need to be included in how to better use these thresholds in a regulatory context in relation to dispersion patterns. It is also clear that delayed mortality and sublethal effects documented in the literature require further study to fully anticipate the environmental risks of using these two bath pesticides.
Collapse
Affiliation(s)
- D Hamoutene
- St. Andrews Biological Station, Fisheries and Oceans Canada, St. Andrews, NB E5B 0E4, Canada.
| | - S Marteinson
- National Contaminants Advisory Group, Fisheries and Oceans Canada, Ottawa, ON K2P 2J8, Canada
| | - M Kingsbury
- St. Andrews Biological Station, Fisheries and Oceans Canada, St. Andrews, NB E5B 0E4, Canada
| | - K McTavish
- National Guidelines and Standards Office, Environment and Climate Change Canada, Gatineau, QC J8Y 3Z5, Canada
| |
Collapse
|
24
|
Cao L, Liu R, Wang L, Liu Y, Li L, Wang Y. Reliable and Representative Estimation of Extrapolation Model Application in Deriving Water Quality Criteria for Antibiotics. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:191-204. [PMID: 36342347 DOI: 10.1002/etc.5512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/18/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Deriving water quality benchmarks based on the species sensitivity distribution (SSD) is crucial for assessing the ecological risks of antibiotics. The application of extrapolation methods such as interspecies correlation estimation (ICE) and acute-to-chronic ratios (ACRs) can effectively supplement insufficient toxicity data for these emerging contaminants. Acute-to-chronic ratios can predict chronic toxicity from acute toxicity, and ICE can extrapolate an acute toxicity value from one species to another species. The present study explored the impact of two extrapolation methods on the reliability of SSDs by analyzing different scenarios. The results show that, compared with the normal and Weibull distributions, the logistic model was the best-fitting model. For most antibiotics, SSDs derived by extrapolation have high reliability, with 82.9% of R2 values being higher than 0.9, and combining ICE and ACR methods can bring a maximum increase of 10% in R2 . Based on the results of Monte Carlo simulation, the statistical uncertainty brought by ICE in SSD is 10-40 times larger than that brought by ACR, and combining the two methods could reduce uncertainty. In addition, the sensitivity test showed that whether the toxicity data came from extrapolation or actual measurement, the lower the value of toxicity endpoints was, the greater the bias caused by the corresponding species in every scenario. Combining the two aforementioned extrapolation methods could effectively increase the stability of SSD, with their bias nearly equal to 1. Environ Toxicol Chem 2023;42:191-204. © 2022 SETAC.
Collapse
Affiliation(s)
- Leiping Cao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Ruimin Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Linfang Wang
- Sorghum Research Institute, Shanxi Agricultural University/Shanxi Academy of Agricultural Sciences, Jinzhong, China
| | - Yue Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Lin Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Yue Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| |
Collapse
|
25
|
Dhond AK, Barron MG. Advancing Fifth Percentile Hazard Concentration Estimation Using Toxicity-Normalized Species Sensitivity Distributions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17188-17196. [PMID: 36410104 PMCID: PMC10749190 DOI: 10.1021/acs.est.2c06857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The species sensitivity distribution (SSD) is an internationally accepted approach to hazard estimation using the probability distribution of toxicity values that is representative of the sensitivity of a group of species to a chemical. Application of SSDs in ecological risk assessment has been limited by insufficient taxonomic diversity of species to estimate a statistically robust fifth percentile hazard concentration (HC5). We used the toxicity-normalized SSD (SSDn) approach, (Lambert, F. N.; Raimondo, S.; Barron, M. G. Environ. Sci. Technol.2022,56, 8278-8289), modified to include all possible normalizing species, to estimate HC5 values for acute toxicity data for groups of carbamate and organophosphorous insecticides. We computed mean and variance of single chemical HC5 values for each chemical using leave-one-out (LOO) variance estimation and compared them to SSDn and conventionally estimated HC5 values. SSDn-estimated HC5 values showed low uncertainty and high accuracy compared to single-chemical SSDs when including all possible combinations of normalizing species within the chemical-taxa grouping (carbamate-all species, carbamate-fish, organophosphate-fish, and organophosphate-invertebrate). The SSDn approach is recommended for estimating HC5 values for compounds with insufficient species diversity for HC5 computation or high uncertainty in estimated single-chemical HC5 values. Furthermore, the LOO variance approach provides SSD practitioners with a simple computational method to estimate confidence intervals around an HC5 estimate that is nearly identical to the conventionally estimated HC5.
Collapse
Affiliation(s)
- Alexander K Dhond
- Office of Research and Development, U.S. Environmental Protection Agency, Gulf Breeze, Florida32561, United States
| | - Mace G Barron
- Office of Research and Development, U.S. Environmental Protection Agency, Gulf Breeze, Florida32561, United States
| |
Collapse
|
26
|
Li D, Zhang Y, Zhou B, Gao W. Automatic detection of three cell types in a microscope image based on deep learning. JOURNAL OF BIOPHOTONICS 2022; 15:e202200132. [PMID: 36054791 DOI: 10.1002/jbio.202200132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/26/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
With the continuous integration of deep learning and the technique of molecular biology, target detection models must accurately detect the position of each cell in the image and classify it correctly. We present a model for the multi-scale feature fusion of the existing human cell image dataset based on Gaussian mixedly clustering. First, a novel feature extraction network for extracting preliminary features at picture multi scales was presented, which was based on a residual neural network with Instance Normalization and a Mish activation function. Second, the presented model adopts the idea of feature fusion and introduced a new type of feature fusion network to integrate feature graphs on different scales. Furthermore, a Gaussian hybrid clustering algorithm was proposed to cluster the hyperparameters. Based on the experimental results, the average accuracy of the proposed model in the human cell image dataset exceeds 0.96, which improves by 11.9% compared with the existing target detection methods in the same field. Experiments show that the proposed model had been adapted to datasets with uneven sample distribution, providing new ideas for research on medical images.
Collapse
Affiliation(s)
- Dazhou Li
- College of Computer Science and Technology, Shenyang University of Chemical Technology, Shenyang, China
| | - Yike Zhang
- College of Computer Science and Technology, Shenyang University of Chemical Technology, Shenyang, China
| | - Bo Zhou
- College of Computer Science and Technology, Shenyang University of Chemical Technology, Shenyang, China
| | - Wei Gao
- College of Computer Science and Technology, Shenyang University of Chemical Technology, Shenyang, China
| |
Collapse
|
27
|
Liu Y, Bahar MM, Samarasinghe SVAC, Qi F, Carles S, Richmond WR, Dong Z, Naidu R. Ecological risk assessment for perfluorohexanesulfonic acid (PFHxS) in soil using species sensitivity distribution (SSD) approach. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129667. [PMID: 36104899 DOI: 10.1016/j.jhazmat.2022.129667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Perfluorohexanesulfonic acid (PFHxS) is one of the persistent organic pollutants that has been recommended to be listed in Annex A of the Stockholm Convention. It has gained increasing attention in recent years due to its toxic effects. The guideline values of PFHxS are commonly associated with PFOS in various countries and regulatory agencies. In this study, multispecies bioassays were conducted to determine the ecological toxic effects of PFHxS, including plants, soil invertebrates, and soil microorganisms, which indicated the EC10/NOEC values ranged from 2.9 to 250 mg/kg. Where possible, logistic models were used to calculate the EC30 values for various endpoints. The species sensitivity distributions were employed to estimate the ecological investigation levels for PFHxS contamination in soils using toxicity results from literature and this study. The calculation using EC10/NOEC values from both literature and this study indicated a most conservative HC5 as 1.0 mg/kg (hazardous concentration for 5 % of the species being impacted). However, utilisation of EC30 values derived from this study resulted in a much higher HC5 for PFHxS in contaminated soils (13.0 mg/kg) which is at the higher end of the existing guideline values for PFOS for protecting ecological systems. The results obtained in this study can be useful in risk assessment processes to minimize any uncertainty using combined values with PFOS.
Collapse
Affiliation(s)
- Yanju Liu
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - Md Mezbaul Bahar
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - S V A Chamila Samarasinghe
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - Fangjie Qi
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | | | - William R Richmond
- Department of Water and Environmental Regulation, Government of Western Australia, 8 Davidson Terrace, Joondalup WA 6027, Australia.
| | - Zhaomin Dong
- School of Space and Environment, Beihang University, Beijging 100191, China.
| | - Ravi Naidu
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| |
Collapse
|
28
|
Qin L, Li P, Gao C, Fu P, Wang D, Wang J. Development of seawater quality criteria for phenanthrene based on toxicity data of native species in the Bohai Sea. MARINE POLLUTION BULLETIN 2022; 183:114045. [PMID: 36029588 DOI: 10.1016/j.marpolbul.2022.114045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/09/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Phenanthrene (Phe), one of the most commonly detected polycyclic aromatic hydrocarbons, poses a potential threat to marine ecosystems due to its strong toxicity to aquatic organisms. Developing marine water quality criteria (WQC) is critical to effectively control Phe pollution. This study conducted 10 acute toxicity tests and 4 chronic toxicity tests using native species in the Bohai Sea, China and found that the half-lethal/effective concentrations (LC50/EC50) of Phe for all tested organisms were in the range of 0.198-50.142 mg/L. Among them, the mysid Neomysis awatschensis was the most sensitive species, and the rotifer Brachionus plicatilis was the least sensitive. In terms of chronic toxicity, the range of no-observed-effect concentrations (NOECs) for the four tested organisms was 0.0156-4.00 mg/L. Based on the toxicity data and other data collected from existing databases and literature, the established species sensitivity distribution (SSD) model revealed that the marine WQC for Phe was 39.55 μg/L. Furthermore, the reliability of the derived criteria was verified by measuring multiple endpoints of Skeletonema costatum and Brachionus plicatilis after chronic exposure to Phe. Finally, the environmental concentrations of Phe in the Bohai Sea were determined to be 8.0-318 ng/L, and the joint probability curve (JPC) results showed that the ecological risk of Phe was acceptable. This study provides a reference for developing seawater quality standards for Phe.
Collapse
Affiliation(s)
- Lu Qin
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Peng Li
- Shandong Gold Group Co., Ltd., No. 2503, Jingshi Road, Jinan 250100, China
| | - Chen Gao
- Shandong Marine Resources and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Ping Fu
- Shandong Marine Resources and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Dong Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China.
| |
Collapse
|
29
|
Guan Q, Liu Z, Shao W, Tian J, Luo H, Ni F, Shan Y. Probabilistic risk assessment of heavy metals in urban farmland soils of a typical oasis city in northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155096. [PMID: 35398134 DOI: 10.1016/j.scitotenv.2022.155096] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Previous studies lacked quantitative evaluation studies of the probability of ecology and human health risks from soil heavy metals. This study assessed heavy metal risk level by collecting topsoil samples from a typical oasis city (Wuwei) in northwest China and then quantitatively evaluating the ecological risk from heavy metals by incorporating the uncertainty of health risk model parameters into the risk assessment. This study found that anthropogenic activities have influenced the accumulation of heavy metals in the study area and that the risk of contamination of soil heavy metals was characterized as light to moderate contamination and low ecological risk. On this basis, the species sensitivity distribution curves of heavy metals were constructed using species acute toxicity data, the predicted no effect concentrations of heavy metals were derived, and a probabilistic ecological risk evaluation was conducted. The results show that the current soil environmental quality standards in China are not effective in protecting species diversity. In addition, the probability of ecological risk for Cr, Ni and As in the study area was 63.3%, 23.8% and 7.1%, however, traditional pollution assessment methods underestimate the hazard of Cr. Monte Carlo simulations have shown that the probability of the carcinogenic risk of Cr (adults: 79.4%; children: 94.5%) and As (adults: 78.9%; children: 94.0%) is high, the probability of the total carcinogenic risk exceeding 1E-06 is 99.0%, the probability of the non-carcinogenic risk is low, and the slope factor and reference dose can significantly affect the evaluation of human health risks.
Collapse
Affiliation(s)
- Qingyu Guan
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Zhan Liu
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenyan Shao
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jing Tian
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haiping Luo
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fei Ni
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuxin Shan
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
30
|
Yanagihara M, Hiki K, Iwasaki Y. Can Chemical Toxicity in Saltwater Be Predicted from Toxicity in Freshwater? A Comprehensive Evaluation Using Species Sensitivity Distributions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2021-2027. [PMID: 35502940 PMCID: PMC9542858 DOI: 10.1002/etc.5354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/02/2021] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Species sensitivity distributions (SSDs) play an important role in ecological risk assessment. Estimating SSDs requires toxicity data for many species, but reports on saltwater species are often limited compared to freshwater species. This limitation can constrain informed management of saltwater quality for the protection of marine ecosystems. We investigated the relationships between the parameters (i.e., mean and standard deviation [SD]) of freshwater and saltwater log-normal SSDs to determine how accurately saltwater toxicity could be estimated from freshwater toxicity test data. We estimated freshwater and saltwater SSDs for 104 chemicals with reported acute toxicity data for five or more species and compared their means, SDs, and hazardous concentrations for 5% of the species (HC5) derived from the acute SSDs. Standard major axis regression analyses generally showed that log-log relationships between freshwater and saltwater SSD means, SDs, and HC5 values were nearly 1:1. In addition, the ratios of freshwater-to-saltwater SSD means and HC5 values for most of the 104 chemicals fell within the range 0.1-10. Although such a strong correlation was not observed for SSD SDs (r2 < 0.5), differences between freshwater and saltwater SSD SDs were relatively small. These results indicate that saltwater acute SSDs can be reasonably estimated using freshwater acute SSDs. Because the differences of the means and SDs between freshwater and saltwater SSDs were larger when the number of test species used for SSD estimation was lower (i.e., five to seven species in the present study), obtaining toxicity data for an adequate number of species will be key to better approximation of a saltwater acute SSD from a freshwater acute SSD for a given chemical. Environ Toxicol Chem 2022;41:2021-2027. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Miina Yanagihara
- Center for Marine Environmental StudiesEhime UniversityMatsuyamaEhimeJapan
| | - Kyoshiro Hiki
- Health and Environmental Risk Research DivisionNational Institute for Environmental StudiesTsukubaIbarakiJapan
| | - Yuichi Iwasaki
- Research Institute of Science for Safety and SustainabilityNational Institute of Advanced Industrial Science and TechnologyTsukubaIbarakiJapan
| |
Collapse
|
31
|
Liu S, Wang Y, Zhang R, Guo G, Zhang K, Fan Y, Feng C, Li H. Water quality criteria for lanthanum for freshwater aquatic organisms derived via species sensitivity distributions and interspecies correlation estimation models. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:897-908. [PMID: 35610399 DOI: 10.1007/s10646-022-02557-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The increasing exploitation and application of rare earth elements (REEs) may induce hazardous risks to freshwater aquatic organisms. Due to the lack of water quality criteria (WQC) and sufficient reliable toxicity data, little information is available on the ecological risk of REEs in surface water. In this study, lanthanum (La) toxicity data were collected from published toxicological studies, and the data quality was assessed using a toxicological data reliability assessment tool. To obtain more toxicity data, Daphnia magna, Cyprinus carpio, and Dania rerio embryos were selected as surrogate species, and an interspecies correlation estimation (ICE) model was used to predict the toxicity of La for untested species. The species sensitivity distributions (SSDs) of La toxicity and WQC were investigated. Differences were observed in the hazardous concentrations for 5% of species (HC5), but no statistically significant differences were noted in the SSD curves between the measured acute toxicity data and the predicted data. For the SSDs constructed from the measured toxicity data, the ICE-predicted toxicity data and all acute data supplemented with the ICE-predicted data, the acute WQC values of La were 88, 1022 and 256 μg/L, respectively. According to the SSD and corresponding HC5 of chronic toxicity data, the chronic WQC was 14 μg/L. The results provide a scientific reference for establishing WQC for freshwater aquatic organisms and ecological risk assessments of REEs.
Collapse
Affiliation(s)
- Shuai Liu
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Ying Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Ruiqing Zhang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China.
| | - Guanghui Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kaibo Zhang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Yili Fan
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Huixian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
32
|
Tong X, Mohapatra S, Zhang J, Tran NH, You L, He Y, Gin KYH. Source, fate, transport and modelling of selected emerging contaminants in the aquatic environment: Current status and future perspectives. WATER RESEARCH 2022; 217:118418. [PMID: 35417822 DOI: 10.1016/j.watres.2022.118418] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/07/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
The occurrence of emerging contaminants (ECs), such as pharmaceuticals and personal care products (PPCPs), perfluoroalkyl and polyfluoroalkyl substances (PFASs) and endocrine-disrupting chemicals (EDCs) in aquatic environments represent a major threat to water resources due to their potential risks to the ecosystem and humans even at trace levels. Mathematical modelling can be a useful tool as a comprehensive approach to study their fate and transport in natural waters. However, modelling studies of the occurrence, fate and transport of ECs in aquatic environments have generally received far less attention than the more widespread field and laboratory studies. In this study, we reviewed the current status of modelling ECs based on selected representative ECs, including their sources, fate and various mechanisms as well as their interactions with the surrounding environments in aquatic ecosystems, and explore future development and perspectives in this area. Most importantly, the principles, mathematical derivations, ongoing development and applications of various ECs models in different geographical regions are critically reviewed and discussed. The recommendations for improving data quality, monitoring planning, model development and applications were also suggested. The outcomes of this review can lay down a future framework in developing a comprehensive ECs modelling approach to help researchers and policymakers effectively manage water resources impacted by rising levels of ECs.
Collapse
Affiliation(s)
- Xuneng Tong
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Sanjeeb Mohapatra
- NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Jingjie Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore; Shenzhen Municipal Engineering Lab of Environmental IoT Technologies, Southern University of Science and Technology, Shenzhen, 518055, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Ngoc Han Tran
- NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Luhua You
- NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore.
| |
Collapse
|
33
|
Thunnissen NW, Geurts KAG, Hoeks S, Hendriks AJ. The impact of imidacloprid and thiacloprid on the mean species abundance in aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153626. [PMID: 35124047 DOI: 10.1016/j.scitotenv.2022.153626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Neonicotinoids are currently the most widely used and sold insecticides in the world, providing effective pest control. Risk assessment of these and other pesticides by lab-based indicators is common. Yet, empirically and theoretically underpinning of extrapolation to indicators used in field surveys is severely limited. Consequently, the aim of our study was to quantify the toxicological and ecological impact of the neonicotinoids imidacloprid and thiacloprid to aquatic invertebrates. We derived Species Sensitivity Distributions (SSDs) based on chronic LC50 data and Mean Species Abundance Relationships (MSARs), comparing these lab-based approaches to field data as well. MSARs are changes in mean species abundance (MSA) as a function of chemical exposure, providing insight into the overall decline of a community. The MSA expresses the mean abundance of species in disturbed conditions relative to their abundance in undisturbed habitat. The medians of the SSD of imidacloprid and thiacloprid for the different species were 16.45 μg/L and 26.40 μg/L, respectively. HC50s of the MSAR of imidacloprid and thiacloprid were 4.25 μg/L and 5.12 μg/L, respectively. The three taxonomic groups tested (insects, crustaceans and mollusks) did not differ significantly in sensitivity for imidacloprid and thiacloprid, both according to the SSDs and MSARs derived. Quantile exposure-response curves (99%-tile) were plotted showing the relative abundance (RA) of aquatic invertebrate species at increasing imidacloprid levels. The 99%-tile of the Relative Abundances (RA99) of species and corresponding imidacloprid concentrations monitored in field surveys in the Netherlands was significantly lower than the Potentially Affected Fraction (PAF) calculated from the SSD. Yet, the MSA was similar to the RA99, suggesting that MSAR is an ecologically meaningful relationship for toxic stress estimated from lab data. Future efforts should be directed to additional empirical underpinning as well as determining the relationship of PAF to other metrics for ecosystem diversity and productivity.
Collapse
Affiliation(s)
- N W Thunnissen
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands; Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands.
| | - K A G Geurts
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands.
| | - S Hoeks
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands.
| | - A J Hendriks
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
34
|
Bai X, Jiang Y, Jiang Z, Zhu L, Feng J. Nutrient potentiate the responses of plankton community structure and metabolites to cadmium: A microcosm study. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128506. [PMID: 35739684 DOI: 10.1016/j.jhazmat.2022.128506] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 06/15/2023]
Abstract
Metal pollution is a worldwide concern and may pose risks to aquatic organisms, communities, and ecosystems. The toxic effects of metals at the organism level are relatively clear. However, their impacts at the community level are still poorly understood, especially with concurred eutrophication in surface water. In the present study, the effects of Cd on the plankton community structure and function under varying nutrient conditions were evaluated using a microcosm study. The employed concentrations of Cd and nutrient were based on the values currently measured in the freshwater ecosystem. For the plankton structure, our results showed that the Chl a concentration, the abundances of total phytoplankton, Cyanophyta, and Chlorophyta, and the abundance of Copepoda decreased by Cd consistently. The Cyanophyta Oscillatoria tenuis and Copepoda nauplius were the most sensitive species to Cd in the phytoplankton and zooplankton community, respectively. For the community effects, we found the inhibitory effects of Cd on the photosystem II (PSII) activity of phytoplankton community because of the consistent decrease in the chlorophyll fluorescence parameters (Fv/Fm, Y(Ⅱ), and ETR). Furthermore, the reductions of DOC and pH by Cd were only found in the high nutrient condition, which indicated that the toxic effects of Cd on the community structure and community metabolites were aggravated by the increased nutrient. This study emphasizes the importance of considering nutrient conditions when assessing the metal ecotoxicological effects at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Yueming Jiang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Zhendong Jiang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
35
|
Hiki K, Iwasaki Y, Watanabe H, Yamamoto H. Comparison of Species Sensitivity Distributions for Sediment-Associated Nonionic Organic Chemicals Through Equilibrium Partitioning Theory and Spiked-Sediment Toxicity Tests with Invertebrates. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:462-473. [PMID: 34913527 PMCID: PMC9303217 DOI: 10.1002/etc.5270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/29/2021] [Accepted: 12/09/2021] [Indexed: 06/12/2023]
Abstract
Equilibrium partitioning (EqP) theory and spiked-sediment toxicity tests are useful methods to develop sediment quality benchmarks. However, neither approach has been directly compared based on species sensitivity distributions (SSDs) to date. In the present study, we compared SSDs for 10 nonionic hydrophobic chemicals (e.g., pyrethroid insecticides, other insecticides, and polycyclic aromatic hydrocarbons) based on 10-14-day spiked-sediment toxicity test data with those based on EqP theory using acute water-only tests. Because the exposure periods were different between the two tests, effective concentrations (i.e., median effective/lethal concentration) were corrected to compare SSDs. Accordingly, we found that hazardous concentrations for 50% and 5% of species (HC50 and HC5, respectively) differed by up to a factor of 100 and 129 between the two approaches, respectively. However, when five or more species were used for SSD estimation, their differences were reduced to a factor of 1.7 and 5.1 for HC50 and HC5, respectively, and the 95% confidence intervals of HC50 values overlapped considerably between the two approaches. These results suggest that when the number of test species is adequate, SSDs based on EqP theory and spiked-sediment tests are comparable in sediment risk assessments. Environ Toxicol Chem 2022;41:462-473. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Kyoshiro Hiki
- Health and Environmental Risk Research DivisionNational Institute for Environmental StudiesTsukubaIbarakiJapan
| | - Yuichi Iwasaki
- Research Institute of Science for Safety and SustainabilityNational Institute of Advanced Industrial Science and TechnologyTsukubaIbarakiJapan
| | - Haruna Watanabe
- Health and Environmental Risk Research DivisionNational Institute for Environmental StudiesTsukubaIbarakiJapan
| | - Hiroshi Yamamoto
- Health and Environmental Risk Research DivisionNational Institute for Environmental StudiesTsukubaIbarakiJapan
| |
Collapse
|
36
|
Venâncio C, Ribeiro R, Lopes I. Seawater intrusion: an appraisal of taxa at most risk and safe salinity levels. Biol Rev Camb Philos Soc 2021; 97:361-382. [PMID: 34626061 DOI: 10.1111/brv.12803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022]
Abstract
Seawater intrusion into low-lying coastal ecosystems carries environmental risks. Salinity levels at these coastal ecosystems may vary substantially, causing ecological effects from mortality to several sublethal endpoints, such as depression of rates of feeding, somatic growth, or reproduction. This review attempts to establish safe salinity levels for both terrestrial and freshwater temperate ecosystems by integrating data available in the literature. We have four specific objectives: (i) to identify the most sensitive ecological taxa to seawater intrusion; (ii) to establish maximum acceptable concentrations-environmental quality standards (MAC-EQSs) for sea water (SW) from species sensitivity distributions (SSDs); (iii) to compile from the literature examples of saline intrusion [to be used as predicted environmental concentrations (PECs)] and to compute risk quotients for the temperate zone; and (iv) to assess whether sodium chloride (NaCl) is an appropriate surrogate for SW in ecological risk assessments by comparing SSD-derived values for NaCl and SW and by comparing these with field data. Zooplankton, early life stages of amphibians and freshwater mussels were the most sensitive ecological receptors for the freshwater compartment, while soil invertebrates were the most sensitive ecological receptors for the terrestrial compartment. Hazard concentration 5% (HC5 ) values, defined as the concentration (herein measured as conductivity) that affects (causes lethal or sublethal effects) 5% of the species in a distribution, computed for SW were over 22 and 40 times lower than the conductivity of natural SW (≈ 52 mS/cm) for the freshwater and soil compartment, respectively. This sensitivity of both compartments means that small increments in salinity levels or small SW intrusions might represent severe risks for low-lying coastal ecosystems. Furthermore, the proximity between HC5 values for the soil and freshwater compartments suggests that salinized soils might represent an additional risk for nearby freshwater systems. This sensitivity was corroborated by the derivation of risk quotients using real saline intrusion examples (PECs) collected from the literature: risk was >1 in 34 out of 37 examples. By contrast, comparisons of HC5 values obtained from SSDs in field surveys or mesocosm studies suggest that natural communities are more resilient to salinization than expected. Finally, NaCl was found to be slightly more toxic than SW, at both lethal and sublethal levels, and, thus, is suggested to be an acceptable surrogate for use in risk assessment.
Collapse
Affiliation(s)
- Cátia Venâncio
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, Coimbra, 3000-456, Portugal
| | - Rui Ribeiro
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, Coimbra, 3000-456, Portugal
| | - Isabel Lopes
- CESAM & Department of Biology, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
37
|
Arambawatta-Lekamge SH, Pathiratne A, Rathnayake IVN. Sensitivity of freshwater organisms to cadmium and copper at tropical temperature exposures: Derivation of tropical freshwater ecotoxicity thresholds using species sensitivity distribution analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111891. [PMID: 33485013 DOI: 10.1016/j.ecoenv.2021.111891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Tropical freshwater ecosystems are increasingly influenced by chemical stressors including heavy metals posing threats to biodiversity. Adequate ecotoxicity data are not available for native tropical freshwater species for deriving water quality guidelines and for conducting ecological risk assessments. Objectives of this study were (i) to generate freshwater ecotoxicity data for cadmium (Cd) and copper (Cu) for tropical temperature exposures using standard laboratory bioassays with selected freshwater species and (ii) to derive ecotoxicity thresholds (protection concentrations, PC) for tropical freshwater life based on 'tropical temperature-specific exposure' ecotoxicity data. Estimated final chronic toxicity values of the six species tested in the study indicate that the most sensitive species was the crustacean, Moina macrocopa for both metals while the algae Chlorella vulgaris and the plant Lemna perpusilla showed highest tolerance to Cd and Cu respectively. Tropical temperature-specific exposure (25-30 °C) was used as the decision criterion for deriving ecotoxicity thresholds of Cd and Cu for protection of tropical freshwater life based on species sensitivity distribution analysis of the final chronic toxicity data sets which included published toxicity data of selected species in addition to the six species tested in this study. The derived PC99, PC95, PC90 and PC80 values for protection of tropical freshwater life under chronic exposure are 0.5, 1.2, 1.9 and 3.5 μg/L for Cd and 0.34, 0.84, 1.4 and 2.6 μg/L for Cu respectively. These derived threshold chronic values (PC99 and PC95) indicate that the established freshwater quality guidelines based on temperate species for Cu may not provide sufficient protection of the freshwater species in the tropics while the available freshwater guidelines for Cd would provide adequate protection for the tropical freshwater species. The tropical freshwater ecotoxicity thresholds derived in this study may be used with some caution as reference points for site specific ecological risk assessments in the tropics.
Collapse
Affiliation(s)
| | - Asoka Pathiratne
- Department of Zoology and Environmental Management, University of Kelaniya, Kelaniya 11600, Sri Lanka.
| | | |
Collapse
|
38
|
Razak MR, Aris AZ, Zakaria NAC, Wee SY, Ismail NAH. Accumulation and risk assessment of heavy metals employing species sensitivity distributions in Linggi River, Negeri Sembilan, Malaysia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111905. [PMID: 33453636 DOI: 10.1016/j.ecoenv.2021.111905] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The constant increase of heavy metals into the aqueous environment has become a contemporary global issue of concern to government authorities and the public. The study assesses the concentration, distribution, and risk assessment of heavy metals in freshwater from the Linggi River, Negeri Sembilan, Malaysia. Species sensitivity distribution (SSD) was utilised to calculate the cumulative probability distribution of toxicity from heavy metals. The aquatic organism's toxicity data obtained from the ECOTOXicology knowledgebase (ECOTOX) was used to estimate the predictive non-effects concentration (PNEC). The decreasing sequence of hazardous concentration (HC5) was manganese > aluminium > copper > lead > arsenic > cadmium > nickel > zinc > selenium, respectively. The highest heavy metal concentration was iron with a mean value of 45.77 μg L-1, followed by manganese (14.41 μg L-1) and aluminium (11.72 μg L-1). The mean heavy metal pollution index (HPI) value in this study is 11.52, implying low-level heavy metal pollutions in Linggi River. The risk quotient (RQ) approaches were applied to assess the potential risk of heavy metals. The RQ shows a medium risk of aluminium (RQm = 0.1125) and zinc (RQm = 0.1262); a low risk of arsenic (RQm = 0.0122) and manganese (RQm = 0.0687); and a negligible risk of cadmium (RQm = 0.0085), copper (RQm = 0.0054), nickel (RQm = 0.0054), lead (RQm = 0.0016) and selenium (RQm = 0.0012). The output of this study produces comprehensive pollution risk, thus provides insights for the legislators regarding exposure management and mitigation.
Collapse
Affiliation(s)
- Muhammad Raznisyafiq Razak
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia.
| | - Nurul Amirah Che Zakaria
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sze Yee Wee
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nur Afifah Hanun Ismail
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
39
|
Barbosa J, De Schamphelaere K, Janssen C, Asselman J. Prioritization of contaminants and biological process targets in the North Sea using toxicity data from ToxCast. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:144157. [PMID: 33333300 DOI: 10.1016/j.scitotenv.2020.144157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The increasing number of chemicals detected in the marine environment underlines the need for appropriate prioritization strategies prior to further testing and potential inclusion into monitoring programs. Here, a prioritization strategy is proposed for chemicals detected in the North Sea over the last decade, through the development of a Concern Index (CI) using exposure and toxicity data obtained from peer-review publications and the ToxCast database, respectively. A total of 158 chemicals were ranked and the most sensitive tested assay endpoints were identified. Additionally, similar analysis was performed for the classes of chemicals and Biological Process Targets (BPTs). By first ranking chemicals currently acknowledged for their high toxicity to the aquatic environment, i.e. naphthalene, salicylic acid and simazine, the obtained results not only reinforce the risk posed by these but also promote a confident extrapolation from mammalian in vitro toxicity data to fish. Furthermore, genes targeted by the most sensitive assays, related to basic cell maintenance processes and immune defense, are highly evolutionarily conserved across species. The identification of these assays further reinforces the importance of a shift from traditional toxicity endpoints to lower levels of biological organization, allowing the detection of adverse effects at lower concentrations.
Collapse
Affiliation(s)
- João Barbosa
- Laboratory for Environmental Toxicology and Aquatic Ecology, GhEnToxLab, Ghent University, Belgium; Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium.
| | - Karel De Schamphelaere
- Laboratory for Environmental Toxicology and Aquatic Ecology, GhEnToxLab, Ghent University, Belgium
| | - Colin Janssen
- Laboratory for Environmental Toxicology and Aquatic Ecology, GhEnToxLab, Ghent University, Belgium; Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium
| |
Collapse
|
40
|
Wang J, Lautz LS, Nolte TM, Posthuma L, Koopman KR, Leuven RSEW, Hendriks AJ. Towards a systematic method for assessing the impact of chemical pollution on ecosystem services of water systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111873. [PMID: 33385900 DOI: 10.1016/j.jenvman.2020.111873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/23/2020] [Accepted: 12/19/2020] [Indexed: 05/24/2023]
Abstract
Chemical pollution impinges on the quality of water systems and the ecosystem services (ESs) they provide. Expression of ESs in monetary units has become an essential tool for sustainable ecosystem management. However, the impact of chemical pollution on ESs is rarely quantified, and ES valuation often focuses on individual services without considering the total services provided by the ecosystem. The purpose of the study was to develop a stepwise approach to quantify the impact of sediment pollution on the total ES value provided by water systems. Thereby, we calculated the total ES value loss as a function of the multi-substance potentially affected fraction of species at the HC50 level (msPAF(HC50)). The function is a combination of relationships between, subsequently: the msPAF(HC50), diversity, productivity and total ES value. Regardless of the inherent differences between terrestrial and aquatic ecosystems, an increase of diversity generally corresponded to an increase in productivity with curvilinear or linear effects. A positive correlation between productivity and total values of ESs of biomes was observed. The combined relationships showed that 1% msPAF(HC50) corresponded to on average 0.5% (0.05-1.40%) of total ES value loss. The ES loss due to polluted sediments in the Waal-Meuse river estuary (the Netherlands) and Flemish waterways (Belgium) was estimated to be 0.3-5 and 0.6-10 thousand 2007$/ha/yr, respectively. Our study presents a novel methodology to assess the impact of chemical exposure on diversity, productivity, and total value that ecosystems provide. With sufficient monitoring data, our generic methodology can be applied for any chemical and region of interest and help water managers make informed decisions on cost-effective measures to remedy pollution. Acknowledging that the ES loss estimates as a function of PAF(HC50) are crude, we explicitly discuss the uncertainties in each step for further development and application of the methodology.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University, P.O. Box 9010, Nijmegen, 6500 GL, the Netherlands.
| | - Leonie S Lautz
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University, P.O. Box 9010, Nijmegen, 6500 GL, the Netherlands; Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, Maisons-Alfort, F-94700, France
| | - Tom M Nolte
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University, P.O. Box 9010, Nijmegen, 6500 GL, the Netherlands
| | - Leo Posthuma
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University, P.O. Box 9010, Nijmegen, 6500 GL, the Netherlands; Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands
| | - K Remon Koopman
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Rob S E W Leuven
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University, P.O. Box 9010, Nijmegen, 6500 GL, the Netherlands; Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, the Netherlands
| | - A Jan Hendriks
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University, P.O. Box 9010, Nijmegen, 6500 GL, the Netherlands
| |
Collapse
|
41
|
Lao W. Fiproles as a proxy for ecological risk assessment of mixture of fipronil and its degradates in effluent-dominated surface waters. WATER RESEARCH 2021; 188:116510. [PMID: 33068908 DOI: 10.1016/j.watres.2020.116510] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Environmental risk assessment of complex chemical mixtures has increasingly been prioritized as a management goal, especially in the regulatory sector. Although fipronil and its three degradates (-sulfone, -sulfide and -desulfinyl) have been frequently quantified in waterways, little information is available about the likelihood and magnitude of ecological risk posed by these chemical mixtures - collectively known as fiproles - in surface water. In the present study, a probabilistic risk assessment of mixtures of fipronil and its three degradates was conducted for three effluent-dominated southern California rivers: Los Angeles River (LAR), San Gabriel River (SGR) and Santa Clara River (SCR), California, USA. The assessments, which used fiproles as an integrated proxy, were based on three levels of toxicity endpoints: median lethal concentration (LC50), half-maximal effective concentration (EC50), and lowest observed effect concentration (LOEC), to gain comprehensive assessment information. Probabilistic approaches based on species sensitivity distribution (SSD) and exposure concentration distribution (ECD) were developed with the log-logistic model by pooling the toxicity and occurrence data, respectively. The 5th percentile hazardous concentrations (HC5s) were calculated to be at low parts per billion levels, enabling these values to be used to estimate the chemical-specific benchmarks for components that lack ecotoxicity data. The single substance potentially affected fraction (ssPAF) of fiproles revealed risk levels for the three rivers in descending order: LAR ≥ SGR > SCR. The overall risk probability estimated from the joint probability curve (JPC) by Monte Carlo simulation was 1.13 ± 0.20% (LC50), 9.31 ± 1.46% (EC50), and 6.58 ± 1.43% (LOEC) for the three rivers collectively. These results derived from the fiproles indicates that fipronil and its degradates pose risks to the aquatic organisms in the surface water of the three rivers. The present study provides a methodology for the use of a proxy in the risk assessment of chemical mixtures.
Collapse
Affiliation(s)
- Wenjian Lao
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, USA, 92626.
| |
Collapse
|
42
|
Marques JA, Flores F, Patel F, Bianchini A, Uthicke S, Negri AP. Acclimation history modulates effect size of calcareous algae (Halimeda opuntia) to herbicide exposure under future climate scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140308. [PMID: 32846507 DOI: 10.1016/j.scitotenv.2020.140308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Tropical marine habitat-builders such as calcifying green algae can be susceptible to climate change (warming and acidification). This study evaluated the cumulative effects of ocean warming (OW), ocean acidification (OA) and the herbicide diuron on the calcifying green algae Halimeda opuntia. We also assessed the influence of acclimation history to experimental climate change conditions on physiological responses. H. opuntia were exposed for 15 days to orthogonal combinations of three climate scenarios [ambient (28 °C, pCO2 = 378 ppm), 2050 (29 °C, pCO2 = 567 ppm) and 2100 (30 °C, pCO2 = 721 ppm)] and to six diuron concentrations (up to 29 μg L-1). Half of the H. opuntia had been acclimated for eight months to the climate scenarios in a mesocosm approach, while the remaining half were not pre-acclimated, as is current practice in most experiments. Climate effects on quantum yield (ΔF/Fm'), photosynthesis and calcification in future climate scenarios were significantly stronger (by -24, -46 and +26%, respectively) in non-acclimated algae, suggesting experimental bias may exaggerate effects in organisms not appropriately acclimated to future-climate conditions. Thus, full analysis was done on acclimated plants only. Interactive effects of future climate scenarios and diuron were observed for ΔF/Fm', while the detrimental effects of climate and diuron on net photosynthesis and total antioxidant capacity (TAC) were additive. Calcification-related enzymes were negatively affected only by diuron, with inhibition of Ca-ATPase and upregulation of carbonic anhydrase. The combined and consistent physiological and biochemical evidence of negative impacts (across six indicators) of both herbicide and future-climate conditions on the health of H. opuntia highlights the need to address both climate change and water quality. Guideline values for contaminants may also need to be lowered considering 'climate adjusted thresholds'. Importantly, this study highlights the value of applying substantial future climate acclimation periods in experimental studies to avoid exaggerated organism responses to OW and OA.
Collapse
Affiliation(s)
- Joseane A Marques
- Programa de Pós-Graduação em Oceanografia Biológica, Universidade Federal do Rio Grande, RS, Brazil.
| | - Florita Flores
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia.
| | - Frances Patel
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia.
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, RS, Brazil.
| | - Sven Uthicke
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia.
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia.
| |
Collapse
|
43
|
Baillard V, Sulmon C, Bittebiere AK, Mony C, Couée I, Gouesbet G, Delignette-Muller ML, Devin S, Billoir E. Effect of interspecific competition on species sensitivity distribution models: Analysis of plant responses to chemical stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110722. [PMID: 32460047 DOI: 10.1016/j.ecoenv.2020.110722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Species Sensitivity Distributions (SSD) are widely used in environmental risk assessment to predict the concentration of a contaminant that is hazardous for 5% of species (HC5). They are based on monospecific bioassays conducted in the laboratory and thus do not directly take into account ecological interactions. This point, among others, is accounted for in environmental risk assessment through an assessment factor (AF) that is applied to compensate for the lack of environmental representativity. In this study, we aimed to assess the effects of interspecific competition on the responses towards isoproturon of plant species representative of a vegetated filter strip community, and to assess its impact on the derived SSD and HC5 values. To do so, we realized bioassays confronting six herbaceous species to a gradient of isoproturon exposure in presence and absence of a competitor. Several modelling approaches were applied to see how they affected the results, using different critical effect concentrations and investigating different ways to handle multiple endpoints in SSD. At the species level, there was a strong trend toward organisms being more sensitive to isoproturon in presence of a competitor than in its absence. At the community level, this trend was also observed in the SSDs and HC5 values were always lower in presence of a competitor (1.12-11.13 times lower, depending on the modelling approach). Our discussion questions the relevance of SSD and AF as currently applied in environmental risk assessment.
Collapse
Affiliation(s)
| | - Cécile Sulmon
- Univ Rennes, CNRS, Ecobio [(Ecosystèmes, Biodiversité, Évolution)] - Umr 6553, F-35000, Rennes, France
| | - Anne-Kristel Bittebiere
- Université de Lyon 1, CNRS, UMR 5023 LEHNA, 43 Boulevard Du 11 Novembre 1918, Villeurbanne, Cedex, 69622, France
| | - Cendrine Mony
- Univ Rennes, CNRS, Ecobio [(Ecosystèmes, Biodiversité, Évolution)] - Umr 6553, F-35000, Rennes, France
| | - Ivan Couée
- Univ Rennes, CNRS, Ecobio [(Ecosystèmes, Biodiversité, Évolution)] - Umr 6553, F-35000, Rennes, France
| | - Gwenola Gouesbet
- Univ Rennes, CNRS, Ecobio [(Ecosystèmes, Biodiversité, Évolution)] - Umr 6553, F-35000, Rennes, France
| | - Marie Laure Delignette-Muller
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, 69622, Villeurbanne, France
| | - Simon Devin
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Elise Billoir
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| |
Collapse
|
44
|
Thunnissen NW, Lautz LS, van Schaik TWG, Hendriks AJ. Ecological risks of imidacloprid to aquatic species in the Netherlands: Measured and estimated concentrations compared to species sensitivity distributions. CHEMOSPHERE 2020; 254:126604. [PMID: 32315814 DOI: 10.1016/j.chemosphere.2020.126604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Recent declines of insects' biomass have been a major point of interest. While several causes, including use of neonicotinoids like imidacloprid, have been suggested, scientific underpinning is limited. The aim of our study was to assess the potential risk of imidacloprid for freshwater fauna in the Netherlands and to validate the SimpleBox model to allow application elsewhere. To this end, we compared imidacloprid concentrations estimated from emissions using the SimpleBox model to measurements obtained from monitoring databases and calculated the ecological risk based on measured concentrations for aquatic fauna. Imidacloprid concentration estimations were within the range measured, opening opportunities for application of SimpleBox to regions where measurements are limited. Aquatic insects were found to be most sensitive to imidacloprid while amphibians and fish are least sensitive to imidacloprid. In particular, the ecological risk of measured imidacloprid concentration in the Netherlands was 1%, implying that concentrations frequently exceed levels that are lethal in short-term experiments. Hence, based on lab toxicity data, the present study suggests that imidacloprid concentrations can be high enough to explain insect decline observed in the same areas.
Collapse
Affiliation(s)
- N W Thunnissen
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands.
| | - L S Lautz
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands.
| | - T W G van Schaik
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands.
| | - A J Hendriks
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
45
|
Wu F, Gao Y, Zuo Z, Feng J, Yan Z, Zhu L. Different decreasing rates of chemical threshold concentrations can be explained by their toxicokinetic and toxicodynamic characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135234. [PMID: 31812410 DOI: 10.1016/j.scitotenv.2019.135234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/17/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
To protect ecosystems, threshold concentrations (e.g., HC5) for chemicals are often derived using the toxicity data obtained at fixed times. Since the toxicity (e.g., LC50) usually decreases with exposure time, the threshold concentrations are expected to be time-dependent, giving rise to the uncertainty in the chemical environmental criteria. Here, using the LC50 data with at least 3 different exposure durations (24, 48 and 96 h) for compounds, we explored the time evolutions of HC5 across 20 chemicals. Results showed that all chemical's HC5 decreased with time, but their decreasing rates of HC5 (k) are significantly different: for some chemicals the k are lower than 0.001 (e.g., methoxychlor and dieldrin), while for some chemicals the k are higher than 0.05 (e.g., PCP and aldicarb). Furthermore, we found that k is negatively related to the bioconcentration factors (BCF), and positively related to the damage recovery rates (kR). Our work demonstrated that time is an important source of the ecological threshold uncertainty, and this uncertainty is associated with chemical-specific toxicokinetic and toxicodynamic characteristics. We recommend that to effectively protect the ecological communities, higher assessment factor should be adopted in deriving the acute environmental criteria for these chemicals with high BCF and low kR, fluoranthene and diazinon.
Collapse
Affiliation(s)
- Fan Wu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yongfei Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhiling Zuo
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
46
|
Nogueira DJ, Vaz VP, Neto OS, Silva MLND, Simioni C, Ouriques LC, Vicentini DS, Matias WG. Crystalline phase-dependent toxicity of aluminum oxide nanoparticles toward Daphnia magna and ecological risk assessment. ENVIRONMENTAL RESEARCH 2020; 182:108987. [PMID: 31812936 DOI: 10.1016/j.envres.2019.108987] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 05/23/2023]
Abstract
Aluminum oxide nanoparticles (Al2O3 NPs) can be found in different crystalline phases, and with the emergence of nanotechnology there has been a rapid increase in the demand for Al2O3 NPs in different engineering areas and for consumer products. However, a careful evaluation of the potential environmental and human health risks is required to assess the implications of the release of Al2O3 NPs into the environment. Thus, the objective of this study was to investigate the toxicity of two crystalline phases of Al2O3 NPs, alpha (α-Al2O3 NPs) and eta (η-Al2O3 NPs), toward Daphnia magna and evaluate the risk to the aquatic ecology of Al2O3 NPs with different crystalline phases, based on a probabilistic approach. Different techniques were used for the characterization of the Al2O3 NPs. The toxicity toward Daphnia magna was assessed based on multiple toxicological endpoints, and the probabilistic species sensitivity distribution (PSSD) was used to estimate the risk of Al2O3 NPs to the aquatic ecology. The results obtained verify the toxic potential of the NPs toward D. magna even in sublethal concentrations, with a more pronounced effect being observed for η-Al2O3 NPs. The toxicity is associated with an increase in the reactive oxygen species (ROS) content and deregulation of antioxidant enzymatic/non-enzymatic enzymes (CAT, SOD and GSH). In addition, changes in MDA levels were observed, indicating that D. magna was under oxidative stress. The most prominent chronic toxic effects were observed in the organisms exposed to η-Al2O3 NPs, since the lowest LOEC was 3.12 mg/L for all parameters, while for α-Al2O3 NPs the lowest LOEC was 6.25 mg/L for longevity, growth and reproduction. However, the risk assessment results indicate that, based on a probabilistic approach, Al2O3 NPs (alpha, gamma, delta, eta and theta) only a very limited risk to organisms in surface waters.
Collapse
Affiliation(s)
- Diego José Nogueira
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-970, Brazil
| | - Vitor Pereira Vaz
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-970, Brazil
| | - Oswaldo Savoldi Neto
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-970, Brazil
| | - Marlon Luiz Neves da Silva
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-970, Brazil
| | - Carmen Simioni
- Laboratory of Plant Cell Biology, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, SC, 88049-900, Brazil
| | - Luciane Cristina Ouriques
- Laboratory of Plant Cell Biology, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, SC, 88049-900, Brazil
| | - Denice Shulz Vicentini
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-970, Brazil
| | - William Gerson Matias
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-970, Brazil.
| |
Collapse
|
47
|
Liao W, Feng C, Liu N, Liu D, Yan Z, Bai Y, Xie H, Shi H, Wu D. Influence of Hardness and Dissolved Organic Carbon on the Acute Toxicity of Copper to Zebrafish (Danio rerio) at Different Life Stages. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:789-795. [PMID: 31605158 DOI: 10.1007/s00128-019-02721-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Copper (Cu) bioavailability varies under water conditions. In the present study, the whole life of zebrafish was divided into three different life stages (larvae, juvenile and adult) based on the growth curve, then the influences of water hardness and dissolved organic carbon (DOC) concentration on the acute toxicity of zebrafish were respectively investigated. The results indicated that the life stages had significant effects on Cu toxicity. The larvae stage was less sensitive to Cu than both the juvenile and adult stages. With the increase of water hardness, the toxicity of Cu on zebrafish was decreased, a linear relationship was observed between water hardness and Cu toxicity, and the same was true for DOC concentration. The results showed that taking the 24 days juvenile zebrafish to study the water quality criteria of Cu was stable, sensitive and economical.
Collapse
Affiliation(s)
- Wei Liao
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Jiangxi Irrigation Experiment Central Station, Nanchang, 330201, China
| | - Chenglian Feng
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Na Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Daqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yingchen Bai
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hengwang Xie
- Jiangxi Irrigation Experiment Central Station, Nanchang, 330201, China
| | - Hong Shi
- Jiangxi Irrigation Experiment Central Station, Nanchang, 330201, China
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
48
|
Sub-Daily Temperature Heterogeneity in a Side Channel and the Influence on Habitat Suitability of Freshwater Fish. REMOTE SENSING 2019. [DOI: 10.3390/rs11202367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rising surface water temperatures in fluvial systems increasingly affect biodiversity negatively in riverine ecosystems, and a more frequent exceedance of thermal tolerance levels of species is expected to impoverish local species assemblages. Reliable prediction of the effect of increasing water temperature on habitat suitability requires detailed temperature measurements over time. We assessed (1) the accuracy of high-resolution images of water temperature of a side channel in a river floodplain acquired using a consumer-grade thermal camera mounted on an unmanned airborne vehicle (UAV), and (2) the associated habitat suitability for native and alien fish assemblages. Water surface temperatures were mapped four times throughout a hot summer day and calibrated with 24 in-situ temperature loggers in the water at 0.1 m below the surface using linear regression. The calibrated thermal imagery was used to calculate the potentially occurring fraction (POF) of freshwater fish using species sensitivity distributions. We found high temperatures (25–30 °C) in the side channel during mid-day resulting in reduced habitat suitability. The accuracy of water temperature estimates based on the RMSE was 0.53 °C over all flights (R2 = 0.94). Average daily POF was 0.51 and 0.64 for native and alien fish species in the side channel. The error of the POF estimates is 76% lower when water temperature is estimated with thermal UAV imagery compared to temperatures measured at an upstream gauging station. Accurately quantifying water temperature and the heterogeneity thereof is a critical step in adaptation of riverine ecosystems to climate change. Our results show that measurements of surface water temperature can be made accurately and easily using thermal imagery from UAVs allowing for an improved habitat management, but coincident collection of long wave radiation is needed for a more physically-based prediction of water temperature. Because of climate change, management of riverine ecosystems should consider thermal pollution control and facilitate cold water refugia and connectivity between waterbodies in floodplains and the cooler main channel for fish migration during extremely hot summer periods.
Collapse
|
49
|
Nys C, Van Regenmortel T, De Schamphelaere K. The Effects of Nickel on the Structure and Functioning of a Freshwater Plankton Community Under High Dissolved Organic Carbon Conditions: A Microcosm Experiment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1923-1939. [PMID: 31120596 DOI: 10.1002/etc.4504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/26/2018] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
In the present study, we aimed to test the protectiveness of the bioavailability-normalization procedure, with its associated hazardous concentrations for x% of the species (HCx), that is currently implemented to derive environmental threshold concentrations for nickel (Ni) in European environmental legislative frameworks. We exposed a natural plankton-dominated community to 3 constant Ni concentrations, that is, a control with no Ni added (background Ni of 1.2-4 µg/L) and the bioavailability-normalized HC5 and HC50 of 24 and 97 µg dissolved Ni/L, respectively, during a 56-d microcosm experiment under high dissolved organic carbon (DOC) conditions (DOC of 14 mg/L at test initiation). The effects of the bioavailability-normalized HC5 and HC50 values were evaluated at the levels of community structure (community composition and plankton group abundances), community functioning (measured as indirect physicochemical proxies for overnight respiration and carbon fluxes), and individual species abundances. The bioavailability-normalized HC50 treatment had clear effects (defined as effects occurring on at least 2 consecutive sampling days) on both the structure and functioning of the investigated aquatic community. Through its effect on community functioning (i.e., reduced pH and DOC), Ni also influenced its own bioavailability. Clear direct effects of Ni were observed for only 3 species (the Cyanobacteria Oscillatoria sp. 1 and the rotifers Asplanchna/Testidunela sp. and Trichocerca group similis). Most other effects occurring in the plankton community in the HC50 treatment were indirect and likely driven by the direct effect of Ni on the Cyanobacteria Oscillatoria sp. 1, which was the dominant phytoplankton species in the control microcosms. In contrast, the bioavailability-normalized HC5 did not induce clear effects on community structure and functioning endpoints: these were only affected on individual sampling days. Clear (direct) effects were observed for only 2 plankton species (the rotifer Trichocerca group similis and the Cyanobacteria Oscillatoria sp. 1), but their abundances recovered to control levels at the end of the study. In addition, a few species (1 phytoplankton and 3 zooplankton species) were affected in the HC5 treatment only on the last sampling day. It is uncertain whether these species would have shown clear effects over a longer exposure duration. Thus, our study shows that the bioavailability-normalized HC5 of Ni at high DOC induced clear effects on a few individual species. However, the overall conclusion is that the bioavailability-normalized HC5 of Ni as derived through the procedure that is currently implemented in European legislative frameworks protects against clear effects on community structure and function. Environ Toxicol Chem 2019;38:1923-1939. © 2019 SETAC.
Collapse
Affiliation(s)
- Charlotte Nys
- GhenToxLab, Department of Animal Science and Aquatic Ecology, Ghent University, Ghent, Belgium
- ARCHE Consulting, Ghent (Wondelgem), Belgium
| | - Tina Van Regenmortel
- GhenToxLab, Department of Animal Science and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Karel De Schamphelaere
- GhenToxLab, Department of Animal Science and Aquatic Ecology, Ghent University, Ghent, Belgium
| |
Collapse
|
50
|
Belanger SE, Carr GJ. SSDs revisited: part II-practical considerations in the development and use of application factors applied to species sensitivity distributions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1526-1541. [PMID: 30994956 DOI: 10.1002/etc.4444] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/25/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
Application factors are routinely applied in the extrapolation of laboratory aquatic toxicity data to ensure protection from exposure to chemicals in the natural environment. The magnitude of the application factor is both a scientific and a policy decision, but in any case, it should be rooted in scientific knowledge so as to not be arbitrary. Information-rich chemicals are often subjected to species sensitivity distribution (SSD) analysis to transparently describe certain aspects of assessment uncertainty and are normally subjected to much smaller application factors than screening information data sets. We describe a new set of tools useful to assess the quality of SSDs. Twenty-two data sets and 19 chemicals representing agrochemicals, biocides, surfactants, metals, and common wastewater contaminants were compiled to demonstrate how the tools can be used. "Add-one-in" and "leave-one-out" simulations were used to investigate SSD robustness and develop quantitative evidence for the use of application factors. Theoretical new toxicity data were identified for add-one-in simulations based on the expected probabilities necessary to lower the hazardous concentration to 5% of a species (HC5) by a factor of 2, 3, 5, or 10. Simulations demonstrate the basis for application factors in the range of 1 to 5 for well-studied chemicals with high-quality SSDs. Leave-one-out simulations identify the fact that the most influential values in the SSD come from the extremes of the sensitive and tolerant toxicity values. Mesocosm and field data consistently demonstrate that HC5s are conservative, further justifying the use of small application factors for high-quality SSDs. Environ Toxicol Chem 2019;38:1526-1541. © 2019 SETAC.
Collapse
Affiliation(s)
- S E Belanger
- Environmental Stewardship and Sustainability, The Procter & Gamble Company, Mason, Ohio, USA
| | - G J Carr
- Data & Modeling Sciences, The Procter & Gamble Company, Mason, Ohio, USA
| |
Collapse
|