1
|
Lampi MA, Therkorn JH, Kung MH, Isola AL, Barter RA. Current frameworks for environmental and health assessment of hydrocarbon streams and products are flexible and ready for alternative non crude oil-based feeds. Toxicol Res (Camb) 2024; 13:tfae114. [PMID: 39086642 PMCID: PMC11289309 DOI: 10.1093/toxres/tfae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Hazard and risk assessment of complex petroleum-derived substances has been in a state of continuous improvement since the 1970s, with the development of approaches that continue to be applied and refined. Alternative feeds are defined here as those coming into a refinery or chemical plant that are not hydrocarbons from oil and gas extraction such as biologically derived oils, pyrolysis oil from biomass or other, and recycled materials. These feeds are increasingly being used for production of liquid hydrocarbon streams, and hence, there is a need to assess these alternatives, subsequent manufacturing and refining processes and end products for potential risk to humans and the environment. Here we propose a tiered, problem formulation-driven framework for assessing the safety of hydrocarbon streams and products derived from alternative feedstocks in use. The scope of this work is only focused on petrochemical safety assessment, though the principles may be applicable to other chemistries. The framework integrates combinations of analytical chemistry, in silico and in vitro tools, and targeted testing together with conservative assumptions/approaches to leverage existing health, environmental, and exposure data, where applicable. The framework enables the identification of scenarios where de novo hazard and/or exposure assessments may be needed and incorporates tiered approaches to do so. It can be applied to enable decisions efficiently and transparently and can encompass a wide range of compositional space in both feedstocks and finished products, with the objective of ensuring safety in manufacturing and use.
Collapse
Affiliation(s)
- Mark A Lampi
- ExxonMobil Technology and Engineering Company, ExxonMobil Biomedical Sciences, Inc., 1545 US 22 East, Annandale, NJ 08801, United States
| | - Jennifer H Therkorn
- ExxonMobil Technology and Engineering Company, ExxonMobil Biomedical Sciences, Inc., 1545 US 22 East, Annandale, NJ 08801, United States
| | - Ming H Kung
- ExxonMobil Technology and Engineering Company, ExxonMobil Biomedical Sciences, Inc., 1545 US 22 East, Annandale, NJ 08801, United States
| | - Allison L Isola
- ExxonMobil Product Solutions Company, Product Stewardship & Regulatory Affairs, 22777 Springwoods Village Parkway, Spring, TX 77389, United States
| | - Robert A Barter
- ExxonMobil Technology and Engineering Company, Research Organization, 1545 US 22 East, Annandale, NJ 08801, United States
| |
Collapse
|
2
|
Faksness LG, Altin D, Hansen BH, Nordtug T. Use of TLM derived models to estimate toxicity of weathered MC252 oil based on conventional chemical data and the potential impact of unresolved polar components. Toxicol Mech Methods 2024; 34:596-605. [PMID: 38375806 DOI: 10.1080/15376516.2024.2321165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Target lipid model (TLM) and toxic unit (TU) approaches were applied to ecotoxicity and chemistry data from low-energy WAFs (LE-WAFs) of source and weathered crude oils originating from the Deepwater Horizon oil spill. The weathered oils included artificially weathered oils and naturally weathered samples collected in the Gulf of Mexico after the spill. Oil weathering greatly reduced the concentrations of identified LE-WAF components, however, the mass of uncharacterized polar material (UPC) in the LE-WAFs remained largely unchanged during the weathering process. While the TLM-derived calculations displayed a significant decrease in toxicity (TUs) for the heavily weathered oils, copepod toxicity, expressed as LC10-based TUs, were comparable between LE-WAFs of fresh and weathered oils. The discrepancy between observed and predicted toxicity for the LE-WAFs of artificially weathered oils may be related to limitations by the chemical analyses or increased toxicity due to generation of new unknown compounds during the weathering process.
Collapse
Affiliation(s)
| | - Dag Altin
- BioTrix, Trondheim, Norway
- Department of Infrastructure Sealab, Norwegian Institute of Natural Science and Technology, Trondheim, Norway
| | | | - Trond Nordtug
- Climate and Environment, SINTEF Ocean AS, Trondheim, Norway
| |
Collapse
|
3
|
French-McCay DP, Robinson HJ, Adams JE, Frediani MA, Murphy MJ, Morse C, Gloekler M, Parkerton TF. Parsing the toxicity paradox: Composition and duration of exposure alter predicted oil spill effects by orders of magnitude. MARINE POLLUTION BULLETIN 2024; 202:116285. [PMID: 38555802 DOI: 10.1016/j.marpolbul.2024.116285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/13/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Oil spilled into an aquatic environment produces oil droplet and dissolved component concentrations and compositions that are highly variable in space and time. Toxic effects on aquatic biota vary with sensitivity of the organism, concentration, composition, environmental conditions, and frequency and duration of exposure to the mixture of oil-derived dissolved compounds. For a range of spill (surface, subsea, blowout) and oil types under different environmental conditions, modeling of oil transport, fate, and organism behavior was used to quantify expected exposures over time for planktonic, motile, and stationary organisms. Different toxicity models were applied to these exposure time histories to characterize the influential roles of composition, concentration, and duration of exposure on aquatic toxicity. Misrepresenting these roles and exposures can affect results by orders of magnitude. Well-characterized laboratory studies for <24-hour exposures are needed to improve toxicity predictions of the typically short-term exposures that characterize spills.
Collapse
Affiliation(s)
| | | | - Julie E Adams
- School of Environmental Studies, Queen's University, Kingston, ON, Canada.
| | | | | | | | | | | |
Collapse
|
4
|
Rodea-Palomares I, Bone AJ. Predictive value of the ToxCast/Tox21 high throughput toxicity screening data for approximating in vivo ecotoxicity endpoints and ecotoxicological risk in eco- surveillance applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169783. [PMID: 38184261 DOI: 10.1016/j.scitotenv.2023.169783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/01/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Ecotoxicology has long relied on assessing the hazard potential of chemicals through traditional in vivo testing methods to understand the possible risk exposure could pose to ecological taxa. In the past decade, the development of non-animal new approach methods (NAMs) for assessing chemical hazard and risk has quickly grown. These methods are often cheaper and faster than traditional toxicity testing, and thus are amenable to high-throughput toxicity testing (HTT), resulting in large datasets. The ToxCast/Tox21 HTT programs have produced in vitro data for thousands of chemicals covering a large space of biological activity. The relevance of these data to in vivo mammalian toxicity has been much explored. Interest has also grown in using these data to evaluate the risk of environmental exposures to taxa of ecological importance such as fish, aquatic invertebrates, etc.; particularly for the purpose of estimating the risk of exposure from real-world complex mixtures. Understanding the relationship and relative sensitivity of NAMs versus standardized ecotoxicological whole organism models is a key component of performing reliable read-across from mammalian in vitro data to ecotoxicological in vivo data. In this work, we explore the relationship between in vivo ecotoxicity data from several publicly available databases and the ToxCast/Tox21 data. We also performed several case studies in which we compare how using different ecotoxicity datasets, whether traditional or ToxCast-based, affects risk conclusions based on exposure to complex mixtures derived from existing large-scale chemical monitoring data. Generally, predictive value of ToxCast data for traditional in vivo endpoints (EPs) was poor (r ≤ 0.3). Risk conclusions, including identification of different chemical risk drivers and prioritized monitoring sites, were different when using HTT data vs. traditional in vivo data.
Collapse
Affiliation(s)
| | - Audrey J Bone
- Bayer CropScience, 700 Chesterfield Parkway West, Chesterfield, MO, USA
| |
Collapse
|
5
|
Sørensen L, Størseth TR, Altin D, Nordtug T, Faksness LG, Hansen BH. A simple protocol for estimating the acute toxicity of unresolved polar compounds from field-weathered oils. Toxicol Mech Methods 2024; 34:245-255. [PMID: 38375852 DOI: 10.1080/15376516.2024.2310003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/20/2024] [Indexed: 02/21/2024]
Abstract
Crude oil spilled at sea is chemically altered through environmental processes such as dissolution, biodegradation, and photodegradation. Transformation of hydrocarbons to oxygenated species increases water-solubility. Metabolites and oxidation products largely remain uncharacterized by common analytical methods but may be more bioavailable to aquatic organisms. Studies have shown that unresolved (i.e. unidentified) polar compounds ('UPCs') may constitute > 90% of the water-accommodated fraction (WAF) of heavily weathered crude oils, but still there is a paucity of information characterizing their toxicological significance in relation to other oil-derived toxicants. In this study, low-energy WAFs (no droplets) were generated from two field-weathered oils (collected during the 2010 Deepwater Horizon incident) and their polar fractions were isolated through fractionation. To allow establishment of thresholds for acute toxicity (LC50) of the dissolved and polar fraction of field collected oils, we concentrated both WAFs and polar fractions to beyond field-documented concentrations, and the acute toxicity of both to the marine copepod Acartia tonsa was measured and compared to the toxicity of the native WAF (non-concentrated). The difference in toxic units (TUs) between the total of the mixture and of identified compounds of known toxicity (polycyclic aromatic hydrocarbons [PAHs] and alkyl phenols) in both WAF and polar fractions was used to estimate the contribution of the UPC to overall toxicity. This approach identified that UPC had a similar contribution to toxicity as identified compounds within the WAFs of the field-weathered oils. This signifies the relative importance of polar compounds when assessing environmental impacts of spilled and weathered oil.
Collapse
Affiliation(s)
| | | | | | - Trond Nordtug
- SINTEF Ocean, Climate and Environment, Trondheim, Norway
| | | | | |
Collapse
|
6
|
Briels N, Nys C, Viaene KPJ, Verdonck F, Maloney EM, Dawick J, Vitale CM, Schowanek D. Assessment of the contribution of surfactants to mixture toxicity in French surface waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167322. [PMID: 37758126 DOI: 10.1016/j.scitotenv.2023.167322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/05/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Surfactants are widely used 'down-the-drain' chemicals with the potential to occur at high concentrations in local water bodies and to be part of unintentional environmental mixtures. Recently, increased regulatory focus has been placed on the impacts of complex mixtures in aquatic environments and the substances that are likely to drive mixture risk. This study assessed the contribution of surfactants to the total mixture pressure in freshwater ecosystems. Environmental concentrations, collated from existing French monitoring data, were combined with estimated ecotoxicological thresholds to calculate hazard quotients (HQ) for each substance, and hazard indices (HI) for each mixture. Two scenarios were investigated to correct for concentrations below the limit of quantification (LOQ) in the dataset. The first (best-case) scenario assumed all values
Collapse
Affiliation(s)
- Nathalie Briels
- ARCHE Consulting, Liefkensstraat 35d, 9032 Gent (Wondelgem), Belgium
| | - Charlotte Nys
- ARCHE Consulting, Liefkensstraat 35d, 9032 Gent (Wondelgem), Belgium
| | - Karel P J Viaene
- ARCHE Consulting, Liefkensstraat 35d, 9032 Gent (Wondelgem), Belgium
| | - Frederik Verdonck
- ARCHE Consulting, Liefkensstraat 35d, 9032 Gent (Wondelgem), Belgium
| | - Erin M Maloney
- Shell Global Solutions International B.V., Carel van Bylandtlaan 16, 2596 HR Den Haag, the Netherlands
| | - James Dawick
- Innospec Limited, Innospec Manufacturing Park, Oil G Sites Road Ellesmere Port, Cheshire CH65 4EY, UK
| | - Chiara Maria Vitale
- Procter & Gamble, Brussels Innovation Centre, Temselaan 100, B-1853 Strombeek-Bever, Belgium
| | - Diederik Schowanek
- Procter & Gamble, Brussels Innovation Centre, Temselaan 100, B-1853 Strombeek-Bever, Belgium.
| |
Collapse
|
7
|
Oliveira Dos Anjos TB, Abel S, Lindehoff E, Bradshaw C, Sobek A. Assessing the effects of a mixture of hydrophobic contaminants on the algae Rhodomonas salina using the chemical activity concept. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106742. [PMID: 37977012 DOI: 10.1016/j.aquatox.2023.106742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/14/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
The production and release of chemicals from human activities are on the rise. Understanding how the aquatic environment is affected by the presence of an unknown number of chemicals is lacking. We employed the chemical activity concept to assess the combined effects of hydrophobic organic contaminants on the phytoplankton species Rodomonas salina. Chemical activity is additive, and refers to the relative saturation of a chemical in the studied matrix. The growth of R. salina was affected by chemical activity, following a chemical activity-response curve, resulting in an Ea50 value of 0.078, which falls within the baseline toxicity range observed in earlier studies. The chlorophyll a content exhibited both increases and decreases with rising chemical activity, with the increase possibly linked to an antioxidant mechanism. Yet, growth inhibition provided more sensitive and robust responses compared to photosynthesis-related endpoints; all measured endpoints correlated with increased chemical activity. Growth inhibition is an ecologically relevant endpoint and integrates thermodynamic principles such as membrane disruption. Our study utilized passive dosing, enabling us to control exposure and determine activities in both the medium and the algae. The concept of chemical activity and our results can be extended to other neutral chemical groups as effects of chemical activity remain independent of the mixture composition.
Collapse
Affiliation(s)
| | - Sebastian Abel
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Elin Lindehoff
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Clare Bradshaw
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Anna Sobek
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Cordova AC, Klaren WD, Ford LC, Grimm FA, Baker ES, Zhou YH, Wright FA, Rusyn I. Integrative Chemical-Biological Grouping of Complex High Production Volume Substances from Lower Olefin Manufacturing Streams. TOXICS 2023; 11:586. [PMID: 37505552 PMCID: PMC10385386 DOI: 10.3390/toxics11070586] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Human cell-based test methods can be used to evaluate potential hazards of mixtures and products of petroleum refining ("unknown or variable composition, complex reaction products, or biological materials" substances, UVCBs). Analyses of bioactivity and detailed chemical characterization of petroleum UVCBs were used separately for grouping these substances; a combination of the approaches has not been undertaken. Therefore, we used a case example of representative high production volume categories of petroleum UVCBs, 25 lower olefin substances from low benzene naphtha and resin oils categories, to determine whether existing manufacturing-based category grouping can be supported. We collected two types of data: nontarget ion mobility spectrometry-mass spectrometry of both neat substances and their organic extracts and in vitro bioactivity of the organic extracts in five human cell types: umbilical vein endothelial cells and induced pluripotent stem cell-derived hepatocytes, endothelial cells, neurons, and cardiomyocytes. We found that while similarity in composition and bioactivity can be observed for some substances, existing categories are largely heterogeneous. Strong relationships between composition and bioactivity were observed, and individual constituents that determine these associations were identified. Overall, this study showed a promising approach that combines chemical composition and bioactivity data to better characterize the variability within manufacturing categories of petroleum UVCBs.
Collapse
Affiliation(s)
- Alexandra C Cordova
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - William D Klaren
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Lucie C Ford
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Fabian A Grimm
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yi-Hui Zhou
- Departments of Statistics and Biological Sciences and Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27606, USA
| | - Fred A Wright
- Departments of Statistics and Biological Sciences and Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27606, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
9
|
Dettman HD, Wade TL, French-McCay DP, Bejarano AC, Hollebone BP, Faksness LG, Mirnaghi FS, Yang Z, Loughery J, Pretorius T, de Jourdan B. Recommendations for the advancement of oil-in-water media and source oil characterization in aquatic toxicity test studies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106582. [PMID: 37369158 DOI: 10.1016/j.aquatox.2023.106582] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 06/29/2023]
Abstract
During toxicity testing, chemical analyses of oil and exposure media samples are needed to allow comparison of results between different tests as well as to assist with identification of the drivers and mechanisms for the toxic effects observed. However, to maximize the ability to compare results between different laboratories and biota, it has long been recognized that guidelines for standard protocols were needed. In 2005, the Chemical Response to Oil Spills: Ecological Effects Research Forum (CROSERF) protocol was developed with existing common analytical methods that described a standard method for reproducible preparation of exposure media as well as recommended specific analytical methods and analyte lists for comparative toxicity testing. At the time, the primary purpose for the data collected was to inform oil spill response and contingency planning. Since then, with improvements in both analytical equipment and methods, the use of toxicity data has expanded to include their integration into fate and effect models that aim to extend the applicability of lab-based study results to make predictions for field system-level impacts. This paper focuses on providing a summary of current chemical analyses for characterization of oil and exposure media used during aquatic toxicity testing and makes recommendations for the minimum analyses needed to allow for interpretation and modeling purposes.
Collapse
Affiliation(s)
| | - Terry L Wade
- Geochemical and Environmental Research Group, Texas A&M University, College Station, Texas, USA
| | | | | | - Bruce P Hollebone
- Environment and Climate Change Canada, Emergency Sciences and Technology, Ottawa, Ontario, Canada
| | | | - Fatemeh S Mirnaghi
- Environment and Climate Change Canada, Emergency Sciences and Technology, Ottawa, Ontario, Canada
| | - Zeyu Yang
- Environment and Climate Change Canada, Emergency Sciences and Technology, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
10
|
Loughery JR, Coelho GM, Lee K, de Jourdan B. Setting the stage to advance oil toxicity testing: Overview of knowledge gaps, and recommendations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106581. [PMID: 37285785 DOI: 10.1016/j.aquatox.2023.106581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 06/09/2023]
Abstract
The Chemical Response to Oil Spills: Ecological Effects Research Forum created a standardized protocol for comparing the in vivo toxicity of physically dispersed oil to chemically dispersed oil to support science-based decision making on the use of dispersants in the early 2000s. Since then, the protocol has been frequently modified to incorporate advances in technology; enable the study of unconventional and heavier oils; and provide data for use in a more diverse manner to cover the growing needs of the oil spill science community. Unfortunately, for many of these lab-based oil toxicity studies consideration was not given to the influence of modifications to the protocol on media chemistry, resulting toxicity and limitations for the use of resulting data in other contexts (e.g., risk assessments, models). To address these issues, a working group of international oil spill experts from academia, industry, government, and private organizations was convened under the Multi-Partner Research Initiative of Canada's Oceans Protection Plan to review publications using the CROSERF protocol since its inception to support their goal of coming to consensus on the key elements required within a "modernized CROSERF protocol".
Collapse
Affiliation(s)
- Jennifer R Loughery
- Department of Aquatic Science, Huntsman Marine Science Center, St. Andrews, NB, Canada.
| | - Gina M Coelho
- Oil Spill Preparedness Division, Response Research Branch, Bureau of Safety and Environmental Enforcement, Sterling, VA, United States
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, ON, Canada
| | - Benjamin de Jourdan
- Department of Aquatic Science, Huntsman Marine Science Center, St. Andrews, NB, Canada
| |
Collapse
|
11
|
Fuchsman P, Fetters K, O'Connor A. Target Lipid Model and Empirical Organic Carbon Partition Coefficients Predict Sediment Toxicity of Polychlorinated Biphenyls to Benthic Invertebrates. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1134-1151. [PMID: 36808761 DOI: 10.1002/etc.5588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Quantifying causal exposure-response relationships for polychlorinated biphenyl (PCB) toxicity to benthic invertebrates can be an important component of contaminated sediment assessments, informing cleanup decisions and natural resource injury determinations. Building on prior analyses, we demonstrate that the target lipid model accurately predicts aquatic toxicity of PCBs to invertebrates, providing a means to account for effects of PCB mixture composition on the toxicity of bioavailable PCBs. We also incorporate updated data on PCB partitioning between particles and interstitial water in field-collected sediments, to better account for effects of PCB mixture composition on PCB bioavailability. To validate the resulting model, we compare its predictions with sediment toxicity data from spiked sediment toxicity tests and a variety of recent case studies from sites where PCBs are the primary sediment contaminant. The updated model should provide a useful tool for both screening-level and in-depth risk analyses for PCBs in sediment, and it should aid in diagnosing potential contributing factors at sites where sediment toxicity and benthic community impairment are observed. Environ Toxicol Chem 2023;42:1134-1151. © 2023 SETAC.
Collapse
|
12
|
Philibert DA, Parkerton T, Marteinson S, de Jourdan B. Calibration of an acute toxicity model for the marine crustacean, Artemia franciscana, nauplii to support oil spill effect assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161270. [PMID: 36603630 DOI: 10.1016/j.scitotenv.2022.161270] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Oil spill risk and impact assessments rely on time-dependent toxicity models to predict the hazard of the constituents that comprise crude oils and petroleum substances. Dissolved aromatic compounds (ACs) are recognized as a primary driver of aquatic toxicity in surface spill exposure scenarios. However, limited time-dependent toxicity data are available for different classes of ACs to calibrate such models. This study examined the acute toxicity of 14 ACs and 3 binary AC mixtures on Artemia franciscana nauplii at 25 °C. Toxicity tests for 3 ACs were also conducted at 15 °C to evaluate the role of temperature on toxicity. The ACs investigated represented parent and alkylated homocyclic and nitrogen-, sulfur- and oxygen-containing heterocyclic structures with octanol-water partition coefficients (log Kow) ranging from 3.2 to 6.6. Passive dosing was used to expose and maintain concentrations in toxicity tests which were confirmed using fluorometry, and independently validated for 6 ACs using GC-MS analysis. Mortality was assessed at 6, 24, and 48 h to characterize the time course of toxicity. No mortality was observed for the most hydrophobic AC tested, 7,12-dimethylbenz[a]anthracene, due to apparent water solubility constraints. Empirical log LC50 s for the remaining ACs were fit to a linear regression with log Kow to derive a critical target lipid body burden (CTLBB) based on the target lipid model. The calculated 48 h CTLBB of 47.1 ± 8.1 μmol/g octanol indicates that Artemia nauplii exhibited comparable sensitivity to other crustaceans. A steep concentration-response was found across all compounds as evidenced by a narrow range (1.0-3.1) in the observed LC50 /LC10 ratio. Differences in toxicokinetics were noted, and no impacts of temperature-dependence of AC toxicity were found. Toxicity data obtained for individual ACs yielded acceptable predictions of observed binary AC mixture toxicity. Results from this study advance toxicity models used in oil spill assessments.
Collapse
Affiliation(s)
| | | | - Sarah Marteinson
- National Contaminants Advisory Group, Department of Fisheries and Oceans, Ottawa, ON, Canada
| | | |
Collapse
|
13
|
Alloy MM, Finch BE, Ward CP, Redman AD, Bejarano AC, Barron MG. Recommendations for advancing test protocols examining the photo-induced toxicity of petroleum and polycyclic aromatic compounds. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106390. [PMID: 36709615 PMCID: PMC10519366 DOI: 10.1016/j.aquatox.2022.106390] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
Photo-induced toxicity of petroleum products and polycyclic aromatic compounds (PACs) is the enhanced toxicity caused by their interaction with ultraviolet radiation and occurs by two distinct mechanisms: photosensitization and photomodification. Laboratory approaches for designing, conducting, and reporting of photo-induced toxicity studies are reviewed and recommended to enhance the original Chemical Response to Oil Spills: Ecological Research Forum (CROSERF) protocols which did not address photo-induced toxicity. Guidance is provided on conducting photo-induced toxicity tests, including test species, endpoints, experimental design and dosing, light sources, irradiance measurement, chemical characterization, and data reporting. Because of distinct mechanisms, aspects of photosensitization (change in compound energy state) and photomodification (change in compound structure) are addressed separately, and practical applications in laboratory and field studies and advances in predictive modeling are discussed. One goal for developing standardized testing protocols is to support lab-to-field extrapolations, which in the case of petroleum substances often requires a modeling framework to account for differential physicochemical properties of the constituents. Recommendations are provided to promote greater standardization of laboratory studies on photo-induced toxicity, thus facilitating comparisons across studies and generating data needed to improve models used in oil spill science.
Collapse
Affiliation(s)
- Matthew M Alloy
- Office of Research and Development, US EPA, Cincinnati, OH, USA.
| | - Bryson E Finch
- Department of Ecology, State of Washington, Lacey, WA, USA
| | - Collin P Ward
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | | | | | - Mace G Barron
- Office of Research & Development, US EPA, Gulf Breeze, FL, USA
| |
Collapse
|
14
|
French-McCay DP, Parkerton TF, de Jourdan B. Bridging the lab to field divide: Advancing oil spill biological effects models requires revisiting aquatic toxicity testing. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106389. [PMID: 36702035 DOI: 10.1016/j.aquatox.2022.106389] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Oil fate and exposure modeling addresses the complexities of oil composition, weathering, partitioning in the environment, and the distributions and behaviors of aquatic biota to estimate exposure histories, i.e., oil component concentrations and environmental conditions experienced over time. Several approaches with increasing levels of complexity (i.e., aquatic toxicity model tiers, corresponding to varying purposes and applications) have been and continue to be developed to predict adverse effects resulting from these exposures. At Tiers 1 and 2, toxicity-based screening thresholds for assumed representative oil component compositions are used to inform spill response and risk evaluations, requiring limited toxicity data, analytical oil characterizations, and computer resources. Concentration-response relationships are employed in Tier 3 to quantify effects of assumed oil component mixture compositions. Oil spill modeling capabilities presently allow predictions of spatial and temporal compositional changes during exposure, which support mixture-based modeling frameworks. Such approaches rely on summed effects of components using toxic units to enable more realistic analyses (Tier 4). This review provides guidance for toxicological studies to inform the development of, provide input to, and validate Tier 4 aquatic toxicity models for assessing oil spill effects on aquatic biota. Evaluation of organisms' exposure histories using a toxic unit model reflects the current state-of the-science and provides an improved approach for quantifying effects of oil constituents on aquatic organisms. Since the mixture compositions in toxicity tests are not representative of field exposures, modelers rely on studies using single compounds to build toxicity models accounting for the additive effects of dynamic mixture exposures that occur after spills. Single compound toxicity data are needed to quantify the influence of exposure duration and modifying environmental factors (e.g., temperature, light) on observed effects for advancing use of this framework. Well-characterized whole oil bioassay data should be used to validate and refine these models.
Collapse
Affiliation(s)
- Deborah P French-McCay
- RPS Ocean Science, 55 Village Square Drive, South Kingstown, Rhode Island 02879, United States.
| | - Thomas F Parkerton
- EnviSci Consulting, LLC, 5900 Balcones Dr, Suite 100, Austin, Texas 77433, United States
| | - Benjamin de Jourdan
- Huntsman Marine Science Centre, 1 Lower Campus Rd, St. Andrews, New Brunswick E5B 2L7, Canada
| |
Collapse
|
15
|
Parkerton TF, French-McCay D, de Jourdan B, Lee K, Coelho G. Adopting a toxic unit model paradigm in design, analysis and interpretation of oil toxicity testing. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 255:106392. [PMID: 36638632 DOI: 10.1016/j.aquatox.2022.106392] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The lack of a conceptual understanding and unifying quantitative framework to guide conduct and interpretation of laboratory oil toxicity tests, has led investigators to divergent conclusions that can confuse stakeholders and impede sound decision-making. While a plethora of oil toxicity studies are available and continue to be published, due to differences in experimental design, results between studies often cannot be compared. Furthermore, much resulting data fails to advance quantitative effect models that are critically needed for oil spill risk and impact assessments. This paper discusses the challenges posed when evaluating oil toxicity test data based on traditional, total concentration-based exposure metrics and offers solutions for improving the state of practice by adopting a unifying toxic unit (TU) model framework. Key advantages of a TU framework is that differences in test oil composition, sensitivity of the test organism/endpoint, and toxicity test design (i.e., type of test) can be taken into quantitative account in predicting aquatic toxicity. This paradigm shift is intended to bridge the utility of laboratory oil toxicity tests with improved assessment of effects in the field. To illustrate these advantages, results from literature studies are reassessed and contrasted with conclusions obtained based on past practice. Using instructive examples, model results are presented to explain how dissolved oil composition and concentrations and resulting TUs vary in WAFs prepared using variable loading or dilution test designs and the important role that unmeasured oil components contribute to predicted oil toxicity. Model results are used to highlight how the TU framework can serve as a valuable aid in designing and interpreting empirical toxicity tests and provide the data required to validate/refine predictive toxicity models. To further promote consistent exposure and hazard assessment of physically and chemically dispersed oil toxicity tests recommendations for advancing the TU framework are presented.
Collapse
Affiliation(s)
- Thomas F Parkerton
- EnviSci Consulting, LLC, 5900 Balcones Dr, Suite 100, Austin, TX 78731, United States.
| | - Deborah French-McCay
- RPS Ocean Science, 55 Village Square Drive, South Kingstown, RI 02879, United States
| | - Benjamin de Jourdan
- Huntsman Marine Science Centre, 1 Lower Campus Rd, St. Andrews, St. Andrews, New Brunswick E5B 2L7, Canada
| | - Kenneth Lee
- Department of Fisheries and Oceans, Bedford Institute of Oceanography, Dartmouth B3B 1Y9, Canada
| | - Gina Coelho
- Department of Interior, Bureau of Safety and Environmental Enforcement, Oil Spill Preparedness Division, Response Research Branch,45600 Woodland Road, Sterling, VA 20166, United States
| |
Collapse
|
16
|
Rodea-Palomares I, Gao Z, Weyers A, Ebeling M. Risk from unintentional environmental mixtures in EU surface waters is dominated by a limited number of substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159090. [PMID: 36181796 DOI: 10.1016/j.scitotenv.2022.159090] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/05/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Unintentional environmental mixtures happen when multiple chemicals co-occur in the environment. A generic mixture assessment factor (MAF), has been proposed to account for this. The MAF is a number by which safe exposure levels for single chemicals are divided to ensure protection against combined exposures to multiple chemicals. Two key elements to judge the appropriateness of a generic MAF are (1) defining the scope of mixtures that need to be addressed by a MAF (i.e.: simple mixtures vs complex mixtures), and (2) the existence of common risk drivers across large spatial scales. Simple mixtures with one to three risk drivers can easily be addressed by chemical-by-chemical regulatory action. Our work provides evidence on the prevalence and complexity of cumulative risk in EU freshwaters based on chemical monitoring data from one of the largest databases in the EU. With 334 chemicals being monitored, low complexity mixtures (one to 3 three risk drivers) dominated. After excluding metals, only 15 out of 307 chemicals (5 %) were most frequent chemical risk drivers. When these 15 chemicals were excluded from the analysis, 95 % of all monitoring site - year combinations did not pose a concern for cumulative risk. Most of these 15 chemicals are already banned or listed in various priority lists, showing that current regulatory frameworks were effective in identifying drivers of single chemical and cumulative risk. Although the monitoring data do not represent the entirety of environmental mixtures in the EU, the observed patterns of (1) limited prevalence of truly complex mixtures, and (2) limited number of overall risk drivers, argue against the need for implementing a generic MAF as a regulatory tool to address risk from unintentional mixtures in EU freshwaters.
Collapse
Affiliation(s)
- Ismael Rodea-Palomares
- Bayer CropScience LP, 700 Chesterfield Parkway West, Chesterfield, MO 63017, United States of America.
| | - Zhenglei Gao
- Bayer AG, Crop Science, Alfred-Nobel-Strasse 50, 40789 Monheim am Rhein, Germany
| | - Arnd Weyers
- Bayer AG, Crop Science, Alfred-Nobel-Strasse 50, 40789 Monheim am Rhein, Germany
| | - Markus Ebeling
- Bayer AG, Crop Science, Alfred-Nobel-Strasse 50, 40789 Monheim am Rhein, Germany
| |
Collapse
|
17
|
Wang J, Smit MGD, Verhaegen Y, Nolte TM, Redman AD, Hendriks AJ, Hjort M. Petroleum refinery effluent contribution to chemical mixture toxic pressure in the environment. CHEMOSPHERE 2023; 311:137127. [PMID: 36334744 DOI: 10.1016/j.chemosphere.2022.137127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Petroleum refinery effluents (PRE) are wastewaters from industries associated with oil refining. Within Europe, PREs are regulated through local discharge permits and receive substantial treatment before emission. After treatment, PREs can still contain low levels of various pollutants potentially toxic to organisms. Earlier work, including whole-effluent toxicity assessments, has shown that the toxicity of permitted PREs is often limited. However, the extent to which PREs contribute to chemical pollution already present in the receiving environment is unknown. Therefore, our study aimed to assess the contribution of PREs to mixture toxic pressure in the environment, using the multi-substance potentially affected fraction of species (msPAF) as an indicator. Based on measured chemical concentrations, compiled species sensitivity distributions (SSD) and a mechanistic solubility model, msPAF levels were estimated for undiluted effluents at discharge points and diluted effluents downstream in receiving waters. Median msPAF-chronic and msPAF-acute levels of PREs at discharge points were 74% (P50) and 40% (P95), respectively. The calculated msPAF levels were reduced substantially to <5% downstream for most effluents (82%), indicating low to negligible toxicity of PREs in receiving environments beyond the initial mixing zone. Regardless of differences in endpoints and locations, hydrocarbons (mainly total petroleum hydrocarbons) and inorganics (mainly ammonia) explained at least 85% of the mixture toxic pressure. The msPAF levels of PREs were on average 2.5-4.5 orders of magnitude lower than msPAF levels derived from background pollution levels, suggesting that PREs were minor contributors to the toxic pressure in the environment. This study presents a generic methodology for quantifying the potential toxic pressure of PREs in the environment, identifying hotspots where more effective wastewater treatment could be needed. We explicitly discuss the uncertainties for further refinement and development of the method.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Mathijs G D Smit
- Shell Global Solutions International BV, The Hague, the Netherlands; Concawe, Boulevard du Souverain 165, 1160, Brussels, Belgium
| | - Yves Verhaegen
- Concawe, Boulevard du Souverain 165, 1160, Brussels, Belgium
| | - Tom M Nolte
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Aaron D Redman
- Concawe, Boulevard du Souverain 165, 1160, Brussels, Belgium; ExxonMobil Biomedical Sciences, Inc, Annandale, NJ, United States
| | - A Jan Hendriks
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Markus Hjort
- Concawe, Boulevard du Souverain 165, 1160, Brussels, Belgium.
| |
Collapse
|
18
|
Godyń I, Bodziony M, Grela A, Muszyński K, Pamuła J. Determination of Pollution and Environmental Risk Assessment of Stormwater and the Receiving River, Case Study of the Sudół River Catchment, Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:504. [PMID: 36612823 PMCID: PMC9819663 DOI: 10.3390/ijerph20010504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Changes in the land use of urban catchments and the discharge of stormwater to rivers are causing surface water pollution. Measurements were taken of the quality of discharged stormwater from two areas with different types of development: a residential area and a residential-commercial area, as well as the quality of the Sudół River water below the sewer outlets. The following indicators were studied: TSS, COD, N-NO3, N-NO2, TKN, TN, TP, Zn, Cu, Hg, HOI, and PAHs. The influence of land use on the magnitudes of flows in the river was modeled using the SCS-CN method and the Snyder Unit Hydrograph Model. The results showed an increase in sealing and a resulting increase in surface runoff. Concentrations of pollutants in stormwater and analysis of the potential amounts of loadings contributed by the analyzed stormwater outlets indicate that they may be responsible for the failure to meet environmental targets in the Sudół River. Environmental risk assessment shows that the aquatic ecosystem is at risk. A risk factor indicating a high risk of adverse environmental effects was determined for N-NO3, Zn, and Cu, among others.
Collapse
|
19
|
Arey JS, Martin Aparicio A, Vaiopoulou E, Forbes S, Lyon D. Modeling the GCxGC Elution Patterns of a Hydrocarbon Structure Library To Innovate Environmental Risk Assessments of Petroleum Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17913-17923. [PMID: 36475671 PMCID: PMC9775207 DOI: 10.1021/acs.est.2c06922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Comprehensive two-dimensional gas chromatography (GCxGC) offers unrivaled separation of petroleum substances, which can contain thousands of constituents or more. However, interpreting substance compositions from GCxGC data is costly and requires expertise. To facilitate environmental risk assessments, industries provide aggregated compositional information known as "hydrocarbon blocks" (HCBs), but these proprietary methods do not transparently associate the HCBs with GCxGC chromatogram data. These obstacles frustrate efforts to study the environmental risks of petroleum substances and associated environmental samples. To address this problem, we developed a GCxGC elution model for user-defined petroleum substance compositions. We calibrated the elution model to experimental GCxGC retention times of 56 known hydrocarbons by fitting three tunable model parameters to two candidate instrument methods. With the calibrated model, we simulated retention times for a library of 15,447-15,455 hydrocarbon structures (plus 40-48 predicted as chromatographically unretained) spanning 11 classes of petroleum substance constituents in the C10-C30 range. The resulting simulation data reveal that GCxGC retention times are quantitatively associated with hydrocarbon class and carbon number information throughout the GCxGC chromatogram. These innovations enable the development of transparent and efficient technical methods to investigate the chemical compositions and environmental properties of petroleum substances, including in environmental and lab-weathered samples.
Collapse
Affiliation(s)
- J. Samuel Arey
- ExxonMobil
Biomedical Sciences Inc., Annandale, New Jersey08801, United States
| | | | | | | | | |
Collapse
|
20
|
Editorial overview: Hydrocarbon spills in coastal systems. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Ji W, Abou Khalil C, Boufadel M, Coelho G, Daskiran C, Robinson B, King T, Lee K, Galus M. Impact of mixing and resting times on the droplet size distribution and the petroleum hydrocarbons' concentration in diluted bitumen-based water-accommodated fractions (WAFs). CHEMOSPHERE 2022; 296:133807. [PMID: 35131278 DOI: 10.1016/j.chemosphere.2022.133807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The preparation of Water-accommodated Fractions (WAFs) and chemically enhanced WAFs (CEWAFs) are essential for evaluating oil toxicity. The Chemical Response to Oil Spills: Ecological Research Forum (CROSERF) method was widely adopted, with variables (e.g., mixing time, oil loading, etc.) being continuously changed among research groups, which limits the cooperation in this area. Herein, we conducted WAF and CEWAF experiments using two loadings of diluted bitumen (Dilbit): 1 g/L and 10 g/L. For the CEWAF, the dispersant to oil ratio was 1:20. We investigated the impact of three mixing durations (18 h, 42 h, and 66 h) and two resting times (6 h and 24 h) on the droplet size distribution (DSD) and accommodated oil concentration. This would be highly beneficial for analyzing toxicity from oil spills, especially when considering the toxic effect of both suspended oil droplets and dissolved hydrocarbons. The DSD results and oil chemistry analysis showed that at a low oil loading concentration (1 g/L), both WAFs and CEWAFs had the same DSD, with an average d50 (volume median diameter) of 3.38 ± 0.70 μm and 3.85 ± 0.63 μm, respectively. At a high oil loading concentration (10 g/L), the WAFs had an average d50 of 3.69 ± 0.52 μm, showing no correlation with mixing and resting time. The DSD of CEWAFs increased significantly at 42 h mixing and 24 h resting time, with oil concentration reaching equilibrium after 42 h mixing. Therefore, WAFs appears to require only 18 h mixing and 6 h resting, while it is recommended to have 42 h mixing and 24 h resting for CEWAFs at high dilbit oil loading concentrations.
Collapse
Affiliation(s)
- Wen Ji
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd, Newark, NJ, 07102, USA
| | - Charbel Abou Khalil
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd, Newark, NJ, 07102, USA
| | - Michel Boufadel
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd, Newark, NJ, 07102, USA.
| | - Gina Coelho
- Bureau of Safety and Environmental Enforcement, Department of Interior, 45600 Woodland Rd, Sterling, VA, 20166, USA
| | - Cosan Daskiran
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd, Newark, NJ, 07102, USA
| | - Brian Robinson
- Department of Fisheries and Oceans, Dartmouth, 1 Challenger Dr, Dartmouth, NS, B2Y 4A2, Canada
| | - Thomas King
- Department of Fisheries and Oceans, Dartmouth, 1 Challenger Dr, Dartmouth, NS, B2Y 4A2, Canada
| | - Kenneth Lee
- Department of Fisheries and Oceans, Dartmouth, 1 Challenger Dr, Dartmouth, NS, B2Y 4A2, Canada
| | - Michal Galus
- Department of Fisheries and Oceans, Ottawa, 200 Kent St, Ottawa, ON, K1A 0E6, Canada
| |
Collapse
|
22
|
Katz SD, Chen H, Fields DM, Beirne EC, Keyes P, Drozd GT, Aeppli C. Changes in Chemical Composition and Copepod Toxicity during Petroleum Photo-oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5552-5562. [PMID: 35435676 DOI: 10.1021/acs.est.2c00251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photoproducts can be formed rapidly in the initial phase of a marine oil spill. However, their toxicity is not well understood. In this study, oil was irradiated, chemically characterized, and tested for toxicity in three copepod species (Acartia tonsa, Temora longicornis, and Calanus finmarchicus). Irradiation led to a depletion of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in oil residues, along with an enrichment in aromatic and aliphatic oil photoproducts. Target lipid model-based calculations of PAH toxicity units predicted that PAH toxicities were lower in water-accommodated fractions (WAFs) of irradiated oil residues ("irradiated WAFs") than in WAFs of dark-control samples ("dark WAFs"). In contrast, biomimetic extraction (BE) measurements showed increased bioaccumulation potential of dissolved constituents of irradiated WAFs compared to dark WAFs, mainly driven by photoproducts present in irradiated oil. In line with the BE results, copepod mortality increased in irradiated WAFs compared to dark WAFs. However, low copepod toxicities were observed for WAFs produced with photo-oxidized oil slicks collected during the Deepwater Horizon oil spill. The results of this study suggest that while oil photoproducts have the potential to be a significant source of copepod toxicity, dilution and dispersion of these higher solubility products appear to help mitigate their toxicity at sea.
Collapse
Affiliation(s)
- Samuel D Katz
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine 04544, United States
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island 02882, United States
| | - Haining Chen
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine 04544, United States
| | - David M Fields
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine 04544, United States
- Colby College, Waterville, Maine 04901, United States
| | - Erin C Beirne
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine 04544, United States
| | - Phoebe Keyes
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine 04544, United States
| | - Greg T Drozd
- Colby College, Waterville, Maine 04901, United States
| | - Christoph Aeppli
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine 04544, United States
- Colby College, Waterville, Maine 04901, United States
| |
Collapse
|
23
|
Whale GF, Hjort M, Di Paolo C, Redman AD, Postma JF, Legradi J, Leonards PEG. Assessment of oil refinery wastewater and effluent integrating bioassays, mechanistic modelling and bioavailability evaluation. CHEMOSPHERE 2022; 287:132146. [PMID: 34537454 DOI: 10.1016/j.chemosphere.2021.132146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Water is used in petroleum oil refineries in significant volumes for cooling, steam generation and processing of raw materials. Effective water management is required at refineries to ensure their efficient and responsible operation with respect to the water environment. However, ascertaining the potential environmental risks associated with discharge of refinery effluents to receiving waters is challenging because of their compositional complexity. Recent European research and regulatory initiatives propose a more holistic approach including biological effect methods to assess complex effluents and surface water quality. The study presented here investigated potential effects of effluent composition, particularly hydrocarbons, on aquatic toxicity and was a component of a larger study assessing contaminant removal during refinery wastewater treatment (Hjort et al 2021). The evaluation of effects utilised a novel combination of mechanistic toxicity modelling based on the exposure composition, measured bioavailable hydrocarbons using biomimetic solid phase microextraction (BE-SPME), and bioassays. The results indicate that in the refinery effluent assessments measured bioavailable hydrocarbons using BE-SPME was correlated with the responses in standard bioassays. It confirms that bioassays are providing relevant data and that BE-SPME measurement, combined with knowledge of other known non-hydrocarbon toxic constituents, provide key tools for toxicity identification. Overall, the results indicate that oil refinery effluents treated in accordance to the EU Industrial Emissions Directive requirements have low to negligible toxicity to aquatic organisms and their receiving environments. Low-cost, animal-free BE-SPME represents a compelling tool for rapid effluent characterization.
Collapse
Affiliation(s)
- G F Whale
- Whale Environmental Consultancy Limited, 55 Earlsway, Curzon Park, Chester, CH48AZ, United Kingdom
| | - M Hjort
- Concawe, Boulevard du Souverain 165, 1160, Brussels, Belgium.
| | - C Di Paolo
- Concawe, Boulevard du Souverain 165, 1160, Brussels, Belgium; Shell International, Shell Health Risk Science Team, The Hague, the Netherlands
| | - A D Redman
- Concawe, Boulevard du Souverain 165, 1160, Brussels, Belgium; ExxonMobil Petroleum and Chemical, Machelen, Belgium
| | - J F Postma
- Ecofide, Singel 105, 1381 AT, Weesp, the Netherlands
| | - J Legradi
- Department of Environment & Health, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands
| | - P E G Leonards
- Department of Environment & Health, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
24
|
Yordanova DG, Patterson TJ, North CM, Camenzuli L, Chapkanov AS, Pavlov TS, Mekenyan OG. Selection of Representative Constituents for Unknown, Variable, Complex, or Biological Origin Substance Assessment Based on Hierarchical Clustering. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3205-3218. [PMID: 34499773 DOI: 10.1002/etc.5206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/28/2021] [Accepted: 09/06/2021] [Indexed: 05/20/2023]
Abstract
Many of the newly produced and registered substances are complex mixtures or substances of unknown or variable composition, complex reaction products, and biological materials (UVCBs). The latter often consist of a large number of constituents, some of them difficult-to-identify constituents, which complicates their (eco)toxicological assessment. In the present study, through a series of examples, different scenarios for selection of representatives via hierarchical clustering of UVCB constituents are exemplified. Hierarchical clustering allows grouping of the individual chemicals into small sets, where the constituents are similar to each other with respect to more than one criterion. To this end, various similarity criteria and approaches for selection of representatives are developed and analyzed. Two types of selection are addressed: (1) selection of the most "conservative" constituents, which could be also used to support prioritization of UVCBs for evaluation, and (2) obtaining of a small set of chemical representatives that covers the structural and metabolic diversity of the whole target UVCBs or a mixture that can then be evaluated for their environmental and (eco)toxicological properties. The first step is to generate all plausible UVCB or mixture constituents. It was found that the appropriate approach for selecting representative constituents depends on the target endpoint and physicochemical parameters affecting the endpoint of interest. Environ Toxicol Chem 2021;40:3205-3218. © 2021 SETAC.
Collapse
Affiliation(s)
- Darina G Yordanova
- Laboratory of Mathematical Chemistry, Prof. As. Zlatarov University, Bourgas, Bulgaria
| | | | - Colin M North
- ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA
| | | | - Atanas S Chapkanov
- Laboratory of Mathematical Chemistry, Prof. As. Zlatarov University, Bourgas, Bulgaria
| | - Todor S Pavlov
- Laboratory of Mathematical Chemistry, Prof. As. Zlatarov University, Bourgas, Bulgaria
| | - Ovanes G Mekenyan
- Laboratory of Mathematical Chemistry, Prof. As. Zlatarov University, Bourgas, Bulgaria
| |
Collapse
|
25
|
Gissi F, Strzelecki J, Binet MT, Golding LA, Adams MS, Elsdon TS, Robertson T, Hook SE. A Comparison of Short-Term and Continuous Exposures in Toxicity Tests of Produced Waters, Condensate, and Crude Oil to Marine Invertebrates and Fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2587-2600. [PMID: 34033678 PMCID: PMC8457077 DOI: 10.1002/etc.5129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Petroleum hydrocarbons can be discharged into the marine environment during offshore oil and gas production or as a result of oil spills, with potential impacts on marine organisms. Ecotoxicological assay durations (typically 24-96 h) used to characterize risks to exposed organisms may not always reflect realistic environmental exposure durations in a high-energy offshore environment where hydrocarbons are mixed and diluted rapidly in the water column. To investigate this, we adapted 3 sensitive toxicity tests to incorporate a short-term pulse exposure to 3 petroleum-based products: a produced water, the water-accommodated fraction (WAF) of a condensate, and a crude oil WAF. We measured 48-h mobility of the copepod Acartia sinjiensis, 72-h larval development of the sea urchin Heliocidaris tuberculata, and 48-h embryo survival and deformities of yellowtail kingfish Seriola lalandi, after exposure to a dilution series of each of the 3 products for 2, 4 to 12, and 24 h and for the standard duration of each toxicity test (continuous exposure). Effects on copepod survival and sea urchin larval development were significantly reduced in short-term exposures to produced water and WAFs compared to continuous exposures. Fish embryos, however, showed an increased frequency of deformities at elevated concentrations regardless of exposure duration, although there was a trend toward increased severity of deformities with continuous exposure. The results demonstrate how exposure duration alters toxic response and how incorporating relevant exposure duration to contaminants into toxicity testing may aid interpretation of more realistic effects (and hence an additional line of evidence in risk assessment) in the receiving environment. Environ Toxicol Chem 2021;40:2587-2600. © 2021 CSIRO. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|
26
|
Hjort M, den Haan KH, Whale G, Koekkoek J, Leonards PEG, Redman AD, Vaiopoulou E. Conventional and high resolution chemical characterization to assess refinery effluent treatment performance. CHEMOSPHERE 2021; 278:130383. [PMID: 33845440 DOI: 10.1016/j.chemosphere.2021.130383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/25/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Refinery effluents represent an emission source of hydrocarbons (HCs) and other constituents to the environment. Thus, characterisation of effluent quality in terms of concentrations of key parameters relative to permitted standards is important and for total petroleum hydrocarbons (TPH), the specific composition of the HC mixture can affect its toxicity to aquatic organisms. Therefore, this study was designed to analyse TPH, benzene, toluene, ethyl benzene, xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs), (bio) chemical oxygen demand, total nitrogen, total suspended solids and selected metals before, and after, treatment steps to demonstrate removal efficiencies across 13 refineries with variable wastewater treatment systems. Final discharge concentrations of the measured parameters were by 97% within the so called Best Available Technique Associated Emission Levels (BAT-AELs). Further, TPH composition was characterised using high-resolution two-dimensional gas chromatography (GCxGC) analysis to understand the mass distribution by carbon number and specific chemical class. Measurements were compared to SimpleTreat model predictions for validation. SimpleTreat successfully predicted the shape of the effluent composition since it is essentially a removal constant applied to the influent composition. The predictions were of similar magnitude as, or were greater than, the effluent concentrations since SimpleTreat is based on typical performance and is intended to be conservative. This was especially true for aromatic constituents. Reduction in potential HC exposures also coincided with a decrease in predicted toxicity using a mechanistic oil toxicity model, PETROTOX. Overall, the results indicate that EU petroleum refineries are likely to achieve a high performance level regarding effluent treatment.
Collapse
Affiliation(s)
- M Hjort
- Concawe, Boulevard du Souverain 165, 1160, Brussels, Belgium.
| | - K H den Haan
- Klaas den Haan E&S Consulting, Jan van Dongenpad 4, 5081 MB, Hilvarenbeek, the Netherlands
| | - G Whale
- Concawe, Boulevard du Souverain 165, 1160, Brussels, Belgium; Shell International, Shell Health Risk Science Team, Shell Centre, London, United Kingdom
| | - J Koekkoek
- Faculty of Science - Environmental Bioanalytical Chemistry, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands
| | - P E G Leonards
- Faculty of Science - Environmental Bioanalytical Chemistry, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands
| | - A D Redman
- Concawe, Boulevard du Souverain 165, 1160, Brussels, Belgium; ExxonMobil Petroleum and Chemical, Hermeslaan 2, 1831, Machelen, BE, Belgium
| | - E Vaiopoulou
- Concawe, Boulevard du Souverain 165, 1160, Brussels, Belgium
| |
Collapse
|
27
|
Colvin KA, Parkerton TF, Redman AD, Lewis C, Galloway TS. Miniaturised marine tests as indicators of aromatic hydrocarbon toxicity: Potential applicability to oil spill assessment. MARINE POLLUTION BULLETIN 2021; 165:112151. [PMID: 33601277 DOI: 10.1016/j.marpolbul.2021.112151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Assessing oil spill toxicity in real time is challenging due to dynamic field exposures and lack of simple, rapid, and sensitive tests. We investigated the relative sensitivity of two commercially available marine toxicity tests to aromatic hydrocarbons using the target lipid model (TLM). State of the art passive dosing in sealed vials was used to assess the sensitivity of brine shrimp (Artemia franciscana) and rotifer (Brachionus plicatilis). Organisms were exposed to toluene, 1-methylnaphthalene and phenanthrene for 24 h. Toxicity results were analysed using the TLM to estimate the critical target lipid body burden and support comparison to empirical data for 79 other aquatic organisms. Our findings demonstrate the applicability of passive dosing to test small volumes and indicate that the two rapid cyst-based assays are insensitive in detecting hydrocarbon exposures compared to other aquatic species. Our results highlight the limitations of applying these tests for oil pollution monitoring and decision-making.
Collapse
Affiliation(s)
- Katherine A Colvin
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter EX4 4QD, UK.
| | | | | | - Ceri Lewis
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter EX4 4QD, UK
| | - Tamara S Galloway
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
28
|
Maloney EM, Naile J, Saunders DMV. Quantifying the effect of weathering on acute oil toxicity using the PETROTOX model. MARINE POLLUTION BULLETIN 2021; 162:111849. [PMID: 33248672 DOI: 10.1016/j.marpolbul.2020.111849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/18/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Following accidental release into marine environments, crude oil progressively weathers, influencing composition, fate, and toxicity. However, published studies draw conflicting conclusions on the effects of oil weathering on ecotoxicity. Using the PETROTOX model, this study characterized the effect of weathering on acute oil toxicity for four aquatic species. Results indicated that predicted acute toxicity decreased with increased oil weathering, due to reductions in overall concentrations and bioavailability of hydrocarbon constituents.
Collapse
Affiliation(s)
- E M Maloney
- Shell Health, Shell Oil Company, Houston, TX, USA
| | - J Naile
- Shell Health, Shell Oil Company, Houston, TX, USA.
| | - D M V Saunders
- Shell Health, Shell International, The Hague, Zuid-Holland, the Netherlands
| |
Collapse
|
29
|
Hook SE. Beyond Thresholds: A Holistic Approach to Impact Assessment Is Needed to Enable Accurate Predictions of Environmental Risk from Oil Spills. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2020; 16:813-830. [PMID: 32729983 DOI: 10.1002/ieam.4321] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/13/2020] [Accepted: 06/04/2020] [Indexed: 05/25/2023]
Abstract
The risk assessment for the environmental impact of oil spills in Australia is often conducted in part using a combination of spill mapping and toxicological thresholds derived from laboratory studies. While this process is useful in planning operational responses, such as where to position equipment stockpiles and whether to disperse oil, and can be used to identify areas near the spill site where impacts are likely to occur, it cannot accurately predict the environmental consequences of an oil spill or the ecosystem recovery times. Evidence of this disconnect between model predictions and observed impacts is the lack of a profound effect of the Deepwater Horizon wellhead blowout on recruitment to fisheries in the northern Gulf of Mexico, contrary to the predictions made in the Natural Resources Damage Assessment and despite the occurrence of impacts of the spill on marine mammals, marshes, and deep water ecosystems. The incongruity between predictions made with the current approach using threshold monitoring and impacts measured in the field results from some of the assumptions included in the oil spill models. The incorrect assumptions include that toxicity is acute, results from dissolved phase exposure, and would be readily reversible. The toxicity tests from which threshold models are derived use members of the ecosystem that are easily studied in the lab but may not represent the ecosystem as a whole. The test species are typically highly abundant plankton or planktonic life stages, and they have life histories that account for rapid changes in environmental conditions. As a consequence, these organisms recover quickly from an oil spill. The interdependence of ecosystem components, including the reliance of organisms on their microbiomes, is often overlooked. Additional research to assess these data gaps conducted using economically and ecologically relevant species, especially in Australia and other understudied areas of the world, and the use of population dynamic models, will improve the accuracy of environmental risk assessment for oil spills. Integr Environ Assess Manag 2020;16:813-830. © 2020 SETAC.
Collapse
Affiliation(s)
- Sharon E Hook
- CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
| |
Collapse
|
30
|
Burden N, Benstead R, Benyon K, Clook M, Green C, Handley J, Harper N, Maynard SK, Mead C, Pearson A, Ryder K, Sheahan D, van Egmond R, Wheeler JR, Hutchinson TH. Key Opportunities to Replace, Reduce, and Refine Regulatory Fish Acute Toxicity Tests. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2076-2089. [PMID: 32681761 PMCID: PMC7754335 DOI: 10.1002/etc.4824] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/05/2020] [Accepted: 07/14/2020] [Indexed: 05/03/2023]
Abstract
Fish acute toxicity tests are conducted as part of regulatory hazard identification and risk-assessment packages for industrial chemicals and plant protection products. The aim of these tests is to determine the concentration which would be lethal to 50% of the animals treated. These tests are therefore associated with suffering in the test animals, and Organisation for Economic Co-operation and Development test guideline 203 (fish, acute toxicity) studies are the most widely conducted regulatory vertebrate ecotoxicology tests for prospective chemical safety assessment. There is great scope to apply the 3Rs principles-the reduction, refinement, and replacement of animals-in this area of testing. An expert ecotoxicology working group, led by the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research, including members from government, academia, and industry, reviewed global fish acute test data requirements for the major chemical sectors. The present study highlights ongoing initiatives and provides an overview of the key challenges and opportunities associated with replacing, reducing, and/or refining fish acute toxicity studies-without compromising environmental protection. Environ Toxicol Chem 2020;39:2076-2089. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | - Kate Benyon
- Syngenta, Product Safety, BracknellBerkshireUnited Kingdom
| | - Mark Clook
- Chemicals Regulation Division, Health and Safety ExecutiveYorkUnited Kingdom
| | - Christopher Green
- Department for Environment, Food and Rural AffairsLondonUnited Kingdom
| | | | - Neil Harper
- Chemicals Regulation Division, Health and Safety Executive, BootleMerseysideUnited Kingdom
| | | | | | | | | | - Dave Sheahan
- Cefas Fisheries Laboratory, LowestoftSuffolkUnited Kingdom
| | - Roger van Egmond
- Unilever, Safety & Environmental Assurance Centre, SharnbrookBedfordUnited Kingdom
| | | | | |
Collapse
|
31
|
Nordborg FM, Jones RJ, Oelgemöller M, Negri AP. The effects of ultraviolet radiation and climate on oil toxicity to coral reef organisms - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137486. [PMID: 32325569 DOI: 10.1016/j.scitotenv.2020.137486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 05/20/2023]
Abstract
Oil pollution remains a significant local threat to shallow tropical coral reef environments, but the environmental conditions typical of coral reefs are rarely considered in oil toxicity testing and risk assessments. Here we review the effects of three environmental co-factors on petroleum oil toxicity towards coral reef organisms, and show that the impacts of oil pollution on coral reef taxa can be exacerbated by environmental conditions commonly encountered in tropical reef environments. Shallow reefs are routinely exposed to high levels of ultraviolet radiation (UVR), which can substantially increase the toxicity of some oil components through phototoxicity. Exposure to UVR represents the most likely and harmful environmental co-factor reviewed here, leading to an average toxicity increase of 7.2-fold across all tests reviewed. The clear relevance of UVR co-exposure and its strong influence on tropical reef oil toxicity highlights the need to account for UVR as a standard practice in future oil toxicity studies. Indeed, quantifying the influence of UVR on toxic thresholds of oil to coral reef species is essential to develop credible oil spill risk models required for oil extraction developments, shipping management and spill responses in the tropics. The few studies available indicate that co-exposure to elevated temperature and low pH, both within the range of current daily and seasonal fluctuations and/or projected under continued climate change, can increase oil toxicity on average by 3.0- and 1.3-fold, respectively. While all three of the reviewed environmental co-factors have the potential to substantially increase the impacts of oil pollution in shallow reef environments, their simultaneous effects have not been investigated. Assessments of the combined effects of oil pollution, UVR, temperature and low pH will become increasingly important to identify realistic hazard thresholds suitable for future risk assessments over the coming century.
Collapse
Affiliation(s)
- F Mikaela Nordborg
- James Cook University, College of Science & Engineering, Townsville, Queensland 4810, Australia; AIMS@JCU, Division of Research & Innovation, James Cook University and Australian Institute of Marine Science, Townsville 4810, Queensland, Australia; Australian Institute of Marine Science, Townsville 4810, Queensland, Australia.
| | - Ross J Jones
- Australian Institute of Marine Science, Crawley 6009, Western Australia, Australia
| | - Michael Oelgemöller
- James Cook University, College of Science & Engineering, Townsville, Queensland 4810, Australia
| | - Andrew P Negri
- AIMS@JCU, Division of Research & Innovation, James Cook University and Australian Institute of Marine Science, Townsville 4810, Queensland, Australia; Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| |
Collapse
|
32
|
Bragin GE, Davis CW, Kung MH, Kelley BA, Sutherland CA, Lampi MA. Biodegradation and Ecotoxicity of Branched Alcohol Ethoxylates: Application of the Target Lipid Model and Implications for Environmental Classification. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
33
|
Cailleaud K, Bassères A, Gelber C, Postma JF, Ter Schure ATM, Leonards PEG, Redman AD, Whale GF, Spence MJ, Hjort M. Investigating predictive tools for refinery effluent hazard assessment using stream mesocosms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:650-659. [PMID: 30569466 DOI: 10.1002/etc.4338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/08/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Hazard assessment of refinery effluents is challenging because of their compositional complexity. Therefore, a weight-of-evidence approach using a combination of tools is often required. Previous research has focused on several predictive tools for sophisticated chemical analyses: biomimetic extraction to quantify the potentially bioaccumulative substances, 2-dimensional gas chromatography, modeling approaches to link oil composition to toxicity (PETROTOX), and whole-effluent toxicity assessments using bioassays. The present study investigated the value of these tools by comparing predicted effects to actual effects observed in stream mesocosm toxicity studies with refinery effluents. Three different effluent samples, with and without fortification by neat petroleum substances, were tested in experimental freshwater streams. The results indicate that the biological community shifted at higher exposure levels, consistent with chronic toxicity effects predicted by both modeled toxic units and potentially bioaccumulative substance measurements. The present study has demonstrated the potential of the predictive tools and the robustness of the stream mesocosm design to improve our understanding of the environmental hazards posed by refinery effluents. Environ Toxicol Chem 2019;38:650-659. © 2018 SETAC.
Collapse
Affiliation(s)
| | - Anne Bassères
- Pôle d'études et de Recherche de Lacq, TOTAL, Lacq, France
| | | | | | | | - Pim E G Leonards
- Department of Environment and Health, VU University Amsterdam, Amsterdam, The Netherlands
| | - Aaron D Redman
- ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA
| | - Graham F Whale
- Shell International, Shell Health Risk Science Team, Shell Centre, London, United Kingdom
| | - Mike J Spence
- Concawe, The European Oil Companies' Association for Environment, Health and Safety in Refining and Distribution, Brussels, Belgium
| | - Markus Hjort
- Concawe, The European Oil Companies' Association for Environment, Health and Safety in Refining and Distribution, Brussels, Belgium
| |
Collapse
|
34
|
Bera G, Parkerton T, Redman A, Turner NR, Renegar DA, Sericano JL, Knap AH. Passive dosing yields dissolved aqueous exposures of crude oil comparable to the CROSERF (Chemical Response to Oil Spill: Ecological Effects Research Forum) water accommodated fraction method. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2810-2819. [PMID: 30178489 DOI: 10.1002/etc.4263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/22/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
The Chemical Response to Oil Spill: Ecological Effects Research Forum's water accommodated fraction procedure was compared with 2 alternative techniques in which crude oil was passively dosed from silicone tubing or O-rings. Fresh Macondo oil (MC252) was dosed at 30 mg/L using each approach to investigate oil dissolution kinetics, which was monitored by fluorometry as estimated oil equivalents (EOEs). Subsequent experiments with each dosing method were then conducted at multiple oil loadings. Following equilibration, test media were analytically characterized for polyaromatic hydrocarbons (PAHs) using gas chromatography (GC)-mass spectrometry and dissolved oil using biomimetic solid-phase microextraction (SPME). The results showed that equilibrium was achieved within 72 h for all methods. Measured PAH concentrations were compared with oil solubility model predictions of dissolved exposures. The concentration and composition of measured and predicted dissolved PAHs varied with oil loading and were consistent between dosing methods. Two-dimensional GC compositional data for this oil were then used to calculate dissolved toxic units for predicting MC252 oil acute toxicity across the expected range of species sensitivities. Predicted toxic units were nonlinear with loading and correlated to both EOE and biomimetic SPME. Passive dosing methods provide a practical strategy to deliver and maintain dissolved oil concentrations while avoiding the complicating role that droplets can introduce in exposure characterization and test interpretation. Environ Toxicol Chem 2018;37:2810-2819. © 2018 SETAC.
Collapse
Affiliation(s)
- Gopal Bera
- Geochemical and Environmental Research Group, Texas A&M University, College Station, Texas, USA
| | | | - Aaron Redman
- ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA
| | | | | | - Jose L Sericano
- Geochemical and Environmental Research Group, Texas A&M University, College Station, Texas, USA
| | - Anthony H Knap
- Geochemical and Environmental Research Group, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
35
|
McConville MM, Roberts JP, Boulais M, Woodall B, Butler JD, Redman AD, Parkerton TF, Arnold WR, Guyomarch J, LeFloch S, Bytingsvik J, Camus L, Volety A, Brander SM. The sensitivity of a deep-sea fish species (Anoplopoma fimbria) to oil-associated aromatic compounds, dispersant, and Alaskan North Slope crude oil. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2210-2221. [PMID: 29729028 DOI: 10.1002/etc.4165] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/20/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
A predominant concern following oil spills is toxicity to aquatic organisms. However, few data are available on effects in deep-sea cold water fishes. The present study had 3 major objectives. The first was to investigate the relative sensitivity of the deep-sea species Anoplopoma fimbria (sablefish) to acute effects of 3 aromatic compounds (toluene, 2-methylnaphthalene, and phenanthrene), dispersant alone, and chemically enhanced water accommodated fractions (CEWAFs) of Alaskan North Slope crude oil. The second was to determine the critical target lipid body burden (CTLBB) for sablefish by fitting aromatic hydrocarbon toxicity data to the target lipid model (TLM), which then allowed expression of CEWAF exposures in terms of dissolved oil toxic units. The final aim was to apply a passive sampling method that targets bioavailable, dissolved hydrocarbons as an alternative analytical technique for improved CEWAF exposure assessment. The results indicate that sablefish exhibit sensitivity to Corexit 9500 (96-h median lethal concentration [LC50] = 72.2 mg/L) within the range reported for other fish species. However, the acute CTLBB of 39.4 ± 2.1 μmol/goctanol lies at the lower end of the sensitivity range established for aquatic species. The utility of both toxic units and passive sampling measurements for describing observed toxicity of dispersed oil is discussed. The present study is novel in that a new test species is investigated to address the uncertainty regarding the sensitivity of deep-sea fishes, while also employing modeling and measurements to improve exposure characterization in oil toxicity tests. Environ Toxicol Chem 2018;37:2210-2221. © 2018 SETAC.
Collapse
Affiliation(s)
- Megan M McConville
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, North Carolina, USA
| | - John P Roberts
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, North Carolina, USA
| | - Myrina Boulais
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, North Carolina, USA
| | - Benjamin Woodall
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, North Carolina, USA
| | | | - Aaron D Redman
- ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA
| | | | | | - Julian Guyomarch
- Centre of Documentation, Research and Experimentation on Accidental Water Pollution, Brest, France
| | - Stéphane LeFloch
- Centre of Documentation, Research and Experimentation on Accidental Water Pollution, Brest, France
| | | | | | - Aswani Volety
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, North Carolina, USA
| | - Susanne M Brander
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, North Carolina, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
36
|
Redman AD, Parkerton TF, Butler JD, Letinski DJ, Frank RA, Hewitt LM, Bartlett AJ, Gillis PL, Marentette JR, Parrott JL, Hughes SA, Guest R, Bekele A, Zhang K, Morandi G, Wiseman S, Giesy JP. Application of the Target Lipid Model and Passive Samplers to Characterize the Toxicity of Bioavailable Organics in Oil Sands Process-Affected Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8039-8049. [PMID: 29902380 DOI: 10.1021/acs.est.8b00614] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oil sand operations in Alberta, Canada will eventually include returning treated process-affected waters to the environment. Organic constituents in oil sand process-affected water (OSPW) represent complex mixtures of nonionic and ionic (e.g., naphthenic acids) compounds, and compositions can vary spatially and temporally, which has impeded development of water quality benchmarks. To address this challenge, it was hypothesized that solid phase microextraction fibers coated with polydimethylsiloxane (PDMS) could be used as a biomimetic extraction (BE) to measure bioavailable organics in OSPW. Organic constituents of OSPW were assumed to contribute additively to toxicity, and partitioning to PDMS was assumed to be predictive of accumulation in target lipids, which were the presumed site of action. This method was tested using toxicity data for individual model compounds, defined mixtures, and organic mixtures extracted from OSPW. Toxicity was correlated with BE data, which supports the use of this method in hazard assessments of acute lethality to aquatic organisms. A species sensitivity distribution (SSD), based on target lipid model and BE values, was similar to SSDs based on residues in tissues for both nonionic and ionic organics. BE was shown to be an analytical tool that accounts for bioaccumulation of organic compound mixtures from which toxicity can be predicted, with the potential to aid in the development of water quality guidelines.
Collapse
Affiliation(s)
- A D Redman
- ExxonMobil Biomedical Sciences, Inc. , Annandale , New Jersey 08801 , United States
| | - T F Parkerton
- ExxonMobil Biomedical Sciences, Inc. , Spring , Texas 77339 , United States
| | - J D Butler
- ExxonMobil Biomedical Sciences, Inc. , Annandale , New Jersey 08801 , United States
| | - D J Letinski
- ExxonMobil Biomedical Sciences, Inc. , Annandale , New Jersey 08801 , United States
| | - R A Frank
- Environment and Climate Change Canada , Burlington , Ontario L7S 1A1 , Canada
| | - L M Hewitt
- Environment and Climate Change Canada , Burlington , Ontario L7S 1A1 , Canada
| | - A J Bartlett
- Environment and Climate Change Canada , Burlington , Ontario L7S 1A1 , Canada
| | - P L Gillis
- Environment and Climate Change Canada , Burlington , Ontario L7S 1A1 , Canada
| | - J R Marentette
- Environment and Climate Change Canada , Burlington , Ontario L7S 1A1 , Canada
| | - J L Parrott
- Environment and Climate Change Canada , Burlington , Ontario L7S 1A1 , Canada
| | - S A Hughes
- Shell Health-Americas , Houston , Texas 77002 , United States
- Department of Biological Sciences , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
- Department of Forestry and Environmental Conservation , Clemson University , Clemson , South Carolina 29634 , United States
| | - R Guest
- Suncor Energy , Calgary , Alberta T2P 3E3 , Canada
| | - A Bekele
- Imperial, Heavy Oil Mining Research , Calgary , Alberta T2C 4P3 , Canada
| | - K Zhang
- Division of Cardiovascular Medicine , Brigham and Women's Hospital , Boston , Massachusetts 02115 , United States
| | - G Morandi
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5A2 , Canada
| | - S Wiseman
- Department of Veterinary Biomedical Sciences and Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
| | - J P Giesy
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5A2 , Canada
- Department of Veterinary Biomedical Sciences and Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
- Department of Zoology, and Center for Integrative Toxicology , Michigan State University , East Lansing , Michigan 48824 , United States
- School of Biological Sciences , University of Hong Kong , Hong Kong SAR 999077 , China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , People's Republic of China
| |
Collapse
|
37
|
McGrath JA, Fanelli CJ, Di Toro DM, Parkerton TF, Redman AD, Paumen ML, Comber M, Eadsforth CV, den Haan K. Re-evaluation of target lipid model-derived HC5 predictions for hydrocarbons. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1579-1593. [PMID: 29352727 DOI: 10.1002/etc.4100] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/09/2017] [Accepted: 01/19/2018] [Indexed: 06/07/2023]
Abstract
The target lipid model (TLM) has been previously applied to predict the aquatic toxicity of hydrocarbons and other nonionic organic chemicals and for deriving the concentrations above which 95% of species should be protected (HC5 values). Several concerns have been identified with the TLM-derived HC5 when it is applied in a substance risk assessment context. These shortcomings were addressed by expanding the acute and chronic toxicity databases to include more diverse taxonomic groups and increase the number of species. The TLM was recalibrated with these expanded databases, resulting in critical target lipid body burdens and acute-to-chronic ratios that met the required guidelines for using species sensitivity distributions in substance risk assessment. The HC5 equation was further revised to consider covarying model parameters. The calculated HC5 values derived from the revised TLM framework were validated using an independent data set for hydrocarbons comprising 106 chronic values across plants, invertebrates, and fish. Assuming a sum binomial distribution, the 95% confidence limit for a 5% failure is between 0.8 and 9.2%. Eight chronic values fell below the HC5, corresponding to an excursion of 7.5%, which falls within the expected uncertainty bounds. Thus, calculated HC5s derived from the revised TLM framework were found to be consistent with the intended protection goals. Environ Toxicol Chem 2018;37:1579-1593. © 2018 SETAC.
Collapse
Affiliation(s)
| | | | - Dominic M Di Toro
- Department of Civil & Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | | | - Aaron D Redman
- ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA
| | | | - Mike Comber
- Mike Comber Consulting, Exeter, United Kingdom
| | | | | |
Collapse
|
38
|
Redman AD, Butler JD, Letinski DJ, Di Toro DM, Leon Paumen M, Parkerton TF. Technical basis for using passive sampling as a biomimetic extraction procedure to assess bioavailability and predict toxicity of petroleum substances. CHEMOSPHERE 2018; 199:585-594. [PMID: 29455127 DOI: 10.1016/j.chemosphere.2018.02.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/22/2018] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
Solid-phase microextraction fibers coated with polydimethylsiloxane (PDMS) provide a convenient passive sampling format to characterize bioavailability of petroleum substances. Hydrocarbons absorb onto PDMS in proportion to both freely dissolved concentrations and partitioning properties of the individual constituents, which parallels the mechanistic basis used to predict aquatic toxicity in the PETROTOX model. When deployed in a non-depletive manner, combining SPME with thermal desorption and quantification using gas chromatography-flame ionization creates a biomimetic extraction (BE) procedure that has the potential to simplify aquatic hazard assessments of petroleum substances since the total moles of all hydrocarbons sorbed to the fiber can be related to toxic thresholds in target lipid of aquatic organisms. The objective of this work is to describe the technical basis for applying BE measurements to predict toxicity of petroleum substances. Critical BE-based PDMS concentrations corresponding to adverse effects were empirically derived from toxicity tests on different petroleum substances with multiple test species. The resulting species sensitivity distribution (SSD) of PDMS effect concentrations was then compared and found consistent with the previously reported target lipid-based SSD. Further, BE data collected on samples of aqueous media dosed with a wide range of petroleum substances were highly correlated to predicted toxic units derived using the PETROTOX model. These findings provide justification for applying BE in environmental hazard and risk evaluations of petroleum substances and related mixtures.
Collapse
Affiliation(s)
- A D Redman
- ExxonMobil Biomedical Science, Inc. Annandale, NJ, USA.
| | - J D Butler
- ExxonMobil Biomedical Science, Inc. Annandale, NJ, USA
| | - D J Letinski
- ExxonMobil Biomedical Science, Inc. Annandale, NJ, USA
| | | | - M Leon Paumen
- ExxonMobil Petroleum and Chemical, Machelen, Belgium
| | - T F Parkerton
- ExxonMobil Biomedical Sciences, Inc. Spring, TX, USA
| |
Collapse
|
39
|
Whale GF, Dawick J, Hughes CB, Lyon D, Boogaard PJ. Toxicological and ecotoxicological properties of gas-to-liquid (GTL) products. 2. Ecotoxicology. Crit Rev Toxicol 2018; 48:273-296. [DOI: 10.1080/10408444.2017.1408567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - James Dawick
- Shell Health, Shell International Ltd, Manchester, UK
| | | | - Delina Lyon
- Shell Health, Shell Oil Company, Houston, TX, USA
| | | |
Collapse
|
40
|
Parkerton TF, Bok M, Ireland AW, Prosser CM. An evaluation of cumulative risks from offshore produced water discharges in the Bass Strait. MARINE POLLUTION BULLETIN 2018; 126:610-621. [PMID: 29129320 DOI: 10.1016/j.marpolbul.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
Chemical analyses and toxicity testing using six marine species were used to characterize the hazard of produced waters (PW) to marine life from twelve Australian offshore platforms. Hazard data were used in conjunction with platform-specific plume discharge dilution and species sensitivity distribution modeling to estimate cumulative risks by calculating the multiple substance potentially affected fraction of species in the local marine environment. Results provided two independent lines of evidence demonstrating that cumulative risks to marine life from these discharges meet intended 95% species protection goals at the edge of the mixing zone. A limited number of PW constituents (hydrocarbons, sulphide and ammonia) appeared to dictate risk thereby informing management and providing a rationale for more targeted analyses in future monitoring studies. Based on these findings a tiered framework is proposed to foster consistent screening and potential refinement of cumulative risk evaluations for PW discharges.
Collapse
Affiliation(s)
- T F Parkerton
- ExxonMobil Biomedical Sciences Inc., Spring, TX, USA.
| | - M Bok
- Esso Australia Pty. Ltd, Southbank, Victoria, Australia
| | - A W Ireland
- ExxonMobil Biomedical Sciences Inc., Annandale, NJ, USA
| | - C M Prosser
- ExxonMobil Biomedical Sciences Inc., Annandale, NJ, USA
| |
Collapse
|