1
|
Pashmforosh M, Rajabi Vardanjani H, Khorsandi L, Shariati S, Mohtadi S, Khodayar MJ. Carvacrol protects rats against bleomycin-induced lung oxidative stress, inflammation, and fibrosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:10075-10089. [PMID: 38976045 DOI: 10.1007/s00210-024-03273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
The main objective of this study was to investigate the potential efficacy of carvacrol (CAR) in mitigating bleomycin (BLM)-induced pulmonary fibrosis (PF). Sixty-six male Wistar rats were assigned into two main groups of 7 and 21 days. They were divided into the subgroups of control, BLM, CAR 80 (only for the 21-day group), and CAR treatment groups. The CAR treatment groups received CAR (20, 40, and 80 mg/kg, orally) for 7 or 21 days after an instillation of BLM (5 mg/kg, intratracheally). Results indicated that BLM significantly increased total cell count in bronchoalveolar lavage fluid and the percentages of neutrophils and lymphocytes, and reduced the percentage of macrophages. CAR dose-dependently decreased total cell count and the percentage of neutrophils and lymphocytes. CAR significantly reduced thiobarbituric acid reactive substances and hydroxyproline levels and elevated the total thiol level and catalase, superoxide dismutase, and glutathione peroxidase activities in BLM-exposed rats. Furthermore, CAR decreased the transforming growth factor-β1, connective transforming growth factor, and tumor necrosis factor-α on days 7 and 21. BLM increased interferon-γ on day 7 but decreased its level on day 21. However, CAR reversed interferon-γ levels on days 7 and 21. Based on histopathological findings, BLM induced inflammation on days 7 and 21, but for induction of fibrosis, 21-day study showed more fibrotic injuries than the 7-day group. CAR showed the improvement of fibrotic injuries. The effect of CAR against BLM-induced pulmonary fibrosis is possibly due to its antioxidant, anti-inflammatory, and antifibrotic activity.
Collapse
Affiliation(s)
| | - Hossein Rajabi Vardanjani
- Department of Pharmacology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeedeh Shariati
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shokooh Mohtadi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Huang X, Li X, Li S, Ding Y, Li X, Huang Y, Huang Q, Geng F, Wu Y. A study to reveal the synergistic bacteriostatic potential of egg white lysozyme with carvacrol at the molecular level. Int J Biol Macromol 2024; 283:138000. [PMID: 39586439 DOI: 10.1016/j.ijbiomac.2024.138000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
The modification of proteins by bioactive molecules may have a synergistic enhancement effect on their respective functional properties. In this study, carvacrol (Car) was used to modify egg white lysozyme (LYZ) to improve its bacteriostatic ability. The results of microbiological experiments suggested that LYZ modified with Car had enhanced bacteriostatic activity against Escherichia coli (E. coli). The results of Ultraviolet-Visible (UV-VIS) absorption spectra expressed that Car and LYZ form a complex. Molecular docking of 100 compounds found that Car mostly acts in the hydrophobic cavity of LYZ. Molecular docking data confirmed the dominant role of van der Waals forces in the energy contribution of the LYZ-Car system, and molecular dynamics simulations showed that Car is relatively stable in the hydrophobic pocket of LYZ. Various types of spectral show that Car influences the tertiary and secondary structures of LYZ. Isothermal Titration Calorimetry (ITC) experiments found that the binding constant between Car and LYZ is 1.53 × 10-6 M. Differential Scanning Calorimetry (DSC) experiments demonstrate that this Car reduces the thermal stability of LYZ. The research findings contribute to the development and utilization of LYZ.
Collapse
Affiliation(s)
- Xun Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China; Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xiefei Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Yifeng Ding
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Xin Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Yujie Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China.
| | - Qun Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China; Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Yingmei Wu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
3
|
de Almeida Feitosa MS, de Almeida AJPO, Dantas SH, de Lourdes Assunção Araújo de Azevedo F, de Souza Júnior JF, Gonçalves TAF, de Lima Silva S, Soares EMC, Alves HF, Lima TT, da Silva Pontes LV, Guerra RR, Araújo IGA, de Medeiros IA. Carvacrol prevents D-( +)-galactose-induced aging-associated erectile dysfunction by improving endothelial dysfunction and oxidative stress in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:10061-10073. [PMID: 38967826 DOI: 10.1007/s00210-024-03264-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Aging is one of the risk factors involved in the development of erectile dysfunction (ED). Growing evidence suggests that oxidative stress is the critical mediator of changes in endothelial function and penile vascular tone in the aging process. Thus, reducing reactive oxygen species (ROS) levels may preserve the bioactivity of the penile vasculature. Antioxidant compounds, such as carvacrol, limit the damage caused by ROS and, therefore, benefit the treatment of ED. Thus, this study aims to evaluate the effects of carvacrol on ED using the D-( +)-galactose aging model. The animals were divided into five groups: control, D-( +)-galactose 150 mg/kg, carvacrol 50 mg/kg or 100 mg/kg, and sildenafil 1.5 mg/kg treated daily for 8 weeks. The physiological, functional, and morphological characteristics of aging-associated ED were evaluated after treatment with carvacrol. Carvacrol prevented ED in a D-( +)-galactose-induced aging model by reducing hypercontractility, enhancing endothelial dysfunction in the rat corpus cavernosum, and improving endothelial health of rat cavernous endothelial cells. In addition, carvacrol prevented the destruction of erectile components essential for penile erection and promoted a reduction of penile tissue senescence, probably through mechanisms that involve the harmful modulation of oxidative stress. Carvacrol significantly improved the erectile function of rats in a D-( +)-galactose-induced aging model and has excellent potential as a new therapeutic alternative in treating erectile dysfunction.
Collapse
Affiliation(s)
| | | | - Sabine Helena Dantas
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | | | | | - Tays Amanda Felisberto Gonçalves
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Sonaly de Lima Silva
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Evyllen Myllena Cardoso Soares
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Hayaly Felinto Alves
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Thais Trajano Lima
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Ricardo Romão Guerra
- Departamento de Ciências Veterinárias, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
| | | | - Isac Almeida de Medeiros
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
4
|
Retnosari R, Abdul Ghani MA, Majed Alkharji M, Wan Nawi WNIS, Ahmad Rushdan AS, Mahadi MK, Ugusman A, Oka N, Zainalabidin S, Latip J. The Protective Effects of Carvacrol Against Doxorubicin-Induced Cardiotoxicity In Vitro and In Vivo. Cardiovasc Toxicol 2024:10.1007/s12012-024-09940-8. [PMID: 39592525 DOI: 10.1007/s12012-024-09940-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024]
Abstract
Doxorubicin (DOX) is a remarkable chemotherapeutic agent, however, its adverse effect on DOX-induced cardiotoxicity (DIC) is a rising concern. Recent research has identified carvacrol (CAR), an antioxidant and anti-inflammatory agent, as a promising natural compound for protecting against DIC. This study aims to investigate the potential cardioprotective effects properties of CAR in vitro and in vivo. The cardioprotective effect of CAR was assessed by pretreating H9c2 cells with non-toxic CAR for 24 h, followed by co-treatment with DOX (10 μM) for an additional 24 h. The cell viability was determined using an MTT assay. For the in vivo study, male Sprague-Dawley rats (200-250 g) were randomly divided into three groups: control, cardiotoxicity (DOX), and treatment (CAR + DOX) groups. CAR (50 mg/kg, BW) was administered orally to the CAR + DOX groups for 14 days. Then, a single dose of DOX (15 mg/kg/i.p, BW) was administered on day 15 for DOX and CAR + DOX groups. The rats were allowed to recover for 3 days before being sacrificed. Our results demonstrated that DOX (10 µM) significantly reduced H9c2 cell viability by 50% (p < 0.0001), and CAR (0.067 µM) protected H9c2 cells from DIC (p = 0.0045). In the rat model, CAR pretreatment effectively mitigated DOX-induced reductions in systolic pressure (p = 0.0007), pulse pressure (p = 0.0213), hypertrophy (p = 0.0049), and cardiac fibrosis (p = 0.0006). However, the pretreatment did not alter the heart function, oxidative stress, and antioxidant enzymes. In conclusion, our results indicate that CAR could potentially serve as an adjuvant to reduce cardiotoxicity by ameliorating myocardial fibrosis and hypertrophy.
Collapse
Affiliation(s)
- Rini Retnosari
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- International Joint Department of Materials Science and Engineering Between National University of Malaysia and Gifu University, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Department of Chemistry, Universitas Negeri Malang, Jl. Semarang No. 5, Malang, Indonesia
| | - Muhamad Adib Abdul Ghani
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Munirah Majed Alkharji
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Wan Nur Izzah Shazana Wan Nawi
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Ahmad Syafi Ahmad Rushdan
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Mohd Kaisan Mahadi
- Faculty of Pharmacy, Drug and Herbal Research Centre, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
- Cardiovascular and Pulmonary (CardioResp) Research Group, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Natsuhisa Oka
- International Joint Department of Materials Science and Engineering Between National University of Malaysia and Gifu University, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Satirah Zainalabidin
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia.
- Cardiovascular and Pulmonary (CardioResp) Research Group, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Jalifah Latip
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
- Smart Material and Sustainable Product Innovation (SMatSPIn) Research, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
5
|
Retnosari R, Oh-Hashi K, Ugusman A, Zainalabidin S, Latip J, Oka N. Carvacrol-conjugated 3-Hydroxybenzoic Acids: Design, Synthesis, cardioprotective potential against doxorubicin-induced Cardiotoxicity, and ADMET study. Bioorg Med Chem Lett 2024; 113:129973. [PMID: 39317301 DOI: 10.1016/j.bmcl.2024.129973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/02/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Carvacrol (CA) is a phenolic monoterpene renowned for its diverse pharmacological benefits, particularly its cardioprotective effects. Concurrently, phenolic acids have also demonstrated promise in mitigating drug-induced cardiotoxicity. Focusing on combating doxorubicin-induced cardiotoxicity (DIC), the research aims to synthesize novel cardioprotective agents by combining CA with 3-hydroxybenzoic acid (3HA). Doxorubicin, an anticancer drug, poses cardiovascular risks as its adverse effect, prompting the exploration of hybrid compounds. Various linker molecules, including alkyl and acyl with different carbon lengths, were investigated to understand their impact on bioactivity. In vitro testing on the DOX-induced H9c2 cell death model revealed the effectiveness of a CA conjugate in preserving cardiomyocyte viability. In silico analysis highlighted favorable drug-like properties and low toxicity of the conjugate. This study sheds light on molecular hybridization's potential in developing cardioprotective agents, emphasizing CA's pivotal role in combating DIC.
Collapse
Affiliation(s)
- Rini Retnosari
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; International Joint Department of Materials Science and Engineering Between National University of Malaysia and Gifu University, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Chemistry, Universitas Negeri Malang, Jl. Semarang No. 5 Malang, Indonesia
| | - Kentaro Oh-Hashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501- 1193, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; Cardiovascular and Pulmonary (CardioResp) Research Group, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Satirah Zainalabidin
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia; Cardiovascular and Pulmonary (CardioResp) Research Group, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Jalifah Latip
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Smart Material and Sustainable Product Innovation (SMatSPIn) Research, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia.
| | - Natsuhisa Oka
- International Joint Department of Materials Science and Engineering Between National University of Malaysia and Gifu University, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan.
| |
Collapse
|
6
|
Herrera-Bravo J, Belén LH, Reyes ME, Silva V, Fuentealba S, Paz C, Loren P, Salazar LA, Sharifi-Rad J, Calina D. Thymol as adjuvant in oncology: molecular mechanisms, therapeutic potentials, and prospects for integration in cancer management. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8259-8284. [PMID: 38847831 DOI: 10.1007/s00210-024-03196-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/28/2024] [Indexed: 10/30/2024]
Abstract
Cancer remains a global health challenge, prompting a search for effective treatments with fewer side effects. Thymol, a natural monoterpenoid phenol derived primarily from thyme (Thymus vulgaris) and other plants in the Lamiaceae family, is known for its diverse biological activities. It emerges as a promising candidate in cancer prevention and therapy. This study aims to consolidate current research on thymol's anticancer effects, elucidating its mechanisms and potential to enhance standard chemotherapy, and to identify gaps for future research. A comprehensive review was conducted using databases like PubMed/MedLine, Google Scholar, and ScienceDirect, focusing on studies from the last 6 years. All cancer types were included, assessing thymol's impact in both cell-based (in vitro) and animal (in vivo) studies. Thymol has been shown to induce programmed cell death (apoptosis), halt the cell division cycle (cell cycle arrest), and inhibit cancer spread (metastasis) through modulation of critical signaling pathways, including phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), extracellular signal-regulated kinase (ERK), mechanistic target of rapamycin (mTOR), and Wnt/β-catenin. It also enhances the efficacy of 5-fluorouracil (5-FU) in colorectal cancer treatments. Thymol's broad-spectrum anticancer activities and non-toxic profile to normal cells underscore its potential as an adjunct in cancer therapy. Further clinical trials are essential to fully understand its therapeutic benefits and integration into existing treatment protocols.
Collapse
Affiliation(s)
- Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Lisandra Herrera Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - María Elena Reyes
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de La Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Victor Silva
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de La Salud, Universidad Católica de Temuco, Temuco, Chile
| | - Soledad Fuentealba
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Department of Basic Sciences, Faculty of Medicine, Center CEBIM, Universidad de La Frontera, Temuco, Chile
| | - Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Javad Sharifi-Rad
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| |
Collapse
|
7
|
Nikolic I, Aleksic Sabo V, Gavric D, Knezevic P. Anti- Staphylococcus aureus Activity of Volatile Phytochemicals and Their Combinations with Conventional Antibiotics Against Methicillin-Susceptible S. aureus (MSSA) and Methicillin-Resistant S. aureus (MRSA) Strains. Antibiotics (Basel) 2024; 13:1030. [PMID: 39596725 PMCID: PMC11591321 DOI: 10.3390/antibiotics13111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND MSSA and MRSA strains are challenging human pathogens that can develop resistance to antibiotics, highlighting the need for alternative antimicrobial agents. Plant metabolites, particularly volatile phytochemicals, may offer promising antimicrobial properties. The aim was to evaluate the antimicrobial and antibiofilm efficacy of various commercial volatile phytochemicals from the terpene and terpenoid groups against reference MSSA and MRSA strains, focusing on synergistic effects in both binary combinations and combinations with antibiotics. METHODS The microdilution method was used to determine the minimum inhibitory concentrations (MICs) for antibiotics and phytochemicals. The checkerboard method assessed synergistic interactions between phytochemicals and between phytochemicals and antibiotics, while the time-kill method was used to confirm these results. Biofilm quantification was performed using the microtiter plate method to evaluate the effects of phytochemicals, antibiotics, and their binary combinations on the eradication of 48-h-old biofilms. RESULTS Carvacrol and thymol demonstrated the strongest anti-staphylococcal activity, while other terpene compounds showed weaker effects. In binary combinations, carvacrol and thymol exhibited synergy against one MSSA strain (FICI = 0.50) and with tetracycline and chloramphenicol (FICI = 0.28-0.50). Synergy was also noted with streptomycin sulfate against one MRSA strain (FICI = 0.31-0.50) and with other antibiotics, including gentamicin (FICI = 0.25-0.50) and oxacillin (FICI = 0.44). Additionally, effective combinations achieved over 50% biofilm removal at both minimum inhibitory and sub-inhibitory concentrations. CONCLUSIONS Results showed that synergy varies based on strain sensitivity to chemical agents, highlighting their potential for personalized therapy. Despite the difficulty in removing preformed biofilms, the findings highlight the importance of combined treatments to enhance antibiotic effectiveness.
Collapse
Affiliation(s)
| | | | | | - Petar Knezevic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia; (I.N.); (V.A.S.); (D.G.)
| |
Collapse
|
8
|
Pié-Amill A, Colás-Medà P, Viñas I, Falcó I, Alegre I. Efficacy of an Edible Coating with Carvacrol and Citral in Frozen Strawberries and Blueberries to Control Foodborne Pathogens. Foods 2024; 13:3167. [PMID: 39410201 PMCID: PMC11476209 DOI: 10.3390/foods13193167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Adding essential oils in an edible coating could be an alternative for the food industry to control foodborne pathogens. In 2014, EFSA published a report highlighting the risk associated with Salmonella spp. and Norovirus in fresh and frozen berries. This study aimed to evaluate the efficacy of an edible coating (RP-7) with carvacrol and citral on reducing the population of Salmonella enterica, Escherichia coli O157:H7, Listeria monocytogenes, and murine Norovirus (MNV-1) in frozen strawberries and blueberries. Before evaluating the efficacy, the best method for applying the coating on fruit was studied. The immersion method was selected, with an optimal drying time of 45 min. After this, the berries were frozen and stored for one, two, three, four, and eight weeks at -18 °C. In strawberries, all bacteria were reduced to below 0.7 log cfu/strawberry in the eighth week, and the MNV-1 infectivity showed a reduction of nearly 2 logarithmic units. In blueberries, S. enterica and E. coli O157:H7 were reduced to 0.8 log cfu/blueberries within a week, and MNV-1 achieved a reduction of 0.8 logarithmic units at the end of the assay. The application of RP-7 affected the studied microorganisms in frozen strawberries and blueberries.
Collapse
Affiliation(s)
- Anna Pié-Amill
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain; (A.P.-A.); (P.C.-M.); (I.V.)
| | - Pilar Colás-Medà
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain; (A.P.-A.); (P.C.-M.); (I.V.)
| | - Inmaculada Viñas
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain; (A.P.-A.); (P.C.-M.); (I.V.)
| | - Irene Falcó
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology (IATA), Centro Superior de Investigaciones Científicas (CSIC), Avda. Agustín Escardino 7, 46980 Paterna, Spain;
| | - Isabel Alegre
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain; (A.P.-A.); (P.C.-M.); (I.V.)
| |
Collapse
|
9
|
Rajendran P, Renu K, Ali EM, Genena MAM, Veeraraghavan V, Sekar R, Sekar AK, Tejavat S, Barik P, Abdallah BM. Promising and challenging phytochemicals targeting LC3 mediated autophagy signaling in cancer therapy. Immun Inflamm Dis 2024; 12:e70041. [PMID: 39436197 PMCID: PMC11494898 DOI: 10.1002/iid3.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Phytochemicals possess a wide range of anti-tumor properties, including the modulation of autophagy and regulation of programmed cell death. Autophagy is a critical process in cellular homeostasis and its dysregulation is associated with several pathological conditions, such as cancer, neurodegenerative diseases, and diabetes. In cancer, autophagy plays a dual role by either promoting tumor growth or suppressing it, depending on the cellular context. During autophagy, autophagosomes engulf cytoplasmic components such as proteins and organelles. LC3-II (microtubule-associated protein 1 light chain 3-II) is an established marker of autophagosome formation, making it central to autophagy monitoring in mammals. OBJECTIVE To explore the regulatory role of phytochemicals in LC3-mediated autophagy and their potential therapeutic impact on cancer. The review emphasizes the involvement of autophagy in tumor promotion and suppression, particularly focusing on autophagy-related signaling pathways like oxidative stress through the NRF2 pathway, and its implications for genomic stability in cancer development. METHODS The review focuses on a comprehensive analysis of bioactive compounds including Curcumin, Celastrol, Resveratrol, Kaempferol, Naringenin, Carvacrol, Farnesol, and Piperine. Literature on these compounds was examined to assess their influence on autophagy, LC3 expression, and tumor-related signaling pathways. A systematic literature search was conducted across databases including PubMed, Scopus, and Web of Science from inception to 2023. Studies were selected from prominent databases, focusing on their roles in cancer diagnosis and therapeutic interventions, particularly in relation to LC3-mediated mechanisms. RESULTS Phytochemicals have been shown to modulate autophagy through the regulation of LC3-II levels and autophagic flux in cancer cells. The interaction between autophagy and other cellular pathways such as oxidative stress, inflammation, and epigenetic modulation highlights the complex role of autophagy in tumor biology. For instance, Curcumin and Resveratrol have been reported to either induce or inhibit autophagy depending on cancer type, influencing tumor progression and therapeutic responses. CONCLUSION Targeting autophagy through LC3 modulation presents a promising strategy for cancer therapy. The dual role of autophagy in tumor suppression and promotion, however, necessitates careful consideration of the context in which autophagy is induced or inhibited. Future research should aim to delineate these context-specific roles and explore how phytochemicals can be optimized for therapeutic efficacy. Novel therapeutic strategies should focus on the use of bioactive compounds to fine-tune autophagy, thereby maximizing tumor suppression and inducing programmed cell death in cancer cells.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Kaviyarasi Renu
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Enas M. Ali
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Department of Botany and Microbiology, Faculty of ScienceCairo UniversityCairoEgypt
| | - Marwa Azmy M. Genena
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Agricultural Zoology Department, Faculty of AgricultureMansoura UniversityMansouraEgypt
| | - Vishnupriya Veeraraghavan
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Ramya Sekar
- Department of Oral & Maxillofacial Pathology and Oral MicrobiologyMeenakshi Ammal Dental College & Hospital, MAHERChennaiTamil NaduIndia
| | | | - Sujatha Tejavat
- Department of Biomedical Sciences, College of MedicineKing Faisal UniversityAl‐AhsaSaudi Arabia
| | | | - Basem M. Abdallah
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
| |
Collapse
|
10
|
Gencer S, Gür C, İleritürk M, Küçükler S, Akaras N, Şimşek H, Kandemir FM. The ameliorative effect of carvacrol on sodium arsenite-induced hepatotoxicity in rats: Possible role of Nrf2/HO-1, RAGE/NLRP3, Bax/Bcl-2/Caspase-3, and Beclin-1 pathways. J Biochem Mol Toxicol 2024; 38:e23863. [PMID: 39318027 DOI: 10.1002/jbt.23863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/02/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Arsenic is a toxic environmental pollutant heavy metal, and one of its critical target tissues in the body is the liver. Carvacrol is a natural phytocompound that stands out with its antioxidant, anti-inflammatory, and antiapoptotic properties. The current study aims to investigate the protective feature of carvacrol against sodium arsenite-induced liver toxicity. Thirty-five Sprague-Dawley male rats were divided into five groups: Control, Sodium arsenite (SA), CRV, SA + CRV25, and SA + CRV50. Sodium arsenite was administered via oral gavage at a dose of 10 mg/kg for 14 days, and 30 min later, CRV 25 or 50 mg/kg was administered via oral gavage. Oxidative stress, inflammation, apoptosis, autophagy damage pathways parameters, and liver tissue integrity were analyzed using biochemical, molecular, western blot, histological, and immunohistological methods. Carvacrol decreased sodium arsenite-induced oxidative stress by suppressing malondialdehyde levels and increasing superoxide dismutase, catalase, glutathione peroxidase activities, and glutathione levels. Carvacrol reduced inflammation damage by reducing sodium arsenite-induced increased levels of NF-κB and the cytokines (TNF-α, IL-1β, IL-6, RAGE, and NLRP3) it stimulates. Carvacrol also reduced sodium arsenite-induced autophagic (Beclin-1, LC3A, and LC3B) and apoptotic (P53, Apaf-1, Casp-3, Casp-6, Casp-9, and Bax) parameters. Carvacrol preserved sodium arsenite-induced impaired liver tissue structure. Carvacrol alleviated toxic damage by reducing sodium arsenite-induced increases in oxidative stress, inflammation, apoptosis, and autophagic damage parameters in rat liver tissues. Carvacrol was also beneficial in preserving liver tissue integrity.
Collapse
Affiliation(s)
- Selman Gencer
- Department of Internal Diseases, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Cihan Gür
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Atatürk University, Erzurum, Turkey
| | - Mustafa İleritürk
- Department of Animal Science, Horasan Vocational College, Atatürk University, Erzurum, Turkey
| | - Sefa Küçükler
- Department of Veterinary Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Hasan Şimşek
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Fatih M Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
11
|
Al-Shuhaib MBS, Al-Shuhaib JMB. Assessing Therapeutic Value and Side Effects of Key Botanical Compounds for Optimized Medical Treatments. Chem Biodivers 2024:e202401754. [PMID: 39316731 DOI: 10.1002/cbdv.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Due to the significance of variable chemical groups across a wide spectrum of modern medicine, it is imperative to determine what is the most widely used group in medical applications with the fewest side effects. Ten compounds from ten chemical groups that are most commonly known for their medical uses were compared in terms of their therapeutic potential and side effects. The comparison among the selected compounds indicated the superiority of the flavonoids over other groups in the multitude of their utilizations and the lower side effects. Kaempferol and quercetin showed higher medical utilization with lower side effects. Whereas alkaloid compounds showed the lowest levels of medical use and the highest levels of side effects. Based on the comparison conducted, it is concluded to give priority to flavonoid compounds being used in medical applications because they exhibit the highest medical uses with the lowest side effects. Within flavonoids, kaempferol and quercetin are the two compounds that are highly recommended to be used in the widest range of medical applications. Serious caution should be considered before applying alkaloids to any medical service. Understanding the characteristics of these compounds can aid in developing safer and more effective treatments for medicinal plants.
Collapse
Affiliation(s)
- Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, 8 Babil, Al-Qasim, 51013, Iraq
| | | |
Collapse
|
12
|
Zhao W, Tang H, Liang Z, Wang N, Sun R, Su R, Yang Z, Zhou K, Peng Y, Zheng S, Xie H. Carvacrol ameliorates skin allograft rejection through modulating macrophage polarization by activating the Wnt signalling pathway. Phytother Res 2024; 38:4675-4694. [PMID: 39120138 DOI: 10.1002/ptr.8282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/22/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024]
Abstract
Post-transplantation immune rejection remains an important factor for transplant patients. However, conventional immunosuppressants are associated with substantial adverse effects. Natural immunosuppressants present a promising alternative to conventional counterparts, boasting exceptional biological activity, minimal toxicity and reduced side effects. We identified carvacrol as a prospective immunosuppressive agent following T cell proliferation experiment and validated carvacrol's immunosuppressive efficacy in the murine allogeneic skin graft model. T cell proliferation assay was used to screen natural small molecule compounds and the immunosuppressive effect of compounds was evaluated in MHC-mismatched murine allogeneic skin graft model. H&E and immunohistochemical staining were applied to evaluate the pathological grade. Furthermore, flow cytometry was uitlized to analyse the immunophenotype changes of immune cells. Western blotting and q-PCR were used to detect the expression of key molecules in macrophages. In vitro, carvacrol demonstrates significant inhibition of the proliferation of CD4+ T and CD8+ T cells. It notably reduces inflammatory factor expression within the allografts, suppresses T cell differentiation toward Th1 phenotype and expansion. Furthermore, carvacrol prominently hinders M1-type macrophages polarization by activating Wnt signaling. Notably, the anti-rejection efficacy of carvacrol was significantly weakened upon the removal of macrophages in mice using chlorophosphate liposomes. Carvacrol could significantly inhibit T cell proliferation, alleviate graft rejection and has outstanding toxicological safety. The molecular mechanism of the anti-rejection effect of carvacrol is closely related to its mediating activation of macrophage Wnt pathway, inhibiting M1 polarization and inducing T cell differentiation.
Collapse
Affiliation(s)
- Wentao Zhao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Tang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Liang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiqi Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rong Su
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Zhentao Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiyang Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
13
|
Evyapan G, Ozkol H, Uce Ozkol H, Alvur Ö, Akar S. The preventive effects of natural plant compound carvacrol against combined UVA and UVB-induced endoplasmic reticulum stress in skin damage of rats. Photochem Photobiol Sci 2024; 23:1783-1790. [PMID: 39251489 DOI: 10.1007/s43630-024-00631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
The skin is constantly exposed to a variety of environmental stressors, including ultraviolet (UV) radiation. Exposure of the skin to UV radiation causes a number of detrimental biological damages such as endoplasmic reticulum (ER) stress. The ER stress response is a cytoprotective mechanism that maintains homeostasis of the ER by increasing the capacity of the ER against the accumulation of unfolded proteins in the ER. Carvacrol (CRV) is a monoterpenoid phenol found in essential oils with antimicrobial and anti-inflammatory activities. We investigated for the first time in the literature the potential protective role of CRV against combined UVA and UVB-induced skin damage by targeting the ER stress pathway in a rat model. For this purpose, expressions of Grp78, Perk, Atf6, Ire-1, Chop, Xbp1, Casp12, elF2α, and Traf2 genes related to ER stress were analyzed by RT-PCR and protein expression levels of GRP78, ATF6, CHOP, and XBP1 were determined by ELISA assay in tissue sections taken from the back of the rats. As a result of analysis, it was seen that the expression levels of aforementioned ER stress genes increased significantly in the UVA + UVB irradiated group compared to the control group, while their expression levels decreased markedly by supplementation of CRV in UVA + UVB + CRV group. With regard to expressions of foregoing proteins, their levels escalated notably with UVA + UVB application and decreased markedly by CRV supplementation. In conclusion, present study revealed that CRV ameliorates UVA + UVB-induced ER stress via reducing the expression of mRNA as well as proteins involved in the unfolded protein response (UPR) pathway and inducing apoptosis as evidenced from high Caspase12 level.
Collapse
Affiliation(s)
- Gulsah Evyapan
- Department of Medical Biology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey.
| | - Halil Ozkol
- Department of Medical Biology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Hatice Uce Ozkol
- Department of Dermatology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Özge Alvur
- Department of Medical Biology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Sakine Akar
- Department of Medical Biology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
14
|
Begh MZA, Khan J, Al Amin M, Sweilam SH, Dharmamoorthy G, Gupta JK, Sangeetha J, Lokeshvar R, Nafady MH, Ahmad I, Alshehri MA, Emran TB. Monoterpenoid synergy: a new frontier in biological applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03342-x. [PMID: 39105799 DOI: 10.1007/s00210-024-03342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
Monoterpenoids, compounds found in various organisms, have diverse applications in various industries. Their effectiveness is influenced by the oil's chemical composition, which in turn is influenced by plant genotype, environmental conditions, cultivation practices, and plant development stage. They are used in various industries due to their distinctive odor and taste, serving as ingredients, additives, insecticides, and repellents. These compounds have synergistic properties, resulting in superior combined effects over discrete ones, potentially beneficial for various health purposes. Many experimental studies have investigated their interactions with other ingredients and their antibacterial, insecticidal, antifungal, anticancer, anti-inflammatory, and antioxidant properties. This review discusses potential synergistic interactions between monoterpenoids and other compounds, their sources, and biological functions. It also emphasizes the urgent need for more research on their bioavailability and toxicity, underlining the importance and relevance of this comprehensive study in the current scientific landscape.
Collapse
Affiliation(s)
- Md Zamshed Alam Begh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Md Al Amin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - G Dharmamoorthy
- Department of Pharmaceutical Analysis, MB School of Pharmaceutical Sciences, Mohan Babu University (Erstwhile Sree Vidyaniketan College of Pharmacy), Tirupati, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - J Sangeetha
- Department of Pharmacognosy, Malla Reddy Institute of Pharmaceutical Sciences, Maisammaguda, Dhulapally, 500100, India
| | - R Lokeshvar
- Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, India
| | - Mohamed H Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, 12568, Egypt
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| |
Collapse
|
15
|
Shah S, Pushpa Tryphena K, Singh G, Kulkarni A, Pinjala P, Kumar Khatri D. Neuroprotective role of Carvacrol via Nrf2/HO-1/NLRP3 axis in Rotenone-induced PD mice model. Brain Res 2024; 1836:148954. [PMID: 38649135 DOI: 10.1016/j.brainres.2024.148954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Parkinson's disease (PD) is a multifactorial neurodegenerative disorder whose cause is unclear. Neuroinflammation is recognized as one of the major pathogenic mechanisms involved in the development and progression of PD. NLRP3 inflammasome is the most widely studied inflammatory mediator in various diseases including PD. Several phytoconstituents have shown neuroprotective role in PD. Carvacrol is a phenolic monoterpene commonly found in the essential oils derived from plants belonging to Lamiaceae family. It is well known for its anti-inflammatory and antioxidant properties and has been widely explored in several diseases. In this study, we explored the role of Carvacrol in suppressing neuroinflammation by regulating NLRP3 inflammasome through Nrf2/HO-1 axis and subsequently, inflammatory cytokines like IL-1β, IL-18 in Rotenone induced PD mice model. Three doses (25 mg/kg, 50 mg/kg, 100 mg/kg p.o.) of Carvacrol were administered to, respectively, three groups (LD, MD, HD), one hour after administration of Rotenone (1.5 mg/kg, i.p.), every day, for 21 days. Treatment with Carvacrol ameliorated the motor impairment caused by Rotenone. It alleviated neurotoxicity and reduced inflammatory cytokines. Further, Carvacrol also alleviated oxidative stress and increased antioxidant enzymes. From these results, we show that Carvacrol exerts neuroprotective effects in PD via anti-inflammatory and antioxidant mechanisms and could be a potential therapeutic option in PD.
Collapse
Affiliation(s)
- Shruti Shah
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Kamatham Pushpa Tryphena
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Gurpreet Singh
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Amrita Kulkarni
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Poojitha Pinjala
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| |
Collapse
|
16
|
Wu Y, Zhang H, Chen H, Du Z, Li Q, Wang R. Fleagrass (Adenosma buchneroides Bonati) Acts as a Fungicide Against Candida albicans by Damaging Its Cell Wall. J Microbiol 2024; 62:661-670. [PMID: 38958871 DOI: 10.1007/s12275-024-00146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 07/04/2024]
Abstract
Fleagrass, a herb known for its pleasant aroma, is widely used as a mosquito repellent, antibacterial agent, and for treating colds, reducing swelling, and alleviating pain. The antifungal effects of the essential oils of fleagrass and carvacrol against Candida albicans were investigated by evaluating the growth and the mycelial and biofilm development of C. albicans. Transmission electron microscopy was used to evaluate the integrity of the cell membrane and cell wall of C. albicans. Fleagrass exhibited high fungicidal activity against C. albicans at concentrations of 0.5% v/v (via the Ras1/cAMP/PKA pathway). Furthermore, transmission electron microscopy revealed damage to the cell wall and membrane after treatment with the essential oil, which was further confirmed by the increased levels of β-1,3-glucan and chitin in the cell wall. This study showed that fleagrass exerts good fungicidal and hyphal growth inhibition activity against C. albicans by disrupting its cell wall, and thus, fleagrass may be a potential antifungal drug.
Collapse
Affiliation(s)
- Youwei Wu
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, People's Republic of China
| | - Hongxia Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Hongjie Chen
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, People's Republic of China
| | - Zhizhi Du
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Qin Li
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, People's Republic of China
| | - Ruirui Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650000, People's Republic of China.
| |
Collapse
|
17
|
Kim IY, Park CS, Seo KJ, Lee JY, Yune TY. TRPM7 Mediates Neuropathic Pain by Activating mTOR Signaling in Astrocytes after Spinal Cord Injury in Rats. Mol Neurobiol 2024; 61:5265-5281. [PMID: 38180616 DOI: 10.1007/s12035-023-03888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
In this study, we investigated whether transient receptor melastatin 7 (TRPM7), known as a non-selective cation channel, inhibits neuropathic pain after spinal cord injury (SCI) and how TRPM7 regulates neuropathic pain. Neuropathic pain was developed 4 weeks after moderate contusive SCI and TRPM7 was markedly upregulated in astrocytes in the lamina I and II of L4-L5 dorsal horn. In addition, both mechanical allodynia and thermal hyperalgesia were significantly alleviated by a TRPM7 inhibitor, carvacrol. In particular, carvacrol treatment inhibited mechanistic target of rapamycin (mTOR) signaling, which was activated in astrocytes. When rats were treated with rapamycin, an inhibitor of mTOR signaling, neuropathic pain was significantly inhibited. Furthermore, blocking TRPM7 and mTOR signaling by carvacrol and rapamycin inhibited astrocyte activation in lamina I and II of dorsal spinal cord and reduced the level of p-JNK and p-c-Jun, which are known to be activated in astrocytes. Finally, inhibiting TRPM7/mTOR signaling also downregulated the production of pain-related factors such as tumor necrosis factor-α, interleukin-6, interleukin-1β, chemokine (C-C motif) ligand (CCL) 2, CCL-3, CCL-4, CCL-20, chemokine C-X-C motif ligand 1, and matrix metalloproteinase 9 which are known to be involved in the induction and/or maintenance of neuropathic pain after SCI. These results suggest an important role of TRPM7-mediated mTOR signaling in astrocyte activation and thereby induction and/or maintenance of neuropathic pain after SCI.
Collapse
Affiliation(s)
- In Yi Kim
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Medical Building 10th Floor, Dongdaemun-Gu, Hoegi-Dong 1, Seoul, 02447, Republic of Korea
- Department of Biomedical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Chan Sol Park
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Medical Building 10th Floor, Dongdaemun-Gu, Hoegi-Dong 1, Seoul, 02447, Republic of Korea
- Department of Biomedical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyung Jin Seo
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Medical Building 10th Floor, Dongdaemun-Gu, Hoegi-Dong 1, Seoul, 02447, Republic of Korea
- Department of Biomedical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jee Youn Lee
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Medical Building 10th Floor, Dongdaemun-Gu, Hoegi-Dong 1, Seoul, 02447, Republic of Korea.
| | - Tae Young Yune
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Medical Building 10th Floor, Dongdaemun-Gu, Hoegi-Dong 1, Seoul, 02447, Republic of Korea.
- Department of Biomedical Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Biomedical Science Institute, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
18
|
Zheng M, Huang Y, Hu W, Li R, Wang J, Han M, Li Z. Evaluation of the Antibacterial, Anti-Inflammatory, And Bone-Promoting Capacity of UiO-66 Loaded with Thymol or Carvacrol. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36017-36029. [PMID: 38975983 DOI: 10.1021/acsami.4c04139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Oral infectious diseases have a significant impact on the health of oral and maxillofacial regions, as well as the overall well-being of individuals. Carvacrol and thymol, two isomers known for their effective antibacterial and anti-inflammatory properties, have gained considerable attention in the treatment of oral infectious diseases. However, their application as topical drugs for oral use is limited due to their poor physical and chemical stability. UiO-66, a metal-organic framework based on zirconium ion (Zr4+), exhibits high drug loading capability. Carvacrol and thymol were efficiently loaded onto UiO-66 with loading rates of 79.60 ± 0.71% and 79.65 ± 0.76%, respectively. The release rates of carvacrol and thymol were 77.82 ± 0.87% and 76.51 ± 0.58%, respectively, after a period of 72 h. Moreover, Car@UiO-66 and Thy@UiO-66 demonstrated excellent antibacterial properties against Candida albicans, Escherichia coli, and Staphylococcus aureus with minimum bactericidal concentrations (MBC) of 0.313 mg/mL, 0.313 mg/mL, and 1.25 mg/mL, respectively. Furthermore, based on the results of the CCK8 cytotoxicity assay, even at concentrations as high as 1.25 mg/mL, Car@UiO-66 and Thy@UiO-66 exhibited excellent biocompatibility with a relative cell survival rate above 50%. These findings suggest that Car@UiO-66 and Thy@UiO-66 possess favorable biocompatibility properties without significant toxicity towards periodontal membrane cells. Additionally, in vivo studies confirmed the efficacy of Car@UiO-66and Thy@UiO-66 in reducing inflammation, promoting bone formation through inhibition of TNF-a and IL6 expression, enhancement of IL10 expression, and acceleration of bone defect healing. Therefore, the unique combination of antibacterial, anti-inflammatory, and osteogenic properties make Car@UiO-66 and Thy@Ui O-66 promising candidates for the treatment of oral infectious diseases and repairing bone defects.
Collapse
Affiliation(s)
- Minghe Zheng
- Stomatology Center of Hangzhou Normal University Affiliated Hospital The Chinese Hospital of China, Hangzhou 310015, Zhejiang Province, People's Republic of China
- Hangzhou Normal University, The Chinese University of China, Hangzhou 310015, Zhejiang Province, People's Republic of China
| | - Yanlin Huang
- Stomatology Center of Hangzhou Normal University Affiliated Hospital The Chinese Hospital of China, Hangzhou 310015, Zhejiang Province, People's Republic of China
- Hangzhou Normal University, The Chinese University of China, Hangzhou 310015, Zhejiang Province, People's Republic of China
| | - Weiwei Hu
- China Three Gorges University, University Road, Yichang City 443002, Hubei Province, China
| | - Ru Li
- Stomatology Center of Hangzhou Normal University Affiliated Hospital The Chinese Hospital of China, Hangzhou 310015, Zhejiang Province, People's Republic of China
- Hangzhou Normal University, The Chinese University of China, Hangzhou 310015, Zhejiang Province, People's Republic of China
| | - Jiaye Wang
- Stomatology Center of Hangzhou Normal University Affiliated Hospital The Chinese Hospital of China, Hangzhou 310015, Zhejiang Province, People's Republic of China
- Hangzhou Normal University, The Chinese University of China, Hangzhou 310015, Zhejiang Province, People's Republic of China
| | - Mingfang Han
- Stomatology Center of Hangzhou Normal University Affiliated Hospital The Chinese Hospital of China, Hangzhou 310015, Zhejiang Province, People's Republic of China
- Hangzhou Normal University, The Chinese University of China, Hangzhou 310015, Zhejiang Province, People's Republic of China
| | - Zehui Li
- Stomatology Center of Hangzhou Normal University Affiliated Hospital The Chinese Hospital of China, Hangzhou 310015, Zhejiang Province, People's Republic of China
- Hangzhou Normal University, The Chinese University of China, Hangzhou 310015, Zhejiang Province, People's Republic of China
| |
Collapse
|
19
|
Nelson VK, Nuli MV, Ausali S, Gupta S, Sanga V, Mishra R, Jaini PK, Madhuri Kallam SD, Sudhan HH, Mayasa V, Abomughaid MM, Almutary AG, Pullaiah CP, Mitta R, Jha NK. Dietary anti-inflammatory and anti-bacterial medicinal plants and its compounds in bovine mastitis associated impact on human life. Microb Pathog 2024; 192:106687. [PMID: 38750773 DOI: 10.1016/j.micpath.2024.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Bovine mastitis (BM) is the most common bacterial mediated inflammatory disease in the dairy cattle that causes huge economic loss to the dairy industry due to decreased milk quality and quantity. Milk is the essential food in the human diet, and rich in crucial nutrients that helps in lowering the risk of diseases like hypertension, cardiovascular diseases and type 2 diabetes. The main causative agents of the disease include various gram negative, and positive bacteria, along with other risk factors such as udder shape, age, genetic, and environmental factors also contributes much for the disease. Currently, antibiotics, immunotherapy, probiotics, dry cow, and lactation therapy are commonly recommended for BM. However, these treatments can only decrease the rise of new cases but can't eliminate the causative agents, and they also exhibit several limitations. Hence, there is an urgent need of a potential source that can generate a typical and ideal treatment to overcome the limitations and eliminate the pathogens. Among the various sources, medicinal plants and its derived products always play a significant role in drug discovery against several diseases. In addition, they are also known for its low toxicity and minimum resistance features. Therefore, plants and its compounds that possess anti-inflammatory and anti-bacterial properties can serve better in bovine mastitis. In addition, the plants that are serving as a food source and possessing pharmacological properties can act even better in bovine mastitis. Hence, in this evidence-based study, we particularly review the dietary medicinal plants and derived products that are proven for anti-inflammatory and anti-bacterial effects. Moreover, the role of each dietary plant and its compounds along with possible role in the management of bovine mastitis are delineated. In this way, this article serves as a standalone source for the researchers working in this area to help in the management of BM.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Center for global health research, saveetha medical college, saveetha institute of medical and technical sciences, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saijyothi Ausali
- College of Pharmacy, MNR higher education and research academy campus, MNR Nagar, Sangareddy, 502294, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Vaishnavi Sanga
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Richa Mishra
- Department of Computer Engineering, Faculty of Engineering and Technology, Parul University, Vadodara, 391760, Gujrat, India
| | - Pavan Kumar Jaini
- Department of Pharmaceutics, Raffles University, Neemrana, Rajasthan, India
| | - Sudha Divya Madhuri Kallam
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, Vadlamudi, Andhra Pradesh, 522213, India
| | - Hari Hara Sudhan
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Vinyas Mayasa
- GITAM School of Pharmacy, GITAM University Hyderabad Campus, Rudraram, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box, 59911, United Arab Emirates
| | - Chitikela P Pullaiah
- Department of Chemistry, Siddha Central Research Institute, Chennai, Tamil Nadu, 60016, India
| | - Raghavendra Mitta
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering & Technology (SSET), Sharda University, Greater Noida, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| |
Collapse
|
20
|
Peter S, Sotondoshe N, Aderibigbe BA. Carvacrol and Thymol Hybrids: Potential Anticancer and Antibacterial Therapeutics. Molecules 2024; 29:2277. [PMID: 38792138 PMCID: PMC11123974 DOI: 10.3390/molecules29102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer is ranked among lethal diseases globally, and the increasing number of cancer cases and deaths results from limited access to effective therapeutics. The use of plant-based medicine has been gaining interest from several researchers. Carvacrol and its isomeric compound, thymol, are plant-based extracts that possess several biological activities, such as antimalarial, anticancer, antifungal, and antibacterial. However, their efficacy is compromised by their poor bioavailability. Thus, medicinal scientists have explored the synthesis of hybrid compounds containing their pharmacophores to enhance their therapeutic efficacy and improve their bioavailability. Hence, this review is a comprehensive report on hybrid compounds containing carvacrol and its isomer, thymol, with potent anticancer and antibacterial agents reported between 2020 and 2024. Furthermore, their structural activity relationship (SAR) and recommended future strategies to further enhance their therapeutic effects will be discussed.
Collapse
Affiliation(s)
- Sijongesonke Peter
- Department of Chemistry, University of Fort Hare, Alice 5700, South Africa;
| | | | | |
Collapse
|
21
|
Krümmel A, Pagno CH, Malheiros PDS. Active Films of Cassava Starch Incorporated with Carvacrol Nanocapsules. Foods 2024; 13:1141. [PMID: 38672814 PMCID: PMC11049105 DOI: 10.3390/foods13081141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/30/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The synthesis of active films with natural antimicrobials from renewable sources offers an alternative to conventional non-biodegradable packaging and synthetic additives. This study aimed to develop cassava starch films with antimicrobial activity by incorporating either free carvacrol or chia mucilage nanocapsules loaded with carvacrol (CMNC) and assess their impact on the physical, mechanical, and barrier properties of the films, as well as their efficacy against foodborne pathogens. The addition of free carvacrol led to a reduction in mechanical properties due to its hydrophobic nature and limited interaction with the polymeric matrix. Conversely, CMNC enhanced elongation at break and reduced light transmission, with a more uniform distribution in the polymeric matrix. Films containing 8% carvacrol exhibited inhibitory effects against Salmonella and Listeria monocytogenes, further potentiated when encapsulated in chia mucilage nanocapsules. These findings suggest that such films hold promise as active packaging materials to inhibit bacterial growth, ensuring food safety and extending shelf life.
Collapse
Affiliation(s)
- Aline Krümmel
- Laboratory of Microbiology and Food Hygiene, Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil;
| | - Carlos Henrique Pagno
- Laboratory of Phenolic Compounds, Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil;
| | - Patrícia da Silva Malheiros
- Laboratory of Microbiology and Food Hygiene, Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil;
| |
Collapse
|
22
|
Haddou M, Elbouzidi A, Taibi M, Baraich A, Loukili EH, Bellaouchi R, Saalaoui E, Asehraou A, Salamatullah AM, Bourhia M, Nafidi HA, Addi M, Guerrouj BE, Chaabane K. Exploring the multifaceted bioactivities of Lavandula pinnata L. essential oil: promising pharmacological activities. Front Chem 2024; 12:1383731. [PMID: 38660570 PMCID: PMC11041020 DOI: 10.3389/fchem.2024.1383731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction: This study investigates the biological activities of Lavandula pinnata essential oil (LPEO), an endemic lavender species from the Canary Islands, traditionally used in treating various ailments. Methods: LPEO was extracted by hydrodistillation and analyzed using GC-MS. Antioxidant activity was assessed by DPPH radical scavenging and total antioxidant capacity assays. Antimicrobial activity was evaluated by disc diffusion, MIC, MBC, and MFC determination against bacterial (Staphylococcus aureus, Micrococcus luteus, Escherichia coli, Pseudomonas aeruginosa) and fungal (Candida glabrata, Rhodotorula glutinis, Aspergillus niger, Penicillium digitatum) strains. Antidiabetic and anti-gout potential were investigated through α-amylase, α-glucosidase, and xanthine oxidase inhibition assays. Antityrosinase activity was determined using a modified dopachrome method. Cytotoxicity was assessed by MTT assay against breast (MCF-7, MDA-MB-468), liver (HepG2), colon (HCT-15) cancer cells, and normal cells (PBMCs). Results and discussion: LPEO exhibits potent antiradical activity (IC50 = 148.33 ± 2.48 μg/mL) and significant antioxidant capacity (TAC = 171.56 ± 2.34 μg AA/mg of EO). It demonstrates notable antibacterial activity against four strains (Staphylococcus aureus, Micrococcus luteus, Escherichia coli, and Pseudomonas aeruginosa) with inhibition zones ranging from 18.70 ± 0.30 mm to 29.20 ± 0.30 mm, along with relatively low MIC and MBC values. LPEO displays significant antifungal activity against four strains (Candida glabrata, Rhodotorula glutinis, Aspergillus niger, and Penicillium digitatum) with a fungicidal effect at 1 mg/mL, surpassing the positive control (cycloheximide), and MIC and MFC values indicating a fungicidal effect. It exhibits substantial inhibition of xanthine oxidase enzyme (IC50 = 26.48 ± 0.90 μg/mL), comparable to allopurinol, and marked inhibitory effects on α-amylase (IC50 = 31.56 ± 0.46 μg/mL) and α-glucosidase (IC50 = 58.47 ± 2.35 μg/mL) enzymes.The enzyme tyrosinase is inhibited by LPEO (IC50 = 29.11 ± 0.08 mg/mL). LPEO displays moderate cytotoxic activity against breast, liver, and colon cancer cells, with low toxicity towards normal cells (PBMC). LPEO exhibits greater selectivity than cisplatin for breast (MCF-7) and colon (HCT-15) cancer cells but lower selectivity for liver (HepG2) and metastatic breast (MDA-MB-468) cancer cells. These findings suggest the potential of LPEO as an antioxidant, antimicrobial, anti-gout, antidiabetic, and anticancer agent.
Collapse
Affiliation(s)
- Mounir Haddou
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda, Morocco
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
- Euro-Mediterranean University of Fes (UEMF), Fes, Morocco
| | - Mohamed Taibi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda, Morocco
| | - Abdellah Baraich
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | | | - Reda Bellaouchi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Ennouaamane Saalaoui
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC, Canada
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Bouchra El Guerrouj
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda, Morocco
| | - Khalid Chaabane
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| |
Collapse
|
23
|
Rocha CA, Félix LM, Monteiro SM, Venâncio C. Antinociceptive Analysis of Natural Monoterpenes Eugenol, Menthol, Carvacrol and Thymol in a Zebrafish Larval Model. Pharmaceuticals (Basel) 2024; 17:457. [PMID: 38675417 PMCID: PMC11054028 DOI: 10.3390/ph17040457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
In the last decade, a considerable number of studies have broadened our knowledge of the nociceptive mechanisms of pain, a global health problem in both humans and animals. The use of herbal compounds such as eugenol, menthol, thymol, and carvacrol as analgesic agents has accompanied the growing interest in this area, offering a possible solution for this complex problem. Here, we aimed to explore how these natural substances-at three different concentrations (2, 5 and 10 mg/L)-affect the pain responses in zebrafish (Danio rerio) larvae exposed to 0.05% acetic acid (AA) for 1 min. By analysing the activity of acetylcholinesterase (AChE), 5'-ectonucleotidase and NTPDases, as well as aversion and exploratory behaviours, it was observed that that although all substances were effective in counteracting the pain stimulus, the concentration range within which they do so might be very limited. Eugenol, despite its acknowledged properties in fish anaesthesia, failed to alleviate the pain stimulus at low concentrations. Contrastingly, menthol exhibited the most promising results at the lowest concentrations tested. Overall, it is concluded that menthol might be a good analgesic for this species, qualifying it as a substance of interest for prospective studies.
Collapse
Affiliation(s)
- Cláudia Alexandra Rocha
- School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (C.A.R.); (S.M.M.)
| | - Luís M. Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Sandra Mariza Monteiro
- School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (C.A.R.); (S.M.M.)
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Animal Science, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
24
|
Khalil M, Piccapane F, Vacca M, Celano G, Mahdi L, Perniola V, Apa CA, Annunziato A, Iacobellis I, Procino G, Calasso M, De Angelis M, Caroppo R, Portincasa P. Nutritional and Physiological Properties of Thymbra spicata: In Vitro Study Using Fecal Fermentation and Intestinal Integrity Models. Nutrients 2024; 16:588. [PMID: 38474717 DOI: 10.3390/nu16050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024] Open
Abstract
(Poly)phenolic-rich Mediterranean plants such as Thymbra spicata have been associated with several health-promoting effects. The nutritional value, as well as physiological interaction of T. spicata with the gastrointestinal tract, has not been investigated before. The nutritional composition of T. spicata leaves was here characterized by standard analytical methods. T. spicata leaves were subjected to ethanolic extraction, simulated gastrointestinal digestion, and anaerobic microbial gut fermentation. Phenols/flavonoid contents and radical scavenging activity were assessed by colorimetric methods. The volatile organic compounds (VOCs) were detected by gas chromatography coupled with mass spectrometry. The effect on intestinal integrity was evaluated using a Caco-2 monolayers mounted in a Ussing chamber. T. spicata contains a high amount of fiber (12.3%) and unsaturated fatty acids (76% of total fat). A positive change in VOCs including short-chain fatty acids was observed without significant change in viable microbe. T. spicata and carvacrol (main phenolic compound) enhanced ionic currents in a concentration-dependent manner without compromising the Caco-2 monolayer's integrity. These effects were partially lost upon simulated digestion and completely abolished after colonic fermentation in line with polyphenols and carvacrol content. Conclusion: T. spicata represents a promising nutrient for the modulation of gut microbiota and the gut barrier. Further studies must better define its mechanisms of action.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Francesca Piccapane
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Laura Mahdi
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Valeria Perniola
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Carmen Aurora Apa
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Alessandro Annunziato
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Ilaria Iacobellis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Giuseppe Procino
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Maria Calasso
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Rosa Caroppo
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
25
|
Guo Z, Ye G, Tang C, Xiong H. Exploring effect of herbal monomers in treating gouty arthritis based on nuclear factor-kappa B signaling: A review. Medicine (Baltimore) 2024; 103:e37089. [PMID: 38306549 PMCID: PMC10843426 DOI: 10.1097/md.0000000000037089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024] Open
Abstract
Gouty arthritis (GA) is an inflammatory disease caused by disorders of the purine metabolism. Although increasing number of drugs have been used to treat GA with the deepening of relevant research, GA still cannot be cured by simple drug therapy. The nuclear factor-kappa B (NF-κB) signaling pathway plays a key role in the pathogenesis of GA. A considerable number of Chinese herbal medicines have emerged as new drugs for the treatment of GA. This article collected relevant research on traditional Chinese medicine monomers in the treatment of GA using NF-κB, GA, etc. as keywords; and conducted a systematic search of relevant published articles using the PubMed database. In this study, we analyzed the therapeutic effects of traditional Chinese medicine monomers on GA in the existing literature through in vivo and in vitro experiments using animal and cell models. Based on this review, we believe that traditional Chinese medicine monomers that can treat GA through the NF-κB signaling pathway are potential new drug development targets. This study provides research ideas for the development and application of new drugs for GA.
Collapse
Affiliation(s)
- Zhanghao Guo
- Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Guisheng Ye
- Department of Ophthalmology, The First Hospital of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Chengjian Tang
- Department of Ophthalmology, The First Hospital of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Hui Xiong
- Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
26
|
de Souza GH, Vaz MS, Dos Santos Radai JA, Fraga TL, Rossato L, Simionatto S. Synergistic interaction of polymyxin B with carvacrol: antimicrobial strategy against polymyxin-resistant Klebsiella pneumoniae. Future Microbiol 2024; 19:181-193. [PMID: 38329374 DOI: 10.2217/fmb-2023-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/09/2023] [Indexed: 02/09/2024] Open
Abstract
Objective: The antimicrobial activities of the synergistic combination of carvacrol and polymyxin B against polymyxin-resistant Klebsiella pneumoniae were evaluated. Methods: The methods employed checkerboard assays to investigate synergism, biofilm inhibition assessment and membrane integrity assay. In addition, the study included in vivo evaluation using a mouse infection model. Results: The checkerboard method evaluated 48 combinations, with 23 indicating synergistic action. Among these, carvacrol 10 mg/kg plus polymyxin B 2 mg/kg exhibited in vivo antimicrobial activity in a mouse model of infection, resulting in increased survival and a significant decrease in bacterial load in the blood. Conclusion: Polymyxin in synergy with carvacrol represents a promising alternative to be explored in the development of new antimicrobials.
Collapse
Affiliation(s)
- Gleyce Ha de Souza
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, 79825-900, Brazil
| | - Marcia Sm Vaz
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, 79825-900, Brazil
| | - Joyce A Dos Santos Radai
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, 79825-900, Brazil
| | - Thiago L Fraga
- Centro Universitário da Grande Dourados - UNIGRAN, Dourados, Mato Grosso do Sul, 79824-900, Brazil
| | - Luana Rossato
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, 79825-900, Brazil
| | - Simone Simionatto
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, 79825-900, Brazil
| |
Collapse
|
27
|
Duan WY, Zhu XM, Zhang SB, Lv YY, Zhai HC, Wei S, Ma PA, Hu YS. Antifungal effects of carvacrol, the main volatile compound in Origanum vulgare L. essential oil, against Aspergillus flavus in postharvest wheat. Int J Food Microbiol 2024; 410:110514. [PMID: 38070224 DOI: 10.1016/j.ijfoodmicro.2023.110514] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/29/2023]
Abstract
Plant volatile organic compounds (VOCs) with antimicrobial activity could potentially be extremely useful fumigants to prevent and control the fungal decay of agricultural products postharvest. In this study, antifungal effects of volatile compounds in essential oils extracted from Origanum vulgare L. against Aspergillus flavus growth were investigated using transcriptomic and biochemical analyses. Carvacrol was identified as the major volatile constituent of the Origanum vulgare L. essential oil, accounting for 66.01 % of the total content. The minimum inhibitory concentrations of carvacrol were 0.071 and 0.18 μL/mL in gas-phase fumigation and liquid contact, respectively. Fumigation with 0.60 μL/mL of carvacrol could completely inhibit A. flavus proliferation in wheat grains with 20 % moisture, showing its potential as a biofumigant. Scanning electron microscopy revealed that carvacrol treatment caused morphological deformation of A. flavus mycelia, and the resulting increased electrolyte leakage indicates damage to the plasma membrane. Confocal laser scanning microscopy confirmed that the carvacrol treatment caused a decrease in mitochondrial membrane potential, reactive oxygen species accumulation, and DNA damage. Transcriptome analysis revealed that differentially expressed genes were mainly associated with fatty acid degradation, autophagy, peroxisomes, the tricarboxylic acid cycle, oxidative phosphorylation, and DNA replication in A. flavus mycelia exposed to carvacrol. Biochemical analyses of hydrogen peroxide and superoxide anion content, and catalase, superoxide dismutase, and glutathione S-transferase activities showed that carvacrol induced oxidative stress in A. flavus, which agreed with the transcriptome results. In summary, this study provides an experimental basis for the use of carvacrol as a promising biofumigant for the prevention of A. flavus contamination during postharvest grain storage.
Collapse
Affiliation(s)
- Wen-Yan Duan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Xi-Man Zhu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Shuai-Bing Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China.
| | - Yang-Yong Lv
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Huan-Chen Zhai
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Shan Wei
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Ping-An Ma
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Yuan-Sen Hu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
28
|
Walasek-Janusz M, Grzegorczyk A, Malm A, Nurzyńska-Wierdak R, Zalewski D. Chemical Composition, and Antioxidant and Antimicrobial Activity of Oregano Essential Oil. Molecules 2024; 29:435. [PMID: 38257351 PMCID: PMC10818459 DOI: 10.3390/molecules29020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance (AMR) is a global public health problem, and the rapid rise in AMR is attributed to the inappropriate and/or overuse of antibiotics. Therefore, alternative antimicrobial agents, including those of natural origin, are being sought for the development of new drugs. The purpose of our study was to analyze the chemical composition, and antimicrobial and antioxidant activities of four oregano essential oils (OEOs) from Poland, Europe, Turkey and the USA. The antimicrobial activity (AMA) was evaluated using 23 strains, including Gram-positive bacteria, Gram-negative bacteria and Candida species. The antioxidant activity (AA) of essential oils (EOs) was determined by the DPPH method. The main component of the EOs tested was carvacrol (76.64-85.70%). The highest amount of this compound was determined in the Polish OEO. The OEOs we tested showed antimicrobial resistance, which was especially strong against fungi (MIC = 0.06-0.25 mg/mL-1). These products also showed high AA (71.42-80.44%). OEOs high in carvacrol should be the subject of further research as potential antimicrobial and antioxidant agents.
Collapse
Affiliation(s)
- Magdalena Walasek-Janusz
- Department of Vegetable and Herb Crops, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, 51A Doświadczalna Street, 20-280 Lublin, Poland;
| | - Agnieszka Grzegorczyk
- Chair and Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (A.G.); (A.M.)
| | - Anna Malm
- Chair and Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (A.G.); (A.M.)
| | - Renata Nurzyńska-Wierdak
- Department of Vegetable and Herb Crops, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, 51A Doświadczalna Street, 20-280 Lublin, Poland;
| | - Daniel Zalewski
- Chair and Department of Biology and Genetics, Faculty of Pharmacy, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland;
| |
Collapse
|
29
|
Kochan E, Sienkiewicz M, Szmajda-Krygier D, Balcerczak E, Szymańska G. Carvacrol as a Stimulant of the Expression of Key Genes of the Ginsenoside Biosynthesis Pathway and Its Effect on the Production of Ginseng Saponins in Panax quinquefolium Hairy Root Cultures. Int J Mol Sci 2024; 25:909. [PMID: 38255986 PMCID: PMC10815547 DOI: 10.3390/ijms25020909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The accumulation of ginsenosides (triterpenic saponins) was determined in Panax quinquefolium hairy root cultures subjected to an elicitation process using carvacrol at 5, 10, 25, 50, 100, 250, and 500 μM concentrations during 24 and 72 h exposure. This study was the first one in which carvacrol was applied as an elicitor. The content of eight ginsenosides, Rb1, Rb2, Rb3, Rc, Rd, Rg1, Rg2, and Re, was determined using HPLC analysis. Moreover, the quantitative RT-PCR method was applied to assess the relative expression level of farnesyl diphosphate synthase, squalene synthase, and dammarenediol synthase genes in the studied cultures. The addition of carvacrol (100 μM) was an effective approach to increase the production of ginsenosides. The highest content and productivity of all detected saponins were, respectively, 20.01 mg∙g-1 d.w. and 5.74 mg∙L-1∙day-1 after 72 h elicitation. The production profile of individual metabolites in P. quinquefolium cultures changed under the influence of carvacrol. The biosynthesis of most examined protopanaxadiol derivatives was reduced under carvacrol treatment. In contrast, the levels of ginsenosides belonging to the Rg group increased. The strongest effect of carvacrol was noticed for Re metabolites, achieving a 7.72-fold increase in comparison to the control. Saponin Rg2, not detected in untreated samples, was accumulated after carvacrol stimulation, reaching its maximum concentration after 72 h exposure to 10 μM elicitor.
Collapse
Affiliation(s)
- Ewa Kochan
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Dagmara Szmajda-Krygier
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (D.S.-K.); (E.B.)
| | - Ewa Balcerczak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (D.S.-K.); (E.B.)
| | - Grażyna Szymańska
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
30
|
Maring M, Balaji C, Komala M, Nandi S, Latha S, Raghavendran HB. Aromatic Plants as Potential Resources to Combat Osteoarthritis. Comb Chem High Throughput Screen 2024; 27:1434-1465. [PMID: 37861046 DOI: 10.2174/0113862073267213231004094629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023]
Abstract
Osteoarthritis, which affects an estimated 10% of men and 18% of women over the age of 60 and is increasing in genetic prevalence and incidence, is acknowledged as the condition that degrades the quality of life for older adults in the world. There is currently no known treatment for osteoarthritis. The majority of therapeutic methods slow the progression of arthritis or treat its symptoms, making effective treatment to end the degenerative process of arthritis elusive. When non-pharmacological therapy is ineffective, various pharmacological therapies may be used to treat osteoarthritis. Pharmacological therapy, however, can have major adverse effects and be very expensive. As a result, alternative remedies have been researched. The promise for the safe and efficient management of osteoarthritis has been demonstrated by herbal remedies. Experimental research suggests that herbal extracts and compounds can reduce inflammation, inhibit catabolic processes, and promote anabolic processes that are important for treating osteoarthritis. Due to their therapeutic and innate pharmacological qualities, aromatic herbs are frequently employed as herbal remedies. Recent research has shown that aromatic plants have the potency to treat osteoarthritis. Additionally, complex mixtures of essential oils and their bioactive ingredients, which have anti-inflammatory and antioxidant properties and are obtained from aromatic plants, are frequently utilized as complementary therapies for osteoarthritis. To establish new study avenues, the advantageous anti-osteoarthritic effects of aromatic herbal medicines, including plants, essential oils, and their bioactive components, are extensively discussed.
Collapse
Affiliation(s)
- Maphibanri Maring
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - C Balaji
- Department of Rheumatology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - M Komala
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology & Advanced Studies, Pallavaram, Chennai, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, India
| | - S Latha
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - H Balaji Raghavendran
- Sri Ramachandra Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| |
Collapse
|
31
|
Sharma H, Yang H, Sharma N, An SSA. Trachyspermum ammi Bioactives Promote Neuroprotection by Inhibiting Acetylcholinesterase, Aβ-Oligomerization/Fibrilization, and Mitigating Oxidative Stress In Vitro. Antioxidants (Basel) 2023; 13:9. [PMID: 38275629 PMCID: PMC10812417 DOI: 10.3390/antiox13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a large category of progressive neurological disorders with diverse clinical and pathological characteristics. Among the NDs, Alzheimer's disease (AD) is the most widespread disease, which affects more than 400 million people globally. Oxidative stress is evident in the pathophysiology of nearly all NDs by affecting several pathways in neurodegeneration. No single drug can manage multi-faceted diseases like NDs. Therefore, an alternative therapeutic strategy is required, which can affect several pathophysiological pathways at a time. To achieve this aim, hexane and ethyl acetate extract from Trachyspermum ammi (Carom) were prepared, and GC/MS identified the bioactive compounds. For the cell-based assays, oxidative stress was induced in SH-SY5Y neuroblastoma cells using hydrogen peroxide to evaluate the neuroprotective potential of the Carom extracts/bioactives. The extracts/bioactives provided neuroprotection in the cells by modulating multiple pathways involved in neurodegeneration, such as alleviating oxidative stress and mitochondrial membrane potential. They were potent inhibitors of acetylcholine esterase enzymes and displayed competitive/mixed-type inhibition. Additionally, anti-Aβ1-42 fibrilization/oligomerization and anti-glycation activities were also analyzed. The multi-faceted neuroprotection shown via Carom/Carvacrol makes it a prospective contender in drug development for NDs.
Collapse
Affiliation(s)
| | | | - Niti Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| |
Collapse
|
32
|
Uyar A, Cellat M, Kanat Ö, Etyemez M, Kutlu T, Deveci MYZ, Yavaş İ, Kuzu M. Carvacrol showed a curative effect on reproductive toxicity caused by Bisphenol AF via antioxidant, anti-inflammatory and anti-apoptotic properties. Reprod Toxicol 2023; 121:108456. [PMID: 37586593 DOI: 10.1016/j.reprotox.2023.108456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Bisphenol AF (BPAF) is an endocrine disruptor, and human exposure to these chemicals is growing in industrialized nations. BPAF has been demonstrated in studies to have toxic effects on reproductive health. This study examined the effects of oral exposure to BPAF on the reproductive system and the protective effects of carvacrol in rats. From 32 Wistar albino rats, four separate groups were set up for this purpose. Carvacrol 75 mg/kg and BPAF 200 mg/kg were administered by oral gavage method. Rat sperm parameters and serum testosterone levels were measured after 28 days of administration. The study looked at the MDA in the testis tissues, as well as CAT, GPx, and GSH as antioxidants parameters, NF-κB and TNF-α as inflammatory markers, caspase-3 and Bcl-2 as apoptosis parameters, and PCNA as cell proliferation markers. In addition, testis tissues underwent histological evaluation. As a result, in rats exposed to only BPAF, sperm counts declined, testosterone levels reduced, oxidative stress, inflammation, and apoptosis increased, and cell proliferation decreased. Furthermore, severe disruptions in tissue architecture and decreased spermatogenesis were reported. In contrast, sperm parameters improved, testosterone levels increased, oxidative stress and inflammation decreased, and apoptosis was prevented in the carvacrol-treated group compared to the BPAF-only group. It was also found that spermatogenesis was maintained, and structural abnormalities in testicular tissue were mostly avoided with an increase in PCNA expression. According to the findings, despite BPAF-induced testicular and reproductive toxicity, carvacrol had therapeutic potential due to its anti-inflammatory, antioxidant, cell proliferation-increasing, and anti-apoptotic activities.
Collapse
Affiliation(s)
- Ahmet Uyar
- Department of Pathology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkiye.
| | - Mustafa Cellat
- Department of Physiology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkiye
| | - Özgür Kanat
- Department of Pathology, Faculty of Veterinary Medicine, Necmettin Erbakan University, Konya, Turkiye
| | - Muhammed Etyemez
- Department of Physiology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkiye
| | - Tuncer Kutlu
- Department of Pathology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkiye
| | - Mehmet Yılmaz Zeki Deveci
- Department of Surgery, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkiye
| | - İlker Yavaş
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Mustafa Kemal University, Hatay, Turkiye
| | - Müslüm Kuzu
- Karabuk University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Karabuk, Turkiye
| |
Collapse
|
33
|
Akhlaq A, Ashraf M, Omer MO, Altaf I. Carvacrol-Fabricated Chitosan Nanoparticle Synergistic Potential with Topoisomerase Inhibitors on Breast and Cervical Cancer Cells. ACS OMEGA 2023; 8:31826-31838. [PMID: 37692253 PMCID: PMC10483689 DOI: 10.1021/acsomega.3c03337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Breast and cervical cancers are the most common heterogeneous malignancies in women. Chemotherapy with conventional drug delivery systems having several limitations along with development of multidrug resistance compelled us to seek out targeted therapeutics. Nanoparticles are suitable substitutes to circumvent multidrug resistance for the targeted treatment of cancer. The current study was aimed to investigate the anticancer effect of carvacrol-loaded chitosan nanoparticles with topoisomerase inhibitors. The average size of carvacrol-loaded chitosan nanoparticles was found to be 80 nm with 24.7 mV ζ-potential, and maximum absorbance was observed at 275 nm. Among all drug combinations, the carvacrol nanoparticles with the doxorubicin combination group exerted greater dose-dependent growth inhibition of both MCF-7 and HeLa cells as compared to single carvacrol nanoparticles and doxorubicin. Combination index values of carvacrol nanoparticles and the doxorubicin combination group showed a strong synergistic effect as they were found to be between 0.2 and 0.4, 0.31 for MCF-7 and 0.34 for HeLa cells. The carvacrol nanoparticles in combination with doxorubicin on MCF-7 cells reduced the dose 16.32-fold for carvacrol nanoparticles and 4.09-fold for doxorubicin at 6.23 μg/mL IC50, while on HeLa cells, this combination reduced the dose 13.18-fold for carvacrol nanoparticles and 3.83-fold for doxorubicin at 9.33 μg/mL IC50. As the dose reduction values were greater than 1, they indicated favorable dose reduction. It was concluded that the combination of carvacrol-loaded chitosan nanoparticles with topoisomerase inhibitors may represent an innovative and promising strategy to improve the efficacy, resistance, and targeted delivery of chemotherapeutics in cancer.
Collapse
Affiliation(s)
- Amina Akhlaq
- Department
of Pharmacology and Toxicology, University
of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Ashraf
- Department
of Pharmacology and Toxicology, University
of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Ovais Omer
- Department
of Pharmacology and Toxicology, University
of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Imran Altaf
- Institute
of Microbiology, University of Veterinary
and Animal Sciences, Lahore 54000, Pakistan
| |
Collapse
|
34
|
Abbasloo E, Khaksari M, Sanjari M, Kobeissy F, Thomas TC. Carvacrol decreases blood-brain barrier permeability post-diffuse traumatic brain injury in rats. Sci Rep 2023; 13:14546. [PMID: 37666857 PMCID: PMC10477335 DOI: 10.1038/s41598-023-40915-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
Previously, we showed that Satureja Khuzestanica Jamzad essential oil (SKEO) and its major component, carvacrol (CAR), 5-isopropyl-2-methylphenol, has anti-inflammatory, anti-apoptotic, and anti-edematous properties after experimental traumatic brain injury (TBI) in rats. CAR, predominantly found in Lamiaceae family (Satureja and Oregano), is lipophilic, allowing diffusion across the blood-brain barrier (BBB). These experiments test the hypothesis that acute treatment with CAR after TBI can attenuate oxidative stress and BBB permeability associated with CAR's anti-edematous traits. Rats were divided into six groups and injured using Marmarou weight drop: Sham, TBI, TBI + Vehicle, TBI + CAR (100 and 200 mg/kg) and CAR200-naive treated rats. Intraperitoneal injection of vehicle or CAR was administered thirty minutes after TBI induction. 24 h post-injury, brain edema, BBB permeability, BBB-related protein levels, and oxidative capacity were measured. Data showed CAR 200 mg/kg treatment decreased brain edema and prevented BBB permeability. CAR200 decreased malondialdehyde (MDA) and reactive oxygen species (ROS) and increased superoxide dismutase (SOD) and total antioxidative capacity (T-AOC), indicating the mechanism of BBB protection is, in part, through antioxidant activity. Also, CAR 200 mg/kg treatment suppressed matrix metalloproteinase-9 (MMP-9) expression and increased ZO-1, occludin, and claudin-5 levels. These data indicate that CAR can promote antioxidant activity and decrease post-injury BBB permeability, further supporting CAR as a potential early therapeutic intervention that is inexpensive and more readily available worldwide. However, more experiments are required to determine CAR's long-term impact on TBI pathophysiology.
Collapse
Affiliation(s)
- Elham Abbasloo
- Institute of Basic and Clinical Physiology Sciences, Endocrinology and Metabolism Research Center, Kerman, Iran.
| | - Mohammad Khaksari
- Institute of Neuropharmacology, Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojgan Sanjari
- Institute of Basic and Clinical Physiology Sciences, Endocrinology and Metabolism Research Center, Kerman, Iran
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Theresa Currier Thomas
- College of Medicine-Phoenix, University of Arizona, Child Health, Phoenix, USA
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, USA
| |
Collapse
|
35
|
Tao T, Zhang P, Zeng Z, Wang M. Advances in autophagy modulation of natural products in cervical cancer. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116575. [PMID: 37142142 DOI: 10.1016/j.jep.2023.116575] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural products play a critical role in drug development and is emerging as a potential source of biologically active metabolites for therapeutic intervention, especially in cancer therapy. In recent years, there is increasing evidence that many natural products may modulate autophagy through various signaling pathways in cervical cancer. Understanding the mechanisms of these natural products helps to develop medications for cervical cancer treatments. AIM OF THE STUDY In recent years, there is increasing evidence that many natural products may modulate autophagy through various signaling pathways in cervical cancer. In this review, we briefly introduce autophagy and systematically describe several classes of natural products implicated in autophagy modulation in cervical cancer, hoping to provide valuable information for the development of cervical cancer treatments based on autophagy. MATERIALS AND METHODS We searched for studies on natural products and autophagy in cervical cancer on the online database and summarized the relationship between natural products and autophagy modulation in cervical cancer. RESULTS Autophagy is a lysosome-mediated catabolic process in eukaryotic cells that plays an important role in a variety of physiological and pathological processes, including cervical cancer. Abnormal expression of cellular autophagy and autophagy-related proteins has been implicated in cervical carcinogenesis, and human papillomavirus infection can affect autophagic activity. Flavonoids, alkaloids, polyphenols, terpenoids, quinones, and other compounds are important sources of natural products that act as anticancer agents. In cervical cancer, natural products exert the anticancer function mainly through the induction of protective autophagy. CONCLUSIONS The regulation of cervical cancer autophagy by natural products has significant advantages in inducing apoptosis, inhibiting proliferation, and reducing drug resistance in cervical cancer.
Collapse
Affiliation(s)
- Tao Tao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ping Zhang
- Department of Obstetrics and Gynecology, Shenyang Women's and Children's Hospital, Shenyang, Liaoning Province, China
| | - Zhi Zeng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
36
|
Mączka W, Twardawska M, Grabarczyk M, Wińska K. Carvacrol-A Natural Phenolic Compound with Antimicrobial Properties. Antibiotics (Basel) 2023; 12:antibiotics12050824. [PMID: 37237727 DOI: 10.3390/antibiotics12050824] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The main purpose of this article is to present the latest research related to selected biological properties of carvacrol, such as antimicrobial, anti-inflammatory, and antioxidant activity. As a monoterpenoid phenol, carvacrol is a component of many essential oils and is usually found in plants together with its isomer, thymol. Carvacrol, either alone or in combination with other compounds, has a strong antimicrobial effect on many different strains of bacteria and fungi that are dangerous to humans or can cause significant losses in the economy. Carvacrol also exerts strong anti-inflammatory properties by preventing the peroxidation of polyunsaturated fatty acids by inducing SOD, GPx, GR, and CAT, as well as reducing the level of pro-inflammatory cytokines in the body. It also affects the body's immune response generated by LPS. Carvacrol is considered a safe compound despite the limited amount of data on its metabolism in humans. This review also discusses the biotransformations of carvacrol, because the knowledge of the possible degradation pathways of this compound may help to minimize the risk of environmental contamination with phenolic compounds.
Collapse
Affiliation(s)
- Wanda Mączka
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Martyna Twardawska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Małgorzata Grabarczyk
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Katarzyna Wińska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
37
|
Gamal A, Aboelhadid SM, Abo El-Ela FI, Abdel-Baki AAS, Ibrahium SM, EL-Mallah AM, Al-Quraishy S, Hassan AO, Gadelhaq SM. Synthesis of Carvacrol-Loaded Invasomes Nanoparticles Improved Acaricide Efficacy, Cuticle Invasion and Inhibition of Acetylcholinestrase against Hard Ticks. Microorganisms 2023; 11:microorganisms11030733. [PMID: 36985306 PMCID: PMC10057972 DOI: 10.3390/microorganisms11030733] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Carvacrol is a monoterpenoid phenol found in many essential oils that has antibacterial, antifungal and antiparasitic activities. Drug loaded-invasome systems are used to deliver drugs utilizing nanoparticles to improve bioavailability, efficacy, and drug release duration. As a result, the present study developed carvacrol-loaded invasomes and evaluated their acaricidal effect against Rhipicephalus annulatus (cattle tick) and Rhipicephalus sanguineus (dog tick). Carvacrol loaded-invasome (CLI) was prepared and characterized using UV/Vis spectrophotometer, zeta potential measurements, Scanning Transmission Electron Microscopy (STEM), Fourier Transform Infrared (FT-IR) Spectroscopy, and Differential Scanning Calorimetry Analysis. CLI (5%) induced significant mortality (100%) in R. annulatus adult ticks with LC50 of 2.60%, whereas the LC50 of pure carvacrol was 4.30%. Carvacrol and CLI were shown to have a significant larvicidal action on both tick species, with LC50s of 0.24 and 0.21% against R. annulatus and 0.27 and 0.23% against R. sanguineus, respectively. Carvacrol and CLI (5%) induced significant repellent activities for 24 h against R. annulatus and R. sanguineus, as evidenced by the rod method and the petri-dish selective area choice method, respectively. High-performance liquid chromatography (HPLC) demonstrated that the CLI form had 3.86 times the permeability of pure carvacrol. Moreover, carvacrol and CLI inhibited acetylcholinesterase activity and decreased glutathione and malonedealdehyde levels in the treated ticks. In conclusion, invasomes significantly improved adulticidal and repellency activities of carvacrol against both tick species.
Collapse
Affiliation(s)
- Amr Gamal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Shawky M. Aboelhadid
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
- Correspondence:
| | - Fatma I. Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | | | - Samar M. Ibrahium
- Department of Parasitology, Animal Health Research Institute, Fayum Branch, Fayum 16101, Egypt
| | - Almahy M. EL-Mallah
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh P.O. Box 2455, Saudi Arabia
| | - Ahmed O. Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sahar M. Gadelhaq
- Parasitology Department, Faculty of Veterinary Medicine, Minia University, Minia 61519, Egypt
| |
Collapse
|
38
|
Ren X, Whitton MM, Yu SJ, Trotter T, Bajagai YS, Stanley D. Application of Phytogenic Liquid Supplementation in Soil Microbiome Restoration in Queensland Pasture Dieback. Microorganisms 2023; 11:microorganisms11030561. [PMID: 36985135 PMCID: PMC10054416 DOI: 10.3390/microorganisms11030561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Pasture production is vital in cattle farming as it provides animals with food and nutrients. Australia, as a significant global beef producer, has been experiencing pasture dieback, a syndrome of deteriorating grassland that results in the loss of grass and the expansion of weeds. Despite two decades of research and many remediation attempts, there has yet to be a breakthrough in understanding the causes or mechanisms involved. Suggested causes of this phenomenon include soil and plant microbial pathogens, insect infestation, extreme heat stress, radiation, and others. Plants produce a range of phytomolecules with antifungal, antibacterial, antiviral, growth-promoting, and immunostimulant effects to protect themselves from a range of environmental stresses. These products are currently used more in human and veterinary health than in agronomy. In this study, we applied a phytogenic product containing citric acid, carvacrol, and cinnamaldehyde, to investigate its ability to alleviate pasture dieback. The phytogenic liquid-based solution was sprayed twice, one week apart, at 5.4 L per hectare. The soil microbial community was investigated longitudinally to determine long-term effects, and pasture productivity and plant morphometric improvements were explored. The phytogenic liquid significantly improved post-drought recovery of alpha diversity and altered temporal and spatial change in the community. The phytogenic liquid reduced biomarker genera associated with poor and polluted soils and significantly promoted plant and soil beneficial bacteria associated with plant rhizosphere and a range of soil benefits. Phytogenic liquid application produced plant morphology improvements and a consistent enhancement of pasture productivity extending beyond 18 months post-application. Our data show that phytogenic products used in the livestock market as an alternative to antibiotics may also have a beneficial role in agriculture, especially in the light of climate change-related soil maintenance and remediation.
Collapse
|
39
|
Cacciatore I, Spalletta S, Di Rienzo A, Flati V, Fornasari E, Pierdomenico L, Del Boccio P, Valentinuzzi S, Costantini E, Toniato E, Martinotti S, Conte C, Di Stefano A, Robuffo I. Anti-Obesity and Anti-Inflammatory Effects of Novel Carvacrol Derivatives on 3T3-L1 and WJ-MSCs Cells. Pharmaceuticals (Basel) 2023; 16:ph16030340. [PMID: 36986440 PMCID: PMC10055808 DOI: 10.3390/ph16030340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
(1) Background: Obesity, a complex metabolic disease resulting from an imbalance between food consumption and energy expenditure, leads to an increase in adipocytes and chronic inflammatory conditions. The aim of this paper was to synthesize a small series of carvacrol derivatives (CD1-3) that are able to reduce both adipogenesis and the inflammatory status often associated with the progression of the obesity disease. (2) Methods: The synthesis of CD1-3 was performed using classical procedures in a solution phase. Biological studies were performed on three cell lines: 3T3-L1, WJ-MSCs, and THP-1. The anti-adipogenic properties of CD1-3 were evaluated using western blotting and densitometric analysis by assessing the expression of obesity-related proteins, such as ChREBP. The anti-inflammatory effect was estimated by measuring the reduction in TNF-α expression in CD1-3-treated THP-1 cells. (3) Results: CD1-3—obtained through a direct linkage between the carboxylic moiety of anti-inflammatory drugs (Ibuprofen, Flurbiprofen, and Naproxen) and the hydroxyl group of carvacrol—have an inhibitory effect on the accumulation of lipids in both 3T3-L1 and WJ-MSCs cell cultures and an anti-inflammatory effect by reducing TNF- α levels in THP-1 cells. (4) Conclusions: Considering the physicochemical properties, stability, and biological data, the CD3 derivative—obtained by a direct linkage between carvacrol and naproxen—resulted in the best candidate, displaying anti-obesity and anti-inflammatory effects in vitro.
Collapse
Affiliation(s)
- Ivana Cacciatore
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: ; Tel.: +39-871-355-44-75
| | - Sonia Spalletta
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Annalisa Di Rienzo
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Erika Fornasari
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Laura Pierdomenico
- Department of Medicine and Aging Sciences, Center on Advanced Studies and Technologies (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Del Boccio
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Silvia Valentinuzzi
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Erica Costantini
- Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Elena Toniato
- Department of Innovative Technology in Medicine and Odontoiatrics, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano Martinotti
- Department of Innovative Technology in Medicine and Odontoiatrics, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Iole Robuffo
- Department of Medicine and Aging Sciences, Center on Advanced Studies and Technologies (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Institute of Molecular Genetics “Luigi Luca Cavalli Sforza”, National Research Council, Section of Chieti, 66100 Chieti, Italy
| |
Collapse
|