1
|
Gruol DL. The Neuroimmune System and the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2023:10.1007/s12311-023-01624-3. [PMID: 37950146 DOI: 10.1007/s12311-023-01624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The recognition that there is an innate immune system of the brain, referred to as the neuroimmune system, that preforms many functions comparable to that of the peripheral immune system is a relatively new concept and much is yet to be learned. The main cellular components of the neuroimmune system are the glial cells of the brain, primarily microglia and astrocytes. These cell types preform many functions through secretion of signaling factors initially known as immune factors but referred to as neuroimmune factors when produced by cells of the brain. The immune functions of glial cells play critical roles in the healthy brain to maintain homeostasis that is essential for normal brain function, to establish cytoarchitecture of the brain during development, and, in pathological conditions, to minimize the detrimental effects of disease and injury and promote repair of brain structure and function. However, dysregulation of this system can occur resulting in actions that exacerbate or perpetuate the detrimental effects of disease or injury. The neuroimmune system extends throughout all brain regions, but attention to the cerebellar system has lagged that of other brain regions and information is limited on this topic. This article is meant to provide a brief introduction to the cellular and molecular components of the brain immune system, its functions, and what is known about its role in the cerebellum. The majority of this information comes from studies of animal models and pathological conditions, where upregulation of the system facilitates investigation of its actions.
Collapse
Affiliation(s)
- Donna L Gruol
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
2
|
Wang P, Liu JB, Wang X, Meng FZ, Xiao QH, Liu L, Zhu J, Hu WH, Ho WZ. Activation of Toll-like receptor 3 inhibits HIV infection of human iPSC-derived microglia. J Med Virol 2023; 95:e29217. [PMID: 37933090 PMCID: PMC10655899 DOI: 10.1002/jmv.29217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023]
Abstract
As a key immune cell in the brain, microglia are essential for protecting the central nervous system (CNS) from viral infections, including HIV. Microglia possess functional Toll-like receptor 3 (TLR3), a key viral sensor for activating interferon (IFN) signaling pathway-mediated antiviral immunity. We, therefore, studied the effect of poly (I:C), a synthetic ligand of TLR3, on the activation of the intracellular innate immunity against HIV in human iPSC-derived microglia (iMg). We found that poly (I:C) treatment of iMg effectively inhibits HIV infection/replication at both mRNA and protein levels. Investigations of the mechanisms revealed that TLR3 activation of iMg by poly (I:C) induced the expression of both type I and type III IFNs. Compared with untreated cells, the poly (I:C)-treated iMg expressed significantly higher levels of IFN-stimulated genes (ISGs) with known anti-HIV activities (ISG15, MxB, Viperin, MxA, and OAS-1). In addition, TLR3 activation elicited the expression of the HIV entry coreceptor CCR5 ligands (CC chemokines) in iMg. Furthermore, the transcriptional profile analysis showed that poly (I:C)-treated cells had the upregulated IFN signaling genes (ISG15, ISG20, IFITM1, IFITM2, IFITM3, IFITM10, APOBEC3A, OAS-2, MxA, and MxB) and the increased CC chemokine signaling genes (CCL1, CCL2, CCL3, CCL4, and CCL15). These observations indicate that TLR3 is a potential therapy target for activating the intracellular innate immunity against HIV infection/replication in human microglial cells. Therefore, further studies with animal models and clinical specimens are necessary to determine the role of TLR3 activation-driven antiviral response in the control and elimination of HIV in infected host cells.
Collapse
Affiliation(s)
- Peng Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA 19140
| | - Jin-Biao Liu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA 19140
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA 19140
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA 19140
| | - Feng-Zheng Meng
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA 19140
| | - Qian-Hao Xiao
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA 19140
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA 19140
| | - Lu Liu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA 19140
| | - Jian Zhu
- Department of Pathology, Ohio State University Wexner Medical Center, Columbus, OH, USA 43210
| | - Wen-Hui Hu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA 19140
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA 19140
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA 19140
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA 19140
| |
Collapse
|
3
|
Nookala S, Mukundan S, Grove B, Combs C. Concurrent Brain Subregion Microgliosis in an HLA-II Mouse Model of Group A Streptococcal Skin Infection. Microorganisms 2023; 11:2356. [PMID: 37764200 PMCID: PMC10538044 DOI: 10.3390/microorganisms11092356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The broad range of clinical manifestations and life-threatening infections caused by the Gram-positive bacterium, Streptococcus pyogenes or Group A Streptococcus (GAS), remains a significant concern to public health, with a subset of individuals developing neurological complications. Here, we examined the concurrent neuroimmune effects of subcutaneous GAS infections in an HLA-Class II (HLA) transgenic mouse model of subcutaneous GAS infection. To investigate changes in the skin-brain axis, HLA-DQ8 (DQA1*0301/DQB1*0302) mice (DQ8) were randomly divided into three groups: uninfected controls (No Inf), GAS infected and untreated (No Tx), and GAS infected with a resolution by clindamycin (CLN) treatment (CLN Tx) (10 mg/kg/5 days) and were monitored for 16 days post-infection. While the skin GAS burden was significantly reduced by CLN, the cortical and hippocampal GAS burden in the male DQ8 mice was not significantly reduced with CLN. Immunoreactivity to anti-GAS antibody revealed the presence of GAS bacteria in the vicinity of the neuronal nucleus in the neocortex of both No Tx and CLN Tx male DQ8 mice. GAS infection-mediated cortical cytokine changes were modest; however, compared to No Inf or No Tx groups, a significant increase in IL-2, IL-13, IL-22, and IL-10 levels was observed in CLN Tx females despite the lack of GAS burden. Western blot analysis of cortical and hippocampal homogenates showed significantly higher ionized calcium-binding adaptor-1 (Iba-1, microglia marker) protein levels in No Tx females and males and CLN Tx males compared to the No Inf group. Immunohistochemical analysis showed that Iba-1 immunoreactivity in the hippocampal CA3 and CA1 subregions was significantly higher in the CLN Tx males compared to the No Tx group. Our data support the possibility that the subcutaneous GAS infection communicates to the brain and is characterized by intraneuronal GAS sequestration, brain cytokine changes, Iba-1 protein levels, and concurrent CA3 and CA1 subregion-specific microgliosis, even without bacteremia.
Collapse
Affiliation(s)
- Suba Nookala
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.M.); (B.G.); (C.C.)
| | | | | | | |
Collapse
|
4
|
Katola FO, Olajide OA. Nimbolide Targets Multiple Signalling Pathways to Reduce Neuroinflammation in BV-2 Microglia. Mol Neurobiol 2023; 60:5450-5467. [PMID: 37314658 PMCID: PMC10415506 DOI: 10.1007/s12035-023-03410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/29/2023] [Indexed: 06/15/2023]
Abstract
Nimbolide, a limonoid compound found in the neem plant, was investigated for effects on neuroinflammation in BV-2 microglia activated with lipopolysaccharide (LPS). Cultured BV-2 cells were treated with nimbolide (125, 250 and 500 nM) followed by stimulation with LPS (100 ng/ml). Results showed that nimbolide caused a significant reduction in the levels of TNFα, IL-6, IFNγ, NO/iNOS and PGE2/COX-2 in LPS-activated BV-2 cells. Further experiments revealed that LPS-induced increased expression of phospho-p65 and phospho-IκBα proteins were reduced in the presence of nimbolide. Also, LPS-induced NF-κB acetylation, increased binding to consensus sites and transactivation, as well as phosphorylation of p38 and JNK MAPKs were reduced by nimbolide. Reduction of cellular ROS generation by nimbolide was accompanied by a reduction in gp91phox protein levels, while antioxidant effects were also observed through elevation in protein levels of HO-1 and NQO-1. It was observed that treatment of BV-2 microglia with nimbolide resulted in reduced levels of cytoplasmic Nrf2, which was accompanied by increased levels in the nucleus. Furthermore, treatment with this compound resulted in increased binding of Nrf2 to antioxidant responsive element (ARE) consensus sites accompanied by enhanced ARE luciferase activity. Knockdown experiments revealed a loss of anti-inflammatory activity by nimbolide in cells transfected with Nrf2 siRNA. Treatment with nimbolide resulted in nuclear accumulation of SIRT-1, while siRNA knockdown of SIRT-1 resulted in the reversal of anti-inflammatory activity of nimbolide. It is proposed that nimbolide reduces neuroinflammation in BV-2 microglia through mechanisms resulting in dual inhibition of NF-κB and MAPK pathways. It is also proposed that activation of Nrf2 antioxidant mechanisms may be contributing to its anti-inflammatory activity.
Collapse
Affiliation(s)
- Folashade O Katola
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
- University of Texas Southwestern Medical Center, Dallas, TX, 75390-9072, USA
| | - Olumayokun A Olajide
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
5
|
Smriti, Singla M, Gupta S, Porwal O, Nasser Binjawhar D, Sayed AA, Mittal P, El-Demerdash FM, Algahtani M, Singh SK, Dua K, Gupta G, Bawa P, Altyar AE, Abdel-Daim MM. Theoretical design for covering Engeletin with functionalized nanostructure-lipid carriers as neuroprotective agents against Huntington's disease via the nasal-brain route. Front Pharmacol 2023; 14:1218625. [PMID: 37492081 PMCID: PMC10364480 DOI: 10.3389/fphar.2023.1218625] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Objective: To propose a theoretical formulation of engeletin-nanostructured lipid nanocarriers for improved delivery and increased bioavailability in treating Huntington's disease (HD). Methods: We conducted a literature review of the pathophysiology of HD and the limitations of currently available medications. We also reviewed the potential therapeutic benefits of engeletin, a flavanol glycoside, in treating HD through the Keap1/nrf2 pathway. We then proposed a theoretical formulation of engeletin-nanostructured lipid nanocarriers for improved delivery across the blood-brain barrier (BBB) and increased bioavailability. Results: HD is an autosomal dominant neurological illness caused by a repetition of the cytosine-adenine-guanine trinucleotide, producing a mutant protein called Huntingtin, which degenerates the brain's motor and cognitive functions. Excitotoxicity, mitochondrial dysfunction, oxidative stress, elevated concentration of ROS and RNS, neuroinflammation, and protein aggregation significantly impact HD development. Current therapeutic medications can postpone HD symptoms but have long-term adverse effects when used regularly. Herbal medications such as engeletin have drawn attention due to their minimal side effects. Engeletin has been shown to reduce mitochondrial dysfunction and suppress inflammation through the Keap1/NRF2 pathway. However, its limited solubility and permeability hinder it from reaching the target site. A theoretical formulation of engeletin-nanostructured lipid nanocarriers may allow for free transit over the BBB due to offering a similar composition to the natural lipids present in the body a lipid solubility and increase bioavailability, potentially leading to a cure or prevention of HD. Conclusion: The theoretical formulation of engeletin-nanostructured lipid nanocarriers has the potential to improve delivery and increase the bioavailability of engeletin in the treatment of HD, which may lead to a cure or prevention of this fatal illness.
Collapse
Affiliation(s)
- Smriti
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Indore, Madhya Pradesh
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Dalal Nasser Binjawhar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Fatma M. El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Australian Research Consortium in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, Australia
| | - Kamal Dua
- Australian Research Consortium in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
- Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Puneet Bawa
- Center of Excellence for Speech and Multimodel Laboratory, Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
6
|
Gottschalk CG, Peterson D, Armstrong J, Knox K, Roy A. Potential molecular mechanisms of chronic fatigue in long haul COVID and other viral diseases. Infect Agent Cancer 2023; 18:7. [PMID: 36750846 PMCID: PMC9902840 DOI: 10.1186/s13027-023-00485-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Historically, COVID-19 emerges as one of the most devastating diseases of humankind, which creates an unmanageable health crisis worldwide. Until now, this disease costs millions of lives and continues to paralyze human civilization's economy and social growth, leaving an enduring damage that will take an exceptionally long time to repair. While a majority of infected patients survive after mild to moderate reactions after two to six weeks, a growing population of patients suffers for months with severe and prolonged symptoms of fatigue, depression, and anxiety. These patients are no less than 10% of total COVID-19 infected individuals with distinctive chronic clinical symptomatology, collectively termed post-acute sequelae of COVID-19 (PASC) or more commonly long-haul COVID. Interestingly, Long-haul COVID and many debilitating viral diseases display a similar range of clinical symptoms of muscle fatigue, dizziness, depression, and chronic inflammation. In our current hypothesis-driven review article, we attempt to discuss the molecular mechanism of muscle fatigue in long-haul COVID, and other viral diseases as caused by HHV6, Powassan, Epstein-Barr virus (EBV), and HIV. We also discuss the pathological resemblance of virus-triggered muscle fatigue with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).
Collapse
Affiliation(s)
- Carl Gunnar Gottschalk
- Simmaron Research INC, 948 Incline Way, Incline Village, NV 89451 USA ,grid.267468.90000 0001 0695 7223Research and Development Laboratory, Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 USA ,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186 USA
| | - Daniel Peterson
- Simmaron Research INC, 948 Incline Way, Incline Village, NV 89451 USA ,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186 USA
| | - Jan Armstrong
- Simmaron Research INC, 948 Incline Way, Incline Village, NV 89451 USA ,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186 USA
| | - Konstance Knox
- grid.267468.90000 0001 0695 7223Research and Development Laboratory, Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 USA ,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186 USA
| | - Avik Roy
- Simmaron Research INC, 948 Incline Way, Incline Village, NV, 89451, USA. .,Research and Development Laboratory, Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA. .,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI, 53186, USA.
| |
Collapse
|
7
|
Popova G, Soliman SS, Kim CN, Keefe MG, Hennick KM, Jain S, Li T, Tejera D, Shin D, Chhun BB, McGinnis CS, Speir M, Gartner ZJ, Mehta SB, Haeussler M, Hengen KB, Ransohoff RR, Piao X, Nowakowski TJ. Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids. Cell Stem Cell 2021; 28:2153-2166.e6. [PMID: 34536354 PMCID: PMC8642295 DOI: 10.1016/j.stem.2021.08.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/23/2021] [Accepted: 08/25/2021] [Indexed: 01/25/2023]
Abstract
Microglia are resident macrophages in the brain that emerge in early development and respond to the local environment by altering their molecular and phenotypic states. Fundamental questions about microglia diversity and function during development remain unanswered because we lack experimental strategies to interrogate their interactions with other cell types and responses to perturbations ex vivo. We compared human microglia states across culture models, including cultured primary and pluripotent stem cell-derived microglia. We developed a "report card" of gene expression signatures across these distinct models to facilitate characterization of their responses across experimental models, perturbations, and disease conditions. Xenotransplantation of human microglia into cerebral organoids allowed us to characterize key transcriptional programs of developing microglia in vitro and reveal that microglia induce transcriptional changes in neural stem cells and decrease interferon signaling response genes. Microglia additionally accelerate the emergence of synchronized oscillatory network activity in brain organoids by modulating synaptic density.
Collapse
Affiliation(s)
- Galina Popova
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah S Soliman
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Chang N Kim
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew G Keefe
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Kelsey M Hennick
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Samhita Jain
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Tao Li
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Dario Tejera
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - David Shin
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | | | - Christopher S McGinnis
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA USA
| | - Matthew Speir
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Zev J Gartner
- Chan Zuckerberg Biohub, San Francisco, CA, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA USA; Center for Cellular Construction, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Keith B Hengen
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Xianhua Piao
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Division of Neonatology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Newborn Brain Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
8
|
Ellis RJ, Wilson N, Peterson S. Cannabis and Inflammation in HIV: A Review of Human and Animal Studies. Viruses 2021; 13:v13081521. [PMID: 34452386 PMCID: PMC8402692 DOI: 10.3390/v13081521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/24/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022] Open
Abstract
Persistent inflammation occurs in people with HIV (PWH) and has many downstream adverse effects including myocardial infarction, neurocognitive impairment and death. Because the proportion of people with HIV who use cannabis is high and cannabis may be anti-inflammatory, it is important to characterize the impact of cannabis use on inflammation specifically in PWH. We performed a selective, non-exhaustive review of the literature on the effects of cannabis on inflammation in PWH. Research in this area suggests that cannabinoids are anti-inflammatory in the setting of HIV. Anti-inflammatory actions are mediated in many cases through effects on the endocannabinoid system (ECS) in the gut, and through stabilization of gut–blood barrier integrity. Cannabidiol may be particularly important as an anti-inflammatory cannabinoid. Cannabis may provide a beneficial intervention to reduce morbidity related to inflammation in PWH.
Collapse
Affiliation(s)
- Ronald J. Ellis
- Departments of Neurosciences and Psychiatry, University of California, San Diego, UCSD HNRC, Mail Code 8231 220 Dickinson Street, Suite B, San Diego, CA 92103, USA
- Correspondence:
| | - Natalie Wilson
- Department of Community Health Systems, School of Nursing, University of California, San Francisco, 1700 Owens Street, Suite 316, San Francisco, CA 94158, USA;
| | - Scott Peterson
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, USA;
| |
Collapse
|
9
|
Differential Diagnosis of Chorea-HIV Infection Delays Diagnosis of Huntington's Disease by Years. Brain Sci 2021; 11:brainsci11060710. [PMID: 34071882 PMCID: PMC8229235 DOI: 10.3390/brainsci11060710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 01/16/2023] Open
Abstract
Background: There is a broad range of potential differential diagnoses for chorea. Besides rare, inherited neurodegenerative diseases such as Huntington’s disease (HD) chorea can accompany basal ganglia disorders due to vasculitis or infections, e.g., with the human immunodeficiency virus (HIV). The clinical picture is complicated by the rare occurrence of HIV infection and HD. Methods: First, we present a case suffering simultaneously from HIV and HD (HIV/HD) focusing on clinical manifestation and disease onset. We investigated cross-sectional data regarding molecular genetic, motoric, cognitive, functional, and psychiatric disease manifestation of HIV/HD in comparison to motor-manifest HD patients without HIV infection (nonHIV/HD) in the largest cohort of HD patients worldwide using the registry study ENROLL-HD. Data were analyzed using ANCOVA analyses controlling for covariates of age and CAG repeat length between groups in IBM SPSS Statistics V.25. Results: The HD diagnosis in our case report was delayed by approximately nine years due to the false assumption that the HIV infection might have been the cause of chorea. Out of n = 21,116 participants in ENROLL-HD, we identified n = 10,125 motor-manifest HD patients. n = 23 male participants were classified as suffering from HIV infection as a comorbidity, compared to n = 4898 male non-HIV/HD patients. Except for age, with HIV/HD being significantly younger (p < 0.050), we observed no group differences regarding sociodemographic, genetic, educational, motoric, functional, and cognitive parameters. Male HIV/HD patients reported about a 5.3-year-earlier onset of HD symptoms noticed by themselves compared to non-HIV/HD (p < 0.050). Moreover, patients in the HIV/HD group had a longer diagnostic delay of 1.8 years between onset of symptoms and HD diagnosis and a longer time regarding assessment of first symptoms by the rater and judgement of the patient (all p < 0.050). Unexpectedly, HIV/HD patients showed less irritability in the Hospital Anxiety and Depression Scale (all p < 0.05). Conclusions: The HD diagnosis in HIV-infected male patients is secured with a diagnostic delay between first symptoms noticed by the patient and final diagnosis. Treating physicians therefore should be sensitized to think of potential alternative diagnoses in HIV-infected patients also afflicted by movement disorders, especially if there is evidence of subcortical atrophy and a history of hyperkinesia, even without a clear HD-family history. Those patients should be transferred for early genetic testing to avoid further unnecessary diagnostics and improve sociomedical care.
Collapse
|
10
|
Ellis RJ, Iudicello J, Sun-Suslow N, Grelotti D, Cherner M, Morgan E, Letendre SL, Heaton RK. Social Isolation Is Linked to Inflammation in Aging People With HIV and Uninfected Individuals. J Acquir Immune Defic Syndr 2021; 86:600-606. [PMID: 33298794 PMCID: PMC7933098 DOI: 10.1097/qai.0000000000002596] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/23/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Even in the era of suppressive antiretroviral therapy, people with HIV (PWH) suffer greater exposure to inflammation than their uninfected peers. Although poor social support and social isolation have been linked to systemic inflammation in the general population, it is not known whether this is true also among PWH. METHODS People with and without HIV infection were enrolled in a community-based, single-center study. Primary predictors were the Medical Outcomes Study Social Support Survey, and outcomes were a panel of inflammatory biomarkers (ICAM-1, MCP-1, IL-6, IL-8, IP-10, C-reactive protein, D-dimer, VEGF, sCD14, and uPAR) in blood plasma and cerebrospinal fluid (CSF). RESULTS PWH had worse positive social support (P = 0.0138) and affectionate support (P = 0.0078) than did HIV- individuals. A factor analysis was used to group the biomarkers into related categories separately for each fluid. Levels of 3 of the 4 plasma factors were significantly higher in PWH than HIV- (ps = 0.007, 0.001, and 0.0005, respectively). Levels of 1 of the 3 CSF factors also were significantly higher in PWH than HIV- (P = 0.0194). In the combined PWH and HIV- cohort, poorer social support was associated with higher levels of a factor in plasma loading on MCP-1, IL-8, and VEGF (P = 0.020) and with a CSF factor loading on MCP-1 and IL-6 (P = 0.006). CONCLUSION These results suggest that enhancing social support might be an intervention to reduce inflammation and its associated adverse outcomes among PWH.
Collapse
Affiliation(s)
- Ronald J. Ellis
- Department of Neurosciences, University of California, San Diego
| | - Jenny Iudicello
- Department of Psychiatry, University of California, San Diego
| | - Ni Sun-Suslow
- Department of Psychiatry, University of California, San Diego
| | - David Grelotti
- Department of Psychiatry, University of California, San Diego
| | - Mariana Cherner
- Department of Psychiatry, University of California, San Diego
| | - Erin Morgan
- Department of Psychiatry, University of California, San Diego
| | | | | |
Collapse
|
11
|
Rai MA, Hammonds J, Pujato M, Mayhew C, Roskin K, Spearman P. Comparative analysis of human microglial models for studies of HIV replication and pathogenesis. Retrovirology 2020; 17:35. [PMID: 33213476 PMCID: PMC7678224 DOI: 10.1186/s12977-020-00544-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Background HIV associated neurocognitive disorders cause significant morbidity and mortality despite the advent of highly active antiretroviral therapy. A deeper understanding of fundamental mechanisms underlying HIV infection and pathogenesis in the central nervous system is warranted. Microglia are resident myeloid cells of the brain that are readily infected by HIV and may constitute a CNS reservoir. We evaluated two microglial model cell lines (C20, HMC3) and two sources of primary cell-derived microglia (monocyte-derived microglia [MMG] and induced pluripotent stem cell-derived microglia [iPSC-MG]) as potential model systems for studying HIV-microglia interactions. Results All four microglial model cells expressed typical myeloid markers with the exception of low or absent CD45 and CD11b expression by C20 and HMC3, and all four expressed the microglia-specific markers P2RY12 and TMEM119. Marked differences were observed upon gene expression profiling, however, indicating that MMG and iPSC-MG cluster closely together with primary human microglial cells, while C20 and HMC3 were similar to each other but very different from primary microglia. Expression of HIV-relevant genes also revealed important differences, with iPSC-MG and MMG expressing relevant genes at levels more closely resembling primary microglia. iPSC-MG and MMG were readily infected with R5-tropic HIV, while C20 and HMC3 lack CD4 and require pseudotyping for infection. Despite many similarities, HIV replication dynamics and HIV-1 particle capture by Siglec-1 differed markedly between the MMG and iPSC-MG. Conclusions MMG and iPSC-MG appear to be viable microglial models that are susceptible to HIV infection and bear more similarities to authentic microglia than two transformed microglia cell lines. The observed differences in HIV replication and particle capture between MMG and iPSC-MG warrant further study.
Collapse
Affiliation(s)
- Mohammad A Rai
- Division of Infectious Diseases, Cincinnati Children's Hospital, 3333 Burnet Avenue, MLC 7017, Cincinnati, OH, 45229, USA.,Division of Infectious Diseases, Department of Medicine, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Jason Hammonds
- Division of Infectious Diseases, Cincinnati Children's Hospital, 3333 Burnet Avenue, MLC 7017, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Mario Pujato
- Division of Biomedical Informatics, Cincinnati Children's Hospital, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Christopher Mayhew
- Pluripotent Stem Cell Core Facility, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Krishna Roskin
- Division of Biomedical Informatics, Cincinnati Children's Hospital, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Paul Spearman
- Division of Infectious Diseases, Cincinnati Children's Hospital, 3333 Burnet Avenue, MLC 7017, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
12
|
Kaur N, Chugh H, Sakharkar MK, Dhawan U, Chidambaram SB, Chandra R. Neuroinflammation Mechanisms and Phytotherapeutic Intervention: A Systematic Review. ACS Chem Neurosci 2020; 11:3707-3731. [PMID: 33146995 DOI: 10.1021/acschemneuro.0c00427] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is indicated in the pathogenesis of several acute and chronic neurological disorders. Acute lesions in the brain parenchyma induce intense and highly complex neuroinflammatory reactions with similar mechanisms among various disease prototypes. Microglial cells in the CNS sense tissue damage and initiate inflammatory responses. The cellular and humoral constituents of the neuroinflammatory reaction to brain injury contribute significantly to secondary brain damage and neurodegeneration. Inflammatory cascades such as proinflammatory cytokines from invading leukocytes and direct cell-mediated cytotoxicity between lymphocytes and neurons are known to cause "collateral damage" in models of acute brain injury. In addition to degeneration and neuronal cell loss, there are secondary inflammatory mechanisms that modulate neuronal activity and affect neuroinflammation which can even be detected at the behavioral level. Hence, several of health conditions result from these pathogenetic conditions which are underlined by progressive neuronal function loss due to chronic inflammation and oxidative stress. In the first part of this Review, we discuss critical neuroinflammatory mediators and their pathways in detail. In the second part, we review the phytochemicals which are considered as potential therapeutic molecules for treating neurodegenerative diseases with an inflammatory component.
Collapse
Affiliation(s)
- Navrinder Kaur
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi-110007, India
| | - Heerak Chugh
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Meena K. Sakharkar
- College of Pharmacy and Nutrition, University of Sasketchwan, Saskatoon S7N 5E5, Canada
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), S.S. Nagar, Mysuru-570015, India
- Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research JSS AHER, Mysuru-570015, India
| | - Ramesh Chandra
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi-110007, India
| |
Collapse
|
13
|
Brief Report: Higher Peripheral Monocyte Activation Markers Are Associated With Smaller Frontal and Temporal Cortical Volumes in Women With HIV. J Acquir Immune Defic Syndr 2020; 84:54-59. [PMID: 31914004 DOI: 10.1097/qai.0000000000002283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Persistent inflammation is a life-long complication of HIV infection, even in virally suppressed individuals. Elevated plasma concentrations of soluble(s) CD14 and CD163 have been established as biomarkers of chronic inflammation, conferring higher risk for cognitive, neurovascular, and structural abnormalities. METHODS Structural magnetic resonance imaging (frontal and temporal regions) as well as plasma inflammatory biomarkers of monocyte activation (sCD14 and sCD163), general inflammation (plasma C-reactive protein, interleukin[IL]-6), and gut microbial translocation (plasma intestinal fatty acid-binding protein) were available on 38 women (25 with HIV) from the Chicago Women's Interagency HIV Study site. Partial least-squares models adjusting for relevant covariates (eg, age, education, and race) were conducted to evaluate the relationship between inflammatory biomarkers and brain volume in the overall sample and among women with HIV (WWH). RESULTS In the total sample, higher plasma sCD14 was associated with smaller volumes in multiple frontal and temporal lobe regions. In the WWH-only sample, sCD163 was associated with smaller volumes only in one region of the left frontal lobe. C-reactive protein, IL-6, and intestinal fatty acid-binding protein were not associated with brain volumes for either group of women. CONCLUSIONS Of the inflammatory monocyte markers evaluated, sCD14 was associated with smaller frontal and temporal cortical volume in the overall and WWH-only samples, while plasma sCD163 was only associated with smaller left caudal middle frontal gyrus in the WWH-only group. Validating these monocyte proteins as neurological biomarkers of structural brain deficits in a larger sample is critical for understanding HIV-associated neurobiological complications.
Collapse
|
14
|
Alam SB, Willows S, Kulka M, Sandhu JK. Severe acute respiratory syndrome coronavirus 2 may be an underappreciated pathogen of the central nervous system. Eur J Neurol 2020; 27:2348-2360. [PMID: 32668062 PMCID: PMC7405269 DOI: 10.1111/ene.14442] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a highly contagious respiratory disease referred to as COVID-19. However, emerging evidence indicates that a small but growing number of COVID-19 patients also manifest neurological symptoms, suggesting that SARS-CoV-2 may infect the nervous system under some circumstances. SARS-CoV-2 primarily enters the body through the epithelial lining of the respiratory and gastrointestinal tracts, but under certain conditions this pleiotropic virus may also infect peripheral nerves and gain entry into the central nervous system (CNS). The brain is shielded by various anatomical and physiological barriers, most notably the blood-brain barrier (BBB) which functions to prevent harmful substances, including pathogens and pro-inflammatory mediators, from entering the brain. The BBB is composed of highly specialized endothelial cells, pericytes, mast cells and astrocytes that form the neurovascular unit, which regulates BBB permeability and maintains the integrity of the CNS. In this review, potential routes of viral entry and the possible mechanisms utilized by SARS-CoV-2 to penetrate the CNS, either by disrupting the BBB or infecting the peripheral nerves and using the neuronal network to initiate neuroinflammation, are briefly discussed. Furthermore, the long-term effects of SARS-CoV-2 infection on the brain and in the progression of neurodegenerative diseases known to be associated with other human coronaviruses are considered. Although the mechanisms of SARS-CoV-2 entry into the CNS and neurovirulence are currently unknown, the potential pathways described here might pave the way for future research in this area and enable the development of better therapeutic strategies.
Collapse
Affiliation(s)
- S. B. Alam
- Nanotechnology Research CentreNational Research Council CanadaEdmontonAlbertaCanada
- Department of Medical Microbiology and ImmunologyUniversity of AlbertaEdmontonAlbertaCanada
| | - S. Willows
- Nanotechnology Research CentreNational Research Council CanadaEdmontonAlbertaCanada
- Department of Medical Microbiology and ImmunologyUniversity of AlbertaEdmontonAlbertaCanada
| | - M. Kulka
- Nanotechnology Research CentreNational Research Council CanadaEdmontonAlbertaCanada
- Department of Medical Microbiology and ImmunologyUniversity of AlbertaEdmontonAlbertaCanada
| | - J. K. Sandhu
- Human Health Therapeutics Research CentreNational Research Council CanadaOttawaOntarioCanada
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
15
|
Inoue K. Nociceptive signaling of P2X receptors in chronic pain states. Purinergic Signal 2020; 17:41-47. [PMID: 33015745 DOI: 10.1007/s11302-020-09743-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/27/2020] [Indexed: 01/25/2023] Open
Abstract
P2X3 monomeric receptors (P2X3Rs) and P2X2/3 heteromeric receptors (P2X2/3Rs) in primary sensory neurons and microglial P2X4 monomeric receptors (P2X4Rs) in the spinal dorsal horn (SDH) play important roles in neuropathic pain. In particular, P2X4R in the spinal microglia during peripheral nerve injury (PNI), experimental autoimmune neuritis, and herpes models are useful to explore the potential strategies for developing new drugs to treat neuropathic pain. Recently, novel P2X4 antagonists, NP-1815-PX and NC-2600, were developed, which demonstrated potent and specific inhibition against rodent and human P2X4Rs. The phase I study of NC-2600 has been completed, and no serious side effects were reported. The roles played by purinergic receptors in evoking neuropathic pain provide crucial insights into the pathogenesis of neuropathic pain.
Collapse
Affiliation(s)
- Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
16
|
Comparison of miRNA Expression Profiles between HIV-1 and HIV-2 Infected Monocyte-Derived Macrophages (MDMs) and Peripheral Blood Mononuclear Cells (PBMCs). Int J Mol Sci 2020; 21:ijms21186970. [PMID: 32971935 PMCID: PMC7556008 DOI: 10.3390/ijms21186970] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
During the progression of HIV-1 infection, macrophage tropic HIV-1 that use the CCR5 co-receptor undergoes a change in co-receptor use to CXCR4 that is predominately T cell tropic. This change in co-receptor preference makes the virus able to infect T cells. HIV-2 is known to infect MDMs and T cells and is dual tropic. The aim of this study was to elucidate the differential expression profiles of host miRNAs and their role in cells infected with HIV-1/HIV-2. To achieve this goal, a comparative global miRNA expression profile was determined in human PBMCs and MDMs infected with HIV-1/HIV-2. Differentially expressed miRNAs were identified in HIV-1/HIV-2 infected PBMCs and MDMs using the next-generation sequencing (NGS) technique. A comparative global miRNA expression profile in infected MDMs and PBMCs with HIV-1 and HIV-2 identified differential expression of several host miRNAs. These differentially expressed miRNAs are likely to be involved in many signaling pathways, like the p53 signaling pathway, PI3K-Akt signaling pathways, MAPK signaling pathways, FoxO signaling pathway, and viral carcinogenesis. Thus, a comparative study of the differential expression of host miRNAs in MDMs and T cell in response to HIV-1 and HIV-2 infection will help us to identify unique biomarkers that can differentiate HIV-1 and HIV-2 infection.
Collapse
|
17
|
Dos Reis RS, Sant S, Keeney H, Wagner MCE, Ayyavoo V. Modeling HIV-1 neuropathogenesis using three-dimensional human brain organoids (hBORGs) with HIV-1 infected microglia. Sci Rep 2020; 10:15209. [PMID: 32938988 PMCID: PMC7494890 DOI: 10.1038/s41598-020-72214-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
HIV-1 associated neurocognitive disorder (HAND) is characterized by neuroinflammation and glial activation that, together with the release of viral proteins, trigger a pathogenic cascade resulting in synaptodendritic damage and neurodegeneration that lead to cognitive impairment. However, the molecular events underlying HIV neuropathogenesis remain elusive, mainly due to lack of brain-representative experimental systems to study HIV-CNS pathology. To fill this gap, we developed a three-dimensional (3D) human brain organoid (hBORG) model containing major cell types important for HIV-1 neuropathogenesis; neurons and astrocytes along with incorporation of HIV-infected microglia. Both infected and uninfected microglia infiltrated into hBORGs resulting in a triculture system (MG-hBORG) that mirrors the multicellular network observed in HIV-infected human brain. Moreover, the MG-hBORG model supported productive viral infection and exhibited increased inflammatory response by HIV-infected MG-hBORGs, releasing tumor necrosis factor (TNF-α) and interleukin-1 (IL-1β) and thereby mimicking the chronic neuroinflammatory environment observed in HIV-infected individuals. This model offers great promise for basic understanding of how HIV-1 infection alters the CNS compartment and induces pathological changes, paving the way for discovery of biomarkers and new therapeutic targets.
Collapse
Affiliation(s)
- Roberta S Dos Reis
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, McGowan Institute for Regenerative Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, 15261, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Hannah Keeney
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Marc C E Wagner
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Velpandi Ayyavoo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
18
|
Liu H, Zhou R, Liu Y, Guo L, Wang X, Hu W, Ho W. HIV infection suppresses TLR3 activation-mediated antiviral immunity in microglia and macrophages. Immunology 2020; 160:269-279. [PMID: 32053234 PMCID: PMC7341545 DOI: 10.1111/imm.13181] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/30/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Monocytic-lineage cells in the central nervous system (CNS), including microglia and brain resident macrophages, are the key players in the CNS innate immunity against viral infections, including human immunodeficiency virus (HIV). However, these cells also serve as the major targets and reservoirs for HIV in the CNS. To address the question of how HIV can establish persistent infection in the target cells in the CNS, we examined whether HIV has the ability to counteract Toll-like receptor 3 (TLR3) activation-mediated antiviral immunity in microglia and macrophages. We observed that HIV latently infected microglial cells (HC69·5) expressed reduced levels of TLR3 and TLR3 activation-mediated interferons (IFN-α/β and IFN-λ) as compared with the uninfected control cells (C20). In addition, HIV infection of primary human macrophages suppressed the expression of TLR3 and the IFNs. HIV infection also inhibited the expression of the antiviral IFN-stimulated genes (ISGs) and the HIV-restriction miRNAs. Mechanistically, HIV infection inhibited the phosphorylation of IFN regulatory factors (IRF3 and IRF7) and signal transducer and activator of transcription proteins (STAT1 and STAT3) in both HIV latently infected microglia and acutely infected macrophages. These findings provide previously unrecognized and sound mechanisms for HIV infection and persistence in the primary target and reservoir cells in the brain.
Collapse
Affiliation(s)
- Hang Liu
- School of Basic Medical SciencesWuhan UniversityWuhanChina
- Department of Pathology and Laboratory MedicineTemple University Lewis Katz School of MedicinePhiladelphiaPAUSA
| | - Run‐Hong Zhou
- Department of Pathology and Laboratory MedicineTemple University Lewis Katz School of MedicinePhiladelphiaPAUSA
| | - Yu Liu
- Department of Pathology and Laboratory MedicineTemple University Lewis Katz School of MedicinePhiladelphiaPAUSA
| | - Le Guo
- Department of Pathology and Laboratory MedicineTemple University Lewis Katz School of MedicinePhiladelphiaPAUSA
| | - Xu Wang
- Department of Pathology and Laboratory MedicineTemple University Lewis Katz School of MedicinePhiladelphiaPAUSA
| | - Wen‐Hui Hu
- Department of Pathology and Laboratory MedicineTemple University Lewis Katz School of MedicinePhiladelphiaPAUSA
| | - Wen‐Zhe Ho
- School of Basic Medical SciencesWuhan UniversityWuhanChina
- Department of Pathology and Laboratory MedicineTemple University Lewis Katz School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
19
|
HIV Infection and Neurocognitive Disorders in the Context of Chronic Drug Abuse: Evidence for Divergent Findings Dependent upon Prior Drug History. J Neuroimmune Pharmacol 2020; 15:715-728. [PMID: 32533296 DOI: 10.1007/s11481-020-09928-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
The fronto-striatal circuitry, involving the nucleus accumbens, ventral tegmental area, and prefrontal cortex, mediates goal-directed behavior and is targeted by both drugs of abuse and HIV-1 infection. Acutely, both drugs and HIV-1 provoke increased dopamine activity within the circuit. However, chronic exposure to drugs or HIV-1 leads to dysregulation of the dopamine system as a result of fronto-striatal adaptations to oppose the effects of repeated instances of transiently increased dopamine. Specifically, chronic drug use leads to reduced dopaminergic tone, upregulation of dopamine transporters, and altered circuit connectivity, sending users into an allosteric state in which goal-directed behaviors are dysregulated (i.e., addiction). Similarly, chronic exposure to HIV-1, even with combination antiretroviral therapy (cART), dysregulates dopamine and dopamine transporter function and alters connectivity of the fronto-striatal circuit, contributing to apathy and clinical symptoms of HIV-1 associated neurocognitive disorders (HAND). Thus, in a drug user also exposed to HIV-1, dysregulation of the fronto-striatal dopamine circuit advances at an exacerbated rate and appears to be driven by mechanisms unique from those seen with chronic drug use or HIV-1 exposure alone. We posit that the effects of drug use and HIV-1 infection on microglia interact to drive the progression of motivational dysfunction at an accelerated rate. The current review will therefore explore how the fronto-striatal circuit adapts to drug use (using cocaine as an example), HIV-1 infection, and both together; emphasizing proper methods and providing future directions to develop treatments for pathologies disrupting goal-directed behaviors and improve clinical outcomes for affected patients. Graphical Abstract Drug use and HIV-1 in the fronto-striatal circuit. Drugs of abuse and HIV-1 infection both target the fronto-striatal circuit which mediates goal-directed behavior. Acutely, drugs and HIV-1 increase dopamine activity; in contrast chronic exposure produces circuit adaptions leading to dysregulation, addiction and/or apathy. Comorbid drug use and HIV-1 infection may interact with microglia to exacerbate motivational dysregulation.
Collapse
|
20
|
An Elvitegravir Nanoformulation Crosses the Blood-Brain Barrier and Suppresses HIV-1 Replication in Microglia. Viruses 2020; 12:v12050564. [PMID: 32443728 PMCID: PMC7290679 DOI: 10.3390/v12050564] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Even with an efficient combination of antiretroviral therapy (ART), which significantly decreases viral load in human immunodeficiency virus type 1 (HIV-1)-positive individuals, the occurrence of HIV-1-associated neurocognitive disorders (HAND) still exists. Microglia have been shown to have a significant role in HIV-1 replication in the brain and in subsequent HAND pathogenesis. However, due to the limited ability of ART drugs to cross the blood-brain barrier (BBB) after systemic administration, in addition to efflux transporter expression on microglia, the efficacy of ART drugs for viral suppression in microglia is suboptimal. Previously, we developed novel poly (lactic-co-glycolic acid) (PLGA)-based elvitegravir nanoparticles (PLGA-EVG NPs), which showed improved BBB penetration in vitro and improved viral suppression in HIV-1-infected primary macrophages, after crossing an in vitro BBB model. Our objective in the current study was to evaluate the efficacy of our PLGA-EVG NPs in an important central nervous system (CNS) HIV-1 reservoir, i.e., microglia. In this study, we evaluated the cyto-compatibility of the PLGA-EVG NPs in microglia, using an XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) assay and cellular morphology observation. We also studied the endocytosis pathway and the subcellular localization of PLGA NPs in microglia, using various endocytosis inhibitors and subcellular localization markers. We determined the ability of PLGA-EVG NPs to suppress HIV-1 replication in microglia, after crossing an in vitro BBB model. We also studied the drug levels in mouse plasma and brain tissue, using immunodeficient NOD scid gamma (NSG) mice, and performed a pilot study, to evaluate the efficacy of PLGA-EVG NPs on viral suppression in the CNS, using an HIV-1 encephalitic (HIVE) mouse model. From our results, the PLGA-EVG NPs showed ~100% biocompatibility with microglia, as compared to control cells. The internalization of PLGA NPs in microglia occurred through caveolae-/clathrin-mediated endocytosis. PLGA NPs can also escape from endo-lysosomal compartments and deliver the therapeutics to cells efficiently. More importantly, the PLGA-EVG NPs were able to show ~25% more viral suppression in HIV-1-infected human-monocyte-derived microglia-like cells after crossing the in vitro BBB compared to the EVG native drug, without altering BBB integrity. PLGA-EVG NPs also showed a ~two-fold higher level in mouse brain and a trend of decreasing CNS HIV-1 viral load in HIV-1-infected mice. Overall, these results help us to create a safe and efficient drug delivery method to target HIV-1 reservoirs in the CNS, for potential clinical use.
Collapse
|
21
|
Hazra B, Chakraborty S, Bhaskar M, Mukherjee S, Mahadevan A, Basu A. miR-301a Regulates Inflammatory Response to Japanese Encephalitis Virus Infection via Suppression of NKRF Activity. THE JOURNAL OF IMMUNOLOGY 2019; 203:2222-2238. [PMID: 31527198 DOI: 10.4049/jimmunol.1900003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Microglia being the resident macrophage of brain provides neuroprotection following diverse microbial infections. Japanese encephalitis virus (JEV) invades the CNS, resulting in neuroinflammation, which turns the neuroprotective role of microglia detrimental as characterized by increased microglial activation and neuronal death. Several host factors, including microRNAs, play vital roles in regulating virus-induced inflammation. In the current study, we demonstrate that the expression of miR-301a is increased in JEV-infected microglial cells and human brain. Overexpression of miR-301a augments the JEV-induced inflammatory response, whereas inhibition of miR-301a completely reverses the effects. Mechanistically, NF-κB-repressing factor (NKRF) functioning as inhibitor of NF-κB activation is identified as a potential target of miR-301a in JEV infection. Consequently, miR-301a-mediated inhibition of NKRF enhances nuclear translocation of NF-κB, which, in turn, resulted in amplified inflammatory response. Conversely, NKRF overexpression in miR-301a-inhibited condition restores nuclear accumulation of NF-κB to a basal level. We also observed that JEV infection induces classical activation (M1) of microglia that drives the production of proinflammatory cytokines while suppressing alternative activation (M2) that could serve to dampen the inflammatory response. Furthermore, in vivo neutralization of miR-301a in mouse brain restores NKRF expression, thereby reducing inflammatory response, microglial activation, and neuronal apoptosis. Thus, our study suggests that the JEV-induced expression of miR-301a positively regulates inflammatory response by suppressing NKRF production, which might be targeted to manage viral-induced neuroinflammation.
Collapse
Affiliation(s)
- Bibhabasu Hazra
- National Brain Research Centre, Manesar, Haryana 122052, India; and
| | | | | | | | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana 122052, India; and
| |
Collapse
|
22
|
Microglia Mediate HIV-1 gp120-Induced Synaptic Degeneration in Spinal Pain Neural Circuits. J Neurosci 2019; 39:8408-8421. [PMID: 31471472 DOI: 10.1523/jneurosci.2851-18.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
HIV-1 infection of the nervous system causes various neurological diseases, and synaptic degeneration is likely a critical step in the neuropathogenesis. Our prior studies revealed a significant decrease of synaptic protein, specifically in the spinal dorsal horn of patients with HIV-1 in whom pain developed, suggesting a potential contribution of synaptic degeneration to the pathogenesis of HIV-associated pain. However, the mechanism by which HIV-1 causes the spinal synaptic degeneration is unclear. Here, we identified a critical role of microglia in the synaptic degeneration. In primary cortical cultures (day in vitro 14) and spinal cords of 3- to 5-month-old mice (both sexes), microglial ablation inhibited gp120-induced synapse decrease. Fractalkine (FKN), a microglia activation chemokine specifically expressed in neurons, was upregulated by gp120, and knockout of the FKN receptor CX3CR1, which is predominantly expressed in microglia, protected synapses from gp120-induced toxicity. These results indicate that the neuron-to-microglia intercellular FKN/CX3CR1 signaling plays a role in gp120-induced synaptic degeneration. To elucidate the mechanism controlling this intercellular signaling, we tested the role of the Wnt/β-catenin pathway in regulating FKN expression. Inhibition of Wnt/β-catenin signaling blocked both gp120-induced FKN upregulation and synaptic degeneration, and gp120 stimulated Wnt/β-catenin-regulated FKN expression via NMDA receptors (NMDARs). Furthermore, NMDAR antagonist APV, Wnt/β-catenin signaling suppressor DKK1, or knockout of CX3CR1 alleviated gp120-induced mechanical allodynia in mice, suggesting a critical contribution of the Wnt/β-catenin/FKN/CX3R1 pathway to gp120-induced pain. These findings collectively suggest that HIV-1 gp120 induces synaptic degeneration in the spinal pain neural circuit by activating microglia via Wnt3a/β-catenin-regulated FKN expression in neurons.SIGNIFICANCE STATEMENT Synaptic degeneration develops in the spinal cord dorsal horn of HIV patients with chronic pain, but the patients without the pain disorder do not show this neuropathology, indicating a pathogenic contribution of the synaptic degeneration to the development of HIV-associated pain. However, the mechanism underlying the synaptic degeneration is unclear. We report here that HIV-1 gp120, a neurotoxic protein that is specifically associated with the manifestation of pain in HIV patients, induces synapse loss via microglia. Further studies elucidate that gp120 activates microglia by stimulating Wnt/β-catenin-regulated fractalkine in neuron. The results demonstrate a critical role of microglia in the pathogenesis of HIV-associated synaptic degeneration in the spinal pain neural circuit.
Collapse
|
23
|
Smith LK, Kuhn TB, Chen J, Bamburg JR. HIV Associated Neurodegenerative Disorders: A New Perspective on the Role of Lipid Rafts in Gp120-Mediated Neurotoxicity. Curr HIV Res 2019; 16:258-269. [PMID: 30280668 PMCID: PMC6398609 DOI: 10.2174/1570162x16666181003144740] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023]
Abstract
The implementation of combination antiretroviral therapy (cART) as the primary means of treatment for HIV infection has achieved a dramatic decline in deaths attributed to AIDS and the reduced incidence of severe forms of HIV-associated neurocognitive disorders (HAND) in infected individuals. Despite these advances, milder forms of HAND persist and prevalence of these forms of neurocognitive impairment are rising with the aging population of HIV infected individuals. HIV enters the CNS early in the pathophysiology establishing persistent infection in resident macrophages and glial cells. These infected cells, in turn, secrete neurotoxic viral proteins, inflammatory cytokines, and small metabolites thought to contribute to neurodegenerative processes. The viral envelope protein gp120 has been identified as a potent neurotoxin affecting neurodegeneration via indirect and direct mechanisms involving interactions with chemokine co-receptors CCR5 and CXCR4. This short review focuses on gp120 neurotropism and associated mechanisms of neurotoxicity linked to chemokine receptors CCR5 and CXCR4 with a new perspective on plasma membrane lipid rafts as an active participant in gp120-mediated neurodegeneration underlying HIV induced CNS pathology.
Collapse
Affiliation(s)
- Lisa K Smith
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Thomas B Kuhn
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Jack Chen
- Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
24
|
Molecular Signatures of HIV-1 Envelope Associated with HIV-Associated Neurocognitive Disorders. Curr HIV/AIDS Rep 2019; 15:72-83. [PMID: 29460224 DOI: 10.1007/s11904-018-0374-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The HIV-1 envelope gene (env) has been an intense focus of investigation in the search for genetic determinants of viral entry and persistence in the central nervous system (CNS). RECENT FINDINGS Molecular signatures of CNS-derived HIV-1 env reflect the immune characteristics and cellular constraints of the CNS compartment. Although more readily found in those with advanced HIV-1 and HIV-associated neurocognitive disorders (HAND), molecular signatures distinguishing CNS-derived quasispecies can be identified early in HIV-1 infection, in the presence or absence of combination antiretroviral therapy (cART), and are dynamic. Amino acid signatures of CNS-compartmentalization and HAND have been identified across populations. While some significant overlap exists, none are universal. Detailed analyses of CNS-derived HIV-1 env have allowed researchers to identify a number of molecular determinants associated with neuroadaptation. Future investigations using comprehensive cohorts and longitudinal databases have the greatest potential for the identification of robust, validated signatures of HAND in the cART era.
Collapse
|
25
|
Bozzelli PL, Yin T, Avdoshina V, Mocchetti I, Conant KE, Maguire-Zeiss KA. HIV-1 Tat promotes astrocytic release of CCL2 through MMP/PAR-1 signaling. Glia 2019; 67:1719-1729. [PMID: 31124192 DOI: 10.1002/glia.23642] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/29/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
The HIV-1 protein Tat is continually released by HIV-infected cells despite effective combination antiretroviral therapies (cART). Tat promotes neurotoxicity through enhanced expression of proinflammatory molecules from resident and infiltrating immune cells. These molecules include matrix metalloproteinases (MMPs), which are pathologically elevated in HIV, and are known to drive central nervous system (CNS) injury in varied disease settings. A subset of MMPs can activate G-protein coupled protease-activated receptor 1 (PAR-1), a receptor that is highly expressed on astrocytes. Although PAR-1 expression is increased in HIV-associated neurocognitive disorder (HAND), its role in HAND pathogenesis remains understudied. Herein, we explored Tat's ability to induce expression of the PAR-1 agonists MMP-3 and MMP-13. We also investigated MMP/PAR-1-mediated release of CCL2, a chemokine that drives CNS entry of HIV infected monocytes and remains a significant correlate of cognitive dysfunction in the era of cART. Tat exposure significantly increased the expression of MMP-3 and MMP-13. These PAR-1 agonists both stimulated the release of astrocytic CCL2, and both genetic knock-out and pharmacological inhibition of PAR-1 reduced CCL2 release. Moreover, in HIV-infected post-mortem brain tissue, within-sample analyses revealed a correlation between levels of PAR-1-activating MMPs, PAR-1, and CCL2. Collectively, these findings identify MMP/PAR-1 signaling to be involved in the release of CCL2, which may underlie Tat-induced neuroinflammation.
Collapse
Affiliation(s)
- P Lorenzo Bozzelli
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Tao Yin
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Valeria Avdoshina
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Italo Mocchetti
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Katherine E Conant
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Kathleen A Maguire-Zeiss
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
26
|
Neuroinflammation, Microglia, and Cell-Association during Prion Disease. Viruses 2019; 11:v11010065. [PMID: 30650564 PMCID: PMC6356204 DOI: 10.3390/v11010065] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Prion disorders are transmissible diseases caused by a proteinaceous infectious agent that can infect the lymphatic and nervous systems. The clinical features of prion diseases can vary, but common hallmarks in the central nervous system (CNS) are deposition of abnormally folded protease-resistant prion protein (PrPres or PrPSc), astrogliosis, microgliosis, and neurodegeneration. Numerous proinflammatory effectors expressed by astrocytes and microglia are increased in the brain during prion infection, with many of them potentially damaging to neurons when chronically upregulated. Microglia are important first responders to foreign agents and damaged cells in the CNS, but these immune-like cells also serve many essential functions in the healthy CNS. Our current understanding is that microglia are beneficial during prion infection and critical to host defense against prion disease. Studies indicate that reduction of the microglial population accelerates disease and increases PrPSc burden in the CNS. Thus, microglia are unlikely to be a foci of prion propagation in the brain. In contrast, neurons and astrocytes are known to be involved in prion replication and spread. Moreover, certain astrocytes, such as A1 reactive astrocytes, have proven neurotoxic in other neurodegenerative diseases, and thus might also influence the progression of prion-associated neurodegeneration.
Collapse
|
27
|
Infections: Viruses. IMAGING BRAIN DISEASES 2019. [PMCID: PMC7120597 DOI: 10.1007/978-3-7091-1544-2_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Rawat P, Teodorof-Diedrich C, Spector SA. Human immunodeficiency virus Type-1 single-stranded RNA activates the NLRP3 inflammasome and impairs autophagic clearance of damaged mitochondria in human microglia. Glia 2018; 67:802-824. [PMID: 30582668 DOI: 10.1002/glia.23568] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022]
Abstract
Despite the availability of antiretroviral therapy (ART) that fully suppresses human immunodeficiency virus type-1 (HIV), markers of inflammation and minor neurocognitive impairment are frequently identified in HIV-infected persons. Increasing data support that low-level replication defective viral RNA is made by infected cells despite the absence of infectious virus. Specific GU-rich single-stranded RNA from the HIV long terminal repeat region (ssRNA40) signaling through toll-like receptor (TLR)-7 and -8 has been shown to induce the secretion of interleukin-1β (IL-1β) in primary monocytes. Here, we examined the activation of microglial cells by HIV ssRNA40 and the potential subsequent neurotoxicity. Our findings show that exposure of human primary microglia to ssRNA40 activates the NLR family pyrin domain containing 3 (NLRP3) inflammasome. Following exposure to ssRNA40, pro-inflammatory cytokines IL-1β, IL-18, and neurotoxic cytokines TNF-α, IL-1α, and C1q expression and extracellular secretion are increased. The released cytokines are functional since culture supernatants from ssRNA40 exposed microglia-induced toxicity of human primary neurons. Moreover, inflammasome activation of microglia increased ROS generation with a loss of mitochondrial membrane potential and mitochondrial integrity. Treatment with ssRNA40 resulted in a blockade of autophagy/mitophagy mediated negative regulation of NLRP3 inflammasome activity with the release of inflammatory cytokines, caspase-1 activation, and pyroptotic microglial cell death. Thus, HIV ssRNA mediated activation of microglial cells can contribute to neurotoxicity and neurodegeneration via secretion of inflammatory and neurotoxic cytokines. These findings provide a potential mechanism that explains the frequent minor cognitive deficits and chronic inflammation that persist in HIV-infected persons despite treatment with suppressive ART.
Collapse
Affiliation(s)
- Pratima Rawat
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California
| | - Carmen Teodorof-Diedrich
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California
| | - Stephen A Spector
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California.,Rady Children's Hospital, San Diego, California
| |
Collapse
|
29
|
Inhibition of MALT1 Decreases Neuroinflammation and Pathogenicity of Virulent Rabies Virus in Mice. J Virol 2018; 92:JVI.00720-18. [PMID: 30158289 DOI: 10.1128/jvi.00720-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/05/2018] [Indexed: 12/15/2022] Open
Abstract
Rabies virus is a neurovirulent RNA virus, which causes about 59,000 human deaths each year. Treatment for rabies does not exist due to incomplete understanding of the pathogenesis. MALT1 mediates activation of several immune cell types and is involved in the proliferation and survival of cancer cells. MALT1 acts as a scaffold protein for NF-κB signaling and a cysteine protease that cleaves substrates, leading to the expression of immunoregulatory genes. Here, we examined the impact of genetic or pharmacological MALT1 inhibition in mice on disease development after infection with the virulent rabies virus strain CVS-11. Morbidity and mortality were significantly delayed in Malt1 -/- compared to Malt1 +/+ mice, and this effect was associated with lower viral load, proinflammatory gene expression, and infiltration and activation of immune cells in the brain. Specific deletion of Malt1 in T cells also delayed disease development, while deletion in myeloid cells, neuronal cells, or NK cells had no effect. Disease development was also delayed in mice treated with the MALT1 protease inhibitor mepazine and in knock-in mice expressing a catalytically inactive MALT1 mutant protein, showing an important role of MALT1 proteolytic activity. The described protective effect of MALT1 inhibition against infection with a virulent rabies virus is the precise opposite of the sensitizing effect of MALT1 inhibition that we previously observed in the case of infection with an attenuated rabies virus strain. Together, these data demonstrate that the role of immunoregulatory responses in rabies pathogenicity is dependent on virus virulence and reveal the potential of MALT1 inhibition for therapeutic intervention.IMPORTANCE Rabies virus is a neurotropic RNA virus that causes encephalitis and still poses an enormous challenge to animal and public health. Efforts to establish reliable therapeutic strategies have been unsuccessful and are hampered by gaps in the understanding of virus pathogenicity. MALT1 is an intracellular protease that mediates the activation of several innate and adaptive immune cells in response to multiple receptors, and therapeutic MALT1 targeting is believed to be a valid approach for autoimmunity and MALT1-addicted cancers. Here, we study the impact of MALT1 deficiency on brain inflammation and disease development in response to infection of mice with the highly virulent CVS-11 rabies virus. We demonstrate that pharmacological or genetic MALT1 inhibition decreases neuroinflammation and extends the survival of CVS-11-infected mice, providing new insights in the biology of MALT1 and rabies virus infection.
Collapse
|
30
|
Chandra PK, Gerlach SL, Wu C, Khurana N, Swientoniewski LT, Abdel-Mageed AB, Li J, Braun SE, Mondal D. Mesenchymal stem cells are attracted to latent HIV-1-infected cells and enable virus reactivation via a non-canonical PI3K-NFκB signaling pathway. Sci Rep 2018; 8:14702. [PMID: 30279437 PMCID: PMC6168583 DOI: 10.1038/s41598-018-32657-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/11/2018] [Indexed: 02/08/2023] Open
Abstract
Persistence of latent HIV-1 in macrophages (MACs) and T-helper lymphocytes (THLs) remain a major therapeutic challenge. Currently available latency reversing agents (LRAs) are not very effective in vivo. Therefore, understanding of physiologic mechanisms that dictate HIV-1 latency/reactivation in reservoirs is clearly needed. Mesenchymal stromal/stem cells (MSCs) regulate the function of immune cells; however, their role in regulating virus production from latently-infected MACs & THLs is not known. We documented that exposure to MSCs or their conditioned media (MSC-CM) rapidly increased HIV-1 p24 production from the latently-infected U1 (MAC) & ACH2 (THL) cell lines. Exposure to MSCs also increased HIV-1 long terminal repeat (LTR) directed gene expression in the MAC and THL reporter lines, U937-VRX and J-Lat (9.2), respectively. MSCs exposed to CM from U1 cells (U1-CM) showed enhanced migratory ability towards latently-infected cells and retained their latency-reactivation potential. Molecular studies showed that MSC-mediated latency-reactivation was dependent upon both the phosphatidyl inositol-3-kinase (PI3K) and nuclear factor-κB (NFκB) signaling pathways. The pre-clinically tested inhibitors of PI3K (PX-866) and NFκB (CDDO-Me) suppressed MSC-mediated HIV-1 reactivation. Furthermore, coexposure to MSC-CM enhanced the latency-reactivation efficacy of the approved LRAs, vorinostat and panobinostat. Our findings on MSC-mediated latency-reactivation may provide novel strategies against persistent HIV-1 reservoirs.
Collapse
Affiliation(s)
- Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Samantha L Gerlach
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Chengxiang Wu
- Tulane National Primate Research Center, Covington, LA, USA
| | - Namrata Khurana
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Asim B Abdel-Mageed
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jian Li
- Tulane School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Stephen E Braun
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane National Primate Research Center, Covington, LA, USA
| | - Debasis Mondal
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
31
|
Miller D, Shaerzadeh F, Phan L, Sharif N, Gamble-George J, McLaughlin J, Streit WJ, Khoshbouei H. HIV-1 Tat regulation of dopamine transmission and microglial reactivity is brain region specific. Glia 2018; 66:1915-1928. [PMID: 29733459 PMCID: PMC6185750 DOI: 10.1002/glia.23447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022]
Abstract
The transactivator of transcription protein, HIV-1 Tat, is linked to neuroAIDS, where degeneration of dopamine neurons occurs. Using a mouse model expressing GFAP-driven Tat protein under doxycycline (Dox) regulation, we investigated microglial-neuronal interactions in the rostral substantia nigra pars compacta (SNc). Immunohistochemistry for microglia and tyrosine hydroxylase (TH) showed that the ratio of microglia to dopamine neurons is smaller in the SNc than in the ventral tegmental area (VTA) and that this difference is maintained following 7-day Dox exposure in wild type animals. Administration of Dox to wild types had no effect on microglial densities. In addressing the sensitivity of neurons to potentially adverse effects of HIV-1 Tat, we found that HIV-1 Tat exposure in vivo selectively decreased TH immunoreactivity in the SNc but not in the VTA, while levels of TH mRNA in the SNc remained unchanged. HIV-1 Tat induction in vivo did not alter the total number of neurons in these brain regions. Application of Tat (5 ng) into dopamine neurons with whole-cell patch pipette decreased spontaneous firing activity. Tat induction also produced a decline in microglial cell numbers, but no microglial activation. Thus, disappearance of dopaminergic phenotype is due to a loss of TH immunoreactivity rather than to neuronal death, which would have triggered microglial activation. We conclude that adverse effects of HIV-1 Tat produce a hypodopamine state by decreasing TH immunoreactivity and firing activity of dopamine neurons. Reduced microglial numbers after Tat exposure in vivo suggest impaired microglial functions and altered bidirectional interactions between dopamine neurons and microglia.
Collapse
Affiliation(s)
- Douglas Miller
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL 32610
| | - Fatemeh Shaerzadeh
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL 32610
| | - Leah Phan
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL 32610
| | - Nesrin Sharif
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL 32610
| | - Joyonna Gamble-George
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL 32610
| | - Jay McLaughlin
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, FL 32610
| | - Wolfgang J. Streit
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL 32610
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL 32610
| |
Collapse
|
32
|
Tso FY, Kang G, Kwon EH, Julius P, Li Q, West JT, Wood C. Brain is a potential sanctuary for subtype C HIV-1 irrespective of ART treatment outcome. PLoS One 2018; 13:e0201325. [PMID: 30040863 PMCID: PMC6057662 DOI: 10.1371/journal.pone.0201325] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
Subtype C HIV-1 is responsible for the largest proportion of people living with HIV-1 infection. However, there is limited information about the roles of the brain and its cell types as a potential sanctuary for this subtype and how the sanctuary may be affected by the administration of anti-retroviral therapy (ART). To address this issue, we collected postmortem brain tissues from ART treated HIV-1 infected Zambian individuals who experienced complete viral suppression and those who did not. Tissues from various brain compartments were collected from each individual as frozen and formalin-fixed paraffin embedded brain specimens, for detection and quantification of HIV-1 genomes and identification of the infected cell type. Genomic DNA and RNA were extracted from frozen brain tissues. The extracted DNA and RNA were then subjected to droplet digital PCR for HIV-1 quantification. RNA/DNAscope in situ hybridization (ISH) for HIV-1 was performed on formalin-fixed paraffin embedded brain tissues in conjugation with immunohistochemistry to identify the infected cell types. Droplet digital PCR revealed that HIV-1 gag DNA and RNA were detectable in half of the cases studied regardless of ART success or failure. The presence of HIV-1 lacked specific tissue compartmentalization since detection was random among various brain tissues. When combined with immunohistochemistry, RNA/DNAscope ISH demonstrated co-localization of HIV-1 DNA with CD68 expressing cells indicative of microglia or peripheral macrophage. Our study showed that brain is a potential sanctuary for subtype C HIV-1, as HIV-1 can be detected in the brain of infected individuals irrespective of ART treatment outcome and no compartmentalization of HIV-1 to specific brain compartments was evident.
Collapse
Affiliation(s)
- For Yue Tso
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Nebraska, United States of America
| | - Guobin Kang
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Nebraska, United States of America
| | - Eun Hee Kwon
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Nebraska, United States of America
| | - Peter Julius
- Department of Pathology and Microbiology, University Teaching Hospital, Nationalist Road, Lusaka, Zambia
| | - Qingsheng Li
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Nebraska, United States of America
| | - John T. West
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Nebraska, United States of America
| | - Charles Wood
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
33
|
Microglia Are Critical in Host Defense against Prion Disease. J Virol 2018; 92:JVI.00549-18. [PMID: 29769333 DOI: 10.1128/jvi.00549-18] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022] Open
Abstract
Microglial cells in the central nervous system play important roles in neurodevelopment and resistance to infection, yet microglia can become neurotoxic under some conditions. An early event during prion infection is the activation of microglia and astrocytes in the brain prior to damage or death of neurons. Previous prion disease studies using two different strategies to manipulate signaling through the microglial receptor CSF-1R reported contrary effects on survival from prion disease. However, in these studies, reductions of microglial numbers and function were variable, thus confounding interpretation of the results. In the present work, we used oral treatment with a potent inhibitor of CSF-1R, PLX5622, to eliminate 78 to 90% of microglia from cortex early during the course of prion infection. Oral drug treatment early after infection with the RML scrapie strain significantly accelerated vacuolation, astrogliosis, and deposition of disease-associated prion protein. Furthermore, drug-treated mice had advanced clinical disease requiring euthanasia 31 days earlier than untreated control mice. Similarly, PLX5622 treatment during the preclinical phase at 80 days postinfection with RML scrapie also accelerated disease and resulted in euthanasia of mice 33 days earlier than infected controls. PLX5622 also accelerated clinical disease after infection with scrapie strains ME7 and 22L. Thus, microglia are critical in host defense during prion disease. The early accumulation of PrPSc in the absence of microglia suggested that microglia may function by clearing PrPSc, resulting in longer survival.IMPORTANCE Microglia contribute to many aspects of health and disease. When activated, microglia can be beneficial by repairing damage in the central nervous system (CNS) or they can turn harmful by becoming neurotoxic. In prion and prionlike diseases, the involvement of microglia in disease is unclear. Previous studies suggest that microglia can either speed up or slow down disease. In this study, we infected mice with prions and depleted microglia from the brains of mice using PLX5622, an effective CSF-1R tyrosine kinase inhibitor. Microglia were markedly reduced in brains, and prion disease was accelerated, so that mice needed to be euthanized 20 to 33 days earlier than infected control mice due to advanced clinical disease. Similar results occurred when mice were treated with PLX5622 at 80 days after infection, which was just prior to the start of clinical signs. Thus, microglia are important for removing prions, and the disease is faster when microglia are depleted.
Collapse
|
34
|
Evering TH, Tsuji M. Human Immune System Mice for the Study of Human Immunodeficiency Virus-Type 1 Infection of the Central Nervous System. Front Immunol 2018; 9:649. [PMID: 29670623 PMCID: PMC5893637 DOI: 10.3389/fimmu.2018.00649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/16/2018] [Indexed: 01/08/2023] Open
Abstract
Immunodeficient mice transplanted with human cell populations or tissues, also known as human immune system (HIS) mice, have emerged as an important and versatile tool for the in vivo study of human immunodeficiency virus-type 1 (HIV-1) pathogenesis, treatment, and persistence in various biological compartments. Recent work in HIS mice has demonstrated their ability to recapitulate critical aspects of human immune responses to HIV-1 infection, and such studies have informed our knowledge of HIV-1 persistence and latency in the context of combination antiretroviral therapy. The central nervous system (CNS) is a unique, immunologically privileged compartment susceptible to HIV-1 infection, replication, and immune-mediated damage. The unique, neural, and glia-rich cellular composition of this compartment, as well as the important role of infiltrating cells of the myeloid lineage in HIV-1 seeding and replication makes its study of paramount importance, particularly in the context of HIV-1 cure research. Current work on the replication and persistence of HIV-1 in the CNS, as well as cells of the myeloid lineage thought to be important in HIV-1 infection of this compartment, has been aided by the expanded use of these HIS mouse models. In this review, we describe the major HIS mouse models currently in use for the study of HIV-1 neuropathogenesis, recent insights from the field, limitations of the available models, and promising advances in HIS mouse model development.
Collapse
Affiliation(s)
- Teresa H Evering
- Aaron Diamond AIDS Research Center, An Affiliate of the Rockefeller University, New York, NY, United States
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, An Affiliate of the Rockefeller University, New York, NY, United States
| |
Collapse
|
35
|
Chen Q, Wu H, Tao J, Liu C, Deng Z, Liu Y, Chen G, Liu B, Xu C. Effect of naringin on gp120-induced injury mediated by P2X7 receptors in rat primary cultured microglia. PLoS One 2017; 12:e0183688. [PMID: 28832643 PMCID: PMC5568276 DOI: 10.1371/journal.pone.0183688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/09/2017] [Indexed: 12/16/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) envelope glycoprotein 120 has been shown to activate microglia, causing release of inflammatory and toxic factors. The P2X7 receptor, primarily expressed on microglia, is closely associated with inflammation. Naringin, a plant bioflavonoid, has anti-inflammatory and anti-oxidative properties. We hypothesized that P2X7 receptor mediated gp120-induced injury in primary cultured microglia, and that naringin would have a protective effect. We showed that HIV-1 gp120 peptide (V3 loop, fragment 308–331) appeared to induce apoptosis of primary cultured microglia. However, there was a decrease of microglia apoptosis in gp120+naringin group compared with gp120 group. Using qPCR, Western blot, and immunofluorescence, we showed that gp120 stimulated expression of P2X7 mRNA and receptor protein, and this stimulation was inhibited by naringin. Treatment with gp120 increased concentrations of eATP, TNFα and IL-1β, and these effects were inhibited by naringin. Taken together, these results suggested that gp120 contributed to microglial cell injury and neurotoxic activity by up-regulating expression of P2X7, in a naringin-protective manner.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
| | - Hui Wu
- The Second Clinical Medical College of Nanchang University, Nanchang, P.R. China
| | - Jia Tao
- The Second Clinical Medical College of Nanchang University, Nanchang, P.R. China
| | - Chenglong Liu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
| | - Zeyu Deng
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
| | - Yang Liu
- The First Clinical Medical College of Nanchang University, Nanchang, P.R. China
| | - Guoqiao Chen
- The First Clinical Medical College of Nanchang University, Nanchang, P.R. China
| | - Baoyun Liu
- The First Clinical Medical College of Nanchang University, Nanchang, P.R. China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
- * E-mail:
| |
Collapse
|
36
|
Chronic low-level expression of HIV-1 Tat promotes a neurodegenerative phenotype with aging. Sci Rep 2017; 7:7748. [PMID: 28798382 PMCID: PMC5552766 DOI: 10.1038/s41598-017-07570-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/28/2017] [Indexed: 12/20/2022] Open
Abstract
The widespread use of combinational antiretroviral therapies (cART) in developed countries has changed the course of Human Immunodeficiency Virus (HIV) infection from an almost universally fatal disease to a chronic infection for the majority of individuals. Although cART has reduced the severity of neurological damage in HIV-infected individuals, the likelihood of cognitive impairment increases with age, and duration of infection. As cART does not suppress the expression of HIV non-structural proteins, it has been proposed that a constitutive production of HIV regulatory proteins in infected brain cells may contribute to neurological damage. However, this assumption has never been experimentally tested. Here we take advantage of the leaky tetracycline promoter system in the Tat-transgenic mouse to show that a chronic very low-level expression of Tat is associated with astrocyte activation, inflammatory cytokine expression, ceramide accumulation, reductions in brain volume, synaptic, and axonal damage that occurs over a time frame of 1 year. These data suggest that a chronic low-level production of Tat may contribute to progressive neurological damage in virally suppressed HIV-infected individuals.
Collapse
|
37
|
Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration. J Neurosci 2017; 36:10683-10695. [PMID: 27733618 DOI: 10.1523/jneurosci.1287-16.2016] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/26/2016] [Indexed: 12/17/2022] Open
Abstract
HIV-1 infection of the brain causes the neurodegenerative syndrome HIV-associated neurocognitive disorders (HAND), for which there is no specific treatment. Herein, we investigated the actions of insulin using ex vivo and in vivo models of HAND. Increased neuroinflammatory gene expression was observed in brains from patients with HIV/AIDS. The insulin receptor was detected on both neurons and glia, but its expression was unaffected by HIV-1 infection. Insulin treatment of HIV-infected primary human microglia suppressed supernatant HIV-1 p24 levels, reduced CXCL10 and IL-6 transcript levels, and induced peroxisome proliferator-activated receptor gamma (PPAR-γ) expression. Insulin treatment of primary human neurons prevented HIV-1 Vpr-mediated cell process retraction and death. In feline immunodeficiency virus (FIV) infected cats, daily intranasal insulin treatment (20.0 IU/200 μl for 6 weeks) reduced CXCL10, IL-6, and FIV RNA detection in brain, although PPAR-γ in glia was increased compared with PBS-treated FIV+ control animals. These molecular changes were accompanied by diminished glial activation in cerebral cortex and white matter of insulin-treated FIV+ animals, with associated preservation of cortical neurons. Neuronal counts in parietal cortex, striatum, and hippocampus were higher in the FIV+/insulin-treated group compared with the FIV+/PBS-treated group. Moreover, intranasal insulin treatment improved neurobehavioral performance, including both memory and motor functions, in FIV+ animals. Therefore, insulin exerted ex vivo and in vivo antiviral, anti-inflammatory, and neuroprotective effects in models of HAND, representing a new therapeutic option for patients with inflammatory or infectious neurodegenerative disorders including HAND. SIGNIFICANCE STATEMENT HIV-associated neurocognitive disorders (HAND) represent a spectrum disorder of neurocognitive dysfunctions resulting from HIV-1 infection. Although the exact mechanisms causing HAND are unknown, productive HIV-1 infection in the brain with associated neuroinflammation is a potential pathogenic mechanism resulting in neuronal damage and death. We report that, in HIV-infected microglia cultures, insulin treatment led to reduced viral replication and inflammatory gene expression. In addition, intranasal insulin treatment of experimentally feline immunodeficiency virus-infected animals resulted in improved motor and memory performances. We show that insulin restored expression of the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ), which is suppressed by HIV-1 replication. Our findings indicate a unique function for insulin in improving neurological outcomes in lentiviral infections, implicating insulin as a therapeutic intervention for HAND.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW As of the year 2016, an estimated 50% of the United States' HIV-Positive population is aged 50 years or older. Due to a combination of increased rates of infection in older adults, and successful anti-retroviral (ART) regimens allowing HIV-positive adults to survive for decades with the disease, we are now faced with a steadily graying HIV-positive population, with only limited knowledge of how the cognitive and physiological effects of aging intersect with those of chronic HIV-infection. RECENT FINDINGS Age-related changes to mood, cognition, and neurological health may be experienced differently in those living with HIV, and research concerning quality of life, mental health, and cognitive aging needs to account for and explore these factors more carefully in the coming years. SUMMARY This review will explore the topic of cognitive aging with HIV: 1. Central nervous system (CNS) infection of HIV and how the virus affects brain integrity and function; 2. Cognitive and behavioral symptoms of HIV-Associated Neurocognitive Disorders (HAND); 3. Neurobiological theories of Cognitive Aging and how these processes may be exacerbated by HIV-infection; 4: Clinical implications and complications of aging with HIV and factors that may result in poorer cognitive outcomes.
Collapse
Affiliation(s)
| | - Paul Newhouse
- Vanderbilt University Center for Cognitive Medicine.,Veterans Affairs Tennessee Valley Healthcare System Geriatric Research, Education, and Clinical Center (VA TVHS GRECC)
| |
Collapse
|
39
|
Alvarez-Carbonell D, Garcia-Mesa Y, Milne S, Das B, Dobrowolski C, Rojas R, Karn J. Toll-like receptor 3 activation selectively reverses HIV latency in microglial cells. Retrovirology 2017; 14:9. [PMID: 28166799 PMCID: PMC5294768 DOI: 10.1186/s12977-017-0335-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/19/2017] [Indexed: 01/27/2023] Open
Abstract
Background Multiple toll-like receptors (TLRs) are expressed in cells of the monocytic lineage, including microglia, which constitute the major reservoir for human immunodeficiency virus (HIV) infection in the brain. We hypothesized that TLR receptor mediated responses to inflammatory conditions by microglial cells in the central nervous system (CNS) are able to induce latent HIV proviruses, and contribute to the etiology of HIV-associated neurocognitive disorders. Results Newly developed human microglial cell lines (hµglia), obtained by immortalizing human primary microglia with simian virus-40 (SV40) large T antigen and the human telomerase reverse transcriptase, were used to generate latently infected cells using a single-round HIV virus carrying a green fluorescence protein reporter (hµglia/HIV, clones HC01 and HC69). Treatment of these cells with a panel of TLR ligands showed surprisingly that two potent TLR3 agonists, poly (I:C) and bacterial ribosomal RNA potently reactivated HIV in hμglia/HIV cells. LPS (TLR4 agonist), flagellin (TLR5 agonist), and FSL-1 (TLR6 agonist) reactivated HIV to a lesser extent, while Pam3CSK4 (TLR2/1 agonist) and HKLM (TLR2 agonist) only weakly reversed HIV latency in these cells. While agonists for TLR2/1, 4, 5 and 6 reactivated HIV through transient NF-κB induction, poly (I:C), the TLR3 agonist, did not activate NF-κB, and instead induced the virus by a previously unreported mechanism mediated by IRF3. The selective induction of IRF3 by poly (I:C) was confirmed by chromatin immunoprecipitation (ChIP) analysis. In comparison, in latently infected rat-derived microglial cells (hT-CHME-5/HIV, clone HC14), poly (I:C), LPS and flagellin were only partially active. The TLR response profile in human microglial cells is also distinct from that shown by latently infected monocyte cell lines (THP-1/HIV, clone HA3, U937/HIV, clone HUC5, and SC/HIV, clone HSCC4), where TLR2/1, 4, 5, 6 or 8, but not for TLR3, 7 or 9, reactivated HIV. Conclusions TLR signaling, in particular TLR3 activation, can efficiently reactivate HIV transcription in infected microglia, but not in monocytes or T cells. The unique response profile of microglial cells to TLR3 is fundamental to understanding how the virus responds to continuous microbial exposure, especially during inflammatory episodes, that characterizes HIV infection in the CNS. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0335-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Stephanie Milne
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Biswajit Das
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Curtis Dobrowolski
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Roxana Rojas
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA.
| |
Collapse
|
40
|
Woodham AW, Skeate JG, Sanna AM, Taylor JR, Da Silva DM, Cannon PM, Kast WM. Human Immunodeficiency Virus Immune Cell Receptors, Coreceptors, and Cofactors: Implications for Prevention and Treatment. AIDS Patient Care STDS 2016; 30:291-306. [PMID: 27410493 DOI: 10.1089/apc.2016.0100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the last three decades, extensive research on human immunodeficiency virus (HIV) has highlighted its capability to exploit a variety of strategies to enter and infect immune cells. Although CD4(+) T cells are well known as the major HIV target, with infection occurring through the canonical combination of the cluster of differentiation 4 (CD4) receptor and either the C-C chemokine receptor type 5 (CCR5) or C-X-C chemokine receptor type 4 (CXCR4) coreceptors, HIV has also been found to enter other important immune cell types such as macrophages, dendritic cells, Langerhans cells, B cells, and granulocytes. Interestingly, the expression of distinct cellular cofactors partially regulates the rate in which HIV infects each distinct cell type. Furthermore, HIV can benefit from the acquisition of new proteins incorporated into its envelope during budding events. While several publications have investigated details of how HIV manipulates particular cell types or subtypes, an up-to-date comprehensive review on HIV tropism for different immune cells is lacking. Therefore, this review is meant to focus on the different receptors, coreceptors, and cofactors that HIV exploits to enter particular immune cells. Additionally, prophylactic approaches that have targeted particular molecules associated with HIV entry and infection of different immune cells will be discussed. Unveiling the underlying cellular receptors and cofactors that lead to HIV preference for specific immune cell populations is crucial in identifying novel preventative/therapeutic targets for comprehensive strategies to eliminate viral infection.
Collapse
Affiliation(s)
- Andrew W. Woodham
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - Joseph G. Skeate
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - Adriana M. Sanna
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Julia R. Taylor
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - Diane M. Da Silva
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
- Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, California
| | - Paula M. Cannon
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - W. Martin Kast
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
- Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, California
| |
Collapse
|
41
|
Wayman WN, Chen L, Persons AL, Napier TC. Cortical consequences of HIV-1 Tat exposure in rats are enhanced by chronic cocaine. Curr HIV Res 2015; 13:80-7. [PMID: 25760043 DOI: 10.2174/0929867322666150311164504] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 01/22/2015] [Accepted: 02/09/2015] [Indexed: 01/25/2023]
Abstract
The life span of individuals that are sero-positive for human immunodeficiency virus (HIV) has greatly improved; however, complications involving the central nervous system (CNS) remain a concern. While HIV does not directly infect neurons, the proteins produced by the virus, including HIV transactivator of transcription (Tat), are released from infected glia; these proteins can be neurotoxic. This neurotoxicity is thought to mediate the pathology underlying HIVassociated neurological impairments. Cocaine abuse is common among HIV infected individuals, and this abuse augments HIV-associated neurological deficits. The brain regions and pathophysiological mechanisms that are dysregulated by both chronic cocaine and Tat are the focus of the current review.
Collapse
Affiliation(s)
- Wesley N Wayman
- Department of Pharmacology, Rush University Medical Center, 1735 W. Harrison Street, Cohn Research Building, Rm. 463, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
42
|
Senanayake TH, Gorantla S, Makarov E, Lu Y, Warren G, Vinogradov SV. Nanogel-Conjugated Reverse Transcriptase Inhibitors and Their Combinations as Novel Antiviral Agents with Increased Efficacy against HIV-1 Infection. Mol Pharm 2015; 12:4226-36. [PMID: 26565115 DOI: 10.1021/acs.molpharmaceut.5b00424] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs) are an integral part of the current antiretroviral therapy (ART), which dramatically reduced the mortality from AIDS and turned the disease from lethal to chronic. The further steps in curing the HIV-1 infection must include more effective targeting of infected cells and virus sanctuaries inside the body and modification of drugs and treatment schedules to reduce common complications of the long-term treatment and increase patient compliancy. Here, we describe novel NRTI prodrugs synthesized from cholesteryl-ε-polylysine (CEPL) nanogels by conjugation with NRTI 5'-succinate derivatives (sNRTI). Biodegradability, small particle size, and high NRTI loading (30% by weight) of these conjugates; extended drug release, which would allow a weekly administration schedule; high therapeutic index (>1000) with a lower toxicity compared to NRTIs; and efficient accumulation in macrophages known as carriers for HIV-1 infection are among the most attractive properties of new nanodrugs. Nanogel conjugates of zidovudine (AZT), lamivudine (3TC), and abacavir (ABC) have been investigated individually and in formulations similar to clinical NRTI cocktails. Nanodrug formulations demonstrated 10-fold suppression of reverse transcriptase activity (EC90) in HIV-infected macrophages at 2-10, 2-4, and 1-2 μM drug levels, respectively, for single nanodrugs and dual and triple nanodrug cocktails. Nanogel conjugate of lamivudine was the most effective single nanodrug (EC90 2 μM). Nanodrugs showed a more favorable pharmacokinetics compared to free NRTIs. Infrequent iv injections of PEGylated CEPL-sAZT alone could efficiently suppress HIV-1 RT activity to background level in humanized mouse (hu-PBL) HIV model.
Collapse
Affiliation(s)
- T H Senanayake
- Department of Pharmaceutical Sciences, College of Pharmacy, and ‡Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - S Gorantla
- Department of Pharmaceutical Sciences, College of Pharmacy, and ‡Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - E Makarov
- Department of Pharmaceutical Sciences, College of Pharmacy, and ‡Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Y Lu
- Department of Pharmaceutical Sciences, College of Pharmacy, and ‡Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - G Warren
- Department of Pharmaceutical Sciences, College of Pharmacy, and ‡Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - S V Vinogradov
- Department of Pharmaceutical Sciences, College of Pharmacy, and ‡Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| |
Collapse
|
43
|
Bose D, Gagnon J, Chebloune Y. Comparative Analysis of Tat-Dependent and Tat-Deficient Natural Lentiviruses. Vet Sci 2015; 2:293-348. [PMID: 29061947 PMCID: PMC5644649 DOI: 10.3390/vetsci2040293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 01/10/2023] Open
Abstract
The emergence of human immunodeficiency virus (HIV) causing acquired immunodeficiency syndrome (AIDS) in infected humans has resulted in a global pandemic that has killed millions. HIV-1 and HIV-2 belong to the lentivirus genus of the Retroviridae family. This genus also includes viruses that infect other vertebrate animals, among them caprine arthritis-encephalitis virus (CAEV) and Maedi-Visna virus (MVV), the prototypes of a heterogeneous group of viruses known as small ruminant lentiviruses (SRLVs), affecting both goat and sheep worldwide. Despite their long host-SRLV natural history, SRLVs were never found to be responsible for immunodeficiency in contrast to primate lentiviruses. SRLVs only replicate productively in monocytes/macrophages in infected animals but not in CD4+ T cells. The focus of this review is to examine and compare the biological and pathological properties of SRLVs as prototypic Tat-independent lentiviruses with HIV-1 as prototypic Tat-dependent lentiviruses. Results from this analysis will help to improve the understanding of why and how these two prototypic lentiviruses evolved in opposite directions in term of virulence and pathogenicity. Results may also help develop new strategies based on the attenuation of SRLVs to control the highly pathogenic HIV-1 in humans.
Collapse
Affiliation(s)
- Deepanwita Bose
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| | - Jean Gagnon
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| | - Yahia Chebloune
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| |
Collapse
|
44
|
Inhibition of HIV Expression and Integration in Macrophages by Methylglyoxal-Bis-Guanylhydrazone. J Virol 2015. [PMID: 26223636 DOI: 10.1128/jvi.01692-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Macrophages are a target for infection with HIV and represent one of the viral reservoirs that are relatively resistant to current antiretroviral drugs. Here we demonstrate that methylglyoxal-bis-guanylhydrazone (MGBG), a polyamine analog and potent S-adenosylmethionine decarboxylase inhibitor, decreases HIV expression in monocytes and macrophages. MGBG is selectively concentrated by these cells through a mechanism consistent with active transport by the polyamine transporter. Using a macrophage-tropic reporter virus tagged with the enhanced green fluorescent protein, we demonstrate that MGBG decreases the frequency of HIV-infected cells. The effect is dose dependent and correlates with the production of HIV p24 in culture supernatants. This anti-HIV effect was further confirmed using three macrophage-tropic primary HIV isolates. Viral life cycle mapping studies show that MGBG inhibits HIV DNA integration into the cellular DNA in both monocytes and macrophages. IMPORTANCE Our work demonstrates for the first time the selective concentration of MGBG by monocytes/macrophages, leading to the inhibition of HIV-1 expression and a reduction in proviral load within macrophage cultures. These results suggest that MGBG may be useful in adjunctive macrophage-targeted therapy for HIV infection.
Collapse
|
45
|
Dever SM, Rodriguez M, Lapierre J, Costin BN, El-Hage N. Differing roles of autophagy in HIV-associated neurocognitive impairment and encephalitis with implications for morphine co-exposure. Front Microbiol 2015. [PMID: 26217309 PMCID: PMC4491626 DOI: 10.3389/fmicb.2015.00653] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We investigated the role of autophagy in HIV-infected subjects with neurocognitive impairment (NCI) ± HIV encephalitis (HIVE), many of which had a history of polysubstance abuse/dependence, using post-mortem brain tissues to determine whether differences in autophagy related factors may be more associated with NCI or NCI-encephalitis. Using qRT-PCR, we detected significant differences in gene expression levels with SQSTM1, LAMP1 higher in HIV-infected subjects without NCI while ATG5, SQSTM1 were then lower in HIV infection/NCI and ATG7, SQSTM1 being higher in NCI-HIVE. Immunohistochemical labeling of these autophagy associated proteins (also including Beclin 1 and LC3B) in Iba1-positive microglial cells showed generally higher immunoreactivity in the NCI and NCI-HIVE groups with more focal vs. diffuse patterns of expression in the NCI-HIVE group. Furthermore, analysis of microarray data from these same subjects found significantly higher levels of LAMP1 in NCI-HIVE compared to uninfected subjects in the basal ganglia. Finally, we tested the effect of supernatant from HIV-1-infected microglia and HIV-1 Tat protein in combination with morphine on neurons in vitro and found opposing events with both significant inhibition of autophagic flux and reduced dendrite length for morphine and supernatant treatment while Tat and morphine exposure resulted in lower autophagic activity at an earlier time point and higher levels in the later. These results suggest autophagy genes and their corresponding proteins may be differentially regulated at the transcriptional, translational, and post-translational levels in the brain during various stages of the HIV disease and that infected individuals exposed to morphine can experience mixed signaling of autophagic activity which could lead to more severe NCI than those without opioid use.
Collapse
Affiliation(s)
- Seth M Dever
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA, USA ; Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami FL, USA
| | - Myosotys Rodriguez
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami FL, USA
| | - Jessica Lapierre
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami FL, USA
| | - Blair N Costin
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA, USA
| | - Nazira El-Hage
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA, USA ; Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami FL, USA
| |
Collapse
|
46
|
Spanos JP, Hsu NJ, Jacobs M. Microglia are crucial regulators of neuro-immunity during central nervous system tuberculosis. Front Cell Neurosci 2015; 9:182. [PMID: 26041993 PMCID: PMC4435040 DOI: 10.3389/fncel.2015.00182] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/27/2015] [Indexed: 01/11/2023] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis) infection of the central nervous system (CNS) is the most devastating manifestation of tuberculosis (TB), with both high mortality and morbidity. Although research has been fueled by the potential therapeutic target microglia offer against neurodegenerative inflammation, their part in TB infection of the CNS has not been fully evaluated nor elucidated. Yet, as both the preferential targets of M. tuberculosis and the immune-effector cells of the CNS, microglia are likely to be key determinants of disease severity and clinical outcomes. Following pathogen recognition, bacilli are internalized and capable of replicating within microglia. Cellular activation ensues, utilizing signaling molecules that may be neurotoxic. Central to initiating, orchestrating and modulating the tuberculous immune response is microglial secretion of cytokines and chemokines. However, the neurological environment is unique in that inflammatory signals, which appear to be damaging in the periphery, could be beneficial by governing neuronal survival, regeneration and differentiation. Furthermore, microglia are important in the recruitment of peripheral immune cells and central to defining the pro-inflammatory milieu of which neurotoxicity may result from many of the participating local or recruited cell types. Microglia are capable of both presenting antigen to infiltrating CD4(+) T-lymphocytes and inducing their differentiation-a possible correlate of protection against M. tuberculosis infection. Clarifying the nature of the immune effector molecules secreted by microglia, and the means by which other CNS-specific cell types govern microglial activation or modulate their responses is critical if improved diagnostic and therapeutic strategies are to be attained. Therefore, this review evaluates the diverse roles microglia play in the neuro-immunity to M. tuberculosis infection of the CNS.
Collapse
Affiliation(s)
- Jonathan Paul Spanos
- Division of Immunology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | - Nai-Jen Hsu
- Division of Immunology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | - Muazzam Jacobs
- Division of Immunology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town Cape Town, South Africa ; National Health Laboratory Service Johannesburg, South Africa
| |
Collapse
|
47
|
Tewari M, Varghse RK, Menon M, Seth P. Astrocytes mediate HIV-1 Tat-induced neuronal damage via ligand-gated ion channel P2X7R. J Neurochem 2015; 132:464-76. [PMID: 25272052 DOI: 10.1111/jnc.12953] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/17/2014] [Accepted: 09/22/2014] [Indexed: 01/21/2023]
Abstract
During human immunodeficiency virus (HIV)-1 infection, perturbations in neuron–glia interactions may culminate in neuronal damage. Recently, purinergic receptors have been implicated in the promotion of virus-induced neurotoxicity and supporting the viral life cycle at multiple stages. The astrocytes robustly express purinergic receptors. We therefore sought to examine if P2X7R, a P2X receptor subtype, can mediate HIV-1 Tat-induced neuronal apoptosis. Tat augmented the expression of P2X7R in astrocytes. Our data reveal the involvement of P2X7R in Tat-mediated release of monocyte chemoattractant protein (MCP-1) /chemokine (C-C motif) ligand 2 (CCL2) from the astrocytes. P2X7R antagonists, such as the oxidized ATP, A438079, brilliant blue G, and broad spectrum P2 receptor antagonist suramin, attenuated Tat-induced CCL2 release in a calcium- and extracellular signal-regulated kinase (ERK)1/2-dependent manner. Calcium chelators, (1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid) acetoxymethyl ester and EGTA, and ERK1/2 inhibitor U0126 abolished chemokine (C-C motif) ligand 2 release from astrocytes. Furthermore, in human neuronal cultures, we demonstrated P2X7R involvement in Tat-mediated neuronal death. Importantly, in the TUNEL assay, the application of P2X7R-specific antagonists or the knockdown of P2X7R in human astrocytes reduced HIV-Tat-induced neuronal death significantly, underlining the critical role of P2X7R in Tat-mediated neurotoxicity. Our study provides novel insights into astrocyte-mediated neuropathogenesis in HIV-1 infection and a novel target for therapeutic management of neuroAIDS. We investigated the role of P2X7R in Tat-mediated neuroinflammation and neuronal damage. We proposed the following cascade for Tat-mediated CCL2 release from astrocytes: Tat mediates increase in P2X7R expression, which on activation evokes increase in intracellular calcium, which further leads to phosphorylation of ERK1/2 followed by the release of CCL2 from astrocytes. Tat also leads to direct and indirect (mediated via astrocytes) neuronal death that can be abrogated by inhibiting P2X7R. We believe that these finding should provide new insights into the role of astrocytes in HIV-1 Tat-mediated neurotoxicity.
Collapse
|
48
|
Hong S, Banks WA. Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain Behav Immun 2015; 45:1-12. [PMID: 25449672 PMCID: PMC4342286 DOI: 10.1016/j.bbi.2014.10.008] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 12/16/2022] Open
Abstract
Individuals living with HIV who are optimally treated with combination antiretroviral therapy (cART) can now lead an extended life. In spite of this remarkable survival benefit from viral suppression achieved by cART in peripheral blood, the rate of mild to moderate cognitive impairment remains high. A cognitive decline that includes impairments in attention, learning and executive function is accompanied by increased rates of mood disorders that together adversely impact the daily life of those with chronic HIV infection. The evidence is clear that cells in the brain are infected with HIV that has crossed the blood-brain barrier both as cell-free virus and within infected monocytes and T cells. Viral proteins that circulate in blood can induce brain endothelial cells to release cytokines, invoking another source of neuroinflammation. The difficulty of efficient delivery of cART to the central nervous system (CNS) contributes to elevated viral load in the CNS, resulting in a persistent HIV-associated neurocognitive disorders (HAND). The pathogenesis of HAND is multifaceted, and mounting evidence indicates that immune cells play a major role. HIV-infected monocytes and T cells not only infect brain resident cells upon migration into the CNS but also produce proinflammatory cytokines such as TNF and IL-1ß, which in turn, further activate microglia and astrocytes. These activated brain resident cells, along with perivascular macrophages, are the main contributors to neuroinflammation in HIV infection and release neurotoxic factors such as excitatory amino acids and inflammatory mediators, resulting in neuronal dysfunction and death. Cytokines, which are elevated in the blood of patients with HIV infection, may also contribute to brain inflammation by entering the brain from the blood. Host factors such as aging and co-morbid conditions such as cytomegalovirus co-infection and vascular pathology are important factors that affect the HIV-host immune interactions in HAND pathogenesis. By these diverse mechanisms, HIV-1 induces a neuroinflammatory response that is likely to be a major contributor to the cognitive and behavior changes seen in HIV infection.
Collapse
Affiliation(s)
- Suzi Hong
- Department of Psychiatry, University of California San Diego, United States.
| | - William A. Banks
- Geriatric Research Clinical and Education Center, Veterans Affairs Puget Sound Health Care System and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine
| |
Collapse
|
49
|
Amphiphilic cationic nanogels as brain-targeted carriers for activated nucleoside reverse transcriptase inhibitors. J Neuroimmune Pharmacol 2015; 10:88-101. [PMID: 25559020 DOI: 10.1007/s11481-014-9576-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/18/2014] [Indexed: 10/24/2022]
Abstract
Progress in AIDS treatment shifted emphasis towards limiting adverse effects of antiviral drugs while improving the treatment of hard-to-reach viral reservoirs. Many therapeutic nucleoside reverse transcriptase inhibitors (NRTI) have a limited access to the central nervous system (CNS). Increased NRTI levels induced various complications during the therapy, including neurotoxicity, due to the NRTI toxicity to mitochondria. Here, we describe an innovative design of biodegradable cationic cholesterol-ε-polylysine nanogel carriers for delivery of triphosphorylated NRTIs that demonstrated high anti-HIV activity along with low neurotoxicity, warranting minimal side effects following systemic administration. Efficient CNS targeting was achieved by nanogel modification with brain-specific peptide vectors. Novel dual and triple-drug nanoformulations, analogous to therapeutic NRTI cocktails, displayed equal or higher antiviral activity in HIV-infected macrophages compared to free drugs. Our results suggest potential alternative approach to HIV-1 treatment focused on the effective nanodrug delivery to viral reservoirs in the CNS and reduced neurotoxicity.
Collapse
|
50
|
Evering TH, Kamau E, St Bernard L, Farmer CB, Kong XP, Markowitz M. Single genome analysis reveals genetic characteristics of Neuroadaptation across HIV-1 envelope. Retrovirology 2014; 11:65. [PMID: 25125210 PMCID: PMC4145222 DOI: 10.1186/s12977-014-0065-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/24/2014] [Indexed: 01/25/2023] Open
Abstract
Background The widespread use of highly effective, combination antiretroviral therapy (cART) has led to a significant reduction in the incidence of HIV-associated dementia (HAD). Despite these advances, the prevalence of HIV-1 associated neurocognitive disorders (HANDs) has been estimated at approximately 40%-50%. In the cART era, the majority of this disease burden is represented by asymptomatic neurocognitive impairment and mild neurocognitive disorder (ANI and MND respectively). Although less severe than HAD, these diagnoses carry with them substantial morbidity. Results In this cross-sectional study, single genome amplification (SGA) was used to sequence 717 full-length HIV-1 envelope (env) clade B variants from the paired cerebrospinal fluid (CSF) and blood plasma samples of fifteen chronically infected HIV-positive individuals with normal neurocognitive performance (NCN), ANI and MND. Various degrees of compartmentalization were found across disease states and history of cART utilization. In individuals with compartmentalized virus, mean HIV-1 env population diversity was lower in the CSF than plasma-derived variants. Overall, mean V1V2 loop length was shorter in CSF-derived quasispecies when compared to contemporaneous plasma populations, and this was found to correlate with a lower mean number of N-linked glycosylation sites in this region. A number of discrete amino acid positions that correlate strongly with compartmentalization in the CSF were identified in both variable and constant regions of gp120 as well as in gp41. Correlated mutation analyses further identified that a subset of amino acid residues in these compartmentalization “hot spot” positions were strongly correlated with one another, suggesting they may play an important, definable role in the adaptation of viral variants to the CSF. Analysis of these hot spots in the context of a well-supported crystal structure of HIV-1 gp120 suggests mechanisms through which amino acid differences at the identified residues might contribute to viral compartmentalization in the CSF. Conclusions The detailed analyses of SGA-derived full length HIV-1 env from subjects with both normal neurocognitive performance and the most common HAND diagnoses in the cART era allow us to identify novel and confirm previously described HIV-1 env genetic determinants of neuroadaptation and relate potential motifs to HIV-1 env structure and function. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0065-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Teresa H Evering
- Aaron Diamond AIDS Research Center, an affiliate of the Rockefeller University, New York, USA.
| | | | | | | | | | | |
Collapse
|